]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - opcodes/arc-opc.c
This commit was manufactured by cvs2svn to create branch
[thirdparty/binutils-gdb.git] / opcodes / arc-opc.c
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Doug Evans (dje@cygnus.com).
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "sysdep.h"
21 #include <stdio.h>
22 #include "ansidecl.h"
23 #include "bfd.h"
24 #include "opcode/arc.h"
25
26 #define INSERT_FN(fn) \
27 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
28 int, const struct arc_operand_value *, long, \
29 const char **))
30 #define EXTRACT_FN(fn) \
31 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
32 int, const struct arc_operand_value **, int *))
33
34 INSERT_FN (insert_reg);
35 INSERT_FN (insert_shimmfinish);
36 INSERT_FN (insert_limmfinish);
37 INSERT_FN (insert_offset);
38 INSERT_FN (insert_base);
39 INSERT_FN (insert_st_syntax);
40 INSERT_FN (insert_ld_syntax);
41 INSERT_FN (insert_addr_wb);
42 INSERT_FN (insert_flag);
43 INSERT_FN (insert_nullify);
44 INSERT_FN (insert_flagfinish);
45 INSERT_FN (insert_cond);
46 INSERT_FN (insert_forcelimm);
47 INSERT_FN (insert_reladdr);
48 INSERT_FN (insert_absaddr);
49 INSERT_FN (insert_jumpflags);
50 INSERT_FN (insert_unopmacro);
51
52 EXTRACT_FN (extract_reg);
53 EXTRACT_FN (extract_ld_offset);
54 EXTRACT_FN (extract_ld_syntax);
55 EXTRACT_FN (extract_st_offset);
56 EXTRACT_FN (extract_st_syntax);
57 EXTRACT_FN (extract_flag);
58 EXTRACT_FN (extract_cond);
59 EXTRACT_FN (extract_reladdr);
60 EXTRACT_FN (extract_jumpflags);
61 EXTRACT_FN (extract_unopmacro);
62
63 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
64
65 #define OPERANDS 3
66
67 enum operand ls_operand[OPERANDS];
68
69 #define LS_VALUE 0
70 #define LS_DEST 0
71 #define LS_BASE 1
72 #define LS_OFFSET 2
73
74 /* Various types of ARC operands, including insn suffixes. */
75
76 /* Insn format values:
77
78 'a' REGA register A field
79 'b' REGB register B field
80 'c' REGC register C field
81 'S' SHIMMFINISH finish inserting a shimm value
82 'L' LIMMFINISH finish inserting a limm value
83 'o' OFFSET offset in st insns
84 'O' OFFSET offset in ld insns
85 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
86 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
87 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
88 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
89 's' BASE base in st insn
90 'f' FLAG F flag
91 'F' FLAGFINISH finish inserting the F flag
92 'G' FLAGINSN insert F flag in "flag" insn
93 'n' DELAY N field (nullify field)
94 'q' COND condition code field
95 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
96 'B' BRANCH branch address (22 bit pc relative)
97 'J' JUMP jump address (26 bit absolute)
98 'j' JUMPFLAGS optional high order bits of 'J'
99 'z' SIZE1 size field in ld a,[b,c]
100 'Z' SIZE10 size field in ld a,[b,shimm]
101 'y' SIZE22 size field in st c,[b,shimm]
102 'x' SIGN0 sign extend field ld a,[b,c]
103 'X' SIGN9 sign extend field ld a,[b,shimm]
104 'w' ADDRESS3 write-back field in ld a,[b,c]
105 'W' ADDRESS12 write-back field in ld a,[b,shimm]
106 'v' ADDRESS24 write-back field in st c,[b,shimm]
107 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
108 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
109 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
110 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
111
112 The following modifiers may appear between the % and char (eg: %.f):
113
114 '.' MODDOT '.' prefix must be present
115 'r' REG generic register value, for register table
116 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
117
118 Fields are:
119
120 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
121
122 const struct arc_operand arc_operands[] =
123 {
124 /* place holder (??? not sure if needed). */
125 #define UNUSED 0
126 { 0, 0, 0, 0, 0, 0 },
127
128 /* register A or shimm/limm indicator. */
129 #define REGA (UNUSED + 1)
130 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
131
132 /* register B or shimm/limm indicator. */
133 #define REGB (REGA + 1)
134 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
135
136 /* register C or shimm/limm indicator. */
137 #define REGC (REGB + 1)
138 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
139
140 /* fake operand used to insert shimm value into most instructions. */
141 #define SHIMMFINISH (REGC + 1)
142 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
143
144 /* fake operand used to insert limm value into most instructions. */
145 #define LIMMFINISH (SHIMMFINISH + 1)
146 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
147
148 /* shimm operand when there is no reg indicator (st). */
149 #define ST_OFFSET (LIMMFINISH + 1)
150 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
151
152 /* shimm operand when there is no reg indicator (ld). */
153 #define LD_OFFSET (ST_OFFSET + 1)
154 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
155
156 /* operand for base. */
157 #define BASE (LD_OFFSET + 1)
158 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
159
160 /* 0 enforce syntax for st insns. */
161 #define SYNTAX_ST_NE (BASE + 1)
162 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
163
164 /* 1 enforce syntax for ld insns. */
165 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
166 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
167
168 /* 0 enforce syntax for st insns. */
169 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
170 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
171
172 /* 0 enforce syntax for ld insns. */
173 #define SYNTAX_LD (SYNTAX_ST + 1)
174 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
175
176 /* flag update bit (insertion is defered until we know how). */
177 #define FLAG (SYNTAX_LD + 1)
178 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
179
180 /* fake utility operand to finish 'f' suffix handling. */
181 #define FLAGFINISH (FLAG + 1)
182 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
183
184 /* fake utility operand to set the 'f' flag for the "flag" insn. */
185 #define FLAGINSN (FLAGFINISH + 1)
186 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
187
188 /* branch delay types. */
189 #define DELAY (FLAGINSN + 1)
190 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
191
192 /* conditions. */
193 #define COND (DELAY + 1)
194 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
195
196 /* set `cond_p' to 1 to ensure a constant is treated as a limm. */
197 #define FORCELIMM (COND + 1)
198 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
199
200 /* branch address; b, bl, and lp insns. */
201 #define BRANCH (FORCELIMM + 1)
202 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
203
204 /* jump address; j insn (this is basically the same as 'L' except that the
205 value is right shifted by 2). */
206 #define JUMP (BRANCH + 1)
207 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
208
209 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
210 #define JUMPFLAGS (JUMP + 1)
211 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
212
213 /* size field, stored in bit 1,2. */
214 #define SIZE1 (JUMPFLAGS + 1)
215 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
216
217 /* size field, stored in bit 10,11. */
218 #define SIZE10 (SIZE1 + 1)
219 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
220
221 /* size field, stored in bit 22,23. */
222 #define SIZE22 (SIZE10 + 1)
223 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
224
225 /* sign extend field, stored in bit 0. */
226 #define SIGN0 (SIZE22 + 1)
227 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
228
229 /* sign extend field, stored in bit 9. */
230 #define SIGN9 (SIGN0 + 1)
231 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
232
233 /* address write back, stored in bit 3. */
234 #define ADDRESS3 (SIGN9 + 1)
235 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
236
237 /* address write back, stored in bit 12. */
238 #define ADDRESS12 (ADDRESS3 + 1)
239 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
240
241 /* address write back, stored in bit 24. */
242 #define ADDRESS24 (ADDRESS12 + 1)
243 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
244
245 /* cache bypass, stored in bit 5. */
246 #define CACHEBYPASS5 (ADDRESS24 + 1)
247 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
248
249 /* cache bypass, stored in bit 14. */
250 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
251 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
252
253 /* cache bypass, stored in bit 26. */
254 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
255 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
256
257 /* unop macro, used to copy REGB to REGC. */
258 #define UNOPMACRO (CACHEBYPASS26 + 1)
259 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
260
261 /* '.' modifier ('.' required). */
262 #define MODDOT (UNOPMACRO + 1)
263 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
264
265 /* Dummy 'r' modifier for the register table.
