]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/jump.c
RISC-V: Include more registers in SIBCALL_REGS.
[thirdparty/gcc.git] / gcc / jump.c
CommitLineData
5924de0b 1/* Optimize jump instructions, for GNU compiler.
fbd26352 2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
5924de0b 3
f12b58b3 4This file is part of GCC.
5924de0b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
5924de0b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
5924de0b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
5924de0b 19
fc4eaab7 20/* This is the pathetic reminder of old fame of the jump-optimization pass
d961ae3a 21 of the compiler. Now it contains basically a set of utility functions to
fc4eaab7 22 operate with jumps.
5924de0b 23
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
9cb2517e 30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
5924de0b 32
5f3447b0 33 The subroutines redirect_jump and invert_jump are used
5924de0b 34 from other passes as well. */
35
36#include "config.h"
405711de 37#include "system.h"
805e22b2 38#include "coretypes.h"
9ef16211 39#include "backend.h"
7c29e30e 40#include "target.h"
5924de0b 41#include "rtl.h"
7c29e30e 42#include "tree.h"
43#include "cfghooks.h"
44#include "tree-pass.h"
ad7b10a2 45#include "memmodel.h"
7953c610 46#include "tm_p.h"
5924de0b 47#include "insn-config.h"
7c29e30e 48#include "regs.h"
49#include "emit-rtl.h"
0dbd1c74 50#include "recog.h"
94ea8568 51#include "cfgrtl.h"
15da9a29 52#include "rtl-iter.h"
5924de0b 53
5924de0b 54/* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56/* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
60
960a7046 61static void init_label_info (rtx_insn *);
62static void mark_all_labels (rtx_insn *);
c6d14fbf 63static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64static void mark_jump_label_asm (rtx, rtx_insn *);
db7dd023 65static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
4066f31e 66static int invert_exp_1 (rtx, rtx_insn *);
60ecc450 67\f
409e049a 68/* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69static void
960a7046 70rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
8b946ced 71{
376c21d1 72 timevar_push (TV_REBUILD_JUMP);
805e22b2 73 init_label_info (f);
bf73fcf4 74 mark_all_labels (f);
5924de0b 75
cbd914e1 76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
5924de0b 79
409e049a 80 if (count_forced)
de039705 81 {
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
87 }
376c21d1 88 timevar_pop (TV_REBUILD_JUMP);
fc4eaab7 89}
409e049a 90
91/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95void
960a7046 96rebuild_jump_labels (rtx_insn *f)
409e049a 97{
98 rebuild_jump_labels_1 (f, true);
99}
100
101/* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104void
960a7046 105rebuild_jump_labels_chain (rtx_insn *chain)
409e049a 106{
107 rebuild_jump_labels_1 (chain, false);
108}
fc4eaab7 109\f
fb3c15bc 110/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
114
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
117 */
5a2fb01f 118static unsigned int
3ad4992f 119cleanup_barriers (void)
fb3c15bc 120{
960a7046 121 rtx_insn *insn;
ca03cf1b 122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
fb3c15bc 123 {
6d7dc5b9 124 if (BARRIER_P (insn))
fb3c15bc 125 {
bce107d7 126 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
326fb3fd 127 if (!prev)
128 continue;
ca03cf1b 129
6d7dc5b9 130 if (BARRIER_P (prev))
749a971f 131 delete_insn (insn);
fb3c15bc 132 else if (prev != PREV_INSN (insn))
e2810e72 133 {
134 basic_block bb = BLOCK_FOR_INSN (prev);
135 rtx_insn *end = PREV_INSN (insn);
136 reorder_insns_nobb (insn, insn, prev);
137 if (bb)
138 {
139 /* If the backend called in machine reorg compute_bb_for_insn
140 and didn't free_bb_for_insn again, preserve basic block
141 boundaries. Move the end of basic block to PREV since
142 it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 on the following notes.
144 ??? Maybe the proper solution for the targets that have
145 cfg around after machine reorg is not to run cleanup_barriers
146 pass at all. */
147 BB_END (bb) = prev;
148 do
149 {
150 prev = NEXT_INSN (prev);
151 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 BLOCK_FOR_INSN (prev) = NULL;
153 }
154 while (prev != end);
155 }
156 }
fb3c15bc 157 }
158 }
2a1990e9 159 return 0;
fb3c15bc 160}
5924de0b 161
cbe8bda8 162namespace {
163
164const pass_data pass_data_cleanup_barriers =
77fce4cd 165{
cbe8bda8 166 RTL_PASS, /* type */
167 "barriers", /* name */
168 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 169 TV_NONE, /* tv_id */
170 0, /* properties_required */
171 0, /* properties_provided */
172 0, /* properties_destroyed */
173 0, /* todo_flags_start */
174 0, /* todo_flags_finish */
77fce4cd 175};
176
cbe8bda8 177class pass_cleanup_barriers : public rtl_opt_pass
178{
179public:
9af5ce0c 180 pass_cleanup_barriers (gcc::context *ctxt)
181 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
cbe8bda8 182 {}
183
184 /* opt_pass methods: */
65b0537f 185 virtual unsigned int execute (function *) { return cleanup_barriers (); }
cbe8bda8 186
187}; // class pass_cleanup_barriers
188
189} // anon namespace
190
191rtl_opt_pass *
192make_pass_cleanup_barriers (gcc::context *ctxt)
193{
194 return new pass_cleanup_barriers (ctxt);
195}
196
e8d75e01 197\f
19d2fe05 198/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
200 notes whose labels don't occur in the insn any more. */
201
805e22b2 202static void
960a7046 203init_label_info (rtx_insn *f)
e8d75e01 204{
960a7046 205 rtx_insn *insn;
e8d75e01 206
c38b28e7 207 for (insn = f; insn; insn = NEXT_INSN (insn))
19d2fe05 208 {
c38b28e7 209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211
212 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 sticky and not reset here; that way we won't lose association
214 with a label when e.g. the source for a target register
215 disappears out of reach for targets that may use jump-target
216 registers. Jump transformations are supposed to transform
217 any REG_LABEL_TARGET notes. The target label reference in a
218 branch may disappear from the branch (and from the
219 instruction before it) for other reasons, like register
220 allocation. */
221
222 if (INSN_P (insn))
19d2fe05 223 {
c38b28e7 224 rtx note, next;
225
226 for (note = REG_NOTES (insn); note; note = next)
227 {
228 next = XEXP (note, 1);
229 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 remove_note (insn, note);
232 }
19d2fe05 233 }
234 }
e8d75e01 235}
236
58c74e1e 237/* A subroutine of mark_all_labels. Trivially propagate a simple label
238 load into a jump_insn that uses it. */
239
240static void
960a7046 241maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
58c74e1e 242{
243 rtx label_note, pc, pc_src;
244
245 pc = pc_set (jump_insn);
246 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248
249 /* If the previous non-jump insn sets something to a label,
250 something that this jump insn uses, make that label the primary
251 target of this insn if we don't yet have any. That previous
252 insn must be a single_set and not refer to more than one label.
