]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/bb-reorder.c
Fortran: fix issues with class(*) assignment [PR114827]
[thirdparty/gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the "reorder blocks" pass, which changes the control
21 flow of a function to encounter fewer branches; the "partition blocks"
22 pass, which divides the basic blocks into "hot" and "cold" partitions,
23 which are kept separate; and the "duplicate computed gotos" pass, which
24 duplicates blocks ending in an indirect jump.
25
26 There are two algorithms for "reorder blocks": the "simple" algorithm,
27 which just rearranges blocks, trying to minimize the number of executed
28 unconditional branches; and the "software trace cache" algorithm, which
29 also copies code, and in general tries a lot harder to have long linear
30 pieces of machine code executed. This algorithm is described next. */
31
32 /* This (greedy) algorithm constructs traces in several rounds.
33 The construction starts from "seeds". The seed for the first round
34 is the entry point of the function. When there are more than one seed,
35 the one with the lowest key in the heap is selected first (see bb_to_key).
36 Then the algorithm repeatedly adds the most probable successor to the end
37 of a trace. Finally it connects the traces.
38
39 There are two parameters: Branch Threshold and Exec Threshold.
40 If the probability of an edge to a successor of the current basic block is
41 lower than Branch Threshold or its count is lower than Exec Threshold,
42 then the successor will be the seed in one of the next rounds.
43 Each round has these parameters lower than the previous one.
44 The last round has to have these parameters set to zero so that the
45 remaining blocks are picked up.
46
47 The algorithm selects the most probable successor from all unvisited
48 successors and successors that have been added to this trace.
49 The other successors (that has not been "sent" to the next round) will be
50 other seeds for this round and the secondary traces will start from them.
51 If the successor has not been visited in this trace, it is added to the
52 trace (however, there is some heuristic for simple branches).
53 If the successor has been visited in this trace, a loop has been found.
54 If the loop has many iterations, the loop is rotated so that the source
55 block of the most probable edge going out of the loop is the last block
56 of the trace.
57 If the loop has few iterations and there is no edge from the last block of
58 the loop going out of the loop, the loop header is duplicated.
59
60 When connecting traces, the algorithm first checks whether there is an edge
61 from the last block of a trace to the first block of another trace.
62 When there are still some unconnected traces it checks whether there exists
63 a basic block BB such that BB is a successor of the last block of a trace
64 and BB is a predecessor of the first block of another trace. In this case,
65 BB is duplicated, added at the end of the first trace and the traces are
66 connected through it.
67 The rest of traces are simply connected so there will be a jump to the
68 beginning of the rest of traces.
69
70 The above description is for the full algorithm, which is used when the
71 function is optimized for speed. When the function is optimized for size,
72 in order to reduce long jumps and connect more fallthru edges, the
73 algorithm is modified as follows:
74 (1) Break long traces to short ones. A trace is broken at a block that has
75 multiple predecessors/ successors during trace discovery. When connecting
76 traces, only connect Trace n with Trace n + 1. This change reduces most
77 long jumps compared with the above algorithm.
78 (2) Ignore the edge probability and count for fallthru edges.
79 (3) Keep the original order of blocks when there is no chance to fall
80 through. We rely on the results of cfg_cleanup.
81
82 To implement the change for code size optimization, block's index is
83 selected as the key and all traces are found in one round.
84
85 References:
86
87 "Software Trace Cache"
88 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89 http://citeseer.nj.nec.com/15361.html
90
91 */
92
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "backend.h"
97 #include "target.h"
98 #include "rtl.h"
99 #include "tree.h"
100 #include "cfghooks.h"
101 #include "df.h"
102 #include "memmodel.h"
103 #include "optabs.h"
104 #include "regs.h"
105 #include "emit-rtl.h"
106 #include "output.h"
107 #include "expr.h"
108 #include "params.h"
109 #include "tree-pass.h"
110 #include "cfgrtl.h"
111 #include "cfganal.h"
112 #include "cfgbuild.h"
113 #include "cfgcleanup.h"
114 #include "bb-reorder.h"
115 #include "except.h"
116 #include "fibonacci_heap.h"
117 #include "stringpool.h"
118 #include "attribs.h"
119 #include "common/common-target.h"
120
121 /* The number of rounds. In most cases there will only be 4 rounds, but
122 when partitioning hot and cold basic blocks into separate sections of
123 the object file there will be an extra round. */
124 #define N_ROUNDS 5
125
126 struct target_bb_reorder default_target_bb_reorder;
127 #if SWITCHABLE_TARGET
128 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
129 #endif
130
131 #define uncond_jump_length \
132 (this_target_bb_reorder->x_uncond_jump_length)
133
134 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
135 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
136
137 /* Exec thresholds in thousandths (per mille) of the count of bb 0. */
138 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
139
140 /* If edge count is lower than DUPLICATION_THRESHOLD per mille of entry
141 block the edge destination is not duplicated while connecting traces. */
142 #define DUPLICATION_THRESHOLD 100
143
144 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
145 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
146
147 /* Structure to hold needed information for each basic block. */
148 struct bbro_basic_block_data
149 {
150 /* Which trace is the bb start of (-1 means it is not a start of any). */
151 int start_of_trace;
152
153 /* Which trace is the bb end of (-1 means it is not an end of any). */
154 int end_of_trace;
155
156 /* Which trace is the bb in? */
157 int in_trace;
158
159 /* Which trace was this bb visited in? */
160 int visited;
161
162 /* Cached maximum frequency of interesting incoming edges.
163 Minus one means not yet computed. */
164 int priority;
165
166 /* Which heap is BB in (if any)? */
167 bb_heap_t *heap;
168
169 /* Which heap node is BB in (if any)? */
170 bb_heap_node_t *node;
171 };
172
173 /* The current size of the following dynamic array. */
174 static int array_size;
175
176 /* The array which holds needed information for basic blocks. */
177 static bbro_basic_block_data *bbd;
178
179 /* To avoid frequent reallocation the size of arrays is greater than needed,
180 the number of elements is (not less than) 1.25 * size_wanted. */
181 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
182
183 /* Free the memory and set the pointer to NULL. */
184 #define FREE(P) (gcc_assert (P), free (P), P = 0)
185
186 /* Structure for holding information about a trace. */
187 struct trace
188 {
189 /* First and last basic block of the trace. */
190 basic_block first, last;
191
192 /* The round of the STC creation which this trace was found in. */
193 int round;
194
195 /* The length (i.e. the number of basic blocks) of the trace. */
196 int length;
197 };
198
199 /* Maximum count of one of the entry blocks. */
200 static profile_count max_entry_count;
201
202 /* Local function prototypes. */
203 static void find_traces_1_round (int, profile_count, struct trace *, int *,
204 int, bb_heap_t **, int);
205 static basic_block copy_bb (basic_block, edge, basic_block, int);
206 static long bb_to_key (basic_block);
207 static bool better_edge_p (const_basic_block, const_edge, profile_probability,
208 profile_count, profile_probability, profile_count,
209 const_edge);
210 static bool copy_bb_p (const_basic_block, int);
211 \f
212 /* Return the trace number in which BB was visited. */
213
214 static int
215 bb_visited_trace (const_basic_block bb)
216 {
217 gcc_assert (bb->index < array_size);
218 return bbd[bb->index].visited;
219 }
220
221 /* This function marks BB that it was visited in trace number TRACE. */
222
223 static void
224 mark_bb_visited (basic_block bb, int trace)
225 {
226 bbd[bb->index].visited = trace;
227 if (bbd[bb->index].heap)
228 {
229 bbd[bb->index].heap->delete_node (bbd[bb->index].node);
230 bbd[bb->index].heap = NULL;
231 bbd[bb->index].node = NULL;
232 }
233 }
234
235 /* Check to see if bb should be pushed into the next round of trace
236 collections or not. Reasons for pushing the block forward are 1).
