]> git.ipfire.org Git - thirdparty/gcc.git/blame - libiberty/hashtab.c
re PR middle-end/28071 (A file that can not be compiled in reasonable time/space)
[thirdparty/gcc.git] / libiberty / hashtab.c
CommitLineData
a2f945c6 1/* An expandable hash tables datatype.
9bf3c9cc
RH
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
a2f945c6
VM
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5
6This file is part of the libiberty library.
7Libiberty is free software; you can redistribute it and/or
8modify it under the terms of the GNU Library General Public
9License as published by the Free Software Foundation; either
10version 2 of the License, or (at your option) any later version.
11
12Libiberty is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15Library General Public License for more details.
16
17You should have received a copy of the GNU Library General Public
18License along with libiberty; see the file COPYING.LIB. If
ee58dffd
NC
19not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
a2f945c6
VM
21
22/* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
24
25 Elements in the table are generic pointers.
26
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
29
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
34
35#ifdef HAVE_CONFIG_H
36#include "config.h"
37#endif
38
6de9b8ff
PDM
39#include <sys/types.h>
40
a2f945c6
VM
41#ifdef HAVE_STDLIB_H
42#include <stdlib.h>
43#endif
d11ec6f0
ZW
44#ifdef HAVE_STRING_H
45#include <string.h>
46#endif
cf8e4b78
DH
47#ifdef HAVE_MALLOC_H
48#include <malloc.h>
49#endif
9bf3c9cc
RH
50#ifdef HAVE_LIMITS_H
51#include <limits.h>
52#endif
53#ifdef HAVE_STDINT_H
54#include <stdint.h>
55#endif
cf8e4b78 56
36dd3a44
JL
57#include <stdio.h>
58
a2f945c6 59#include "libiberty.h"
9bf3c9cc 60#include "ansidecl.h"
a2f945c6
VM
61#include "hashtab.h"
62
9bf3c9cc
RH
63#ifndef CHAR_BIT
64#define CHAR_BIT 8
65#endif
66
6da879de
GDR
67static unsigned int higher_prime_index (unsigned long);
68static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int);
69static hashval_t htab_mod (hashval_t, htab_t);
70static hashval_t htab_mod_m2 (hashval_t, htab_t);
71static hashval_t hash_pointer (const void *);
72static int eq_pointer (const void *, const void *);
73static int htab_expand (htab_t);
74static PTR *find_empty_slot_for_expand (htab_t, hashval_t);
18a94a2f
MM
75
76/* At some point, we could make these be NULL, and modify the
77 hash-table routines to handle NULL specially; that would avoid
78 function-call overhead for the common case of hashing pointers. */
79htab_hash htab_hash_pointer = hash_pointer;
80htab_eq htab_eq_pointer = eq_pointer;
0194e877 81
9bf3c9cc
RH
82/* Table of primes and multiplicative inverses.
83
84 Note that these are not minimally reduced inverses. Unlike when generating
85 code to divide by a constant, we want to be able to use the same algorithm
86 all the time. All of these inverses (are implied to) have bit 32 set.