253 The jump insn must not refer to other labels as jump targets
254 and must be a plain (set (pc) ...), maybe in a parallel, and
255 may refer to the item being set only directly or as one of the
256 arms in an IF_THEN_ELSE. */
257
258 if (label_note != NULL && pc_src != NULL)
259 {
260 rtx label_set = single_set (prev_nonjump_insn);
261 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262
263 if (label_set != NULL
264 /* The source must be the direct LABEL_REF, not a
265 PLUS, UNSPEC, IF_THEN_ELSE etc. */
266 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 && (rtx_equal_p (label_dest, pc_src)
268 || (GET_CODE (pc_src) == IF_THEN_ELSE
269 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 {
272 /* The CODE_LABEL referred to in the note must be the
273 CODE_LABEL in the LABEL_REF of the "set". We can
274 conveniently use it for the marker function, which
275 requires a LABEL_REF wrapping. */
c7799456 276 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
58c74e1e 277
278 mark_jump_label_1 (label_set, jump_insn, false, true);
279
280 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 }
282 }
283}
284
e8d75e01 285/* Mark the label each jump jumps to.
fc4eaab7 286 Combine consecutive labels, and count uses of labels. */
e8d75e01 287
288static void
960a7046 289mark_all_labels (rtx_insn *f)
e8d75e01 290{
960a7046 291 rtx_insn *insn;
e8d75e01 292
eea7b156 293 if (current_ir_type () == IR_RTL_CFGLAYOUT)
294 {
295 basic_block bb;
fc00614f 296 FOR_EACH_BB_FN (bb, cfun)
eea7b156 297 {
58c74e1e 298 /* In cfglayout mode, we don't bother with trivial next-insn
299 propagation of LABEL_REFs into JUMP_LABEL. This will be
300 handled by other optimizers using better algorithms. */
301 FOR_BB_INSNS (bb, insn)
302 {
dd1286fb 303 gcc_assert (! insn->deleted ());
58c74e1e 304 if (NONDEBUG_INSN_P (insn))
305 mark_jump_label (PATTERN (insn), insn, 0);
306 }
307
308 /* In cfglayout mode, there may be non-insns between the
309 basic blocks. If those non-insns represent tablejump data,
310 they contain label references that we must record. */
43e94e51 311 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
91f71fa3 312 if (JUMP_TABLE_DATA_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
43e94e51 314 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
91f71fa3 315 if (JUMP_TABLE_DATA_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
eea7b156 317 }
318 }
58c74e1e 319 else
320 {
960a7046 321 rtx_insn *prev_nonjump_insn = NULL;
58c74e1e 322 for (insn = f; insn; insn = NEXT_INSN (insn))
323 {
dd1286fb 324 if (insn->deleted ())
58c74e1e 325 ;
326 else if (LABEL_P (insn))
327 prev_nonjump_insn = NULL;
91f71fa3 328 else if (JUMP_TABLE_DATA_P (insn))
329 mark_jump_label (PATTERN (insn), insn, 0);
58c74e1e 330 else if (NONDEBUG_INSN_P (insn))
331 {
332 mark_jump_label (PATTERN (insn), insn, 0);
333 if (JUMP_P (insn))
334 {
335 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 }
338 else
339 prev_nonjump_insn = insn;
340 }
341 }
342 }
e8d75e01 343}
5924de0b 344\f
fa8b3d85 345/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
8e98892d 346 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
347 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348 know whether it's source is floating point or integer comparison. Machine
349 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350 to help this function avoid overhead in these cases. */
351enum rtx_code
5493cb9a 352reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
4066f31e 353 const_rtx arg1, const rtx_insn *insn)
5924de0b 354{
3754d046 355 machine_mode mode;
5924de0b 356
357 /* If this is not actually a comparison, we can't reverse it. */
6720e96c 358 if (GET_RTX_CLASS (code) != RTX_COMPARE
359 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
8e98892d 360 return UNKNOWN;
361
362 mode = GET_MODE (arg0);
363 if (mode == VOIDmode)
364 mode = GET_MODE (arg1);
365
3927afe0 366 /* First see if machine description supplies us way to reverse the
367 comparison. Give it priority over everything else to allow
368 machine description to do tricks. */
0ec244e1 369 if (GET_MODE_CLASS (mode) == MODE_CC
8e98892d 370 && REVERSIBLE_CC_MODE (mode))
e6daccdf 371 return REVERSE_CONDITION (code, mode);
5924de0b 372
fa8b3d85 373 /* Try a few special cases based on the comparison code. */
8e98892d 374 switch (code)
375 {
85fc0ad1 376 case GEU:
377 case GTU:
378 case LEU:
379 case LTU:
380 case NE:
381 case EQ:
382 /* It is always safe to reverse EQ and NE, even for the floating
917bbcab 383 point. Similarly the unsigned comparisons are never used for
85fc0ad1 384 floating point so we can reverse them in the default way. */
385 return reverse_condition (code);
386 case ORDERED:
387 case UNORDERED:
388 case LTGT:
389 case UNEQ:
390 /* In case we already see unordered comparison, we can be sure to
391 be dealing with floating point so we don't need any more tests. */
392 return reverse_condition_maybe_unordered (code);
393 case UNLT:
394 case UNLE:
395 case UNGT:
396 case UNGE:
397 /* We don't have safe way to reverse these yet. */
398 return UNKNOWN;
399 default:
400 break;
8e98892d 401 }
402
a4589b78 403 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
5924de0b 404 {
8e98892d 405 /* Try to search for the comparison to determine the real mode.
406 This code is expensive, but with sane machine description it
407 will be never used, since REVERSIBLE_CC_MODE will return true
408 in all cases. */
111f2389 409 if (! insn)
8e98892d 410 return UNKNOWN;
7113a566 411
ce4469fa 412 /* These CONST_CAST's are okay because prev_nonnote_insn just
5ca94202 413 returns its argument and we assign it to a const_rtx
ce4469fa 414 variable. */
4066f31e 415 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
6d7dc5b9 416 prev != 0 && !LABEL_P (prev);
9ed997be 417 prev = prev_nonnote_insn (prev))
8e98892d 418 {
81a410b1 419 const_rtx set = set_of (arg0, prev);
8e98892d 420 if (set && GET_CODE (set) == SET
421 && rtx_equal_p (SET_DEST (set), arg0))
422 {
423 rtx src = SET_SRC (set);
5924de0b 424
8e98892d 425 if (GET_CODE (src) == COMPARE)
426 {
427 rtx comparison = src;
428 arg0 = XEXP (src, 0);
429 mode = GET_MODE (arg0);
430 if (mode == VOIDmode)
431 mode = GET_MODE (XEXP (comparison, 1));
432 break;
433 }
dd5b4b36 434 /* We can get past reg-reg moves. This may be useful for model
8e98892d 435 of i387 comparisons that first move flag registers around. */
436 if (REG_P (src))
437 {
438 arg0 = src;
439 continue;
440 }
441 }
442 /* If register is clobbered in some ununderstandable way,
443 give up. */
444 if (set)
445 return UNKNOWN;
446 }
5924de0b 447 }
448
920d0fb5 449 /* Test for an integer condition, or a floating-point comparison
450 in which NaNs can be ignored. */
971ba038 451 if (CONST_INT_P (arg0)
8e98892d 452 || (GET_MODE (arg0) != VOIDmode
453 && GET_MODE_CLASS (mode) != MODE_CC
920d0fb5 454 && !HONOR_NANS (mode)))
8e98892d 455 return reverse_condition (code);
456
457 return UNKNOWN;
458}
459
df07c3ae 460/* A wrapper around the previous function to take COMPARISON as rtx
8e98892d 461 expression. This simplifies many callers. */
462enum rtx_code
4066f31e 463reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
8e98892d 464{
6720e96c 465 if (!COMPARISON_P (comparison))
8e98892d 466 return UNKNOWN;
467 return reversed_comparison_code_parts (GET_CODE (comparison),
468 XEXP (comparison, 0),
469 XEXP (comparison, 1), insn);
470}
0fc1e6fa 471
472/* Return comparison with reversed code of EXP.
473 Return NULL_RTX in case we fail to do the reversal. */
474rtx
3754d046 475reversed_comparison (const_rtx exp, machine_mode mode)
0fc1e6fa 476{
4066f31e 477 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
0fc1e6fa 478 if (reversed_code == UNKNOWN)
479 return NULL_RTX;
480 else
481 return simplify_gen_relational (reversed_code, mode, VOIDmode,
482 XEXP (exp, 0), XEXP (exp, 1));
483}
484
8e98892d 485\f
a4110d9a 486/* Given an rtx-code for a comparison, return the code for the negated
487 comparison. If no such code exists, return UNKNOWN.
488
489 WATCH OUT! reverse_condition is not safe to use on a jump that might
490 be acting on the results of an IEEE floating point comparison, because
7113a566 491 of the special treatment of non-signaling nans in comparisons.