237 If the block is cold, we are doing partitioning, and there will be
238 another round (cold partition blocks are not supposed to be
239 collected into traces until the very last round); or 2). There will
240 be another round, and the basic block is not "hot enough" for the
241 current round of trace collection. */
242
243 static bool
244 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
245 profile_count count_th)
246 {
247 bool there_exists_another_round;
248 bool block_not_hot_enough;
249
250 there_exists_another_round = round < number_of_rounds - 1;
251
252 block_not_hot_enough = (bb->count < count_th
253 || probably_never_executed_bb_p (cfun, bb));
254
255 if (there_exists_another_round
256 && block_not_hot_enough)
257 return true;
258 else
259 return false;
260 }
261
262 /* Find the traces for Software Trace Cache. Chain each trace through
263 RBI()->next. Store the number of traces to N_TRACES and description of
264 traces to TRACES. */
265
266 static void
267 find_traces (int *n_traces, struct trace *traces)
268 {
269 int i;
270 int number_of_rounds;
271 edge e;
272 edge_iterator ei;
273 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
274
275 /* Add one extra round of trace collection when partitioning hot/cold
276 basic blocks into separate sections. The last round is for all the
277 cold blocks (and ONLY the cold blocks). */
278
279 number_of_rounds = N_ROUNDS - 1;
280
281 /* Insert entry points of function into heap. */
282 max_entry_count = profile_count::zero ();
283 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
284 {
285 bbd[e->dest->index].heap = heap;
286 bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
287 if (e->dest->count > max_entry_count)
288 max_entry_count = e->dest->count;
289 }
290
291 /* Find the traces. */
292 for (i = 0; i < number_of_rounds; i++)
293 {
294 profile_count count_threshold;
295
296 if (dump_file)
297 fprintf (dump_file, "STC - round %d\n", i + 1);
298
299 count_threshold = max_entry_count.apply_scale (exec_threshold[i], 1000);
300
301 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
302 count_threshold, traces, n_traces, i, &heap,
303 number_of_rounds);
304 }
305 delete heap;
306
307 if (dump_file)
308 {
309 for (i = 0; i < *n_traces; i++)
310 {
311 basic_block bb;
312 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
313 traces[i].round + 1);
314 for (bb = traces[i].first;
315 bb != traces[i].last;
316 bb = (basic_block) bb->aux)
317 {
318 fprintf (dump_file, "%d [", bb->index);
319 bb->count.dump (dump_file);
320 fprintf (dump_file, "] ");
321 }
322 fprintf (dump_file, "%d [", bb->index);
323 bb->count.dump (dump_file);
324 fprintf (dump_file, "]\n");
325 }
326 fflush (dump_file);
327 }
328 }
329
330 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
331 (with sequential number TRACE_N). */
332
333 static basic_block
334 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
335 {
336 basic_block bb;
337
338 /* Information about the best end (end after rotation) of the loop. */
339 basic_block best_bb = NULL;
340 edge best_edge = NULL;
341 profile_count best_count = profile_count::uninitialized ();
342 /* The best edge is preferred when its destination is not visited yet
343 or is a start block of some trace. */
344 bool is_preferred = false;
345
346 /* Find the most frequent edge that goes out from current trace. */
347 bb = back_edge->dest;
348 do
349 {
350 edge e;
351 edge_iterator ei;
352
353 FOR_EACH_EDGE (e, ei, bb->succs)
354 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
355 && bb_visited_trace (e->dest) != trace_n
356 && (e->flags & EDGE_CAN_FALLTHRU)
357 && !(e->flags & EDGE_COMPLEX))
358 {
359 if (is_preferred)
360 {
361 /* The best edge is preferred. */
362 if (!bb_visited_trace (e->dest)
363 || bbd[e->dest->index].start_of_trace >= 0)
364 {
365 /* The current edge E is also preferred. */
366 if (e->count () > best_count)
367 {
368 best_count = e->count ();
369 best_edge = e;
370 best_bb = bb;
371 }
372 }
373 }
374 else
375 {
376 if (!bb_visited_trace (e->dest)
377 || bbd[e->dest->index].start_of_trace >= 0)
378 {
379 /* The current edge E is preferred. */
380 is_preferred = true;
381 best_count = e->count ();
382 best_edge = e;
383 best_bb = bb;
384 }
385 else
386 {
387 if (!best_edge || e->count () > best_count)
388 {
389 best_count = e->count ();
390 best_edge = e;
391 best_bb = bb;
392 }
393 }
394 }
395 }
396 bb = (basic_block) bb->aux;
397 }
398 while (bb != back_edge->dest);
399
400 if (best_bb)
401 {
402 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
403 the trace. */
404 if (back_edge->dest == trace->first)
405 {
406 trace->first = (basic_block) best_bb->aux;
407 }
408 else
409 {
410 basic_block prev_bb;
411
412 for (prev_bb = trace->first;
413 prev_bb->aux != back_edge->dest;
414 prev_bb = (basic_block) prev_bb->aux)
415 ;
416 prev_bb->aux = best_bb->aux;
417
418 /* Try to get rid of uncond jump to cond jump. */
419 if (single_succ_p (prev_bb))
420 {
421 basic_block header = single_succ (prev_bb);
422
423 /* Duplicate HEADER if it is a small block containing cond jump
424 in the end. */
425 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
426 && !CROSSING_JUMP_P (BB_END (header)))
427 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
428 }
429 }
430 }
431 else
432 {
433 /* We have not found suitable loop tail so do no rotation. */
434 best_bb = back_edge->src;
435 }
436 best_bb->aux = NULL;
437 return best_bb;
438 }
439
440 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
441 not include basic blocks whose probability is lower than BRANCH_TH or whose
442 count is lower than EXEC_TH into traces (or whose count is lower than
443 COUNT_TH). Store the new traces into TRACES and modify the number of
444 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
445 The function expects starting basic blocks to be in *HEAP and will delete
446 *HEAP and store starting points for the next round into new *HEAP. */
447
448 static void
449 find_traces_1_round (int branch_th, profile_count count_th,
450 struct trace *traces, int *n_traces, int round,
451 bb_heap_t **heap, int number_of_rounds)
452 {
453 /* Heap for discarded basic blocks which are possible starting points for
454 the next round. */
455 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
456 bool for_size = optimize_function_for_size_p (cfun);
457
458 while (!(*heap)->empty ())
459 {
460 basic_block bb;
461 struct trace *trace;
462 edge best_edge, e;
463 long key;
464 edge_iterator ei;
465
466 bb = (*heap)->extract_min ();
467 bbd[bb->index].heap = NULL;
468 bbd[bb->index].node = NULL;
469
470 if (dump_file)
471 fprintf (dump_file, "Getting bb %d\n", bb->index);
472
473 /* If the BB's count is too low, send BB to the next round. When
474 partitioning hot/cold blocks into separate sections, make sure all
475 the cold blocks (and ONLY the cold blocks) go into the (extra) final
476 round. When optimizing for size, do not push to next round. */
477
478 if (!for_size
479 && push_to_next_round_p (bb, round, number_of_rounds,
480 count_th))
481 {
482 int key = bb_to_key (bb);
483 bbd[bb->index].heap = new_heap;
484 bbd[bb->index].node = new_heap->insert (key, bb);
485
486 if (dump_file)
487 fprintf (dump_file,
488 " Possible start point of next round: %d (key: %d)\n",
489 bb->index, key);
490 continue;
491 }
492
493 trace = traces + *n_traces;
494 trace->first = bb;
495 trace->round = round;
496 trace->length = 0;
497 bbd[bb->index].in_trace = *n_traces;
498 (*n_traces)++;
499
500 do
501 {
502 bool ends_in_call;
503
504 /* The probability and count of the best edge. */
505 profile_probability best_prob = profile_probability::uninitialized ();
506 profile_count best_count = profile_count::uninitialized ();
507
508 best_edge = NULL;
509 mark_bb_visited (bb, *n_traces);
510 trace->length++;
511
512 if (dump_file)
513 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
514 bb->index, *n_traces);
515
516 ends_in_call = block_ends_with_call_p (bb);
517
518 /* Select the successor that will be placed after BB. */
519 FOR_EACH_EDGE (e, ei, bb->succs)
520 {
521 gcc_assert (!(e->flags & EDGE_FAKE));
522
523 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
524 continue;
525
526 if (bb_visited_trace (e->dest)
527 && bb_visited_trace (e->dest) != *n_traces)
528 continue;
529
530 /* If partitioning hot/cold basic blocks, don't consider edges
531 that cross section boundaries. */
532 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
533 continue;
534
535 profile_probability prob = e->probability;
536 profile_count count = e->dest->count;
537
538 /* The only sensible preference for a call instruction is the
539 fallthru edge. Don't bother selecting anything else. */
540 if (ends_in_call)
541 {
542 if (e->flags & EDGE_CAN_FALLTHRU)
543 {
544 best_edge = e;
545 best_prob = prob;
546 best_count = count;
547 }
548 continue;
549 }
550
551 /* Edge that cannot be fallthru or improbable or infrequent
552 successor (i.e. it is unsuitable successor). When optimizing
553 for size, ignore the probability and count. */
554 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
555 || !prob.initialized_p ()
556 || ((prob.to_reg_br_prob_base () < branch_th
557 || e->count () < count_th) && (!for_size)))
558 continue;
559
560 if (better_edge_p (bb, e, prob, count, best_prob, best_count,
561 best_edge))
562 {
563 best_edge = e;
564 best_prob = prob;
565 best_count = count;
566 }
567 }
568
569 /* If the best destination has multiple predecessors and can be
570 duplicated cheaper than a jump, don't allow it to be added to
571 a trace; we'll duplicate it when connecting the traces later.
572 However, we need to check that this duplication wouldn't leave
573 the best destination with only crossing predecessors, because
574 this would change its effective partition from hot to cold. */
575 if (best_edge
576 && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 {
579 bool only_crossing_preds = true;
580 edge e;
581 edge_iterator ei;
582 FOR_EACH_EDGE (e, ei, best_edge->dest->preds)
583 if (e != best_edge && !(e->flags & EDGE_CROSSING))
584 {
585 only_crossing_preds = false;
586 break;
587 }
588 if (!only_crossing_preds)
589 best_edge = NULL;
590 }
591
592 /* If the best destination has multiple successors or predecessors,
593 don't allow it to be added when optimizing for size. This makes
594 sure predecessors with smaller index are handled before the best
595 destinarion. It breaks long trace and reduces long jumps.
596
597 Take if-then-else as an example.
598 A
599 / \
600 B C
601 \ /
602 D
603 If we do not remove the best edge B->D/C->D, the final order might
604 be A B D ... C. C is at the end of the program. If D's successors
605 and D are complicated, might need long jumps for A->C and C->D.