87
88 For the record, here's the function that computed the table; it's a
89 vastly simplified version of the function of the same name from gcc. */
90
91#if 0
92unsigned int
93ceil_log2 (unsigned int x)
94{
95 int i;
96 for (i = 31; i >= 0 ; --i)
97 if (x > (1u << i))
98 return i+1;
99 abort ();
100}
a2f945c6 101
9bf3c9cc
RH
102unsigned int
103choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp)
104{
105 unsigned long long mhigh;
106 double nx;
107 int lgup, post_shift;
108 int pow, pow2;
109 int n = 32, precision = 32;
110
111 lgup = ceil_log2 (d);
112 pow = n + lgup;
113 pow2 = n + lgup - precision;
114
115 nx = ldexp (1.0, pow) + ldexp (1.0, pow2);
116 mhigh = nx / d;
117
118 *shiftp = lgup - 1;
119 *mlp = mhigh;
120 return mhigh >> 32;
121}
122#endif
123
124struct prime_ent
125{
126 hashval_t prime;
127 hashval_t inv;
128 hashval_t inv_m2; /* inverse of prime-2 */
129 hashval_t shift;
130};
131
132static struct prime_ent const prime_tab[] = {
133 { 7, 0x24924925, 0x9999999b, 2 },
134 { 13, 0x3b13b13c, 0x745d1747, 3 },
135 { 31, 0x08421085, 0x1a7b9612, 4 },
136 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
137 { 127, 0x02040811, 0x0624dd30, 6 },
138 { 251, 0x05197f7e, 0x073260a5, 7 },
139 { 509, 0x01824366, 0x02864fc8, 8 },
140 { 1021, 0x00c0906d, 0x014191f7, 9 },
141 { 2039, 0x0121456f, 0x0161e69e, 10 },
142 { 4093, 0x00300902, 0x00501908, 11 },
143 { 8191, 0x00080041, 0x00180241, 12 },
144 { 16381, 0x000c0091, 0x00140191, 13 },
145 { 32749, 0x002605a5, 0x002a06e6, 14 },
146 { 65521, 0x000f00e2, 0x00110122, 15 },
147 { 131071, 0x00008001, 0x00018003, 16 },
148 { 262139, 0x00014002, 0x0001c004, 17 },
149 { 524287, 0x00002001, 0x00006001, 18 },
150 { 1048573, 0x00003001, 0x00005001, 19 },
151 { 2097143, 0x00004801, 0x00005801, 20 },
152 { 4194301, 0x00000c01, 0x00001401, 21 },
153 { 8388593, 0x00001e01, 0x00002201, 22 },
154 { 16777213, 0x00000301, 0x00000501, 23 },
155 { 33554393, 0x00001381, 0x00001481, 24 },
156 { 67108859, 0x00000141, 0x000001c1, 25 },
157 { 134217689, 0x000004e1, 0x00000521, 26 },
158 { 268435399, 0x00000391, 0x000003b1, 27 },
159 { 536870909, 0x00000019, 0x00000029, 28 },
160 { 1073741789, 0x0000008d, 0x00000095, 29 },
161 { 2147483647, 0x00000003, 0x00000007, 30 },
162 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
163 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
164};
165
166/* The following function returns an index into the above table of the
167 nearest prime number which is greater than N, and near a power of two. */
168
169static unsigned int
6da879de 170higher_prime_index (unsigned long n)
a2f945c6 171{
9bf3c9cc
RH
172 unsigned int low = 0;
173 unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]);
a4c9b97e
MM
174
175 while (low != high)
176 {
9bf3c9cc
RH
177 unsigned int mid = low + (high - low) / 2;
178 if (n > prime_tab[mid].prime)
a4c9b97e
MM
179 low = mid + 1;
180 else
181 high = mid;
182 }
183
184 /* If we've run out of primes, abort. */
9bf3c9cc 185 if (n > prime_tab[low].prime)
a4c9b97e
MM
186 {
187 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
188 abort ();
189 }
190
9bf3c9cc 191 return low;
a2f945c6
VM
192}
193
18a94a2f
MM
194/* Returns a hash code for P. */
195
4feeaae3 196static hashval_t
6da879de 197hash_pointer (const PTR p)
18a94a2f 198{
1d2da2e1 199 return (hashval_t) ((long)p >> 3);
18a94a2f
MM
200}
201
202/* Returns non-zero if P1 and P2 are equal. */
203
4feeaae3 204static int
6da879de 205eq_pointer (const PTR p1, const PTR p2)
18a94a2f
MM
206{
207 return p1 == p2;
208}
209
d9175b87 210
d7cf8390
GDR
211/* The parens around the function names in the next two definitions
212 are essential in order to prevent macro expansions of the name.
