]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ada/sem_ch4.adb
[multiple changes]
[thirdparty/gcc.git] / gcc / ada / sem_ch4.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ C H 4 --
6-- --
7-- B o d y --
8-- --
e7ba564f 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d50f4827 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
35ae2ed8 30with Elists; use Elists;
996ae0b0
RK
31with Errout; use Errout;
32with Exp_Util; use Exp_Util;
d935a36e 33with Fname; use Fname;
996ae0b0 34with Itypes; use Itypes;
d935a36e 35with Lib; use Lib;
996ae0b0
RK
36with Lib.Xref; use Lib.Xref;
37with Namet; use Namet;
d469eabe 38with Namet.Sp; use Namet.Sp;
996ae0b0
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Output; use Output;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
996ae0b0 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
19d846a0 47with Sem_Case; use Sem_Case;
996ae0b0
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch3; use Sem_Ch3;
d469eabe 50with Sem_Ch6; use Sem_Ch6;
996ae0b0 51with Sem_Ch8; use Sem_Ch8;
dec6faf1 52with Sem_Dim; use Sem_Dim;
b67a385c 53with Sem_Disp; use Sem_Disp;
996ae0b0
RK
54with Sem_Dist; use Sem_Dist;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
996ae0b0 57with Sem_Type; use Sem_Type;
19d846a0
RD
58with Sem_Util; use Sem_Util;
59with Sem_Warn; use Sem_Warn;
996ae0b0
RK
60with Stand; use Stand;
61with Sinfo; use Sinfo;
62with Snames; use Snames;
63with Tbuild; use Tbuild;
b727a82b 64with Uintp; use Uintp;
996ae0b0 65
996ae0b0
RK
66package body Sem_Ch4 is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
fe39cf20
BD
72 procedure Analyze_Concatenation_Rest (N : Node_Id);
73 -- Does the "rest" of the work of Analyze_Concatenation, after the left
74 -- operand has been analyzed. See Analyze_Concatenation for details.
75
996ae0b0 76 procedure Analyze_Expression (N : Node_Id);
80211802
AC
77 -- For expressions that are not names, this is just a call to analyze. If
78 -- the expression is a name, it may be a call to a parameterless function,
79 -- and if so must be converted into an explicit call node and analyzed as
80 -- such. This deproceduring must be done during the first pass of overload
81 -- resolution, because otherwise a procedure call with overloaded actuals
82 -- may fail to resolve.
996ae0b0
RK
83
84 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
80211802
AC
85 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
86 -- operator name or an expanded name whose selector is an operator name,
87 -- and one possible interpretation is as a predefined operator.
996ae0b0
RK
88
89 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
90 -- If the prefix of a selected_component is overloaded, the proper
91 -- interpretation that yields a record type with the proper selector
92 -- name must be selected.
93
94 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
95 -- Procedure to analyze a user defined binary operator, which is resolved
96 -- like a function, but instead of a list of actuals it is presented
97 -- with the left and right operands of an operator node.
98
99 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
100 -- Procedure to analyze a user defined unary operator, which is resolved
101 -- like a function, but instead of a list of actuals, it is presented with
102 -- the operand of the operator node.
103
104 procedure Ambiguous_Operands (N : Node_Id);
0877856b 105 -- For equality, membership, and comparison operators with overloaded
996ae0b0
RK
106 -- arguments, list possible interpretations.
107
996ae0b0 108 procedure Analyze_One_Call
ec6078e3
ES
109 (N : Node_Id;
110 Nam : Entity_Id;
111 Report : Boolean;
112 Success : out Boolean;
113 Skip_First : Boolean := False);
996ae0b0
RK
114 -- Check one interpretation of an overloaded subprogram name for
115 -- compatibility with the types of the actuals in a call. If there is a
116 -- single interpretation which does not match, post error if Report is
117 -- set to True.
118 --
119 -- Nam is the entity that provides the formals against which the actuals
120 -- are checked. Nam is either the name of a subprogram, or the internal
121 -- subprogram type constructed for an access_to_subprogram. If the actuals
122 -- are compatible with Nam, then Nam is added to the list of candidate
123 -- interpretations for N, and Success is set to True.
ec6078e3
ES
124 --
125 -- The flag Skip_First is used when analyzing a call that was rewritten
126 -- from object notation. In this case the first actual may have to receive
127 -- an explicit dereference, depending on the first formal of the operation
128 -- being called. The caller will have verified that the object is legal
129 -- for the call. If the remaining parameters match, the first parameter
130 -- will rewritten as a dereference if needed, prior to completing analysis.
996ae0b0
RK
131
132 procedure Check_Misspelled_Selector
133 (Prefix : Entity_Id;
134 Sel : Node_Id);
80211802 135 -- Give possible misspelling message if Sel seems likely to be a mis-
8dbf3473
AC
136 -- spelling of one of the selectors of the Prefix. This is called by
137 -- Analyze_Selected_Component after producing an invalid selector error
138 -- message.
996ae0b0
RK
139
140 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
f3d57416 141 -- Verify that type T is declared in scope S. Used to find interpretations
996ae0b0
RK
142 -- for operators given by expanded names. This is abstracted as a separate
143 -- function to handle extensions to System, where S is System, but T is
144 -- declared in the extension.
145
146 procedure Find_Arithmetic_Types
147 (L, R : Node_Id;
148 Op_Id : Entity_Id;
149 N : Node_Id);
80211802
AC
150 -- L and R are the operands of an arithmetic operator. Find consistent
151 -- pairs of interpretations for L and R that have a numeric type consistent
152 -- with the semantics of the operator.
996ae0b0
RK
153
154 procedure Find_Comparison_Types
155 (L, R : Node_Id;
156 Op_Id : Entity_Id;
157 N : Node_Id);
80211802
AC
158 -- L and R are operands of a comparison operator. Find consistent pairs of
159 -- interpretations for L and R.
996ae0b0
RK
160
161 procedure Find_Concatenation_Types
162 (L, R : Node_Id;
163 Op_Id : Entity_Id;
164 N : Node_Id);
6e73e3ab 165 -- For the four varieties of concatenation
996ae0b0
RK
166
167 procedure Find_Equality_Types
168 (L, R : Node_Id;
169 Op_Id : Entity_Id;
170 N : Node_Id);
6e73e3ab 171 -- Ditto for equality operators
996ae0b0
RK
172
173 procedure Find_Boolean_Types
174 (L, R : Node_Id;
175 Op_Id : Entity_Id;
176 N : Node_Id);
6e73e3ab 177 -- Ditto for binary logical operations
996ae0b0
RK
178
179 procedure Find_Negation_Types
180 (R : Node_Id;
181 Op_Id : Entity_Id;
182 N : Node_Id);
6e73e3ab 183 -- Find consistent interpretation for operand of negation operator
996ae0b0
RK
184
185 procedure Find_Non_Universal_Interpretations
186 (N : Node_Id;
187 R : Node_Id;
188 Op_Id : Entity_Id;
189 T1 : Entity_Id);
190 -- For equality and comparison operators, the result is always boolean,
191 -- and the legality of the operation is determined from the visibility
192 -- of the operand types. If one of the operands has a universal interpre-
193 -- tation, the legality check uses some compatible non-universal
194 -- interpretation of the other operand. N can be an operator node, or
be4c5193
AC
195 -- a function call whose name is an operator designator. Any_Access, which
196 -- is the initial type of the literal NULL, is a universal type for the
197 -- purpose of this routine.
996ae0b0 198
d469eabe
HK
199 function Find_Primitive_Operation (N : Node_Id) return Boolean;
200 -- Find candidate interpretations for the name Obj.Proc when it appears
201 -- in a subprogram renaming declaration.
202
996ae0b0
RK
203 procedure Find_Unary_Types
204 (R : Node_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
6e73e3ab 207 -- Unary arithmetic types: plus, minus, abs
996ae0b0
RK
208
209 procedure Check_Arithmetic_Pair
210 (T1, T2 : Entity_Id;
211 Op_Id : Entity_Id;
212 N : Node_Id);
213 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
214 -- types for left and right operand. Determine whether they constitute
215 -- a valid pair for the given operator, and record the corresponding
216 -- interpretation of the operator node. The node N may be an operator
217 -- node (the usual case) or a function call whose prefix is an operator
401093c1 218 -- designator. In both cases Op_Id is the operator name itself.
996ae0b0
RK
219
220 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
221 -- Give detailed information on overloaded call where none of the
222 -- interpretations match. N is the call node, Nam the designator for
223 -- the overloaded entity being called.
224
225 function Junk_Operand (N : Node_Id) return Boolean;
226 -- Test for an operand that is an inappropriate entity (e.g. a package
227 -- name or a label). If so, issue an error message and return True. If
228 -- the operand is not an inappropriate entity kind, return False.
229
230 procedure Operator_Check (N : Node_Id);
da709d08
AC
231 -- Verify that an operator has received some valid interpretation. If none
232 -- was found, determine whether a use clause would make the operation
233 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
234 -- every type compatible with the operator, even if the operator for the
235 -- type is not directly visible. The routine uses this type to emit a more
236 -- informative message.
996ae0b0 237
d469eabe 238 function Process_Implicit_Dereference_Prefix
da709d08 239 (E : Entity_Id;
d469eabe 240 P : Node_Id) return Entity_Id;
da709d08 241 -- Called when P is the prefix of an implicit dereference, denoting an
d469eabe
HK
242 -- object E. The function returns the designated type of the prefix, taking
243 -- into account that the designated type of an anonymous access type may be
244 -- a limited view, when the non-limited view is visible.
245 -- If in semantics only mode (-gnatc or generic), the function also records
246 -- that the prefix is a reference to E, if any. Normally, such a reference
247 -- is generated only when the implicit dereference is expanded into an
248 -- explicit one, but for consistency we must generate the reference when
249 -- expansion is disabled as well.
6e73e3ab 250
30c20106
AC
251 procedure Remove_Abstract_Operations (N : Node_Id);
252 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
253 -- operation is not a candidate interpretation.
254
d50f4827
AC
255 function Try_Container_Indexing
256 (N : Node_Id;
257 Prefix : Node_Id;
50878404 258 Exprs : List_Id) return Boolean;
d50f4827
AC
259 -- AI05-0139: Generalized indexing to support iterators over containers
260
996ae0b0 261 function Try_Indexed_Call
aab883ec
ES
262 (N : Node_Id;
263 Nam : Entity_Id;
264 Typ : Entity_Id;
265 Skip_First : Boolean) return Boolean;
266 -- If a function has defaults for all its actuals, a call to it may in fact
267 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
268 -- interpretation as an indexing, prior to analysis as a call. If both are
269 -- possible, the node is overloaded with both interpretations (same symbol
270 -- but two different types). If the call is written in prefix form, the
271 -- prefix becomes the first parameter in the call, and only the remaining
272 -- actuals must be checked for the presence of defaults.
996ae0b0
RK
273
274 function Try_Indirect_Call
91b1417d
AC
275 (N : Node_Id;
276 Nam : Entity_Id;
277 Typ : Entity_Id) return Boolean;
aab883ec
ES
278 -- Similarly, a function F that needs no actuals can return an access to a
279 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
280 -- the call may be overloaded with both interpretations.
996ae0b0 281
8cf23b91 282 function Try_Object_Operation
11bc76df
AC
283 (N : Node_Id;
284 CW_Test_Only : Boolean := False) return Boolean;
0d57c6f4
RD
285 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
286 -- is a call in this notation, it is transformed into a normal subprogram
287 -- call where the prefix is a parameter, and True is returned. If node
8cf23b91
AC
288 -- N is not of this form, it is unchanged, and False is returned. if
289 -- CW_Test_Only is true then N is an N_Selected_Component node which
290 -- is part of a call to an entry or procedure of a tagged concurrent
291 -- type and this routine is invoked to search for class-wide subprograms
292 -- conflicting with the target entity.
35ae2ed8 293
b4592168
GD
294 procedure wpo (T : Entity_Id);
295 pragma Warnings (Off, wpo);
296 -- Used for debugging: obtain list of primitive operations even if
297 -- type is not frozen and dispatch table is not built yet.
298
996ae0b0
RK
299 ------------------------
300 -- Ambiguous_Operands --
301 ------------------------
302
303 procedure Ambiguous_Operands (N : Node_Id) is
fbf5a39b 304 procedure List_Operand_Interps (Opnd : Node_Id);
996ae0b0 305
4c46b835
AC
306 --------------------------
307 -- List_Operand_Interps --
308 --------------------------
309
fbf5a39b 310 procedure List_Operand_Interps (Opnd : Node_Id) is
996ae0b0
RK
311 Nam : Node_Id;
312 Err : Node_Id := N;
313
314 begin
315 if Is_Overloaded (Opnd) then
316 if Nkind (Opnd) in N_Op then
317 Nam := Opnd;
996ae0b0
RK
318 elsif Nkind (Opnd) = N_Function_Call then
319 Nam := Name (Opnd);
44a10091
AC
320 elsif Ada_Version >= Ada_2012 then
321 declare
322 It : Interp;
323 I : Interp_Index;
324
325 begin
326 Get_First_Interp (Opnd, I, It);
327 while Present (It.Nam) loop
328 if Has_Implicit_Dereference (It.Typ) then
329 Error_Msg_N
330 ("can be interpreted as implicit dereference", Opnd);
331 return;
332 end if;
333
334 Get_Next_Interp (I, It);
335 end loop;
336 end;
337
996ae0b0
RK
338 return;
339 end if;
340
341 else
342 return;
343 end if;
344
345 if Opnd = Left_Opnd (N) then
ed2233dc 346 Error_Msg_N ("\left operand has the following interpretations", N);
996ae0b0 347 else
ed2233dc 348 Error_Msg_N
996ae0b0
RK
349 ("\right operand has the following interpretations", N);
350 Err := Opnd;
351 end if;
352
fbf5a39b
AC
353 List_Interps (Nam, Err);
354 end List_Operand_Interps;
996ae0b0 355
4c46b835
AC
356 -- Start of processing for Ambiguous_Operands
357
996ae0b0 358 begin
b67a385c 359 if Nkind (N) in N_Membership_Test then
ed2233dc 360 Error_Msg_N ("ambiguous operands for membership", N);
996ae0b0 361
d469eabe 362 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
ed2233dc 363 Error_Msg_N ("ambiguous operands for equality", N);
996ae0b0
RK
364
365 else
ed2233dc 366 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0
RK
367 end if;
368
369 if All_Errors_Mode then
fbf5a39b
AC
370 List_Operand_Interps (Left_Opnd (N));
371 List_Operand_Interps (Right_Opnd (N));
996ae0b0 372 else
555360a5 373 Error_Msg_N ("\use -gnatf switch for details", N);
996ae0b0
RK
374 end if;
375 end Ambiguous_Operands;
376
377 -----------------------
378 -- Analyze_Aggregate --
379 -----------------------
380
381 -- Most of the analysis of Aggregates requires that the type be known,
382 -- and is therefore put off until resolution.
383
384 procedure Analyze_Aggregate (N : Node_Id) is
385 begin
386 if No (Etype (N)) then
387 Set_Etype (N, Any_Composite);
388 end if;
389 end Analyze_Aggregate;
390
391 -----------------------
392 -- Analyze_Allocator --
393 -----------------------
394
395 procedure Analyze_Allocator (N : Node_Id) is
396 Loc : constant Source_Ptr := Sloc (N);
07fc65c4 397 Sav_Errs : constant Nat := Serious_Errors_Detected;
b67a385c 398 E : Node_Id := Expression (N);
996ae0b0
RK
399 Acc_Type : Entity_Id;
400 Type_Id : Entity_Id;
87003b28
RD
401 P : Node_Id;
402 C : Node_Id;
b3b26ace 403 Onode : Node_Id;
996ae0b0
RK
404
405 begin
ce5ba43a 406 Check_SPARK_05_Restriction ("allocator is not allowed", N);
1d801f21 407
87003b28
RD
408 -- Deal with allocator restrictions
409
50cff367 410 -- In accordance with H.4(7), the No_Allocators restriction only applies
87003b28 411 -- to user-written allocators. The same consideration applies to the
d8941160 412 -- No_Standard_Allocators_Before_Elaboration restriction.
50cff367
GD
413
414 if Comes_From_Source (N) then
415 Check_Restriction (No_Allocators, N);
87003b28 416
57f4c288 417 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
489c6e19 418 -- look at enclosing context, checking task/main subprogram case.
87003b28
RD
419
420 C := N;
421 P := Parent (C);
422 while Present (P) loop
423
b3b26ace
AC
424 -- For the task case we need a handled sequence of statements,
425 -- where the occurrence of the allocator is within the statements
426 -- and the parent is a task body
87003b28
RD
427
428 if Nkind (P) = N_Handled_Sequence_Of_Statements
429 and then Is_List_Member (C)
430 and then List_Containing (C) = Statements (P)
431 then
b3b26ace
AC
432 Onode := Original_Node (Parent (P));
433
87003b28 434 -- Check for allocator within task body, this is a definite
d8941160
RD
435 -- violation of No_Allocators_After_Elaboration we can detect
436 -- at compile time.
87003b28 437
b3b26ace 438 if Nkind (Onode) = N_Task_Body then
57f4c288
ES
439 Check_Restriction
440 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
441 exit;
442 end if;
b3b26ace 443 end if;
87003b28 444
b3b26ace
AC
445 -- The other case is appearance in a subprogram body. This is
446 -- a violation if this is a library level subprogram with no
447 -- parameters. Note that this is now a static error even if the
448 -- subprogram is not the main program (this is a change, in an
449 -- earlier version only the main program was affected, and the
450 -- check had to be done in the binder.
87003b28 451
b3b26ace
AC
452 if Nkind (P) = N_Subprogram_Body
453 and then Nkind (Parent (P)) = N_Compilation_Unit
454 and then No (Parameter_Specifications (Specification (P)))
455 then
456 Check_Restriction
457 (No_Standard_Allocators_After_Elaboration, N);
87003b28
RD
458 end if;
459
460 C := P;
461 P := Parent (C);
462 end loop;
50cff367 463 end if;
996ae0b0 464
df170605
AC
465 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
466 -- any. The expected type for the name is any type. A non-overloading
467 -- rule then requires it to be of a type descended from
f0f88eb6
RD
468 -- System.Storage_Pools.Subpools.Subpool_Handle.
469
470 -- This isn't exactly what the AI says, but it seems to be the right
471 -- rule. The AI should be fixed.???
df170605
AC
472
473 declare
474 Subpool : constant Node_Id := Subpool_Handle_Name (N);
f0f88eb6 475
df170605
AC
476 begin
477 if Present (Subpool) then
478 Analyze (Subpool);
f0f88eb6 479
df170605
AC
480 if Is_Overloaded (Subpool) then
481 Error_Msg_N ("ambiguous subpool handle", Subpool);
482 end if;
483
f0f88eb6 484 -- Check that Etype (Subpool) is descended from Subpool_Handle
df170605
AC
485
486 Resolve (Subpool);
487 end if;
488 end;
489
490 -- Analyze the qualified expression or subtype indication
87003b28 491
996ae0b0
RK
492 if Nkind (E) = N_Qualified_Expression then
493 Acc_Type := Create_Itype (E_Allocator_Type, N);
494 Set_Etype (Acc_Type, Acc_Type);
996ae0b0 495 Find_Type (Subtype_Mark (E));
45c8b94b
ES
496
497 -- Analyze the qualified expression, and apply the name resolution
f0f88eb6 498 -- rule given in 4.7(3).
45c8b94b
ES
499
500 Analyze (E);
501 Type_Id := Etype (E);
996ae0b0
RK
502 Set_Directly_Designated_Type (Acc_Type, Type_Id);
503
f7bb41af
AC
504 -- Allocators generated by the build-in-place expansion mechanism
505 -- are explicitly marked as coming from source but do not need to be
506 -- checked for limited initialization. To exclude this case, ensure
507 -- that the parent of the allocator is a source node.
508
d05ef0ab 509 if Is_Limited_Type (Type_Id)
996ae0b0 510 and then Comes_From_Source (N)
f7bb41af 511 and then Comes_From_Source (Parent (N))
996ae0b0
RK
512 and then not In_Instance_Body
513 then
2a31c32b 514 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
d05ef0ab
AC
515 Error_Msg_N ("initialization not allowed for limited types", N);
516 Explain_Limited_Type (Type_Id, N);
517 end if;
996ae0b0
RK
518 end if;
519
996ae0b0
RK
520 -- A qualified expression requires an exact match of the type,
521 -- class-wide matching is not allowed.
522
45c8b94b
ES
523 -- if Is_Class_Wide_Type (Type_Id)
524 -- and then Base_Type
525 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
526 -- then
527 -- Wrong_Type (Expression (E), Type_Id);
528 -- end if;
996ae0b0 529
996ae0b0 530 -- We don't analyze the qualified expression itself because it's
f3691f46
ES
531 -- part of the allocator. It is fully analyzed and resolved when
532 -- the allocator is resolved with the context type.
996ae0b0
RK
533
534 Set_Etype (E, Type_Id);
535
aab883ec 536 -- Case where allocator has a subtype indication
4c46b835 537
996ae0b0
RK
538 else
539 declare
758c442c
GD
540 Def_Id : Entity_Id;
541 Base_Typ : Entity_Id;
996ae0b0
RK
542
543 begin
544 -- If the allocator includes a N_Subtype_Indication then a
545 -- constraint is present, otherwise the node is a subtype mark.
546 -- Introduce an explicit subtype declaration into the tree
547 -- defining some anonymous subtype and rewrite the allocator to
548 -- use this subtype rather than the subtype indication.
549
550 -- It is important to introduce the explicit subtype declaration
551 -- so that the bounds of the subtype indication are attached to
552 -- the tree in case the allocator is inside a generic unit.
553
554 if Nkind (E) = N_Subtype_Indication then
555
556 -- A constraint is only allowed for a composite type in Ada
557 -- 95. In Ada 83, a constraint is also allowed for an
558 -- access-to-composite type, but the constraint is ignored.
559
560 Find_Type (Subtype_Mark (E));
758c442c 561 Base_Typ := Entity (Subtype_Mark (E));
996ae0b0 562
758c442c 563 if Is_Elementary_Type (Base_Typ) then
0ab80019 564 if not (Ada_Version = Ada_83
758c442c 565 and then Is_Access_Type (Base_Typ))
996ae0b0
RK
566 then
567 Error_Msg_N ("constraint not allowed here", E);
568
24657705
HK
569 if Nkind (Constraint (E)) =
570 N_Index_Or_Discriminant_Constraint
996ae0b0 571 then
4e7a4f6e 572 Error_Msg_N -- CODEFIX
996ae0b0
RK
573 ("\if qualified expression was meant, " &
574 "use apostrophe", Constraint (E));
575 end if;
576 end if;
577
578 -- Get rid of the bogus constraint:
579
580 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
581 Analyze_Allocator (N);
582 return;
583 end if;
584
585 if Expander_Active then
092ef350 586 Def_Id := Make_Temporary (Loc, 'S');
996ae0b0
RK
587
588 Insert_Action (E,
589 Make_Subtype_Declaration (Loc,
590 Defining_Identifier => Def_Id,
591 Subtype_Indication => Relocate_Node (E)));
592
07fc65c4 593 if Sav_Errs /= Serious_Errors_Detected
d469eabe
HK
594 and then Nkind (Constraint (E)) =
595 N_Index_Or_Discriminant_Constraint
996ae0b0 596 then
4e7a4f6e 597 Error_Msg_N -- CODEFIX
a90bd866
RD
598 ("if qualified expression was meant, "
599 & "use apostrophe!", Constraint (E));
996ae0b0
RK
600 end if;
601
602 E := New_Occurrence_Of (Def_Id, Loc);
603 Rewrite (Expression (N), E);
604 end if;
605 end if;
606
607 Type_Id := Process_Subtype (E, N);
608 Acc_Type := Create_Itype (E_Allocator_Type, N);
609 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
610 Set_Directly_Designated_Type (Acc_Type, Type_Id);
611 Check_Fully_Declared (Type_Id, N);
612
1baa4d2d 613 -- Ada 2005 (AI-231): If the designated type is itself an access
16b05213 614 -- type that excludes null, its default initialization will
75ad5042
ES
615 -- be a null object, and we can insert an unconditional raise
616 -- before the allocator.
2820d220 617
bfae1846 618 -- Ada 2012 (AI-104): A not null indication here is altogether
518ade91
AC
619 -- illegal.
620
2820d220 621 if Can_Never_Be_Null (Type_Id) then
75ad5042
ES
622 declare
623 Not_Null_Check : constant Node_Id :=
624 Make_Raise_Constraint_Error (Sloc (E),
625 Reason => CE_Null_Not_Allowed);
40b93859 626
75ad5042 627 begin
7b55fea6 628 if Expander_Active then
75ad5042
ES
629 Insert_Action (N, Not_Null_Check);
630 Analyze (Not_Null_Check);
40b93859 631
685bc70f
AC
632 elsif Warn_On_Ada_2012_Compatibility then
633 Error_Msg_N
634 ("null value not allowed here in Ada 2012?y?", E);
75ad5042
ES
635 end if;
636 end;
2820d220
AC
637 end if;
638
996ae0b0
RK
639 -- Check for missing initialization. Skip this check if we already
640 -- had errors on analyzing the allocator, since in that case these
24657705 641 -- are probably cascaded errors.
996ae0b0
RK
642
643 if Is_Indefinite_Subtype (Type_Id)
07fc65c4 644 and then Serious_Errors_Detected = Sav_Errs
996ae0b0 645 then
a4956515
AC
646 -- The build-in-place machinery may produce an allocator when
647 -- the designated type is indefinite but the underlying type is
648 -- not. In this case the unknown discriminants are meaningless
649 -- and should not trigger error messages. Check the parent node
650 -- because the allocator is marked as coming from source.
651
652 if Present (Underlying_Type (Type_Id))
653 and then not Is_Indefinite_Subtype (Underlying_Type (Type_Id))
654 and then not Comes_From_Source (Parent (N))
655 then
656 null;
657
658 elsif Is_Class_Wide_Type (Type_Id) then
996ae0b0
RK
659 Error_Msg_N
660 ("initialization required in class-wide allocation", N);
a4956515 661
996ae0b0 662 else
0791fbe9 663 if Ada_Version < Ada_2005
24657705
HK
664 and then Is_Limited_Type (Type_Id)
665 then
666 Error_Msg_N ("unconstrained allocation not allowed", N);
667
668 if Is_Array_Type (Type_Id) then
669 Error_Msg_N
670 ("\constraint with array bounds required", N);
671
672 elsif Has_Unknown_Discriminants (Type_Id) then
673 null;
674
675 else pragma Assert (Has_Discriminants (Type_Id));
676 Error_Msg_N
677 ("\constraint with discriminant values required", N);
678 end if;
679
680 -- Limited Ada 2005 and general non-limited case
681
682 else
683 Error_Msg_N
684 ("uninitialized unconstrained allocation not allowed",
685 N);
686
687 if Is_Array_Type (Type_Id) then
688 Error_Msg_N
689 ("\qualified expression or constraint with " &
690 "array bounds required", N);
691
692 elsif Has_Unknown_Discriminants (Type_Id) then
693 Error_Msg_N ("\qualified expression required", N);
694
695 else pragma Assert (Has_Discriminants (Type_Id));
696 Error_Msg_N
697 ("\qualified expression or constraint with " &
698 "discriminant values required", N);
699 end if;
700 end if;
996ae0b0
RK
701 end if;
702 end if;
703 end;
704 end if;
705
aab883ec 706 if Is_Abstract_Type (Type_Id) then
996ae0b0
RK
707 Error_Msg_N ("cannot allocate abstract object", E);
708 end if;
709
710 if Has_Task (Designated_Type (Acc_Type)) then
6e937c1c 711 Check_Restriction (No_Tasking, N);
fbf5a39b 712 Check_Restriction (Max_Tasks, N);
996ae0b0 713 Check_Restriction (No_Task_Allocators, N);
70b3b953
GD
714 end if;
715
02bb0765
AC
716 -- Check restriction against dynamically allocated protected objects
717
718 if Has_Protected (Designated_Type (Acc_Type)) then
719 Check_Restriction (No_Protected_Type_Allocators, N);
720 end if;
721
646e2823
AC
722 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
723 -- type is nested, and the designated type needs finalization. The rule
724 -- is conservative in that class-wide types need finalization.
725
726 if Needs_Finalization (Designated_Type (Acc_Type))
727 and then not Is_Library_Level_Entity (Acc_Type)
728 then
729 Check_Restriction (No_Nested_Finalization, N);
730 end if;
731
70b3b953
GD
732 -- Check that an allocator of a nested access type doesn't create a
733 -- protected object when restriction No_Local_Protected_Objects applies.
70b3b953 734
96e90ac1 735 if Has_Protected (Designated_Type (Acc_Type))
70b3b953
GD
736 and then not Is_Library_Level_Entity (Acc_Type)
737 then
738 Check_Restriction (No_Local_Protected_Objects, N);
996ae0b0
RK
739 end if;
740
ffe9aba8
AC
741 -- If the No_Streams restriction is set, check that the type of the
742 -- object is not, and does not contain, any subtype derived from
743 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
744 -- Has_Stream just for efficiency reasons. There is no point in
745 -- spending time on a Has_Stream check if the restriction is not set.
746
7a963087 747 if Restriction_Check_Required (No_Streams) then
ffe9aba8
AC
748 if Has_Stream (Designated_Type (Acc_Type)) then
749 Check_Restriction (No_Streams, N);
750 end if;
751 end if;
752
996ae0b0
RK
753 Set_Etype (N, Acc_Type);
754
755 if not Is_Library_Level_Entity (Acc_Type) then
756 Check_Restriction (No_Local_Allocators, N);
757 end if;
2820d220 758
07fc65c4 759 if Serious_Errors_Detected > Sav_Errs then
996ae0b0
RK
760 Set_Error_Posted (N);
761 Set_Etype (N, Any_Type);
762 end if;
996ae0b0
RK
763 end Analyze_Allocator;
764
765 ---------------------------
766 -- Analyze_Arithmetic_Op --
767 ---------------------------
768
769 procedure Analyze_Arithmetic_Op (N : Node_Id) is
770 L : constant Node_Id := Left_Opnd (N);
771 R : constant Node_Id := Right_Opnd (N);
772 Op_Id : Entity_Id;
773
774 begin
775 Candidate_Type := Empty;
776 Analyze_Expression (L);
777 Analyze_Expression (R);
778
d469eabe
HK
779 -- If the entity is already set, the node is the instantiation of a
780 -- generic node with a non-local reference, or was manufactured by a
781 -- call to Make_Op_xxx. In either case the entity is known to be valid,
782 -- and we do not need to collect interpretations, instead we just get
783 -- the single possible interpretation.
996ae0b0
RK
784
785 Op_Id := Entity (N);
786
787 if Present (Op_Id) then
788 if Ekind (Op_Id) = E_Operator then
789
d469eabe 790 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
996ae0b0
RK
791 and then Treat_Fixed_As_Integer (N)
792 then
793 null;
794 else
795 Set_Etype (N, Any_Type);
796 Find_Arithmetic_Types (L, R, Op_Id, N);
797 end if;
798
799 else
800 Set_Etype (N, Any_Type);
801 Add_One_Interp (N, Op_Id, Etype (Op_Id));
802 end if;
803
804 -- Entity is not already set, so we do need to collect interpretations
805
806 else
807 Op_Id := Get_Name_Entity_Id (Chars (N));
808 Set_Etype (N, Any_Type);
809
810 while Present (Op_Id) loop
811 if Ekind (Op_Id) = E_Operator
812 and then Present (Next_Entity (First_Entity (Op_Id)))
813 then
814 Find_Arithmetic_Types (L, R, Op_Id, N);
815
816 -- The following may seem superfluous, because an operator cannot
817 -- be generic, but this ignores the cleverness of the author of
818 -- ACVC bc1013a.
819
820 elsif Is_Overloadable (Op_Id) then
821 Analyze_User_Defined_Binary_Op (N, Op_Id);
822 end if;
823
824 Op_Id := Homonym (Op_Id);
825 end loop;
826 end if;
827
828 Operator_Check (N);
829 end Analyze_Arithmetic_Op;
830
831 ------------------
832 -- Analyze_Call --
833 ------------------
834
4c46b835
AC
835 -- Function, procedure, and entry calls are checked here. The Name in
836 -- the call may be overloaded. The actuals have been analyzed and may
837 -- themselves be overloaded. On exit from this procedure, the node N
838 -- may have zero, one or more interpretations. In the first case an
839 -- error message is produced. In the last case, the node is flagged
840 -- as overloaded and the interpretations are collected in All_Interp.
996ae0b0
RK
841
842 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
843 -- the type-checking is similar to that of other calls.
844
845 procedure Analyze_Call (N : Node_Id) is
846 Actuals : constant List_Id := Parameter_Associations (N);
63319f58 847 Nam : Node_Id;
996ae0b0
RK
848 X : Interp_Index;
849 It : Interp;
850 Nam_Ent : Entity_Id;
63319f58
RD
851 Success : Boolean := False;
852
853 Deref : Boolean := False;
1cb17b78
AC
854 -- Flag indicates whether an interpretation of the prefix is a
855 -- parameterless call that returns an access_to_subprogram.
996ae0b0 856
9f6aaa5c
AC
857 procedure Check_Ghost_Subprogram_Call;
858 -- Verify the legality of a call to a ghost subprogram. Such calls can
a7e68e7f 859 -- appear only in assertion expressions except subtype predicates or
9f6aaa5c 860 -- from within another ghost subprogram.
a7e68e7f 861
23685ae6
AC
862 procedure Check_Mixed_Parameter_And_Named_Associations;
863 -- Check that parameter and named associations are not mixed. This is
864 -- a restriction in SPARK mode.
865
996ae0b0 866 function Name_Denotes_Function return Boolean;
5ff22245
ES
867 -- If the type of the name is an access to subprogram, this may be the
868 -- type of a name, or the return type of the function being called. If
869 -- the name is not an entity then it can denote a protected function.
870 -- Until we distinguish Etype from Return_Type, we must use this routine
871 -- to resolve the meaning of the name in the call.
872
873 procedure No_Interpretation;
874 -- Output error message when no valid interpretation exists
996ae0b0 875
9f6aaa5c
AC
876 ---------------------------------
877 -- Check_Ghost_Subprogram_Call --
878 ---------------------------------
a7e68e7f 879
9f6aaa5c 880 procedure Check_Ghost_Subprogram_Call is
a7e68e7f
HK
881 S : Entity_Id;
882
883 begin
5884c232
AC
884 -- Do not perform the check while preanalyzing the enclosing context
885 -- because the call is not in its final place. Premature attempts to
886 -- verify the placement lead to bogus errors.
887
888 if In_Spec_Expression then
889 return;
890
2c9f8c0a
AC
891 -- The ghost subprogram appears inside an assertion expression which
892 -- is one of the allowed cases.
a7e68e7f 893
2c9f8c0a 894 elsif In_Assertion_Expression_Pragma (N) then
a7e68e7f
HK
895 return;
896
5884c232
AC
897 -- Otherwise see if it inside another ghost subprogram
898
a7e68e7f 899 else
5884c232
AC
900 -- Loop to climb scopes
901
a7e68e7f
HK
902 S := Current_Scope;
903 while Present (S) and then S /= Standard_Standard loop
904
9f6aaa5c 905 -- The call appears inside another ghost subprogram
a7e68e7f 906
9f6aaa5c 907 if Is_Ghost_Subprogram (S) then
a7e68e7f
HK
908 return;
909 end if;
910
911 S := Scope (S);
912 end loop;
a7e68e7f 913
5884c232
AC
914 -- If we fall through the loop it was not within another
915 -- ghost subprogram, so we have bad placement.
916
917 Error_Msg_N
918 ("call to ghost subprogram must appear in assertion expression "
919 & "or another ghost subprogram", N);
920 end if;
9f6aaa5c 921 end Check_Ghost_Subprogram_Call;
a7e68e7f 922
23685ae6
AC
923 --------------------------------------------------
924 -- Check_Mixed_Parameter_And_Named_Associations --
925 --------------------------------------------------
926
927 procedure Check_Mixed_Parameter_And_Named_Associations is
928 Actual : Node_Id;
929 Named_Seen : Boolean;
f5afb270 930
23685ae6 931 begin
23685ae6 932 Named_Seen := False;
f5afb270
AC
933
934 Actual := First (Actuals);
23685ae6
AC
935 while Present (Actual) loop
936 case Nkind (Actual) is
937 when N_Parameter_Association =>
938 if Named_Seen then
ce5ba43a 939 Check_SPARK_05_Restriction
23685ae6
AC
940 ("named association cannot follow positional one",
941 Actual);
942 exit;
943 end if;
944 when others =>
945 Named_Seen := True;
946 end case;
947
948 Next (Actual);
949 end loop;
950 end Check_Mixed_Parameter_And_Named_Associations;
951
996ae0b0
RK
952 ---------------------------
953 -- Name_Denotes_Function --
954 ---------------------------
955
956 function Name_Denotes_Function return Boolean is
957 begin
958 if Is_Entity_Name (Nam) then
959 return Ekind (Entity (Nam)) = E_Function;
960
961 elsif Nkind (Nam) = N_Selected_Component then
962 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
963
964 else
965 return False;
966 end if;
967 end Name_Denotes_Function;
968
5ff22245
ES
969 -----------------------
970 -- No_Interpretation --
971 -----------------------
972
973 procedure No_Interpretation is
974 L : constant Boolean := Is_List_Member (N);
975 K : constant Node_Kind := Nkind (Parent (N));
976
977 begin
978 -- If the node is in a list whose parent is not an expression then it
979 -- must be an attempted procedure call.
980
981 if L and then K not in N_Subexpr then
982 if Ekind (Entity (Nam)) = E_Generic_Procedure then
983 Error_Msg_NE
984 ("must instantiate generic procedure& before call",
985 Nam, Entity (Nam));
986 else
987 Error_Msg_N
988 ("procedure or entry name expected", Nam);
989 end if;
990
991 -- Check for tasking cases where only an entry call will do
992
993 elsif not L
994 and then Nkind_In (K, N_Entry_Call_Alternative,
995 N_Triggering_Alternative)
996 then
997 Error_Msg_N ("entry name expected", Nam);
998
999 -- Otherwise give general error message
1000
1001 else
1002 Error_Msg_N ("invalid prefix in call", Nam);
1003 end if;
1004 end No_Interpretation;
1005
996ae0b0
RK
1006 -- Start of processing for Analyze_Call
1007
1008 begin
6480338a 1009 if Restriction_Check_Required (SPARK_05) then
23685ae6
AC
1010 Check_Mixed_Parameter_And_Named_Associations;
1011 end if;
1012
996ae0b0
RK
1013 -- Initialize the type of the result of the call to the error type,
1014 -- which will be reset if the type is successfully resolved.
1015
1016 Set_Etype (N, Any_Type);
1017
63319f58
RD
1018 Nam := Name (N);
1019
996ae0b0
RK
1020 if not Is_Overloaded (Nam) then
1021
1022 -- Only one interpretation to check
1023
1024 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1025 Nam_Ent := Etype (Nam);
1026
758c442c
GD
1027 -- If the prefix is an access_to_subprogram, this may be an indirect
1028 -- call. This is the case if the name in the call is not an entity
1029 -- name, or if it is a function name in the context of a procedure
1030 -- call. In this latter case, we have a call to a parameterless
1031 -- function that returns a pointer_to_procedure which is the entity
5ff22245
ES
1032 -- being called. Finally, F (X) may be a call to a parameterless
1033 -- function that returns a pointer to a function with parameters.
80e59506 1034 -- Note that if F returns an access-to-subprogram whose designated
4bb9c7b9
AC
1035 -- type is an array, F (X) cannot be interpreted as an indirect call
1036 -- through the result of the call to F.