8e98892d 492 Use reversed_comparison_code instead. */
5924de0b 493
494enum rtx_code
3ad4992f 495reverse_condition (enum rtx_code code)
5924de0b 496{
497 switch (code)
498 {
499 case EQ:
500 return NE;
5924de0b 501 case NE:
502 return EQ;
5924de0b 503 case GT:
504 return LE;
5924de0b 505 case GE:
506 return LT;
5924de0b 507 case LT:
508 return GE;
5924de0b 509 case LE:
510 return GT;
5924de0b 511 case GTU:
512 return LEU;
5924de0b 513 case GEU:
514 return LTU;
5924de0b 515 case LTU:
516 return GEU;
5924de0b 517 case LEU:
518 return GTU;
a4110d9a 519 case UNORDERED:
520 return ORDERED;
521 case ORDERED:
522 return UNORDERED;
523
524 case UNLT:
525 case UNLE:
526 case UNGT:
527 case UNGE:
528 case UNEQ:
79777bad 529 case LTGT:
a4110d9a 530 return UNKNOWN;
5924de0b 531
532 default:
a53ff4c1 533 gcc_unreachable ();
5924de0b 534 }
535}
536
79777bad 537/* Similar, but we're allowed to generate unordered comparisons, which
538 makes it safe for IEEE floating-point. Of course, we have to recognize
539 that the target will support them too... */
540
541enum rtx_code
3ad4992f 542reverse_condition_maybe_unordered (enum rtx_code code)
79777bad 543{
79777bad 544 switch (code)
545 {
546 case EQ:
547 return NE;
548 case NE:
549 return EQ;
550 case GT:
551 return UNLE;
552 case GE:
553 return UNLT;
554 case LT:
555 return UNGE;
556 case LE:
557 return UNGT;
558 case LTGT:
559 return UNEQ;
79777bad 560 case UNORDERED:
561 return ORDERED;
562 case ORDERED:
563 return UNORDERED;
564 case UNLT:
565 return GE;
566 case UNLE:
567 return GT;
568 case UNGT:
569 return LE;
570 case UNGE:
571 return LT;
572 case UNEQ:
573 return LTGT;
574
575 default:
a53ff4c1 576 gcc_unreachable ();
79777bad 577 }
578}
579
5924de0b 580/* Similar, but return the code when two operands of a comparison are swapped.
581 This IS safe for IEEE floating-point. */
582
583enum rtx_code
3ad4992f 584swap_condition (enum rtx_code code)
5924de0b 585{
586 switch (code)
587 {
588 case EQ:
589 case NE:
a4110d9a 590 case UNORDERED:
591 case ORDERED:
592 case UNEQ:
79777bad 593 case LTGT:
5924de0b 594 return code;
595
596 case GT:
597 return LT;
5924de0b 598 case GE:
599 return LE;
5924de0b 600 case LT:
601 return GT;
5924de0b 602 case LE:
603 return GE;
5924de0b 604 case GTU:
605 return LTU;
5924de0b 606 case GEU:
607 return LEU;
5924de0b 608 case LTU:
609 return GTU;
5924de0b 610 case LEU:
611 return GEU;
a4110d9a 612 case UNLT:
613 return UNGT;
614 case UNLE:
615 return UNGE;
616 case UNGT:
617 return UNLT;
618 case UNGE:
619 return UNLE;
620
5924de0b 621 default:
a53ff4c1 622 gcc_unreachable ();
5924de0b 623 }
624}
625
626/* Given a comparison CODE, return the corresponding unsigned comparison.
627 If CODE is an equality comparison or already an unsigned comparison,
628 CODE is returned. */
629
630enum rtx_code
3ad4992f 631unsigned_condition (enum rtx_code code)
5924de0b 632{
633 switch (code)
634 {
635 case EQ:
636 case NE:
637 case GTU:
638 case GEU:
639 case LTU:
640 case LEU:
641 return code;
642
643 case GT:
644 return GTU;
5924de0b 645 case GE:
646 return GEU;
5924de0b 647 case LT:
648 return LTU;
5924de0b 649 case LE:
650 return LEU;
651
652 default:
a53ff4c1 653 gcc_unreachable ();
5924de0b 654 }
655}
656
657/* Similarly, return the signed version of a comparison. */
658
659enum rtx_code
3ad4992f 660signed_condition (enum rtx_code code)
5924de0b 661{
662 switch (code)
663 {
664 case EQ:
665 case NE:
666 case GT:
667 case GE:
668 case LT:
669 case LE:
670 return code;
671
672 case GTU:
673 return GT;
5924de0b 674 case GEU:
675 return GE;
5924de0b 676 case LTU:
677 return LT;
5924de0b 678 case LEU:
679 return LE;
680
681 default:
a53ff4c1 682 gcc_unreachable ();
5924de0b 683 }
684}
685\f
6ef828f9 686/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
5924de0b 687 truth of CODE1 implies the truth of CODE2. */
688
689int
3ad4992f 690comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
5924de0b 691{
ca7744c6 692 /* UNKNOWN comparison codes can happen as a result of trying to revert
693 comparison codes.
694 They can't match anything, so we have to reject them here. */
695 if (code1 == UNKNOWN || code2 == UNKNOWN)
696 return 0;
697
5924de0b 698 if (code1 == code2)
699 return 1;
700
701 switch (code1)
702 {
5aa3f5e2 703 case UNEQ:
704 if (code2 == UNLE || code2 == UNGE)
705 return 1;
706 break;
707
5924de0b 708 case EQ:
79777bad 709 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 || code2 == ORDERED)
5924de0b 711 return 1;
712 break;
713
5aa3f5e2 714 case UNLT:
715 if (code2 == UNLE || code2 == NE)
716 return 1;
717 break;
718
5924de0b 719 case LT:
5aa3f5e2 720 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 return 1;
722 break;
723
724 case UNGT:
725 if (code2 == UNGE || code2 == NE)
5924de0b 726 return 1;
727 break;
728
729 case GT:
5aa3f5e2 730 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
79777bad 731 return 1;
732 break;
733
734 case GE:
735 case LE:
736 if (code2 == ORDERED)
737 return 1;
738 break;
739
740 case LTGT:
741 if (code2 == NE || code2 == ORDERED)
5924de0b 742 return 1;
743 break;
744
745 case LTU:
11088b43 746 if (code2 == LEU || code2 == NE)
5924de0b 747 return 1;
748 break;
749
750 case GTU:
11088b43 751 if (code2 == GEU || code2 == NE)
5924de0b 752 return 1;
753 break;
79777bad 754
755 case UNORDERED:
5aa3f5e2 756 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 || code2 == UNGE || code2 == UNGT)
79777bad 758 return 1;
759 break;
7113a566 760
0dbd1c74 761 default:
762 break;
5924de0b 763 }
764
765 return 0;
766}
767\f
768/* Return 1 if INSN is an unconditional jump and nothing else. */
769
770int
93ee8dfb 771simplejump_p (const rtx_insn *insn)
5924de0b 772{
6d7dc5b9 773 return (JUMP_P (insn)
8d472058 774 && GET_CODE (PATTERN (insn)) == SET
775 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
5924de0b 777}
778
779/* Return nonzero if INSN is a (possibly) conditional jump
7113a566 780 and nothing more.
781
4885b286 782 Use of this function is deprecated, since we need to support combined
d670e794 783 branch and compare insns. Use any_condjump_p instead whenever possible. */
5924de0b 784
785int
93ee8dfb 786condjump_p (const rtx_insn *insn)
5924de0b 787{
52d07779 788 const_rtx x = PATTERN (insn);
7014838c 789
790 if (GET_CODE (x) != SET
791 || GET_CODE (SET_DEST (x)) != PC)
4fbe8fa7 792 return 0;
7014838c 793
794 x = SET_SRC (x);
795 if (GET_CODE (x) == LABEL_REF)
4fbe8fa7 796 return 1;
7113a566 797 else
798 return (GET_CODE (x) == IF_THEN_ELSE
799 && ((GET_CODE (XEXP (x, 2)) == PC
800 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
9cb2517e 801 || ANY_RETURN_P (XEXP (x, 1))))
7113a566 802 || (GET_CODE (XEXP (x, 1)) == PC
803 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
9cb2517e 804 || ANY_RETURN_P (XEXP (x, 2))))));
4fbe8fa7 805}
806
7014838c 807/* Return nonzero if INSN is a (possibly) conditional jump inside a
3a941ad5 808 PARALLEL.