606 Similar issue for order: A C D ... B.
607
608 After removing the best edge, the final result will be ABCD/ ACBD.
609 It does not add jump compared with the previous order. But it
610 reduces the possibility of long jumps. */
611 if (best_edge && for_size
612 && (EDGE_COUNT (best_edge->dest->succs) > 1
613 || EDGE_COUNT (best_edge->dest->preds) > 1))
614 best_edge = NULL;
615
616 /* Add all non-selected successors to the heaps. */
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 {
619 if (e == best_edge
620 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
621 || bb_visited_trace (e->dest))
622 continue;
623
624 key = bb_to_key (e->dest);
625
626 if (bbd[e->dest->index].heap)
627 {
628 /* E->DEST is already in some heap. */
629 if (key != bbd[e->dest->index].node->get_key ())
630 {
631 if (dump_file)
632 {
633 fprintf (dump_file,
634 "Changing key for bb %d from %ld to %ld.\n",
635 e->dest->index,
636 (long) bbd[e->dest->index].node->get_key (),
637 key);
638 }
639 bbd[e->dest->index].heap->replace_key
640 (bbd[e->dest->index].node, key);
641 }
642 }
643 else
644 {
645 bb_heap_t *which_heap = *heap;
646
647 profile_probability prob = e->probability;
648
649 if (!(e->flags & EDGE_CAN_FALLTHRU)
650 || (e->flags & EDGE_COMPLEX)
651 || !prob.initialized_p ()
652 || prob.to_reg_br_prob_base () < branch_th
653 || e->count () < count_th)
654 {
655 /* When partitioning hot/cold basic blocks, make sure
656 the cold blocks (and only the cold blocks) all get
657 pushed to the last round of trace collection. When
658 optimizing for size, do not push to next round. */
659
660 if (!for_size && push_to_next_round_p (e->dest, round,
661 number_of_rounds,
662 count_th))
663 which_heap = new_heap;
664 }
665
666 bbd[e->dest->index].heap = which_heap;
667 bbd[e->dest->index].node = which_heap->insert (key, e->dest);
668
669 if (dump_file)
670 {
671 fprintf (dump_file,
672 " Possible start of %s round: %d (key: %ld)\n",
673 (which_heap == new_heap) ? "next" : "this",
674 e->dest->index, (long) key);
675 }
676
677 }
678 }
679
680 if (best_edge) /* Suitable successor was found. */
681 {
682 if (bb_visited_trace (best_edge->dest) == *n_traces)
683 {
684 /* We do nothing with one basic block loops. */
685 if (best_edge->dest != bb)
686 {
687 if (best_edge->count ()
688 > best_edge->dest->count.apply_scale (4, 5))
689 {
690 /* The loop has at least 4 iterations. If the loop
691 header is not the first block of the function
692 we can rotate the loop. */
693
694 if (best_edge->dest
695 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
696 {
697 if (dump_file)
698 {
699 fprintf (dump_file,
700 "Rotating loop %d - %d\n",
701 best_edge->dest->index, bb->index);
702 }
703 bb->aux = best_edge->dest;
704 bbd[best_edge->dest->index].in_trace =
705 (*n_traces) - 1;
706 bb = rotate_loop (best_edge, trace, *n_traces);
707 }
708 }
709 else
710 {
711 /* The loop has less than 4 iterations. */
712
713 if (single_succ_p (bb)
714 && copy_bb_p (best_edge->dest,
715 optimize_edge_for_speed_p
716 (best_edge)))
717 {
718 bb = copy_bb (best_edge->dest, best_edge, bb,
719 *n_traces);
720 trace->length++;
721 }
722 }
723 }
724
725 /* Terminate the trace. */
726 break;
727 }
728 else
729 {
730 /* Check for a situation
731
732 A
733 /|
734 B |
735 \|
736 C
737
738 where
739 AB->count () + BC->count () >= AC->count ().
740 (i.e. 2 * B->count >= AC->count )
741 Best ordering is then A B C.
742
743 When optimizing for size, A B C is always the best order.
744
745 This situation is created for example by:
746
747 if (A) B;
748 C;
749
750 */
751
752 FOR_EACH_EDGE (e, ei, bb->succs)
753 if (e != best_edge
754 && (e->flags & EDGE_CAN_FALLTHRU)
755 && !(e->flags & EDGE_COMPLEX)
756 && !bb_visited_trace (e->dest)
757 && single_pred_p (e->dest)
758 && !(e->flags & EDGE_CROSSING)
759 && single_succ_p (e->dest)
760 && (single_succ_edge (e->dest)->flags
761 & EDGE_CAN_FALLTHRU)
762 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
763 && single_succ (e->dest) == best_edge->dest
764 && (e->dest->count.apply_scale (2, 1)
765 >= best_edge->count () || for_size))
766 {
767 best_edge = e;
768 if (dump_file)
769 fprintf (dump_file, "Selecting BB %d\n",
770 best_edge->dest->index);
771 break;
772 }
773
774 bb->aux = best_edge->dest;
775 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
776 bb = best_edge->dest;
777 }
778 }
779 }
780 while (best_edge);
781 trace->last = bb;
782 bbd[trace->first->index].start_of_trace = *n_traces - 1;
783 if (bbd[trace->last->index].end_of_trace != *n_traces - 1)
784 {
785 bbd[trace->last->index].end_of_trace = *n_traces - 1;
786 /* Update the cached maximum frequency for interesting predecessor
787 edges for successors of the new trace end. */
788 FOR_EACH_EDGE (e, ei, trace->last->succs)
789 if (EDGE_FREQUENCY (e) > bbd[e->dest->index].priority)
790 bbd[e->dest->index].priority = EDGE_FREQUENCY (e);
791 }
792
793 /* The trace is terminated so we have to recount the keys in heap
794 (some block can have a lower key because now one of its predecessors
795 is an end of the trace). */
796 FOR_EACH_EDGE (e, ei, bb->succs)
797 {
798 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
799 || bb_visited_trace (e->dest))
800 continue;
801
802 if (bbd[e->dest->index].heap)
803 {
804 key = bb_to_key (e->dest);
805 if (key != bbd[e->dest->index].node->get_key ())
806 {
807 if (dump_file)
808 {
809 fprintf (dump_file,
810 "Changing key for bb %d from %ld to %ld.\n",
811 e->dest->index,
812 (long) bbd[e->dest->index].node->get_key (), key);
813 }
814 bbd[e->dest->index].heap->replace_key
815 (bbd[e->dest->index].node, key);
816 }
817 }
818 }
819 }
820
821 delete (*heap);
822
823 /* "Return" the new heap. */
824 *heap = new_heap;
825 }
826
827 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
828 it to trace after BB, mark OLD_BB visited and update pass' data structures
829 (TRACE is a number of trace which OLD_BB is duplicated to). */
830
831 static basic_block
832 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
833 {
834 basic_block new_bb;
835
836 new_bb = duplicate_block (old_bb, e, bb);
837 BB_COPY_PARTITION (new_bb, old_bb);
838
839 gcc_assert (e->dest == new_bb);
840
841 if (dump_file)
842 fprintf (dump_file,
843 "Duplicated bb %d (created bb %d)\n",
844 old_bb->index, new_bb->index);
845
846 if (new_bb->index >= array_size
847 || last_basic_block_for_fn (cfun) > array_size)
848 {
849 int i;
850 int new_size;
851
852 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
853 new_size = GET_ARRAY_SIZE (new_size);
854 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
855 for (i = array_size; i < new_size; i++)
856 {
857 bbd[i].start_of_trace = -1;
858 bbd[i].end_of_trace = -1;
859 bbd[i].in_trace = -1;
860 bbd[i].visited = 0;
861 bbd[i].priority = -1;
862 bbd[i].heap = NULL;
863 bbd[i].node = NULL;
864 }
865 array_size = new_size;
866
867 if (dump_file)
868 {
869 fprintf (dump_file,
870 "Growing the dynamic array to %d elements.\n",
871 array_size);
872 }
873 }
874
875 gcc_assert (!bb_visited_trace (e->dest));
876 mark_bb_visited (new_bb, trace);
877 new_bb->aux = bb->aux;
878 bb->aux = new_bb;
879
880 bbd[new_bb->index].in_trace = trace;
881
882 return new_bb;
883 }
884
885 /* Compute and return the key (for the heap) of the basic block BB. */
886
887 static long
888 bb_to_key (basic_block bb)
889 {
890 edge e;
891 edge_iterator ei;
892
893 /* Use index as key to align with its original order. */
894 if (optimize_function_for_size_p (cfun))
895 return bb->index;
896
897 /* Do not start in probably never executed blocks. */
898
899 if (BB_PARTITION (bb) == BB_COLD_PARTITION
900 || probably_never_executed_bb_p (cfun, bb))
901 return BB_FREQ_MAX;
902
903 /* Prefer blocks whose predecessor is an end of some trace
904 or whose predecessor edge is EDGE_DFS_BACK. */
905 int priority = bbd[bb->index].priority;
906 if (priority == -1)
907 {
908 priority = 0;
909 FOR_EACH_EDGE (e, ei, bb->preds)
910 {
911 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
912 && bbd[e->src->index].end_of_trace >= 0)
913 || (e->flags & EDGE_DFS_BACK))
914 {
915 int edge_freq = EDGE_FREQUENCY (e);
916
917 if (edge_freq > priority)
918 priority = edge_freq;
919 }
920 }
921 bbd[bb->index].priority = priority;
922 }
923
924 if (priority)
925 /* The block with priority should have significantly lower key. */
926 return -(100 * BB_FREQ_MAX + 100 * priority + bb->count.to_frequency (cfun));
927
928 return -bb->count.to_frequency (cfun);
929 }
930
931 /* Return true when the edge E from basic block BB is better than the temporary
932 best edge (details are in function). The probability of edge E is PROB. The
933 count of the successor is COUNT. The current best probability is
934 BEST_PROB, the best count is BEST_COUNT.
935 The edge is considered to be equivalent when PROB does not differ much from
936 BEST_PROB; similarly for count. */
937
938 static bool
939 better_edge_p (const_basic_block bb, const_edge e, profile_probability prob,
940 profile_count count, profile_probability best_prob,
941 profile_count best_count, const_edge cur_best_edge)
942 {
943 bool is_better_edge;
944
945 /* The BEST_* values do not have to be best, but can be a bit smaller than
946 maximum values. */
947 profile_probability diff_prob = best_prob.apply_scale (1, 10);
948
949 /* The smaller one is better to keep the original order. */
950 if (optimize_function_for_size_p (cfun))
951 return !cur_best_edge
952 || cur_best_edge->dest->index > e->dest->index;
953
954 /* Those edges are so expensive that continuing a trace is not useful
955 performance wise. */
956 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
957 return false;
958
959 if (prob > best_prob + diff_prob
960 || (!best_prob.initialized_p ()
961 && prob > profile_probability::guessed_never ()))
962 /* The edge has higher probability than the temporary best edge. */
963 is_better_edge = true;
964 else if (prob < best_prob - diff_prob)
965 /* The edge has lower probability than the temporary best edge. */
966 is_better_edge = false;
967 else
968 {
969 profile_count diff_count = best_count.apply_scale (1, 10);
970 if (count < best_count - diff_count
971 || (!best_count.initialized_p ()
972 && count.nonzero_p ()))
973 /* The edge and the temporary best edge have almost equivalent
974 probabilities. The higher countuency of a successor now means
975 that there is another edge going into that successor.