758c442c 1037
996ae0b0
RK
1038 elsif Is_Access_Type (Etype (Nam))
1039 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
758c442c
GD
1040 and then
1041 (not Name_Denotes_Function
b2834fbd
AC
1042 or else Nkind (N) = N_Procedure_Call_Statement
1043 or else
1044 (Nkind (Parent (N)) /= N_Explicit_Dereference
1045 and then Is_Entity_Name (Nam)
1046 and then No (First_Formal (Entity (Nam)))
1047 and then not
1048 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1049 and then Present (Actuals)))
996ae0b0
RK
1050 then
1051 Nam_Ent := Designated_Type (Etype (Nam));
1052 Insert_Explicit_Dereference (Nam);
1053
1054 -- Selected component case. Simple entry or protected operation,
1055 -- where the entry name is given by the selector name.
1056
1057 elsif Nkind (Nam) = N_Selected_Component then
1058 Nam_Ent := Entity (Selector_Name (Nam));
1059
bce79204
AC
1060 if not Ekind_In (Nam_Ent, E_Entry,
1061 E_Entry_Family,
1062 E_Function,
1063 E_Procedure)
996ae0b0
RK
1064 then
1065 Error_Msg_N ("name in call is not a callable entity", Nam);
1066 Set_Etype (N, Any_Type);
1067 return;
1068 end if;
1069
1070 -- If the name is an Indexed component, it can be a call to a member
1071 -- of an entry family. The prefix must be a selected component whose
1072 -- selector is the entry. Analyze_Procedure_Call normalizes several
1073 -- kinds of call into this form.
1074
1075 elsif Nkind (Nam) = N_Indexed_Component then
996ae0b0
RK
1076 if Nkind (Prefix (Nam)) = N_Selected_Component then
1077 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
996ae0b0
RK
1078 else
1079 Error_Msg_N ("name in call is not a callable entity", Nam);
1080 Set_Etype (N, Any_Type);
1081 return;
996ae0b0
RK
1082 end if;
1083
1084 elsif not Is_Entity_Name (Nam) then
1085 Error_Msg_N ("name in call is not a callable entity", Nam);
1086 Set_Etype (N, Any_Type);
1087 return;
1088
1089 else
1090 Nam_Ent := Entity (Nam);
1091
5f50020a
ES
1092 -- If not overloadable, this may be a generalized indexing
1093 -- operation with named associations. Rewrite again as an
1094 -- indexed component and analyze as container indexing.
996ae0b0
RK
1095
1096 if not Is_Overloadable (Nam_Ent) then
32bba3c9
AC
1097 if Present
1098 (Find_Value_Of_Aspect
1099 (Etype (Nam_Ent), Aspect_Constant_Indexing))
5f50020a
ES
1100 then
1101 Replace (N,
1102 Make_Indexed_Component (Sloc (N),
32bba3c9 1103 Prefix => Nam,
5f50020a
ES
1104 Expressions => Parameter_Associations (N)));
1105
1106 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1107 return;
1108 else
1109 No_Interpretation;
1110 end if;
1111
1112 else
1113 No_Interpretation;
1114 end if;
32bba3c9 1115
5ff22245
ES
1116 return;
1117 end if;
1118 end if;
996ae0b0 1119
5ff22245
ES
1120 -- Operations generated for RACW stub types are called only through
1121 -- dispatching, and can never be the static interpretation of a call.
996ae0b0 1122
5ff22245
ES
1123 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1124 No_Interpretation;
1125 return;
996ae0b0
RK
1126 end if;
1127
1128 Analyze_One_Call (N, Nam_Ent, True, Success);
1129
ec6078e3
ES
1130 -- If this is an indirect call, the return type of the access_to
1131 -- subprogram may be an incomplete type. At the point of the call,
947430d5
AC
1132 -- use the full type if available, and at the same time update the
1133 -- return type of the access_to_subprogram.
ec6078e3
ES
1134
1135 if Success
d469eabe 1136 and then Nkind (Nam) = N_Explicit_Dereference
ec6078e3
ES
1137 and then Ekind (Etype (N)) = E_Incomplete_Type
1138 and then Present (Full_View (Etype (N)))
1139 then
1140 Set_Etype (N, Full_View (Etype (N)));
1141 Set_Etype (Nam_Ent, Etype (N));
1142 end if;
1143
a7e68e7f
HK
1144 -- Overloaded call
1145
996ae0b0 1146 else
5ff22245
ES
1147 -- An overloaded selected component must denote overloaded operations
1148 -- of a concurrent type. The interpretations are attached to the
1149 -- simple name of those operations.
996ae0b0
RK
1150
1151 if Nkind (Nam) = N_Selected_Component then
1152 Nam := Selector_Name (Nam);
1153 end if;
1154
1155 Get_First_Interp (Nam, X, It);
1156
1157 while Present (It.Nam) loop
1158 Nam_Ent := It.Nam;
1cb17b78 1159 Deref := False;
996ae0b0
RK
1160
1161 -- Name may be call that returns an access to subprogram, or more
1162 -- generally an overloaded expression one of whose interpretations
947430d5
AC
1163 -- yields an access to subprogram. If the name is an entity, we do
1164 -- not dereference, because the node is a call that returns the
1165 -- access type: note difference between f(x), where the call may
1166 -- return an access subprogram type, and f(x)(y), where the type
1167 -- returned by the call to f is implicitly dereferenced to analyze
1168 -- the outer call.
996ae0b0
RK
1169
1170 if Is_Access_Type (Nam_Ent) then
1171 Nam_Ent := Designated_Type (Nam_Ent);
1172
1173 elsif Is_Access_Type (Etype (Nam_Ent))
1cb17b78
AC
1174 and then
1175 (not Is_Entity_Name (Nam)
1176 or else Nkind (N) = N_Procedure_Call_Statement)
996ae0b0
RK
1177 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1178 = E_Subprogram_Type
1179 then
1180 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1cb17b78
AC
1181
1182 if Is_Entity_Name (Nam) then
1183 Deref := True;
1184 end if;
996ae0b0
RK
1185 end if;
1186
7415029d
AC
1187 -- If the call has been rewritten from a prefixed call, the first
1188 -- parameter has been analyzed, but may need a subsequent
1189 -- dereference, so skip its analysis now.
1190
1191 if N /= Original_Node (N)
1192 and then Nkind (Original_Node (N)) = Nkind (N)
1193 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1194 and then Present (Parameter_Associations (N))
1195 and then Present (Etype (First (Parameter_Associations (N))))
1196 then
1197 Analyze_One_Call
1198 (N, Nam_Ent, False, Success, Skip_First => True);
1199 else
1200 Analyze_One_Call (N, Nam_Ent, False, Success);
1201 end if;
996ae0b0
RK
1202
1203 -- If the interpretation succeeds, mark the proper type of the
1204 -- prefix (any valid candidate will do). If not, remove the
1205 -- candidate interpretation. This only needs to be done for
1206 -- overloaded protected operations, for other entities disambi-
1207 -- guation is done directly in Resolve.
1208
1209 if Success then
1cb17b78
AC
1210 if Deref
1211 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1212 then
1213 Set_Entity (Nam, It.Nam);
1214 Insert_Explicit_Dereference (Nam);
1215 Set_Etype (Nam, Nam_Ent);
1216
1217 else
1218 Set_Etype (Nam, It.Typ);
1219 end if;
996ae0b0 1220
d469eabe
HK
1221 elsif Nkind_In (Name (N), N_Selected_Component,
1222 N_Function_Call)
fbf5a39b 1223 then
996ae0b0
RK
1224 Remove_Interp (X);
1225 end if;
1226
1227 Get_Next_Interp (X, It);
1228 end loop;
1229
a7e68e7f
HK
1230 -- If the name is the result of a function call, it can only be a
1231 -- call to a function returning an access to subprogram. Insert
1232 -- explicit dereference.
996ae0b0
RK
1233
1234 if Nkind (Nam) = N_Function_Call then
1235 Insert_Explicit_Dereference (Nam);
1236 end if;
1237
1238 if Etype (N) = Any_Type then
1239
1240 -- None of the interpretations is compatible with the actuals
1241
1242 Diagnose_Call (N, Nam);
1243
1244 -- Special checks for uninstantiated put routines
1245
1246 if Nkind (N) = N_Procedure_Call_Statement
1247 and then Is_Entity_Name (Nam)
1248 and then Chars (Nam) = Name_Put
1249 and then List_Length (Actuals) = 1
1250 then
1251 declare
1252 Arg : constant Node_Id := First (Actuals);
1253 Typ : Entity_Id;
1254
1255 begin
1256 if Nkind (Arg) = N_Parameter_Association then
1257 Typ := Etype (Explicit_Actual_Parameter (Arg));
1258 else
1259 Typ := Etype (Arg);
1260 end if;
1261
1262 if Is_Signed_Integer_Type (Typ) then
1263 Error_Msg_N
a90bd866
RD
1264 ("possible missing instantiation of "
1265 & "'Text_'I'O.'Integer_'I'O!", Nam);
996ae0b0
RK
1266
1267 elsif Is_Modular_Integer_Type (Typ) then
1268 Error_Msg_N
a90bd866
RD
1269 ("possible missing instantiation of "
1270 & "'Text_'I'O.'Modular_'I'O!", Nam);
996ae0b0
RK
1271
1272 elsif Is_Floating_Point_Type (Typ) then
1273 Error_Msg_N
a90bd866
RD
1274 ("possible missing instantiation of "
1275 & "'Text_'I'O.'Float_'I'O!", Nam);
996ae0b0
RK
1276
1277 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1278 Error_Msg_N
a90bd866
RD
1279 ("possible missing instantiation of "
1280 & "'Text_'I'O.'Fixed_'I'O!", Nam);
996ae0b0
RK
1281
1282 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1283 Error_Msg_N
a90bd866
RD
1284 ("possible missing instantiation of "
1285 & "'Text_'I'O.'Decimal_'I'O!", Nam);
996ae0b0
RK
1286
1287 elsif Is_Enumeration_Type (Typ) then
1288 Error_Msg_N
a90bd866
RD
1289 ("possible missing instantiation of "
1290 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
996ae0b0
RK
1291 end if;
1292 end;
1293 end if;
1294
1295 elsif not Is_Overloaded (N)
1296 and then Is_Entity_Name (Nam)
1297 then
aab883ec
ES
1298 -- Resolution yields a single interpretation. Verify that the
1299 -- reference has capitalization consistent with the declaration.
996ae0b0 1300
e7ba564f 1301 Set_Entity_With_Checks (Nam, Entity (Nam));
996ae0b0
RK
1302 Generate_Reference (Entity (Nam), Nam);
1303
1304 Set_Etype (Nam, Etype (Entity (Nam)));
30c20106
AC
1305 else
1306 Remove_Abstract_Operations (N);
996ae0b0
RK
1307 end if;
1308
1309 End_Interp_List;
1310 end if;
a7e68e7f 1311
9f6aaa5c
AC
1312 -- A call to a ghost subprogram is allowed only in assertion expressions
1313 -- excluding subtype predicates or from within another ghost subprogram.
a7e68e7f 1314
9f6aaa5c
AC
1315 if Is_Ghost_Subprogram (Get_Subprogram_Entity (N)) then
1316 Check_Ghost_Subprogram_Call;
a7e68e7f 1317 end if;
996ae0b0
RK
1318 end Analyze_Call;
1319
19d846a0
RD
1320 -----------------------------
1321 -- Analyze_Case_Expression --
1322 -----------------------------
1323
1324 procedure Analyze_Case_Expression (N : Node_Id) is
19d846a0
RD
1325 procedure Non_Static_Choice_Error (Choice : Node_Id);
1326 -- Error routine invoked by the generic instantiation below when
1327 -- the case expression has a non static choice.
1328
15918371
AC
1329 package Case_Choices_Analysis is new
1330 Generic_Analyze_Choices
1331 (Process_Associated_Node => No_OP);
1332 use Case_Choices_Analysis;
1333
1334 package Case_Choices_Checking is new
1335 Generic_Check_Choices
1336 (Process_Empty_Choice => No_OP,
19d846a0
RD
1337 Process_Non_Static_Choice => Non_Static_Choice_Error,
1338 Process_Associated_Node => No_OP);
15918371 1339 use Case_Choices_Checking;
19d846a0 1340
19d846a0
RD
1341 -----------------------------
1342 -- Non_Static_Choice_Error --
1343 -----------------------------
1344
1345 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1346 begin
1347 Flag_Non_Static_Expr
1348 ("choice given in case expression is not static!", Choice);
1349 end Non_Static_Choice_Error;
1350
752b81d9
AC
1351 -- Local variables
1352
1353 Expr : constant Node_Id := Expression (N);
752b81d9
AC
1354 Alt : Node_Id;
1355 Exp_Type : Entity_Id;
1356 Exp_Btype : Entity_Id;
1357
308aab0b
AC
1358 FirstX : Node_Id := Empty;
1359 -- First expression in the case for which there is some type information
1360 -- available, i.e. it is not Any_Type, which can happen because of some
1361 -- error, or from the use of e.g. raise Constraint_Error.
1362
752b81d9 1363 Others_Present : Boolean;
15918371 1364 -- Indicates if Others was present
752b81d9 1365
10671e7a
AC
1366 Wrong_Alt : Node_Id;
1367 -- For error reporting
1368
19d846a0
RD
1369 -- Start of processing for Analyze_Case_Expression
1370
1371 begin
1372 if Comes_From_Source (N) then
c86cf714 1373 Check_Compiler_Unit ("case expression", N);
19d846a0
RD
1374 end if;
1375
1376 Analyze_And_Resolve (Expr, Any_Discrete);
1377 Check_Unset_Reference (Expr);
1378 Exp_Type := Etype (Expr);
1379 Exp_Btype := Base_Type (Exp_Type);
1380
1381 Alt := First (Alternatives (N));
1382 while Present (Alt) loop
1383 Analyze (Expression (Alt));
308aab0b
AC
1384
1385 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1386 FirstX := Expression (Alt);
1387 end if;
1388
19d846a0
RD
1389 Next (Alt);
1390 end loop;
1391
308aab0b
AC
1392 -- Get our initial type from the first expression for which we got some
1393 -- useful type information from the expression.
1394
19d846a0
RD
1395 if not Is_Overloaded (FirstX) then
1396 Set_Etype (N, Etype (FirstX));
1397
1398 else
1399 declare
1400 I : Interp_Index;
1401 It : Interp;
1402
1403 begin
1404 Set_Etype (N, Any_Type);
1405
1406 Get_First_Interp (FirstX, I, It);
1407 while Present (It.Nam) loop
1408
308e6f3a
RW
1409 -- For each interpretation of the first expression, we only
1410 -- add the interpretation if every other expression in the
19d846a0
RD
1411 -- case expression alternatives has a compatible type.
1412
1413 Alt := Next (First (Alternatives (N)));
1414 while Present (Alt) loop
1415 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1416 Next (Alt);
1417 end loop;
1418
1419 if No (Alt) then
1420 Add_One_Interp (N, It.Typ, It.Typ);
10671e7a
AC
1421
1422 else
1423 Wrong_Alt := Alt;
19d846a0
RD
1424 end if;
1425
1426 Get_Next_Interp (I, It);
1427 end loop;
1428 end;
1429 end if;
1430
1431 Exp_Btype := Base_Type (Exp_Type);
1432
1433 -- The expression must be of a discrete type which must be determinable
1434 -- independently of the context in which the expression occurs, but
1435 -- using the fact that the expression must be of a discrete type.
1436 -- Moreover, the type this expression must not be a character literal
1437 -- (which is always ambiguous).
1438
1439 -- If error already reported by Resolve, nothing more to do
1440
15918371 1441 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
19d846a0
RD
1442 return;
1443
bf0b0e5e
AC
1444 -- Special casee message for character literal
1445
19d846a0
RD
1446 elsif Exp_Btype = Any_Character then
1447 Error_Msg_N
1448 ("character literal as case expression is ambiguous", Expr);
1449 return;
1450 end if;
1451
10671e7a 1452 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
bf0b0e5e
AC
1453 Error_Msg_N
1454 ("type incompatible with that of previous alternatives",
1455 Expression (Wrong_Alt));
10671e7a
AC
1456 return;
1457 end if;
1458
19d846a0
RD
1459 -- If the case expression is a formal object of mode in out, then
1460 -- treat it as having a nonstatic subtype by forcing use of the base
1461 -- type (which has to get passed to Check_Case_Choices below). Also
1462 -- use base type when the case expression is parenthesized.
1463
1464 if Paren_Count (Expr) > 0
1465 or else (Is_Entity_Name (Expr)
1466 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1467 then
1468 Exp_Type := Exp_Btype;
1469 end if;
1470
752b81d9
AC
1471 -- The case expression alternatives cover the range of a static subtype
1472 -- subject to aspect Static_Predicate. Do not check the choices when the
1473 -- case expression has not been fully analyzed yet because this may lead
1474 -- to bogus errors.
1475
edab6088 1476 if Is_OK_Static_Subtype (Exp_Type)
ee4eee0a 1477 and then Has_Static_Predicate_Aspect (Exp_Type)
752b81d9
AC
1478 and then In_Spec_Expression
1479 then
1480 null;
1481
15918371 1482 -- Call Analyze_Choices and Check_Choices to do the rest of the work
19d846a0 1483
752b81d9 1484 else
15918371
AC
1485 Analyze_Choices (Alternatives (N), Exp_Type);
1486 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
752b81d9 1487 end if;
19d846a0
RD
1488
1489 if Exp_Type = Universal_Integer and then not Others_Present then
1490 Error_Msg_N
1491 ("case on universal integer requires OTHERS choice", Expr);
1492 end if;
1493 end Analyze_Case_Expression;
1494
996ae0b0
RK
1495 ---------------------------
1496 -- Analyze_Comparison_Op --
1497 ---------------------------
1498
1499 procedure Analyze_Comparison_Op (N : Node_Id) is
1500 L : constant Node_Id := Left_Opnd (N);
1501 R : constant Node_Id := Right_Opnd (N);
1502 Op_Id : Entity_Id := Entity (N);
1503
1504 begin
1505 Set_Etype (N, Any_Type);
1506 Candidate_Type := Empty;
1507
1508 Analyze_Expression (L);
1509 Analyze_Expression (R);
1510
1511 if Present (Op_Id) then
996ae0b0
RK
1512 if Ekind (Op_Id) = E_Operator then
1513 Find_Comparison_Types (L, R, Op_Id, N);
1514 else
1515 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1516 end if;
1517
1518 if Is_Overloaded (L) then
1519 Set_Etype (L, Intersect_Types (L, R));
1520 end if;
1521
1522 else
1523 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1524 while Present (Op_Id) loop
996ae0b0
RK
1525 if Ekind (Op_Id) = E_Operator then
1526 Find_Comparison_Types (L, R, Op_Id, N);
1527 else
1528 Analyze_User_Defined_Binary_Op (N, Op_Id);
1529 end if;
1530
1531 Op_Id := Homonym (Op_Id);
1532 end loop;
1533 end if;
1534
1535 Operator_Check (N);
1536 end Analyze_Comparison_Op;
1537
1538 ---------------------------
1539 -- Analyze_Concatenation --
1540 ---------------------------
1541
fe39cf20
BD
1542 procedure Analyze_Concatenation (N : Node_Id) is
1543
1544 -- We wish to avoid deep recursion, because concatenations are often
1545 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1546 -- operands nonrecursively until we find something that is not a
1547 -- concatenation (A in this case), or has already been analyzed. We
1548 -- analyze that, and then walk back up the tree following Parent
1549 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1550 -- work at each level. The Parent pointers allow us to avoid recursion,
1551 -- and thus avoid running out of memory.
1552
1553 NN : Node_Id := N;
1554 L : Node_Id;
1555
1556 begin
1557 Candidate_Type := Empty;
1558
1559 -- The following code is equivalent to:
1560
1561 -- Set_Etype (N, Any_Type);
1562 -- Analyze_Expression (Left_Opnd (N));
1563 -- Analyze_Concatenation_Rest (N);
1564
1565 -- where the Analyze_Expression call recurses back here if the left
1566 -- operand is a concatenation.
1567
1568 -- Walk down left operands
1569
1570 loop
1571 Set_Etype (NN, Any_Type);
1572 L := Left_Opnd (NN);
1573 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1574 NN := L;
1575 end loop;
1576
1577 -- Now (given the above example) NN is A&B and L is A
1578
1579 -- First analyze L ...
1580
1581 Analyze_Expression (L);
1582
1583 -- ... then walk NN back up until we reach N (where we started), calling
1584 -- Analyze_Concatenation_Rest along the way.
1585
1586 loop
1587 Analyze_Concatenation_Rest (NN);
1588 exit when NN = N;
1589 NN := Parent (NN);
1590 end loop;
1591 end Analyze_Concatenation;
1592
1593 --------------------------------
1594 -- Analyze_Concatenation_Rest --
1595 --------------------------------
1596
996ae0b0
RK
1597 -- If the only one-dimensional array type in scope is String,
1598 -- this is the resulting type of the operation. Otherwise there
1599 -- will be a concatenation operation defined for each user-defined
1600 -- one-dimensional array.
1601
fe39cf20 1602 procedure Analyze_Concatenation_Rest (N : Node_Id) is
996ae0b0
RK
1603 L : constant Node_Id := Left_Opnd (N);
1604 R : constant Node_Id := Right_Opnd (N);
1605 Op_Id : Entity_Id := Entity (N);
1606 LT : Entity_Id;
1607 RT : Entity_Id;
1608
1609 begin
996ae0b0
RK
1610 Analyze_Expression (R);
1611
cd3cd5b1
AC
1612 -- If the entity is present, the node appears in an instance, and
1613 -- denotes a predefined concatenation operation. The resulting type is
1614 -- obtained from the arguments when possible. If the arguments are
1615 -- aggregates, the array type and the concatenation type must be
fbf5a39b 1616 -- visible.
996ae0b0
RK
1617
1618 if Present (Op_Id) then
1619 if Ekind (Op_Id) = E_Operator then
996ae0b0
RK
1620 LT := Base_Type (Etype (L));
1621 RT := Base_Type (Etype (R));
1622
1623 if Is_Array_Type (LT)
1624 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1625 then
1626 Add_One_Interp (N, Op_Id, LT);
1627
1628 elsif Is_Array_Type (RT)
1629 and then LT = Base_Type (Component_Type (RT))
1630 then
1631 Add_One_Interp (N, Op_Id, RT);
1632
fbf5a39b
AC
1633 -- If one operand is a string type or a user-defined array type,
1634 -- and the other is a literal, result is of the specific type.
1635
1636 elsif
1637 (Root_Type (LT) = Standard_String
1638 or else Scope (LT) /= Standard_Standard)
1639 and then Etype (R) = Any_String
1640 then
1641 Add_One_Interp (N, Op_Id, LT);
1642
1643 elsif
1644 (Root_Type (RT) = Standard_String
1645 or else Scope (RT) /= Standard_Standard)
1646 and then Etype (L) = Any_String
1647 then
1648 Add_One_Interp (N, Op_Id, RT);
1649
1650 elsif not Is_Generic_Type (Etype (Op_Id)) then
996ae0b0 1651 Add_One_Interp (N, Op_Id, Etype (Op_Id));
fbf5a39b
AC
1652
1653 else
4c46b835 1654 -- Type and its operations must be visible
fbf5a39b
AC
1655
1656 Set_Entity (N, Empty);
1657 Analyze_Concatenation (N);
996ae0b0
RK
1658 end if;
1659
1660 else
1661 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1662 end if;
1663
1664 else
1a8fae99 1665 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
996ae0b0
RK
1666 while Present (Op_Id) loop
1667 if Ekind (Op_Id) = E_Operator then
1a8fae99
ES
1668
1669 -- Do not consider operators declared in dead code, they can
1670 -- not be part of the resolution.
1671
1672 if Is_Eliminated (Op_Id) then
1673 null;
1674 else
1675 Find_Concatenation_Types (L, R, Op_Id, N);
1676 end if;
1677
996ae0b0
RK
1678 else
1679 Analyze_User_Defined_Binary_Op (N, Op_Id);
1680 end if;
1681
1682 Op_Id := Homonym (Op_Id);
1683 end loop;
1684 end if;
1685
1686 Operator_Check (N);
fe39cf20 1687 end Analyze_Concatenation_Rest;
996ae0b0 1688
996ae0b0
RK
1689 -------------------------
1690 -- Analyze_Equality_Op --
1691 -------------------------
1692
1693 procedure Analyze_Equality_Op (N : Node_Id) is
4c46b835
AC
1694 Loc : constant Source_Ptr := Sloc (N);
1695 L : constant Node_Id := Left_Opnd (N);
1696 R : constant Node_Id := Right_Opnd (N);
1697 Op_Id : Entity_Id;
996ae0b0
RK
1698
1699 begin
1700 Set_Etype (N, Any_Type);
1701 Candidate_Type := Empty;
1702
1703 Analyze_Expression (L);
1704 Analyze_Expression (R);
1705
1706 -- If the entity is set, the node is a generic instance with a non-local
1707 -- reference to the predefined operator or to a user-defined function.
1708 -- It can also be an inequality that is expanded into the negation of a
1709 -- call to a user-defined equality operator.
1710
1711 -- For the predefined case, the result is Boolean, regardless of the
1712 -- type of the operands. The operands may even be limited, if they are
1713 -- generic actuals. If they are overloaded, label the left argument with
1714 -- the common type that must be present, or with the type of the formal
1715 -- of the user-defined function.
1716
1717 if Present (Entity (N)) then
996ae0b0
RK
1718 Op_Id := Entity (N);
1719
1720 if Ekind (Op_Id) = E_Operator then
1721 Add_One_Interp (N, Op_Id, Standard_Boolean);
1722 else
1723 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1724 end if;
1725
1726 if Is_Overloaded (L) then
996ae0b0
RK
1727 if Ekind (Op_Id) = E_Operator then
1728 Set_Etype (L, Intersect_Types (L, R));
1729 else
1730 Set_Etype (L, Etype (First_Formal (Op_Id)));
1731 end if;
1732 end if;
1733
1734 else
1735 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 1736 while Present (Op_Id) loop
996ae0b0
RK
1737 if Ekind (Op_Id) = E_Operator then
1738 Find_Equality_Types (L, R, Op_Id, N);
1739 else
1740 Analyze_User_Defined_Binary_Op (N, Op_Id);
1741 end if;
1742
1743 Op_Id := Homonym (Op_Id);
1744 end loop;
1745 end if;
1746
1747 -- If there was no match, and the operator is inequality, this may
1748 -- be a case where inequality has not been made explicit, as for
1749 -- tagged types. Analyze the node as the negation of an equality
1750 -- operation. This cannot be done earlier, because before analysis
1751 -- we cannot rule out the presence of an explicit inequality.
1752
1753 if Etype (N) = Any_Type
1754 and then Nkind (N) = N_Op_Ne
1755 then
1756 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
996ae0b0 1757 while Present (Op_Id) loop
996ae0b0
RK
1758 if Ekind (Op_Id) = E_Operator then
1759 Find_Equality_Types (L, R, Op_Id, N);
1760 else
1761 Analyze_User_Defined_Binary_Op (N, Op_Id);
1762 end if;
1763
1764 Op_Id := Homonym (Op_Id);
1765 end loop;
1766
1767 if Etype (N) /= Any_Type then
1768 Op_Id := Entity (N);
1769
1770 Rewrite (N,
1771 Make_Op_Not (Loc,
1772 Right_Opnd =>
1773 Make_Op_Eq (Loc,
aab883ec
ES
1774 Left_Opnd => Left_Opnd (N),
1775 Right_Opnd => Right_Opnd (N))));
996ae0b0
RK
1776
1777 Set_Entity (Right_Opnd (N), Op_Id);
1778 Analyze (N);
1779 end if;
1780 end if;
1781
1782 Operator_Check (N);
1783 end Analyze_Equality_Op;
1784
1785 ----------------------------------
1786 -- Analyze_Explicit_Dereference --
1787 ----------------------------------
1788
1789 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (N);
1791 P : constant Node_Id := Prefix (N);
1792 T : Entity_Id;
1793 I : Interp_Index;
1794 It : Interp;
1795 New_N : Node_Id;
1796
1797 function Is_Function_Type return Boolean;
4c46b835
AC
1798 -- Check whether node may be interpreted as an implicit function call
1799
1800 ----------------------
1801 -- Is_Function_Type --
1802 ----------------------
996ae0b0
RK
1803
1804 function Is_Function_Type return Boolean is
4c46b835
AC
1805 I : Interp_Index;
1806 It : Interp;
996ae0b0
RK
1807
1808 begin
1809 if not Is_Overloaded (N) then
1810 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1811 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1812
1813 else
1814 Get_First_Interp (N, I, It);
996ae0b0
RK
1815 while Present (It.Nam) loop
1816 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1817 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1818 then
1819 return False;
1820 end if;
1821
1822 Get_Next_Interp (I, It);
1823 end loop;
1824
1825 return True;
1826 end if;
1827 end Is_Function_Type;
1828
98123480 1829 -- Start of processing for Analyze_Explicit_Dereference
4c46b835 1830
996ae0b0 1831 begin
11bc76df
AC
1832 -- If source node, check SPARK restriction. We guard this with the
1833 -- source node check, because ???
1834
36b8f95f 1835 if Comes_From_Source (N) then
ce5ba43a 1836 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
36b8f95f 1837 end if;
1d801f21 1838
226a7fa4
AC
1839 -- In formal verification mode, keep track of all reads and writes
1840 -- through explicit dereferences.
1841
f5da7a97 1842 if GNATprove_Mode then
06b599fd 1843 SPARK_Specific.Generate_Dereference (N);
226a7fa4
AC
1844 end if;
1845
996ae0b0
RK
1846 Analyze (P);
1847 Set_Etype (N, Any_Type);
1848
1849 -- Test for remote access to subprogram type, and if so return
1850 -- after rewriting the original tree.
1851
1852 if Remote_AST_E_Dereference (P) then
1853 return;
1854 end if;
1855
1856 -- Normal processing for other than remote access to subprogram type
1857
1858 if not Is_Overloaded (P) then
1859 if Is_Access_Type (Etype (P)) then
1860
f3d57416 1861 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
0a36105d
JM
1862 -- avoid other problems caused by the Private_Subtype and it is
1863 -- safe to go to the Base_Type because this is the same as
1864 -- converting the access value to its Base_Type.
996ae0b0
RK
1865
1866 declare
1867 DT : Entity_Id := Designated_Type (Etype (P));
1868
1869 begin
1870 if Ekind (DT) = E_Private_Subtype
1871 and then Is_For_Access_Subtype (DT)
1872 then
1873 DT := Base_Type (DT);
1874 end if;
1875
0a36105d
JM
1876 -- An explicit dereference is a legal occurrence of an
1877 -- incomplete type imported through a limited_with clause,
1878 -- if the full view is visible.
1879
7b56a91b
AC
1880 if From_Limited_With (DT)
1881 and then not From_Limited_With (Scope (DT))
0a36105d
JM
1882 and then
1883 (Is_Immediately_Visible (Scope (DT))
1884 or else
1885 (Is_Child_Unit (Scope (DT))
8398e82e 1886 and then Is_Visible_Lib_Unit (Scope (DT))))
0a36105d
JM
1887 then
1888 Set_Etype (N, Available_View (DT));
1889
1890 else
1891 Set_Etype (N, DT);
1892 end if;
996ae0b0
RK
1893 end;
1894
1895 elsif Etype (P) /= Any_Type then
1896 Error_Msg_N ("prefix of dereference must be an access type", N);
1897 return;
1898 end if;
1899
1900 else
1901 Get_First_Interp (P, I, It);
996ae0b0
RK
1902 while Present (It.Nam) loop
1903 T := It.Typ;
1904
1905 if Is_Access_Type (T) then
1906 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1907 end if;
1908
1909 Get_Next_Interp (I, It);
1910 end loop;
1911
6e73e3ab 1912 -- Error if no interpretation of the prefix has an access type
996ae0b0
RK
1913
1914 if Etype (N) = Any_Type then
1915 Error_Msg_N
1916 ("access type required in prefix of explicit dereference", P);
1917 Set_Etype (N, Any_Type);
1918 return;
1919 end if;
1920 end if;
1921
1922 if Is_Function_Type
1923 and then Nkind (Parent (N)) /= N_Indexed_Component
1924
1925 and then (Nkind (Parent (N)) /= N_Function_Call
1926 or else N /= Name (Parent (N)))
1927
1928 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1929 or else N /= Name (Parent (N)))
1930
1931 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1932 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1933 or else
1934 (Attribute_Name (Parent (N)) /= Name_Address
1935 and then
1936 Attribute_Name (Parent (N)) /= Name_Access))
1937 then
1938 -- Name is a function call with no actuals, in a context that
1939 -- requires deproceduring (including as an actual in an enclosing
98123480 1940 -- function or procedure call). There are some pathological cases
996ae0b0
RK
1941 -- where the prefix might include functions that return access to
1942 -- subprograms and others that return a regular type. Disambiguation
98123480 1943 -- of those has to take place in Resolve.
996ae0b0
RK
1944
1945 New_N :=
1946 Make_Function_Call (Loc,
1947 Name => Make_Explicit_Dereference (Loc, P),
1948 Parameter_Associations => New_List);
1949
1950 -- If the prefix is overloaded, remove operations that have formals,
1951 -- we know that this is a parameterless call.
1952
1953 if Is_Overloaded (P) then
1954 Get_First_Interp (P, I, It);
996ae0b0
RK
1955 while Present (It.Nam) loop
1956 T := It.Typ;
1957
1958 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1959 Set_Etype (P, T);
1960 else
1961 Remove_Interp (I);
1962 end if;
1963
1964 Get_Next_Interp (I, It);
1965 end loop;
1966 end if;
1967
1968 Rewrite (N, New_N);
1969 Analyze (N);
98123480
ES
1970
1971 elsif not Is_Function_Type
1972 and then Is_Overloaded (N)
1973 then
1974 -- The prefix may include access to subprograms and other access
1cb17b78 1975 -- types. If the context selects the interpretation that is a
56a7a3ab
TQ
1976 -- function call (not a procedure call) we cannot rewrite the node
1977 -- yet, but we include the result of the call interpretation.
98123480
ES
1978
1979 Get_First_Interp (N, I, It);
1980 while Present (It.Nam) loop
1981 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1982 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1cb17b78 1983 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
98123480
ES
1984 then
1985 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1986 end if;
1987
1988 Get_Next_Interp (I, It);
1989 end loop;
996ae0b0
RK
1990 end if;
1991
1992 -- A value of remote access-to-class-wide must not be dereferenced
1993 -- (RM E.2.2(16)).
1994
1995 Validate_Remote_Access_To_Class_Wide_Type (N);
996ae0b0
RK
1996 end Analyze_Explicit_Dereference;
1997
1998 ------------------------
1999 -- Analyze_Expression --
2000 ------------------------
2001
2002 procedure Analyze_Expression (N : Node_Id) is
2003 begin
5f50020a
ES
2004
2005 -- If the expression is an indexed component that will be rewritten
2006 -- as a container indexing, it has already been analyzed.
2007
2008 if Nkind (N) = N_Indexed_Component
2009 and then Present (Generalized_Indexing (N))
2010 then
2011 null;
2012
2013 else
2014 Analyze (N);
2015 Check_Parameterless_Call (N);
2016 end if;
996ae0b0
RK
2017 end Analyze_Expression;
2018
955871d3
AC
2019 -------------------------------------
2020 -- Analyze_Expression_With_Actions --
2021 -------------------------------------
2022
2023 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2024 A : Node_Id;
2025
2026 begin
2027 A := First (Actions (N));
752b81d9 2028 while Present (A) loop
955871d3
AC
2029 Analyze (A);
2030 Next (A);
955871d3
AC
2031 end loop;
2032
2ffcbaa5
AC
2033 Analyze_Expression (Expression (N));
2034 Set_Etype (N, Etype (Expression (N)));
955871d3
AC
2035 end Analyze_Expression_With_Actions;
2036
9b16cb57
RD
2037 ---------------------------
2038 -- Analyze_If_Expression --
2039 ---------------------------
2040
2041 procedure Analyze_If_Expression (N : Node_Id) is
2042 Condition : constant Node_Id := First (Expressions (N));
2043 Then_Expr : constant Node_Id := Next (Condition);
2044 Else_Expr : Node_Id;
2045
2046 begin
2047 -- Defend against error of missing expressions from previous error
2048
2049 if No (Then_Expr) then
ee2ba856 2050 Check_Error_Detected;
9b16cb57
RD
2051 return;
2052 end if;
2053
08988ed9 2054 if Comes_From_Source (N) then
ce5ba43a 2055 Check_SPARK_05_Restriction ("if expression is not allowed", N);
08988ed9 2056 end if;
9b16cb57
RD
2057
2058 Else_Expr := Next (Then_Expr);
2059
2060 if Comes_From_Source (N) then
c86cf714 2061 Check_Compiler_Unit ("if expression", N);
9b16cb57
RD
2062 end if;
2063
ac072cb2
AC
2064 -- Analyze and resolve the condition. We need to resolve this now so
2065 -- that it gets folded to True/False if possible, before we analyze
2066 -- the THEN/ELSE branches, because when analyzing these branches, we
2067 -- may call Is_Statically_Unevaluated, which expects the condition of
2068 -- an enclosing IF to have been analyze/resolved/evaluated.
2069
9b16cb57 2070 Analyze_Expression (Condition);
ac072cb2
AC
2071 Resolve (Condition, Any_Boolean);
2072
2073 -- Analyze THEN expression and (if present) ELSE expression. For those
2074 -- we delay resolution in the normal manner, because of overloading etc.
2075
9b16cb57
RD
2076 Analyze_Expression (Then_Expr);
2077
2078 if Present (Else_Expr) then
2079 Analyze_Expression (Else_Expr);
2080 end if;
2081
2082 -- If then expression not overloaded, then that decides the type
2083
2084 if not Is_Overloaded (Then_Expr) then
2085 Set_Etype (N, Etype (Then_Expr));
2086
2087 -- Case where then expression is overloaded
2088
2089 else
2090 declare
2091 I : Interp_Index;
2092 It : Interp;
2093
2094 begin
2095 Set_Etype (N, Any_Type);
2096
2097 -- Shouldn't the following statement be down in the ELSE of the
2098 -- following loop? ???
2099
2100 Get_First_Interp (Then_Expr, I, It);
2101
2102 -- if no Else_Expression the conditional must be boolean
2103
2104 if No (Else_Expr) then
2105 Set_Etype (N, Standard_Boolean);
2106
2107 -- Else_Expression Present. For each possible intepretation of
2108 -- the Then_Expression, add it only if the Else_Expression has
2109 -- a compatible type.
2110
2111 else
2112 while Present (It.Nam) loop
2113 if Has_Compatible_Type (Else_Expr, It.Typ) then
2114 Add_One_Interp (N, It.Typ, It.Typ);
2115 end if;
2116
2117 Get_Next_Interp (I, It);
2118 end loop;
2119 end if;
2120 end;
2121 end if;
2122 end Analyze_If_Expression;
2123
996ae0b0
RK
2124 ------------------------------------
2125 -- Analyze_Indexed_Component_Form --
2126 ------------------------------------
2127
2128 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
fbf5a39b
AC
2129 P : constant Node_Id := Prefix (N);
2130 Exprs : constant List_Id := Expressions (N);
2131 Exp : Node_Id;
2132 P_T : Entity_Id;
2133 E : Node_Id;
2134 U_N : Entity_Id;
996ae0b0
RK
2135
2136 procedure Process_Function_Call;
2137 -- Prefix in indexed component form is an overloadable entity,
2138 -- so the node is a function call. Reformat it as such.
2139
2140 procedure Process_Indexed_Component;
2141 -- Prefix in indexed component form is actually an indexed component.