213 The bodies, however, are expanded as expected, so they are not
214 recursive definitions. */
215
216/* Return the current size of given hash table. */
217
218#define htab_size(htab) ((htab)->size)
219
220size_t
221(htab_size) (htab_t htab)
d9175b87 222{
d7cf8390 223 return htab_size (htab);
d9175b87
RH
224}
225
226/* Return the current number of elements in given hash table. */
227
d7cf8390
GDR
228#define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted)
229
230size_t
231(htab_elements) (htab_t htab)
d9175b87 232{
d7cf8390 233 return htab_elements (htab);
d9175b87
RH
234}
235
9bf3c9cc
RH
236/* Return X % Y. */
237
238static inline hashval_t
6da879de 239htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift)
9bf3c9cc
RH
240{
241 /* The multiplicative inverses computed above are for 32-bit types, and
242 requires that we be able to compute a highpart multiply. */
243#ifdef UNSIGNED_64BIT_TYPE
244 __extension__ typedef UNSIGNED_64BIT_TYPE ull;
245 if (sizeof (hashval_t) * CHAR_BIT <= 32)
246 {
247 hashval_t t1, t2, t3, t4, q, r;
248
249 t1 = ((ull)x * inv) >> 32;
250 t2 = x - t1;
251 t3 = t2 >> 1;
252 t4 = t1 + t3;
253 q = t4 >> shift;
254 r = x - (q * y);
255
256 return r;
257 }
258#endif
259
260 /* Otherwise just use the native division routines. */
261 return x % y;
262}
263
d9175b87
RH
264/* Compute the primary hash for HASH given HTAB's current size. */
265
266static inline hashval_t
6da879de 267htab_mod (hashval_t hash, htab_t htab)
d9175b87 268{
9bf3c9cc
RH
269 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
270 return htab_mod_1 (hash, p->prime, p->inv, p->shift);
d9175b87
RH
271}
272
273/* Compute the secondary hash for HASH given HTAB's current size. */
274
275static inline hashval_t
6da879de 276htab_mod_m2 (hashval_t hash, htab_t htab)
d9175b87 277{
9bf3c9cc
RH
278 const struct prime_ent *p = &prime_tab[htab->size_prime_index];
279 return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift);
d9175b87
RH
280}
281
a2f945c6
VM
282/* This function creates table with length slightly longer than given
283 source length. Created hash table is initiated as empty (all the
a3648cfc 284 hash table entries are HTAB_EMPTY_ENTRY). The function returns the
e2500fed 285 created hash table, or NULL if memory allocation fails. */
a2f945c6 286
5194cf08 287htab_t
6da879de
GDR
288htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f,
289 htab_del del_f, htab_alloc alloc_f, htab_free free_f)
a2f945c6 290{
5194cf08 291 htab_t result;
9bf3c9cc
RH
292 unsigned int size_prime_index;
293
294 size_prime_index = higher_prime_index (size);
295 size = prime_tab[size_prime_index].prime;
a2f945c6 296
e2500fed 297 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
d50d20ec
HPN
298 if (result == NULL)
299 return NULL;
e2500fed 300 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
d50d20ec
HPN
301 if (result->entries == NULL)
302 {
e2500fed
GK
303 if (free_f != NULL)
304 (*free_f) (result);
d50d20ec
HPN
305 return NULL;
306 }
d50d20ec 307 result->size = size;
9bf3c9cc 308 result->size_prime_index = size_prime_index;
d50d20ec
HPN
309 result->hash_f = hash_f;
310 result->eq_f = eq_f;
311 result->del_f = del_f;
e2500fed
GK
312 result->alloc_f = alloc_f;
313 result->free_f = free_f;
a2f945c6
VM
314 return result;
315}
316
74828682
DJ
317/* As above, but use the variants of alloc_f and free_f which accept
318 an extra argument. */
319
320htab_t
d7cf8390
GDR
321htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f,
322 htab_del del_f, void *alloc_arg,
323 htab_alloc_with_arg alloc_f,
324 htab_free_with_arg free_f)
74828682
DJ
325{
326 htab_t result;
9bf3c9cc
RH
327 unsigned int size_prime_index;
328
329 size_prime_index = higher_prime_index (size);
330 size = prime_tab[size_prime_index].prime;
74828682 331
74828682
DJ
332 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
333 if (result == NULL)
334 return NULL;
335 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
336 if (result->entries == NULL)
337 {
338 if (free_f != NULL)
339 (*free_f) (alloc_arg, result);
340 return NULL;
341 }
342 result->size = size;
9bf3c9cc 343 result->size_prime_index = size_prime_index;
74828682
DJ
344 result->hash_f = hash_f;
345 result->eq_f = eq_f;
346 result->del_f = del_f;
347 result->alloc_arg = alloc_arg;
348 result->alloc_with_arg_f = alloc_f;
349 result->free_with_arg_f = free_f;
350 return result;
351}
352
353/* Update the function pointers and allocation parameter in the htab_t. */
354
355void
6da879de
GDR
356htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f,
357 htab_del del_f, PTR alloc_arg,
358 htab_alloc_with_arg alloc_f, htab_free_with_arg free_f)
74828682
DJ
359{
360 htab->hash_f = hash_f;
361 htab->eq_f = eq_f;
362 htab->del_f = del_f;
363 htab->alloc_arg = alloc_arg;
364 htab->alloc_with_arg_f = alloc_f;
365 htab->free_with_arg_f = free_f;
366}
367
045b3a49
GK
368/* These functions exist solely for backward compatibility. */
369
370#undef htab_create
371htab_t
6da879de 372htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
373{
374 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
375}
376
377htab_t
6da879de 378htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f)
045b3a49
GK
379{
380 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
381}
382
a2f945c6
VM
383/* This function frees all memory allocated for given hash table.