976 This successor has lower countuency so it is better. */
977 is_better_edge = true;
978 else if (count > best_count + diff_count)
979 /* This successor has higher countuency so it is worse. */
980 is_better_edge = false;
981 else if (e->dest->prev_bb == bb)
982 /* The edges have equivalent probabilities and the successors
983 have equivalent frequencies. Select the previous successor. */
984 is_better_edge = true;
985 else
986 is_better_edge = false;
987 }
988
989 return is_better_edge;
990 }
991
992 /* Return true when the edge E is better than the temporary best edge
993 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
994 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
995 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
996 TRACES record the information about traces.
997 When optimizing for size, the edge with smaller index is better.
998 When optimizing for speed, the edge with bigger probability or longer trace
999 is better. */
1000
1001 static bool
1002 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
1003 const_edge cur_best_edge, struct trace *traces)
1004 {
1005 int e_index;
1006 int b_index;
1007 bool is_better_edge;
1008
1009 if (!cur_best_edge)
1010 return true;
1011
1012 if (optimize_function_for_size_p (cfun))
1013 {
1014 e_index = src_index_p ? e->src->index : e->dest->index;
1015 b_index = src_index_p ? cur_best_edge->src->index
1016 : cur_best_edge->dest->index;
1017 /* The smaller one is better to keep the original order. */
1018 return b_index > e_index;
1019 }
1020
1021 if (src_index_p)
1022 {
1023 e_index = e->src->index;
1024
1025 /* We are looking for predecessor, so probabilities are not that
1026 informative. We do not want to connect A to B becuse A has
1027 only one sucessor (probablity is 100%) while there is edge
1028 A' to B where probability is 90% but which is much more frequent. */
1029 if (e->count () > cur_best_edge->count ())
1030 /* The edge has higher probability than the temporary best edge. */
1031 is_better_edge = true;
1032 else if (e->count () < cur_best_edge->count ())
1033 /* The edge has lower probability than the temporary best edge. */
1034 is_better_edge = false;
1035 if (e->probability > cur_best_edge->probability)
1036 /* The edge has higher probability than the temporary best edge. */
1037 is_better_edge = true;
1038 else if (e->probability < cur_best_edge->probability)
1039 /* The edge has lower probability than the temporary best edge. */
1040 is_better_edge = false;
1041 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1042 /* The edge and the temporary best edge have equivalent probabilities.
1043 The edge with longer trace is better. */
1044 is_better_edge = true;
1045 else
1046 is_better_edge = false;
1047 }
1048 else
1049 {
1050 e_index = e->dest->index;
1051
1052 if (e->probability > cur_best_edge->probability)
1053 /* The edge has higher probability than the temporary best edge. */
1054 is_better_edge = true;
1055 else if (e->probability < cur_best_edge->probability)
1056 /* The edge has lower probability than the temporary best edge. */
1057 is_better_edge = false;
1058 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1059 /* The edge and the temporary best edge have equivalent probabilities.
1060 The edge with longer trace is better. */
1061 is_better_edge = true;
1062 else
1063 is_better_edge = false;
1064 }
1065
1066 return is_better_edge;
1067 }
1068
1069 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1070
1071 static void
1072 connect_traces (int n_traces, struct trace *traces)
1073 {
1074 int i;
1075 bool *connected;
1076 bool two_passes;
1077 int last_trace;
1078 int current_pass;
1079 int current_partition;
1080 profile_count count_threshold;
1081 bool for_size = optimize_function_for_size_p (cfun);
1082
1083 count_threshold = max_entry_count.apply_scale (DUPLICATION_THRESHOLD, 1000);
1084
1085 connected = XCNEWVEC (bool, n_traces);
1086 last_trace = -1;
1087 current_pass = 1;
1088 current_partition = BB_PARTITION (traces[0].first);
1089 two_passes = false;
1090
1091 if (crtl->has_bb_partition)
1092 for (i = 0; i < n_traces && !two_passes; i++)
1093 if (BB_PARTITION (traces[0].first)
1094 != BB_PARTITION (traces[i].first))
1095 two_passes = true;
1096
1097 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1098 {
1099 int t = i;
1100 int t2;
1101 edge e, best;
1102 int best_len;
1103
1104 if (i >= n_traces)
1105 {
1106 gcc_assert (two_passes && current_pass == 1);
1107 i = 0;
1108 t = i;
1109 current_pass = 2;
1110 if (current_partition == BB_HOT_PARTITION)
1111 current_partition = BB_COLD_PARTITION;
1112 else
1113 current_partition = BB_HOT_PARTITION;
1114 }
1115
1116 if (connected[t])
1117 continue;
1118
1119 if (two_passes
1120 && BB_PARTITION (traces[t].first) != current_partition)
1121 continue;
1122
1123 connected[t] = true;
1124
1125 /* Find the predecessor traces. */
1126 for (t2 = t; t2 > 0;)
1127 {
1128 edge_iterator ei;
1129 best = NULL;
1130 best_len = 0;
1131 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1132 {
1133 int si = e->src->index;
1134
1135 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1136 && (e->flags & EDGE_CAN_FALLTHRU)
1137 && !(e->flags & EDGE_COMPLEX)
1138 && bbd[si].end_of_trace >= 0
1139 && !connected[bbd[si].end_of_trace]
1140 && (BB_PARTITION (e->src) == current_partition)
1141 && connect_better_edge_p (e, true, best_len, best, traces))
1142 {
1143 best = e;
1144 best_len = traces[bbd[si].end_of_trace].length;
1145 }
1146 }
1147 if (best)
1148 {
1149 best->src->aux = best->dest;
1150 t2 = bbd[best->src->index].end_of_trace;
1151 connected[t2] = true;
1152
1153 if (dump_file)
1154 {
1155 fprintf (dump_file, "Connection: %d %d\n",
1156 best->src->index, best->dest->index);
1157 }
1158 }
1159 else
1160 break;
1161 }
1162
1163 if (last_trace >= 0)
1164 traces[last_trace].last->aux = traces[t2].first;
1165 last_trace = t;
1166
1167 /* Find the successor traces. */
1168 while (1)
1169 {
1170 /* Find the continuation of the chain. */
1171 edge_iterator ei;
1172 best = NULL;
1173 best_len = 0;
1174 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1175 {
1176 int di = e->dest->index;
1177
1178 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1179 && (e->flags & EDGE_CAN_FALLTHRU)
1180 && !(e->flags & EDGE_COMPLEX)
1181 && bbd[di].start_of_trace >= 0
1182 && !connected[bbd[di].start_of_trace]
1183 && (BB_PARTITION (e->dest) == current_partition)
1184 && connect_better_edge_p (e, false, best_len, best, traces))
1185 {
1186 best = e;
1187 best_len = traces[bbd[di].start_of_trace].length;
1188 }
1189 }
1190
1191 if (for_size)
1192 {
1193 if (!best)
1194 /* Stop finding the successor traces. */
1195 break;
1196
1197 /* It is OK to connect block n with block n + 1 or a block
1198 before n. For others, only connect to the loop header. */
1199 if (best->dest->index > (traces[t].last->index + 1))
1200 {
1201 int count = EDGE_COUNT (best->dest->preds);
1202
1203 FOR_EACH_EDGE (e, ei, best->dest->preds)
1204 if (e->flags & EDGE_DFS_BACK)
1205 count--;
1206
1207 /* If dest has multiple predecessors, skip it. We expect
1208 that one predecessor with smaller index connects with it
1209 later. */
1210 if (count != 1)
1211 break;
1212 }
1213
1214 /* Only connect Trace n with Trace n + 1. It is conservative
1215 to keep the order as close as possible to the original order.
1216 It also helps to reduce long jumps. */
1217 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1218 break;
1219
1220 if (dump_file)
1221 fprintf (dump_file, "Connection: %d %d\n",
1222 best->src->index, best->dest->index);
1223
1224 t = bbd[best->dest->index].start_of_trace;
1225 traces[last_trace].last->aux = traces[t].first;
1226 connected[t] = true;
1227 last_trace = t;
1228 }
1229 else if (best)
1230 {
1231 if (dump_file)
1232 {
1233 fprintf (dump_file, "Connection: %d %d\n",
1234 best->src->index, best->dest->index);
1235 }
1236 t = bbd[best->dest->index].start_of_trace;
1237 traces[last_trace].last->aux = traces[t].first;
1238 connected[t] = true;
1239 last_trace = t;
1240 }
1241 else
1242 {
1243 /* Try to connect the traces by duplication of 1 block. */
1244 edge e2;
1245 basic_block next_bb = NULL;
1246 bool try_copy = false;
1247
1248 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1249 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1250 && (e->flags & EDGE_CAN_FALLTHRU)
1251 && !(e->flags & EDGE_COMPLEX)
1252 && (!best || e->probability > best->probability))
1253 {
1254 edge_iterator ei;
1255 edge best2 = NULL;
1256 int best2_len = 0;
1257
1258 /* If the destination is a start of a trace which is only
1259 one block long, then no need to search the successor
1260 blocks of the trace. Accept it. */
1261 if (bbd[e->dest->index].start_of_trace >= 0
1262 && traces[bbd[e->dest->index].start_of_trace].length
1263 == 1)
1264 {
1265 best = e;
1266 try_copy = true;
1267 continue;
1268 }
1269
1270 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1271 {
1272 int di = e2->dest->index;
1273
1274 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1275 || ((e2->flags & EDGE_CAN_FALLTHRU)
1276 && !(e2->flags & EDGE_COMPLEX)
1277 && bbd[di].start_of_trace >= 0
1278 && !connected[bbd[di].start_of_trace]
1279 && BB_PARTITION (e2->dest) == current_partition
1280 && e2->count () >= count_threshold
1281 && (!best2
1282 || e2->probability > best2->probability
1283 || (e2->probability == best2->probability
1284 && traces[bbd[di].start_of_trace].length
1285 > best2_len))))
1286 {
1287 best = e;
1288 best2 = e2;
1289 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1290 best2_len = traces[bbd[di].start_of_trace].length;
1291 else
1292 best2_len = INT_MAX;
1293 next_bb = e2->dest;
1294 try_copy = true;
1295 }
1296 }
1297 }
1298
1299 /* Copy tiny blocks always; copy larger blocks only when the
1300 edge is traversed frequently enough. */
1301 if (try_copy
1302 && BB_PARTITION (best->src) == BB_PARTITION (best->dest)
1303 && copy_bb_p (best->dest,
1304 optimize_edge_for_speed_p (best)
1305 && (!best->count ().initialized_p ()
1306 || best->count () >= count_threshold)))
1307 {
1308 basic_block new_bb;
1309
1310 if (dump_file)
1311 {
1312 fprintf (dump_file, "Connection: %d %d ",
1313 traces[t].last->index, best->dest->index);