7113a566 809
d670e794 810 Use this function is deprecated, since we need to support combined
811 branch and compare insns. Use any_condjump_p instead whenever possible. */
4fbe8fa7 812
813int
93ee8dfb 814condjump_in_parallel_p (const rtx_insn *insn)
4fbe8fa7 815{
52d07779 816 const_rtx x = PATTERN (insn);
4fbe8fa7 817
818 if (GET_CODE (x) != PARALLEL)
819 return 0;
820 else
821 x = XVECEXP (x, 0, 0);
822
5924de0b 823 if (GET_CODE (x) != SET)
824 return 0;
825 if (GET_CODE (SET_DEST (x)) != PC)
826 return 0;
827 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828 return 1;
829 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830 return 0;
831 if (XEXP (SET_SRC (x), 2) == pc_rtx
832 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
9cb2517e 833 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
5924de0b 834 return 1;
835 if (XEXP (SET_SRC (x), 1) == pc_rtx
836 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
9cb2517e 837 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
5924de0b 838 return 1;
839 return 0;
840}
841
d670e794 842/* Return set of PC, otherwise NULL. */
843
3a941ad5 844rtx
93ee8dfb 845pc_set (const rtx_insn *insn)
3a941ad5 846{
847 rtx pat;
6d7dc5b9 848 if (!JUMP_P (insn))
d670e794 849 return NULL_RTX;
3a941ad5 850 pat = PATTERN (insn);
d670e794 851
852 /* The set is allowed to appear either as the insn pattern or
853 the first set in a PARALLEL. */
854 if (GET_CODE (pat) == PARALLEL)
855 pat = XVECEXP (pat, 0, 0);
3a941ad5 856 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
857 return pat;
d670e794 858
859 return NULL_RTX;
3a941ad5 860}
861
d670e794 862/* Return true when insn is an unconditional direct jump,
863 possibly bundled inside a PARALLEL. */
864
3a941ad5 865int
93ee8dfb 866any_uncondjump_p (const rtx_insn *insn)
3a941ad5 867{
52d07779 868 const_rtx x = pc_set (insn);
3a941ad5 869 if (!x)
870 return 0;
871 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
872 return 0;
4ee9c684 873 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
874 return 0;
3a941ad5 875 return 1;
876}
877
d670e794 878/* Return true when insn is a conditional jump. This function works for
3a941ad5 879 instructions containing PC sets in PARALLELs. The instruction may have
880 various other effects so before removing the jump you must verify
9641f63c 881 onlyjump_p.
3a941ad5 882
d670e794 883 Note that unlike condjump_p it returns false for unconditional jumps. */
884
3a941ad5 885int
93ee8dfb 886any_condjump_p (const rtx_insn *insn)
3a941ad5 887{
52d07779 888 const_rtx x = pc_set (insn);
d670e794 889 enum rtx_code a, b;
890
3a941ad5 891 if (!x)
892 return 0;
d670e794 893 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
894 return 0;
3a941ad5 895
d670e794 896 a = GET_CODE (XEXP (SET_SRC (x), 1));
897 b = GET_CODE (XEXP (SET_SRC (x), 2));
3a941ad5 898
9cb2517e 899 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
900 || (a == PC
901 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
3a941ad5 902}
903
8f7b24f3 904/* Return the label of a conditional jump. */
905
906rtx
93ee8dfb 907condjump_label (const rtx_insn *insn)
8f7b24f3 908{
d670e794 909 rtx x = pc_set (insn);
8f7b24f3 910
d670e794 911 if (!x)
8f7b24f3 912 return NULL_RTX;
913 x = SET_SRC (x);
914 if (GET_CODE (x) == LABEL_REF)
915 return x;
916 if (GET_CODE (x) != IF_THEN_ELSE)
917 return NULL_RTX;
918 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
919 return XEXP (x, 1);
920 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
921 return XEXP (x, 2);
922 return NULL_RTX;
923}
924
01e196ce 925/* Return TRUE if INSN is a return jump. */
926
71caadc0 927int
93ee8dfb 928returnjump_p (const rtx_insn *insn)
71caadc0 929{
15da9a29 930 if (JUMP_P (insn))
931 {
932 subrtx_iterator::array_type array;
933 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
934 {
935 const_rtx x = *iter;
936 switch (GET_CODE (x))
937 {
938 case RETURN:
939 case SIMPLE_RETURN:
940 case EH_RETURN:
941 return true;
942
943 case SET:
944 if (SET_IS_RETURN_P (x))
945 return true;
946 break;
947
948 default:
949 break;
950 }
951 }
952 }
953 return false;
71caadc0 954}
955
25e880b1 956/* Return true if INSN is a (possibly conditional) return insn. */
957
25e880b1 958int
1f9a257f 959eh_returnjump_p (rtx_insn *insn)
25e880b1 960{
cc6f772a 961 if (JUMP_P (insn))
962 {
963 subrtx_iterator::array_type array;
964 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
965 if (GET_CODE (*iter) == EH_RETURN)
966 return true;
967 }
968 return false;
25e880b1 969}
970
459e9193 971/* Return true if INSN is a jump that only transfers control and
972 nothing more. */
973
974int
93ee8dfb 975onlyjump_p (const rtx_insn *insn)
459e9193 976{
977 rtx set;
978
6d7dc5b9 979 if (!JUMP_P (insn))
459e9193 980 return 0;
981
982 set = single_set (insn);
983 if (set == NULL)
984 return 0;
985 if (GET_CODE (SET_DEST (set)) != PC)
986 return 0;
987 if (side_effects_p (SET_SRC (set)))
988 return 0;
989
990 return 1;
991}
992
4115ac36 993/* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
994 NULL or a return. */
995bool
93ee8dfb 996jump_to_label_p (const rtx_insn *insn)
4115ac36 997{
998 return (JUMP_P (insn)
999 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1000}
1001
6ef828f9 1002/* Return nonzero if X is an RTX that only sets the condition codes
2dcd83ba 1003 and has no side effects. */
1004
1005int
52d07779 1006only_sets_cc0_p (const_rtx x)
2dcd83ba 1007{
2dcd83ba 1008 if (! x)
1009 return 0;
1010
1011 if (INSN_P (x))
1012 x = PATTERN (x);
1013
1014 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015}
1016
5924de0b 1017/* Return 1 if X is an RTX that does nothing but set the condition codes
1018 and CLOBBER or USE registers.
1019 Return -1 if X does explicitly set the condition codes,
1020 but also does other things. */
1021
1022int
52d07779 1023sets_cc0_p (const_rtx x)
5924de0b 1024{
2dcd83ba 1025 if (! x)
1026 return 0;
1027
1028 if (INSN_P (x))
1029 x = PATTERN (x);
1030
5924de0b 1031 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032 return 1;
1033 if (GET_CODE (x) == PARALLEL)
1034 {
1035 int i;
1036 int sets_cc0 = 0;
1037 int other_things = 0;
1038 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 {
1040 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 sets_cc0 = 1;
1043 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 other_things = 1;
1045 }
1046 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047 }
1048 return 0;
5924de0b 1049}
5924de0b 1050\f
19d2fe05 1051/* Find all CODE_LABELs referred to in X, and increment their use
1052 counts. If INSN is a JUMP_INSN and there is at least one
1053 CODE_LABEL referenced in INSN as a jump target, then store the last
1054 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1055 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1056 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1057 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1058 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
e0691b9a 1059 For returnjumps, the JUMP_LABEL will also be set as appropriate.