384 Naturally the hash table must already exist. */
385
386void
6da879de 387htab_delete (htab_t htab)
a2f945c6 388{
d9175b87
RH
389 size_t size = htab_size (htab);
390 PTR *entries = htab->entries;
5dc9cffd 391 int i;
e38992e8 392
5dc9cffd 393 if (htab->del_f)
d9175b87 394 for (i = size - 1; i >= 0; i--)
a3648cfc 395 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 396 (*htab->del_f) (entries[i]);
5dc9cffd 397
e2500fed
GK
398 if (htab->free_f != NULL)
399 {
d9175b87 400 (*htab->free_f) (entries);
e2500fed
GK
401 (*htab->free_f) (htab);
402 }
74828682
DJ
403 else if (htab->free_with_arg_f != NULL)
404 {
d9175b87 405 (*htab->free_with_arg_f) (htab->alloc_arg, entries);
74828682
DJ
406 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
407 }
a2f945c6
VM
408}
409
410/* This function clears all entries in the given hash table. */
411
412void
6da879de 413htab_empty (htab_t htab)
a2f945c6 414{
d9175b87
RH
415 size_t size = htab_size (htab);
416 PTR *entries = htab->entries;
5dc9cffd 417 int i;
e38992e8 418
5dc9cffd 419 if (htab->del_f)
d9175b87 420 for (i = size - 1; i >= 0; i--)
a3648cfc 421 if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
d9175b87 422 (*htab->del_f) (entries[i]);
5dc9cffd 423
d9175b87 424 memset (entries, 0, size * sizeof (PTR));
a2f945c6
VM
425}
426
8c5d513f
BS
427/* Similar to htab_find_slot, but without several unwanted side effects:
428 - Does not call htab->eq_f when it finds an existing entry.
429 - Does not change the count of elements/searches/collisions in the
430 hash table.
431 This function also assumes there are no deleted entries in the table.
432 HASH is the hash value for the element to be inserted. */
e38992e8 433
35e9340f 434static PTR *
6da879de 435find_empty_slot_for_expand (htab_t htab, hashval_t hash)
8c5d513f 436{
d9175b87
RH
437 hashval_t index = htab_mod (hash, htab);
438 size_t size = htab_size (htab);
4fc4e478
RH
439 PTR *slot = htab->entries + index;
440 hashval_t hash2;
441
a3648cfc 442 if (*slot == HTAB_EMPTY_ENTRY)
4fc4e478 443 return slot;
a3648cfc 444 else if (*slot == HTAB_DELETED_ENTRY)
4fc4e478 445 abort ();
8c5d513f 446
d9175b87 447 hash2 = htab_mod_m2 (hash, htab);
8c5d513f
BS
448 for (;;)
449 {
4fc4e478
RH
450 index += hash2;
451 if (index >= size)
452 index -= size;
e38992e8 453
4fc4e478 454 slot = htab->entries + index;
a3648cfc 455 if (*slot == HTAB_EMPTY_ENTRY)
8c5d513f 456 return slot;
a3648cfc 457 else if (*slot == HTAB_DELETED_ENTRY)
8c5d513f 458 abort ();
8c5d513f
BS
459 }
460}
461
a2f945c6
VM
462/* The following function changes size of memory allocated for the
463 entries and repeatedly inserts the table elements. The occupancy
464 of the table after the call will be about 50%. Naturally the hash
465 table must already exist. Remember also that the place of the
d50d20ec
HPN
466 table entries is changed. If memory allocation failures are allowed,
467 this function will return zero, indicating that the table could not be
468 expanded. If all goes well, it will return a non-zero value. */
a2f945c6 469
d50d20ec 470static int
6da879de 471htab_expand (htab_t htab)
a2f945c6 472{
35e9340f
HPN
473 PTR *oentries;
474 PTR *olimit;
475 PTR *p;
e2500fed 476 PTR *nentries;
9bf3c9cc
RH
477 size_t nsize, osize, elts;
478 unsigned int oindex, nindex;
5194cf08
ZW
479
480 oentries = htab->entries;
9bf3c9cc
RH
481 oindex = htab->size_prime_index;
482 osize = htab->size;
483 olimit = oentries + osize;
484 elts = htab_elements (htab);
5194cf08 485
0a8e3de3
JH
486 /* Resize only when table after removal of unused elements is either
487 too full or too empty. */