1314 if (!next_bb)
1315 fputc ('\n', dump_file);
1316 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 fprintf (dump_file, "exit\n");
1318 else
1319 fprintf (dump_file, "%d\n", next_bb->index);
1320 }
1321
1322 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1323 traces[t].last = new_bb;
1324 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1325 {
1326 t = bbd[next_bb->index].start_of_trace;
1327 traces[last_trace].last->aux = traces[t].first;
1328 connected[t] = true;
1329 last_trace = t;
1330 }
1331 else
1332 break; /* Stop finding the successor traces. */
1333 }
1334 else
1335 break; /* Stop finding the successor traces. */
1336 }
1337 }
1338 }
1339
1340 if (dump_file)
1341 {
1342 basic_block bb;
1343
1344 fprintf (dump_file, "Final order:\n");
1345 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1346 fprintf (dump_file, "%d ", bb->index);
1347 fprintf (dump_file, "\n");
1348 fflush (dump_file);
1349 }
1350
1351 FREE (connected);
1352 }
1353
1354 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1355 when code size is allowed to grow by duplication. */
1356
1357 static bool
1358 copy_bb_p (const_basic_block bb, int code_may_grow)
1359 {
1360 unsigned int size = 0;
1361 unsigned int max_size = uncond_jump_length;
1362 rtx_insn *insn;
1363
1364 if (EDGE_COUNT (bb->preds) < 2)
1365 return false;
1366 if (!can_duplicate_block_p (bb))
1367 return false;
1368
1369 /* Avoid duplicating blocks which have many successors (PR/13430). */
1370 if (EDGE_COUNT (bb->succs) > 8)
1371 return false;
1372
1373 if (code_may_grow && optimize_bb_for_speed_p (bb))
1374 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1375
1376 FOR_BB_INSNS (bb, insn)
1377 {
1378 if (INSN_P (insn))
1379 {
1380 size += get_attr_min_length (insn);
1381 if (size > max_size)
1382 break;
1383 }
1384 }
1385
1386 if (size <= max_size)
1387 return true;
1388
1389 if (dump_file)
1390 {
1391 fprintf (dump_file,
1392 "Block %d can't be copied because its size = %u.\n",
1393 bb->index, size);
1394 }
1395
1396 return false;
1397 }
1398
1399 /* Return the length of unconditional jump instruction. */
1400
1401 int
1402 get_uncond_jump_length (void)
1403 {
1404 unsigned int length;
1405
1406 start_sequence ();
1407 rtx_code_label *label = emit_label (gen_label_rtx ());
1408 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1409 length = get_attr_min_length (jump);
1410 end_sequence ();
1411
1412 gcc_assert (length < INT_MAX);
1413 return length;
1414 }
1415
1416 /* Create a forwarder block to OLD_BB starting with NEW_LABEL and in the
1417 other partition wrt OLD_BB. */
1418
1419 static basic_block
1420 create_eh_forwarder_block (rtx_code_label *new_label, basic_block old_bb)
1421 {
1422 /* Split OLD_BB, so that EH pads have always only incoming EH edges,
1423 bb_has_eh_pred bbs are treated specially by DF infrastructure. */
1424 old_bb = split_block_after_labels (old_bb)->dest;
1425
1426 /* Put the new label and a jump in the new basic block. */
1427 rtx_insn *label = emit_label (new_label);
1428 rtx_code_label *old_label = block_label (old_bb);
1429 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (old_label));
1430 JUMP_LABEL (jump) = old_label;
1431
1432 /* Create the new basic block and put it in last position. */
1433 basic_block last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1434 basic_block new_bb = create_basic_block (label, jump, last_bb);
1435 new_bb->aux = last_bb->aux;
1436 new_bb->count = old_bb->count;
1437 last_bb->aux = new_bb;
1438
1439 emit_barrier_after_bb (new_bb);
1440
1441 make_single_succ_edge (new_bb, old_bb, 0);
1442
1443 /* Make sure the new basic block is in the other partition. */
1444 unsigned new_partition = BB_PARTITION (old_bb);
1445 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1446 BB_SET_PARTITION (new_bb, new_partition);
1447
1448 return new_bb;
1449 }
1450
1451 /* The common landing pad in block OLD_BB has edges from both partitions.
1452 Add a new landing pad that will just jump to the old one and split the
1453 edges so that no EH edge crosses partitions. */
1454
1455 static void
1456 sjlj_fix_up_crossing_landing_pad (basic_block old_bb)
1457 {
1458 const unsigned lp_len = cfun->eh->lp_array->length ();
1459 edge_iterator ei;
1460 edge e;
1461
1462 /* Generate the new common landing-pad label. */
1463 rtx_code_label *new_label = gen_label_rtx ();
1464 LABEL_PRESERVE_P (new_label) = 1;
1465
1466 /* Create the forwarder block. */
1467 basic_block new_bb = create_eh_forwarder_block (new_label, old_bb);
1468
1469 /* Create the map from old to new lp index and initialize it. */
1470 unsigned *index_map = (unsigned *) alloca (lp_len * sizeof (unsigned));
1471 memset (index_map, 0, lp_len * sizeof (unsigned));
1472
1473 /* Fix up the edges. */
1474 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1475 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1476 {
1477 rtx_insn *insn = BB_END (e->src);
1478 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1479
1480 gcc_assert (note != NULL);
1481 const unsigned old_index = INTVAL (XEXP (note, 0));
1482
1483 /* Generate the new landing-pad structure. */
1484 if (index_map[old_index] == 0)
1485 {
1486 eh_landing_pad old_lp = (*cfun->eh->lp_array)[old_index];
1487 eh_landing_pad new_lp = gen_eh_landing_pad (old_lp->region);
1488 new_lp->post_landing_pad = old_lp->post_landing_pad;
1489 new_lp->landing_pad = new_label;
1490 index_map[old_index] = new_lp->index;
1491 }
1492 XEXP (note, 0) = GEN_INT (index_map[old_index]);
1493
1494 /* Adjust the edge to the new destination. */
1495 redirect_edge_succ (e, new_bb);
1496 }
1497 else
1498 ei_next (&ei);
1499 }
1500
1501 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1502 Add a new landing pad that will just jump to the old one and split the
1503 edges so that no EH edge crosses partitions. */
1504
1505 static void
1506 dw2_fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1507 {
1508 eh_landing_pad new_lp;
1509 edge_iterator ei;
1510 edge e;
1511
1512 /* Generate the new landing-pad structure. */
1513 new_lp = gen_eh_landing_pad (old_lp->region);
1514 new_lp->post_landing_pad = old_lp->post_landing_pad;
1515 new_lp->landing_pad = gen_label_rtx ();
1516 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1517
1518 /* Create the forwarder block. */
1519 basic_block new_bb = create_eh_forwarder_block (new_lp->landing_pad, old_bb);
1520
1521 /* Fix up the edges. */
1522 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1523 if (e->src != new_bb && BB_PARTITION (e->src) == BB_PARTITION (new_bb))
1524 {
1525 rtx_insn *insn = BB_END (e->src);
1526 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1527
1528 gcc_assert (note != NULL);
1529 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1530 XEXP (note, 0) = GEN_INT (new_lp->index);
1531
1532 /* Adjust the edge to the new destination. */
1533 redirect_edge_succ (e, new_bb);
1534 }
1535 else
1536 ei_next (&ei);
1537 }
1538
1539
1540 /* Ensure that all hot bbs are included in a hot path through the
1541 procedure. This is done by calling this function twice, once
1542 with WALK_UP true (to look for paths from the entry to hot bbs) and
1543 once with WALK_UP false (to look for paths from hot bbs to the exit).
1544 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1545 to BBS_IN_HOT_PARTITION. */
1546
1547 static unsigned int
1548 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1549 vec<basic_block> *bbs_in_hot_partition)
1550 {
1551 /* Callers check this. */
1552 gcc_checking_assert (cold_bb_count);
1553
1554 /* Keep examining hot bbs while we still have some left to check
1555 and there are remaining cold bbs. */
1556 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1557 while (! hot_bbs_to_check.is_empty ()
1558 && cold_bb_count)
1559 {
1560 basic_block bb = hot_bbs_to_check.pop ();
1561 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1562 edge e;
1563 edge_iterator ei;
1564 profile_probability highest_probability
1565 = profile_probability::uninitialized ();
1566 profile_count highest_count = profile_count::uninitialized ();
1567 bool found = false;
1568
1569 /* Walk the preds/succs and check if there is at least one already
1570 marked hot. Keep track of the most frequent pred/succ so that we
1571 can mark it hot if we don't find one. */
1572 FOR_EACH_EDGE (e, ei, edges)
1573 {
1574 basic_block reach_bb = walk_up ? e->src : e->dest;
1575
1576 if (e->flags & EDGE_DFS_BACK)
1577 continue;
1578
1579 /* Do not expect profile insanities when profile was not adjusted. */
1580 if (e->probability == profile_probability::never ()
1581 || e->count () == profile_count::zero ())
1582 continue;
1583
1584 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1585 {
1586 found = true;
1587 break;
1588 }
1589 /* The following loop will look for the hottest edge via
1590 the edge count, if it is non-zero, then fallback to
1591 the edge probability. */
1592 if (!(e->count () > highest_count))
1593 highest_count = e->count ();
1594 if (!highest_probability.initialized_p ()
1595 || e->probability > highest_probability)
1596 highest_probability = e->probability;
1597 }
1598
1599 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1600 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1601 then the most frequent pred (or succ) needs to be adjusted. In the
1602 case where multiple preds/succs have the same frequency (e.g. a
1603 50-50 branch), then both will be adjusted. */
1604 if (found)
1605 continue;
1606
1607 FOR_EACH_EDGE (e, ei, edges)
1608 {
1609 if (e->flags & EDGE_DFS_BACK)
1610 continue;
1611 /* Do not expect profile insanities when profile was not adjusted. */
1612 if (e->probability == profile_probability::never ()
1613 || e->count () == profile_count::zero ())
1614 continue;
1615 /* Select the hottest edge using the edge count, if it is non-zero,
1616 then fallback to the edge probability. */
1617 if (highest_count.initialized_p ())
1618 {
1619 if (!(e->count () >= highest_count))
1620 continue;
1621 }
1622 else if (!(e->probability >= highest_probability))
1623 continue;
1624
1625 basic_block reach_bb = walk_up ? e->src : e->dest;
1626
1627 /* We have a hot bb with an immediate dominator that is cold.