2142 -- This routine processes it, knowing that the prefix is already
2143 -- resolved.
2144
2145 procedure Process_Indexed_Component_Or_Slice;
2146 -- An indexed component with a single index may designate a slice if
2147 -- the index is a subtype mark. This routine disambiguates these two
2148 -- cases by resolving the prefix to see if it is a subtype mark.
2149
2150 procedure Process_Overloaded_Indexed_Component;
2151 -- If the prefix of an indexed component is overloaded, the proper
2152 -- interpretation is selected by the index types and the context.
2153
2154 ---------------------------
2155 -- Process_Function_Call --
2156 ---------------------------
2157
2158 procedure Process_Function_Call is
1725676d 2159 Loc : constant Source_Ptr := Sloc (N);
f5afb270
AC
2160 Actual : Node_Id;
2161
996ae0b0
RK
2162 begin
2163 Change_Node (N, N_Function_Call);
2164 Set_Name (N, P);
2165 Set_Parameter_Associations (N, Exprs);
996ae0b0 2166
401093c1 2167 -- Analyze actuals prior to analyzing the call itself
0a36105d 2168
4c46b835 2169 Actual := First (Parameter_Associations (N));
996ae0b0
RK
2170 while Present (Actual) loop
2171 Analyze (Actual);
2172 Check_Parameterless_Call (Actual);
0a36105d
JM
2173
2174 -- Move to next actual. Note that we use Next, not Next_Actual
2175 -- here. The reason for this is a bit subtle. If a function call
2176 -- includes named associations, the parser recognizes the node as
2177 -- a call, and it is analyzed as such. If all associations are
2178 -- positional, the parser builds an indexed_component node, and
2179 -- it is only after analysis of the prefix that the construct
2180 -- is recognized as a call, in which case Process_Function_Call
2181 -- rewrites the node and analyzes the actuals. If the list of
2182 -- actuals is malformed, the parser may leave the node as an
2183 -- indexed component (despite the presence of named associations).
2184 -- The iterator Next_Actual is equivalent to Next if the list is
2185 -- positional, but follows the normalized chain of actuals when
2186 -- named associations are present. In this case normalization has
2187 -- not taken place, and actuals remain unanalyzed, which leads to
2188 -- subsequent crashes or loops if there is an attempt to continue
2189 -- analysis of the program.
2190
1725676d
AC
2191 -- IF there is a single actual and it is a type name, the node
2192 -- can only be interpreted as a slice of a parameterless call.
2193 -- Rebuild the node as such and analyze.
2194
2195 if No (Next (Actual))
2196 and then Is_Entity_Name (Actual)
2197 and then Is_Type (Entity (Actual))
2198 and then Is_Discrete_Type (Entity (Actual))
2199 then
2200 Replace (N,
adc876a8
AC
2201 Make_Slice (Loc,
2202 Prefix => P,
2203 Discrete_Range =>
2204 New_Occurrence_Of (Entity (Actual), Loc)));
1725676d
AC
2205 Analyze (N);
2206 return;
2207
2208 else
2209 Next (Actual);
2210 end if;
996ae0b0
RK
2211 end loop;
2212
2213 Analyze_Call (N);
2214 end Process_Function_Call;
2215
2216 -------------------------------
2217 -- Process_Indexed_Component --
2218 -------------------------------
2219
2220 procedure Process_Indexed_Component is
fe39cf20
BD
2221 Exp : Node_Id;
2222 Array_Type : Entity_Id;
2223 Index : Node_Id;
2224 Pent : Entity_Id := Empty;
996ae0b0
RK
2225
2226 begin
2227 Exp := First (Exprs);
2228
2229 if Is_Overloaded (P) then
2230 Process_Overloaded_Indexed_Component;
2231
2232 else
2233 Array_Type := Etype (P);
2234
6e73e3ab
AC
2235 if Is_Entity_Name (P) then
2236 Pent := Entity (P);
2237 elsif Nkind (P) = N_Selected_Component
2238 and then Is_Entity_Name (Selector_Name (P))
2239 then
2240 Pent := Entity (Selector_Name (P));
2241 end if;
2242
2243 -- Prefix must be appropriate for an array type, taking into
2244 -- account a possible implicit dereference.
996ae0b0
RK
2245
2246 if Is_Access_Type (Array_Type) then
324ac540
AC
2247 Error_Msg_NW
2248 (Warn_On_Dereference, "?d?implicit dereference", N);
d469eabe 2249 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
996ae0b0
RK
2250 end if;
2251
2252 if Is_Array_Type (Array_Type) then
2253 null;
2254
6e73e3ab 2255 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
996ae0b0
RK
2256 Analyze (Exp);
2257 Set_Etype (N, Any_Type);
2258
2259 if not Has_Compatible_Type
6e73e3ab 2260 (Exp, Entry_Index_Type (Pent))
996ae0b0
RK
2261 then
2262 Error_Msg_N ("invalid index type in entry name", N);
2263
2264 elsif Present (Next (Exp)) then
2265 Error_Msg_N ("too many subscripts in entry reference", N);
2266
2267 else
2268 Set_Etype (N, Etype (P));
2269 end if;
2270
2271 return;
2272
2273 elsif Is_Record_Type (Array_Type)
2274 and then Remote_AST_I_Dereference (P)
2275 then
2276 return;
2277
50878404 2278 elsif Try_Container_Indexing (N, P, Exprs) then
d50f4827
AC
2279 return;
2280
996ae0b0
RK
2281 elsif Array_Type = Any_Type then
2282 Set_Etype (N, Any_Type);
6465b6a7
AC
2283
2284 -- In most cases the analysis of the prefix will have emitted
2285 -- an error already, but if the prefix may be interpreted as a
2286 -- call in prefixed notation, the report is left to the caller.
2287 -- To prevent cascaded errors, report only if no previous ones.
2288
2289 if Serious_Errors_Detected = 0 then
2290 Error_Msg_N ("invalid prefix in indexed component", P);
2291
2292 if Nkind (P) = N_Expanded_Name then
2293 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2294 end if;
2295 end if;
2296
996ae0b0
RK
2297 return;
2298
2299 -- Here we definitely have a bad indexing
2300
2301 else
2302 if Nkind (Parent (N)) = N_Requeue_Statement
6e73e3ab 2303 and then Present (Pent) and then Ekind (Pent) = E_Entry
996ae0b0
RK
2304 then
2305 Error_Msg_N
2306 ("REQUEUE does not permit parameters", First (Exprs));
2307
2308 elsif Is_Entity_Name (P)
2309 and then Etype (P) = Standard_Void_Type
2310 then
2311 Error_Msg_NE ("incorrect use of&", P, Entity (P));
2312
2313 else
2314 Error_Msg_N ("array type required in indexed component", P);
2315 end if;
2316
2317 Set_Etype (N, Any_Type);
2318 return;
2319 end if;
2320
2321 Index := First_Index (Array_Type);
996ae0b0
RK
2322 while Present (Index) and then Present (Exp) loop
2323 if not Has_Compatible_Type (Exp, Etype (Index)) then
2324 Wrong_Type (Exp, Etype (Index));
2325 Set_Etype (N, Any_Type);
2326 return;
2327 end if;
2328
2329 Next_Index (Index);
2330 Next (Exp);
2331 end loop;
2332
2333 Set_Etype (N, Component_Type (Array_Type));
44a10091 2334 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
2335
2336 if Present (Index) then
2337 Error_Msg_N
2338 ("too few subscripts in array reference", First (Exprs));
2339
2340 elsif Present (Exp) then
2341 Error_Msg_N ("too many subscripts in array reference", Exp);
2342 end if;
2343 end if;
996ae0b0
RK
2344 end Process_Indexed_Component;
2345
2346 ----------------------------------------
2347 -- Process_Indexed_Component_Or_Slice --
2348 ----------------------------------------
2349
2350 procedure Process_Indexed_Component_Or_Slice is
2351 begin
2352 Exp := First (Exprs);
996ae0b0
RK
2353 while Present (Exp) loop
2354 Analyze_Expression (Exp);
2355 Next (Exp);
2356 end loop;
2357
2358 Exp := First (Exprs);
2359
2360 -- If one index is present, and it is a subtype name, then the
2361 -- node denotes a slice (note that the case of an explicit range
2362 -- for a slice was already built as an N_Slice node in the first
2363 -- place, so that case is not handled here).
2364
2365 -- We use a replace rather than a rewrite here because this is one
2366 -- of the cases in which the tree built by the parser is plain wrong.
2367
2368 if No (Next (Exp))
2369 and then Is_Entity_Name (Exp)
2370 and then Is_Type (Entity (Exp))
2371 then
2372 Replace (N,
2373 Make_Slice (Sloc (N),
2374 Prefix => P,
2375 Discrete_Range => New_Copy (Exp)));
2376 Analyze (N);
2377
2378 -- Otherwise (more than one index present, or single index is not
2379 -- a subtype name), then we have the indexed component case.
2380
2381 else
2382 Process_Indexed_Component;
2383 end if;
2384 end Process_Indexed_Component_Or_Slice;
2385
2386 ------------------------------------------
2387 -- Process_Overloaded_Indexed_Component --
2388 ------------------------------------------
2389
2390 procedure Process_Overloaded_Indexed_Component is
2391 Exp : Node_Id;
2392 I : Interp_Index;
2393 It : Interp;
2394 Typ : Entity_Id;
2395 Index : Node_Id;
2396 Found : Boolean;
2397
2398 begin
2399 Set_Etype (N, Any_Type);
996ae0b0 2400
4c46b835 2401 Get_First_Interp (P, I, It);
996ae0b0
RK
2402 while Present (It.Nam) loop
2403 Typ := It.Typ;
2404
2405 if Is_Access_Type (Typ) then
2406 Typ := Designated_Type (Typ);
324ac540
AC
2407 Error_Msg_NW
2408 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
2409 end if;
2410
2411 if Is_Array_Type (Typ) then
2412
2413 -- Got a candidate: verify that index types are compatible
2414
2415 Index := First_Index (Typ);
2416 Found := True;
996ae0b0 2417 Exp := First (Exprs);
996ae0b0
RK
2418 while Present (Index) and then Present (Exp) loop
2419 if Has_Compatible_Type (Exp, Etype (Index)) then
2420 null;
2421 else
2422 Found := False;
2423 Remove_Interp (I);
2424 exit;
2425 end if;
2426
2427 Next_Index (Index);
2428 Next (Exp);
2429 end loop;
2430
2431 if Found and then No (Index) and then No (Exp) then
44a10091
AC
2432 declare
2433 CT : constant Entity_Id :=
2434 Base_Type (Component_Type (Typ));
2435 begin
2436 Add_One_Interp (N, CT, CT);
2437 Check_Implicit_Dereference (N, CT);
2438 end;
996ae0b0 2439 end if;
57a8057a 2440
50878404 2441 elsif Try_Container_Indexing (N, P, Exprs) then
57a8057a
AC
2442 return;
2443
996ae0b0
RK
2444 end if;
2445
2446 Get_Next_Interp (I, It);
2447 end loop;
2448
2449 if Etype (N) = Any_Type then
ad6b5b00 2450 Error_Msg_N ("no legal interpretation for indexed component", N);
996ae0b0
RK
2451 Set_Is_Overloaded (N, False);
2452 end if;
2453
2454 End_Interp_List;
2455 end Process_Overloaded_Indexed_Component;
2456
4c46b835 2457 -- Start of processing for Analyze_Indexed_Component_Form
996ae0b0
RK
2458
2459 begin
2460 -- Get name of array, function or type
2461
2462 Analyze (P);
d469eabe 2463
24778dbb
AC
2464 -- If P is an explicit dereference whose prefix is of a remote access-
2465 -- to-subprogram type, then N has already been rewritten as a subprogram
2466 -- call and analyzed.
2467
d3b00ce3 2468 if Nkind (N) in N_Subprogram_Call then
24778dbb 2469 return;
d469eabe 2470
24778dbb
AC
2471 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2472 -- the indexed component denotes a loop name, the indexed form is turned
2473 -- into an attribute reference.
fbf5a39b 2474
24778dbb
AC
2475 elsif Nkind (N) = N_Attribute_Reference
2476 and then Attribute_Name (N) = Name_Loop_Entry
2477 then
fbf5a39b
AC
2478 return;
2479 end if;
2480
2481 pragma Assert (Nkind (N) = N_Indexed_Component);
2482
996ae0b0
RK
2483 P_T := Base_Type (Etype (P));
2484
878f708a 2485 if Is_Entity_Name (P) and then Present (Entity (P)) then
996ae0b0
RK
2486 U_N := Entity (P);
2487
aab883ec 2488 if Is_Type (U_N) then
996ae0b0 2489
4c46b835 2490 -- Reformat node as a type conversion
996ae0b0
RK
2491
2492 E := Remove_Head (Exprs);
2493
2494 if Present (First (Exprs)) then
2495 Error_Msg_N
2496 ("argument of type conversion must be single expression", N);
2497 end if;
2498
2499 Change_Node (N, N_Type_Conversion);
2500 Set_Subtype_Mark (N, P);
2501 Set_Etype (N, U_N);
2502 Set_Expression (N, E);
2503
2504 -- After changing the node, call for the specific Analysis
2505 -- routine directly, to avoid a double call to the expander.
2506
2507 Analyze_Type_Conversion (N);
2508 return;
2509 end if;
2510
2511 if Is_Overloadable (U_N) then
2512 Process_Function_Call;
2513
2514 elsif Ekind (Etype (P)) = E_Subprogram_Type
2515 or else (Is_Access_Type (Etype (P))
2516 and then
bce79204
AC
2517 Ekind (Designated_Type (Etype (P))) =
2518 E_Subprogram_Type)
996ae0b0
RK
2519 then
2520 -- Call to access_to-subprogram with possible implicit dereference
2521
2522 Process_Function_Call;
2523
fbf5a39b
AC
2524 elsif Is_Generic_Subprogram (U_N) then
2525
4c46b835 2526 -- A common beginner's (or C++ templates fan) error
996ae0b0
RK
2527
2528 Error_Msg_N ("generic subprogram cannot be called", N);
2529 Set_Etype (N, Any_Type);
2530 return;
2531
2532 else
2533 Process_Indexed_Component_Or_Slice;
2534 end if;
2535
2536 -- If not an entity name, prefix is an expression that may denote
2537 -- an array or an access-to-subprogram.
2538
2539 else
fbf5a39b 2540 if Ekind (P_T) = E_Subprogram_Type
996ae0b0
RK
2541 or else (Is_Access_Type (P_T)
2542 and then
bce79204 2543 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
996ae0b0
RK
2544 then
2545 Process_Function_Call;
2546
2547 elsif Nkind (P) = N_Selected_Component
3d918396 2548 and then Present (Entity (Selector_Name (P)))
ffe9aba8 2549 and then Is_Overloadable (Entity (Selector_Name (P)))
996ae0b0
RK
2550 then
2551 Process_Function_Call;
2552
3d918396
AC
2553 -- In ASIS mode within a generic, a prefixed call is analyzed and
2554 -- partially rewritten but the original indexed component has not
2555 -- yet been rewritten as a call. Perform the replacement now.
2556
2557 elsif Nkind (P) = N_Selected_Component
2558 and then Nkind (Parent (P)) = N_Function_Call
2559 and then ASIS_Mode
2560 then
2561 Rewrite (N, Parent (P));
2562 Analyze (N);
2563
996ae0b0
RK
2564 else
2565 -- Indexed component, slice, or a call to a member of a family
2566 -- entry, which will be converted to an entry call later.
fbf5a39b 2567
996ae0b0
RK
2568 Process_Indexed_Component_Or_Slice;
2569 end if;
2570 end if;
5f49133f
AC
2571
2572 Analyze_Dimension (N);
996ae0b0
RK
2573 end Analyze_Indexed_Component_Form;
2574
2575 ------------------------
2576 -- Analyze_Logical_Op --
2577 ------------------------
2578
2579 procedure Analyze_Logical_Op (N : Node_Id) is
2580 L : constant Node_Id := Left_Opnd (N);
2581 R : constant Node_Id := Right_Opnd (N);
2582 Op_Id : Entity_Id := Entity (N);
2583
2584 begin
2585 Set_Etype (N, Any_Type);
2586 Candidate_Type := Empty;
2587
2588 Analyze_Expression (L);
2589 Analyze_Expression (R);
2590
2591 if Present (Op_Id) then
2592
2593 if Ekind (Op_Id) = E_Operator then
2594 Find_Boolean_Types (L, R, Op_Id, N);
2595 else
2596 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2597 end if;
2598
2599 else
2600 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2601 while Present (Op_Id) loop
2602 if Ekind (Op_Id) = E_Operator then
2603 Find_Boolean_Types (L, R, Op_Id, N);
2604 else
2605 Analyze_User_Defined_Binary_Op (N, Op_Id);
2606 end if;
2607
2608 Op_Id := Homonym (Op_Id);
2609 end loop;
2610 end if;
2611
2612 Operator_Check (N);
2613 end Analyze_Logical_Op;
2614
2615 ---------------------------
2616 -- Analyze_Membership_Op --
2617 ---------------------------
2618
2619 procedure Analyze_Membership_Op (N : Node_Id) is
66150d01 2620 Loc : constant Source_Ptr := Sloc (N);
f2acf80c
AC
2621 L : constant Node_Id := Left_Opnd (N);
2622 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
2623
2624 Index : Interp_Index;
2625 It : Interp;
2626 Found : Boolean := False;
2627 I_F : Interp_Index;
2628 T_F : Entity_Id;
2629
2630 procedure Try_One_Interp (T1 : Entity_Id);
2631 -- Routine to try one proposed interpretation. Note that the context
2632 -- of the operation plays no role in resolving the arguments, so that
2633 -- if there is more than one interpretation of the operands that is
2634 -- compatible with a membership test, the operation is ambiguous.
2635
4c46b835
AC
2636 --------------------
2637 -- Try_One_Interp --
2638 --------------------
2639
996ae0b0
RK
2640 procedure Try_One_Interp (T1 : Entity_Id) is
2641 begin
2642 if Has_Compatible_Type (R, T1) then
2643 if Found
2644 and then Base_Type (T1) /= Base_Type (T_F)
2645 then
2646 It := Disambiguate (L, I_F, Index, Any_Type);
2647
2648 if It = No_Interp then
2649 Ambiguous_Operands (N);
2650 Set_Etype (L, Any_Type);
2651 return;
2652
2653 else
2654 T_F := It.Typ;
2655 end if;
2656
2657 else
2658 Found := True;
2659 T_F := T1;
2660 I_F := Index;
2661 end if;
2662
2663 Set_Etype (L, T_F);
2664 end if;
996ae0b0
RK
2665 end Try_One_Interp;
2666
197e4514
AC
2667 procedure Analyze_Set_Membership;
2668 -- If a set of alternatives is present, analyze each and find the
2669 -- common type to which they must all resolve.
2670
2671 ----------------------------
2672 -- Analyze_Set_Membership --
2673 ----------------------------
2674
2675 procedure Analyze_Set_Membership is
2676 Alt : Node_Id;
2677 Index : Interp_Index;
2678 It : Interp;
197e4514
AC
2679 Candidate_Interps : Node_Id;
2680 Common_Type : Entity_Id := Empty;
2681
2682 begin
e917e3b8 2683 if Comes_From_Source (N) then
c86cf714 2684 Check_Compiler_Unit ("set membership", N);
e917e3b8
AC
2685 end if;
2686
197e4514
AC
2687 Analyze (L);
2688 Candidate_Interps := L;
2689
2690 if not Is_Overloaded (L) then
2691 Common_Type := Etype (L);
2692
2693 Alt := First (Alternatives (N));
2694 while Present (Alt) loop
2695 Analyze (Alt);
2696
2697 if not Has_Compatible_Type (Alt, Common_Type) then
2698 Wrong_Type (Alt, Common_Type);
2699 end if;
2700
2701 Next (Alt);
2702 end loop;
2703
2704 else
2705 Alt := First (Alternatives (N));
2706 while Present (Alt) loop
2707 Analyze (Alt);
2708 if not Is_Overloaded (Alt) then
2709 Common_Type := Etype (Alt);
2710
2711 else
2712 Get_First_Interp (Alt, Index, It);
2713 while Present (It.Typ) loop
442c0581
RD
2714 if not
2715 Has_Compatible_Type (Candidate_Interps, It.Typ)
197e4514
AC
2716 then
2717 Remove_Interp (Index);
2718 end if;
442c0581 2719
197e4514
AC
2720 Get_Next_Interp (Index, It);
2721 end loop;
2722
2723 Get_First_Interp (Alt, Index, It);
442c0581 2724
197e4514
AC
2725 if No (It.Typ) then
2726 Error_Msg_N ("alternative has no legal type", Alt);
2727 return;
2728 end if;
2729
442c0581
RD
2730 -- If alternative is not overloaded, we have a unique type
2731 -- for all of them.
197e4514
AC
2732
2733 Set_Etype (Alt, It.Typ);
2734 Get_Next_Interp (Index, It);
2735
2736 if No (It.Typ) then
2737 Set_Is_Overloaded (Alt, False);
2738 Common_Type := Etype (Alt);
2739 end if;
2740
2741 Candidate_Interps := Alt;
2742 end if;
2743
2744 Next (Alt);
2745 end loop;
2746 end if;
2747
2748 Set_Etype (N, Standard_Boolean);
2749
2750 if Present (Common_Type) then
2751 Set_Etype (L, Common_Type);
2752 Set_Is_Overloaded (L, False);
2753
2754 else
2755 Error_Msg_N ("cannot resolve membership operation", N);
2756 end if;
2757 end Analyze_Set_Membership;
2758
996ae0b0
RK
2759 -- Start of processing for Analyze_Membership_Op
2760
2761 begin
2762 Analyze_Expression (L);
2763
e917e3b8 2764 if No (R) and then Ada_Version >= Ada_2012 then
197e4514
AC
2765 Analyze_Set_Membership;
2766 return;
2767 end if;
2768
996ae0b0
RK
2769 if Nkind (R) = N_Range
2770 or else (Nkind (R) = N_Attribute_Reference
2771 and then Attribute_Name (R) = Name_Range)
2772 then
2773 Analyze (R);
2774
2775 if not Is_Overloaded (L) then
2776 Try_One_Interp (Etype (L));
2777
2778 else
2779 Get_First_Interp (L, Index, It);
996ae0b0
RK
2780 while Present (It.Typ) loop
2781 Try_One_Interp (It.Typ);
2782 Get_Next_Interp (Index, It);
2783 end loop;
2784 end if;
2785
f6b5dc8e 2786 -- If not a range, it can be a subtype mark, or else it is a degenerate
b0186f71
AC
2787 -- membership test with a singleton value, i.e. a test for equality,
2788 -- if the types are compatible.
996ae0b0
RK
2789
2790 else
66150d01 2791 Analyze (R);
7483c888 2792
66150d01
AC
2793 if Is_Entity_Name (R)
2794 and then Is_Type (Entity (R))
2795 then
2796 Find_Type (R);
996ae0b0 2797 Check_Fully_Declared (Entity (R), R);
66150d01 2798
b0186f71
AC
2799 elsif Ada_Version >= Ada_2012
2800 and then Has_Compatible_Type (R, Etype (L))
2801 then
66150d01
AC
2802 if Nkind (N) = N_In then
2803 Rewrite (N,
2804 Make_Op_Eq (Loc,
2805 Left_Opnd => L,
2806 Right_Opnd => R));
2807 else
2808 Rewrite (N,
2809 Make_Op_Ne (Loc,
2810 Left_Opnd => L,
2811 Right_Opnd => R));
2812 end if;
2813
2814 Analyze (N);
2815 return;
2816
2817 else
b0186f71
AC
2818 -- In all versions of the language, if we reach this point there
2819 -- is a previous error that will be diagnosed below.
66150d01
AC
2820
2821 Find_Type (R);
996ae0b0
RK
2822 end if;
2823 end if;
2824
2825 -- Compatibility between expression and subtype mark or range is
2826 -- checked during resolution. The result of the operation is Boolean
2827 -- in any case.
2828
2829 Set_Etype (N, Standard_Boolean);
fe45e59e
ES
2830
2831 if Comes_From_Source (N)
197e4514 2832 and then Present (Right_Opnd (N))
fe45e59e
ES
2833 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2834 then
2835 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2836 end if;
996ae0b0
RK
2837 end Analyze_Membership_Op;
2838
b727a82b
AC
2839 -----------------
2840 -- Analyze_Mod --
2841 -----------------
2842
2843 procedure Analyze_Mod (N : Node_Id) is
2844 begin
2845 -- A special warning check, if we have an expression of the form:
2846 -- expr mod 2 * literal
2847 -- where literal is 64 or less, then probably what was meant was
2848 -- expr mod 2 ** literal
2849 -- so issue an appropriate warning.
2850
2851 if Warn_On_Suspicious_Modulus_Value
2852 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2853 and then Intval (Right_Opnd (N)) = Uint_2
2854 and then Nkind (Parent (N)) = N_Op_Multiply
2855 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2856 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2857 then
2858 Error_Msg_N
324ac540 2859 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
b727a82b
AC
2860 end if;
2861
2862 -- Remaining processing is same as for other arithmetic operators
2863
2864 Analyze_Arithmetic_Op (N);
2865 end Analyze_Mod;
2866
996ae0b0
RK
2867 ----------------------
2868 -- Analyze_Negation --
2869 ----------------------
2870
2871 procedure Analyze_Negation (N : Node_Id) is
2872 R : constant Node_Id := Right_Opnd (N);
2873 Op_Id : Entity_Id := Entity (N);
2874
2875 begin
2876 Set_Etype (N, Any_Type);
2877 Candidate_Type := Empty;
2878
2879 Analyze_Expression (R);
2880
2881 if Present (Op_Id) then
2882 if Ekind (Op_Id) = E_Operator then
2883 Find_Negation_Types (R, Op_Id, N);
2884 else
2885 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2886 end if;
2887
2888 else
2889 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0
RK
2890 while Present (Op_Id) loop
2891 if Ekind (Op_Id) = E_Operator then
2892 Find_Negation_Types (R, Op_Id, N);
2893 else
2894 Analyze_User_Defined_Unary_Op (N, Op_Id);
2895 end if;
2896
2897 Op_Id := Homonym (Op_Id);
2898 end loop;
2899 end if;
2900
2901 Operator_Check (N);
2902 end Analyze_Negation;
2903
15ce9ca2
AC
2904 ------------------
2905 -- Analyze_Null --
2906 ------------------
996ae0b0
RK
2907
2908 procedure Analyze_Null (N : Node_Id) is
2909 begin
ce5ba43a 2910 Check_SPARK_05_Restriction ("null is not allowed", N);
1d801f21 2911
996ae0b0
RK
2912 Set_Etype (N, Any_Access);
2913 end Analyze_Null;
2914
2915 ----------------------
2916 -- Analyze_One_Call --
2917 ----------------------
2918
2919 procedure Analyze_One_Call
ec6078e3
ES
2920 (N : Node_Id;
2921 Nam : Entity_Id;
2922 Report : Boolean;
2923 Success : out Boolean;
2924 Skip_First : Boolean := False)
996ae0b0 2925 is
d469eabe
HK
2926 Actuals : constant List_Id := Parameter_Associations (N);
2927 Prev_T : constant Entity_Id := Etype (N);
2928
aab883ec
ES
2929 Must_Skip : constant Boolean := Skip_First
2930 or else Nkind (Original_Node (N)) = N_Selected_Component
2931 or else
2932 (Nkind (Original_Node (N)) = N_Indexed_Component
2933 and then Nkind (Prefix (Original_Node (N)))
2934 = N_Selected_Component);
2935 -- The first formal must be omitted from the match when trying to find
2936 -- a primitive operation that is a possible interpretation, and also
2937 -- after the call has been rewritten, because the corresponding actual
2938 -- is already known to be compatible, and because this may be an
2939 -- indexing of a call with default parameters.
2940
53cf4600
ES
2941 Formal : Entity_Id;
2942 Actual : Node_Id;
2943 Is_Indexed : Boolean := False;
2944 Is_Indirect : Boolean := False;
2945 Subp_Type : constant Entity_Id := Etype (Nam);
2946 Norm_OK : Boolean;
996ae0b0 2947
157a9bf5
ES
2948 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2949 -- There may be a user-defined operator that hides the current
2950 -- interpretation. We must check for this independently of the
2951 -- analysis of the call with the user-defined operation, because
2952 -- the parameter names may be wrong and yet the hiding takes place.
2953 -- This fixes a problem with ACATS test B34014O.
2954 --
2955 -- When the type Address is a visible integer type, and the DEC
2956 -- system extension is visible, the predefined operator may be
2957 -- hidden as well, by one of the address operations in auxdec.
2958 -- Finally, The abstract operations on address do not hide the
2959 -- predefined operator (this is the purpose of making them abstract).
2960
fbf5a39b 2961 procedure Indicate_Name_And_Type;
996ae0b0
RK
2962 -- If candidate interpretation matches, indicate name and type of
2963 -- result on call node.
2964
fbf5a39b
AC
2965 ----------------------------
2966 -- Indicate_Name_And_Type --
2967 ----------------------------
996ae0b0 2968
fbf5a39b 2969 procedure Indicate_Name_And_Type is
996ae0b0
RK
2970 begin
2971 Add_One_Interp (N, Nam, Etype (Nam));
44a10091 2972 Check_Implicit_Dereference (N, Etype (Nam));
996ae0b0
RK
2973 Success := True;
2974
2975 -- If the prefix of the call is a name, indicate the entity
2976 -- being called. If it is not a name, it is an expression that
2977 -- denotes an access to subprogram or else an entry or family. In
2978 -- the latter case, the name is a selected component, and the entity
2979 -- being called is noted on the selector.
2980
2981 if not Is_Type (Nam) then
a3f2babd 2982 if Is_Entity_Name (Name (N)) then
996ae0b0
RK
2983 Set_Entity (Name (N), Nam);
2984
2985 elsif Nkind (Name (N)) = N_Selected_Component then
2986 Set_Entity (Selector_Name (Name (N)), Nam);
2987 end if;
2988 end if;
2989
2990 if Debug_Flag_E and not Report then
2991 Write_Str (" Overloaded call ");
2992 Write_Int (Int (N));
2993 Write_Str (" compatible with ");
2994 Write_Int (Int (Nam));
2995 Write_Eol;
2996 end if;
fbf5a39b 2997 end Indicate_Name_And_Type;
996ae0b0 2998
157a9bf5
ES
2999 ------------------------
3000 -- Operator_Hidden_By --
3001 ------------------------
3002
3003 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3004 Act1 : constant Node_Id := First_Actual (N);
3005 Act2 : constant Node_Id := Next_Actual (Act1);
3006 Form1 : constant Entity_Id := First_Formal (Fun);
3007 Form2 : constant Entity_Id := Next_Formal (Form1);
3008
3009 begin
e4deba8e 3010 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
157a9bf5
ES
3011 return False;
3012
3013 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3014 return False;
3015
3016 elsif Present (Form2) then
e4deba8e
RD
3017 if No (Act2)
3018 or else not Has_Compatible_Type (Act2, Etype (Form2))
157a9bf5
ES
3019 then
3020 return False;
3021 end if;
3022
3023 elsif Present (Act2) then
3024 return False;
3025 end if;
3026
3027 -- Now we know that the arity of the operator matches the function,
3028 -- and the function call is a valid interpretation. The function
3029 -- hides the operator if it has the right signature, or if one of
3030 -- its operands is a non-abstract operation on Address when this is
3031 -- a visible integer type.
3032
3033 return Hides_Op (Fun, Nam)
3034 or else Is_Descendent_Of_Address (Etype (Form1))
3035 or else
3036 (Present (Form2)
3037 and then Is_Descendent_Of_Address (Etype (Form2)));
3038 end Operator_Hidden_By;
3039
996ae0b0
RK
3040 -- Start of processing for Analyze_One_Call
3041
3042 begin
3043 Success := False;
3044
157a9bf5
ES
3045 -- If the subprogram has no formals or if all the formals have defaults,
3046 -- and the return type is an array type, the node may denote an indexing
3047 -- of the result of a parameterless call. In Ada 2005, the subprogram
3048 -- may have one non-defaulted formal, and the call may have been written
3049 -- in prefix notation, so that the rebuilt parameter list has more than
3050 -- one actual.
996ae0b0 3051
53cf4600
ES
3052 if not Is_Overloadable (Nam)
3053 and then Ekind (Nam) /= E_Subprogram_Type
3054 and then Ekind (Nam) /= E_Entry_Family
3055 then
3056 return;
3057 end if;
3058
80e59506 3059 -- An indexing requires at least one actual. The name of the call cannot
4bb9c7b9
AC
3060 -- be an implicit indirect call, so it cannot be a generated explicit
3061 -- dereference.
e1f3cb58
AC
3062
3063 if not Is_Empty_List (Actuals)
aab883ec
ES
3064 and then
3065 (Needs_No_Actuals (Nam)
3066 or else
3067 (Needs_One_Actual (Nam)
e4deba8e 3068 and then Present (Next_Actual (First (Actuals)))))
996ae0b0 3069 then
4bb9c7b9
AC
3070 if Is_Array_Type (Subp_Type)
3071 and then
3072 (Nkind (Name (N)) /= N_Explicit_Dereference
3073 or else Comes_From_Source (Name (N)))
3074 then
aab883ec 3075 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
996ae0b0
RK
3076
3077 elsif Is_Access_Type (Subp_Type)
3078 and then Is_Array_Type (Designated_Type (Subp_Type))
3079 then
3080 Is_Indexed :=
aab883ec
ES
3081 Try_Indexed_Call
3082 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
996ae0b0 3083
758c442c 3084 -- The prefix can also be a parameterless function that returns an
f3d57416 3085 -- access to subprogram, in which case this is an indirect call.
53cf4600
ES
3086 -- If this succeeds, an explicit dereference is added later on,
3087 -- in Analyze_Call or Resolve_Call.
758c442c 3088
996ae0b0 3089 elsif Is_Access_Type (Subp_Type)
401093c1 3090 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
996ae0b0 3091 then
53cf4600 3092 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
996ae0b0
RK
3093 end if;
3094
3095 end if;
3096
5ff22245 3097 -- If the call has been transformed into a slice, it is of the form
30783513 3098 -- F (Subtype) where F is parameterless. The node has been rewritten in
5ff22245
ES
3099 -- Try_Indexed_Call and there is nothing else to do.
3100
3101 if Is_Indexed
3102 and then Nkind (N) = N_Slice
3103 then
3104 return;
3105 end if;
3106
53cf4600
ES
3107 Normalize_Actuals
3108 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
996ae0b0
RK
3109
3110 if not Norm_OK then
3111
53cf4600 3112 -- If an indirect call is a possible interpretation, indicate
80e59506 3113 -- success to the caller. This may be an indexing of an explicit
4bb9c7b9 3114 -- dereference of a call that returns an access type (see above).
53cf4600 3115
4bb9c7b9
AC
3116 if Is_Indirect
3117 or else (Is_Indexed
3118 and then Nkind (Name (N)) = N_Explicit_Dereference
3119 and then Comes_From_Source (Name (N)))
3120 then
53cf4600
ES
3121 Success := True;
3122 return;
3123
996ae0b0
RK
3124 -- Mismatch in number or names of parameters
3125
53cf4600 3126 elsif Debug_Flag_E then
996ae0b0
RK
3127 Write_Str (" normalization fails in call ");
3128 Write_Int (Int (N));
3129 Write_Str (" with subprogram ");
3130 Write_Int (Int (Nam));
3131 Write_Eol;
3132 end if;
3133
3134 -- If the context expects a function call, discard any interpretation
3135 -- that is a procedure. If the node is not overloaded, leave as is for
3136 -- better error reporting when type mismatch is found.
3137
3138 elsif Nkind (N) = N_Function_Call
3139 and then Is_Overloaded (Name (N))
3140 and then Ekind (Nam) = E_Procedure
3141 then
3142 return;
3143
4c46b835 3144 -- Ditto for function calls in a procedure context
996ae0b0
RK
3145
3146 elsif Nkind (N) = N_Procedure_Call_Statement
3147 and then Is_Overloaded (Name (N))
3148 and then Etype (Nam) /= Standard_Void_Type
3149 then
3150 return;
3151
fe45e59e 3152 elsif No (Actuals) then
996ae0b0
RK
3153
3154 -- If Normalize succeeds, then there are default parameters for
3155 -- all formals.
3156
fbf5a39b 3157 Indicate_Name_And_Type;
996ae0b0
RK
3158
3159 elsif Ekind (Nam) = E_Operator then
996ae0b0
RK
3160 if Nkind (N) = N_Procedure_Call_Statement then
3161 return;
3162 end if;
3163
3164 -- This can occur when the prefix of the call is an operator
3165 -- name or an expanded name whose selector is an operator name.
3166
3167 Analyze_Operator_Call (N, Nam);
3168
3169 if Etype (N) /= Prev_T then
3170
157a9bf5 3171 -- Check that operator is not hidden by a function interpretation
996ae0b0
RK
3172
3173 if Is_Overloaded (Name (N)) then
3174 declare
3175 I : Interp_Index;
3176 It : Interp;
3177
3178 begin
3179 Get_First_Interp (Name (N), I, It);
996ae0b0 3180 while Present (It.Nam) loop
157a9bf5 3181 if Operator_Hidden_By (It.Nam) then
996ae0b0
RK
3182 Set_Etype (N, Prev_T);
3183 return;
3184 end if;
3185
3186 Get_Next_Interp (I, It);
3187 end loop;
3188 end;
3189 end if;
3190
3191 -- If operator matches formals, record its name on the call.
3192 -- If the operator is overloaded, Resolve will select the
3193 -- correct one from the list of interpretations. The call
3194 -- node itself carries the first candidate.
3195
3196 Set_Entity (Name (N), Nam);
3197 Success := True;
3198
3199 elsif Report and then Etype (N) = Any_Type then
3200 Error_Msg_N ("incompatible arguments for operator", N);
3201 end if;
3202
3203 else
3204 -- Normalize_Actuals has chained the named associations in the
3205 -- correct order of the formals.
3206
3207 Actual := First_Actual (N);
3208 Formal := First_Formal (Nam);
ec6078e3 3209
df3e68b1
HK
3210 -- If we are analyzing a call rewritten from object notation, skip
3211 -- first actual, which may be rewritten later as an explicit
3212 -- dereference.
ec6078e3 3213
aab883ec 3214 if Must_Skip then
ec6078e3
ES
3215 Next_Actual (Actual);
3216 Next_Formal (Formal);
3217 end if;
3218
996ae0b0 3219 while Present (Actual) and then Present (Formal) loop
fbf5a39b
AC
3220 if Nkind (Parent (Actual)) /= N_Parameter_Association
3221 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
996ae0b0 3222 then
9c510803
ES
3223 -- The actual can be compatible with the formal, but we must
3224 -- also check that the context is not an address type that is
7a5b62b0
AC
3225 -- visibly an integer type. In this case the use of literals is
3226 -- illegal, except in the body of descendents of system, where
3227 -- arithmetic operations on address are of course used.