9bf3c9cc
RH
488 if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
489 {
490 nindex = higher_prime_index (elts * 2);
491 nsize = prime_tab[nindex].prime;
492 }
0a8e3de3 493 else
9bf3c9cc
RH
494 {
495 nindex = oindex;
496 nsize = osize;
497 }
d50d20ec 498
74828682
DJ
499 if (htab->alloc_with_arg_f != NULL)
500 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
501 sizeof (PTR *));
502 else
503 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
e2500fed
GK
504 if (nentries == NULL)
505 return 0;
506 htab->entries = nentries;
120cdf68 507 htab->size = nsize;
9bf3c9cc 508 htab->size_prime_index = nindex;
5194cf08
ZW
509 htab->n_elements -= htab->n_deleted;
510 htab->n_deleted = 0;
511
512 p = oentries;
513 do
514 {
35e9340f 515 PTR x = *p;
e38992e8 516
a3648cfc 517 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
5194cf08 518 {
35e9340f 519 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
e38992e8 520
5194cf08
ZW
521 *q = x;
522 }
e38992e8 523
5194cf08
ZW
524 p++;
525 }
526 while (p < olimit);
e38992e8 527
e2500fed
GK
528 if (htab->free_f != NULL)
529 (*htab->free_f) (oentries);
74828682
DJ
530 else if (htab->free_with_arg_f != NULL)
531 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
d50d20ec 532 return 1;
a2f945c6
VM
533}
534
5194cf08
ZW
535/* This function searches for a hash table entry equal to the given
536 element. It cannot be used to insert or delete an element. */
537
35e9340f 538PTR
6da879de 539htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash)
a2f945c6 540{
d9175b87 541 hashval_t index, hash2;
5194cf08 542 size_t size;
35e9340f 543 PTR entry;
5194cf08
ZW
544
545 htab->searches++;
d9175b87
RH
546 size = htab_size (htab);
547 index = htab_mod (hash, htab);
a2f945c6 548
0194e877 549 entry = htab->entries[index];
a3648cfc
DB
550 if (entry == HTAB_EMPTY_ENTRY
551 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877
ZW
552 return entry;
553
d9175b87 554 hash2 = htab_mod_m2 (hash, htab);
5194cf08 555 for (;;)
a2f945c6 556 {
5194cf08
ZW
557 htab->collisions++;
558 index += hash2;
559 if (index >= size)
560 index -= size;
0194e877
ZW
561
562 entry = htab->entries[index];
a3648cfc
DB
563 if (entry == HTAB_EMPTY_ENTRY
564 || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element)))
0194e877 565 return entry;
a2f945c6 566 }
5194cf08
ZW
567}
568
8c5d513f
BS
569/* Like htab_find_slot_with_hash, but compute the hash value from the
570 element. */
e38992e8 571
35e9340f 572PTR
6da879de 573htab_find (htab_t htab, const PTR element)
8c5d513f
BS
574{
575 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
576}
577
5194cf08
ZW
578/* This function searches for a hash table slot containing an entry
579 equal to the given element. To delete an entry, call this with
6a88516c
BE
580 insert=NO_INSERT, then call htab_clear_slot on the slot returned
581 (possibly after doing some checks). To insert an entry, call this
582 with insert=INSERT, then write the value you want into the returned
583 slot. When inserting an entry, NULL may be returned if memory
584 allocation fails. */
5194cf08 585
35e9340f 586PTR *
6da879de
GDR
587htab_find_slot_with_hash (htab_t htab, const PTR element,
588 hashval_t hash, enum insert_option insert)
5194cf08 589{
35e9340f 590 PTR *first_deleted_slot;
d9175b87 591 hashval_t index, hash2;
5194cf08 592 size_t size;
4fc4e478 593 PTR entry;
5194cf08 594
d9175b87
RH
595 size = htab_size (htab);
596 if (insert == INSERT && size * 3 <= htab->n_elements * 4)
597 {
598 if (htab_expand (htab) == 0)
599 return NULL;
600 size = htab_size (htab);
601 }