5924de0b 1060
1061 Note that two labels separated by a loop-beginning note
1062 must be kept distinct if we have not yet done loop-optimization,
1063 because the gap between them is where loop-optimize
1064 will want to move invariant code to. CROSS_JUMP tells us
bf73fcf4 1065 that loop-optimization is done with. */
5924de0b 1066
5377f687 1067void
c6d14fbf 1068mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
19d2fe05 1069{
78f55ca8 1070 rtx asmop = extract_asm_operands (x);
1071 if (asmop)
1072 mark_jump_label_asm (asmop, insn);
1073 else
1074 mark_jump_label_1 (x, insn, in_mem != 0,
1075 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
19d2fe05 1076}
1077
c7684b8e 1078/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
19d2fe05 1079 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1080 jump-target; when the JUMP_LABEL field of INSN should be set or a
1081 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1082 note. */
1083
1084static void
c6d14fbf 1085mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
5924de0b 1086{
19cb6b50 1087 RTX_CODE code = GET_CODE (x);
1088 int i;
1089 const char *fmt;
5924de0b 1090
1091 switch (code)
1092 {
1093 case PC:
1094 case CC0:
1095 case REG:
5924de0b 1096 case CLOBBER:
1097 case CALL:
1098 return;
1099
e0691b9a 1100 case RETURN:
31a53363 1101 case SIMPLE_RETURN:
e0691b9a 1102 if (is_target)
1103 {
1104 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1105 JUMP_LABEL (insn) = x;
1106 }
1107 return;
1108
d8e0d332 1109 case MEM:
19d2fe05 1110 in_mem = true;
190099a6 1111 break;
1112
76021441 1113 case SEQUENCE:
a3f9638d 1114 {
1115 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1116 for (i = 0; i < seq->len (); i++)
1117 mark_jump_label (PATTERN (seq->insn (i)),
1118 seq->insn (i), 0);
1119 }
76021441 1120 return;
1121
190099a6 1122 case SYMBOL_REF:
1123 if (!in_mem)
7113a566 1124 return;
190099a6 1125
d8e0d332 1126 /* If this is a constant-pool reference, see if it is a label. */
190099a6 1127 if (CONSTANT_POOL_ADDRESS_P (x))
19d2fe05 1128 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
d8e0d332 1129 break;
1130
19d2fe05 1131 /* Handle operands in the condition of an if-then-else as for a
1132 non-jump insn. */
1133 case IF_THEN_ELSE:
1134 if (!is_target)
1135 break;
1136 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1137 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1138 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1139 return;
1140
5924de0b 1141 case LABEL_REF:
1142 {
c7799456 1143 rtx_insn *label = label_ref_label (x);
b4d3bcce 1144
74b0991d 1145 /* Ignore remaining references to unreachable labels that
1146 have been deleted. */
6d7dc5b9 1147 if (NOTE_P (label)
ad4583d9 1148 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
74b0991d 1149 break;
1150
a53ff4c1 1151 gcc_assert (LABEL_P (label));
b4d3bcce 1152
f08cae9d 1153 /* Ignore references to labels of containing functions. */
1154 if (LABEL_REF_NONLOCAL_P (x))
1155 break;
b4d3bcce 1156
c7799456 1157 set_label_ref_label (x, label);
dd1286fb 1158 if (! insn || ! insn->deleted ())
943e16d8 1159 ++LABEL_NUSES (label);
b4d3bcce 1160
5924de0b 1161 if (insn)
1162 {
19d2fe05 1163 if (is_target
a8d1dae0 1164 /* Do not change a previous setting of JUMP_LABEL. If the
1165 JUMP_LABEL slot is occupied by a different label,
1166 create a note for this label. */
19d2fe05 1167 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
5924de0b 1168 JUMP_LABEL (insn) = label;
ab2237b5 1169 else
e89849bd 1170 {
19d2fe05 1171 enum reg_note kind
1172 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1173
1174 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1175 for LABEL unless there already is one. All uses of
1176 a label, except for the primary target of a jump,
1177 must have such a note. */
1178 if (! find_reg_note (insn, kind, label))
a1ddb869 1179 add_reg_note (insn, kind, label);
5924de0b 1180 }
1181 }
1182 return;
1183 }
1184
91f71fa3 1185 /* Do walk the labels in a vector, but not the first operand of an
1186 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
5924de0b 1187 case ADDR_VEC:
1188 case ADDR_DIFF_VEC:
dd1286fb 1189 if (! insn->deleted ())
943e16d8 1190 {
1191 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
5924de0b 1192
943e16d8 1193 for (i = 0; i < XVECLEN (x, eltnum); i++)
c6d14fbf 1194 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
19d2fe05 1195 is_target);
943e16d8 1196 }
0dbd1c74 1197 return;
7113a566 1198
0dbd1c74 1199 default:
1200 break;
5924de0b 1201 }
1202
1203 fmt = GET_RTX_FORMAT (code);
19d2fe05 1204
1205 /* The primary target of a tablejump is the label of the ADDR_VEC,
1206 which is canonically mentioned *last* in the insn. To get it
1207 marked as JUMP_LABEL, we iterate over items in reverse order. */
5924de0b 1208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1209 {
1210 if (fmt[i] == 'e')
19d2fe05 1211 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
5924de0b 1212 else if (fmt[i] == 'E')
1213 {
19cb6b50 1214 int j;
19d2fe05 1215
1216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1217 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1218 is_target);
5924de0b 1219 }
1220 }
1221}
1222
78f55ca8 1223/* Worker function for mark_jump_label. Handle asm insns specially.
1224 In particular, output operands need not be considered so we can
1225 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1226 need to be considered targets. */
1227
1228static void
c6d14fbf 1229mark_jump_label_asm (rtx asmop, rtx_insn *insn)
78f55ca8 1230{
1231 int i;
1232
1233 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1234 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1235
1236 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1237 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1238}
5924de0b 1239\f
e4bf866d 1240/* Delete insn INSN from the chain of insns and update label ref counts
17a74abe 1241 and delete insns now unreachable.
e4bf866d 1242
17a74abe 1243 Returns the first insn after INSN that was not deleted.
5924de0b 1244
e4bf866d 1245 Usage of this instruction is deprecated. Use delete_insn instead and
1246 subsequent cfg_cleanup pass to delete unreachable code if needed. */
5924de0b 1247
f68c5086 1248rtx_insn *
4cd001d5 1249delete_related_insns (rtx uncast_insn)
5924de0b 1250{
4cd001d5 1251 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
6d7dc5b9 1252 int was_code_label = (LABEL_P (insn));
d3df77e9 1253 rtx note;
f68c5086 1254 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
5924de0b 1255
dd1286fb 1256 while (next && next->deleted ())
5924de0b 1257 next = NEXT_INSN (next);
1258
1259 /* This insn is already deleted => return first following nondeleted. */
dd1286fb 1260 if (insn->deleted ())
5924de0b 1261 return next;
1262
e4bf866d 1263 delete_insn (insn);
5924de0b 1264
5924de0b 1265 /* If instruction is followed by a barrier,
1266 delete the barrier too. */
1267
6d7dc5b9 1268 if (next != 0 && BARRIER_P (next))
e4bf866d 1269 delete_insn (next);
5924de0b 1270
1271 /* If deleting a jump, decrement the count of the label,
1272 and delete the label if it is now unused. */
1273
4115ac36 1274 if (jump_to_label_p (insn))
1793cd6b 1275 {
c86d86ff 1276 rtx lab = JUMP_LABEL (insn);
1277 rtx_jump_table_data *lab_next;
1793cd6b 1278
e4bf866d 1279 if (LABEL_NUSES (lab) == 0)
19d2fe05 1280 /* This can delete NEXT or PREV,
1281 either directly if NEXT is JUMP_LABEL (INSN),
1282 or indirectly through more levels of jumps. */
1283 delete_related_insns (lab);
b19beda9 1284 else if (tablejump_p (insn, NULL, &lab_next))
1793cd6b 1285 {
1286 /* If we're deleting the tablejump, delete the dispatch table.