266 It's called a "dummy" because there's no point in inserting an 'r' into all
267 the %a/%b/%c occurrences in the insn table. */
268 #define REG (MODDOT + 1)
269 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
270
271 /* Known auxiliary register modifier (stored in shimm field). */
272 #define AUXREG (REG + 1)
273 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
274
275 /* end of list place holder. */
276 { 0, 0, 0, 0, 0, 0 }
277 };
278 \f
279 /* Given a format letter, yields the index into `arc_operands'.
280 eg: arc_operand_map['a'] = REGA. */
281 unsigned char arc_operand_map[256];
282
283 /* ARC instructions.
284
285 Longer versions of insns must appear before shorter ones (if gas sees
286 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
287 junk). This isn't necessary for `ld' because of the trailing ']'.
288
289 Instructions that are really macros based on other insns must appear
290 before the real insn so they're chosen when disassembling. Eg: The `mov'
291 insn is really the `and' insn. */
292
293 struct arc_opcode arc_opcodes[] =
294 {
295 /* Base case instruction set (core versions 5-8) */
296
297 /* "mov" is really an "and". */
298 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
299 /* "asl" is really an "add". */
300 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
301 /* "lsl" is really an "add". */
302 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
303 /* "nop" is really an "xor". */
304 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
305 /* "rlc" is really an "adc". */
306 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
307 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
308 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
309 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
310 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
311 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
312 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
313 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
314 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
315 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
316 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
317 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
318 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
319 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
320 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
321 optional flags spec. */
322 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
323 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
324 /* This insn allows an optional flags spec. */
325 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
326 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
327 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
328 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
329 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
330 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
331 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
332 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
333 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
334 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
335 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
336 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
337 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
338 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
339 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
340 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
341 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
342 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
343 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
344 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
345 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
346 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
347 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
348 };
349
350 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
351
352 const struct arc_operand_value arc_reg_names[] =
353 {
354 /* Core register set r0-r63. */
355
356 /* r0-r28 - general purpose registers. */
357 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
358 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
359 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
360 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
361 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
362 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
363 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
364 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
365 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
366 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
367 /* Maskable interrupt link register. */
368 { "ilink1", 29, REG, 0 },
369 /* Maskable interrupt link register. */
370 { "ilink2", 30, REG, 0 },
371 /* Branch-link register. */
372 { "blink", 31, REG, 0 },
373
374 /* r32-r59 reserved for extensions. */
375 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
376 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
377 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
378 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
379 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
380 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
381 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
382 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
383 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
384 { "r59", 59, REG, 0 },
385
386 /* Loop count register (24 bits). */
387 { "lp_count", 60, REG, 0 },
388 /* Short immediate data indicator setting flags. */
389 { "r61", 61, REG, ARC_REGISTER_READONLY },
390 /* Long immediate data indicator setting flags. */
391 { "r62", 62, REG, ARC_REGISTER_READONLY },
392 /* Short immediate data indicator not setting flags. */
393 { "r63", 63, REG, ARC_REGISTER_READONLY },
394
395 /* Small-data base register. */
396 { "gp", 26, REG, 0 },
397 /* Frame pointer. */
398 { "fp", 27, REG, 0 },
399 /* Stack pointer. */
400 { "sp", 28, REG, 0 },
401
402 { "r29", 29, REG, 0 },
403 { "r30", 30, REG, 0 },
404 { "r31", 31, REG, 0 },
405 { "r60", 60, REG, 0 },
406
407 /* Auxiliary register set. */
408
409 /* Auxiliary register address map:
410 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
411 0xfffffeff-0x80000000 - customer limm allocation
412 0x7fffffff-0x00000100 - ARC limm allocation
413 0x000000ff-0x00000000 - ARC shimm allocation */
414
415 /* Base case auxiliary registers (shimm address). */
416 { "status", 0x00, AUXREG, 0 },
417 { "semaphore", 0x01, AUXREG, 0 },
418 { "lp_start", 0x02, AUXREG, 0 },
419 { "lp_end", 0x03, AUXREG, 0 },
420 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
421 { "debug", 0x05, AUXREG, 0 },
422 };
423
424 const int arc_reg_names_count =
425 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
426
427 /* The suffix table.