1628 The dominator needs to be re-marked hot. */
1629 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1630 if (dump_file)
1631 fprintf (dump_file, "Promoting bb %i to hot partition to sanitize "
1632 "profile of bb %i in %s walk\n", reach_bb->index,
1633 bb->index, walk_up ? "backward" : "forward");
1634 cold_bb_count--;
1635
1636 /* Now we need to examine newly-hot reach_bb to see if it is also
1637 dominated by a cold bb. */
1638 bbs_in_hot_partition->safe_push (reach_bb);
1639 hot_bbs_to_check.safe_push (reach_bb);
1640 }
1641 }
1642 hot_bbs_to_check.release ();
1643
1644 return cold_bb_count;
1645 }
1646
1647
1648 /* Find the basic blocks that are rarely executed and need to be moved to
1649 a separate section of the .o file (to cut down on paging and improve
1650 cache locality). Return a vector of all edges that cross. */
1651
1652 static vec<edge>
1653 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1654 {
1655 vec<edge> crossing_edges = vNULL;
1656 basic_block bb;
1657 edge e;
1658 edge_iterator ei;
1659 unsigned int cold_bb_count = 0;
1660 auto_vec<basic_block> bbs_in_hot_partition;
1661
1662 propagate_unlikely_bbs_forward ();
1663
1664 /* Mark which partition (hot/cold) each basic block belongs in. */
1665 FOR_EACH_BB_FN (bb, cfun)
1666 {
1667 bool cold_bb = false;
1668
1669 if (probably_never_executed_bb_p (cfun, bb))
1670 {
1671 cold_bb = true;
1672
1673 /* Handle profile insanities created by upstream optimizations
1674 by also checking the incoming edge weights. If there is a non-cold
1675 incoming edge, conservatively prevent this block from being split
1676 into the cold section. */
1677 if (!bb->count.precise_p ())
1678 FOR_EACH_EDGE (e, ei, bb->preds)
1679 if (!probably_never_executed_edge_p (cfun, e))
1680 {
1681 cold_bb = false;
1682 break;
1683 }
1684 }
1685 if (cold_bb)
1686 {
1687 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1688 cold_bb_count++;
1689 }
1690 else
1691 {
1692 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1693 bbs_in_hot_partition.safe_push (bb);
1694 }
1695 }
1696
1697 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1698 Several different possibilities may include cold bbs along all paths
1699 to/from a hot bb. One is that there are edge weight insanities
1700 due to optimization phases that do not properly update basic block profile
1701 counts. The second is that the entry of the function may not be hot, because
1702 it is entered fewer times than the number of profile training runs, but there
1703 is a loop inside the function that causes blocks within the function to be
1704 above the threshold for hotness. This is fixed by walking up from hot bbs
1705 to the entry block, and then down from hot bbs to the exit, performing
1706 partitioning fixups as necessary. */
1707 if (cold_bb_count)
1708 {
1709 mark_dfs_back_edges ();
1710 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1711 &bbs_in_hot_partition);
1712 if (cold_bb_count)
1713 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1714
1715 hash_set <basic_block> set;
1716 find_bbs_reachable_by_hot_paths (&set);
1717 FOR_EACH_BB_FN (bb, cfun)
1718 if (!set.contains (bb))
1719 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1720 }
1721
1722 /* The format of .gcc_except_table does not allow landing pads to
1723 be in a different partition as the throw. Fix this by either
1724 moving the landing pads or inserting forwarder landing pads. */
1725 if (cfun->eh->lp_array)
1726 {
1727 const bool sjlj
1728 = (targetm_common.except_unwind_info (&global_options) == UI_SJLJ);
1729 unsigned i;
1730 eh_landing_pad lp;
1731
1732 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1733 {
1734 bool all_same, all_diff;
1735
1736 if (lp == NULL
1737 || lp->landing_pad == NULL_RTX
1738 || !LABEL_P (lp->landing_pad))
1739 continue;
1740
1741 all_same = all_diff = true;
1742 bb = BLOCK_FOR_INSN (lp->landing_pad);
1743 FOR_EACH_EDGE (e, ei, bb->preds)
1744 {
1745 gcc_assert (e->flags & EDGE_EH);
1746 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1747 all_diff = false;
1748 else
1749 all_same = false;
1750 }
1751
1752 if (all_same)
1753 ;
1754 else if (all_diff)
1755 {
1756 int which = BB_PARTITION (bb);
1757 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1758 BB_SET_PARTITION (bb, which);
1759 }
1760 else if (sjlj)
1761 sjlj_fix_up_crossing_landing_pad (bb);
1762 else
1763 dw2_fix_up_crossing_landing_pad (lp, bb);
1764
1765 /* There is a single, common landing pad in SJLJ mode. */
1766 if (sjlj)
1767 break;
1768 }
1769 }
1770
1771 /* Mark every edge that crosses between sections. */
1772 FOR_EACH_BB_FN (bb, cfun)
1773 FOR_EACH_EDGE (e, ei, bb->succs)
1774 {
1775 unsigned int flags = e->flags;
1776
1777 /* We should never have EDGE_CROSSING set yet. */
1778 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1779
1780 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1781 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1782 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1783 {
1784 crossing_edges.safe_push (e);
1785 flags |= EDGE_CROSSING;
1786 }
1787
1788 /* Now that we've split eh edges as appropriate, allow landing pads
1789 to be merged with the post-landing pads. */
1790 flags &= ~EDGE_PRESERVE;
1791
1792 e->flags = flags;
1793 }
1794
1795 return crossing_edges;
1796 }
1797
1798 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1799
1800 static void
1801 set_edge_can_fallthru_flag (void)
1802 {
1803 basic_block bb;
1804
1805 FOR_EACH_BB_FN (bb, cfun)
1806 {
1807 edge e;
1808 edge_iterator ei;
1809
1810 FOR_EACH_EDGE (e, ei, bb->succs)
1811 {
1812 e->flags &= ~EDGE_CAN_FALLTHRU;
1813
1814 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1815 if (e->flags & EDGE_FALLTHRU)
1816 e->flags |= EDGE_CAN_FALLTHRU;
1817 }
1818
1819 /* If the BB ends with an invertible condjump all (2) edges are
1820 CAN_FALLTHRU edges. */
1821 if (EDGE_COUNT (bb->succs) != 2)
1822 continue;
1823 if (!any_condjump_p (BB_END (bb)))
1824 continue;
1825
1826 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1827 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1828 continue;
1829 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1830 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1831 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1832 }
1833 }
1834
1835 /* If any destination of a crossing edge does not have a label, add label;
1836 Convert any easy fall-through crossing edges to unconditional jumps. */
1837
1838 static void
1839 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1840 {
1841 size_t i;
1842 edge e;
1843
1844 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1845 {
1846 basic_block src = e->src;
1847 basic_block dest = e->dest;
1848 rtx_jump_insn *new_jump;
1849
1850 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1851 continue;
1852
1853 /* Make sure dest has a label. */
1854 rtx_code_label *label = block_label (dest);
1855
1856 /* Nothing to do for non-fallthru edges. */
1857 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1858 continue;
1859 if ((e->flags & EDGE_FALLTHRU) == 0)
1860 continue;
1861
1862 /* If the block does not end with a control flow insn, then we
1863 can trivially add a jump to the end to fixup the crossing.
1864 Otherwise the jump will have to go in a new bb, which will
1865 be handled by fix_up_fall_thru_edges function. */
1866 if (control_flow_insn_p (BB_END (src)))
1867 continue;
1868
1869 /* Make sure there's only one successor. */
1870 gcc_assert (single_succ_p (src));
1871
1872 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1873 BB_END (src) = new_jump;
1874 JUMP_LABEL (new_jump) = label;
1875 LABEL_NUSES (label) += 1;
1876
1877 emit_barrier_after_bb (src);
1878
1879 /* Mark edge as non-fallthru. */
1880 e->flags &= ~EDGE_FALLTHRU;
1881 }
1882 }
1883
1884 /* Find any bb's where the fall-through edge is a crossing edge (note that
1885 these bb's must also contain a conditional jump or end with a call
1886 instruction; we've already dealt with fall-through edges for blocks
1887 that didn't have a conditional jump or didn't end with call instruction
1888 in the call to add_labels_and_missing_jumps). Convert the fall-through
1889 edge to non-crossing edge by inserting a new bb to fall-through into.