5194cf08 602
d9175b87 603 index = htab_mod (hash, htab);
5194cf08 604
a2f945c6 605 htab->searches++;
5194cf08
ZW
606 first_deleted_slot = NULL;
607
4fc4e478 608 entry = htab->entries[index];
a3648cfc 609 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 610 goto empty_entry;
a3648cfc 611 else if (entry == HTAB_DELETED_ENTRY)
4fc4e478
RH
612 first_deleted_slot = &htab->entries[index];
613 else if ((*htab->eq_f) (entry, element))
614 return &htab->entries[index];
615
d9175b87 616 hash2 = htab_mod_m2 (hash, htab);
5194cf08 617 for (;;)
a2f945c6 618 {
4fc4e478
RH
619 htab->collisions++;
620 index += hash2;
621 if (index >= size)
622 index -= size;
623
624 entry = htab->entries[index];
a3648cfc 625 if (entry == HTAB_EMPTY_ENTRY)
4fc4e478 626 goto empty_entry;
a3648cfc 627 else if (entry == HTAB_DELETED_ENTRY)
5194cf08
ZW
628 {
629 if (!first_deleted_slot)
630 first_deleted_slot = &htab->entries[index];
631 }
4fc4e478 632 else if ((*htab->eq_f) (entry, element))
e38992e8 633 return &htab->entries[index];
a2f945c6 634 }
4fc4e478
RH
635
636 empty_entry:
637 if (insert == NO_INSERT)
638 return NULL;
639
4fc4e478
RH
640 if (first_deleted_slot)
641 {
e0432c1c 642 htab->n_deleted--;
a3648cfc 643 *first_deleted_slot = HTAB_EMPTY_ENTRY;
4fc4e478
RH
644 return first_deleted_slot;
645 }
646
e0432c1c 647 htab->n_elements++;
4fc4e478 648 return &htab->entries[index];
a2f945c6
VM
649}
650
8c5d513f
BS
651/* Like htab_find_slot_with_hash, but compute the hash value from the
652 element. */
e38992e8 653
35e9340f 654PTR *
6da879de 655htab_find_slot (htab_t htab, const PTR element, enum insert_option insert)
8c5d513f
BS
656{
657 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
658 insert);
659}
660
7f96816a
JL
661/* This function deletes an element with the given value from hash
662 table (the hash is computed from the element). If there is no matching
663 element in the hash table, this function does nothing. */
664
665void
6da879de 666htab_remove_elt (htab_t htab, PTR element)
7f96816a
JL
667{
668 htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element));
669}
670
671
5194cf08
ZW
672/* This function deletes an element with the given value from hash
673 table. If there is no matching element in the hash table, this
674 function does nothing. */
a2f945c6
VM
675
676void
6da879de 677htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash)
a2f945c6 678{
35e9340f 679 PTR *slot;
a2f945c6 680
7f96816a 681 slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT);
a3648cfc 682 if (*slot == HTAB_EMPTY_ENTRY)
5194cf08
ZW
683 return;
684
5dc9cffd
ZW
685 if (htab->del_f)
686 (*htab->del_f) (*slot);
687
a3648cfc 688 *slot = HTAB_DELETED_ENTRY;
5194cf08 689 htab->n_deleted++;
a2f945c6
VM
690}
691
5194cf08
ZW
692/* This function clears a specified slot in a hash table. It is
693 useful when you've already done the lookup and don't want to do it
694 again. */
ed38f5d5
ZW
695
696void
6da879de 697htab_clear_slot (htab_t htab, PTR *slot)
ed38f5d5 698{
d9175b87 699 if (slot < htab->entries || slot >= htab->entries + htab_size (htab)
a3648cfc 700 || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
ed38f5d5 701 abort ();
e38992e8 702
5dc9cffd
ZW
703 if (htab->del_f)
704 (*htab->del_f) (*slot);
e38992e8 705
a3648cfc 706 *slot = HTAB_DELETED_ENTRY;
5194cf08 707 htab->n_deleted++;
ed38f5d5
ZW
708}
709
710/* This function scans over the entire hash table calling
711 CALLBACK for each live entry. If CALLBACK returns false,
712 the iteration stops. INFO is passed as CALLBACK's second
713 argument. */
714
715void