4a82352a 1287 We may not be able to kill the label immediately preceding
1793cd6b 1288 just yet, as it might be referenced in code leading up to
1289 the tablejump. */
e4bf866d 1290 delete_related_insns (lab_next);
1793cd6b 1291 }
1292 }
5924de0b 1293
9c9e0c01 1294 /* Likewise if we're deleting a dispatch table. */
1295
ae9c1c11 1296 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
9c9e0c01 1297 {
ae9c1c11 1298 rtvec labels = table->get_labels ();
1299 int i;
1300 int len = GET_NUM_ELEM (labels);
9c9e0c01 1301
1302 for (i = 0; i < len; i++)
ae9c1c11 1303 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1304 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
dd1286fb 1305 while (next && next->deleted ())
9c9e0c01 1306 next = NEXT_INSN (next);
1307 return next;
1308 }
1309
19d2fe05 1310 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1311 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1312 if (INSN_P (insn))
d3df77e9 1313 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
19d2fe05 1314 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1315 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
0c97f529 1316 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
6d7dc5b9 1317 && LABEL_P (XEXP (note, 0)))
e4bf866d 1318 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1319 delete_related_insns (XEXP (note, 0));
d3df77e9 1320
dd1286fb 1321 while (prev && (prev->deleted () || NOTE_P (prev)))
5924de0b 1322 prev = PREV_INSN (prev);
1323
1324 /* If INSN was a label and a dispatch table follows it,
1325 delete the dispatch table. The tablejump must have gone already.
1326 It isn't useful to fall through into a table. */
1327
9cdc08c6 1328 if (was_code_label
5924de0b 1329 && NEXT_INSN (insn) != 0
971ba038 1330 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
e4bf866d 1331 next = delete_related_insns (NEXT_INSN (insn));
5924de0b 1332
1333 /* If INSN was a label, delete insns following it if now unreachable. */
1334
6d7dc5b9 1335 if (was_code_label && prev && BARRIER_P (prev))
5924de0b 1336 {
6720e96c 1337 enum rtx_code code;
1338 while (next)
5924de0b 1339 {
6720e96c 1340 code = GET_CODE (next);
737251e7 1341 if (code == NOTE)
5924de0b 1342 next = NEXT_INSN (next);
59bee35e 1343 /* Keep going past other deleted labels to delete what follows. */
dd1286fb 1344 else if (code == CODE_LABEL && next->deleted ())
59bee35e 1345 next = NEXT_INSN (next);
8ef42ff5 1346 /* Keep the (use (insn))s created by dbr_schedule, which needs
1347 them in order to track liveness relative to a previous
1348 barrier. */
1349 else if (INSN_P (next)
1350 && GET_CODE (PATTERN (next)) == USE
1351 && INSN_P (XEXP (PATTERN (next), 0)))
1352 next = NEXT_INSN (next);
6720e96c 1353 else if (code == BARRIER || INSN_P (next))
5924de0b 1354 /* Note: if this deletes a jump, it can cause more
1355 deletion of unreachable code, after a different label.
1356 As long as the value from this recursive call is correct,
1357 this invocation functions correctly. */
e4bf866d 1358 next = delete_related_insns (next);
6720e96c 1359 else
1360 break;
5924de0b 1361 }
1362 }
1363
19d2fe05 1364 /* I feel a little doubtful about this loop,
1365 but I see no clean and sure alternative way
1366 to find the first insn after INSN that is not now deleted.
1367 I hope this works. */
dd1286fb 1368 while (next && next->deleted ())
19d2fe05 1369 next = NEXT_INSN (next);
5924de0b 1370 return next;
1371}
5924de0b 1372\f
1373/* Delete a range of insns from FROM to TO, inclusive.
1374 This is for the sake of peephole optimization, so assume
1375 that whatever these insns do will still be done by a new
1376 peephole insn that will replace them. */
1377
1378void
2db825a4 1379delete_for_peephole (rtx_insn *from, rtx_insn *to)
5924de0b 1380{
2db825a4 1381 rtx_insn *insn = from;
5924de0b 1382
1383 while (1)
1384 {
2db825a4 1385 rtx_insn *next = NEXT_INSN (insn);
1386 rtx_insn *prev = PREV_INSN (insn);
5924de0b 1387
6d7dc5b9 1388 if (!NOTE_P (insn))
5924de0b 1389 {
dd1286fb 1390 insn->set_deleted();
5924de0b 1391
1392 /* Patch this insn out of the chain. */
1393 /* We don't do this all at once, because we
1394 must preserve all NOTEs. */
1395 if (prev)
4a57a2e8 1396 SET_NEXT_INSN (prev) = next;
5924de0b 1397
1398 if (next)
4a57a2e8 1399 SET_PREV_INSN (next) = prev;
5924de0b 1400 }
1401
1402 if (insn == to)
1403 break;
1404 insn = next;
1405 }
1406
1407 /* Note that if TO is an unconditional jump
1408 we *do not* delete the BARRIER that follows,
1409 since the peephole that replaces this sequence
1410 is also an unconditional jump in that case. */
1411}
1412\f
4115ac36 1413/* A helper function for redirect_exp_1; examines its input X and returns
1414 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1415static rtx
1416redirect_target (rtx x)
1417{
1418 if (x == NULL_RTX)
1419 return ret_rtx;
1420 if (!ANY_RETURN_P (x))
1421 return gen_rtx_LABEL_REF (Pmode, x);
1422 return x;
1423}
1424
a8b5d014 1425/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1426 NLABEL as a return. Accrue modifications into the change group. */
5924de0b 1427
a8b5d014 1428static void
db7dd023 1429redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
5924de0b 1430{
19cb6b50 1431 rtx x = *loc;
1432 RTX_CODE code = GET_CODE (x);
1433 int i;
1434 const char *fmt;
5924de0b 1435
c7799456 1436 if ((code == LABEL_REF && label_ref_label (x) == olabel)
4115ac36 1437 || x == olabel)
5924de0b 1438 {
4115ac36 1439 x = redirect_target (nlabel);
1440 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
d1f9b275 1441 x = gen_rtx_SET (pc_rtx, x);
a8b5d014 1442 validate_change (insn, loc, x, 1);
1443 return;
1444 }
5924de0b 1445
4115ac36 1446 if (code == SET && SET_DEST (x) == pc_rtx
1447 && ANY_RETURN_P (nlabel)
a8b5d014 1448 && GET_CODE (SET_SRC (x)) == LABEL_REF
c7799456 1449 && label_ref_label (SET_SRC (x)) == olabel)
a8b5d014 1450 {
4115ac36 1451 validate_change (insn, loc, nlabel, 1);
a8b5d014 1452 return;
5924de0b 1453 }
1454
3b10edae 1455 if (code == IF_THEN_ELSE)
1456 {
1457 /* Skip the condition of an IF_THEN_ELSE. We only want to
1458 change jump destinations, not eventual label comparisons. */
1459 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1460 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1461 return;
1462 }
1463
5924de0b 1464 fmt = GET_RTX_FORMAT (code);
1465 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1466 {
1467 if (fmt[i] == 'e')
a8b5d014 1468 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1bd8ca86 1469 else if (fmt[i] == 'E')
5924de0b 1470 {
19cb6b50 1471 int j;
5924de0b 1472 for (j = 0; j < XVECLEN (x, i); j++)
a8b5d014 1473 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
5924de0b 1474 }
1475 }
a8b5d014 1476}
5924de0b 1477
a8b5d014 1478/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1479 the modifications into the change group. Return false if we did
1480 not see how to do that. */
1481
1482int
548a37a8 1483redirect_jump_1 (rtx_insn *jump, rtx nlabel)
a8b5d014 1484{
1485 int ochanges = num_validated_changes ();
78f55ca8 1486 rtx *loc, asmop;
ba08b7e7 1487
4115ac36 1488 gcc_assert (nlabel != NULL_RTX);
78f55ca8 1489 asmop = extract_asm_operands (PATTERN (jump));
1490 if (asmop)
1491 {
1492 if (nlabel == NULL)
1493 return 0;
1494 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1495 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1496 }
1497 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
ba08b7e7 1498 loc = &XVECEXP (PATTERN (jump), 0, 0);
1499 else
1500 loc = &PATTERN (jump);
1501
1502 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
a8b5d014 1503 return num_validated_changes () > ochanges;
1504}
1505
1506/* Make JUMP go to NLABEL instead of where it jumps now. If the old
1507 jump target label is unused as a result, it and the code following
1508 it may be deleted.