1890 The new bb will contain an unconditional jump (crossing edge) to the
1891 original fall through destination. */
1892
1893 static void
1894 fix_up_fall_thru_edges (void)
1895 {
1896 basic_block cur_bb;
1897
1898 FOR_EACH_BB_FN (cur_bb, cfun)
1899 {
1900 edge succ1;
1901 edge succ2;
1902 edge fall_thru = NULL;
1903 edge cond_jump = NULL;
1904
1905 fall_thru = NULL;
1906 if (EDGE_COUNT (cur_bb->succs) > 0)
1907 succ1 = EDGE_SUCC (cur_bb, 0);
1908 else
1909 succ1 = NULL;
1910
1911 if (EDGE_COUNT (cur_bb->succs) > 1)
1912 succ2 = EDGE_SUCC (cur_bb, 1);
1913 else
1914 succ2 = NULL;
1915
1916 /* Find the fall-through edge. */
1917
1918 if (succ1
1919 && (succ1->flags & EDGE_FALLTHRU))
1920 {
1921 fall_thru = succ1;
1922 cond_jump = succ2;
1923 }
1924 else if (succ2
1925 && (succ2->flags & EDGE_FALLTHRU))
1926 {
1927 fall_thru = succ2;
1928 cond_jump = succ1;
1929 }
1930 else if (succ2 && EDGE_COUNT (cur_bb->succs) > 2)
1931 fall_thru = find_fallthru_edge (cur_bb->succs);
1932
1933 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1934 {
1935 /* Check to see if the fall-thru edge is a crossing edge. */
1936
1937 if (fall_thru->flags & EDGE_CROSSING)
1938 {
1939 /* The fall_thru edge crosses; now check the cond jump edge, if
1940 it exists. */
1941
1942 bool cond_jump_crosses = true;
1943 int invert_worked = 0;
1944 rtx_insn *old_jump = BB_END (cur_bb);
1945
1946 /* Find the jump instruction, if there is one. */
1947
1948 if (cond_jump)
1949 {
1950 if (!(cond_jump->flags & EDGE_CROSSING))
1951 cond_jump_crosses = false;
1952
1953 /* We know the fall-thru edge crosses; if the cond
1954 jump edge does NOT cross, and its destination is the
1955 next block in the bb order, invert the jump
1956 (i.e. fix it so the fall through does not cross and
1957 the cond jump does). */
1958
1959 if (!cond_jump_crosses)
1960 {
1961 /* Find label in fall_thru block. We've already added
1962 any missing labels, so there must be one. */
1963
1964 rtx_code_label *fall_thru_label
1965 = block_label (fall_thru->dest);
1966
1967 if (old_jump && fall_thru_label)
1968 {
1969 rtx_jump_insn *old_jump_insn
1970 = dyn_cast <rtx_jump_insn *> (old_jump);
1971 if (old_jump_insn)
1972 invert_worked = invert_jump (old_jump_insn,
1973 fall_thru_label, 0);
1974 }
1975
1976 if (invert_worked)
1977 {
1978 fall_thru->flags &= ~EDGE_FALLTHRU;
1979 cond_jump->flags |= EDGE_FALLTHRU;
1980 update_br_prob_note (cur_bb);
1981 std::swap (fall_thru, cond_jump);
1982 cond_jump->flags |= EDGE_CROSSING;
1983 fall_thru->flags &= ~EDGE_CROSSING;
1984 }
1985 }
1986 }
1987
1988 if (cond_jump_crosses || !invert_worked)
1989 {
1990 /* This is the case where both edges out of the basic
1991 block are crossing edges. Here we will fix up the
1992 fall through edge. The jump edge will be taken care
1993 of later. The EDGE_CROSSING flag of fall_thru edge
1994 is unset before the call to force_nonfallthru
1995 function because if a new basic-block is created
1996 this edge remains in the current section boundary
1997 while the edge between new_bb and the fall_thru->dest
1998 becomes EDGE_CROSSING. */
1999
2000 fall_thru->flags &= ~EDGE_CROSSING;
2001 basic_block new_bb = force_nonfallthru (fall_thru);
2002
2003 if (new_bb)
2004 {
2005 new_bb->aux = cur_bb->aux;
2006 cur_bb->aux = new_bb;
2007
2008 /* This is done by force_nonfallthru_and_redirect. */
2009 gcc_assert (BB_PARTITION (new_bb)
2010 == BB_PARTITION (cur_bb));
2011
2012 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
2013 }
2014 else
2015 {
2016 /* If a new basic-block was not created; restore
2017 the EDGE_CROSSING flag. */
2018 fall_thru->flags |= EDGE_CROSSING;
2019 }
2020
2021 /* Add barrier after new jump */
2022 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
2023 }
2024 }
2025 }
2026 }
2027 }
2028
2029 /* This function checks the destination block of a "crossing jump" to
2030 see if it has any crossing predecessors that begin with a code label
2031 and end with an unconditional jump. If so, it returns that predecessor
2032 block. (This is to avoid creating lots of new basic blocks that all
2033 contain unconditional jumps to the same destination). */
2034
2035 static basic_block
2036 find_jump_block (basic_block jump_dest)
2037 {
2038 basic_block source_bb = NULL;
2039 edge e;
2040 rtx_insn *insn;
2041 edge_iterator ei;
2042
2043 FOR_EACH_EDGE (e, ei, jump_dest->preds)
2044 if (e->flags & EDGE_CROSSING)
2045 {
2046 basic_block src = e->src;
2047
2048 /* Check each predecessor to see if it has a label, and contains
2049 only one executable instruction, which is an unconditional jump.
2050 If so, we can use it. */
2051
2052 if (LABEL_P (BB_HEAD (src)))
2053 for (insn = BB_HEAD (src);
2054 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
2055 insn = NEXT_INSN (insn))
2056 {
2057 if (INSN_P (insn)
2058 && insn == BB_END (src)
2059 && JUMP_P (insn)
2060 && !any_condjump_p (insn))
2061 {
2062 source_bb = src;
2063 break;
2064 }
2065 }
2066
2067 if (source_bb)
2068 break;
2069 }
2070
2071 return source_bb;
2072 }
2073
2074 /* Find all BB's with conditional jumps that are crossing edges;
2075 insert a new bb and make the conditional jump branch to the new
2076 bb instead (make the new bb same color so conditional branch won't
2077 be a 'crossing' edge). Insert an unconditional jump from the
2078 new bb to the original destination of the conditional jump. */
2079
2080 static void
2081 fix_crossing_conditional_branches (void)
2082 {
2083 basic_block cur_bb;
2084 basic_block new_bb;
2085 basic_block dest;
2086 edge succ1;
2087 edge succ2;
2088 edge crossing_edge;
2089 edge new_edge;
2090 rtx set_src;
2091 rtx old_label = NULL_RTX;
2092 rtx_code_label *new_label;
2093
2094 FOR_EACH_BB_FN (cur_bb, cfun)
2095 {
2096 crossing_edge = NULL;
2097 if (EDGE_COUNT (cur_bb->succs) > 0)
2098 succ1 = EDGE_SUCC (cur_bb, 0);
2099 else
2100 succ1 = NULL;
2101
2102 if (EDGE_COUNT (cur_bb->succs) > 1)
2103 succ2 = EDGE_SUCC (cur_bb, 1);
2104 else
2105 succ2 = NULL;
2106
2107 /* We already took care of fall-through edges, so only one successor
2108 can be a crossing edge. */
2109
2110 if (succ1 && (succ1->flags & EDGE_CROSSING))
2111 crossing_edge = succ1;
2112 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2113 crossing_edge = succ2;
2114
2115 if (crossing_edge)
2116 {
2117 rtx_insn *old_jump = BB_END (cur_bb);
2118
2119 /* Check to make sure the jump instruction is a
2120 conditional jump. */
2121
2122 set_src = NULL_RTX;
2123
2124 if (any_condjump_p (old_jump))
2125 {
2126 if (GET_CODE (PATTERN (old_jump)) == SET)
2127 set_src = SET_SRC (PATTERN (old_jump));
2128 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2129 {
2130 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2131 if (GET_CODE (set_src) == SET)
2132 set_src = SET_SRC (set_src);
2133 else
2134 set_src = NULL_RTX;
2135 }
2136 }
2137
2138 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2139 {
2140 rtx_jump_insn *old_jump_insn =
2141 as_a <rtx_jump_insn *> (old_jump);
2142
2143 if (GET_CODE (XEXP (set_src, 1)) == PC)
2144 old_label = XEXP (set_src, 2);
2145 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2146 old_label = XEXP (set_src, 1);
2147
2148 /* Check to see if new bb for jumping to that dest has
2149 already been created; if so, use it; if not, create
2150 a new one. */
2151
2152 new_bb = find_jump_block (crossing_edge->dest);
2153
2154 if (new_bb)
2155 new_label = block_label (new_bb);
2156 else
2157 {
2158 basic_block last_bb;
2159 rtx_code_label *old_jump_target;
2160 rtx_jump_insn *new_jump;
2161
2162 /* Create new basic block to be dest for
2163 conditional jump. */
2164
2165 /* Put appropriate instructions in new bb. */
2166
2167 new_label = gen_label_rtx ();
2168 emit_label (new_label);
2169
2170 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2171 old_jump_target = old_jump_insn->jump_target ();
2172 new_jump = as_a <rtx_jump_insn *>
2173 (emit_jump_insn (targetm.gen_jump (old_jump_target)));
2174 new_jump->set_jump_target (old_jump_target);
2175
2176 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2177 new_bb = create_basic_block (new_label, new_jump, last_bb);
2178 new_bb->aux = last_bb->aux;
2179 last_bb->aux = new_bb;
2180
2181 emit_barrier_after_bb (new_bb);
2182
2183 /* Make sure new bb is in same partition as source
2184 of conditional branch. */
2185 BB_COPY_PARTITION (new_bb, cur_bb);
2186 }
2187
2188 /* Make old jump branch to new bb. */
2189
2190 redirect_jump (old_jump_insn, new_label, 0);
2191
2192 /* Remove crossing_edge as predecessor of 'dest'. */
2193
2194 dest = crossing_edge->dest;
2195
2196 redirect_edge_succ (crossing_edge, new_bb);
2197
2198 /* Make a new edge from new_bb to old dest; new edge
2199 will be a successor for new_bb and a predecessor
2200 for 'dest'. */
2201
2202 if (EDGE_COUNT (new_bb->succs) == 0)
2203 new_edge = make_single_succ_edge (new_bb, dest, 0);
2204 else
2205 new_edge = EDGE_SUCC (new_bb, 0);
2206
2207 crossing_edge->flags &= ~EDGE_CROSSING;
2208 new_edge->flags |= EDGE_CROSSING;
2209 }
2210 }
2211 }
2212 }
2213
2214 /* Find any unconditional branches that cross between hot and cold
2215 sections. Convert them into indirect jumps instead. */
2216
2217 static void
2218 fix_crossing_unconditional_branches (void)
2219 {
2220 basic_block cur_bb;
2221 rtx_insn *last_insn;
2222 rtx label;
2223 rtx label_addr;
2224 rtx_insn *indirect_jump_sequence;
2225 rtx_insn *jump_insn = NULL;
2226 rtx new_reg;
2227 rtx_insn *cur_insn;
2228 edge succ;
2229
2230 FOR_EACH_BB_FN (cur_bb, cfun)
2231 {
2232 last_insn = BB_END (cur_bb);
2233
2234 if (EDGE_COUNT (cur_bb->succs) < 1)
2235 continue;
2236
2237 succ = EDGE_SUCC (cur_bb, 0);
2238