9c510803
ES
3228
3229 if Has_Compatible_Type (Actual, Etype (Formal))
3230 and then
3231 (Etype (Actual) /= Universal_Integer
3232 or else not Is_Descendent_Of_Address (Etype (Formal))
3233 or else
3234 Is_Predefined_File_Name
3235 (Unit_File_Name (Get_Source_Unit (N))))
3236 then
996ae0b0
RK
3237 Next_Actual (Actual);
3238 Next_Formal (Formal);
3239
061828e3
AC
3240 -- In Allow_Integer_Address mode, we allow an actual integer to
3241 -- match a formal address type and vice versa. We only do this
3242 -- if we are certain that an error will otherwise be issued
3243
3244 elsif Address_Integer_Convert_OK
3245 (Etype (Actual), Etype (Formal))
3246 and then (Report and not Is_Indexed and not Is_Indirect)
3247 then
3248 -- Handle this case by introducing an unchecked conversion
3249
3250 Rewrite (Actual,
3251 Unchecked_Convert_To (Etype (Formal),
3252 Relocate_Node (Actual)));
3253 Analyze_And_Resolve (Actual, Etype (Formal));
3254 Next_Actual (Actual);
3255 Next_Formal (Formal);
3256
996ae0b0
RK
3257 else
3258 if Debug_Flag_E then
3259 Write_Str (" type checking fails in call ");
3260 Write_Int (Int (N));
3261 Write_Str (" with formal ");
3262 Write_Int (Int (Formal));
3263 Write_Str (" in subprogram ");
3264 Write_Int (Int (Nam));
3265 Write_Eol;
3266 end if;
3267
061828e3
AC
3268 -- Comment needed on the following test???
3269
53cf4600 3270 if Report and not Is_Indexed and not Is_Indirect then
758c442c
GD
3271
3272 -- Ada 2005 (AI-251): Complete the error notification
8f2eeab7 3273 -- to help new Ada 2005 users.
758c442c
GD
3274
3275 if Is_Class_Wide_Type (Etype (Formal))
3276 and then Is_Interface (Etype (Etype (Formal)))
3277 and then not Interface_Present_In_Ancestor
3278 (Typ => Etype (Actual),
3279 Iface => Etype (Etype (Formal)))
3280 then
758c442c 3281 Error_Msg_NE
ec6078e3 3282 ("(Ada 2005) does not implement interface }",
758c442c
GD
3283 Actual, Etype (Etype (Formal)));
3284 end if;
3285
996ae0b0
RK
3286 Wrong_Type (Actual, Etype (Formal));
3287
3288 if Nkind (Actual) = N_Op_Eq
3289 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3290 then
3291 Formal := First_Formal (Nam);
996ae0b0 3292 while Present (Formal) loop
996ae0b0 3293 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
4e7a4f6e 3294 Error_Msg_N -- CODEFIX
fbf5a39b 3295 ("possible misspelling of `='>`!", Actual);
996ae0b0
RK
3296 exit;
3297 end if;
3298
3299 Next_Formal (Formal);
3300 end loop;
3301 end if;
3302
3303 if All_Errors_Mode then
3304 Error_Msg_Sloc := Sloc (Nam);
3305
3b42c566
RD
3306 if Etype (Formal) = Any_Type then
3307 Error_Msg_N
3308 ("there is no legal actual parameter", Actual);
3309 end if;
3310
996ae0b0
RK
3311 if Is_Overloadable (Nam)
3312 and then Present (Alias (Nam))
3313 and then not Comes_From_Source (Nam)
3314 then
3315 Error_Msg_NE
401093c1
ES
3316 ("\\ =='> in call to inherited operation & #!",
3317 Actual, Nam);
7324bf49
AC
3318
3319 elsif Ekind (Nam) = E_Subprogram_Type then
3320 declare
3321 Access_To_Subprogram_Typ :
3322 constant Entity_Id :=
3323 Defining_Identifier
3324 (Associated_Node_For_Itype (Nam));
3325 begin
a90bd866
RD
3326 Error_Msg_NE
3327 ("\\ =='> in call to dereference of &#!",
3328 Actual, Access_To_Subprogram_Typ);
7324bf49
AC
3329 end;
3330
996ae0b0 3331 else
401093c1
ES
3332 Error_Msg_NE
3333 ("\\ =='> in call to &#!", Actual, Nam);
7324bf49 3334
996ae0b0
RK
3335 end if;
3336 end if;
3337 end if;
3338
3339 return;
3340 end if;
3341
3342 else
3343 -- Normalize_Actuals has verified that a default value exists
3344 -- for this formal. Current actual names a subsequent formal.
3345
3346 Next_Formal (Formal);
3347 end if;
3348 end loop;
3349
4c46b835 3350 -- On exit, all actuals match
996ae0b0 3351
fbf5a39b 3352 Indicate_Name_And_Type;
996ae0b0
RK
3353 end if;
3354 end Analyze_One_Call;
3355
15ce9ca2
AC
3356 ---------------------------
3357 -- Analyze_Operator_Call --
3358 ---------------------------
996ae0b0
RK
3359
3360 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3361 Op_Name : constant Name_Id := Chars (Op_Id);
3362 Act1 : constant Node_Id := First_Actual (N);
3363 Act2 : constant Node_Id := Next_Actual (Act1);
3364
3365 begin
4c46b835
AC
3366 -- Binary operator case
3367
996ae0b0
RK
3368 if Present (Act2) then
3369
4c46b835 3370 -- If more than two operands, then not binary operator after all
996ae0b0
RK
3371
3372 if Present (Next_Actual (Act2)) then
996ae0b0 3373 return;
b7539c3b 3374 end if;
996ae0b0 3375
b7539c3b 3376 -- Otherwise action depends on operator
996ae0b0 3377
b7539c3b
AC
3378 case Op_Name is
3379 when Name_Op_Add |
3380 Name_Op_Subtract |
3381 Name_Op_Multiply |
3382 Name_Op_Divide |
3383 Name_Op_Mod |
3384 Name_Op_Rem |
3385 Name_Op_Expon =>
3386 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
996ae0b0 3387
b7539c3b
AC
3388 when Name_Op_And |
3389 Name_Op_Or |
3390 Name_Op_Xor =>
3391 Find_Boolean_Types (Act1, Act2, Op_Id, N);
996ae0b0 3392
b7539c3b
AC
3393 when Name_Op_Lt |
3394 Name_Op_Le |
3395 Name_Op_Gt |
3396 Name_Op_Ge =>
3397 Find_Comparison_Types (Act1, Act2, Op_Id, N);
996ae0b0 3398
b7539c3b
AC
3399 when Name_Op_Eq |
3400 Name_Op_Ne =>
3401 Find_Equality_Types (Act1, Act2, Op_Id, N);
996ae0b0 3402
b7539c3b
AC
3403 when Name_Op_Concat =>
3404 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
996ae0b0 3405
b7539c3b
AC
3406 -- Is this when others, or should it be an abort???
3407
3408 when others =>
3409 null;
3410 end case;
996ae0b0 3411
4c46b835 3412 -- Unary operator case
996ae0b0 3413
4c46b835 3414 else
b7539c3b
AC
3415 case Op_Name is
3416 when Name_Op_Subtract |
3417 Name_Op_Add |
3418 Name_Op_Abs =>
3419 Find_Unary_Types (Act1, Op_Id, N);
996ae0b0 3420
b7539c3b
AC
3421 when Name_Op_Not =>
3422 Find_Negation_Types (Act1, Op_Id, N);
996ae0b0 3423
b7539c3b 3424 -- Is this when others correct, or should it be an abort???
996ae0b0 3425
b7539c3b
AC
3426 when others =>
3427 null;
3428 end case;
996ae0b0
RK
3429 end if;
3430 end Analyze_Operator_Call;
3431
3432 -------------------------------------------
3433 -- Analyze_Overloaded_Selected_Component --
3434 -------------------------------------------
3435
3436 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
fbf5a39b
AC
3437 Nam : constant Node_Id := Prefix (N);
3438 Sel : constant Node_Id := Selector_Name (N);
996ae0b0 3439 Comp : Entity_Id;
996ae0b0
RK
3440 I : Interp_Index;
3441 It : Interp;
3442 T : Entity_Id;
3443
3444 begin
4c46b835 3445 Set_Etype (Sel, Any_Type);
996ae0b0 3446
4c46b835 3447 Get_First_Interp (Nam, I, It);
996ae0b0
RK
3448 while Present (It.Typ) loop
3449 if Is_Access_Type (It.Typ) then
3450 T := Designated_Type (It.Typ);
324ac540 3451 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3452 else
3453 T := It.Typ;
3454 end if;
3455
95eb8b69
AC
3456 -- Locate the component. For a private prefix the selector can denote
3457 -- a discriminant.
3458
3459 if Is_Record_Type (T) or else Is_Private_Type (T) then
d469eabe
HK
3460
3461 -- If the prefix is a class-wide type, the visible components are
3462 -- those of the base type.
3463
3464 if Is_Class_Wide_Type (T) then
3465 T := Etype (T);
3466 end if;
3467
996ae0b0 3468 Comp := First_Entity (T);
996ae0b0 3469 while Present (Comp) loop
996ae0b0
RK
3470 if Chars (Comp) = Chars (Sel)
3471 and then Is_Visible_Component (Comp)
3472 then
996ae0b0 3473
f16d05d9
AC
3474 -- AI05-105: if the context is an object renaming with
3475 -- an anonymous access type, the expected type of the
3476 -- object must be anonymous. This is a name resolution rule.
996ae0b0 3477
f16d05d9
AC
3478 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3479 or else No (Access_Definition (Parent (N)))
3480 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3481 or else
3482 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3483 then
3484 Set_Entity (Sel, Comp);
3485 Set_Etype (Sel, Etype (Comp));
3486 Add_One_Interp (N, Etype (Comp), Etype (Comp));
44a10091 3487 Check_Implicit_Dereference (N, Etype (Comp));
f16d05d9
AC
3488
3489 -- This also specifies a candidate to resolve the name.
3490 -- Further overloading will be resolved from context.
3491 -- The selector name itself does not carry overloading
3492 -- information.
3493
3494 Set_Etype (Nam, It.Typ);
3495
3496 else
b61ee1aa 3497 -- Named access type in the context of a renaming
f16d05d9
AC
3498 -- declaration with an access definition. Remove
3499 -- inapplicable candidate.
3500
3501 Remove_Interp (I);
3502 end if;
996ae0b0
RK
3503 end if;
3504
3505 Next_Entity (Comp);
3506 end loop;
3507
3508 elsif Is_Concurrent_Type (T) then
3509 Comp := First_Entity (T);
996ae0b0
RK
3510 while Present (Comp)
3511 and then Comp /= First_Private_Entity (T)
3512 loop
3513 if Chars (Comp) = Chars (Sel) then
3514 if Is_Overloadable (Comp) then
3515 Add_One_Interp (Sel, Comp, Etype (Comp));
3516 else
e7ba564f 3517 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
3518 Generate_Reference (Comp, Sel);
3519 end if;
3520
3521 Set_Etype (Sel, Etype (Comp));
3522 Set_Etype (N, Etype (Comp));
3523 Set_Etype (Nam, It.Typ);
3524
09494c32
AC
3525 -- For access type case, introduce explicit dereference for
3526 -- more uniform treatment of entry calls. Do this only once
3527 -- if several interpretations yield an access type.
996ae0b0 3528
d469eabe
HK
3529 if Is_Access_Type (Etype (Nam))
3530 and then Nkind (Nam) /= N_Explicit_Dereference
3531 then
996ae0b0 3532 Insert_Explicit_Dereference (Nam);
fbf5a39b 3533 Error_Msg_NW
324ac540 3534 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
3535 end if;
3536 end if;
3537
3538 Next_Entity (Comp);
3539 end loop;
3540
3541 Set_Is_Overloaded (N, Is_Overloaded (Sel));
996ae0b0
RK
3542 end if;
3543
3544 Get_Next_Interp (I, It);
3545 end loop;
3546
0a36105d
JM
3547 if Etype (N) = Any_Type
3548 and then not Try_Object_Operation (N)
3549 then
996ae0b0
RK
3550 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3551 Set_Entity (Sel, Any_Id);
3552 Set_Etype (Sel, Any_Type);
3553 end if;
996ae0b0
RK
3554 end Analyze_Overloaded_Selected_Component;
3555
3556 ----------------------------------
3557 -- Analyze_Qualified_Expression --
3558 ----------------------------------
3559
3560 procedure Analyze_Qualified_Expression (N : Node_Id) is
3561 Mark : constant Entity_Id := Subtype_Mark (N);
45c8b94b
ES
3562 Expr : constant Node_Id := Expression (N);
3563 I : Interp_Index;
3564 It : Interp;
996ae0b0
RK
3565 T : Entity_Id;
3566
3567 begin
45c8b94b
ES
3568 Analyze_Expression (Expr);
3569
996ae0b0
RK
3570 Set_Etype (N, Any_Type);
3571 Find_Type (Mark);
3572 T := Entity (Mark);
45c8b94b 3573 Set_Etype (N, T);
996ae0b0
RK
3574
3575 if T = Any_Type then
3576 return;
3577 end if;
996ae0b0 3578
4c46b835 3579 Check_Fully_Declared (T, N);
45c8b94b
ES
3580
3581 -- If expected type is class-wide, check for exact match before
3582 -- expansion, because if the expression is a dispatching call it
3583 -- may be rewritten as explicit dereference with class-wide result.
3584 -- If expression is overloaded, retain only interpretations that
3585 -- will yield exact matches.
3586
3587 if Is_Class_Wide_Type (T) then
3588 if not Is_Overloaded (Expr) then
3589 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3590 if Nkind (Expr) = N_Aggregate then
3591 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3592 else
3593 Wrong_Type (Expr, T);
3594 end if;
3595 end if;
3596
3597 else
3598 Get_First_Interp (Expr, I, It);
3599
3600 while Present (It.Nam) loop
3601 if Base_Type (It.Typ) /= Base_Type (T) then
3602 Remove_Interp (I);
3603 end if;
3604
3605 Get_Next_Interp (I, It);
3606 end loop;
3607 end if;
3608 end if;
3609
996ae0b0
RK
3610 Set_Etype (N, T);
3611 end Analyze_Qualified_Expression;
3612
a961aa79
AC
3613 -----------------------------------
3614 -- Analyze_Quantified_Expression --
3615 -----------------------------------
3616
3617 procedure Analyze_Quantified_Expression (N : Node_Id) is
4856cc2a 3618 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
538dbb56
AC
3619 -- If the iterator is part of a quantified expression, and the range is
3620 -- known to be statically empty, emit a warning and replace expression
4856cc2a 3621 -- with its static value. Returns True if the replacement occurs.
538dbb56 3622
0812b84e
AC
3623 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3624 -- Determine whether if expression If_Expr lacks an else part or if it
3625 -- has one, it evaluates to True.
3626
4856cc2a
ES
3627 --------------------
3628 -- Is_Empty_Range --
3629 --------------------
3630
3631 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3632 Loc : constant Source_Ptr := Sloc (N);
538dbb56
AC
3633
3634 begin
3635 if Is_Array_Type (Typ)
4856cc2a
ES
3636 and then Compile_Time_Known_Bounds (Typ)
3637 and then
9a6dc470
RD
3638 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3639 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
538dbb56 3640 then
4856cc2a
ES
3641 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3642
538dbb56 3643 if All_Present (N) then
4856cc2a 3644 Error_Msg_N
324ac540 3645 ("??quantified expression with ALL "
4856cc2a 3646 & "over a null range has value True", N);
538dbb56
AC
3647 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3648
3649 else
4856cc2a 3650 Error_Msg_N
324ac540 3651 ("??quantified expression with SOME "
4856cc2a 3652 & "over a null range has value False", N);
538dbb56
AC
3653 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3654 end if;
3655
3656 Analyze (N);
3657 return True;
3658
3659 else
3660 return False;
3661 end if;
3662 end Is_Empty_Range;
3663
0812b84e
AC
3664 -----------------------------
3665 -- No_Else_Or_Trivial_True --
3666 -----------------------------
3667
3668 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3669 Else_Expr : constant Node_Id :=
3670 Next (Next (First (Expressions (If_Expr))));
3671 begin
3672 return
3673 No (Else_Expr)
3674 or else (Compile_Time_Known_Value (Else_Expr)
3675 and then Is_True (Expr_Value (Else_Expr)));
3676 end No_Else_Or_Trivial_True;
3677
3678 -- Local variables
3679
3680 Cond : constant Node_Id := Condition (N);
57081559 3681 Loop_Id : Entity_Id;
0812b84e
AC
3682 QE_Scop : Entity_Id;
3683
4856cc2a
ES
3684 -- Start of processing for Analyze_Quantified_Expression
3685
a961aa79 3686 begin
ce5ba43a 3687 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
1d801f21 3688
804670f1
AC
3689 -- Create a scope to emulate the loop-like behavior of the quantified
3690 -- expression. The scope is needed to provide proper visibility of the
3691 -- loop variable.
b3e42de5 3692
804670f1
AC
3693 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3694 Set_Etype (QE_Scop, Standard_Void_Type);
3695 Set_Scope (QE_Scop, Current_Scope);
3696 Set_Parent (QE_Scop, N);
a961aa79 3697
804670f1 3698 Push_Scope (QE_Scop);
c56a9ba4 3699
804670f1
AC
3700 -- All constituents are preanalyzed and resolved to avoid untimely
3701 -- generation of various temporaries and types. Full analysis and
3702 -- expansion is carried out when the quantified expression is
3703 -- transformed into an expression with actions.
c56a9ba4 3704
804670f1
AC
3705 if Present (Iterator_Specification (N)) then
3706 Preanalyze (Iterator_Specification (N));
538dbb56 3707
57081559
AC
3708 -- Do not proceed with the analysis when the range of iteration is
3709 -- empty. The appropriate error is issued by Is_Empty_Range.
3710
538dbb56
AC
3711 if Is_Entity_Name (Name (Iterator_Specification (N)))
3712 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3713 then
3714 return;
3715 end if;
3716
57081559 3717 else pragma Assert (Present (Loop_Parameter_Specification (N)));
a736f6e6
AC
3718 declare
3719 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3720
3721 begin
3722 Preanalyze (Loop_Par);
3723
e4deba8e 3724 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
a736f6e6
AC
3725 and then Parent (Loop_Par) /= N
3726 then
3727 -- The parser cannot distinguish between a loop specification
3728 -- and an iterator specification. If after pre-analysis the
3729 -- proper form has been recognized, rewrite the expression to
5f0c4d67
AC
3730 -- reflect the right kind. This is needed for proper ASIS
3731 -- navigation. If expansion is enabled, the transformation is
3732 -- performed when the expression is rewritten as a loop.
a736f6e6 3733
a736f6e6
AC
3734 Set_Iterator_Specification (N,
3735 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
5f0c4d67
AC
3736
3737 Set_Defining_Identifier (Iterator_Specification (N),
3738 Relocate_Node (Defining_Identifier (Loop_Par)));
3739 Set_Name (Iterator_Specification (N),
3740 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3741 Set_Comes_From_Source (Iterator_Specification (N),
3742 Comes_From_Source (Loop_Parameter_Specification (N)));
3743 Set_Loop_Parameter_Specification (N, Empty);
a736f6e6
AC
3744 end if;
3745 end;
ce6002ec
AC
3746 end if;
3747
0812b84e 3748 Preanalyze_And_Resolve (Cond, Standard_Boolean);
804670f1 3749
a961aa79
AC
3750 End_Scope;
3751 Set_Etype (N, Standard_Boolean);
0812b84e 3752
57081559
AC
3753 -- Verify that the loop variable is used within the condition of the
3754 -- quantified expression.
3755
3756 if Present (Iterator_Specification (N)) then
3757 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3758 else
3759 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3760 end if;
3761
3762 if Warn_On_Suspicious_Contract
3763 and then not Referenced (Loop_Id, Cond)
3764 then
3765 Error_Msg_N ("?T?unused variable &", Loop_Id);
3766 end if;
3767
e19fd0bd 3768 -- Diagnose a possible misuse of the SOME existential quantifier. When
d1ec4768
RD
3769 -- we have a quantified expression of the form:
3770
0812b84e 3771 -- for some X => (if P then Q [else True])
d1ec4768 3772
e19fd0bd
AC
3773 -- any value for X that makes P False results in the if expression being
3774 -- trivially True, and so also results in the the quantified expression
3775 -- being trivially True.
0812b84e 3776
e19fd0bd 3777 if Warn_On_Suspicious_Contract
0812b84e
AC
3778 and then not All_Present (N)
3779 and then Nkind (Cond) = N_If_Expression
3780 and then No_Else_Or_Trivial_True (Cond)
3781 then
e19fd0bd 3782 Error_Msg_N ("?T?suspicious expression", N);
0812b84e
AC
3783 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3784 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3785 end if;
a961aa79
AC
3786 end Analyze_Quantified_Expression;
3787
996ae0b0
RK
3788 -------------------
3789 -- Analyze_Range --
3790 -------------------
3791
3792 procedure Analyze_Range (N : Node_Id) is
3793 L : constant Node_Id := Low_Bound (N);
3794 H : constant Node_Id := High_Bound (N);
3795 I1, I2 : Interp_Index;
3796 It1, It2 : Interp;
3797
3798 procedure Check_Common_Type (T1, T2 : Entity_Id);
3799 -- Verify the compatibility of two types, and choose the
3800 -- non universal one if the other is universal.
3801
3802 procedure Check_High_Bound (T : Entity_Id);
3803 -- Test one interpretation of the low bound against all those
3804 -- of the high bound.
3805
fbf5a39b 3806 procedure Check_Universal_Expression (N : Node_Id);
a1092b48
AC
3807 -- In Ada 83, reject bounds of a universal range that are not literals
3808 -- or entity names.
fbf5a39b 3809
996ae0b0
RK
3810 -----------------------
3811 -- Check_Common_Type --
3812 -----------------------
3813
3814 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3815 begin
b4592168
GD
3816 if Covers (T1 => T1, T2 => T2)
3817 or else
3818 Covers (T1 => T2, T2 => T1)
3819 then
996ae0b0
RK
3820 if T1 = Universal_Integer
3821 or else T1 = Universal_Real
3822 or else T1 = Any_Character
3823 then
3824 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3825
fbf5a39b 3826 elsif T1 = T2 then
996ae0b0
RK
3827 Add_One_Interp (N, T1, T1);
3828
3829 else
3830 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3831 end if;
3832 end if;
3833 end Check_Common_Type;
3834
3835 ----------------------
3836 -- Check_High_Bound --
3837 ----------------------
3838
3839 procedure Check_High_Bound (T : Entity_Id) is
3840 begin
3841 if not Is_Overloaded (H) then
3842 Check_Common_Type (T, Etype (H));
3843 else
3844 Get_First_Interp (H, I2, It2);
996ae0b0
RK
3845 while Present (It2.Typ) loop
3846 Check_Common_Type (T, It2.Typ);
3847 Get_Next_Interp (I2, It2);
3848 end loop;
3849 end if;
3850 end Check_High_Bound;
3851
fbf5a39b
AC
3852 -----------------------------
3853 -- Is_Universal_Expression --
3854 -----------------------------
3855
3856 procedure Check_Universal_Expression (N : Node_Id) is
3857 begin
3858 if Etype (N) = Universal_Integer
3859 and then Nkind (N) /= N_Integer_Literal
3860 and then not Is_Entity_Name (N)
3861 and then Nkind (N) /= N_Attribute_Reference
3862 then
3863 Error_Msg_N ("illegal bound in discrete range", N);
3864 end if;
3865 end Check_Universal_Expression;
3866
996ae0b0
RK
3867 -- Start of processing for Analyze_Range
3868
3869 begin
3870 Set_Etype (N, Any_Type);
3871 Analyze_Expression (L);
3872 Analyze_Expression (H);
3873
3874 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3875 return;
3876
3877 else
3878 if not Is_Overloaded (L) then
3879 Check_High_Bound (Etype (L));
3880 else
3881 Get_First_Interp (L, I1, It1);
996ae0b0
RK
3882 while Present (It1.Typ) loop
3883 Check_High_Bound (It1.Typ);
3884 Get_Next_Interp (I1, It1);
3885 end loop;
3886 end if;
3887
3888 -- If result is Any_Type, then we did not find a compatible pair
3889
3890 if Etype (N) = Any_Type then
3891 Error_Msg_N ("incompatible types in range ", N);
3892 end if;
3893 end if;
fbf5a39b 3894
0ab80019 3895 if Ada_Version = Ada_83
fbf5a39b
AC
3896 and then
3897 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4c46b835 3898 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
fbf5a39b
AC
3899 then
3900 Check_Universal_Expression (L);
3901 Check_Universal_Expression (H);
3902 end if;
d3820795
JM
3903
3904 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3905 end Analyze_Range;
3906
3907 -----------------------
3908 -- Analyze_Reference --
3909 -----------------------
3910
3911 procedure Analyze_Reference (N : Node_Id) is
3912 P : constant Node_Id := Prefix (N);
b4592168
GD
3913 E : Entity_Id;
3914 T : Entity_Id;
996ae0b0 3915 Acc_Type : Entity_Id;
b4592168 3916
996ae0b0
RK
3917 begin
3918 Analyze (P);
b4592168
GD
3919
3920 -- An interesting error check, if we take the 'Reference of an object
3921 -- for which a pragma Atomic or Volatile has been given, and the type
3922 -- of the object is not Atomic or Volatile, then we are in trouble. The
3923 -- problem is that no trace of the atomic/volatile status will remain
3924 -- for the backend to respect when it deals with the resulting pointer,
3925 -- since the pointer type will not be marked atomic (it is a pointer to
3926 -- the base type of the object).
3927
3928 -- It is not clear if that can ever occur, but in case it does, we will
3929 -- generate an error message. Not clear if this message can ever be
3930 -- generated, and pretty clear that it represents a bug if it is, still
d2f25cd1
AC
3931 -- seems worth checking, except in CodePeer mode where we do not really
3932 -- care and don't want to bother the user.
b4592168
GD
3933
3934 T := Etype (P);
3935
3936 if Is_Entity_Name (P)
3937 and then Is_Object_Reference (P)
d2f25cd1 3938 and then not CodePeer_Mode
b4592168
GD
3939 then
3940 E := Entity (P);
3941 T := Etype (P);
3942
3943 if (Has_Atomic_Components (E)
3944 and then not Has_Atomic_Components (T))
3945 or else
3946 (Has_Volatile_Components (E)
3947 and then not Has_Volatile_Components (T))
3948 or else (Is_Atomic (E) and then not Is_Atomic (T))
3949 or else (Is_Volatile (E) and then not Is_Volatile (T))
3950 then
3951 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3952 end if;
3953 end if;
3954
3955 -- Carry on with normal processing
3956
996ae0b0 3957 Acc_Type := Create_Itype (E_Allocator_Type, N);
b4592168 3958 Set_Etype (Acc_Type, Acc_Type);
996ae0b0
RK
3959 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3960 Set_Etype (N, Acc_Type);
3961 end Analyze_Reference;
3962
3963 --------------------------------
3964 -- Analyze_Selected_Component --
3965 --------------------------------
3966
2383acbd
AC
3967 -- Prefix is a record type or a task or protected type. In the latter case,
3968 -- the selector must denote a visible entry.
996ae0b0
RK
3969
3970 procedure Analyze_Selected_Component (N : Node_Id) is
d469eabe
HK
3971 Name : constant Node_Id := Prefix (N);
3972 Sel : constant Node_Id := Selector_Name (N);
3973 Act_Decl : Node_Id;
3974 Comp : Entity_Id;
3975 Has_Candidate : Boolean := False;
3976 In_Scope : Boolean;
3977 Parent_N : Node_Id;
3978 Pent : Entity_Id := Empty;
3979 Prefix_Type : Entity_Id;
401093c1
ES
3980
3981 Type_To_Use : Entity_Id;
3982 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3983 -- a class-wide type, we use its root type, whose components are
3984 -- present in the class-wide type.
3985
2383acbd
AC
3986 Is_Single_Concurrent_Object : Boolean;
3987 -- Set True if the prefix is a single task or a single protected object
3988
20261dc1
AC
3989 procedure Find_Component_In_Instance (Rec : Entity_Id);
3990 -- In an instance, a component of a private extension may not be visible
3991 -- while it was visible in the generic. Search candidate scope for a
3992 -- component with the proper identifier. This is only done if all other
f90d14ac
AC
3993 -- searches have failed. If a match is found, the Etype of both N and
3994 -- Sel are set from this component, and the entity of Sel is set to
3995 -- reference this component. If no match is found, Entity (Sel) remains
3996 -- unset.
20261dc1 3997
d469eabe
HK
3998 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3999 -- It is known that the parent of N denotes a subprogram call. Comp
4000 -- is an overloadable component of the concurrent type of the prefix.
4001 -- Determine whether all formals of the parent of N and Comp are mode
b4592168
GD
4002 -- conformant. If the parent node is not analyzed yet it may be an
4003 -- indexed component rather than a function call.
d469eabe 4004
20261dc1
AC
4005 --------------------------------
4006 -- Find_Component_In_Instance --
4007 --------------------------------
4008
4009 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4010 Comp : Entity_Id;
4011
4012 begin
4013 Comp := First_Component (Rec);
4014 while Present (Comp) loop
4015 if Chars (Comp) = Chars (Sel) then
e7ba564f 4016 Set_Entity_With_Checks (Sel, Comp);
20261dc1
AC
4017 Set_Etype (Sel, Etype (Comp));
4018 Set_Etype (N, Etype (Comp));
4019 return;
4020 end if;
4021
4022 Next_Component (Comp);
4023 end loop;
4024
cf3e6845
AC
4025 -- If we fall through, no match, so no changes made
4026
4027 return;
20261dc1
AC
4028 end Find_Component_In_Instance;
4029
d469eabe
HK
4030 ------------------------------
4031 -- Has_Mode_Conformant_Spec --
4032 ------------------------------
4033
4034 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4035 Comp_Param : Entity_Id;
4036 Param : Node_Id;
4037 Param_Typ : Entity_Id;
4038
4039 begin
4040 Comp_Param := First_Formal (Comp);
b4592168
GD
4041
4042 if Nkind (Parent (N)) = N_Indexed_Component then
4043 Param := First (Expressions (Parent (N)));
4044 else
4045 Param := First (Parameter_Associations (Parent (N)));
4046 end if;
4047
d469eabe
HK
4048 while Present (Comp_Param)
4049 and then Present (Param)
4050 loop
4051 Param_Typ := Find_Parameter_Type (Param);
4052
4053 if Present (Param_Typ)
4054 and then
4055 not Conforming_Types
4056 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4057 then
4058 return False;
4059 end if;
4060
4061 Next_Formal (Comp_Param);
4062 Next (Param);
4063 end loop;
4064
9e92ad49
AC
4065 -- One of the specs has additional formals; there is no match, unless
4066 -- this may be an indexing of a parameterless call.
f0e7963f
AC
4067
4068 -- Note that when expansion is disabled, the corresponding record
4069 -- type of synchronized types is not constructed, so that there is
4070 -- no point is attempting an interpretation as a prefixed call, as
4071 -- this is bound to fail because the primitive operations will not
4072 -- be properly located.
d469eabe
HK
4073
4074 if Present (Comp_Param) or else Present (Param) then
f0e7963f
AC
4075 if Needs_No_Actuals (Comp)
4076 and then Is_Array_Type (Etype (Comp))
4077 and then not Expander_Active
4078 then
4079 return True;
f0e7963f
AC
4080 else
4081 return False;
4082 end if;
d469eabe
HK
4083 end if;
4084
4085 return True;
4086 end Has_Mode_Conformant_Spec;
996ae0b0
RK
4087
4088 -- Start of processing for Analyze_Selected_Component
4089
4090 begin
4091 Set_Etype (N, Any_Type);
4092
4093 if Is_Overloaded (Name) then
4094 Analyze_Overloaded_Selected_Component (N);
4095 return;
4096
4097 elsif Etype (Name) = Any_Type then
4098 Set_Entity (Sel, Any_Id);
4099 Set_Etype (Sel, Any_Type);
4100 return;
4101
4102 else
996ae0b0
RK
4103 Prefix_Type := Etype (Name);
4104 end if;
4105
4106 if Is_Access_Type (Prefix_Type) then
07fc65c4 4107
0d57c6f4
RD
4108 -- A RACW object can never be used as prefix of a selected component
4109 -- since that means it is dereferenced without being a controlling
4110 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4111 -- reporting an error, we must check whether this is actually a
4112 -- dispatching call in prefix form.
07fc65c4 4113
996ae0b0
RK
4114 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4115 and then Comes_From_Source (N)
4116 then
b4592168
GD
4117 if Try_Object_Operation (N) then
4118 return;
4119 else
4120 Error_Msg_N
4121 ("invalid dereference of a remote access-to-class-wide value",
4122 N);
4123 end if;
07fc65c4
GB
4124
4125 -- Normal case of selected component applied to access type
4126
4127 else
324ac540 4128 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
da709d08 4129
6e73e3ab
AC
4130 if Is_Entity_Name (Name) then
4131 Pent := Entity (Name);
4132 elsif Nkind (Name) = N_Selected_Component
4133 and then Is_Entity_Name (Selector_Name (Name))
4134 then
4135 Pent := Entity (Selector_Name (Name));
4136 end if;
da709d08 4137
d469eabe 4138 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
996ae0b0 4139 end if;
b4592168
GD
4140
4141 -- If we have an explicit dereference of a remote access-to-class-wide
4142 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4143 -- have to check for the case of a prefix that is a controlling operand
4144 -- of a prefixed dispatching call, as the dereference is legal in that
4145 -- case. Normally this condition is checked in Validate_Remote_Access_
4146 -- To_Class_Wide_Type, but we have to defer the checking for selected
4147 -- component prefixes because of the prefixed dispatching call case.
4148 -- Note that implicit dereferences are checked for this just above.
4149
4150 elsif Nkind (Name) = N_Explicit_Dereference
4151 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4152 and then Comes_From_Source (N)
4153 then
4154 if Try_Object_Operation (N) then
4155 return;
4156 else
4157 Error_Msg_N
4158 ("invalid dereference of a remote access-to-class-wide value",
4159 N);
4160 end if;
aab883ec 4161 end if;
b67a385c 4162
aab883ec
ES
4163 -- (Ada 2005): if the prefix is the limited view of a type, and
4164 -- the context already includes the full view, use the full view
4165 -- in what follows, either to retrieve a component of to find
4166 -- a primitive operation. If the prefix is an explicit dereference,
4167 -- set the type of the prefix to reflect this transformation.
401093c1
ES
4168 -- If the non-limited view is itself an incomplete type, get the
4169 -- full view if available.
aab883ec
ES
4170
4171 if Is_Incomplete_Type (Prefix_Type)
7b56a91b 4172 and then From_Limited_With (Prefix_Type)
aab883ec
ES
4173 and then Present (Non_Limited_View (Prefix_Type))
4174 then
401093c1 4175 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
aab883ec
ES
4176
4177 if Nkind (N) = N_Explicit_Dereference then
4178 Set_Etype (Prefix (N), Prefix_Type);
4179 end if;
4180
4181 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
7b56a91b 4182 and then From_Limited_With (Prefix_Type)
aab883ec
ES
4183 and then Present (Non_Limited_View (Etype (Prefix_Type)))
4184 then
4185 Prefix_Type :=
4186 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
4187
4188 if Nkind (N) = N_Explicit_Dereference then
4189 Set_Etype (Prefix (N), Prefix_Type);
b67a385c 4190 end if;
996ae0b0
RK
4191 end if;
4192
4193 if Ekind (Prefix_Type) = E_Private_Subtype then
4194 Prefix_Type := Base_Type (Prefix_Type);
4195 end if;
4196
401093c1 4197 Type_To_Use := Prefix_Type;
996ae0b0
RK
4198
4199 -- For class-wide types, use the entity list of the root type. This
4200 -- indirection is specially important for private extensions because
4201 -- only the root type get switched (not the class-wide type).
4202
4203 if Is_Class_Wide_Type (Prefix_Type) then
401093c1 4204 Type_To_Use := Root_Type (Prefix_Type);
996ae0b0
RK
4205 end if;
4206
2383acbd
AC
4207 -- If the prefix is a single concurrent object, use its name in error
4208 -- messages, rather than that of its anonymous type.
4209
4210 Is_Single_Concurrent_Object :=
4211 Is_Concurrent_Type (Prefix_Type)
4212 and then Is_Internal_Name (Chars (Prefix_Type))
4213 and then not Is_Derived_Type (Prefix_Type)
4214 and then Is_Entity_Name (Name);
4215
401093c1 4216 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4217
4218 -- If the selector has an original discriminant, the node appears in
4219 -- an instance. Replace the discriminant with the corresponding one
4220 -- in the current discriminated type. For nested generics, this must
4221 -- be done transitively, so note the new original discriminant.
4222
4223 if Nkind (Sel) = N_Identifier
c0b11850 4224 and then In_Instance
996ae0b0
RK
4225 and then Present (Original_Discriminant (Sel))
4226 then
4227 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4228
4229 -- Mark entity before rewriting, for completeness and because
4230 -- subsequent semantic checks might examine the original node.
4231
4232 Set_Entity (Sel, Comp);
ee2ba856 4233 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
996ae0b0
RK
4234 Set_Original_Discriminant (Selector_Name (N), Comp);
4235 Set_Etype (N, Etype (Comp));
44a10091 4236 Check_Implicit_Dereference (N, Etype (Comp));
996ae0b0
RK
4237
4238 if Is_Access_Type (Etype (Name)) then
4239 Insert_Explicit_Dereference (Name);
324ac540 4240 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4241 end if;
4242
4243 elsif Is_Record_Type (Prefix_Type) then
4244
ee2ba856
AC
4245 -- Find component with given name. In an instance, if the node is
4246 -- known as a prefixed call, do not examine components whose
4247 -- visibility may be accidental.
996ae0b0 4248
4913e24c 4249 while Present (Comp) and then not Is_Prefixed_Call (N) loop
996ae0b0 4250 if Chars (Comp) = Chars (Sel)
a53c5613 4251 and then Is_Visible_Component (Comp, N)
996ae0b0 4252 then
e7ba564f 4253 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4254 Set_Etype (Sel, Etype (Comp));
4255
4256 if Ekind (Comp) = E_Discriminant then
5d09245e 4257 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
996ae0b0 4258 Error_Msg_N
02f58834 4259 ("cannot reference discriminant of unchecked union",
996ae0b0
RK
4260 Sel);
4261 end if;
4262
4263 if Is_Generic_Type (Prefix_Type)
4264 or else
4265 Is_Generic_Type (Root_Type (Prefix_Type))
4266 then
4267 Set_Original_Discriminant (Sel, Comp);
4268 end if;
4269 end if;
4270
4271 -- Resolve the prefix early otherwise it is not possible to
4272 -- build the actual subtype of the component: it may need
4273 -- to duplicate this prefix and duplication is only allowed
4274 -- on fully resolved expressions.
4275
fbf5a39b 4276 Resolve (Name);
996ae0b0 4277
b67a385c
ES
4278 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4279 -- subtypes in a package specification.
28be29ce
ES
4280 -- Example:
4281
4282 -- limited with Pkg;
4283 -- package Pkg is
4284 -- type Acc_Inc is access Pkg.T;
4285 -- X : Acc_Inc;
b67a385c
ES
4286 -- N : Natural := X.all.Comp; -- ERROR, limited view
4287 -- end Pkg; -- Comp is not visible
28be29ce
ES
4288
4289 if Nkind (Name) = N_Explicit_Dereference
7b56a91b 4290 and then From_Limited_With (Etype (Prefix (Name)))
28be29ce 4291 and then not Is_Potentially_Use_Visible (Etype (Name))
b67a385c
ES
4292 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4293 N_Package_Specification
28be29ce
ES
4294 then
4295 Error_Msg_NE
4296 ("premature usage of incomplete}", Prefix (Name),
4297 Etype (Prefix (Name)));
4298 end if;
4299
996ae0b0
RK
4300 -- We never need an actual subtype for the case of a selection
4301 -- for a indexed component of a non-packed array, since in
4302 -- this case gigi generates all the checks and can find the
4303 -- necessary bounds information.