5924de0b 1509
4115ac36 1510 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1511 in that case we are to turn the jump into a (possibly conditional)
1512 return insn.
5924de0b 1513
a8b5d014 1514 The return value will be 1 if the change was made, 0 if it wasn't
4115ac36 1515 (this can only occur when trying to produce return insns). */
5924de0b 1516
1517int
f9a00e9e 1518redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
5924de0b 1519{
f9a00e9e 1520 rtx olabel = jump->jump_label ();
5924de0b 1521
e1e50552 1522 if (!nlabel)
1523 {
1524 /* If there is no label, we are asked to redirect to the EXIT block.
1525 When before the epilogue is emitted, return/simple_return cannot be
1526 created so we return 0 immediately. After the epilogue is emitted,
1527 we always expect a label, either a non-null label, or a
1528 return/simple_return RTX. */
1529
1530 if (!epilogue_completed)
1531 return 0;
1532 gcc_unreachable ();
1533 }
4115ac36 1534
5924de0b 1535 if (nlabel == olabel)
1536 return 1;
1537
82880dfd 1538 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
5924de0b 1539 return 0;
1540
82880dfd 1541 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1542 return 1;
1543}
1544
1545/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
48e1416a 1546 NLABEL in JUMP.
82880dfd 1547 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1548 count has dropped to zero. */
1549void
f9a00e9e 1550redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
82880dfd 1551 int invert)
1552{
1553 rtx note;
1554
19d2fe05 1555 gcc_assert (JUMP_LABEL (jump) == olabel);
1556
f2b32076 1557 /* Negative DELETE_UNUSED used to be used to signalize behavior on
737251e7 1558 moving FUNCTION_END note. Just sanity check that no user still worry
1559 about this. */
1560 gcc_assert (delete_unused >= 0);
5924de0b 1561 JUMP_LABEL (jump) = nlabel;
4115ac36 1562 if (!ANY_RETURN_P (nlabel))
5924de0b 1563 ++LABEL_NUSES (nlabel);
1564
1e0703ac 1565 /* Update labels in any REG_EQUAL note. */
1566 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1567 {
4115ac36 1568 if (ANY_RETURN_P (nlabel)
1569 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
82880dfd 1570 remove_note (jump, note);
1571 else
1e0703ac 1572 {
82880dfd 1573 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1574 confirm_change_group ();
1e0703ac 1575 }
1e0703ac 1576 }
1577
4db67ecc 1578 /* Handle the case where we had a conditional crossing jump to a return
1579 label and are now changing it into a direct conditional return.
1580 The jump is no longer crossing in that case. */
1581 if (ANY_RETURN_P (nlabel))
8f869004 1582 CROSSING_JUMP_P (jump) = 0;
4db67ecc 1583
4115ac36 1584 if (!ANY_RETURN_P (olabel)
1585 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
7f8c3466 1586 /* Undefined labels will remain outside the insn stream. */
1587 && INSN_UID (olabel))
e4bf866d 1588 delete_related_insns (olabel);
82880dfd 1589 if (invert)
1590 invert_br_probabilities (jump);
5924de0b 1591}
1592
82880dfd 1593/* Invert the jump condition X contained in jump insn INSN. Accrue the
1594 modifications into the change group. Return nonzero for success. */
1595static int
4066f31e 1596invert_exp_1 (rtx x, rtx_insn *insn)
a8b5d014 1597{
82880dfd 1598 RTX_CODE code = GET_CODE (x);
a8b5d014 1599
1600 if (code == IF_THEN_ELSE)
1601 {
19cb6b50 1602 rtx comp = XEXP (x, 0);
1603 rtx tem;
7da6ea0c 1604 enum rtx_code reversed_code;
a8b5d014 1605
1606 /* We can do this in two ways: The preferable way, which can only
1607 be done if this is not an integer comparison, is to reverse
1608 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1609 of the IF_THEN_ELSE. If we can't do either, fail. */
1610
7da6ea0c 1611 reversed_code = reversed_comparison_code (comp, insn);
1612
1613 if (reversed_code != UNKNOWN)
a8b5d014 1614 {
1615 validate_change (insn, &XEXP (x, 0),
7da6ea0c 1616 gen_rtx_fmt_ee (reversed_code,
a8b5d014 1617 GET_MODE (comp), XEXP (comp, 0),
1618 XEXP (comp, 1)),
1619 1);
82880dfd 1620 return 1;
a8b5d014 1621 }
7113a566 1622
a8b5d014 1623 tem = XEXP (x, 1);
1624 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1625 validate_change (insn, &XEXP (x, 2), tem, 1);
82880dfd 1626 return 1;
a8b5d014 1627 }
ba08b7e7 1628 else
a8b5d014 1629 return 0;
a8b5d014 1630}
1631
1632/* Invert the condition of the jump JUMP, and make it jump to label
1633 NLABEL instead of where it jumps now. Accrue changes into the
1634 change group. Return false if we didn't see how to perform the
1635 inversion and redirection. */
1636
1637int
f9a00e9e 1638invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
a8b5d014 1639{
82880dfd 1640 rtx x = pc_set (jump);
a8b5d014 1641 int ochanges;
a53ff4c1 1642 int ok;
a8b5d014 1643
1644 ochanges = num_validated_changes ();
78f55ca8 1645 if (x == NULL)
1646 return 0;
a53ff4c1 1647 ok = invert_exp_1 (SET_SRC (x), jump);
1648 gcc_assert (ok);
48e1416a 1649
a8b5d014 1650 if (num_validated_changes () == ochanges)
1651 return 0;
1652
50f46d50 1653 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1654 in Pmode, so checking this is not merely an optimization. */
1655 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
a8b5d014 1656}
1657
1658/* Invert the condition of the jump JUMP, and make it jump to label
1659 NLABEL instead of where it jumps now. Return true if successful. */
1660
1661int
f9a00e9e 1662invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
a8b5d014 1663{
82880dfd 1664 rtx olabel = JUMP_LABEL (jump);
a8b5d014 1665
82880dfd 1666 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
a8b5d014 1667 {
82880dfd 1668 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
a8b5d014 1669 return 1;
1670 }
82880dfd 1671 cancel_changes (0);
a8b5d014 1672 return 0;
1673}
1674
5924de0b 1675\f
1676/* Like rtx_equal_p except that it considers two REGs as equal
6c60c295 1677 if they renumber to the same value and considers two commutative
1678 operations to be the same if the order of the operands has been
280566a7 1679 reversed. */
5924de0b 1680
1681int
a9f1838b 1682rtx_renumbered_equal_p (const_rtx x, const_rtx y)
5924de0b 1683{
19cb6b50 1684 int i;
52d07779 1685 const enum rtx_code code = GET_CODE (x);
19cb6b50 1686 const char *fmt;
7113a566 1687
5924de0b 1688 if (x == y)
1689 return 1;
6c60c295 1690
8ad4c111 1691 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1692 && (REG_P (y) || (GET_CODE (y) == SUBREG
1693 && REG_P (SUBREG_REG (y)))))
5924de0b 1694 {
6c60c295 1695 int reg_x = -1, reg_y = -1;
9edf7ea8 1696 poly_int64 byte_x = 0, byte_y = 0;
9680c846 1697 struct subreg_info info;
5924de0b 1698
1699 if (GET_MODE (x) != GET_MODE (y))
1700 return 0;
1701
1702 /* If we haven't done any renumbering, don't