428 Operands with the same name must be stored together. */
429
430 const struct arc_operand_value arc_suffixes[] =
431 {
432 /* Entry 0 is special, default values aren't printed by the disassembler. */
433 { "", 0, -1, 0 },
434
435 /* Base case condition codes. */
436 { "al", 0, COND, 0 },
437 { "ra", 0, COND, 0 },
438 { "eq", 1, COND, 0 },
439 { "z", 1, COND, 0 },
440 { "ne", 2, COND, 0 },
441 { "nz", 2, COND, 0 },
442 { "pl", 3, COND, 0 },
443 { "p", 3, COND, 0 },
444 { "mi", 4, COND, 0 },
445 { "n", 4, COND, 0 },
446 { "cs", 5, COND, 0 },
447 { "c", 5, COND, 0 },
448 { "lo", 5, COND, 0 },
449 { "cc", 6, COND, 0 },
450 { "nc", 6, COND, 0 },
451 { "hs", 6, COND, 0 },
452 { "vs", 7, COND, 0 },
453 { "v", 7, COND, 0 },
454 { "vc", 8, COND, 0 },
455 { "nv", 8, COND, 0 },
456 { "gt", 9, COND, 0 },
457 { "ge", 10, COND, 0 },
458 { "lt", 11, COND, 0 },
459 { "le", 12, COND, 0 },
460 { "hi", 13, COND, 0 },
461 { "ls", 14, COND, 0 },
462 { "pnz", 15, COND, 0 },
463
464 /* Condition codes 16-31 reserved for extensions. */
465
466 { "f", 1, FLAG, 0 },
467
468 { "nd", ARC_DELAY_NONE, DELAY, 0 },
469 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
470 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
471
472 { "b", 1, SIZE1, 0 },
473 { "b", 1, SIZE10, 0 },
474 { "b", 1, SIZE22, 0 },
475 { "w", 2, SIZE1, 0 },
476 { "w", 2, SIZE10, 0 },
477 { "w", 2, SIZE22, 0 },
478 { "x", 1, SIGN0, 0 },
479 { "x", 1, SIGN9, 0 },
480 { "a", 1, ADDRESS3, 0 },
481 { "a", 1, ADDRESS12, 0 },
482 { "a", 1, ADDRESS24, 0 },
483
484 { "di", 1, CACHEBYPASS5, 0 },
485 { "di", 1, CACHEBYPASS14, 0 },
486 { "di", 1, CACHEBYPASS26, 0 },
487 };
488
489 const int arc_suffixes_count =
490 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
491
492 /* Indexed by first letter of opcode. Points to chain of opcodes with same
493 first letter. */
494 static struct arc_opcode *opcode_map[26 + 1];
495
496 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
497 static struct arc_opcode *icode_map[32];
498 \f
499 /* Configuration flags. */
500
501 /* Various ARC_HAVE_XXX bits. */
502 static int cpu_type;
503
504 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
505
506 int
507 arc_get_opcode_mach (bfd_mach, big_p)
508 int bfd_mach, big_p;
509 {
510 static int mach_type_map[] =
511 {
512 ARC_MACH_5,
513 ARC_MACH_6,
514 ARC_MACH_7,
515 ARC_MACH_8
516 };
517 return mach_type_map[bfd_mach - bfd_mach_arc_5] | (big_p ? ARC_MACH_BIG : 0);
518 }
519
520 /* Initialize any tables that need it.
521 Must be called once at start up (or when first needed).
522
523 FLAGS is a set of bits that say what version of the cpu we have,
524 and in particular at least (one of) ARC_MACH_XXX. */
525
526 void
527 arc_opcode_init_tables (flags)
528 int flags;
529 {
530 static int init_p = 0;
531
532 cpu_type = flags;
533
534 /* We may be intentionally called more than once (for example gdb will call
535 us each time the user switches cpu). These tables only need to be init'd
536 once though. */
537 if (!init_p)
538 {
539 register int i,n;
540
541 memset (arc_operand_map, 0, sizeof (arc_operand_map));
542 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
543 for (i = 0; i < n; ++i)
544 arc_operand_map[arc_operands[i].fmt] = i;
545
546 memset (opcode_map, 0, sizeof (opcode_map));
547 memset (icode_map, 0, sizeof (icode_map));
548 /* Scan the table backwards so macros appear at the front. */
549 for (i = arc_opcodes_count - 1; i >= 0; --i)
550 {
551 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
552 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
553
554 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
555 opcode_map[opcode_hash] = &arc_opcodes[i];
556
557 arc_opcodes[i].next_dis = icode_map[icode_hash];
558 icode_map[icode_hash] = &arc_opcodes[i];
559 }
560
561 init_p = 1;
562 }
563 }
564
565 /* Return non-zero if OPCODE is supported on the specified cpu.
566 Cpu selection is made when calling `arc_opcode_init_tables'. */
567
568 int
569 arc_opcode_supported (opcode)
570 const struct arc_opcode *opcode;
571 {
572 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
573 return 1;
574 return 0;
575 }
576
577 /* Return the first insn in the chain for assembling INSN. */
578
579 const struct arc_opcode *
580 arc_opcode_lookup_asm (insn)
581 const char *insn;
582 {
583 return opcode_map[ARC_HASH_OPCODE (insn)];
584 }
585
586 /* Return the first insn in the chain for disassembling INSN. */
587
588 const struct arc_opcode *
589 arc_opcode_lookup_dis (insn)
590 unsigned int insn;
591 {
592 return icode_map[ARC_HASH_ICODE (insn)];
593 }
594 \f
595 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
596 static int flag_p;
597
598 /* Nonzero if we've finished processing the 'f' suffix. */
599 static int flagshimm_handled_p;
600
601 /* Nonzero if we've seen a 'a' suffix (address writeback). */
602 static int addrwb_p;
603
604 /* Nonzero if we've seen a 'q' suffix (condition code). */
605 static int cond_p;
606
607 /* Nonzero if we've inserted a nullify condition. */
608 static int nullify_p;
609
610 /* The value of the a nullify condition we inserted. */
611 static int nullify;
612
613 /* Nonzero if we've inserted jumpflags. */
614 static int jumpflags_p;
615
616 /* Nonzero if we've inserted a shimm. */
617 static int shimm_p;
618
619 /* The value of the shimm we inserted (each insn only gets one but it can
620 appear multiple times). */
621 static int shimm;
622
623 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
624 (during disassembly). */
625 static int limm_p;
626
627 /* The value of the limm we inserted. Each insn only gets one but it can
628 appear multiple times. */
629 static long limm;
630 \f
631 /* Insertion functions. */
632
633 /* Called by the assembler before parsing an instruction. */
634
635 void
636 arc_opcode_init_insert ()
637 {
638 int i;
639
640 for(i = 0; i < OPERANDS; i++)
641 ls_operand[i] = OP_NONE;
642
643 flag_p = 0;
644 flagshimm_handled_p = 0;
645 cond_p = 0;
646 addrwb_p = 0;
647 shimm_p = 0;
648 limm_p = 0;
649 jumpflags_p = 0;
650 nullify_p = 0;
651 nullify = 0; /* the default is important. */
652 }
653
654 /* Called by the assembler to see if the insn has a limm operand.
655 Also called by the disassembler to see if the insn contains a limm. */
656
657 int
658 arc_opcode_limm_p (limmp)
659 long *limmp;
660 {
661 if (limmp)
662 *limmp = limm;
663 return limm_p;
664 }
665
666 /* Insert a value into a register field.