4304
0d57c6f4
RD
4305 -- We also do not need an actual subtype for the case of a
4306 -- first, last, length, or range attribute applied to a
996ae0b0
RK
4307 -- non-packed array, since gigi can again get the bounds in
4308 -- these cases (gigi cannot handle the packed case, since it
4309 -- has the bounds of the packed array type, not the original
4310 -- bounds of the type). However, if the prefix is itself a
4311 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4312 -- as a dynamic-sized temporary, so we do generate an actual
4313 -- subtype for this case.
4314
4315 Parent_N := Parent (N);
4316
4317 if not Is_Packed (Etype (Comp))
4318 and then
4319 ((Nkind (Parent_N) = N_Indexed_Component
d469eabe 4320 and then Nkind (Name) /= N_Selected_Component)
996ae0b0
RK
4321 or else
4322 (Nkind (Parent_N) = N_Attribute_Reference
b69cd36a
AC
4323 and then
4324 Nam_In (Attribute_Name (Parent_N), Name_First,
4325 Name_Last,
4326 Name_Length,
4327 Name_Range)))
996ae0b0
RK
4328 then
4329 Set_Etype (N, Etype (Comp));
4330
98123480
ES
4331 -- If full analysis is not enabled, we do not generate an
4332 -- actual subtype, because in the absence of expansion
4333 -- reference to a formal of a protected type, for example,
4334 -- will not be properly transformed, and will lead to
4335 -- out-of-scope references in gigi.
4336
4337 -- In all other cases, we currently build an actual subtype.
4338 -- It seems likely that many of these cases can be avoided,
4339 -- but right now, the front end makes direct references to the
fbf5a39b 4340 -- bounds (e.g. in generating a length check), and if we do
996ae0b0 4341 -- not make an actual subtype, we end up getting a direct
98123480 4342 -- reference to a discriminant, which will not do.
996ae0b0 4343
98123480 4344 elsif Full_Analysis then
996ae0b0
RK
4345 Act_Decl :=
4346 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4347 Insert_Action (N, Act_Decl);
4348
4349 if No (Act_Decl) then
4350 Set_Etype (N, Etype (Comp));
4351
4352 else
4353 -- Component type depends on discriminants. Enter the
4354 -- main attributes of the subtype.
4355
4356 declare
fbf5a39b
AC
4357 Subt : constant Entity_Id :=
4358 Defining_Identifier (Act_Decl);
996ae0b0
RK
4359
4360 begin
4361 Set_Etype (Subt, Base_Type (Etype (Comp)));
4362 Set_Ekind (Subt, Ekind (Etype (Comp)));
4363 Set_Etype (N, Subt);
4364 end;
4365 end if;
98123480
ES
4366
4367 -- If Full_Analysis not enabled, just set the Etype
4368
4369 else
4370 Set_Etype (N, Etype (Comp));
996ae0b0
RK
4371 end if;
4372
44a10091 4373 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4374 return;
4375 end if;
4376
aab883ec 4377 -- If the prefix is a private extension, check only the visible
9c510803 4378 -- components of the partial view. This must include the tag,
f3d57416 4379 -- which can appear in expanded code in a tag check.
aab883ec 4380
9c510803 4381 if Ekind (Type_To_Use) = E_Record_Type_With_Private
df3e68b1 4382 and then Chars (Selector_Name (N)) /= Name_uTag
9c510803 4383 then
401093c1 4384 exit when Comp = Last_Entity (Type_To_Use);
aab883ec
ES
4385 end if;
4386
996ae0b0
RK
4387 Next_Entity (Comp);
4388 end loop;
4389
d469eabe
HK
4390 -- Ada 2005 (AI-252): The selected component can be interpreted as
4391 -- a prefixed view of a subprogram. Depending on the context, this is
4392 -- either a name that can appear in a renaming declaration, or part
4393 -- of an enclosing call given in prefix form.
4394
4395 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4396 -- selected component should resolve to a name.
35ae2ed8 4397
0791fbe9 4398 if Ada_Version >= Ada_2005
35ae2ed8 4399 and then Is_Tagged_Type (Prefix_Type)
d469eabe 4400 and then not Is_Concurrent_Type (Prefix_Type)
35ae2ed8 4401 then
d469eabe
HK
4402 if Nkind (Parent (N)) = N_Generic_Association
4403 or else Nkind (Parent (N)) = N_Requeue_Statement
4404 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4405 then
4406 if Find_Primitive_Operation (N) then
4407 return;
4408 end if;
4409
4410 elsif Try_Object_Operation (N) then
4411 return;
4412 end if;
4c46b835 4413
98123480
ES
4414 -- If the transformation fails, it will be necessary to redo the
4415 -- analysis with all errors enabled, to indicate candidate
4416 -- interpretations and reasons for each failure ???
4c46b835 4417
35ae2ed8
AC
4418 end if;
4419
996ae0b0 4420 elsif Is_Private_Type (Prefix_Type) then
d469eabe 4421
98123480
ES
4422 -- Allow access only to discriminants of the type. If the type has
4423 -- no full view, gigi uses the parent type for the components, so we
4424 -- do the same here.
996ae0b0
RK
4425
4426 if No (Full_View (Prefix_Type)) then
401093c1
ES
4427 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4428 Comp := First_Entity (Type_To_Use);
996ae0b0
RK
4429 end if;
4430
4431 while Present (Comp) loop
996ae0b0
RK
4432 if Chars (Comp) = Chars (Sel) then
4433 if Ekind (Comp) = E_Discriminant then
e7ba564f 4434 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4435 Generate_Reference (Comp, Sel);
4436
4437 Set_Etype (Sel, Etype (Comp));
4438 Set_Etype (N, Etype (Comp));
44a10091 4439 Check_Implicit_Dereference (N, Etype (N));
996ae0b0
RK
4440
4441 if Is_Generic_Type (Prefix_Type)
d469eabe 4442 or else Is_Generic_Type (Root_Type (Prefix_Type))
996ae0b0
RK
4443 then
4444 Set_Original_Discriminant (Sel, Comp);
4445 end if;
4446
f3d57416 4447 -- Before declaring an error, check whether this is tagged
aab883ec
ES
4448 -- private type and a call to a primitive operation.
4449
0791fbe9 4450 elsif Ada_Version >= Ada_2005
aab883ec
ES
4451 and then Is_Tagged_Type (Prefix_Type)
4452 and then Try_Object_Operation (N)
4453 then
4454 return;
4455
996ae0b0 4456 else
2383acbd
AC
4457 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4458 Error_Msg_NE ("invisible selector& for }", N, Sel);
996ae0b0
RK
4459 Set_Entity (Sel, Any_Id);
4460 Set_Etype (N, Any_Type);
4461 end if;
4462
4463 return;
4464 end if;
4465
4466 Next_Entity (Comp);
4467 end loop;
4468
4469 elsif Is_Concurrent_Type (Prefix_Type) then
4470
d469eabe
HK
4471 -- Find visible operation with given name. For a protected type,
4472 -- the possible candidates are discriminants, entries or protected
4473 -- procedures. For a task type, the set can only include entries or
4474 -- discriminants if the task type is not an enclosing scope. If it
4475 -- is an enclosing scope (e.g. in an inner task) then all entities
4476 -- are visible, but the prefix must denote the enclosing scope, i.e.
4477 -- can only be a direct name or an expanded name.
996ae0b0 4478
d469eabe 4479 Set_Etype (Sel, Any_Type);
996ae0b0
RK
4480 In_Scope := In_Open_Scopes (Prefix_Type);
4481
4482 while Present (Comp) loop
4483 if Chars (Comp) = Chars (Sel) then
4484 if Is_Overloadable (Comp) then
4485 Add_One_Interp (Sel, Comp, Etype (Comp));
4486
d469eabe
HK
4487 -- If the prefix is tagged, the correct interpretation may
4488 -- lie in the primitive or class-wide operations of the
4489 -- type. Perform a simple conformance check to determine
4490 -- whether Try_Object_Operation should be invoked even if
4491 -- a visible entity is found.
4492
4493 if Is_Tagged_Type (Prefix_Type)
4494 and then
4495 Nkind_In (Parent (N), N_Procedure_Call_Statement,
b4592168
GD
4496 N_Function_Call,
4497 N_Indexed_Component)
d469eabe
HK
4498 and then Has_Mode_Conformant_Spec (Comp)
4499 then
4500 Has_Candidate := True;
4501 end if;
4502
2383acbd
AC
4503 -- Note: a selected component may not denote a component of a
4504 -- protected type (4.1.3(7)).
4505
bce79204 4506 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
2383acbd
AC
4507 or else (In_Scope
4508 and then not Is_Protected_Type (Prefix_Type)
4509 and then Is_Entity_Name (Name))
996ae0b0 4510 then
e7ba564f 4511 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4512 Generate_Reference (Comp, Sel);
4513
65e78a74
AC
4514 -- The selector is not overloadable, so we have a candidate
4515 -- interpretation.
4516
4517 Has_Candidate := True;
4518
996ae0b0
RK
4519 else
4520 goto Next_Comp;
4521 end if;
4522
4523 Set_Etype (Sel, Etype (Comp));
4524 Set_Etype (N, Etype (Comp));
4525
4526 if Ekind (Comp) = E_Discriminant then
4527 Set_Original_Discriminant (Sel, Comp);
4528 end if;
4529
09494c32
AC
4530 -- For access type case, introduce explicit dereference for
4531 -- more uniform treatment of entry calls.
996ae0b0
RK
4532
4533 if Is_Access_Type (Etype (Name)) then
4534 Insert_Explicit_Dereference (Name);
fbf5a39b 4535 Error_Msg_NW
324ac540 4536 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4537 end if;
4538 end if;
4539
4540 <<Next_Comp>>
4541 Next_Entity (Comp);
4542 exit when not In_Scope
9bc856dd
AC
4543 and then
4544 Comp = First_Private_Entity (Base_Type (Prefix_Type));
996ae0b0
RK
4545 end loop;
4546
d469eabe
HK
4547 -- If there is no visible entity with the given name or none of the
4548 -- visible entities are plausible interpretations, check whether
4549 -- there is some other primitive operation with that name.
aab883ec 4550
0791fbe9 4551 if Ada_Version >= Ada_2005
aab883ec 4552 and then Is_Tagged_Type (Prefix_Type)
aab883ec 4553 then
d469eabe
HK
4554 if (Etype (N) = Any_Type
4555 or else not Has_Candidate)
0a36105d
JM
4556 and then Try_Object_Operation (N)
4557 then
4558 return;
4559
4560 -- If the context is not syntactically a procedure call, it
4561 -- may be a call to a primitive function declared outside of
4562 -- the synchronized type.
4563
4564 -- If the context is a procedure call, there might still be
4565 -- an overloading between an entry and a primitive procedure
4566 -- declared outside of the synchronized type, called in prefix
4567 -- notation. This is harder to disambiguate because in one case
4568 -- the controlling formal is implicit ???
4569
4570 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
b4592168 4571 and then Nkind (Parent (N)) /= N_Indexed_Component
0a36105d
JM
4572 and then Try_Object_Operation (N)
4573 then
4574 return;
4575 end if;
8cf23b91
AC
4576
4577 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4578 -- entry or procedure of a tagged concurrent type we must check
4579 -- if there are class-wide subprograms covering the primitive. If
4580 -- true then Try_Object_Operation reports the error.
4581
4582 if Has_Candidate
4583 and then Is_Concurrent_Type (Prefix_Type)
4584 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4585
4586 -- Duplicate the call. This is required to avoid problems with
4587 -- the tree transformations performed by Try_Object_Operation.
d7a44b14
AC
4588 -- Set properly the parent of the copied call, because it is
4589 -- about to be reanalyzed.
8cf23b91 4590
8cf23b91 4591 then
d7a44b14
AC
4592 declare
4593 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4594
4595 begin
4596 Set_Parent (Par, Parent (Parent (N)));
29ba9f52 4597
d7a44b14 4598 if Try_Object_Operation
29ba9f52 4599 (Sinfo.Name (Par), CW_Test_Only => True)
d7a44b14
AC
4600 then
4601 return;
4602 end if;
4603 end;
8cf23b91 4604 end if;
aab883ec
ES
4605 end if;
4606
2383acbd 4607 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
11bc76df 4608
2383acbd
AC
4609 -- Case of a prefix of a protected type: selector might denote
4610 -- an invisible private component.
4611
4612 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4613 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4614 Next_Entity (Comp);
4615 end loop;
4616
4617 if Present (Comp) then
4618 if Is_Single_Concurrent_Object then
4619 Error_Msg_Node_2 := Entity (Name);
4620 Error_Msg_NE ("invisible selector& for &", N, Sel);
4621
4622 else
4623 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4624 Error_Msg_NE ("invisible selector& for }", N, Sel);
4625 end if;
4626 return;
4627 end if;
4628 end if;
4629
996ae0b0
RK
4630 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4631
4632 else
4633 -- Invalid prefix
4634
4635 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4636 end if;
4637
4c46b835 4638 -- If N still has no type, the component is not defined in the prefix
996ae0b0
RK
4639
4640 if Etype (N) = Any_Type then
4641
2383acbd 4642 if Is_Single_Concurrent_Object then
996ae0b0
RK
4643 Error_Msg_Node_2 := Entity (Name);
4644 Error_Msg_NE ("no selector& for&", N, Sel);
4645
401093c1 4646 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0 4647
8b4230c8
AC
4648 -- If this is a derived formal type, the parent may have different
4649 -- visibility at this point. Try for an inherited component before
4650 -- reporting an error.
4651
de76a39c
GB
4652 elsif Is_Generic_Type (Prefix_Type)
4653 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
07fc65c4 4654 and then Prefix_Type /= Etype (Prefix_Type)
de76a39c
GB
4655 and then Is_Record_Type (Etype (Prefix_Type))
4656 then
de76a39c
GB
4657 Set_Etype (Prefix (N), Etype (Prefix_Type));
4658 Analyze_Selected_Component (N);
4659 return;
4660
b1d12996
AC
4661 -- Similarly, if this is the actual for a formal derived type, or
4662 -- a derived type thereof, the component inherited from the generic
4663 -- parent may not be visible in the actual, but the selected
4664 -- component is legal. Climb up the derivation chain of the generic
4665 -- parent type until we find the proper ancestor type.
20261dc1 4666
b1d12996
AC
4667 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4668 declare
4669 Par : Entity_Id := Prefix_Type;
4670 begin
4671 -- Climb up derivation chain to generic actual subtype
4672
4673 while not Is_Generic_Actual_Type (Par) loop
4674 if Ekind (Par) = E_Record_Type then
4675 Par := Parent_Subtype (Par);
4676 exit when No (Par);
4677 else
4678 exit when Par = Etype (Par);
4679 Par := Etype (Par);
4680 end if;
4681 end loop;
4c46b835 4682
b1d12996 4683 if Present (Par) and then Is_Generic_Actual_Type (Par) then
73999267 4684
b1d12996 4685 -- Now look for component in ancestor types
fbf5a39b 4686
b1d12996
AC
4687 Par := Generic_Parent_Type (Declaration_Node (Par));
4688 loop
4689 Find_Component_In_Instance (Par);
4690 exit when Present (Entity (Sel))
4691 or else Par = Etype (Par);
4692 Par := Etype (Par);
4693 end loop;
73999267
AC
4694
4695 -- In ASIS mode the generic parent type may be absent. Examine
4696 -- the parent type directly for a component that may have been
4697 -- visible in a parent generic unit.
4698
4699 elsif Is_Derived_Type (Prefix_Type) then
4700 Par := Etype (Prefix_Type);
4701 Find_Component_In_Instance (Par);
b1d12996
AC
4702 end if;
4703 end;
4704
4705 -- The search above must have eventually succeeded, since the
4706 -- selected component was legal in the generic.
4707
4708 if No (Entity (Sel)) then
4709 raise Program_Error;
4710 end if;
73999267 4711
20261dc1 4712 return;
fbf5a39b 4713
20261dc1 4714 -- Component not found, specialize error message when appropriate
fbf5a39b 4715
996ae0b0
RK
4716 else
4717 if Ekind (Prefix_Type) = E_Record_Subtype then
4718
f4b049db
AC
4719 -- Check whether this is a component of the base type which
4720 -- is absent from a statically constrained subtype. This will
4721 -- raise constraint error at run time, but is not a compile-
4722 -- time error. When the selector is illegal for base type as
4723 -- well fall through and generate a compilation error anyway.
996ae0b0
RK
4724
4725 Comp := First_Component (Base_Type (Prefix_Type));
996ae0b0 4726 while Present (Comp) loop
996ae0b0
RK
4727 if Chars (Comp) = Chars (Sel)
4728 and then Is_Visible_Component (Comp)
4729 then
e7ba564f 4730 Set_Entity_With_Checks (Sel, Comp);
996ae0b0
RK
4731 Generate_Reference (Comp, Sel);
4732 Set_Etype (Sel, Etype (Comp));
4733 Set_Etype (N, Etype (Comp));
4734
637a41a5
AC
4735 -- Emit appropriate message. The node will be replaced
4736 -- by an appropriate raise statement.
996ae0b0 4737
637a41a5
AC
4738 -- Note that in SPARK mode, as with all calls to apply a
4739 -- compile time constraint error, this will be made into
4740 -- an error to simplify the processing of the formal
4741 -- verification backend.
d7f41b2d 4742
4a28b181 4743 Apply_Compile_Time_Constraint_Error
637a41a5 4744 (N, "component not present in }??",
4a28b181
AC
4745 CE_Discriminant_Check_Failed,
4746 Ent => Prefix_Type, Rep => False);
d7f41b2d 4747
996ae0b0
RK
4748 Set_Raises_Constraint_Error (N);
4749 return;
4750 end if;
4751
4752 Next_Component (Comp);
4753 end loop;
4754
4755 end if;
4756
4757 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4758 Error_Msg_NE ("no selector& for}", N, Sel);
4759
94bbf008 4760 -- Add information in the case of an incomplete prefix
99d520ad
ES
4761
4762 if Is_Incomplete_Type (Type_To_Use) then
4763 declare
4764 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4765
4766 begin
7b56a91b 4767 if From_Limited_With (Scope (Type_To_Use)) then
99d520ad
ES
4768 Error_Msg_NE
4769 ("\limited view of& has no components", N, Inc);
bd38b431 4770
99d520ad
ES
4771 else
4772 Error_Msg_NE
4773 ("\premature usage of incomplete type&", N, Inc);
bd38b431
AC
4774
4775 if Nkind (Parent (Inc)) =
4776 N_Incomplete_Type_Declaration
99d520ad 4777 then
94bbf008
AC
4778 -- Record location of premature use in entity so that
4779 -- a continuation message is generated when the
4780 -- completion is seen.
4781
99d520ad
ES
4782 Set_Premature_Use (Parent (Inc), N);
4783 end if;
4784 end if;
4785 end;
4786 end if;
4787
401093c1 4788 Check_Misspelled_Selector (Type_To_Use, Sel);
996ae0b0
RK
4789 end if;
4790
4791 Set_Entity (Sel, Any_Id);
4792 Set_Etype (Sel, Any_Type);
4793 end if;
4794 end Analyze_Selected_Component;
4795
4796 ---------------------------
4797 -- Analyze_Short_Circuit --
4798 ---------------------------
4799
4800 procedure Analyze_Short_Circuit (N : Node_Id) is
4801 L : constant Node_Id := Left_Opnd (N);
4802 R : constant Node_Id := Right_Opnd (N);
4803 Ind : Interp_Index;
4804 It : Interp;
4805
4806 begin
4807 Analyze_Expression (L);
4808 Analyze_Expression (R);
4809 Set_Etype (N, Any_Type);
4810
4811 if not Is_Overloaded (L) then
996ae0b0
RK
4812 if Root_Type (Etype (L)) = Standard_Boolean
4813 and then Has_Compatible_Type (R, Etype (L))
4814 then
4815 Add_One_Interp (N, Etype (L), Etype (L));
4816 end if;
4817
4818 else
4819 Get_First_Interp (L, Ind, It);
996ae0b0
RK
4820 while Present (It.Typ) loop
4821 if Root_Type (It.Typ) = Standard_Boolean
4822 and then Has_Compatible_Type (R, It.Typ)
4823 then
4824 Add_One_Interp (N, It.Typ, It.Typ);
4825 end if;
4826
4827 Get_Next_Interp (Ind, It);
4828 end loop;
4829 end if;
4830
d469eabe
HK
4831 -- Here we have failed to find an interpretation. Clearly we know that
4832 -- it is not the case that both operands can have an interpretation of
4833 -- Boolean, but this is by far the most likely intended interpretation.
4834 -- So we simply resolve both operands as Booleans, and at least one of
4835 -- these resolutions will generate an error message, and we do not need
4836 -- to give another error message on the short circuit operation itself.
996ae0b0
RK
4837
4838 if Etype (N) = Any_Type then
4839 Resolve (L, Standard_Boolean);
4840 Resolve (R, Standard_Boolean);
4841 Set_Etype (N, Standard_Boolean);
4842 end if;
4843 end Analyze_Short_Circuit;
4844
4845 -------------------
4846 -- Analyze_Slice --
4847 -------------------
4848
4849 procedure Analyze_Slice (N : Node_Id) is
996ae0b0 4850 D : constant Node_Id := Discrete_Range (N);
5f44f0d4 4851 P : constant Node_Id := Prefix (N);
996ae0b0 4852 Array_Type : Entity_Id;
5f44f0d4 4853 Index_Type : Entity_Id;
996ae0b0
RK
4854
4855 procedure Analyze_Overloaded_Slice;
4856 -- If the prefix is overloaded, select those interpretations that
4857 -- yield a one-dimensional array type.
4858
4c46b835
AC
4859 ------------------------------
4860 -- Analyze_Overloaded_Slice --
4861 ------------------------------
4862
996ae0b0
RK
4863 procedure Analyze_Overloaded_Slice is
4864 I : Interp_Index;
4865 It : Interp;
4866 Typ : Entity_Id;
4867
4868 begin
4869 Set_Etype (N, Any_Type);
996ae0b0 4870
4c46b835 4871 Get_First_Interp (P, I, It);
996ae0b0
RK
4872 while Present (It.Nam) loop
4873 Typ := It.Typ;
4874
4875 if Is_Access_Type (Typ) then
4876 Typ := Designated_Type (Typ);
324ac540
AC
4877 Error_Msg_NW
4878 (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4879 end if;
4880
4881 if Is_Array_Type (Typ)
4882 and then Number_Dimensions (Typ) = 1
4883 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4884 then
4885 Add_One_Interp (N, Typ, Typ);
4886 end if;
4887
4888 Get_Next_Interp (I, It);
4889 end loop;
4890
4891 if Etype (N) = Any_Type then
4892 Error_Msg_N ("expect array type in prefix of slice", N);
4893 end if;
4894 end Analyze_Overloaded_Slice;
4895
4896 -- Start of processing for Analyze_Slice
4897
4898 begin
36b8f95f 4899 if Comes_From_Source (N) then
ce5ba43a 4900 Check_SPARK_05_Restriction ("slice is not allowed", N);
36b8f95f 4901 end if;
1d801f21 4902
523456db 4903 Analyze (P);
996ae0b0
RK
4904 Analyze (D);
4905
4906 if Is_Overloaded (P) then
4907 Analyze_Overloaded_Slice;
4908
4909 else
4910 Array_Type := Etype (P);
4911 Set_Etype (N, Any_Type);
4912
4913 if Is_Access_Type (Array_Type) then
4914 Array_Type := Designated_Type (Array_Type);
324ac540 4915 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
996ae0b0
RK
4916 end if;
4917
4918 if not Is_Array_Type (Array_Type) then
4919 Wrong_Type (P, Any_Array);
4920
4921 elsif Number_Dimensions (Array_Type) > 1 then
4922 Error_Msg_N
4923 ("type is not one-dimensional array in slice prefix", N);
4924
996ae0b0 4925 else
5f44f0d4
AC
4926 if Ekind (Array_Type) = E_String_Literal_Subtype then
4927 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
4928 else
4929 Index_Type := Etype (First_Index (Array_Type));
4930 end if;
4931
4932 if not Has_Compatible_Type (D, Index_Type) then
4933 Wrong_Type (D, Index_Type);
4934 else
4935 Set_Etype (N, Array_Type);
4936 end if;
996ae0b0
RK
4937 end if;
4938 end if;
4939 end Analyze_Slice;
4940
4941 -----------------------------
4942 -- Analyze_Type_Conversion --
4943 -----------------------------
4944
4945 procedure Analyze_Type_Conversion (N : Node_Id) is
4946 Expr : constant Node_Id := Expression (N);
039538bc 4947 Typ : Entity_Id;
996ae0b0
RK
4948
4949 begin
039538bc
AC
4950 -- If Conversion_OK is set, then the Etype is already set, and the only
4951 -- processing required is to analyze the expression. This is used to
4952 -- construct certain "illegal" conversions which are not allowed by Ada
4953 -- semantics, but can be handled by Gigi, see Sinfo for further details.
996ae0b0
RK
4954
4955 if Conversion_OK (N) then
4956 Analyze (Expr);
4957 return;
4958 end if;
4959
4960 -- Otherwise full type analysis is required, as well as some semantic
4961 -- checks to make sure the argument of the conversion is appropriate.
4962
4963 Find_Type (Subtype_Mark (N));
039538bc
AC
4964 Typ := Entity (Subtype_Mark (N));
4965 Set_Etype (N, Typ);
4966 Check_Fully_Declared (Typ, N);
996ae0b0
RK
4967 Analyze_Expression (Expr);
4968 Validate_Remote_Type_Type_Conversion (N);
5e8c8e44 4969
996ae0b0
RK
4970 -- Only remaining step is validity checks on the argument. These
4971 -- are skipped if the conversion does not come from the source.
4972
4973 if not Comes_From_Source (N) then
4974 return;
4975
b67a385c
ES
4976 -- If there was an error in a generic unit, no need to replicate the
4977 -- error message. Conversely, constant-folding in the generic may
4978 -- transform the argument of a conversion into a string literal, which
4979 -- is legal. Therefore the following tests are not performed in an
36428cc4 4980 -- instance. The same applies to an inlined body.
b67a385c 4981
36428cc4 4982 elsif In_Instance or In_Inlined_Body then
b67a385c
ES
4983 return;
4984
996ae0b0
RK
4985 elsif Nkind (Expr) = N_Null then
4986 Error_Msg_N ("argument of conversion cannot be null", N);
ed2233dc 4987 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4988 Set_Etype (N, Any_Type);
4989
4990 elsif Nkind (Expr) = N_Aggregate then
4991 Error_Msg_N ("argument of conversion cannot be aggregate", N);
ed2233dc 4992 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4993
4994 elsif Nkind (Expr) = N_Allocator then
4995 Error_Msg_N ("argument of conversion cannot be an allocator", N);
ed2233dc 4996 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
4997
4998 elsif Nkind (Expr) = N_String_Literal then
4999 Error_Msg_N ("argument of conversion cannot be string literal", N);
ed2233dc 5000 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5001
5002 elsif Nkind (Expr) = N_Character_Literal then
0ab80019 5003 if Ada_Version = Ada_83 then
039538bc 5004 Resolve (Expr, Typ);
996ae0b0
RK
5005 else
5006 Error_Msg_N ("argument of conversion cannot be character literal",
5007 N);
ed2233dc 5008 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0
RK
5009 end if;
5010
5011 elsif Nkind (Expr) = N_Attribute_Reference
039538bc
AC
5012 and then Nam_In (Attribute_Name (Expr), Name_Access,
5013 Name_Unchecked_Access,
5014 Name_Unrestricted_Access)
996ae0b0
RK
5015 then
5016 Error_Msg_N ("argument of conversion cannot be access", N);
ed2233dc 5017 Error_Msg_N ("\use qualified expression instead", N);
996ae0b0 5018 end if;
039538bc
AC
5019
5020 -- A formal parameter of a specific tagged type whose related subprogram
5021 -- is subject to pragma Extensions_Visible with value "False" cannot
b3407ce0 5022 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)).
039538bc
AC
5023
5024 if Is_Class_Wide_Type (Typ) and then Is_EVF_Expression (Expr) then
5025 Error_Msg_N
5026 ("formal parameter with Extensions_Visible False cannot be "
5027 & "converted to class-wide type", Expr);
5028 end if;
996ae0b0
RK
5029 end Analyze_Type_Conversion;
5030
5031 ----------------------
5032 -- Analyze_Unary_Op --
5033 ----------------------
5034
5035 procedure Analyze_Unary_Op (N : Node_Id) is
5036 R : constant Node_Id := Right_Opnd (N);
5037 Op_Id : Entity_Id := Entity (N);
5038
5039 begin
5040 Set_Etype (N, Any_Type);
5041 Candidate_Type := Empty;
5042
5043 Analyze_Expression (R);
5044
5045 if Present (Op_Id) then
5046 if Ekind (Op_Id) = E_Operator then
5047 Find_Unary_Types (R, Op_Id, N);
5048 else
5049 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5050 end if;
5051
5052 else
5053 Op_Id := Get_Name_Entity_Id (Chars (N));
996ae0b0 5054 while Present (Op_Id) loop
996ae0b0
RK
5055 if Ekind (Op_Id) = E_Operator then
5056 if No (Next_Entity (First_Entity (Op_Id))) then
5057 Find_Unary_Types (R, Op_Id, N);
5058 end if;
5059
5060 elsif Is_Overloadable (Op_Id) then
5061 Analyze_User_Defined_Unary_Op (N, Op_Id);
5062 end if;
5063
5064 Op_Id := Homonym (Op_Id);
5065 end loop;
5066 end if;
5067
5068 Operator_Check (N);
5069 end Analyze_Unary_Op;
5070
5071 ----------------------------------
5072 -- Analyze_Unchecked_Expression --
5073 ----------------------------------
5074
5075 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5076 begin
5077 Analyze (Expression (N), Suppress => All_Checks);
5078 Set_Etype (N, Etype (Expression (N)));
5079 Save_Interps (Expression (N), N);
5080 end Analyze_Unchecked_Expression;
5081
5082 ---------------------------------------
5083 -- Analyze_Unchecked_Type_Conversion --
5084 ---------------------------------------
5085
5086 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5087 begin
5088 Find_Type (Subtype_Mark (N));
5089 Analyze_Expression (Expression (N));
5090 Set_Etype (N, Entity (Subtype_Mark (N)));
5091 end Analyze_Unchecked_Type_Conversion;
5092
5093 ------------------------------------
5094 -- Analyze_User_Defined_Binary_Op --
5095 ------------------------------------
5096
5097 procedure Analyze_User_Defined_Binary_Op
5098 (N : Node_Id;
5099 Op_Id : Entity_Id)
5100 is
5101 begin
5102 -- Only do analysis if the operator Comes_From_Source, since otherwise
5103 -- the operator was generated by the expander, and all such operators
5104 -- always refer to the operators in package Standard.
5105
5106 if Comes_From_Source (N) then
5107 declare
5108 F1 : constant Entity_Id := First_Formal (Op_Id);
5109 F2 : constant Entity_Id := Next_Formal (F1);
5110
5111 begin
5112 -- Verify that Op_Id is a visible binary function. Note that since
5113 -- we know Op_Id is overloaded, potentially use visible means use
5114 -- visible for sure (RM 9.4(11)).
5115
5116 if Ekind (Op_Id) = E_Function
5117 and then Present (F2)
5118 and then (Is_Immediately_Visible (Op_Id)
5119 or else Is_Potentially_Use_Visible (Op_Id))
5120 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5121 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5122 then
5123 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5124
8b4230c8
AC
5125 -- If the left operand is overloaded, indicate that the current
5126 -- type is a viable candidate. This is redundant in most cases,
5127 -- but for equality and comparison operators where the context
5128 -- does not impose a type on the operands, setting the proper
5129 -- type is necessary to avoid subsequent ambiguities during
5130 -- resolution, when both user-defined and predefined operators
5131 -- may be candidates.
7340e432
AC
5132
5133 if Is_Overloaded (Left_Opnd (N)) then
5134 Set_Etype (Left_Opnd (N), Etype (F1));
5135 end if;
5136
996ae0b0
RK
5137 if Debug_Flag_E then
5138 Write_Str ("user defined operator ");
5139 Write_Name (Chars (Op_Id));
5140 Write_Str (" on node ");
5141 Write_Int (Int (N));
5142 Write_Eol;
5143 end if;
5144 end if;
5145 end;
5146 end if;
5147 end Analyze_User_Defined_Binary_Op;
5148
5149 -----------------------------------
5150 -- Analyze_User_Defined_Unary_Op --
5151 -----------------------------------
5152
5153 procedure Analyze_User_Defined_Unary_Op
5154 (N : Node_Id;
5155 Op_Id : Entity_Id)
5156 is
5157 begin
5158 -- Only do analysis if the operator Comes_From_Source, since otherwise
5159 -- the operator was generated by the expander, and all such operators
5160 -- always refer to the operators in package Standard.
5161
5162 if Comes_From_Source (N) then
5163 declare
5164 F : constant Entity_Id := First_Formal (Op_Id);
5165
5166 begin
5167 -- Verify that Op_Id is a visible unary function. Note that since
5168 -- we know Op_Id is overloaded, potentially use visible means use
5169 -- visible for sure (RM 9.4(11)).
5170
5171 if Ekind (Op_Id) = E_Function
5172 and then No (Next_Formal (F))
5173 and then (Is_Immediately_Visible (Op_Id)
5174 or else Is_Potentially_Use_Visible (Op_Id))
5175 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5176 then
5177 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5178 end if;
5179 end;
5180 end if;
5181 end Analyze_User_Defined_Unary_Op;
5182
5183 ---------------------------
5184 -- Check_Arithmetic_Pair --
5185 ---------------------------
5186
5187 procedure Check_Arithmetic_Pair
5188 (T1, T2 : Entity_Id;
5189 Op_Id : Entity_Id;
5190 N : Node_Id)
5191 is
401093c1 5192 Op_Name : constant Name_Id := Chars (Op_Id);
996ae0b0 5193
da709d08
AC
5194 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5195 -- Check whether the fixed-point type Typ has a user-defined operator
5196 -- (multiplication or division) that should hide the corresponding
5197 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5198 -- such operators more visible and therefore useful.
8b4230c8 5199 --
50cff367
GD
5200 -- If the name of the operation is an expanded name with prefix
5201 -- Standard, the predefined universal fixed operator is available,
5202 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5203
996ae0b0
RK
5204 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5205 -- Get specific type (i.e. non-universal type if there is one)
5206
da709d08
AC
5207 ------------------
5208 -- Has_Fixed_Op --
5209 ------------------
5210
5211 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
401093c1 5212 Bas : constant Entity_Id := Base_Type (Typ);
da709d08
AC
5213 Ent : Entity_Id;
5214 F1 : Entity_Id;
5215 F2 : Entity_Id;
5216
5217 begin
50cff367
GD
5218 -- If the universal_fixed operation is given explicitly the rule
5219 -- concerning primitive operations of the type do not apply.
5220
5221 if Nkind (N) = N_Function_Call
5222 and then Nkind (Name (N)) = N_Expanded_Name
5223 and then Entity (Prefix (Name (N))) = Standard_Standard
5224 then
5225 return False;
5226 end if;
5227
da709d08
AC
5228 -- The operation is treated as primitive if it is declared in the
5229 -- same scope as the type, and therefore on the same entity chain.
5230
5231 Ent := Next_Entity (Typ);
5232 while Present (Ent) loop
5233 if Chars (Ent) = Chars (Op) then
5234 F1 := First_Formal (Ent);
5235 F2 := Next_Formal (F1);
5236
5237 -- The operation counts as primitive if either operand or
401093c1
ES
5238 -- result are of the given base type, and both operands are
5239 -- fixed point types.
da709d08 5240
401093c1 5241 if (Base_Type (Etype (F1)) = Bas
da709d08
AC
5242 and then Is_Fixed_Point_Type (Etype (F2)))
5243
5244 or else
401093c1 5245 (Base_Type (Etype (F2)) = Bas
da709d08
AC
5246 and then Is_Fixed_Point_Type (Etype (F1)))
5247
5248 or else
401093c1 5249 (Base_Type (Etype (Ent)) = Bas
da709d08
AC
5250 and then Is_Fixed_Point_Type (Etype (F1))
5251 and then Is_Fixed_Point_Type (Etype (F2)))
5252 then
5253 return True;
5254 end if;
5255 end if;
5256
5257 Next_Entity (Ent);
5258 end loop;
5259
5260 return False;
5261 end Has_Fixed_Op;
5262
4c46b835
AC
5263 -------------------
5264 -- Specific_Type --
5265 -------------------
5266
996ae0b0
RK
5267 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5268 begin
5269 if T1 = Universal_Integer or else T1 = Universal_Real then
5270 return Base_Type (T2);
5271 else
5272 return Base_Type (T1);
5273 end if;
5274 end Specific_Type;
5275
5276 -- Start of processing for Check_Arithmetic_Pair
5277
5278 begin
b69cd36a 5279 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
996ae0b0
RK
5280 if Is_Numeric_Type (T1)
5281 and then Is_Numeric_Type (T2)
b4592168
GD
5282 and then (Covers (T1 => T1, T2 => T2)
5283 or else
5284 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5285 then
5286 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5287 end if;
5288
b69cd36a 5289 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
996ae0b0 5290 if Is_Fixed_Point_Type (T1)
b69cd36a 5291 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
996ae0b0
RK
5292 then
5293 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5294 -- and no further processing is required (this is the case of an
5295 -- operator constructed by Exp_Fixd for a fixed point operation)
5296 -- Otherwise add one interpretation with universal fixed result
5297 -- If the operator is given in functional notation, it comes
5298 -- from source and Fixed_As_Integer cannot apply.
5299
da709d08
AC
5300 if (Nkind (N) not in N_Op
5301 or else not Treat_Fixed_As_Integer (N))
5302 and then
401093c1 5303 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5304 or else Nkind (Parent (N)) = N_Type_Conversion)
fbf5a39b 5305 then
996ae0b0
RK
5306 Add_One_Interp (N, Op_Id, Universal_Fixed);
5307 end if;
5308
5309 elsif Is_Fixed_Point_Type (T2)
5310 and then (Nkind (N) not in N_Op
5311 or else not Treat_Fixed_As_Integer (N))
5312 and then T1 = Universal_Real
da709d08 5313 and then
401093c1 5314 (not Has_Fixed_Op (T1, Op_Id)
da709d08 5315 or else Nkind (Parent (N)) = N_Type_Conversion)
996ae0b0
RK
5316 then
5317 Add_One_Interp (N, Op_Id, Universal_Fixed);
5318
5319 elsif Is_Numeric_Type (T1)
5320 and then Is_Numeric_Type (T2)
b4592168
GD
5321 and then (Covers (T1 => T1, T2 => T2)
5322 or else
5323 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5324 then
5325 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5326
5327 elsif Is_Fixed_Point_Type (T1)
5328 and then (Base_Type (T2) = Base_Type (Standard_Integer)
b69cd36a 5329 or else T2 = Universal_Integer)
996ae0b0
RK
5330 then
5331 Add_One_Interp (N, Op_Id, T1);
5332
5333 elsif T2 = Universal_Real
5334 and then Base_Type (T1) = Base_Type (Standard_Integer)
5335 and then Op_Name = Name_Op_Multiply
5336 then
5337 Add_One_Interp (N, Op_Id, Any_Fixed);
5338
5339 elsif T1 = Universal_Real
5340 and then Base_Type (T2) = Base_Type (Standard_Integer)
5341 then
5342 Add_One_Interp (N, Op_Id, Any_Fixed);
5343
5344 elsif Is_Fixed_Point_Type (T2)
5345 and then (Base_Type (T1) = Base_Type (Standard_Integer)
b69cd36a 5346 or else T1 = Universal_Integer)
996ae0b0
RK
5347 and then Op_Name = Name_Op_Multiply
5348 then
5349 Add_One_Interp (N, Op_Id, T2);
5350
5351 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5352 Add_One_Interp (N, Op_Id, T1);
5353
5354 elsif T2 = Universal_Real
5355 and then T1 = Universal_Integer
5356 and then Op_Name = Name_Op_Multiply
5357 then
5358 Add_One_Interp (N, Op_Id, T2);
5359 end if;
5360
5361 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5362
5363 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5364 -- set does not require any special processing, since the Etype is
5365 -- already set (case of operation constructed by Exp_Fixed).