6da879de 716htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info)
ed38f5d5 717{
0a8e3de3
JH
718 PTR *slot;
719 PTR *limit;
a3648cfc 720
0a8e3de3 721 slot = htab->entries;
d9175b87 722 limit = slot + htab_size (htab);
e38992e8 723
5194cf08
ZW
724 do
725 {
35e9340f 726 PTR x = *slot;
e38992e8 727
a3648cfc 728 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
8c5d513f 729 if (!(*callback) (slot, info))
5194cf08
ZW
730 break;
731 }
732 while (++slot < limit);
ed38f5d5
ZW
733}
734
dbccdc42
JH
735/* Like htab_traverse_noresize, but does resize the table when it is
736 too empty to improve effectivity of subsequent calls. */
737
738void
6da879de 739htab_traverse (htab_t htab, htab_trav callback, PTR info)
dbccdc42 740{
d9175b87 741 if (htab_elements (htab) * 8 < htab_size (htab))
dbccdc42
JH
742 htab_expand (htab);
743
744 htab_traverse_noresize (htab, callback, info);
745}
746
e38992e8
RK
747/* Return the fraction of fixed collisions during all work with given
748 hash table. */
a2f945c6 749
5194cf08 750double
6da879de 751htab_collisions (htab_t htab)
a2f945c6 752{
e38992e8 753 if (htab->searches == 0)
5194cf08 754 return 0.0;
e38992e8
RK
755
756 return (double) htab->collisions / (double) htab->searches;
a2f945c6 757}
9e0ba685 758
0ed5305d
RH
759/* Hash P as a null-terminated string.
760
761 Copied from gcc/hashtable.c. Zack had the following to say with respect
762 to applicability, though note that unlike hashtable.c, this hash table
763 implementation re-hashes rather than chain buckets.
764
765 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
766 From: Zack Weinberg <zackw@panix.com>
767 Date: Fri, 17 Aug 2001 02:15:56 -0400
768
769 I got it by extracting all the identifiers from all the source code
770 I had lying around in mid-1999, and testing many recurrences of
771 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
772 prime numbers or the appropriate identity. This was the best one.
773 I don't remember exactly what constituted "best", except I was
774 looking at bucket-length distributions mostly.
775
776 So it should be very good at hashing identifiers, but might not be
777 as good at arbitrary strings.
778
779 I'll add that it thoroughly trounces the hash functions recommended
780 for this use at http://burtleburtle.net/bob/hash/index.html, both
781 on speed and bucket distribution. I haven't tried it against the
782 function they just started using for Perl's hashes. */
9e0ba685
RH
783
784hashval_t
6da879de 785htab_hash_string (const PTR p)
9e0ba685
RH
786{
787 const unsigned char *str = (const unsigned char *) p;
788 hashval_t r = 0;
789 unsigned char c;
790
791 while ((c = *str++) != 0)
792 r = r * 67 + c - 113;
793
794 return r;
795}
5cc5a0d0
JM
796
797/* DERIVED FROM:
798--------------------------------------------------------------------
799lookup2.c, by Bob Jenkins, December 1996, Public Domain.
800hash(), hash2(), hash3, and mix() are externally useful functions.
801Routines to test the hash are included if SELF_TEST is defined.
802You can use this free for any purpose. It has no warranty.
803--------------------------------------------------------------------
804*/
805
806/*
807--------------------------------------------------------------------
808mix -- mix 3 32-bit values reversibly.
809For every delta with one or two bit set, and the deltas of all three
810 high bits or all three low bits, whether the original value of a,b,c
811 is almost all zero or is uniformly distributed,
812* If mix() is run forward or backward, at least 32 bits in a,b,c
813 have at least 1/4 probability of changing.