667 If REG is NULL, then this is actually a constant.
668
669 We must also handle auxiliary registers for lr/sr insns. */
670
671 static arc_insn
672 insert_reg (insn, operand, mods, reg, value, errmsg)
673 arc_insn insn;
674 const struct arc_operand *operand;
675 int mods;
676 const struct arc_operand_value *reg;
677 long value;
678 const char **errmsg;
679 {
680 static char buf[100];
681 enum operand op_type = OP_NONE;
682
683 if (reg == NULL)
684 {
685 /* We have a constant that also requires a value stored in a register
686 field. Handle these by updating the register field and saving the
687 value for later handling by either %S (shimm) or %L (limm). */
688
689 /* Try to use a shimm value before a limm one. */
690 if (ARC_SHIMM_CONST_P (value)
691 /* If we've seen a conditional suffix we have to use a limm. */
692 && !cond_p
693 /* If we already have a shimm value that is different than ours
694 we have to use a limm. */
695 && (!shimm_p || shimm == value))
696 {
697 int marker;
698
699 op_type = OP_SHIMM;
700 /* forget about shimm as dest mlm. */
701
702 if ('a' != operand->fmt)
703 {
704 shimm_p = 1;
705 shimm = value;
706 flagshimm_handled_p = 1;
707 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
708 }
709 else
710 {
711 /* don't request flag setting on shimm as dest. */
712 marker = ARC_REG_SHIMM;
713 }
714 insn |= marker << operand->shift;
715 /* insn |= value & 511; - done later. */
716 }
717 /* We have to use a limm. If we've already seen one they must match. */
718 else if (!limm_p || limm == value)
719 {
720 op_type = OP_LIMM;
721 limm_p = 1;
722 limm = value;
723 insn |= ARC_REG_LIMM << operand->shift;
724 /* The constant is stored later. */
725 }
726 else
727 {
728 *errmsg = "unable to fit different valued constants into instruction";
729 }
730 }
731 else
732 {
733 /* We have to handle both normal and auxiliary registers. */
734
735 if (reg->type == AUXREG)
736 {
737 if (!(mods & ARC_MOD_AUXREG))
738 *errmsg = "auxiliary register not allowed here";
739 else
740 {
741 if ((insn & I(-1)) == I(2)) /* check for use validity. */
742 {
743 if (reg->flags & ARC_REGISTER_READONLY)
744 *errmsg = "attempt to set readonly register";
745 }
746 else
747 {
748 if (reg->flags & ARC_REGISTER_WRITEONLY)
749 *errmsg = "attempt to read writeonly register";
750 }
751 insn |= ARC_REG_SHIMM << operand->shift;
752 insn |= reg->value << arc_operands[reg->type].shift;
753 }
754 }
755 else
756 {
757 /* check for use validity. */
758 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
759 {
760 if (reg->flags & ARC_REGISTER_READONLY)
761 *errmsg = "attempt to set readonly register";
762 }
763 if ('a' != operand->fmt)
764 {
765 if (reg->flags & ARC_REGISTER_WRITEONLY)
766 *errmsg = "attempt to read writeonly register";
767 }
768 /* We should never get an invalid register number here. */
769 if ((unsigned int) reg->value > 60)
770 {
771 sprintf (buf, "invalid register number `%d'", reg->value);
772 *errmsg = buf;
773 }
774 insn |= reg->value << operand->shift;
775 op_type = OP_REG;
776 }
777 }
778
779 switch (operand->fmt)
780 {
781 case 'a':
782 ls_operand[LS_DEST] = op_type;
783 break;
784 case 's':
785 ls_operand[LS_BASE] = op_type;
786 break;
787 case 'c':
788 if ((insn & I(-1)) == I(2))
789 ls_operand[LS_VALUE] = op_type;
790 else
791 ls_operand[LS_OFFSET] = op_type;
792 break;
793 case 'o': case 'O':
794 ls_operand[LS_OFFSET] = op_type;
795 break;
796 }
797
798 return insn;
799 }
800
801 /* Called when we see an 'f' flag. */
802
803 static arc_insn
804 insert_flag (insn, operand, mods, reg, value, errmsg)
805 arc_insn insn;
806 const struct arc_operand *operand ATTRIBUTE_UNUSED;
807 int mods ATTRIBUTE_UNUSED;
808 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
809 long value ATTRIBUTE_UNUSED;
810 const char **errmsg ATTRIBUTE_UNUSED;
811 {
812 /* We can't store anything in the insn until we've parsed the registers.
813 Just record the fact that we've got this flag. `insert_reg' will use it
814 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
815 flag_p = 1;
816 return insn;
817 }
818
819 /* Called when we see an nullify condition. */
820
821 static arc_insn
822 insert_nullify (insn, operand, mods, reg, value, errmsg)
823 arc_insn insn;
824 const struct arc_operand *operand;
825 int mods ATTRIBUTE_UNUSED;
826 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
827 long value;
828 const char **errmsg ATTRIBUTE_UNUSED;
829 {
830 nullify_p = 1;
831 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
832 nullify = value;
833 return insn;
834 }
835
836 /* Called after completely building an insn to ensure the 'f' flag gets set
837 properly. This is needed because we don't know how to set this flag until
838 we've parsed the registers. */
839
840 static arc_insn
841 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
842 arc_insn insn;
843 const struct arc_operand *operand;
844 int mods ATTRIBUTE_UNUSED;
845 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
846 long value ATTRIBUTE_UNUSED;
847 const char **errmsg ATTRIBUTE_UNUSED;
848 {
849 if (flag_p && !flagshimm_handled_p)
850 {
851 if (shimm_p)
852 abort ();
853 flagshimm_handled_p = 1;
854 insn |= (1 << operand->shift);
855 }
856 return insn;
857 }
858
859 /* Called when we see a conditional flag (eg: .eq). */
860
861 static arc_insn
862 insert_cond (insn, operand, mods, reg, value, errmsg)
863 arc_insn insn;
864 const struct arc_operand *operand;
865 int mods ATTRIBUTE_UNUSED;
866 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
867 long value;
868 const char **errmsg ATTRIBUTE_UNUSED;
869 {
870 cond_p = 1;
871 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
872 return insn;
873 }
874
875 /* Used in the "j" instruction to prevent constants from being interpreted as
876 shimm values (which the jump insn doesn't accept). This can also be used
877 to force the use of limm values in other situations (eg: ld r0,[foo] uses
878 this).