5366
5367 if Is_Integer_Type (T1)
b4592168
GD
5368 and then (Covers (T1 => T1, T2 => T2)
5369 or else
5370 Covers (T1 => T2, T2 => T1))
996ae0b0
RK
5371 then
5372 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5373 end if;
5374
5375 elsif Op_Name = Name_Op_Expon then
996ae0b0
RK
5376 if Is_Numeric_Type (T1)
5377 and then not Is_Fixed_Point_Type (T1)
5378 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5379 or else T2 = Universal_Integer)
5380 then
5381 Add_One_Interp (N, Op_Id, Base_Type (T1));
5382 end if;
5383
5384 else pragma Assert (Nkind (N) in N_Op_Shift);
5385
5386 -- If not one of the predefined operators, the node may be one
5387 -- of the intrinsic functions. Its kind is always specific, and
5388 -- we can use it directly, rather than the name of the operation.
5389
5390 if Is_Integer_Type (T1)
5391 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5392 or else T2 = Universal_Integer)
5393 then
5394 Add_One_Interp (N, Op_Id, Base_Type (T1));
5395 end if;
5396 end if;
5397 end Check_Arithmetic_Pair;
5398
5399 -------------------------------
5400 -- Check_Misspelled_Selector --
5401 -------------------------------
5402
5403 procedure Check_Misspelled_Selector
5404 (Prefix : Entity_Id;
5405 Sel : Node_Id)
5406 is
5407 Max_Suggestions : constant := 2;
5408 Nr_Of_Suggestions : Natural := 0;
5409
5410 Suggestion_1 : Entity_Id := Empty;
5411 Suggestion_2 : Entity_Id := Empty;
5412
5413 Comp : Entity_Id;
5414
5415 begin
8b4230c8
AC
5416 -- All the components of the prefix of selector Sel are matched against
5417 -- Sel and a count is maintained of possible misspellings. When at
a90bd866 5418 -- the end of the analysis there are one or two (not more) possible
8b4230c8
AC
5419 -- misspellings, these misspellings will be suggested as possible
5420 -- correction.
996ae0b0 5421
4c46b835
AC
5422 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5423
996ae0b0 5424 -- Concurrent types should be handled as well ???
4c46b835 5425
996ae0b0
RK
5426 return;
5427 end if;
5428
d469eabe
HK
5429 Comp := First_Entity (Prefix);
5430 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5431 if Is_Visible_Component (Comp) then
5432 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5433 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5434
5435 case Nr_Of_Suggestions is
5436 when 1 => Suggestion_1 := Comp;
5437 when 2 => Suggestion_2 := Comp;
5438 when others => exit;
5439 end case;
996ae0b0 5440 end if;
d469eabe 5441 end if;
996ae0b0 5442
d469eabe
HK
5443 Comp := Next_Entity (Comp);
5444 end loop;
996ae0b0 5445
d469eabe 5446 -- Report at most two suggestions
996ae0b0 5447
d469eabe 5448 if Nr_Of_Suggestions = 1 then
4e7a4f6e 5449 Error_Msg_NE -- CODEFIX
d469eabe 5450 ("\possible misspelling of&", Sel, Suggestion_1);
996ae0b0 5451
d469eabe
HK
5452 elsif Nr_Of_Suggestions = 2 then
5453 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 5454 Error_Msg_NE -- CODEFIX
d469eabe
HK
5455 ("\possible misspelling of& or&", Sel, Suggestion_1);
5456 end if;
996ae0b0
RK
5457 end Check_Misspelled_Selector;
5458
5459 ----------------------
5460 -- Defined_In_Scope --
5461 ----------------------
5462
5463 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5464 is
5465 S1 : constant Entity_Id := Scope (Base_Type (T));
996ae0b0
RK
5466 begin
5467 return S1 = S
5468 or else (S1 = System_Aux_Id and then S = Scope (S1));
5469 end Defined_In_Scope;
5470
5471 -------------------
5472 -- Diagnose_Call --
5473 -------------------
5474
5475 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
fbf5a39b
AC
5476 Actual : Node_Id;
5477 X : Interp_Index;
5478 It : Interp;
fbf5a39b
AC
5479 Err_Mode : Boolean;
5480 New_Nam : Node_Id;
5481 Void_Interp_Seen : Boolean := False;
996ae0b0 5482
24657705
HK
5483 Success : Boolean;
5484 pragma Warnings (Off, Boolean);
5485
996ae0b0 5486 begin
0791fbe9 5487 if Ada_Version >= Ada_2005 then
996ae0b0 5488 Actual := First_Actual (N);
996ae0b0 5489 while Present (Actual) loop
0ab80019
AC
5490
5491 -- Ada 2005 (AI-50217): Post an error in case of premature
5492 -- usage of an entity from the limited view.
19f0526a 5493
996ae0b0 5494 if not Analyzed (Etype (Actual))
7b56a91b 5495 and then From_Limited_With (Etype (Actual))
996ae0b0
RK
5496 then
5497 Error_Msg_Qual_Level := 1;
ed2233dc 5498 Error_Msg_NE
996ae0b0
RK
5499 ("missing with_clause for scope of imported type&",
5500 Actual, Etype (Actual));
5501 Error_Msg_Qual_Level := 0;
5502 end if;
5503
5504 Next_Actual (Actual);
5505 end loop;
5506 end if;
5507
fbf5a39b
AC
5508 -- Analyze each candidate call again, with full error reporting
5509 -- for each.
5510
5511 Error_Msg_N
5512 ("no candidate interpretations match the actuals:!", Nam);
5513 Err_Mode := All_Errors_Mode;
5514 All_Errors_Mode := True;
5515
5516 -- If this is a call to an operation of a concurrent type,
5517 -- the failed interpretations have been removed from the
5518 -- name. Recover them to provide full diagnostics.
5519
5520 if Nkind (Parent (Nam)) = N_Selected_Component then
5521 Set_Entity (Nam, Empty);
5522 New_Nam := New_Copy_Tree (Parent (Nam));
5523 Set_Is_Overloaded (New_Nam, False);
5524 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5525 Set_Parent (New_Nam, Parent (Parent (Nam)));
5526 Analyze_Selected_Component (New_Nam);
5527 Get_First_Interp (Selector_Name (New_Nam), X, It);
5528 else
996ae0b0 5529 Get_First_Interp (Nam, X, It);
fbf5a39b 5530 end if;
996ae0b0 5531
fbf5a39b
AC
5532 while Present (It.Nam) loop
5533 if Etype (It.Nam) = Standard_Void_Type then
5534 Void_Interp_Seen := True;
996ae0b0 5535 end if;
fbf5a39b
AC
5536
5537 Analyze_One_Call (N, It.Nam, True, Success);
5538 Get_Next_Interp (X, It);
5539 end loop;
996ae0b0
RK
5540
5541 if Nkind (N) = N_Function_Call then
5542 Get_First_Interp (Nam, X, It);
996ae0b0 5543 while Present (It.Nam) loop
bce79204 5544 if Ekind_In (It.Nam, E_Function, E_Operator) then
996ae0b0
RK
5545 return;
5546 else
5547 Get_Next_Interp (X, It);
5548 end if;
5549 end loop;
5550
5551 -- If all interpretations are procedures, this deserves a
5552 -- more precise message. Ditto if this appears as the prefix
5553 -- of a selected component, which may be a lexical error.
5554
4c46b835
AC
5555 Error_Msg_N
5556 ("\context requires function call, found procedure name", Nam);
996ae0b0
RK
5557
5558 if Nkind (Parent (N)) = N_Selected_Component
5559 and then N = Prefix (Parent (N))
5560 then
4e7a4f6e
AC
5561 Error_Msg_N -- CODEFIX
5562 ("\period should probably be semicolon", Parent (N));
996ae0b0 5563 end if;
fbf5a39b
AC
5564
5565 elsif Nkind (N) = N_Procedure_Call_Statement
5566 and then not Void_Interp_Seen
5567 then
5568 Error_Msg_N (
5569 "\function name found in procedure call", Nam);
996ae0b0 5570 end if;
fbf5a39b
AC
5571
5572 All_Errors_Mode := Err_Mode;
996ae0b0
RK
5573 end Diagnose_Call;
5574
5575 ---------------------------
5576 -- Find_Arithmetic_Types --
5577 ---------------------------
5578
5579 procedure Find_Arithmetic_Types
5580 (L, R : Node_Id;
5581 Op_Id : Entity_Id;
5582 N : Node_Id)
5583 is
4c46b835
AC
5584 Index1 : Interp_Index;
5585 Index2 : Interp_Index;
5586 It1 : Interp;
5587 It2 : Interp;
996ae0b0
RK
5588
5589 procedure Check_Right_Argument (T : Entity_Id);
5590 -- Check right operand of operator
5591
4c46b835
AC
5592 --------------------------
5593 -- Check_Right_Argument --
5594 --------------------------
5595
996ae0b0
RK
5596 procedure Check_Right_Argument (T : Entity_Id) is
5597 begin
5598 if not Is_Overloaded (R) then
5599 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5600 else
5601 Get_First_Interp (R, Index2, It2);
996ae0b0
RK
5602 while Present (It2.Typ) loop
5603 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5604 Get_Next_Interp (Index2, It2);
5605 end loop;
5606 end if;
5607 end Check_Right_Argument;
5608
d8221f45 5609 -- Start of processing for Find_Arithmetic_Types
996ae0b0
RK
5610
5611 begin
5612 if not Is_Overloaded (L) then
5613 Check_Right_Argument (Etype (L));
5614
5615 else
5616 Get_First_Interp (L, Index1, It1);
996ae0b0
RK
5617 while Present (It1.Typ) loop
5618 Check_Right_Argument (It1.Typ);
5619 Get_Next_Interp (Index1, It1);
5620 end loop;
5621 end if;
5622
5623 end Find_Arithmetic_Types;
5624
5625 ------------------------
5626 -- Find_Boolean_Types --
5627 ------------------------
5628
5629 procedure Find_Boolean_Types
5630 (L, R : Node_Id;
5631 Op_Id : Entity_Id;
5632 N : Node_Id)
5633 is
5634 Index : Interp_Index;
5635 It : Interp;
5636
5637 procedure Check_Numeric_Argument (T : Entity_Id);
5638 -- Special case for logical operations one of whose operands is an
5639 -- integer literal. If both are literal the result is any modular type.
5640
4c46b835
AC
5641 ----------------------------
5642 -- Check_Numeric_Argument --
5643 ----------------------------
5644
996ae0b0
RK
5645 procedure Check_Numeric_Argument (T : Entity_Id) is
5646 begin
5647 if T = Universal_Integer then
5648 Add_One_Interp (N, Op_Id, Any_Modular);
5649
5650 elsif Is_Modular_Integer_Type (T) then
5651 Add_One_Interp (N, Op_Id, T);
5652 end if;
5653 end Check_Numeric_Argument;
5654
5655 -- Start of processing for Find_Boolean_Types
5656
5657 begin
5658 if not Is_Overloaded (L) then
996ae0b0
RK
5659 if Etype (L) = Universal_Integer
5660 or else Etype (L) = Any_Modular
5661 then
5662 if not Is_Overloaded (R) then
5663 Check_Numeric_Argument (Etype (R));
5664
5665 else
5666 Get_First_Interp (R, Index, It);
996ae0b0
RK
5667 while Present (It.Typ) loop
5668 Check_Numeric_Argument (It.Typ);
996ae0b0
RK
5669 Get_Next_Interp (Index, It);
5670 end loop;
5671 end if;
5672
69e6a03e
ES
5673 -- If operands are aggregates, we must assume that they may be
5674 -- boolean arrays, and leave disambiguation for the second pass.
5675 -- If only one is an aggregate, verify that the other one has an
5676 -- interpretation as a boolean array
5677
5678 elsif Nkind (L) = N_Aggregate then
5679 if Nkind (R) = N_Aggregate then
5680 Add_One_Interp (N, Op_Id, Etype (L));
5681
5682 elsif not Is_Overloaded (R) then
5683 if Valid_Boolean_Arg (Etype (R)) then
5684 Add_One_Interp (N, Op_Id, Etype (R));
5685 end if;
5686
5687 else
5688 Get_First_Interp (R, Index, It);
5689 while Present (It.Typ) loop
5690 if Valid_Boolean_Arg (It.Typ) then
5691 Add_One_Interp (N, Op_Id, It.Typ);
5692 end if;
5693
5694 Get_Next_Interp (Index, It);
5695 end loop;
5696 end if;
5697
996ae0b0
RK
5698 elsif Valid_Boolean_Arg (Etype (L))
5699 and then Has_Compatible_Type (R, Etype (L))
5700 then
5701 Add_One_Interp (N, Op_Id, Etype (L));
5702 end if;
5703
5704 else
5705 Get_First_Interp (L, Index, It);
996ae0b0
RK
5706 while Present (It.Typ) loop
5707 if Valid_Boolean_Arg (It.Typ)
5708 and then Has_Compatible_Type (R, It.Typ)
5709 then
5710 Add_One_Interp (N, Op_Id, It.Typ);
5711 end if;
5712
5713 Get_Next_Interp (Index, It);
5714 end loop;
5715 end if;
5716 end Find_Boolean_Types;
5717
5718 ---------------------------
5719 -- Find_Comparison_Types --
5720 ---------------------------
5721
5722 procedure Find_Comparison_Types
5723 (L, R : Node_Id;
5724 Op_Id : Entity_Id;
5725 N : Node_Id)
5726 is
5727 Index : Interp_Index;
5728 It : Interp;
5729 Found : Boolean := False;
5730 I_F : Interp_Index;
5731 T_F : Entity_Id;
5732 Scop : Entity_Id := Empty;
5733
5734 procedure Try_One_Interp (T1 : Entity_Id);
5735 -- Routine to try one proposed interpretation. Note that the context
5736 -- of the operator plays no role in resolving the arguments, so that
5737 -- if there is more than one interpretation of the operands that is
5738 -- compatible with comparison, the operation is ambiguous.
5739
4c46b835
AC
5740 --------------------
5741 -- Try_One_Interp --
5742 --------------------
5743
996ae0b0
RK
5744 procedure Try_One_Interp (T1 : Entity_Id) is
5745 begin
5746
5747 -- If the operator is an expanded name, then the type of the operand
5748 -- must be defined in the corresponding scope. If the type is
5749 -- universal, the context will impose the correct type.
5750
5751 if Present (Scop)
8b4230c8
AC
5752 and then not Defined_In_Scope (T1, Scop)
5753 and then T1 /= Universal_Integer
5754 and then T1 /= Universal_Real
5755 and then T1 /= Any_String
5756 and then T1 /= Any_Composite
996ae0b0
RK
5757 then
5758 return;
5759 end if;
5760
8b4230c8
AC
5761 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5762 if Found and then Base_Type (T1) /= Base_Type (T_F) then
996ae0b0
RK
5763 It := Disambiguate (L, I_F, Index, Any_Type);
5764
5765 if It = No_Interp then
5766 Ambiguous_Operands (N);
5767 Set_Etype (L, Any_Type);
5768 return;
5769
5770 else
5771 T_F := It.Typ;
5772 end if;
5773
5774 else
5775 Found := True;
5776 T_F := T1;
5777 I_F := Index;
5778 end if;
5779
5780 Set_Etype (L, T_F);
5781 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5782
5783 end if;
5784 end Try_One_Interp;
5785
d8221f45 5786 -- Start of processing for Find_Comparison_Types
996ae0b0
RK
5787
5788 begin
fbf5a39b
AC
5789 -- If left operand is aggregate, the right operand has to
5790 -- provide a usable type for it.
5791
8b4230c8 5792 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
b4592168 5793 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
5794 return;
5795 end if;
996ae0b0
RK
5796
5797 if Nkind (N) = N_Function_Call
5798 and then Nkind (Name (N)) = N_Expanded_Name
5799 then
5800 Scop := Entity (Prefix (Name (N)));
5801
5802 -- The prefix may be a package renaming, and the subsequent test
5803 -- requires the original package.
5804
5805 if Ekind (Scop) = E_Package
5806 and then Present (Renamed_Entity (Scop))
5807 then
5808 Scop := Renamed_Entity (Scop);
5809 Set_Entity (Prefix (Name (N)), Scop);
5810 end if;
5811 end if;
5812
5813 if not Is_Overloaded (L) then
5814 Try_One_Interp (Etype (L));
5815
5816 else
5817 Get_First_Interp (L, Index, It);
996ae0b0
RK
5818 while Present (It.Typ) loop
5819 Try_One_Interp (It.Typ);
5820 Get_Next_Interp (Index, It);
5821 end loop;
5822 end if;
5823 end Find_Comparison_Types;
5824
5825 ----------------------------------------
5826 -- Find_Non_Universal_Interpretations --
5827 ----------------------------------------
5828
5829 procedure Find_Non_Universal_Interpretations
5830 (N : Node_Id;
5831 R : Node_Id;
5832 Op_Id : Entity_Id;
5833 T1 : Entity_Id)
5834 is
5835 Index : Interp_Index;
4c46b835 5836 It : Interp;
996ae0b0
RK
5837
5838 begin
8b4230c8 5839 if T1 = Universal_Integer or else T1 = Universal_Real
b9daa96e
AC
5840
5841 -- If the left operand of an equality operator is null, the visibility
5842 -- of the operator must be determined from the interpretation of the
5843 -- right operand. This processing must be done for Any_Access, which
5844 -- is the internal representation of the type of the literal null.
5845
be4c5193 5846 or else T1 = Any_Access
996ae0b0
RK
5847 then
5848 if not Is_Overloaded (R) then
8b4230c8 5849 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
996ae0b0
RK
5850 else
5851 Get_First_Interp (R, Index, It);
996ae0b0
RK
5852 while Present (It.Typ) loop
5853 if Covers (It.Typ, T1) then
5854 Add_One_Interp
5855 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5856 end if;
5857
5858 Get_Next_Interp (Index, It);
5859 end loop;
5860 end if;
5861 else
5862 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5863 end if;
5864 end Find_Non_Universal_Interpretations;
5865
5866 ------------------------------
5867 -- Find_Concatenation_Types --
5868 ------------------------------
5869
5870 procedure Find_Concatenation_Types
5871 (L, R : Node_Id;
5872 Op_Id : Entity_Id;
5873 N : Node_Id)
5874 is
5875 Op_Type : constant Entity_Id := Etype (Op_Id);
5876
5877 begin
5878 if Is_Array_Type (Op_Type)
5879 and then not Is_Limited_Type (Op_Type)
5880
5881 and then (Has_Compatible_Type (L, Op_Type)
5882 or else
5883 Has_Compatible_Type (L, Component_Type (Op_Type)))
5884
5885 and then (Has_Compatible_Type (R, Op_Type)
5886 or else
5887 Has_Compatible_Type (R, Component_Type (Op_Type)))
5888 then
5889 Add_One_Interp (N, Op_Id, Op_Type);
5890 end if;
5891 end Find_Concatenation_Types;
5892
5893 -------------------------
5894 -- Find_Equality_Types --
5895 -------------------------
5896
5897 procedure Find_Equality_Types
5898 (L, R : Node_Id;
5899 Op_Id : Entity_Id;
5900 N : Node_Id)
5901 is
5902 Index : Interp_Index;
5903 It : Interp;
5904 Found : Boolean := False;
5905 I_F : Interp_Index;
5906 T_F : Entity_Id;
5907 Scop : Entity_Id := Empty;
5908
5909 procedure Try_One_Interp (T1 : Entity_Id);
a8e65aa5
AC
5910 -- The context of the equality operator plays no role in resolving the
5911 -- arguments, so that if there is more than one interpretation of the
5912 -- operands that is compatible with equality, the construct is ambiguous
5913 -- and an error can be emitted now, after trying to disambiguate, i.e.
5914 -- applying preference rules.
996ae0b0 5915
4c46b835
AC
5916 --------------------
5917 -- Try_One_Interp --
5918 --------------------
5919
996ae0b0 5920 procedure Try_One_Interp (T1 : Entity_Id) is
a8e65aa5
AC
5921 Bas : constant Entity_Id := Base_Type (T1);
5922
996ae0b0 5923 begin
996ae0b0
RK
5924 -- If the operator is an expanded name, then the type of the operand
5925 -- must be defined in the corresponding scope. If the type is
5926 -- universal, the context will impose the correct type. An anonymous
5927 -- type for a 'Access reference is also universal in this sense, as
5928 -- the actual type is obtained from context.
8b4230c8 5929
fe45e59e
ES
5930 -- In Ada 2005, the equality operator for anonymous access types
5931 -- is declared in Standard, and preference rules apply to it.
996ae0b0 5932
fe45e59e
ES
5933 if Present (Scop) then
5934 if Defined_In_Scope (T1, Scop)
5935 or else T1 = Universal_Integer
5936 or else T1 = Universal_Real
5937 or else T1 = Any_Access
5938 or else T1 = Any_String
5939 or else T1 = Any_Composite
5940 or else (Ekind (T1) = E_Access_Subprogram_Type
a8e65aa5 5941 and then not Comes_From_Source (T1))
fe45e59e
ES
5942 then
5943 null;
5944
5945 elsif Ekind (T1) = E_Anonymous_Access_Type
5946 and then Scop = Standard_Standard
5947 then
5948 null;
5949
5950 else
5951 -- The scope does not contain an operator for the type
5952
5953 return;
5954 end if;
a8e65aa5 5955
9aa04cc7
AC
5956 -- If we have infix notation, the operator must be usable. Within
5957 -- an instance, if the type is already established we know it is
5958 -- correct. If an operand is universal it is compatible with any
5959 -- numeric type.
31af8899 5960
a8e65aa5
AC
5961 elsif In_Open_Scopes (Scope (Bas))
5962 or else Is_Potentially_Use_Visible (Bas)
5963 or else In_Use (Bas)
9aa04cc7 5964 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
a54ffd6c
AC
5965
5966 -- In an instance, the type may have been immediately visible.
5967 -- Either the types are compatible, or one operand is universal
5968 -- (numeric or null).
5969
a8e65aa5 5970 or else (In_Instance
9aa04cc7
AC
5971 and then
5972 (First_Subtype (T1) = First_Subtype (Etype (R))
4f7c83ca 5973 or else Nkind (R) = N_Null
9aa04cc7
AC
5974 or else
5975 (Is_Numeric_Type (T1)
5976 and then Is_Universal_Numeric_Type (Etype (R)))))
a54ffd6c
AC
5977
5978 -- In Ada 2005, the equality on anonymous access types is declared
5979 -- in Standard, and is always visible.
5980
a8e65aa5
AC
5981 or else Ekind (T1) = E_Anonymous_Access_Type
5982 then
5983 null;
5984
5985 else
308e6f3a 5986 -- Save candidate type for subsequent error message, if any
a8e65aa5
AC
5987
5988 if not Is_Limited_Type (T1) then
5989 Candidate_Type := T1;
5990 end if;
5991
5992 return;
996ae0b0
RK
5993 end if;
5994
0ab80019
AC
5995 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5996 -- Do not allow anonymous access types in equality operators.
6e937c1c 5997
0791fbe9 5998 if Ada_Version < Ada_2005
6e937c1c
AC
5999 and then Ekind (T1) = E_Anonymous_Access_Type
6000 then
6001 return;
6002 end if;
6003
c92e8586
AC
6004 -- If the right operand has a type compatible with T1, check for an
6005 -- acceptable interpretation, unless T1 is limited (no predefined
6006 -- equality available), or this is use of a "/=" for a tagged type.
8b4230c8
AC
6007 -- In the latter case, possible interpretations of equality need
6008 -- to be considered, we don't want the default inequality declared
6009 -- in Standard to be chosen, and the "/=" will be rewritten as a
c92e8586
AC
6010 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6011 -- that that rewriting happens during analysis rather than being
6012 -- delayed until expansion (this is needed for ASIS, which only sees
6013 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6014 -- is Name_Op_Eq then we still proceed with the interpretation,
6015 -- because that indicates the potential rewriting case where the
6016 -- interpretation to consider is actually "=" and the node may be
6017 -- about to be rewritten by Analyze_Equality_Op.
6018
996ae0b0 6019 if T1 /= Standard_Void_Type
996ae0b0 6020 and then Has_Compatible_Type (R, T1)
c92e8586 6021
9b62eb32
AC
6022 and then
6023 ((not Is_Limited_Type (T1)
6024 and then not Is_Limited_Composite (T1))
6025
6026 or else
2fcc44fa 6027 (Is_Array_Type (T1)
9b62eb32
AC
6028 and then not Is_Limited_Type (Component_Type (T1))
6029 and then Available_Full_View_Of_Component (T1)))
c92e8586
AC
6030
6031 and then
6032 (Nkind (N) /= N_Op_Ne
6033 or else not Is_Tagged_Type (T1)
6034 or else Chars (Op_Id) = Name_Op_Eq)
996ae0b0
RK
6035 then
6036 if Found
6037 and then Base_Type (T1) /= Base_Type (T_F)
6038 then
6039 It := Disambiguate (L, I_F, Index, Any_Type);
6040
6041 if It = No_Interp then
6042 Ambiguous_Operands (N);
6043 Set_Etype (L, Any_Type);
6044 return;
6045
6046 else
6047 T_F := It.Typ;
6048 end if;
6049
6050 else
6051 Found := True;
6052 T_F := T1;
6053 I_F := Index;
6054 end if;
6055
6056 if not Analyzed (L) then
6057 Set_Etype (L, T_F);
6058 end if;
6059
6060 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6061
6e73e3ab 6062 -- Case of operator was not visible, Etype still set to Any_Type
996ae0b0 6063
6e73e3ab 6064 if Etype (N) = Any_Type then
996ae0b0
RK
6065 Found := False;
6066 end if;
fe45e59e
ES
6067
6068 elsif Scop = Standard_Standard
6069 and then Ekind (T1) = E_Anonymous_Access_Type
6070 then
6071 Found := True;
996ae0b0
RK
6072 end if;
6073 end Try_One_Interp;
6074
6075 -- Start of processing for Find_Equality_Types
6076
6077 begin
fbf5a39b
AC
6078 -- If left operand is aggregate, the right operand has to
6079 -- provide a usable type for it.
6080
6081 if Nkind (L) = N_Aggregate
6082 and then Nkind (R) /= N_Aggregate
6083 then
b4592168 6084 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
fbf5a39b
AC
6085 return;
6086 end if;
996ae0b0
RK
6087
6088 if Nkind (N) = N_Function_Call
6089 and then Nkind (Name (N)) = N_Expanded_Name
6090 then
6091 Scop := Entity (Prefix (Name (N)));
6092
6093 -- The prefix may be a package renaming, and the subsequent test
6094 -- requires the original package.
6095
6096 if Ekind (Scop) = E_Package
6097 and then Present (Renamed_Entity (Scop))
6098 then
6099 Scop := Renamed_Entity (Scop);
6100 Set_Entity (Prefix (Name (N)), Scop);
6101 end if;
6102 end if;
6103
6104 if not Is_Overloaded (L) then
6105 Try_One_Interp (Etype (L));
996ae0b0 6106
4c46b835 6107 else
996ae0b0 6108 Get_First_Interp (L, Index, It);
996ae0b0
RK
6109 while Present (It.Typ) loop
6110 Try_One_Interp (It.Typ);
6111 Get_Next_Interp (Index, It);
6112 end loop;
6113 end if;
6114 end Find_Equality_Types;
6115
6116 -------------------------
6117 -- Find_Negation_Types --
6118 -------------------------
6119
6120 procedure Find_Negation_Types
6121 (R : Node_Id;
6122 Op_Id : Entity_Id;
6123 N : Node_Id)
6124 is
6125 Index : Interp_Index;
6126 It : Interp;
6127
6128 begin
6129 if not Is_Overloaded (R) then
996ae0b0
RK
6130 if Etype (R) = Universal_Integer then
6131 Add_One_Interp (N, Op_Id, Any_Modular);
996ae0b0
RK
6132 elsif Valid_Boolean_Arg (Etype (R)) then
6133 Add_One_Interp (N, Op_Id, Etype (R));
6134 end if;
6135
6136 else
6137 Get_First_Interp (R, Index, It);
996ae0b0
RK
6138 while Present (It.Typ) loop
6139 if Valid_Boolean_Arg (It.Typ) then
6140 Add_One_Interp (N, Op_Id, It.Typ);
6141 end if;
6142
6143 Get_Next_Interp (Index, It);
6144 end loop;
6145 end if;
6146 end Find_Negation_Types;
6147
d469eabe
HK
6148 ------------------------------
6149 -- Find_Primitive_Operation --
6150 ------------------------------
6151
6152 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6153 Obj : constant Node_Id := Prefix (N);
6154 Op : constant Node_Id := Selector_Name (N);
6155
6156 Prim : Elmt_Id;
6157 Prims : Elist_Id;
6158 Typ : Entity_Id;
6159
6160 begin
6161 Set_Etype (Op, Any_Type);
6162
6163 if Is_Access_Type (Etype (Obj)) then
6164 Typ := Designated_Type (Etype (Obj));
6165 else
6166 Typ := Etype (Obj);
6167 end if;
6168
6169 if Is_Class_Wide_Type (Typ) then
6170 Typ := Root_Type (Typ);
6171 end if;
6172
6173 Prims := Primitive_Operations (Typ);
6174
6175 Prim := First_Elmt (Prims);
6176 while Present (Prim) loop
6177 if Chars (Node (Prim)) = Chars (Op) then
6178 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6179 Set_Etype (N, Etype (Node (Prim)));
6180 end if;
6181
6182 Next_Elmt (Prim);
6183 end loop;
6184
6185 -- Now look for class-wide operations of the type or any of its
6186 -- ancestors by iterating over the homonyms of the selector.
6187
6188 declare
6189 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6190 Hom : Entity_Id;
6191
6192 begin
6193 Hom := Current_Entity (Op);
6194 while Present (Hom) loop
6195 if (Ekind (Hom) = E_Procedure
6196 or else
6197 Ekind (Hom) = E_Function)
6198 and then Scope (Hom) = Scope (Typ)
6199 and then Present (First_Formal (Hom))
6200 and then
6201 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6202 or else
6203 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
6204 and then
6205 Ekind (Etype (First_Formal (Hom))) =
6206 E_Anonymous_Access_Type
6207 and then
6208 Base_Type
6209 (Designated_Type (Etype (First_Formal (Hom)))) =
d469eabe
HK
6210 Cls_Type))
6211 then
6212 Add_One_Interp (Op, Hom, Etype (Hom));
6213 Set_Etype (N, Etype (Hom));
6214 end if;
6215
6216 Hom := Homonym (Hom);
6217 end loop;
6218 end;
6219
6220 return Etype (Op) /= Any_Type;
6221 end Find_Primitive_Operation;
6222
996ae0b0
RK
6223 ----------------------
6224 -- Find_Unary_Types --
6225 ----------------------
6226
6227 procedure Find_Unary_Types
6228 (R : Node_Id;
6229 Op_Id : Entity_Id;
6230 N : Node_Id)
6231 is
6232 Index : Interp_Index;
6233 It : Interp;
6234
6235 begin
6236 if not Is_Overloaded (R) then
6237 if Is_Numeric_Type (Etype (R)) then
65f7ed64
AC
6238
6239 -- In an instance a generic actual may be a numeric type even if
6240 -- the formal in the generic unit was not. In that case, the
6241 -- predefined operator was not a possible interpretation in the
2e70d415
AC
6242 -- generic, and cannot be one in the instance, unless the operator
6243 -- is an actual of an instance.
65f7ed64
AC
6244
6245 if In_Instance
6246 and then
6247 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6248 then
6249 null;
6250 else
6251 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6252 end if;
996ae0b0
RK
6253 end if;
6254
6255 else
6256 Get_First_Interp (R, Index, It);
996ae0b0
RK
6257 while Present (It.Typ) loop
6258 if Is_Numeric_Type (It.Typ) then
65f7ed64
AC
6259 if In_Instance
6260 and then
6261 not Is_Numeric_Type
6262 (Corresponding_Generic_Type (Etype (It.Typ)))
6263 then
6264 null;
6265
6266 else
6267 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6268 end if;
996ae0b0
RK
6269 end if;
6270
6271 Get_Next_Interp (Index, It);
6272 end loop;
6273 end if;
6274 end Find_Unary_Types;
6275
996ae0b0
RK
6276 ------------------
6277 -- Junk_Operand --
6278 ------------------
6279
6280 function Junk_Operand (N : Node_Id) return Boolean is
6281 Enode : Node_Id;
6282
6283 begin
6284 if Error_Posted (N) then
6285 return False;
6286 end if;
6287
6288 -- Get entity to be tested
6289
6290 if Is_Entity_Name (N)
6291 and then Present (Entity (N))
6292 then
6293 Enode := N;
6294
6295 -- An odd case, a procedure name gets converted to a very peculiar
6296 -- function call, and here is where we detect this happening.
6297
6298 elsif Nkind (N) = N_Function_Call
6299 and then Is_Entity_Name (Name (N))
6300 and then Present (Entity (Name (N)))
6301 then
6302 Enode := Name (N);
6303
6304 -- Another odd case, there are at least some cases of selected
6305 -- components where the selected component is not marked as having
6306 -- an entity, even though the selector does have an entity
6307
6308 elsif Nkind (N) = N_Selected_Component
6309 and then Present (Entity (Selector_Name (N)))
6310 then
6311 Enode := Selector_Name (N);
6312
6313 else
6314 return False;
6315 end if;
6316
9de61fcb 6317 -- Now test the entity we got to see if it is a bad case
996ae0b0
RK
6318
6319 case Ekind (Entity (Enode)) is
6320
6321 when E_Package =>
6322 Error_Msg_N
6323 ("package name cannot be used as operand", Enode);
6324
6325 when Generic_Unit_Kind =>
6326 Error_Msg_N
6327 ("generic unit name cannot be used as operand", Enode);
6328
6329 when Type_Kind =>
6330 Error_Msg_N
6331 ("subtype name cannot be used as operand", Enode);
6332
6333 when Entry_Kind =>
6334 Error_Msg_N
6335 ("entry name cannot be used as operand", Enode);
6336
6337 when E_Procedure =>
6338 Error_Msg_N
6339 ("procedure name cannot be used as operand", Enode);
6340
6341 when E_Exception =>
6342 Error_Msg_N
6343 ("exception name cannot be used as operand", Enode);
6344
6345 when E_Block | E_Label | E_Loop =>
6346 Error_Msg_N
6347 ("label name cannot be used as operand", Enode);
6348
6349 when others =>
6350 return False;
6351
6352 end case;
6353
6354 return True;
6355 end Junk_Operand;
6356
6357 --------------------
6358 -- Operator_Check --
6359 --------------------
6360
6361 procedure Operator_Check (N : Node_Id) is
6362 begin
30c20106
AC
6363 Remove_Abstract_Operations (N);
6364
996ae0b0
RK
6365 -- Test for case of no interpretation found for operator
6366
6367 if Etype (N) = Any_Type then
6368 declare
b67a385c
ES
6369 L : Node_Id;
6370 R : Node_Id;
6371 Op_Id : Entity_Id := Empty;
996ae0b0
RK
6372
6373 begin
6374 R := Right_Opnd (N);
6375
6376 if Nkind (N) in N_Binary_Op then
6377 L := Left_Opnd (N);
6378 else
6379 L := Empty;
6380 end if;
6381
6382 -- If either operand has no type, then don't complain further,
9de61fcb 6383 -- since this simply means that we have a propagated error.
996ae0b0
RK
6384
6385 if R = Error
6386 or else Etype (R) = Any_Type
6387 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6388 then
7610fee8
AC
6389 -- For the rather unusual case where one of the operands is
6390 -- a Raise_Expression, whose initial type is Any_Type, use
6391 -- the type of the other operand.
6392
6393 if Nkind (L) = N_Raise_Expression then
6394 Set_Etype (L, Etype (R));
6395 Set_Etype (N, Etype (R));
6396
6397 elsif Nkind (R) = N_Raise_Expression then
6398 Set_Etype (R, Etype (L));
6399 Set_Etype (N, Etype (L));
6400 end if;
6401
996ae0b0
RK
6402 return;
6403
4c46b835
AC
6404 -- We explicitly check for the case of concatenation of component
6405 -- with component to avoid reporting spurious matching array types
6406 -- that might happen to be lurking in distant packages (such as
6407 -- run-time packages). This also prevents inconsistencies in the
6408 -- messages for certain ACVC B tests, which can vary depending on
6409 -- types declared in run-time interfaces. Another improvement when
6410 -- aggregates are present is to look for a well-typed operand.
996ae0b0
RK
6411
6412 elsif Present (Candidate_Type)
6413 and then (Nkind (N) /= N_Op_Concat
6414 or else Is_Array_Type (Etype (L))
6415 or else Is_Array_Type (Etype (R)))
6416 then
996ae0b0
RK
6417 if Nkind (N) = N_Op_Concat then
6418 if Etype (L) /= Any_Composite
6419 and then Is_Array_Type (Etype (L))
6420 then
6421 Candidate_Type := Etype (L);
6422
6423 elsif Etype (R) /= Any_Composite
6424 and then Is_Array_Type (Etype (R))
6425 then
6426 Candidate_Type := Etype (R);
6427 end if;
6428 end if;
6429
19d846a0 6430 Error_Msg_NE -- CODEFIX
996ae0b0
RK
6431 ("operator for} is not directly visible!",
6432 N, First_Subtype (Candidate_Type));
4561baf7
ES
6433
6434 declare
6435 U : constant Node_Id :=
6436 Cunit (Get_Source_Unit (Candidate_Type));
4561baf7
ES
6437 begin
6438 if Unit_Is_Visible (U) then
6439 Error_Msg_N -- CODEFIX
6440 ("use clause would make operation legal!", N);
4561baf7
ES
6441 else
6442 Error_Msg_NE -- CODEFIX
6443 ("add with_clause and use_clause for&!",
8b4230c8 6444 N, Defining_Entity (Unit (U)));
4561baf7
ES
6445 end if;
6446 end;
996ae0b0
RK
6447 return;
6448
6449 -- If either operand is a junk operand (e.g. package name), then
6450 -- post appropriate error messages, but do not complain further.
6451
0e0eecec
ES
6452 -- Note that the use of OR in this test instead of OR ELSE is
6453 -- quite deliberate, we may as well check both operands in the
6454 -- binary operator case.
996ae0b0
RK
6455
6456 elsif Junk_Operand (R)
9559eccf
AC
6457 or -- really mean OR here and not OR ELSE, see above
6458 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
996ae0b0
RK
6459 then
6460 return;
6461
6462 -- If we have a logical operator, one of whose operands is
0e0eecec
ES
6463 -- Boolean, then we know that the other operand cannot resolve to
6464 -- Boolean (since we got no interpretations), but in that case we
6465 -- pretty much know that the other operand should be Boolean, so
6466 -- resolve it that way (generating an error)
996ae0b0 6467
d469eabe 6468 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
996ae0b0
RK
6469 if Etype (L) = Standard_Boolean then
6470 Resolve (R, Standard_Boolean);
6471 return;
6472 elsif Etype (R) = Standard_Boolean then
6473 Resolve (L, Standard_Boolean);
6474 return;
6475 end if;
6476
6477 -- For an arithmetic operator or comparison operator, if one
6478 -- of the operands is numeric, then we know the other operand
6479 -- is not the same numeric type. If it is a non-numeric type,
6480 -- then probably it is intended to match the other operand.