1703 make any assumptions. */
1704 if (reg_renumber == 0)
1705 return rtx_equal_p (x, y);
1706
1707 if (code == SUBREG)
1708 {
6c60c295 1709 reg_x = REGNO (SUBREG_REG (x));
701e46d0 1710 byte_x = SUBREG_BYTE (x);
6c60c295 1711
1712 if (reg_renumber[reg_x] >= 0)
1713 {
9680c846 1714 subreg_get_info (reg_renumber[reg_x],
1715 GET_MODE (SUBREG_REG (x)), byte_x,
1716 GET_MODE (x), &info);
1717 if (!info.representable_p)
62e42324 1718 return 0;
9680c846 1719 reg_x = info.offset;
701e46d0 1720 byte_x = 0;
6c60c295 1721 }
5924de0b 1722 }
1723 else
1724 {
6c60c295 1725 reg_x = REGNO (x);
1726 if (reg_renumber[reg_x] >= 0)
1727 reg_x = reg_renumber[reg_x];
5924de0b 1728 }
6c60c295 1729
5924de0b 1730 if (GET_CODE (y) == SUBREG)
1731 {
6c60c295 1732 reg_y = REGNO (SUBREG_REG (y));
701e46d0 1733 byte_y = SUBREG_BYTE (y);
6c60c295 1734
1735 if (reg_renumber[reg_y] >= 0)
1736 {
9680c846 1737 subreg_get_info (reg_renumber[reg_y],
1738 GET_MODE (SUBREG_REG (y)), byte_y,
1739 GET_MODE (y), &info);
1740 if (!info.representable_p)
62e42324 1741 return 0;
9680c846 1742 reg_y = info.offset;
701e46d0 1743 byte_y = 0;
6c60c295 1744 }
5924de0b 1745 }
1746 else
1747 {
6c60c295 1748 reg_y = REGNO (y);
1749 if (reg_renumber[reg_y] >= 0)
1750 reg_y = reg_renumber[reg_y];
5924de0b 1751 }
6c60c295 1752
9edf7ea8 1753 return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
5924de0b 1754 }
6c60c295 1755
7113a566 1756 /* Now we have disposed of all the cases
5924de0b 1757 in which different rtx codes can match. */
1758 if (code != GET_CODE (y))
1759 return 0;
6c60c295 1760
5924de0b 1761 switch (code)
1762 {
1763 case PC:
1764 case CC0:
1765 case ADDR_VEC:
1766 case ADDR_DIFF_VEC:
0349edce 1767 CASE_CONST_UNIQUE:
70b1bccd 1768 return 0;
5924de0b 1769
1770 case LABEL_REF:
f08cae9d 1771 /* We can't assume nonlocal labels have their following insns yet. */
1772 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
c7799456 1773 return label_ref_label (x) == label_ref_label (y);
6c60c295 1774
5924de0b 1775 /* Two label-refs are equivalent if they point at labels
1776 in the same position in the instruction stream. */
4c9c6539 1777 else
1778 {
c7799456 1779 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1780 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
4c9c6539 1781 while (xi && LABEL_P (xi))
1782 xi = next_nonnote_nondebug_insn (xi);
1783 while (yi && LABEL_P (yi))
1784 yi = next_nonnote_nondebug_insn (yi);
1785 return xi == yi;
1786 }
5924de0b 1787
1788 case SYMBOL_REF:
1789 return XSTR (x, 0) == XSTR (y, 0);
0dbd1c74 1790
fc41ccae 1791 case CODE_LABEL:
1792 /* If we didn't match EQ equality above, they aren't the same. */
1793 return 0;
1794
0dbd1c74 1795 default:
1796 break;
5924de0b 1797 }
1798
1799 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1800
1801 if (GET_MODE (x) != GET_MODE (y))
1802 return 0;
1803
04ec15fa 1804 /* MEMs referring to different address space are not equivalent. */
bd1a81f7 1805 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1806 return 0;
1807
6c60c295 1808 /* For commutative operations, the RTX match if the operand match in any
280566a7 1809 order. Also handle the simple binary and unary cases without a loop. */
1810 if (targetm.commutative_p (x, UNKNOWN))
6c60c295 1811 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1812 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1813 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1814 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
6720e96c 1815 else if (NON_COMMUTATIVE_P (x))
6c60c295 1816 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1817 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
6720e96c 1818 else if (UNARY_P (x))
6c60c295 1819 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1820
5924de0b 1821 /* Compare the elements. If any pair of corresponding elements
1822 fail to match, return 0 for the whole things. */
1823
1824 fmt = GET_RTX_FORMAT (code);
1825 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1826 {
19cb6b50 1827 int j;
5924de0b 1828 switch (fmt[i])
1829 {
1bb04728 1830 case 'w':
1831 if (XWINT (x, i) != XWINT (y, i))
1832 return 0;
1833 break;
1834
5924de0b 1835 case 'i':
1836 if (XINT (x, i) != XINT (y, i))
6675c1b7 1837 {
1838 if (((code == ASM_OPERANDS && i == 6)
5169661d 1839 || (code == ASM_INPUT && i == 1)))
6675c1b7 1840 break;
1841 return 0;
1842 }
5924de0b 1843 break;
1844
9edf7ea8 1845 case 'p':
1846 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1847 return 0;
1848 break;
1849
a0d79d69 1850 case 't':
1851 if (XTREE (x, i) != XTREE (y, i))
1852 return 0;
1853 break;
1854
5924de0b 1855 case 's':
1856 if (strcmp (XSTR (x, i), XSTR (y, i)))
1857 return 0;
1858 break;
1859
1860 case 'e':
1861 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1862 return 0;
1863 break;
1864
1865 case 'u':
1866 if (XEXP (x, i) != XEXP (y, i))
1867 return 0;
b4b174c3 1868 /* Fall through. */
5924de0b 1869 case '0':
1870 break;
1871
1872 case 'E':
1873 if (XVECLEN (x, i) != XVECLEN (y, i))
1874 return 0;
1875 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1876 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1877 return 0;
1878 break;
1879
1880 default:
a53ff4c1 1881 gcc_unreachable ();
5924de0b 1882 }
1883 }
1884 return 1;
1885}
1886\f
1887/* If X is a hard register or equivalent to one or a subregister of one,
1888 return the hard register number. If X is a pseudo register that was not
1889 assigned a hard register, return the pseudo register number. Otherwise,
1890 return -1. Any rtx is valid for X. */
1891
1892int
52d07779 1893true_regnum (const_rtx x)
5924de0b 1894{
8ad4c111 1895 if (REG_P (x))
5924de0b 1896 {
c6a6cdaa 1897 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1898 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
5924de0b 1899 return reg_renumber[REGNO (x)];
1900 return REGNO (x);
1901 }
1902 if (GET_CODE (x) == SUBREG)
1903 {
1904 int base = true_regnum (SUBREG_REG (x));
90489f58 1905 if (base >= 0
9680c846 1906 && base < FIRST_PSEUDO_REGISTER)
1907 {
1908 struct subreg_info info;
1909
c6a6cdaa 1910 subreg_get_info (lra_in_progress
1911 ? (unsigned) base : REGNO (SUBREG_REG (x)),
9680c846 1912 GET_MODE (SUBREG_REG (x)),
1913 SUBREG_BYTE (x), GET_MODE (x), &info);
1914
1915 if (info.representable_p)
1916 return base + info.offset;
1917 }
5924de0b 1918 }
1919 return -1;
1920}
b627bae7 1921
1922/* Return regno of the register REG and handle subregs too. */
1923unsigned int
52d07779 1924reg_or_subregno (const_rtx reg)
b627bae7 1925{
b627bae7 1926 if (GET_CODE (reg) == SUBREG)
a53ff4c1 1927 reg = SUBREG_REG (reg);
1928 gcc_assert (REG_P (reg));
1929 return REGNO (reg);
b627bae7 1930}