879 ??? The mechanism is sound. Access to it is a bit klunky right now. */
880
881 static arc_insn
882 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
883 arc_insn insn;
884 const struct arc_operand *operand ATTRIBUTE_UNUSED;
885 int mods ATTRIBUTE_UNUSED;
886 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
887 long value ATTRIBUTE_UNUSED;
888 const char **errmsg ATTRIBUTE_UNUSED;
889 {
890 cond_p = 1;
891 return insn;
892 }
893
894 static arc_insn
895 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
896 arc_insn insn;
897 const struct arc_operand *operand;
898 int mods ATTRIBUTE_UNUSED;
899 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
900 long value ATTRIBUTE_UNUSED;
901 const char **errmsg ATTRIBUTE_UNUSED;
902 {
903 addrwb_p = 1 << operand->shift;
904 return insn;
905 }
906
907 static arc_insn
908 insert_base (insn, operand, mods, reg, value, errmsg)
909 arc_insn insn;
910 const struct arc_operand *operand;
911 int mods;
912 const struct arc_operand_value *reg;
913 long value;
914 const char **errmsg;
915 {
916 if (reg != NULL)
917 {
918 arc_insn myinsn;
919 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
920 insn |= B(myinsn);
921 ls_operand[LS_BASE] = OP_REG;
922 }
923 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
924 {
925 if (shimm_p && value != shimm)
926 {
927 /* convert the previous shimm operand to a limm. */
928 limm_p = 1;
929 limm = shimm;
930 insn &= ~C(-1); /* we know where the value is in insn. */
931 insn |= C(ARC_REG_LIMM);
932 ls_operand[LS_VALUE] = OP_LIMM;
933 }
934 insn |= ARC_REG_SHIMM << operand->shift;
935 shimm_p = 1;
936 shimm = value;
937 ls_operand[LS_BASE] = OP_SHIMM;
938 }
939 else
940 {
941 if (limm_p && value != limm)
942 {
943 *errmsg = "too many long constants";
944 return insn;
945 }
946 limm_p = 1;
947 limm = value;
948 insn |= B(ARC_REG_LIMM);
949 ls_operand[LS_BASE] = OP_LIMM;
950 }
951
952 return insn;
953 }
954
955 /* Used in ld/st insns to handle the offset field. We don't try to
956 match operand syntax here. we catch bad combinations later. */
957
958 static arc_insn
959 insert_offset (insn, operand, mods, reg, value, errmsg)
960 arc_insn insn;
961 const struct arc_operand *operand;
962 int mods;
963 const struct arc_operand_value *reg;
964 long value;
965 const char **errmsg;
966 {
967 long minval, maxval;
968
969 if (reg != NULL)
970 {
971 arc_insn myinsn;
972 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
973 ls_operand[LS_OFFSET] = OP_REG;
974 if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later. */
975 if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later. */
976 insn |= C(myinsn);
977 }
978 else
979 {
980 /* This is *way* more general than necessary, but maybe some day it'll
981 be useful. */
982 if (operand->flags & ARC_OPERAND_SIGNED)
983 {
984 minval = -(1 << (operand->bits - 1));
985 maxval = (1 << (operand->bits - 1)) - 1;
986 }
987 else
988 {
989 minval = 0;
990 maxval = (1 << operand->bits) - 1;
991 }
992 if ((cond_p && !limm_p) || (value < minval || value > maxval))
993 {
994 if (limm_p && value != limm)
995 {
996 *errmsg = "too many long constants";
997 }
998 else
999 {
1000 limm_p = 1;
1001 limm = value;
1002 if (operand->flags & ARC_OPERAND_STORE)
1003 insn |= B(ARC_REG_LIMM);
1004 if (operand->flags & ARC_OPERAND_LOAD)
1005 insn |= C(ARC_REG_LIMM);
1006 ls_operand[LS_OFFSET] = OP_LIMM;
1007 }
1008 }
1009 else
1010 {
1011 if ((value < minval || value > maxval))
1012 *errmsg = "need too many limms";
1013 else if (shimm_p && value != shimm)
1014 {
1015 /* check for bad operand combinations before we lose info about them. */
1016 if ((insn & I(-1)) == I(1))
1017 {
1018 *errmsg = "to many shimms in load";
1019 goto out;
1020 }
1021 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1022 {
1023 *errmsg = "too many long constants";
1024 goto out;
1025 }
1026 /* convert what we thought was a shimm to a limm. */
1027 limm_p = 1;
1028 limm = shimm;
1029 if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1030 {
1031 insn &= ~C(-1);
1032 insn |= C(ARC_REG_LIMM);
1033 ls_operand[LS_VALUE] = OP_LIMM;
1034 }
1035 if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1036 {
1037 insn &= ~B(-1);
1038 insn |= B(ARC_REG_LIMM);
1039 ls_operand[LS_BASE] = OP_LIMM;
1040 }
1041 }
1042 shimm = value;
1043 shimm_p = 1;
1044 ls_operand[LS_OFFSET] = OP_SHIMM;
1045 }
1046 }
1047 out:
1048 return insn;
1049 }
1050
1051 /* Used in st insns to do final disasemble syntax check. */
1052
1053 static long
1054 extract_st_syntax (insn, operand, mods, opval, invalid)
1055 arc_insn *insn;
1056 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1057 int mods ATTRIBUTE_UNUSED;
1058 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1059 int *invalid;
1060 {
1061 #define ST_SYNTAX(V,B,O) \
1062 ((ls_operand[LS_VALUE] == (V) && \
1063 ls_operand[LS_BASE] == (B) && \
1064 ls_operand[LS_OFFSET] == (O)))
1065
1066 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1067 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1068 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1069 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1070 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1071 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1072 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1073 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1074 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1075 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1076 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1077 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1078 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1079 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1080 *invalid = 1;
1081 return 0;
1082 }
1083
1084 int
1085 arc_limm_fixup_adjust(insn)
1086 arc_insn insn;
1087 {
1088 int retval = 0;
1089
1090 /* check for st shimm,[limm]. */
1091 if ((insn & (I(-1) | C(-1) | B(-1))) ==
1092 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1093 {
1094 retval = insn & 0x1ff;
1095 if (retval & 0x100) /* sign extend 9 bit offset. */
1096 retval |= ~0x1ff;
1097 }
1098 return -retval; /* negate offset for return. */
1099 }
1100
1101 /* Used in st insns to do final syntax check. */
1102
1103 static arc_insn
1104 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1105 arc_insn insn;
1106 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1107 int mods ATTRIBUTE_UNUSED;
1108 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1109 long value ATTRIBUTE_UNUSED;
1110 const char **errmsg;
1111 {
1112 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1113 {
1114 /* change an illegal insn into a legal one, it's easier to
1115 do it here than to try to handle it during operand scan. */
1116 limm_p = 1;
1117 limm = shimm;
1118 shimm_p = 0;
1119 shimm = 0;
1120 insn = insn & ~(C(-1) | 511);
1121 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1122 ls_operand[LS_VALUE] = OP_LIMM;
1123 }
1124
1125 if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1126 {
1127 /* try to salvage this syntax. */
1128 if (shimm & 0x1) /* odd shimms won't work. */
1129 {
1130 if (limm_p) /* do we have a limm already? */
1131 {
1132 *errmsg = "impossible store";
1133 }
1134 limm_p = 1;
1135 limm = shimm;
1136 shimm = 0;
1137 shimm_p = 0;
1138 insn = insn & ~(B(-1) | 511);
1139 insn |= B(ARC_REG_LIMM);
1140 ls_operand[LS_BASE] = OP_LIMM;
1141 }
1142 else
1143 {
1144 shimm >>= 1;
1145 insn = insn & ~511;
1146 insn |= shimm;
1147 ls_operand[LS_OFFSET] = OP_SHIMM;
1148 }
1149 }