6481
d469eabe
HK
6482 elsif Nkind_In (N, N_Op_Add,
6483 N_Op_Divide,
6484 N_Op_Ge,
6485 N_Op_Gt,
6486 N_Op_Le)
6487 or else
6488 Nkind_In (N, N_Op_Lt,
6489 N_Op_Mod,
6490 N_Op_Multiply,
6491 N_Op_Rem,
6492 N_Op_Subtract)
996ae0b0 6493 then
7dbd3de9
RD
6494 -- If Allow_Integer_Address is active, check whether the
6495 -- operation becomes legal after converting an operand.
6496
996ae0b0
RK
6497 if Is_Numeric_Type (Etype (L))
6498 and then not Is_Numeric_Type (Etype (R))
6499 then
7dbd3de9
RD
6500 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6501 Rewrite (R,
6502 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7dbd3de9 6503
1e3689bd
AC
6504 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6505 Analyze_Comparison_Op (N);
6506 else
6507 Analyze_Arithmetic_Op (N);
6508 end if;
7dbd3de9
RD
6509 else
6510 Resolve (R, Etype (L));
6511 end if;
1e3689bd 6512
996ae0b0
RK
6513 return;
6514
6515 elsif Is_Numeric_Type (Etype (R))
6516 and then not Is_Numeric_Type (Etype (L))
6517 then
7dbd3de9
RD
6518 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6519 Rewrite (L,
6520 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
1e3689bd
AC
6521
6522 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6523 Analyze_Comparison_Op (N);
6524 else
6525 Analyze_Arithmetic_Op (N);
6526 end if;
6527
9559eccf 6528 return;
7dbd3de9
RD
6529
6530 else
6531 Resolve (L, Etype (R));
6532 end if;
9559eccf 6533
996ae0b0 6534 return;
9559eccf
AC
6535
6536 elsif Allow_Integer_Address
6537 and then Is_Descendent_Of_Address (Etype (L))
6538 and then Is_Descendent_Of_Address (Etype (R))
6539 and then not Error_Posted (N)
6540 then
6541 declare
6542 Addr_Type : constant Entity_Id := Etype (L);
6543
6544 begin
6545 Rewrite (L,
6546 Unchecked_Convert_To (
6547 Standard_Integer, Relocate_Node (L)));
6548 Rewrite (R,
6549 Unchecked_Convert_To (
6550 Standard_Integer, Relocate_Node (R)));
1e3689bd
AC
6551
6552 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6553 Analyze_Comparison_Op (N);
6554 else
6555 Analyze_Arithmetic_Op (N);
6556 end if;
9559eccf
AC
6557
6558 -- If this is an operand in an enclosing arithmetic
6559 -- operation, Convert the result as an address so that
6560 -- arithmetic folding of address can continue.
6561
6562 if Nkind (Parent (N)) in N_Op then
6563 Rewrite (N,
6564 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6565 end if;
6566
6567 return;
6568 end;
996ae0b0
RK
6569 end if;
6570
6571 -- Comparisons on A'Access are common enough to deserve a
6572 -- special message.
6573
d469eabe 6574 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
996ae0b0
RK
6575 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6576 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6577 then
6578 Error_Msg_N
6579 ("two access attributes cannot be compared directly", N);
6580 Error_Msg_N
aab883ec 6581 ("\use qualified expression for one of the operands",
996ae0b0
RK
6582 N);
6583 return;
6584
6585 -- Another one for C programmers
6586
6587 elsif Nkind (N) = N_Op_Concat
6588 and then Valid_Boolean_Arg (Etype (L))
6589 and then Valid_Boolean_Arg (Etype (R))
6590 then
6591 Error_Msg_N ("invalid operands for concatenation", N);
4e7a4f6e
AC
6592 Error_Msg_N -- CODEFIX
6593 ("\maybe AND was meant", N);
996ae0b0
RK
6594 return;
6595
6596 -- A special case for comparison of access parameter with null
6597
6598 elsif Nkind (N) = N_Op_Eq
6599 and then Is_Entity_Name (L)
6600 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6601 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6602 N_Access_Definition
6603 and then Nkind (R) = N_Null
6604 then
6605 Error_Msg_N ("access parameter is not allowed to be null", L);
6606 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6607 return;
61bee0e3
AC
6608
6609 -- Another special case for exponentiation, where the right
6610 -- operand must be Natural, independently of the base.
6611
6612 elsif Nkind (N) = N_Op_Expon
6613 and then Is_Numeric_Type (Etype (L))
6614 and then not Is_Overloaded (R)
6615 and then
6616 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6617 and then Base_Type (Etype (R)) /= Universal_Integer
6618 then
dec6faf1 6619 if Ada_Version >= Ada_2012
15954beb 6620 and then Has_Dimension_System (Etype (L))
dec6faf1
AC
6621 then
6622 Error_Msg_NE
54c04d6c 6623 ("exponent for dimensioned type must be a rational" &
dec6faf1
AC
6624 ", found}", R, Etype (R));
6625 else
6626 Error_Msg_NE
6627 ("exponent must be of type Natural, found}", R, Etype (R));
6628 end if;
54c04d6c 6629
61bee0e3 6630 return;
11261647
AC
6631
6632 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6633 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6634 Rewrite (R,
6635 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6636 Analyze_Equality_Op (N);
6637 return;
6638 end if;
996ae0b0
RK
6639 end if;
6640
0e0eecec
ES
6641 -- If we fall through then just give general message. Note that in
6642 -- the following messages, if the operand is overloaded we choose
6643 -- an arbitrary type to complain about, but that is probably more
6644 -- useful than not giving a type at all.
996ae0b0
RK
6645
6646 if Nkind (N) in N_Unary_Op then
6647 Error_Msg_Node_2 := Etype (R);
6648 Error_Msg_N ("operator& not defined for}", N);
6649 return;
6650
6651 else
fbf5a39b
AC
6652 if Nkind (N) in N_Binary_Op then
6653 if not Is_Overloaded (L)
6654 and then not Is_Overloaded (R)
6655 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6656 then
7ffd9312 6657 Error_Msg_Node_2 := First_Subtype (Etype (R));
fbf5a39b 6658 Error_Msg_N ("there is no applicable operator& for}", N);
996ae0b0 6659
fbf5a39b 6660 else
b67a385c
ES
6661 -- Another attempt to find a fix: one of the candidate
6662 -- interpretations may not be use-visible. This has
6663 -- already been checked for predefined operators, so
6664 -- we examine only user-defined functions.
6665
6666 Op_Id := Get_Name_Entity_Id (Chars (N));
6667
6668 while Present (Op_Id) loop
6669 if Ekind (Op_Id) /= E_Operator
6670 and then Is_Overloadable (Op_Id)
6671 then
6672 if not Is_Immediately_Visible (Op_Id)
6673 and then not In_Use (Scope (Op_Id))
aab883ec 6674 and then not Is_Abstract_Subprogram (Op_Id)
b67a385c
ES
6675 and then not Is_Hidden (Op_Id)
6676 and then Ekind (Scope (Op_Id)) = E_Package
6677 and then
6678 Has_Compatible_Type
6679 (L, Etype (First_Formal (Op_Id)))
6680 and then Present
6681 (Next_Formal (First_Formal (Op_Id)))
6682 and then
6683 Has_Compatible_Type
6684 (R,
6685 Etype (Next_Formal (First_Formal (Op_Id))))
6686 then
ed2233dc 6687 Error_Msg_N
b67a385c 6688 ("No legal interpretation for operator&", N);
ed2233dc 6689 Error_Msg_NE
b67a385c 6690 ("\use clause on& would make operation legal",
8b4230c8 6691 N, Scope (Op_Id));
b67a385c
ES
6692 exit;
6693 end if;
6694 end if;
fbf5a39b 6695
b67a385c
ES
6696 Op_Id := Homonym (Op_Id);
6697 end loop;
6698
6699 if No (Op_Id) then
6700 Error_Msg_N ("invalid operand types for operator&", N);
6701
6702 if Nkind (N) /= N_Op_Concat then
6703 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6704 Error_Msg_NE ("\right operand has}!", N, Etype (R));
2e70d415
AC
6705
6706 -- For concatenation operators it is more difficult to
6707 -- determine which is the wrong operand. It is worth
6708 -- flagging explicitly an access type, for those who
6709 -- might think that a dereference happens here.
6710
6711 elsif Is_Access_Type (Etype (L)) then
6712 Error_Msg_N ("\left operand is access type", N);
6713
6714 elsif Is_Access_Type (Etype (R)) then
6715 Error_Msg_N ("\right operand is access type", N);
b67a385c 6716 end if;
fbf5a39b
AC
6717 end if;
6718 end if;
996ae0b0
RK
6719 end if;
6720 end if;
6721 end;
6722 end if;
6723 end Operator_Check;
6724
6e73e3ab
AC
6725 -----------------------------------------
6726 -- Process_Implicit_Dereference_Prefix --
6727 -----------------------------------------
6728
d469eabe 6729 function Process_Implicit_Dereference_Prefix
da709d08 6730 (E : Entity_Id;
d469eabe 6731 P : Entity_Id) return Entity_Id
6e73e3ab
AC
6732 is
6733 Ref : Node_Id;
d469eabe 6734 Typ : constant Entity_Id := Designated_Type (Etype (P));
da709d08 6735
6e73e3ab 6736 begin
1a8fae99
ES
6737 if Present (E)
6738 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6739 then
8b4230c8
AC
6740 -- We create a dummy reference to E to ensure that the reference is
6741 -- not considered as part of an assignment (an implicit dereference
6742 -- can never assign to its prefix). The Comes_From_Source attribute
6743 -- needs to be propagated for accurate warnings.
6e73e3ab 6744
e4494292 6745 Ref := New_Occurrence_Of (E, Sloc (P));
6e73e3ab
AC
6746 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6747 Generate_Reference (E, Ref);
6748 end if;
d469eabe 6749
8b4230c8
AC
6750 -- An implicit dereference is a legal occurrence of an incomplete type
6751 -- imported through a limited_with clause, if the full view is visible.
d469eabe 6752
7b56a91b
AC
6753 if From_Limited_With (Typ)
6754 and then not From_Limited_With (Scope (Typ))
d469eabe
HK
6755 and then
6756 (Is_Immediately_Visible (Scope (Typ))
6757 or else
6758 (Is_Child_Unit (Scope (Typ))
8398e82e 6759 and then Is_Visible_Lib_Unit (Scope (Typ))))
d469eabe
HK
6760 then
6761 return Available_View (Typ);
6762 else
6763 return Typ;
6764 end if;
6e73e3ab
AC
6765 end Process_Implicit_Dereference_Prefix;
6766
30c20106
AC
6767 --------------------------------
6768 -- Remove_Abstract_Operations --
6769 --------------------------------
6770
6771 procedure Remove_Abstract_Operations (N : Node_Id) is
e80f0cb0
RD
6772 Abstract_Op : Entity_Id := Empty;
6773 Address_Descendent : Boolean := False;
6774 I : Interp_Index;
6775 It : Interp;
30c20106 6776
0e0eecec
ES
6777 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
6778 -- activate this if either extensions are enabled, or if the abstract
6779 -- operation in question comes from a predefined file. This latter test
6780 -- allows us to use abstract to make operations invisible to users. In
6781 -- particular, if type Address is non-private and abstract subprograms
6782 -- are used to hide its operators, they will be truly hidden.
30c20106 6783
5950a3ac 6784 type Operand_Position is (First_Op, Second_Op);
8a36a0cc 6785 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5950a3ac
AC
6786
6787 procedure Remove_Address_Interpretations (Op : Operand_Position);
0e0eecec
ES
6788 -- Ambiguities may arise when the operands are literal and the address
6789 -- operations in s-auxdec are visible. In that case, remove the
8b4230c8
AC
6790 -- interpretation of a literal as Address, to retain the semantics
6791 -- of Address as a private type.
9f4fd324
AC
6792
6793 ------------------------------------
5950a3ac 6794 -- Remove_Address_Interpretations --
9f4fd324
AC
6795 ------------------------------------
6796
5950a3ac 6797 procedure Remove_Address_Interpretations (Op : Operand_Position) is
9f4fd324
AC
6798 Formal : Entity_Id;
6799
6800 begin
6801 if Is_Overloaded (N) then
6802 Get_First_Interp (N, I, It);
6803 while Present (It.Nam) loop
6804 Formal := First_Entity (It.Nam);
6805
5950a3ac
AC
6806 if Op = Second_Op then
6807 Formal := Next_Entity (Formal);
6808 end if;
6809
6810 if Is_Descendent_Of_Address (Etype (Formal)) then
e80f0cb0 6811 Address_Descendent := True;
9f4fd324
AC
6812 Remove_Interp (I);
6813 end if;
6814
6815 Get_Next_Interp (I, It);
6816 end loop;
6817 end if;
6818 end Remove_Address_Interpretations;
6819
6820 -- Start of processing for Remove_Abstract_Operations
6821
30c20106 6822 begin
d935a36e 6823 if Is_Overloaded (N) then
ee1a7572
AC
6824 if Debug_Flag_V then
6825 Write_Str ("Remove_Abstract_Operations: ");
6826 Write_Overloads (N);
6827 end if;
6828
30c20106 6829 Get_First_Interp (N, I, It);
d935a36e 6830
30c20106 6831 while Present (It.Nam) loop
aab883ec
ES
6832 if Is_Overloadable (It.Nam)
6833 and then Is_Abstract_Subprogram (It.Nam)
30c20106
AC
6834 and then not Is_Dispatching_Operation (It.Nam)
6835 then
af152989 6836 Abstract_Op := It.Nam;
fe45e59e 6837
401093c1 6838 if Is_Descendent_Of_Address (It.Typ) then
e80f0cb0 6839 Address_Descendent := True;
401093c1
ES
6840 Remove_Interp (I);
6841 exit;
6842
76264f60 6843 -- In Ada 2005, this operation does not participate in overload
9c510803 6844 -- resolution. If the operation is defined in a predefined
fe45e59e
ES
6845 -- unit, it is one of the operations declared abstract in some
6846 -- variants of System, and it must be removed as well.
6847
0791fbe9 6848 elsif Ada_Version >= Ada_2005
401093c1
ES
6849 or else Is_Predefined_File_Name
6850 (Unit_File_Name (Get_Source_Unit (It.Nam)))
fe45e59e
ES
6851 then
6852 Remove_Interp (I);
6853 exit;
6854 end if;
30c20106
AC
6855 end if;
6856
6857 Get_Next_Interp (I, It);
6858 end loop;
6859
af152989 6860 if No (Abstract_Op) then
fe45e59e
ES
6861
6862 -- If some interpretation yields an integer type, it is still
6863 -- possible that there are address interpretations. Remove them
6864 -- if one operand is a literal, to avoid spurious ambiguities
6865 -- on systems where Address is a visible integer type.
6866
6867 if Is_Overloaded (N)
401093c1 6868 and then Nkind (N) in N_Op
fe45e59e
ES
6869 and then Is_Integer_Type (Etype (N))
6870 then
6871 if Nkind (N) in N_Binary_Op then
6872 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
6873 Remove_Address_Interpretations (Second_Op);
6874
6875 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
6876 Remove_Address_Interpretations (First_Op);
6877 end if;
6878 end if;
6879 end if;
3984e89a
AC
6880
6881 elsif Nkind (N) in N_Op then
4c46b835 6882
fe45e59e
ES
6883 -- Remove interpretations that treat literals as addresses. This
6884 -- is never appropriate, even when Address is defined as a visible
6885 -- Integer type. The reason is that we would really prefer Address
7a5b62b0
AC
6886 -- to behave as a private type, even in this case. If Address is a
6887 -- visible integer type, we get lots of overload ambiguities.
30c20106 6888
5950a3ac
AC
6889 if Nkind (N) in N_Binary_Op then
6890 declare
6891 U1 : constant Boolean :=
8b4230c8 6892 Present (Universal_Interpretation (Right_Opnd (N)));
5950a3ac 6893 U2 : constant Boolean :=
8b4230c8 6894 Present (Universal_Interpretation (Left_Opnd (N)));
30c20106 6895
5950a3ac 6896 begin
0e0eecec 6897 if U1 then
5950a3ac 6898 Remove_Address_Interpretations (Second_Op);
0e0eecec 6899 end if;
5950a3ac 6900
0e0eecec 6901 if U2 then
5950a3ac 6902 Remove_Address_Interpretations (First_Op);
30c20106
AC
6903 end if;
6904
5950a3ac
AC
6905 if not (U1 and U2) then
6906
6907 -- Remove corresponding predefined operator, which is
6908 -- always added to the overload set.
6909
6910 Get_First_Interp (N, I, It);
6911 while Present (It.Nam) loop
0ab80019
AC
6912 if Scope (It.Nam) = Standard_Standard
6913 and then Base_Type (It.Typ) =
6914 Base_Type (Etype (Abstract_Op))
6915 then
5950a3ac
AC
6916 Remove_Interp (I);
6917 end if;
6918
8a36a0cc
AC
6919 Get_Next_Interp (I, It);
6920 end loop;
6921
6922 elsif Is_Overloaded (N)
6923 and then Present (Univ_Type)
6924 then
6925 -- If both operands have a universal interpretation,
0e0eecec
ES
6926 -- it is still necessary to remove interpretations that
6927 -- yield Address. Any remaining ambiguities will be
6928 -- removed in Disambiguate.
8a36a0cc
AC
6929
6930 Get_First_Interp (N, I, It);
8a36a0cc 6931 while Present (It.Nam) loop
0e0eecec
ES
6932 if Is_Descendent_Of_Address (It.Typ) then
6933 Remove_Interp (I);
6934
6935 elsif not Is_Type (It.Nam) then
8a36a0cc 6936 Set_Entity (N, It.Nam);
8a36a0cc
AC
6937 end if;
6938
5950a3ac
AC
6939 Get_Next_Interp (I, It);
6940 end loop;
6941 end if;
6942 end;
30c20106 6943 end if;
3984e89a
AC
6944
6945 elsif Nkind (N) = N_Function_Call
6946 and then
6947 (Nkind (Name (N)) = N_Operator_Symbol
6948 or else
6949 (Nkind (Name (N)) = N_Expanded_Name
6950 and then
6951 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
6952 then
5950a3ac 6953
3984e89a
AC
6954 declare
6955 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950a3ac
AC
6956 U1 : constant Boolean :=
6957 Present (Universal_Interpretation (Arg1));
6958 U2 : constant Boolean :=
6959 Present (Next (Arg1)) and then
6960 Present (Universal_Interpretation (Next (Arg1)));
3984e89a
AC
6961
6962 begin
0e0eecec 6963 if U1 then
5950a3ac 6964 Remove_Address_Interpretations (First_Op);
0e0eecec 6965 end if;
3984e89a 6966
0e0eecec 6967 if U2 then
5950a3ac
AC
6968 Remove_Address_Interpretations (Second_Op);
6969 end if;
6970
6971 if not (U1 and U2) then
3984e89a
AC
6972 Get_First_Interp (N, I, It);
6973 while Present (It.Nam) loop
9f4fd324
AC
6974 if Scope (It.Nam) = Standard_Standard
6975 and then It.Typ = Base_Type (Etype (Abstract_Op))
6976 then
3984e89a
AC
6977 Remove_Interp (I);
6978 end if;
6979
6980 Get_Next_Interp (I, It);
6981 end loop;
6982 end if;
6983 end;
30c20106 6984 end if;
af152989 6985
401093c1
ES
6986 -- If the removal has left no valid interpretations, emit an error
6987 -- message now and label node as illegal.
af152989
AC
6988
6989 if Present (Abstract_Op) then
6990 Get_First_Interp (N, I, It);
6991
6992 if No (It.Nam) then
6993
6e73e3ab 6994 -- Removal of abstract operation left no viable candidate
af152989
AC
6995
6996 Set_Etype (N, Any_Type);
6997 Error_Msg_Sloc := Sloc (Abstract_Op);
6998 Error_Msg_NE
6999 ("cannot call abstract operation& declared#", N, Abstract_Op);
401093c1
ES
7000
7001 -- In Ada 2005, an abstract operation may disable predefined
7002 -- operators. Since the context is not yet known, we mark the
7003 -- predefined operators as potentially hidden. Do not include
7004 -- predefined operators when addresses are involved since this
7005 -- case is handled separately.
7006
e80f0cb0 7007 elsif Ada_Version >= Ada_2005 and then not Address_Descendent then
401093c1
ES
7008 while Present (It.Nam) loop
7009 if Is_Numeric_Type (It.Typ)
7010 and then Scope (It.Typ) = Standard_Standard
7011 then
7012 Set_Abstract_Op (I, Abstract_Op);
7013 end if;
7014
7015 Get_Next_Interp (I, It);
7016 end loop;
af152989
AC
7017 end if;
7018 end if;
ee1a7572
AC
7019
7020 if Debug_Flag_V then
7021 Write_Str ("Remove_Abstract_Operations done: ");
7022 Write_Overloads (N);
7023 end if;
30c20106
AC
7024 end if;
7025 end Remove_Abstract_Operations;
7026
d50f4827
AC
7027 ----------------------------
7028 -- Try_Container_Indexing --
7029 ----------------------------
7030
7031 function Try_Container_Indexing
7032 (N : Node_Id;
7033 Prefix : Node_Id;
50878404 7034 Exprs : List_Id) return Boolean
d50f4827
AC
7035 is
7036 Loc : constant Source_Ptr := Sloc (N);
f3296dd3 7037 C_Type : Entity_Id;
50878404 7038 Assoc : List_Id;
d50f4827
AC
7039 Disc : Entity_Id;
7040 Func : Entity_Id;
7041 Func_Name : Node_Id;
7042 Indexing : Node_Id;
d50f4827
AC
7043
7044 begin
f3296dd3
AC
7045 C_Type := Etype (Prefix);
7046
7047 -- If indexing a class-wide container, obtain indexing primitive
7048 -- from specific type.
7049
7050 if Is_Class_Wide_Type (C_Type) then
7051 C_Type := Etype (Base_Type (C_Type));
7052 end if;
d50f4827 7053
af89615f 7054 -- Check whether type has a specified indexing aspect
d50f4827
AC
7055
7056 Func_Name := Empty;
d50f4827 7057
9ee76313 7058 if Is_Variable (Prefix) then
d62520f3
HK
7059 Func_Name :=
7060 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Variable_Indexing);
9ee76313 7061 end if;
dedac3eb 7062
9ee76313 7063 if No (Func_Name) then
d62520f3
HK
7064 Func_Name :=
7065 Find_Value_Of_Aspect (Etype (Prefix), Aspect_Constant_Indexing);
9ee76313 7066 end if;
d50f4827
AC
7067
7068 -- If aspect does not exist the expression is illegal. Error is
7069 -- diagnosed in caller.
7070
7071 if No (Func_Name) then
57a8057a 7072
5ff90f08
AC
7073 -- The prefix itself may be an indexing of a container: rewrite
7074 -- as such and re-analyze.
57a8057a
AC
7075
7076 if Has_Implicit_Dereference (Etype (Prefix)) then
7077 Build_Explicit_Dereference
7078 (Prefix, First_Discriminant (Etype (Prefix)));
50878404 7079 return Try_Container_Indexing (N, Prefix, Exprs);
57a8057a
AC
7080
7081 else
7082 return False;
7083 end if;
3f433bc0 7084
6907542d
AC
7085 -- If the container type is derived from another container type, the
7086 -- value of the inherited aspect is the Reference operation declared
7087 -- for the parent type.
7088
3f433bc0
ES
7089 -- However, Reference is also a primitive operation of the type, and
7090 -- the inherited operation has a different signature. We retrieve the
7091 -- right one from the list of primitive operations of the derived type.
7092
6907542d
AC
7093 -- Note that predefined containers are typically all derived from one
7094 -- of the Controlled types. The code below is motivated by containers
7095 -- that are derived from other types with a Reference aspect.
7096
7097 -- Additional machinery may be needed for types that have several user-
7098 -- defined Reference operations with different signatures ???
7099
f3296dd3 7100 elsif Is_Derived_Type (C_Type)
6907542d
AC
7101 and then Etype (First_Formal (Entity (Func_Name))) /= Etype (Prefix)
7102 then
f3296dd3 7103 Func := Find_Prim_Op (C_Type, Chars (Func_Name));
3f433bc0 7104 Func_Name := New_Occurrence_Of (Func, Loc);
d50f4827
AC
7105 end if;
7106
50878404
AC
7107 Assoc := New_List (Relocate_Node (Prefix));
7108
5f50020a 7109 -- A generalized indexing may have nore than one index expression, so
50878404 7110 -- transfer all of them to the argument list to be used in the call.
5f50020a
ES
7111 -- Note that there may be named associations, in which case the node
7112 -- was rewritten earlier as a call, and has been transformed back into
7113 -- an indexed expression to share the following processing.
e917e3b8 7114
5f50020a
ES
7115 -- The generalized indexing node is the one on which analysis and
7116 -- resolution take place. Before expansion the original node is replaced
7117 -- with the generalized indexing node, which is a call, possibly with
7118 -- a dereference operation.
50878404 7119
e917e3b8 7120 if Comes_From_Source (N) then
c86cf714 7121 Check_Compiler_Unit ("generalized indexing", N);
e917e3b8
AC
7122 end if;
7123
50878404
AC
7124 declare
7125 Arg : Node_Id;
50878404
AC
7126 begin
7127 Arg := First (Exprs);
7128 while Present (Arg) loop
7129 Append (Relocate_Node (Arg), Assoc);
7130 Next (Arg);
7131 end loop;
7132 end;
7133
d50f4827
AC
7134 if not Is_Overloaded (Func_Name) then
7135 Func := Entity (Func_Name);
29ba9f52
RD
7136 Indexing :=
7137 Make_Function_Call (Loc,
7138 Name => New_Occurrence_Of (Func, Loc),
7139 Parameter_Associations => Assoc);
5f50020a
ES
7140 Set_Parent (Indexing, Parent (N));
7141 Set_Generalized_Indexing (N, Indexing);
7142 Analyze (Indexing);
7143 Set_Etype (N, Etype (Indexing));
d50f4827 7144
76d49f49
ES
7145 -- If the return type of the indexing function is a reference type,
7146 -- add the dereference as a possible interpretation. Note that the
7147 -- indexing aspect may be a function that returns the element type
5f50020a
ES
7148 -- with no intervening implicit dereference, and that the reference
7149 -- discriminant is not the first discriminant.
76d49f49
ES
7150
7151 if Has_Discriminants (Etype (Func)) then
7152 Disc := First_Discriminant (Etype (Func));
7153 while Present (Disc) loop
5f50020a
ES
7154 declare
7155 Elmt_Type : Entity_Id;
5f50020a
ES
7156 begin
7157 if Has_Implicit_Dereference (Disc) then
7158 Elmt_Type := Designated_Type (Etype (Disc));
7159 Add_One_Interp (Indexing, Disc, Elmt_Type);
7160 Add_One_Interp (N, Disc, Elmt_Type);
7161 exit;
7162 end if;
7163 end;
d50f4827 7164
76d49f49
ES
7165 Next_Discriminant (Disc);
7166 end loop;
7167 end if;
d50f4827
AC
7168
7169 else
8b4230c8
AC
7170 Indexing :=
7171 Make_Function_Call (Loc,
7172 Name => Make_Identifier (Loc, Chars (Func_Name)),
7173 Parameter_Associations => Assoc);
d50f4827 7174
5f50020a
ES
7175 Set_Parent (Indexing, Parent (N));
7176 Set_Generalized_Indexing (N, Indexing);
d50f4827
AC
7177
7178 declare
8b4230c8
AC
7179 I : Interp_Index;
7180 It : Interp;
d50f4827
AC
7181 Success : Boolean;
7182
7183 begin
7184 Get_First_Interp (Func_Name, I, It);
5f50020a 7185 Set_Etype (Indexing, Any_Type);
d50f4827 7186 while Present (It.Nam) loop
5f50020a 7187 Analyze_One_Call (Indexing, It.Nam, False, Success);
32bba3c9 7188
d50f4827 7189 if Success then
5f50020a
ES
7190 Set_Etype (Name (Indexing), It.Typ);
7191 Set_Entity (Name (Indexing), It.Nam);
7192 Set_Etype (N, Etype (Indexing));
d50f4827 7193
af89615f 7194 -- Add implicit dereference interpretation
d50f4827 7195
76d49f49
ES
7196 if Has_Discriminants (Etype (It.Nam)) then
7197 Disc := First_Discriminant (Etype (It.Nam));
7198 while Present (Disc) loop
7199 if Has_Implicit_Dereference (Disc) then
5f50020a
ES
7200 Add_One_Interp
7201 (Indexing, Disc, Designated_Type (Etype (Disc)));
76d49f49
ES
7202 Add_One_Interp
7203 (N, Disc, Designated_Type (Etype (Disc)));
7204 exit;
7205 end if;
d50f4827 7206
76d49f49
ES
7207 Next_Discriminant (Disc);
7208 end loop;
7209 end if;
b5bf3335 7210
9ee76313 7211 exit;
d50f4827 7212 end if;
32bba3c9 7213
d50f4827
AC
7214 Get_Next_Interp (I, It);
7215 end loop;
7216 end;
7217 end if;
7218
5f50020a 7219 if Etype (Indexing) = Any_Type then
29ba9f52
RD
7220 Error_Msg_NE
7221 ("container cannot be indexed with&", N, Etype (First (Exprs)));
9ee76313 7222 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
9ee76313
AC
7223 end if;
7224
d50f4827
AC
7225 return True;
7226 end Try_Container_Indexing;
7227
996ae0b0
RK
7228 -----------------------
7229 -- Try_Indirect_Call --
7230 -----------------------
7231
7232 function Try_Indirect_Call
91b1417d
AC
7233 (N : Node_Id;
7234 Nam : Entity_Id;
7235 Typ : Entity_Id) return Boolean
996ae0b0 7236 is
24657705
HK
7237 Actual : Node_Id;
7238 Formal : Entity_Id;
7239
8a7988f5 7240 Call_OK : Boolean;
24657705 7241 pragma Warnings (Off, Call_OK);
996ae0b0
RK
7242
7243 begin
8a7988f5 7244 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
9de61fcb 7245
8a7988f5 7246 Actual := First_Actual (N);
fbf5a39b 7247 Formal := First_Formal (Designated_Type (Typ));
9de61fcb 7248 while Present (Actual) and then Present (Formal) loop
996ae0b0
RK
7249 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7250 return False;
7251 end if;
7252
7253 Next (Actual);
7254 Next_Formal (Formal);
7255 end loop;
7256
7257 if No (Actual) and then No (Formal) then
7258 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7259
7260 -- Nam is a candidate interpretation for the name in the call,
7261 -- if it is not an indirect call.
7262
7263 if not Is_Type (Nam)
7264 and then Is_Entity_Name (Name (N))
7265 then
7266 Set_Entity (Name (N), Nam);
7267 end if;
7268
7269 return True;
8b4230c8 7270
996ae0b0
RK
7271 else
7272 return False;
7273 end if;
7274 end Try_Indirect_Call;
7275
7276 ----------------------
7277 -- Try_Indexed_Call --
7278 ----------------------
7279
7280 function Try_Indexed_Call
aab883ec
ES
7281 (N : Node_Id;
7282 Nam : Entity_Id;
7283 Typ : Entity_Id;
7284 Skip_First : Boolean) return Boolean
996ae0b0 7285 is
5ff22245
ES
7286 Loc : constant Source_Ptr := Sloc (N);
7287 Actuals : constant List_Id := Parameter_Associations (N);
7288 Actual : Node_Id;
7289 Index : Entity_Id;
996ae0b0
RK
7290
7291 begin
fbf5a39b 7292 Actual := First (Actuals);
aab883ec
ES
7293
7294 -- If the call was originally written in prefix form, skip the first
7295 -- actual, which is obviously not defaulted.
7296
7297 if Skip_First then
7298 Next (Actual);
7299 end if;
7300
fbf5a39b 7301 Index := First_Index (Typ);
9de61fcb
RD
7302 while Present (Actual) and then Present (Index) loop
7303
996ae0b0
RK
7304 -- If the parameter list has a named association, the expression
7305 -- is definitely a call and not an indexed component.
7306
7307 if Nkind (Actual) = N_Parameter_Association then
7308 return False;
7309 end if;
7310
5ff22245
ES
7311 if Is_Entity_Name (Actual)
7312 and then Is_Type (Entity (Actual))
7313 and then No (Next (Actual))
7314 then
1c218ac3
AC
7315 -- A single actual that is a type name indicates a slice if the
7316 -- type is discrete, and an error otherwise.
7317
7318 if Is_Discrete_Type (Entity (Actual)) then
7319 Rewrite (N,
7320 Make_Slice (Loc,
22b77f68
RD
7321 Prefix =>
7322 Make_Function_Call (Loc,
7323 Name => Relocate_Node (Name (N))),
7324 Discrete_Range =>
1c218ac3
AC
7325 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7326
7327 Analyze (N);
7328
7329 else
7330 Error_Msg_N ("invalid use of type in expression", Actual);
7331 Set_Etype (N, Any_Type);
7332 end if;
5ff22245 7333
5ff22245
ES
7334 return True;
7335
7336 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
996ae0b0
RK
7337 return False;
7338 end if;
7339
7340 Next (Actual);
7341 Next_Index (Index);
7342 end loop;
7343
7344 if No (Actual) and then No (Index) then
7345 Add_One_Interp (N, Nam, Component_Type (Typ));
7346
7347 -- Nam is a candidate interpretation for the name in the call,
7348 -- if it is not an indirect call.
7349
7350 if not Is_Type (Nam)
7351 and then Is_Entity_Name (Name (N))
7352 then
7353 Set_Entity (Name (N), Nam);
7354 end if;
7355
7356 return True;
7357 else
7358 return False;
7359 end if;
996ae0b0
RK
7360 end Try_Indexed_Call;
7361
35ae2ed8
AC
7362 --------------------------
7363 -- Try_Object_Operation --
7364 --------------------------
7365
8cf23b91
AC
7366 function Try_Object_Operation
7367 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
7368 is
b67a385c 7369 K : constant Node_Kind := Nkind (Parent (N));
d3b00ce3 7370 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
b67a385c 7371 Loc : constant Source_Ptr := Sloc (N);
b67a385c 7372 Obj : constant Node_Id := Prefix (N);
0d57c6f4
RD
7373
7374 Subprog : constant Node_Id :=
7375 Make_Identifier (Sloc (Selector_Name (N)),
7376 Chars => Chars (Selector_Name (N)));
401093c1 7377 -- Identifier on which possible interpretations will be collected
0a36105d 7378
b67a385c 7379 Report_Error : Boolean := False;
8b4230c8
AC
7380 -- If no candidate interpretation matches the context, redo analysis
7381 -- with Report_Error True to provide additional information.
28d6470f
JM
7382
7383 Actual : Node_Id;
d469eabe 7384 Candidate : Entity_Id := Empty;
b67a385c 7385 New_Call_Node : Node_Id := Empty;
4c46b835 7386 Node_To_Replace : Node_Id;
28d6470f 7387 Obj_Type : Entity_Id := Etype (Obj);
d469eabe 7388 Success : Boolean := False;
4c46b835 7389
0a36105d
JM
7390 function Valid_Candidate
7391 (Success : Boolean;
7392 Call : Node_Id;
7393 Subp : Entity_Id) return Entity_Id;
7394 -- If the subprogram is a valid interpretation, record it, and add
11fa950b 7395 -- to the list of interpretations of Subprog. Otherwise return Empty.
0a36105d 7396
4c46b835
AC
7397 procedure Complete_Object_Operation
7398 (Call_Node : Node_Id;
0a36105d 7399 Node_To_Replace : Node_Id);
ec6078e3
ES
7400 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
7401 -- Call_Node, insert the object (or its dereference) as the first actual
7402 -- in the call, and complete the analysis of the call.
4c46b835 7403
0a36105d
JM
7404 procedure Report_Ambiguity (Op : Entity_Id);
7405 -- If a prefixed procedure call is ambiguous, indicate whether the
7406 -- call includes an implicit dereference or an implicit 'Access.
7407
4c46b835
AC
7408 procedure Transform_Object_Operation
7409 (Call_Node : out Node_Id;
0a36105d 7410 Node_To_Replace : out Node_Id);
ec6078e3 7411 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
d469eabe
HK
7412 -- Call_Node is the resulting subprogram call, Node_To_Replace is
7413 -- either N or the parent of N, and Subprog is a reference to the
7414 -- subprogram we are trying to match.
35ae2ed8
AC
7415
7416 function Try_Class_Wide_Operation
4c46b835
AC
7417 (Call_Node : Node_Id;
7418 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7419 -- Traverse all ancestor types looking for a class-wide subprogram
7420 -- for which the current operation is a valid non-dispatching call.
35ae2ed8 7421
0a36105d
JM
7422 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
7423 -- If prefix is overloaded, its interpretation may include different
7424 -- tagged types, and we must examine the primitive operations and
7425 -- the class-wide operations of each in order to find candidate
7426 -- interpretations for the call as a whole.
7427
4c46b835
AC
7428 function Try_Primitive_Operation
7429 (Call_Node : Node_Id;
7430 Node_To_Replace : Node_Id) return Boolean;
ec6078e3
ES
7431 -- Traverse the list of primitive subprograms looking for a dispatching
7432 -- operation for which the current node is a valid call .
4c46b835 7433
0a36105d
JM
7434 ---------------------
7435 -- Valid_Candidate --
7436 ---------------------
7437
7438 function Valid_Candidate
7439 (Success : Boolean;
7440 Call : Node_Id;
7441 Subp : Entity_Id) return Entity_Id
7442 is
ee9aa7b6 7443 Arr_Type : Entity_Id;
0a36105d
JM
7444 Comp_Type : Entity_Id;
7445
7446 begin
7447 -- If the subprogram is a valid interpretation, record it in global
7448 -- variable Subprog, to collect all possible overloadings.
7449
7450 if Success then
7451 if Subp /= Entity (Subprog) then
7452 Add_One_Interp (Subprog, Subp, Etype (Subp));
7453 end if;
7454 end if;
7455
d469eabe
HK
7456 -- If the call may be an indexed call, retrieve component type of
7457 -- resulting expression, and add possible interpretation.
0a36105d 7458
ee9aa7b6 7459 Arr_Type := Empty;
0a36105d
JM
7460 Comp_Type := Empty;
7461
7462 if Nkind (Call) = N_Function_Call
d469eabe
HK
7463 and then Nkind (Parent (N)) = N_Indexed_Component
7464 and then Needs_One_Actual (Subp)
0a36105d
JM
7465 then
7466 if Is_Array_Type (Etype (Subp)) then
ee9aa7b6 7467 Arr_Type := Etype (Subp);
0a36105d
JM
7468
7469 elsif Is_Access_Type (Etype (Subp))
7470 and then Is_Array_Type (Designated_Type (Etype (Subp)))
7471 then
ee9aa7b6 7472 Arr_Type := Designated_Type (Etype (Subp));
0a36105d
JM
7473 end if;
7474 end if;
7475
ee9aa7b6
AC
7476 if Present (Arr_Type) then
7477
3b42c566
RD
7478 -- Verify that the actuals (excluding the object) match the types
7479 -- of the indexes.
ee9aa7b6
AC
7480
7481 declare
7482 Actual : Node_Id;
7483 Index : Node_Id;
7484
7485 begin
7486 Actual := Next (First_Actual (Call));
7487 Index := First_Index (Arr_Type);
ee9aa7b6
AC
7488 while Present (Actual) and then Present (Index) loop
7489 if not Has_Compatible_Type (Actual, Etype (Index)) then
7490 Arr_Type := Empty;
7491 exit;
7492 end if;
7493
7494 Next_Actual (Actual);
7495 Next_Index (Index);
7496 end loop;
7497
7498 if No (Actual)
7499 and then No (Index)
7500 and then Present (Arr_Type)
7501 then
7502 Comp_Type := Component_Type (Arr_Type);
7503 end if;
7504 end;
7505
7506 if Present (Comp_Type)
7507 and then Etype (Subprog) /= Comp_Type
7508 then
7509 Add_One_Interp (Subprog, Subp, Comp_Type);
7510 end if;
0a36105d
JM
7511 end if;
7512
7513 if Etype (Call) /= Any_Type then
7514 return Subp;
7515 else
7516 return Empty;
7517 end if;
7518 end Valid_Candidate;
7519
4c46b835
AC
7520 -------------------------------
7521 -- Complete_Object_Operation --
7522 -------------------------------
7523
7524 procedure Complete_Object_Operation
7525 (Call_Node : Node_Id;
0a36105d 7526 Node_To_Replace : Node_Id)
4c46b835 7527 is
b4592168
GD
7528 Control : constant Entity_Id := First_Formal (Entity (Subprog));
7529 Formal_Type : constant Entity_Id := Etype (Control);
ec6078e3
ES
7530 First_Actual : Node_Id;
7531
4c46b835 7532 begin
955871d3
AC
7533 -- Place the name of the operation, with its interpretations,
7534 -- on the rewritten call.