814* If mix() is run forward, every bit of c will change between 1/3 and
815 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
816mix() was built out of 36 single-cycle latency instructions in a
817 structure that could supported 2x parallelism, like so:
818 a -= b;
819 a -= c; x = (c>>13);
820 b -= c; a ^= x;
821 b -= a; x = (a<<8);
822 c -= a; b ^= x;
823 c -= b; x = (b>>13);
824 ...
825 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
826 of that parallelism. They've also turned some of those single-cycle
827 latency instructions into multi-cycle latency instructions. Still,
828 this is the fastest good hash I could find. There were about 2^^68
829 to choose from. I only looked at a billion or so.
830--------------------------------------------------------------------
831*/
832/* same, but slower, works on systems that might have 8 byte hashval_t's */
833#define mix(a,b,c) \
834{ \
835 a -= b; a -= c; a ^= (c>>13); \
836 b -= c; b -= a; b ^= (a<< 8); \
837 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
838 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
839 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
840 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
841 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
842 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
843 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
844}
845
846/*
847--------------------------------------------------------------------
848hash() -- hash a variable-length key into a 32-bit value
849 k : the key (the unaligned variable-length array of bytes)
850 len : the length of the key, counting by bytes
851 level : can be any 4-byte value
852Returns a 32-bit value. Every bit of the key affects every bit of
853the return value. Every 1-bit and 2-bit delta achieves avalanche.
854About 36+6len instructions.
855
856The best hash table sizes are powers of 2. There is no need to do
857mod a prime (mod is sooo slow!). If you need less than 32 bits,
858use a bitmask. For example, if you need only 10 bits, do
859 h = (h & hashmask(10));
860In which case, the hash table should have hashsize(10) elements.
861
862If you are hashing n strings (ub1 **)k, do it like this:
863 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
864
865By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
866code any way you wish, private, educational, or commercial. It's free.
867
868See http://burtleburtle.net/bob/hash/evahash.html
869Use for hash table lookup, or anything where one collision in 2^32 is
870acceptable. Do NOT use for cryptographic purposes.
871--------------------------------------------------------------------
872*/
873
6da879de
GDR
874hashval_t
875iterative_hash (const PTR k_in /* the key */,
876 register size_t length /* the length of the key */,
877 register hashval_t initval /* the previous hash, or
878 an arbitrary value */)
5cc5a0d0
JM
879{
880 register const unsigned char *k = (const unsigned char *)k_in;
881 register hashval_t a,b,c,len;
882
883 /* Set up the internal state */
884 len = length;
885 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
886 c = initval; /* the previous hash value */
887
888 /*---------------------------------------- handle most of the key */
889#ifndef WORDS_BIGENDIAN
890 /* On a little-endian machine, if the data is 4-byte aligned we can hash
891 by word for better speed. This gives nondeterministic results on
892 big-endian machines. */
893 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
894 while (len >= 12) /* aligned */
895 {
896 a += *(hashval_t *)(k+0);
897 b += *(hashval_t *)(k+4);
898 c += *(hashval_t *)(k+8);
899 mix(a,b,c);
900 k += 12; len -= 12;
901 }
902 else /* unaligned */
903#endif
904 while (len >= 12)
905 {
906 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
907 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
908 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
909 mix(a,b,c);
910 k += 12; len -= 12;
911 }
912
913 /*------------------------------------- handle the last 11 bytes */
914 c += length;
915 switch(len) /* all the case statements fall through */
916 {
917 case 11: c+=((hashval_t)k[10]<<24);
918 case 10: c+=((hashval_t)k[9]<<16);
919 case 9 : c+=((hashval_t)k[8]<<8);
920 /* the first byte of c is reserved for the length */
921 case 8 : b+=((hashval_t)k[7]<<24);
922 case 7 : b+=((hashval_t)k[6]<<16);
923 case 6 : b+=((hashval_t)k[5]<<8);
924 case 5 : b+=k[4];
925 case 4 : a+=((hashval_t)k[3]<<24);
926 case 3 : a+=((hashval_t)k[2]<<16);
927 case 2 : a+=((hashval_t)k[1]<<8);
928 case 1 : a+=k[0];
929 /* case 0: nothing left to add */
930 }
931 mix(a,b,c);
932 /*-------------------------------------------- report the result */
933 return c;
934}