1150 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1151 {
1152 limm += arc_limm_fixup_adjust(insn);
1153 }
1154 if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1155 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1156 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1157 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1158 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1159 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1160 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1161 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1162 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1163 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1164 || ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1165 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1166 *errmsg = "st operand error";
1167 if (addrwb_p)
1168 {
1169 if (ls_operand[LS_BASE] != OP_REG)
1170 *errmsg = "address writeback not allowed";
1171 insn |= addrwb_p;
1172 }
1173 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1174 *errmsg = "store value must be zero";
1175 return insn;
1176 }
1177
1178 /* Used in ld insns to do final syntax check. */
1179
1180 static arc_insn
1181 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1182 arc_insn insn;
1183 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1184 int mods ATTRIBUTE_UNUSED;
1185 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1186 long value ATTRIBUTE_UNUSED;
1187 const char **errmsg;
1188 {
1189 #define LD_SYNTAX(D,B,O) \
1190 ((ls_operand[LS_DEST] == (D) && \
1191 ls_operand[LS_BASE] == (B) && \
1192 ls_operand[LS_OFFSET] == (O)))
1193
1194 int test = insn & I(-1);
1195
1196 if (!(test == I(1)))
1197 {
1198 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1199 || ls_operand[LS_OFFSET] == OP_SHIMM))
1200 *errmsg = "invalid load/shimm insn";
1201 }
1202 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1203 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1204 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1205 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1206 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1207 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1208 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1209 *errmsg = "ld operand error";
1210 if (addrwb_p)
1211 {
1212 if (ls_operand[LS_BASE] != OP_REG)
1213 *errmsg = "address writeback not allowed";
1214 insn |= addrwb_p;
1215 }
1216 return insn;
1217 }
1218
1219 /* Used in ld insns to do final syntax check. */
1220
1221 static long
1222 extract_ld_syntax (insn, operand, mods, opval, invalid)
1223 arc_insn *insn;
1224 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1225 int mods ATTRIBUTE_UNUSED;
1226 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1227 int *invalid;
1228 {
1229 int test = insn[0] & I(-1);
1230
1231 if (!(test == I(1)))
1232 {
1233 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1234 || ls_operand[LS_OFFSET] == OP_SHIMM))
1235 *invalid = 1;
1236 }
1237 if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1238 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1239 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1240 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1241 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1242 || (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1243 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1244 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1245 *invalid = 1;
1246 return 0;
1247 }
1248
1249 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1250 value (if present) into the insn. */
1251
1252 static arc_insn
1253 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1254 arc_insn insn;
1255 const struct arc_operand *operand;
1256 int mods ATTRIBUTE_UNUSED;
1257 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1258 long value ATTRIBUTE_UNUSED;
1259 const char **errmsg ATTRIBUTE_UNUSED;
1260 {
1261 if (shimm_p)
1262 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1263 return insn;
1264 }
1265
1266 /* Called at the end of processing normal insns (eg: add) to insert a limm
1267 value (if present) into the insn.
1268
1269 Note that this function is only intended to handle instructions (with 4 byte
1270 immediate operands). It is not intended to handle data. */
1271
1272 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1273 caller must do that. The extract fns take a pointer to two words. The
1274 insert fns could be converted and then we could do something useful, but
1275 then the reloc handlers would have to know to work on the second word of
1276 a 2 word quantity. That's too much so we don't handle them. */
1277
1278 static arc_insn
1279 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1280 arc_insn insn;
1281 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1282 int mods ATTRIBUTE_UNUSED;
1283 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1284 long value ATTRIBUTE_UNUSED;
1285 const char **errmsg ATTRIBUTE_UNUSED;
1286 {
1287 #if 0
1288 if (limm_p)
1289 ; /* nothing to do, gas does it. */
1290 #endif
1291 return insn;
1292 }
1293
1294 static arc_insn
1295 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1296 arc_insn insn;
1297 const struct arc_operand *operand;
1298 int mods ATTRIBUTE_UNUSED;
1299 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1300 long value;
1301 const char **errmsg;
1302 {
1303 if (!flag_p)
1304 {
1305 *errmsg = "jump flags, but no .f seen";
1306 }
1307 if (!limm_p)
1308 {
1309 *errmsg = "jump flags, but no limm addr";
1310 }
1311 if (limm & 0xfc000000)
1312 {
1313 *errmsg = "flag bits of jump address limm lost";
1314 }
1315 if (limm & 0x03000000)
1316 {
1317 *errmsg = "attempt to set HR bits";
1318 }
1319 if ((value & ((1 << operand->bits) - 1)) != value)
1320 {
1321 *errmsg = "bad jump flags value";
1322 }
1323 jumpflags_p = 1;
1324 limm = ((limm & ((1 << operand->shift) - 1))
1325 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
1326 return insn;
1327 }
1328
1329 /* Called at the end of unary operand macros to copy the B field to C. */
1330
1331 static arc_insn
1332 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1333 arc_insn insn;
1334 const struct arc_operand *operand;
1335 int mods ATTRIBUTE_UNUSED;
1336 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1337 long value ATTRIBUTE_UNUSED;
1338 const char **errmsg ATTRIBUTE_UNUSED;
1339 {
1340 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1341 return insn;
1342 }
1343
1344 /* Insert a relative address for a branch insn (b, bl, or lp). */
1345
1346 static arc_insn
1347 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1348 arc_insn insn;
1349 const struct arc_operand *operand;
1350 int mods ATTRIBUTE_UNUSED;
1351 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1352 long value;
1353 const char **errmsg;
1354 {
1355 if (value & 3)
1356 *errmsg = "branch address not on 4 byte boundary";
1357 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1358 return insn;
1359 }
1360
1361 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1362
1363 Note that this function is only intended to handle instructions (with 4 byte
1364 immediate operands). It is not intended to handle data. */
1365
1366 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1367 caller must do that. The extract fns take a pointer to two words. The
1368 insert fns could be converted and then we could do something useful, but
1369 then the reloc handlers would have to know to work on the second word of
1370 a 2 word quantity. That's too much so we don't handle them.