0a36105d 7535
ec6078e3
ES
7536 Set_Name (Call_Node, Subprog);
7537
0a36105d
JM
7538 First_Actual := First (Parameter_Associations (Call_Node));
7539
8b4230c8
AC
7540 -- For cross-reference purposes, treat the new node as being in the
7541 -- source if the original one is. Set entity and type, even though
7542 -- they may be overwritten during resolution if overloaded.
b67a385c
ES
7543
7544 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
7545 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
7546
ec6078e3 7547 if Nkind (N) = N_Selected_Component
3d918396 7548 and then not Inside_A_Generic
ec6078e3
ES
7549 then
7550 Set_Entity (Selector_Name (N), Entity (Subprog));
b2ab8c33 7551 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
ec6078e3
ES
7552 end if;
7553
8b4230c8
AC
7554 -- If need be, rewrite first actual as an explicit dereference. If
7555 -- the call is overloaded, the rewriting can only be done once the
7556 -- primitive operation is identified.
0a36105d
JM
7557
7558 if Is_Overloaded (Subprog) then
ec6078e3 7559
0a36105d
JM
7560 -- The prefix itself may be overloaded, and its interpretations
7561 -- must be propagated to the new actual in the call.
7562
7563 if Is_Overloaded (Obj) then
7564 Save_Interps (Obj, First_Actual);
7565 end if;
7566
7567 Rewrite (First_Actual, Obj);
7568
7569 elsif not Is_Access_Type (Formal_Type)
ec6078e3
ES
7570 and then Is_Access_Type (Etype (Obj))
7571 then
7572 Rewrite (First_Actual,
7573 Make_Explicit_Dereference (Sloc (Obj), Obj));
7574 Analyze (First_Actual);
fe45e59e 7575
401093c1
ES
7576 -- If we need to introduce an explicit dereference, verify that
7577 -- the resulting actual is compatible with the mode of the formal.
7578
7579 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
7580 and then Is_Access_Constant (Etype (Obj))
7581 then
7582 Error_Msg_NE
7583 ("expect variable in call to&", Prefix (N), Entity (Subprog));
7584 end if;
7585
d469eabe
HK
7586 -- Conversely, if the formal is an access parameter and the object
7587 -- is not, replace the actual with a 'Access reference. Its analysis
7588 -- will check that the object is aliased.
fe45e59e
ES
7589
7590 elsif Is_Access_Type (Formal_Type)
7591 and then not Is_Access_Type (Etype (Obj))
7592 then
b4592168
GD
7593 -- A special case: A.all'access is illegal if A is an access to a
7594 -- constant and the context requires an access to a variable.
7595
7596 if not Is_Access_Constant (Formal_Type) then
7597 if (Nkind (Obj) = N_Explicit_Dereference
7598 and then Is_Access_Constant (Etype (Prefix (Obj))))
7599 or else not Is_Variable (Obj)
7600 then
7601 Error_Msg_NE
ad075b50 7602 ("actual for & must be a variable", Obj, Control);
b4592168
GD
7603 end if;
7604 end if;
7605
fe45e59e
ES
7606 Rewrite (First_Actual,
7607 Make_Attribute_Reference (Loc,
7608 Attribute_Name => Name_Access,
7609 Prefix => Relocate_Node (Obj)));
0a36105d
JM
7610
7611 if not Is_Aliased_View (Obj) then
ed2233dc 7612 Error_Msg_NE
ad075b50 7613 ("object in prefixed call to & must be aliased "
039538bc 7614 & "(RM-2005 4.3.1 (13))", Prefix (First_Actual), Subprog);
0a36105d
JM
7615 end if;
7616
fe45e59e
ES
7617 Analyze (First_Actual);
7618
ec6078e3 7619 else
0a36105d
JM
7620 if Is_Overloaded (Obj) then
7621 Save_Interps (Obj, First_Actual);
7622 end if;
ec6078e3 7623
0a36105d 7624 Rewrite (First_Actual, Obj);
aab883ec
ES
7625 end if;
7626
e699b76e
AC
7627 -- The operation is obtained from the dispatch table and not by
7628 -- visibility, and may be declared in a unit that is not explicitly
7629 -- referenced in the source, but is nevertheless required in the
7630 -- context of the current unit. Indicate that operation and its scope
7631 -- are referenced, to prevent spurious and misleading warnings. If
7632 -- the operation is overloaded, all primitives are in the same scope
7633 -- and we can use any of them.
7634
7635 Set_Referenced (Entity (Subprog), True);
7636 Set_Referenced (Scope (Entity (Subprog)), True);
7637
7ffd9312 7638 Rewrite (Node_To_Replace, Call_Node);
0a36105d
JM
7639
7640 -- Propagate the interpretations collected in subprog to the new
7641 -- function call node, to be resolved from context.
7642
7643 if Is_Overloaded (Subprog) then
7644 Save_Interps (Subprog, Node_To_Replace);
7415029d 7645
0a36105d 7646 else
28e18b4f
AC
7647 -- The type of the subprogram may be a limited view obtained
7648 -- transitively from another unit. If full view is available,
7649 -- use it to analyze call.
7650
7651 declare
7652 T : constant Entity_Id := Etype (Subprog);
7653 begin
7654 if From_Limited_With (T) then
7655 Set_Etype (Entity (Subprog), Available_View (T));
7656 end if;
7657 end;
7658
0a36105d 7659 Analyze (Node_To_Replace);
438ff97c 7660
199c6a10
AC
7661 -- If the operation has been rewritten into a call, which may get
7662 -- subsequently an explicit dereference, preserve the type on the
7663 -- original node (selected component or indexed component) for
7664 -- subsequent legality tests, e.g. Is_Variable. which examines
7665 -- the original node.
438ff97c
ES
7666
7667 if Nkind (Node_To_Replace) = N_Function_Call then
7668 Set_Etype
7669 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
7670 end if;
0a36105d 7671 end if;
4c46b835
AC
7672 end Complete_Object_Operation;
7673
0a36105d
JM
7674 ----------------------
7675 -- Report_Ambiguity --
7676 ----------------------
7677
7678 procedure Report_Ambiguity (Op : Entity_Id) is
0a36105d
JM
7679 Access_Actual : constant Boolean :=
7680 Is_Access_Type (Etype (Prefix (N)));
8cf23b91 7681 Access_Formal : Boolean := False;
0a36105d
JM
7682
7683 begin
7684 Error_Msg_Sloc := Sloc (Op);
7685
8cf23b91
AC
7686 if Present (First_Formal (Op)) then
7687 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
7688 end if;
7689
0a36105d
JM
7690 if Access_Formal and then not Access_Actual then
7691 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7692 Error_Msg_N
8b4230c8
AC
7693 ("\possible interpretation "
7694 & "(inherited, with implicit 'Access) #", N);
0a36105d 7695 else
ed2233dc 7696 Error_Msg_N
0a36105d
JM
7697 ("\possible interpretation (with implicit 'Access) #", N);
7698 end if;
7699
7700 elsif not Access_Formal and then Access_Actual then
7701 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7702 Error_Msg_N
8b4230c8 7703 ("\possible interpretation "
28e18b4f 7704 & "(inherited, with implicit dereference) #", N);
0a36105d 7705 else
ed2233dc 7706 Error_Msg_N
0a36105d
JM
7707 ("\possible interpretation (with implicit dereference) #", N);
7708 end if;
7709
7710 else
7711 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
ed2233dc 7712 Error_Msg_N ("\possible interpretation (inherited)#", N);
0a36105d 7713 else
4e7a4f6e
AC
7714 Error_Msg_N -- CODEFIX
7715 ("\possible interpretation#", N);
0a36105d
JM
7716 end if;
7717 end if;
7718 end Report_Ambiguity;
7719
4c46b835
AC
7720 --------------------------------
7721 -- Transform_Object_Operation --
7722 --------------------------------
7723
7724 procedure Transform_Object_Operation
7725 (Call_Node : out Node_Id;
0a36105d 7726 Node_To_Replace : out Node_Id)
35ae2ed8 7727 is
ec6078e3
ES
7728 Dummy : constant Node_Id := New_Copy (Obj);
7729 -- Placeholder used as a first parameter in the call, replaced
7730 -- eventually by the proper object.
7731
d469eabe
HK
7732 Parent_Node : constant Node_Id := Parent (N);
7733
ec6078e3 7734 Actual : Node_Id;
d469eabe 7735 Actuals : List_Id;
ec6078e3 7736
35ae2ed8 7737 begin
ec6078e3
ES
7738 -- Common case covering 1) Call to a procedure and 2) Call to a
7739 -- function that has some additional actuals.
35ae2ed8 7740
d3b00ce3 7741 if Nkind (Parent_Node) in N_Subprogram_Call
35ae2ed8 7742
ec6078e3
ES
7743 -- N is a selected component node containing the name of the
7744 -- subprogram. If N is not the name of the parent node we must
7745 -- not replace the parent node by the new construct. This case
7746 -- occurs when N is a parameterless call to a subprogram that
7747 -- is an actual parameter of a call to another subprogram. For
7748 -- example:
7749 -- Some_Subprogram (..., Obj.Operation, ...)
35ae2ed8 7750
ec6078e3 7751 and then Name (Parent_Node) = N
4c46b835
AC
7752 then
7753 Node_To_Replace := Parent_Node;
35ae2ed8 7754
ec6078e3 7755 Actuals := Parameter_Associations (Parent_Node);
d3e65aad 7756
ec6078e3
ES
7757 if Present (Actuals) then
7758 Prepend (Dummy, Actuals);
7759 else
7760 Actuals := New_List (Dummy);
7761 end if;
4c46b835
AC
7762
7763 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
7764 Call_Node :=
7765 Make_Procedure_Call_Statement (Loc,
0a36105d 7766 Name => New_Copy (Subprog),
4c46b835
AC
7767 Parameter_Associations => Actuals);
7768
7769 else
4c46b835
AC
7770 Call_Node :=
7771 Make_Function_Call (Loc,
8b4230c8 7772 Name => New_Copy (Subprog),
4c46b835 7773 Parameter_Associations => Actuals);
35ae2ed8
AC
7774 end if;
7775
d469eabe 7776 -- Before analysis, a function call appears as an indexed component
ec6078e3 7777 -- if there are no named associations.
758c442c 7778
ec6078e3
ES
7779 elsif Nkind (Parent_Node) = N_Indexed_Component
7780 and then N = Prefix (Parent_Node)
7781 then
758c442c 7782 Node_To_Replace := Parent_Node;
ec6078e3
ES
7783 Actuals := Expressions (Parent_Node);
7784
7785 Actual := First (Actuals);
7786 while Present (Actual) loop
7787 Analyze (Actual);
7788 Next (Actual);
7789 end loop;
7790
7791 Prepend (Dummy, Actuals);
758c442c
GD
7792
7793 Call_Node :=
7794 Make_Function_Call (Loc,
8b4230c8 7795 Name => New_Copy (Subprog),
758c442c
GD
7796 Parameter_Associations => Actuals);
7797
d469eabe 7798 -- Parameterless call: Obj.F is rewritten as F (Obj)
35ae2ed8 7799
4c46b835
AC
7800 else
7801 Node_To_Replace := N;
7802
7803 Call_Node :=
7804 Make_Function_Call (Loc,
8b4230c8 7805 Name => New_Copy (Subprog),
ec6078e3 7806 Parameter_Associations => New_List (Dummy));
4c46b835
AC
7807 end if;
7808 end Transform_Object_Operation;
35ae2ed8
AC
7809
7810 ------------------------------
7811 -- Try_Class_Wide_Operation --
7812 ------------------------------
7813
7814 function Try_Class_Wide_Operation
4c46b835
AC
7815 (Call_Node : Node_Id;
7816 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 7817 is
0a36105d
JM
7818 Anc_Type : Entity_Id;
7819 Matching_Op : Entity_Id := Empty;
7820 Error : Boolean;
7821
7822 procedure Traverse_Homonyms
7823 (Anc_Type : Entity_Id;
7824 Error : out Boolean);
7825 -- Traverse the homonym chain of the subprogram searching for those
7826 -- homonyms whose first formal has the Anc_Type's class-wide type,
d469eabe
HK
7827 -- or an anonymous access type designating the class-wide type. If
7828 -- an ambiguity is detected, then Error is set to True.
0a36105d
JM
7829
7830 procedure Traverse_Interfaces
7831 (Anc_Type : Entity_Id;
7832 Error : out Boolean);
7833 -- Traverse the list of interfaces, if any, associated with Anc_Type
7834 -- and search for acceptable class-wide homonyms associated with each
7835 -- interface. If an ambiguity is detected, then Error is set to True.
7836
7837 -----------------------
7838 -- Traverse_Homonyms --
7839 -----------------------
7840
7841 procedure Traverse_Homonyms
7842 (Anc_Type : Entity_Id;
7843 Error : out Boolean)
7844 is
7845 Cls_Type : Entity_Id;
7846 Hom : Entity_Id;
7847 Hom_Ref : Node_Id;
7848 Success : Boolean;
35ae2ed8 7849
0a36105d
JM
7850 begin
7851 Error := False;
ec6078e3 7852
b67a385c
ES
7853 Cls_Type := Class_Wide_Type (Anc_Type);
7854
4c46b835 7855 Hom := Current_Entity (Subprog);
401093c1 7856
383e179e
AC
7857 -- Find a non-hidden operation whose first parameter is of the
7858 -- class-wide type, a subtype thereof, or an anonymous access
a68d415b 7859 -- to same. If in an instance, the operation can be considered
8b4230c8
AC
7860 -- even if hidden (it may be hidden because the instantiation
7861 -- is expanded after the containing package has been analyzed).
401093c1 7862
35ae2ed8 7863 while Present (Hom) loop
6a2e4f0b 7864 if Ekind_In (Hom, E_Procedure, E_Function)
a68d415b 7865 and then (not Is_Hidden (Hom) or else In_Instance)
b67a385c 7866 and then Scope (Hom) = Scope (Anc_Type)
4c46b835 7867 and then Present (First_Formal (Hom))
b67a385c 7868 and then
401093c1 7869 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
b67a385c
ES
7870 or else
7871 (Is_Access_Type (Etype (First_Formal (Hom)))
8b4230c8
AC
7872 and then
7873 Ekind (Etype (First_Formal (Hom))) =
7874 E_Anonymous_Access_Type
7875 and then
7876 Base_Type
7877 (Designated_Type (Etype (First_Formal (Hom)))) =
0a36105d 7878 Cls_Type))
35ae2ed8 7879 then
88f47280
AC
7880 -- If the context is a procedure call, ignore functions
7881 -- in the name of the call.
7882
7883 if Ekind (Hom) = E_Function
7884 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
7885 and then N = Name (Parent (N))
7886 then
7887 goto Next_Hom;
11fa950b
AC
7888
7889 -- If the context is a function call, ignore procedures
7890 -- in the name of the call.
7891
7892 elsif Ekind (Hom) = E_Procedure
7893 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
7894 then
7895 goto Next_Hom;
88f47280
AC
7896 end if;
7897
ec6078e3 7898 Set_Etype (Call_Node, Any_Type);
0a36105d
JM
7899 Set_Is_Overloaded (Call_Node, False);
7900 Success := False;
4c46b835 7901
0a36105d 7902 if No (Matching_Op) then
e4494292 7903 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
0a36105d
JM
7904 Set_Etype (Call_Node, Any_Type);
7905 Set_Parent (Call_Node, Parent (Node_To_Replace));
4c46b835 7906
0a36105d 7907 Set_Name (Call_Node, Hom_Ref);
4c46b835 7908
0a36105d
JM
7909 Analyze_One_Call
7910 (N => Call_Node,
7911 Nam => Hom,
7912 Report => Report_Error,
7913 Success => Success,
7914 Skip_First => True);
4c46b835 7915
0a36105d
JM
7916 Matching_Op :=
7917 Valid_Candidate (Success, Call_Node, Hom);
4c46b835 7918
0a36105d
JM
7919 else
7920 Analyze_One_Call
7921 (N => Call_Node,
7922 Nam => Hom,
7923 Report => Report_Error,
7924 Success => Success,
7925 Skip_First => True);
7926
7927 if Present (Valid_Candidate (Success, Call_Node, Hom))
7928 and then Nkind (Call_Node) /= N_Function_Call
7929 then
ed2233dc 7930 Error_Msg_NE ("ambiguous call to&", N, Hom);
0a36105d
JM
7931 Report_Ambiguity (Matching_Op);
7932 Report_Ambiguity (Hom);
7933 Error := True;
7934 return;
7935 end if;
35ae2ed8
AC
7936 end if;
7937 end if;
7938
88f47280
AC
7939 <<Next_Hom>>
7940 Hom := Homonym (Hom);
35ae2ed8 7941 end loop;
0a36105d
JM
7942 end Traverse_Homonyms;
7943
7944 -------------------------
7945 -- Traverse_Interfaces --
7946 -------------------------
35ae2ed8 7947
0a36105d
JM
7948 procedure Traverse_Interfaces
7949 (Anc_Type : Entity_Id;
7950 Error : out Boolean)
7951 is
0a36105d
JM
7952 Intface_List : constant List_Id :=
7953 Abstract_Interface_List (Anc_Type);
d469eabe 7954 Intface : Node_Id;
0a36105d
JM
7955
7956 begin
7957 Error := False;
7958
7959 if Is_Non_Empty_List (Intface_List) then
7960 Intface := First (Intface_List);
7961 while Present (Intface) loop
7962
7963 -- Look for acceptable class-wide homonyms associated with
7964 -- the interface.
7965
7966 Traverse_Homonyms (Etype (Intface), Error);
7967
7968 if Error then
7969 return;
7970 end if;
7971
7972 -- Continue the search by looking at each of the interface's
7973 -- associated interface ancestors.
7974
7975 Traverse_Interfaces (Etype (Intface), Error);
7976
7977 if Error then
7978 return;
7979 end if;
7980
7981 Next (Intface);
7982 end loop;
7983 end if;
7984 end Traverse_Interfaces;
7985
7986 -- Start of processing for Try_Class_Wide_Operation
7987
7988 begin
8cf23b91
AC
7989 -- If we are searching only for conflicting class-wide subprograms
7990 -- then initialize directly Matching_Op with the target entity.
7991
7992 if CW_Test_Only then
7993 Matching_Op := Entity (Selector_Name (N));
7994 end if;
7995
d469eabe
HK
7996 -- Loop through ancestor types (including interfaces), traversing
7997 -- the homonym chain of the subprogram, trying out those homonyms
7998 -- whose first formal has the class-wide type of the ancestor, or
7999 -- an anonymous access type designating the class-wide type.
0a36105d
JM
8000
8001 Anc_Type := Obj_Type;
8002 loop
8003 -- Look for a match among homonyms associated with the ancestor
8004
8005 Traverse_Homonyms (Anc_Type, Error);
8006
8007 if Error then
8008 return True;
8009 end if;
8010
8011 -- Continue the search for matches among homonyms associated with
8012 -- any interfaces implemented by the ancestor.
8013
8014 Traverse_Interfaces (Anc_Type, Error);
8015
8016 if Error then
8017 return True;
8018 end if;
35ae2ed8 8019
4c46b835
AC
8020 exit when Etype (Anc_Type) = Anc_Type;
8021 Anc_Type := Etype (Anc_Type);
35ae2ed8
AC
8022 end loop;
8023
0a36105d
JM
8024 if Present (Matching_Op) then
8025 Set_Etype (Call_Node, Etype (Matching_Op));
8026 end if;
ec6078e3 8027
0a36105d 8028 return Present (Matching_Op);
35ae2ed8
AC
8029 end Try_Class_Wide_Operation;
8030
0a36105d
JM
8031 -----------------------------------
8032 -- Try_One_Prefix_Interpretation --
8033 -----------------------------------
8034
8035 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8036 begin
8037 Obj_Type := T;
8038
8039 if Is_Access_Type (Obj_Type) then
8040 Obj_Type := Designated_Type (Obj_Type);
8041 end if;
8042
8043 if Ekind (Obj_Type) = E_Private_Subtype then
8044 Obj_Type := Base_Type (Obj_Type);
8045 end if;
8046
8047 if Is_Class_Wide_Type (Obj_Type) then
8048 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8049 end if;
8050
8051 -- The type may have be obtained through a limited_with clause,
8052 -- in which case the primitive operations are available on its
401093c1 8053 -- non-limited view. If still incomplete, retrieve full view.
0a36105d
JM
8054
8055 if Ekind (Obj_Type) = E_Incomplete_Type
7b56a91b 8056 and then From_Limited_With (Obj_Type)
0a36105d 8057 then
401093c1 8058 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
0a36105d
JM
8059 end if;
8060
8061 -- If the object is not tagged, or the type is still an incomplete
8062 -- type, this is not a prefixed call.
8063
8064 if not Is_Tagged_Type (Obj_Type)
8065 or else Is_Incomplete_Type (Obj_Type)
8066 then
8067 return;
8068 end if;
8069
11fa950b
AC
8070 declare
8071 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8072 CW_Result : Boolean;
8073 Prim_Result : Boolean;
8074 pragma Unreferenced (CW_Result);
8075
8076 begin
8cf23b91
AC
8077 if not CW_Test_Only then
8078 Prim_Result :=
8079 Try_Primitive_Operation
8080 (Call_Node => New_Call_Node,
8081 Node_To_Replace => Node_To_Replace);
8082 end if;
11fa950b
AC
8083
8084 -- Check if there is a class-wide subprogram covering the
8085 -- primitive. This check must be done even if a candidate
8086 -- was found in order to report ambiguous calls.
8087
8088 if not (Prim_Result) then
8089 CW_Result :=
8090 Try_Class_Wide_Operation
8091 (Call_Node => New_Call_Node,
8092 Node_To_Replace => Node_To_Replace);
8093
8094 -- If we found a primitive we search for class-wide subprograms
8095 -- using a duplicate of the call node (done to avoid missing its
8096 -- decoration if there is no ambiguity).
8097
8098 else
8099 CW_Result :=
8100 Try_Class_Wide_Operation
8101 (Call_Node => Dup_Call_Node,
8102 Node_To_Replace => Node_To_Replace);
8103 end if;
8104 end;
0a36105d
JM
8105 end Try_One_Prefix_Interpretation;
8106
4c46b835
AC
8107 -----------------------------
8108 -- Try_Primitive_Operation --
8109 -----------------------------
35ae2ed8 8110
4c46b835
AC
8111 function Try_Primitive_Operation
8112 (Call_Node : Node_Id;
8113 Node_To_Replace : Node_Id) return Boolean
35ae2ed8 8114 is
6e73e3ab
AC
8115 Elmt : Elmt_Id;
8116 Prim_Op : Entity_Id;
0a36105d
JM
8117 Matching_Op : Entity_Id := Empty;
8118 Prim_Op_Ref : Node_Id := Empty;
8119
8b4230c8 8120 Corr_Type : Entity_Id := Empty;
0a36105d
JM
8121 -- If the prefix is a synchronized type, the controlling type of
8122 -- the primitive operation is the corresponding record type, else
8123 -- this is the object type itself.
8124
8b4230c8 8125 Success : Boolean := False;
35ae2ed8 8126
401093c1
ES
8127 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8128 -- For tagged types the candidate interpretations are found in
8129 -- the list of primitive operations of the type and its ancestors.
8130 -- For formal tagged types we have to find the operations declared
8131 -- in the same scope as the type (including in the generic formal
8132 -- part) because the type itself carries no primitive operations,
8133 -- except for formal derived types that inherit the operations of
8134 -- the parent and progenitors.
8b4230c8 8135 --
d469eabe
HK
8136 -- If the context is a generic subprogram body, the generic formals
8137 -- are visible by name, but are not in the entity list of the
8138 -- subprogram because that list starts with the subprogram formals.
8139 -- We retrieve the candidate operations from the generic declaration.
401093c1 8140
dfcfdc0a
AC
8141 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8142 -- An operation that overrides an inherited operation in the private
8143 -- part of its package may be hidden, but if the inherited operation
8144 -- is visible a direct call to it will dispatch to the private one,
8145 -- which is therefore a valid candidate.
8146
ec6078e3
ES
8147 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8148 -- Verify that the prefix, dereferenced if need be, is a valid
8149 -- controlling argument in a call to Op. The remaining actuals
8150 -- are checked in the subsequent call to Analyze_One_Call.
35ae2ed8 8151
401093c1
ES
8152 ------------------------------
8153 -- Collect_Generic_Type_Ops --
8154 ------------------------------
8155
8156 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8157 Bas : constant Entity_Id := Base_Type (T);
8158 Candidates : constant Elist_Id := New_Elmt_List;
8159 Subp : Entity_Id;
8160 Formal : Entity_Id;
8161
d469eabe
HK
8162 procedure Check_Candidate;
8163 -- The operation is a candidate if its first parameter is a
8164 -- controlling operand of the desired type.
8165
8166 -----------------------
8167 -- Check_Candidate; --
8168 -----------------------
8169
8170 procedure Check_Candidate is
8171 begin
8172 Formal := First_Formal (Subp);
8173
8174 if Present (Formal)
8175 and then Is_Controlling_Formal (Formal)
8176 and then
8177 (Base_Type (Etype (Formal)) = Bas
8178 or else
8179 (Is_Access_Type (Etype (Formal))
8180 and then Designated_Type (Etype (Formal)) = Bas))
8181 then
8182 Append_Elmt (Subp, Candidates);
8183 end if;
8184 end Check_Candidate;
8185
8186 -- Start of processing for Collect_Generic_Type_Ops
8187
401093c1
ES
8188 begin
8189 if Is_Derived_Type (T) then
8190 return Primitive_Operations (T);
8191
bce79204
AC
8192 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8193
d469eabe
HK
8194 -- Scan the list of generic formals to find subprograms
8195 -- that may have a first controlling formal of the type.
8196
8b4230c8
AC
8197 if Nkind (Unit_Declaration_Node (Scope (T))) =
8198 N_Generic_Subprogram_Declaration
bb10b891
AC
8199 then
8200 declare
8201 Decl : Node_Id;
8202
8203 begin
8204 Decl :=
8205 First (Generic_Formal_Declarations
8206 (Unit_Declaration_Node (Scope (T))));
8207 while Present (Decl) loop
8208 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8209 Subp := Defining_Entity (Decl);
8210 Check_Candidate;
8211 end if;
d469eabe 8212
bb10b891
AC
8213 Next (Decl);
8214 end loop;
8215 end;
8216 end if;
d469eabe
HK
8217 return Candidates;
8218
401093c1
ES
8219 else
8220 -- Scan the list of entities declared in the same scope as
8221 -- the type. In general this will be an open scope, given that
8222 -- the call we are analyzing can only appear within a generic
8223 -- declaration or body (either the one that declares T, or a
8224 -- child unit).
8225
bb10b891
AC
8226 -- For a subtype representing a generic actual type, go to the
8227 -- base type.
8228
8229 if Is_Generic_Actual_Type (T) then
8230 Subp := First_Entity (Scope (Base_Type (T)));
8231 else
8232 Subp := First_Entity (Scope (T));
8233 end if;
8234
401093c1
ES
8235 while Present (Subp) loop
8236 if Is_Overloadable (Subp) then
d469eabe 8237 Check_Candidate;
401093c1
ES
8238 end if;
8239
8240 Next_Entity (Subp);
8241 end loop;
8242
8243 return Candidates;
8244 end if;
8245 end Collect_Generic_Type_Ops;
8246
dfcfdc0a
AC
8247 ---------------------------
8248 -- Is_Private_Overriding --
8249 ---------------------------
8250
8251 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8252 Visible_Op : constant Entity_Id := Homonym (Op);
8253
8254 begin
8255 return Present (Visible_Op)
6465b6a7 8256 and then Scope (Op) = Scope (Visible_Op)
dfcfdc0a
AC
8257 and then not Comes_From_Source (Visible_Op)
8258 and then Alias (Visible_Op) = Op
8259 and then not Is_Hidden (Visible_Op);
8260 end Is_Private_Overriding;
8261
ec6078e3
ES
8262 -----------------------------
8263 -- Valid_First_Argument_Of --
8264 -----------------------------
35ae2ed8 8265
ec6078e3 8266 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9febb58f 8267 Typ : Entity_Id := Etype (First_Formal (Op));
35ae2ed8 8268
ec6078e3 8269 begin
9febb58f
JM
8270 if Is_Concurrent_Type (Typ)
8271 and then Present (Corresponding_Record_Type (Typ))
8272 then
8273 Typ := Corresponding_Record_Type (Typ);
8274 end if;
8275
d469eabe
HK
8276 -- Simple case. Object may be a subtype of the tagged type or
8277 -- may be the corresponding record of a synchronized type.
5d09245e 8278
aab883ec 8279 return Obj_Type = Typ
d469eabe 8280 or else Base_Type (Obj_Type) = Typ
0a36105d
JM
8281 or else Corr_Type = Typ
8282
8283 -- Prefix can be dereferenced
725e2a15 8284
ec6078e3 8285 or else
0a36105d
JM
8286 (Is_Access_Type (Corr_Type)
8287 and then Designated_Type (Corr_Type) = Typ)
5d09245e 8288
0a36105d
JM
8289 -- Formal is an access parameter, for which the object
8290 -- can provide an access.
35ae2ed8 8291
ec6078e3
ES
8292 or else
8293 (Ekind (Typ) = E_Anonymous_Access_Type
9fde638d
RD
8294 and then
8295 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
ec6078e3 8296 end Valid_First_Argument_Of;
35ae2ed8 8297
ec6078e3 8298 -- Start of processing for Try_Primitive_Operation
35ae2ed8 8299
ec6078e3 8300 begin
d469eabe 8301 -- Look for subprograms in the list of primitive operations. The name
0a36105d
JM
8302 -- must be identical, and the kind of call indicates the expected
8303 -- kind of operation (function or procedure). If the type is a
d469eabe 8304 -- (tagged) synchronized type, the primitive ops are attached to the
b4592168 8305 -- corresponding record (base) type.
aab883ec
ES
8306
8307 if Is_Concurrent_Type (Obj_Type) then
bb10b891
AC
8308 if Present (Corresponding_Record_Type (Obj_Type)) then
8309 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
8310 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
8311 else
8312 Corr_Type := Obj_Type;
8313 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
15e4986c
JM
8314 end if;
8315
401093c1 8316 elsif not Is_Generic_Type (Obj_Type) then
0a36105d 8317 Corr_Type := Obj_Type;
aab883ec 8318 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
401093c1
ES
8319
8320 else
8321 Corr_Type := Obj_Type;
8322 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
aab883ec 8323 end if;
35ae2ed8 8324
ec6078e3
ES
8325 while Present (Elmt) loop
8326 Prim_Op := Node (Elmt);
8327
8328 if Chars (Prim_Op) = Chars (Subprog)
8329 and then Present (First_Formal (Prim_Op))
8330 and then Valid_First_Argument_Of (Prim_Op)
fe45e59e 8331 and then
7415029d 8332 (Nkind (Call_Node) = N_Function_Call)
8b4230c8
AC
8333 =
8334 (Ekind (Prim_Op) = E_Function)
ec6078e3 8335 then
b67a385c 8336 -- Ada 2005 (AI-251): If this primitive operation corresponds
8b4230c8 8337 -- to an immediate ancestor interface there is no need to add
b67a385c
ES
8338 -- it to the list of interpretations; the corresponding aliased
8339 -- primitive is also in this list of primitive operations and
8340 -- will be used instead.
fe45e59e 8341
ce2b6ba5
JM
8342 if (Present (Interface_Alias (Prim_Op))
8343 and then Is_Ancestor (Find_Dispatching_Type
8344 (Alias (Prim_Op)), Corr_Type))
0a36105d 8345
dfcfdc0a
AC
8346 -- Do not consider hidden primitives unless the type is in an
8347 -- open scope or we are within an instance, where visibility
8348 -- is known to be correct, or else if this is an overriding
8349 -- operation in the private part for an inherited operation.
0a36105d 8350
dfcfdc0a
AC
8351 or else (Is_Hidden (Prim_Op)
8352 and then not Is_Immediately_Visible (Obj_Type)
8353 and then not In_Instance
8354 and then not Is_Private_Overriding (Prim_Op))
fe45e59e
ES
8355 then
8356 goto Continue;
8357 end if;
8358
0a36105d
JM
8359 Set_Etype (Call_Node, Any_Type);
8360 Set_Is_Overloaded (Call_Node, False);
8361
8362 if No (Matching_Op) then
e4494292 8363 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
b67a385c 8364 Candidate := Prim_Op;
35ae2ed8 8365
fe45e59e 8366 Set_Parent (Call_Node, Parent (Node_To_Replace));
35ae2ed8 8367
fe45e59e 8368 Set_Name (Call_Node, Prim_Op_Ref);
0a36105d 8369 Success := False;
35ae2ed8 8370
fe45e59e
ES
8371 Analyze_One_Call
8372 (N => Call_Node,
8373 Nam => Prim_Op,
b67a385c 8374 Report => Report_Error,
fe45e59e
ES
8375 Success => Success,
8376 Skip_First => True);
35ae2ed8 8377
0a36105d 8378 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
fe45e59e 8379
d469eabe
HK
8380 -- More than one interpretation, collect for subsequent
8381 -- disambiguation. If this is a procedure call and there
8382 -- is another match, report ambiguity now.
0a36105d 8383
d469eabe 8384 else
0a36105d
JM
8385 Analyze_One_Call
8386 (N => Call_Node,
8387 Nam => Prim_Op,
8388 Report => Report_Error,
8389 Success => Success,
8390 Skip_First => True);
fe45e59e 8391
0a36105d
JM
8392 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
8393 and then Nkind (Call_Node) /= N_Function_Call
8394 then
ed2233dc 8395 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
0a36105d
JM
8396 Report_Ambiguity (Matching_Op);
8397 Report_Ambiguity (Prim_Op);
8398 return True;
8399 end if;
4c46b835
AC
8400 end if;
8401 end if;
35ae2ed8 8402
fe45e59e 8403 <<Continue>>
4c46b835
AC
8404 Next_Elmt (Elmt);
8405 end loop;
35ae2ed8 8406
0a36105d
JM
8407 if Present (Matching_Op) then
8408 Set_Etype (Call_Node, Etype (Matching_Op));
fe45e59e
ES
8409 end if;
8410
0a36105d 8411 return Present (Matching_Op);
4c46b835 8412 end Try_Primitive_Operation;
35ae2ed8 8413
4c46b835 8414 -- Start of processing for Try_Object_Operation
35ae2ed8 8415
4c46b835 8416 begin
0a36105d 8417 Analyze_Expression (Obj);
ec6078e3 8418
0a36105d 8419 -- Analyze the actuals if node is known to be a subprogram call
28d6470f
JM
8420
8421 if Is_Subprg_Call and then N = Name (Parent (N)) then
8422 Actual := First (Parameter_Associations (Parent (N)));
8423 while Present (Actual) loop
725e2a15 8424 Analyze_Expression (Actual);
28d6470f
JM
8425 Next (Actual);
8426 end loop;
8427 end if;
5d09245e 8428
ec6078e3
ES
8429 -- Build a subprogram call node, using a copy of Obj as its first
8430 -- actual. This is a placeholder, to be replaced by an explicit
8431 -- dereference when needed.
4c46b835 8432
ec6078e3
ES
8433 Transform_Object_Operation
8434 (Call_Node => New_Call_Node,
0a36105d 8435 Node_To_Replace => Node_To_Replace);
4c46b835 8436
ec6078e3 8437 Set_Etype (New_Call_Node, Any_Type);
0a36105d 8438 Set_Etype (Subprog, Any_Type);
ec6078e3 8439 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
4c46b835 8440
0a36105d
JM
8441 if not Is_Overloaded (Obj) then
8442 Try_One_Prefix_Interpretation (Obj_Type);
ec6078e3 8443
0a36105d
JM
8444 else
8445 declare
8446 I : Interp_Index;
8447 It : Interp;
8448 begin
8449 Get_First_Interp (Obj, I, It);
8450 while Present (It.Nam) loop
8451 Try_One_Prefix_Interpretation (It.Typ);
8452 Get_Next_Interp (I, It);
8453 end loop;
8454 end;
8455 end if;
8456
8457 if Etype (New_Call_Node) /= Any_Type then
8cf23b91
AC
8458
8459 -- No need to complete the tree transformations if we are only
8460 -- searching for conflicting class-wide subprograms
8461
8462 if CW_Test_Only then
8463 return False;
8464 else
8465 Complete_Object_Operation
8466 (Call_Node => New_Call_Node,
8467 Node_To_Replace => Node_To_Replace);
8468 return True;
8469 end if;
b67a385c
ES
8470
8471 elsif Present (Candidate) then
8472
8473 -- The argument list is not type correct. Re-analyze with error
8474 -- reporting enabled, and use one of the possible candidates.
d469eabe 8475 -- In All_Errors_Mode, re-analyze all failed interpretations.
b67a385c
ES
8476
8477 if All_Errors_Mode then
8478 Report_Error := True;
8479 if Try_Primitive_Operation
8b4230c8
AC
8480 (Call_Node => New_Call_Node,
8481 Node_To_Replace => Node_To_Replace)
b67a385c
ES
8482
8483 or else
8484 Try_Class_Wide_Operation
8485 (Call_Node => New_Call_Node,
8486 Node_To_Replace => Node_To_Replace)
8487 then
8488 null;
8489 end if;
8490
8491 else
8492 Analyze_One_Call
8493 (N => New_Call_Node,
8494 Nam => Candidate,
8495 Report => True,
8496 Success => Success,
8497 Skip_First => True);
8498 end if;
8499
d469eabe
HK
8500 -- No need for further errors
8501
8502 return True;
b67a385c
ES
8503
8504 else
8505 -- There was no candidate operation, so report it as an error
8506 -- in the caller: Analyze_Selected_Component.
8507
8508 return False;
8509 end if;
35ae2ed8
AC
8510 end Try_Object_Operation;
8511
b4592168
GD
8512 ---------
8513 -- wpo --
8514 ---------
8515
8516 procedure wpo (T : Entity_Id) is
8517 Op : Entity_Id;
8518 E : Elmt_Id;
8519
8520 begin
8521 if not Is_Tagged_Type (T) then
8522 return;
8523 end if;
8524
8525 E := First_Elmt (Primitive_Operations (Base_Type (T)));
8526 while Present (E) loop
8527 Op := Node (E);
8528 Write_Int (Int (Op));
8529 Write_Str (" === ");
8530 Write_Name (Chars (Op));
8531 Write_Str (" in ");
8532 Write_Name (Chars (Scope (Op)));
8533 Next_Elmt (E);
8534 Write_Eol;
8535 end loop;
8536 end wpo;
8537
996ae0b0 8538end Sem_Ch4;