1371
1372 We do check for correct usage of the nullify suffix, or we
1373 set the default correctly, though. */
1374
1375 static arc_insn
1376 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1377 arc_insn insn;
1378 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1379 int mods ATTRIBUTE_UNUSED;
1380 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1381 long value ATTRIBUTE_UNUSED;
1382 const char **errmsg;
1383 {
1384 if (limm_p)
1385 {
1386 /* if it is a jump and link, .jd must be specified. */
1387 if (insn & R(-1,9,1))
1388 {
1389 if (!nullify_p)
1390 {
1391 insn |= 0x02 << 5; /* default nullify to .jd. */
1392 }
1393 else
1394 {
1395 if (nullify != 0x02)
1396 {
1397 *errmsg = "must specify .jd or no nullify suffix";
1398 }
1399 }
1400 }
1401 }
1402 return insn;
1403 }
1404 \f
1405 /* Extraction functions.
1406
1407 The suffix extraction functions' return value is redundant since it can be
1408 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1409 a suffix table entry for the "false" case, so values of zero must be
1410 obtained from the return value (*OPVAL == NULL). */
1411
1412 static const struct arc_operand_value *lookup_register (int type, long regno);
1413
1414 /* Called by the disassembler before printing an instruction. */
1415
1416 void
1417 arc_opcode_init_extract ()
1418 {
1419 arc_opcode_init_insert();
1420 }
1421
1422 /* As we're extracting registers, keep an eye out for the 'f' indicator
1423 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1424 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1425
1426 We must also handle auxiliary registers for lr/sr insns. They are just
1427 constants with special names. */
1428
1429 static long
1430 extract_reg (insn, operand, mods, opval, invalid)
1431 arc_insn *insn;
1432 const struct arc_operand *operand;
1433 int mods;
1434 const struct arc_operand_value **opval;
1435 int *invalid ATTRIBUTE_UNUSED;
1436 {
1437 int regno;
1438 long value;
1439 enum operand op_type;
1440
1441 /* Get the register number. */
1442 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1443
1444 /* Is it a constant marker? */
1445 if (regno == ARC_REG_SHIMM)
1446 {
1447 op_type = OP_SHIMM;
1448 /* always return zero if dest is a shimm mlm. */
1449
1450 if ('a' != operand->fmt)
1451 {
1452 value = *insn & 511;
1453 if ((operand->flags & ARC_OPERAND_SIGNED)
1454 && (value & 256))
1455 value -= 512;
1456 if (!flagshimm_handled_p)
1457 flag_p = 0;
1458 flagshimm_handled_p = 1;
1459 }
1460 else
1461 {
1462 value = 0;
1463 }
1464 }
1465 else if (regno == ARC_REG_SHIMM_UPDATE)
1466 {
1467 op_type = OP_SHIMM;
1468
1469 /* always return zero if dest is a shimm mlm. */
1470
1471 if ('a' != operand->fmt)
1472 {
1473 value = *insn & 511;
1474 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1475 value -= 512;
1476 }
1477 else
1478 {
1479 value = 0;
1480 }
1481 flag_p = 1;
1482 flagshimm_handled_p = 1;
1483 }
1484 else if (regno == ARC_REG_LIMM)
1485 {
1486 op_type = OP_LIMM;
1487 value = insn[1];
1488 limm_p = 1;
1489 /* if this is a jump instruction (j,jl), show new pc correctly. */
1490 if (0x07 == ((*insn & I(-1)) >> 27))
1491 {
1492 value = (value & 0xffffff);
1493 }
1494 }
1495 /* It's a register, set OPVAL (that's the only way we distinguish registers
1496 from constants here). */
1497 else
1498 {
1499 const struct arc_operand_value *reg = lookup_register (REG, regno);
1500 op_type = OP_REG;
1501
1502 if (reg == NULL)
1503 abort ();
1504 if (opval != NULL)
1505 *opval = reg;
1506 value = regno;
1507 }
1508
1509 /* If this field takes an auxiliary register, see if it's a known one. */
1510 if ((mods & ARC_MOD_AUXREG)
1511 && ARC_REG_CONSTANT_P (regno))
1512 {
1513 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1514
1515 /* This is really a constant, but tell the caller it has a special
1516 name. */
1517 if (reg != NULL && opval != NULL)
1518 *opval = reg;
1519 }
1520 switch(operand->fmt)
1521 {
1522 case 'a':
1523 ls_operand[LS_DEST] = op_type;
1524 break;
1525 case 's':
1526 ls_operand[LS_BASE] = op_type;
1527 break;
1528 case 'c':
1529 if ((insn[0]& I(-1)) == I(2))
1530 ls_operand[LS_VALUE] = op_type;
1531 else
1532 ls_operand[LS_OFFSET] = op_type;
1533 break;
1534 case 'o': case 'O':
1535 ls_operand[LS_OFFSET] = op_type;
1536 break;
1537 }
1538
1539 return value;
1540 }
1541
1542 /* Return the value of the "flag update" field for shimm insns.
1543 This value is actually stored in the register field. */
1544
1545 static long
1546 extract_flag (insn, operand, mods, opval, invalid)
1547 arc_insn *insn;
1548 const struct arc_operand *operand;
1549 int mods ATTRIBUTE_UNUSED;
1550 const struct arc_operand_value **opval;
1551 int *invalid ATTRIBUTE_UNUSED;
1552 {
1553 int f;
1554 const struct arc_operand_value *val;
1555
1556 if (flagshimm_handled_p)
1557 f = flag_p != 0;
1558 else
1559 f = (*insn & (1 << operand->shift)) != 0;
1560
1561 /* There is no text for zero values. */
1562 if (f == 0)
1563 return 0;
1564 flag_p = 1;
1565 val = arc_opcode_lookup_suffix (operand, 1);
1566 if (opval != NULL && val != NULL)
1567 *opval = val;
1568 return val->value;
1569 }
1570
1571 /* Extract the condition code (if it exists).
1572 If we've seen a shimm value in this insn (meaning that the insn can't have
1573 a condition code field), then we don't store anything in OPVAL and return
1574 zero. */
1575
1576 static long
1577 extract_cond (insn, operand, mods, opval, invalid)
1578 arc_insn *insn;
1579 const struct arc_operand *operand;
1580 int mods ATTRIBUTE_UNUSED;
1581 const struct arc_operand_value **opval;
1582 int *invalid ATTRIBUTE_UNUSED;
1583 {
1584 long cond;
1585 const struct arc_operand_value *val;
1586
1587 if (flagshimm_handled_p)
1588 return 0;
1589
1590 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1591 val = arc_opcode_lookup_suffix (operand, cond);
1592
1593 /* Ignore NULL values of `val'. Several condition code values are
1594 reserved for extensions. */
1595 if (opval != NULL && val != NULL)
1596 *opval = val;
1597 return cond;
1598 }
1599
1600 /* Extract a branch address.
1601 We return the value as a real address (not right shifted by 2). */
1602
1603 static long
1604 extract_reladdr (insn, operand, mods, opval, invalid)
1605 arc_insn *insn;
1606 const struct arc_operand *operand;
1607 int mods ATTRIBUTE_UNUSED;
1608 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1609 int *invalid ATTRIBUTE_UNUSED;
1610 {
1611 long addr;
1612
1613 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1614 if ((operand->flags & ARC_OPERAND_SIGNED)
1615 && (addr & (1 << (operand->bits - 1))))
1616 addr -= 1 << operand->bits;
1617 return addr << 2;
1618 }
1619
1620 /* extract the flags bits from a j or jl long immediate. */
1621 static long
1622 extract_jumpflags(insn, operand, mods, opval, invalid)
1623 arc_insn *insn;
1624 const struct arc_operand *operand;
1625 int mods ATTRIBUTE_UNUSED;
1626 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1627 int *invalid;
1628 {
1629 if (!flag_p || !limm_p)
1630 *invalid = 1;
1631 return ((flag_p && limm_p)
1632 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1633 }
1634
1635 /* extract st insn's offset. */
1636
1637 static long
1638 extract_st_offset (insn, operand, mods, opval, invalid)
1639 arc_insn *insn;
1640 const struct arc_operand *operand;
1641 int mods ATTRIBUTE_UNUSED;
1642 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1643 int *invalid;
1644 {
1645 int value = 0;
1646
1647 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1648 {
1649 value = insn[0] & 511;
1650 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1651 value -= 512;
1652 if (value)
1653 ls_operand[LS_OFFSET] = OP_SHIMM;
1654 }
1655 else
1656 {
1657 *invalid = 1;
1658 }
1659 return(value);
1660 }
1661
1662 /* extract ld insn's offset. */
1663
1664 static long
1665 extract_ld_offset (insn, operand, mods, opval, invalid)
1666 arc_insn *insn;
1667 const struct arc_operand *operand;
1668 int mods;
1669 const struct arc_operand_value **opval;
1670 int *invalid;
1671 {
1672 int test = insn[0] & I(-1);
1673 int value;
1674
1675 if (test)
1676 {
1677 value = insn[0] & 511;
1678 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1679 value -= 512;
1680 if (value)
1681 ls_operand[LS_OFFSET] = OP_SHIMM;
1682 return(value);
1683 }
1684 /* if it isn't in the insn, it's concealed behind reg 'c'. */
1685 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1686 mods, opval, invalid);
1687 }
1688
1689 /* The only thing this does is set the `invalid' flag if B != C.
1690 This is needed because the "mov" macro appears before it's real insn "and"
1691 and we don't want the disassembler to confuse them. */
1692
1693 static long
1694 extract_unopmacro (insn, operand, mods, opval, invalid)
1695 arc_insn *insn;
1696 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1697 int mods ATTRIBUTE_UNUSED;
1698 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1699 int *invalid;
1700 {
1701 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1702 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1703 printed as "and"s. */
1704 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1705 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1706 if (invalid != NULL)
1707 *invalid = 1;
1708 return 0;
1709 }
1710
1711 /* Utility for the extraction functions to return the index into
1712 `arc_suffixes'. */
1713
1714 const struct arc_operand_value *
1715 arc_opcode_lookup_suffix (type, value)
1716 const struct arc_operand *type;
1717 int value;
1718 {
1719 register const struct arc_operand_value *v,*end;
1720 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1721
1722 while (ext_oper)
1723 {
1724 if (type == &arc_operands[ext_oper->operand.type]
1725 && value == ext_oper->operand.value)
1726 return (&ext_oper->operand);
1727 ext_oper = ext_oper->next;
1728 }
1729
1730 /* ??? This is a little slow and can be speeded up. */
1731
1732 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1733 if (type == &arc_operands[v->type]
1734 && value == v->value)
1735 return v;
1736 return 0;
1737 }
1738
1739 static const struct arc_operand_value *
1740 lookup_register (type, regno)
1741 int type;
1742 long regno;
1743 {
1744 register const struct arc_operand_value *r,*end;
1745 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1746
1747 while (ext_oper)
1748 {
1749 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1750 return (&ext_oper->operand);
1751 ext_oper = ext_oper->next;
1752 }
1753
1754 if (type == REG)
1755 return &arc_reg_names[regno];
1756
1757 /* ??? This is a little slow and can be speeded up. */
1758
1759 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1760 r < end; ++r)
1761 if (type == r->type && regno == r->value)
1762 return r;
1763 return 0;
1764 }
1765
1766 int
1767 arc_insn_is_j(insn)
1768 arc_insn insn;
1769 {
1770 return (insn & (I(-1))) == I(0x7);
1771 }
1772
1773 int
1774 arc_insn_not_jl(insn)
1775 arc_insn insn;
1776 {
1777 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1778 != (I(0x7) | R(-1,9,1)));
1779 }
1780
1781 int
1782 arc_operand_type(int opertype)
1783 {
1784 switch (opertype)
1785 {
1786 case 0:
1787 return(COND);
1788 break;
1789 case 1:
1790 return(REG);
1791 break;
1792 case 2:
1793 return(AUXREG);
1794 break;
1795 }
1796 return -1;
1797 }
1798
1799 struct arc_operand_value *
1800 get_ext_suffix(s)
1801 char *s;
1802 {
1803 struct arc_ext_operand_value *suffix = arc_ext_operands;
1804
1805 while (suffix)
1806 {
1807 if ((COND == suffix->operand.type)
1808 && !strcmp(s,suffix->operand.name))
1809 return(&suffix->operand);
1810 suffix = suffix->next;
1811 }
1812 return NULL;
1813 }
1814
1815 int
1816 arc_get_noshortcut_flag()
1817 {
1818 return ARC_REGISTER_NOSHORT_CUT;
1819 }