2239 /* Check to see if bb ends in a crossing (unconditional) jump. At
2240 this point, no crossing jumps should be conditional. */
2241
2242 if (JUMP_P (last_insn)
2243 && (succ->flags & EDGE_CROSSING))
2244 {
2245 gcc_assert (!any_condjump_p (last_insn));
2246
2247 /* Make sure the jump is not already an indirect or table jump. */
2248
2249 if (!computed_jump_p (last_insn)
2250 && !tablejump_p (last_insn, NULL, NULL))
2251 {
2252 /* We have found a "crossing" unconditional branch. Now
2253 we must convert it to an indirect jump. First create
2254 reference of label, as target for jump. */
2255
2256 label = JUMP_LABEL (last_insn);
2257 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2258 LABEL_NUSES (label) += 1;
2259
2260 /* Get a register to use for the indirect jump. */
2261
2262 new_reg = gen_reg_rtx (Pmode);
2263
2264 /* Generate indirect the jump sequence. */
2265
2266 start_sequence ();
2267 emit_move_insn (new_reg, label_addr);
2268 emit_indirect_jump (new_reg);
2269 indirect_jump_sequence = get_insns ();
2270 end_sequence ();
2271
2272 /* Make sure every instruction in the new jump sequence has
2273 its basic block set to be cur_bb. */
2274
2275 for (cur_insn = indirect_jump_sequence; cur_insn;
2276 cur_insn = NEXT_INSN (cur_insn))
2277 {
2278 if (!BARRIER_P (cur_insn))
2279 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2280 if (JUMP_P (cur_insn))
2281 jump_insn = cur_insn;
2282 }
2283
2284 /* Insert the new (indirect) jump sequence immediately before
2285 the unconditional jump, then delete the unconditional jump. */
2286
2287 emit_insn_before (indirect_jump_sequence, last_insn);
2288 delete_insn (last_insn);
2289
2290 JUMP_LABEL (jump_insn) = label;
2291 LABEL_NUSES (label)++;
2292
2293 /* Make BB_END for cur_bb be the jump instruction (NOT the
2294 barrier instruction at the end of the sequence...). */
2295
2296 BB_END (cur_bb) = jump_insn;
2297 }
2298 }
2299 }
2300 }
2301
2302 /* Update CROSSING_JUMP_P flags on all jump insns. */
2303
2304 static void
2305 update_crossing_jump_flags (void)
2306 {
2307 basic_block bb;
2308 edge e;
2309 edge_iterator ei;
2310
2311 FOR_EACH_BB_FN (bb, cfun)
2312 FOR_EACH_EDGE (e, ei, bb->succs)
2313 if (e->flags & EDGE_CROSSING)
2314 {
2315 if (JUMP_P (BB_END (bb)))
2316 CROSSING_JUMP_P (BB_END (bb)) = 1;
2317 break;
2318 }
2319 }
2320
2321 /* Reorder basic blocks using the software trace cache (STC) algorithm. */
2322
2323 static void
2324 reorder_basic_blocks_software_trace_cache (void)
2325 {
2326 if (dump_file)
2327 fprintf (dump_file, "\nReordering with the STC algorithm.\n\n");
2328
2329 int n_traces;
2330 int i;
2331 struct trace *traces;
2332
2333 /* We are estimating the length of uncond jump insn only once since the code
2334 for getting the insn length always returns the minimal length now. */
2335 if (uncond_jump_length == 0)
2336 uncond_jump_length = get_uncond_jump_length ();
2337
2338 /* We need to know some information for each basic block. */
2339 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2340 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2341 for (i = 0; i < array_size; i++)
2342 {
2343 bbd[i].start_of_trace = -1;
2344 bbd[i].end_of_trace = -1;
2345 bbd[i].in_trace = -1;
2346 bbd[i].visited = 0;
2347 bbd[i].priority = -1;
2348 bbd[i].heap = NULL;
2349 bbd[i].node = NULL;
2350 }
2351
2352 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2353 n_traces = 0;
2354 find_traces (&n_traces, traces);
2355 connect_traces (n_traces, traces);
2356 FREE (traces);
2357 FREE (bbd);
2358 }
2359
2360 /* Order edges by execution frequency, higher first. */
2361
2362 static int
2363 edge_order (const void *ve1, const void *ve2)
2364 {
2365 edge e1 = *(const edge *) ve1;
2366 edge e2 = *(const edge *) ve2;
2367 profile_count c1 = e1->count ();
2368 profile_count c2 = e2->count ();
2369 /* Since profile_count::operator< does not establish a strict weak order
2370 in presence of uninitialized counts, use 'max': this makes them appear
2371 as if having execution frequency less than any initialized count. */
2372 profile_count m = c1.max (c2);
2373 return (m == c2) - (m == c1);
2374 }
2375
2376 /* Reorder basic blocks using the "simple" algorithm. This tries to
2377 maximize the dynamic number of branches that are fallthrough, without
2378 copying instructions. The algorithm is greedy, looking at the most
2379 frequently executed branch first. */
2380
2381 static void
2382 reorder_basic_blocks_simple (void)
2383 {
2384 if (dump_file)
2385 fprintf (dump_file, "\nReordering with the \"simple\" algorithm.\n\n");
2386
2387 edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2388
2389 /* First, collect all edges that can be optimized by reordering blocks:
2390 simple jumps and conditional jumps, as well as the function entry edge. */
2391
2392 int n = 0;
2393 edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2394
2395 basic_block bb;
2396 FOR_EACH_BB_FN (bb, cfun)
2397 {
2398 rtx_insn *end = BB_END (bb);
2399
2400 if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2401 continue;
2402
2403 /* We cannot optimize asm goto. */
2404 if (JUMP_P (end) && extract_asm_operands (end))
2405 continue;
2406
2407 if (single_succ_p (bb))
2408 edges[n++] = EDGE_SUCC (bb, 0);
2409 else if (any_condjump_p (end))
2410 {
2411 edge e0 = EDGE_SUCC (bb, 0);
2412 edge e1 = EDGE_SUCC (bb, 1);
2413 /* When optimizing for size it is best to keep the original
2414 fallthrough edges. */
2415 if (e1->flags & EDGE_FALLTHRU)
2416 std::swap (e0, e1);
2417 edges[n++] = e0;
2418 edges[n++] = e1;
2419 }
2420 }
2421
2422 /* Sort the edges, the most desirable first. When optimizing for size
2423 all edges are equally desirable. */
2424
2425 if (optimize_function_for_speed_p (cfun))
2426 gcc_stablesort (edges, n, sizeof *edges, edge_order);
2427
2428 /* Now decide which of those edges to make fallthrough edges. We set
2429 BB_VISITED if a block already has a fallthrough successor assigned
2430 to it. We make ->AUX of an endpoint point to the opposite endpoint
2431 of a sequence of blocks that fall through, and ->AUX will be NULL
2432 for a block that is in such a sequence but not an endpoint anymore.
2433
2434 To start with, everything points to itself, nothing is assigned yet. */
2435
2436 FOR_ALL_BB_FN (bb, cfun)
2437 {
2438 bb->aux = bb;
2439 bb->flags &= ~BB_VISITED;
2440 }
2441
2442 EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2443
2444 /* Now for all edges, the most desirable first, see if that edge can
2445 connect two sequences. If it can, update AUX and BB_VISITED; if it
2446 cannot, zero out the edge in the table. */
2447
2448 for (int j = 0; j < n; j++)
2449 {
2450 edge e = edges[j];
2451
2452 basic_block tail_a = e->src;
2453 basic_block head_b = e->dest;
2454 basic_block head_a = (basic_block) tail_a->aux;
2455 basic_block tail_b = (basic_block) head_b->aux;
2456
2457 /* An edge cannot connect two sequences if:
2458 - it crosses partitions;
2459 - its src is not a current endpoint;
2460 - its dest is not a current endpoint;
2461 - or, it would create a loop. */
2462
2463 if (e->flags & EDGE_CROSSING
2464 || tail_a->flags & BB_VISITED
2465 || !tail_b
2466 || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2467 || tail_a == tail_b)
2468 {
2469 edges[j] = 0;
2470 continue;
2471 }
2472
2473 tail_a->aux = 0;
2474 head_b->aux = 0;
2475 head_a->aux = tail_b;
2476 tail_b->aux = head_a;
2477 tail_a->flags |= BB_VISITED;
2478 }
2479
2480 /* Put the pieces together, in the same order that the start blocks of
2481 the sequences already had. The hot/cold partitioning gives a little
2482 complication: as a first pass only do this for blocks in the same
2483 partition as the start block, and (if there is anything left to do)
2484 in a second pass handle the other partition. */
2485
2486 basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2487
2488 int current_partition
2489 = BB_PARTITION (last_tail == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2490 ? EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
2491 : last_tail);
2492 bool need_another_pass = true;
2493
2494 for (int pass = 0; pass < 2 && need_another_pass; pass++)
2495 {
2496 need_another_pass = false;
2497
2498 FOR_EACH_BB_FN (bb, cfun)
2499 if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2500 {
2501 if (BB_PARTITION (bb) != current_partition)
2502 {
2503 need_another_pass = true;
2504 continue;
2505 }
2506
2507 last_tail->aux = bb;
2508 last_tail = (basic_block) bb->aux;
2509 }
2510
2511 current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2512 }
2513
2514 last_tail->aux = 0;
2515
2516 /* Finally, link all the chosen fallthrough edges. */
2517
2518 for (int j = 0; j < n; j++)
2519 if (edges[j])
2520 edges[j]->src->aux = edges[j]->dest;
2521
2522 delete[] edges;
2523
2524 /* If the entry edge no longer falls through we have to make a new
2525 block so it can do so again. */
2526
2527 edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2528 if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2529 {
2530 force_nonfallthru (e);
2531 e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2532 }
2533 }
2534
2535 /* Reorder basic blocks. The main entry point to this file. */
2536
2537 static void
2538 reorder_basic_blocks (void)
2539 {
2540 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2541
2542 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2543 return;
2544
2545 set_edge_can_fallthru_flag ();
2546 mark_dfs_back_edges ();
2547
2548 switch (flag_reorder_blocks_algorithm)
2549 {
2550 case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2551 reorder_basic_blocks_simple ();
2552 break;
2553
2554 case REORDER_BLOCKS_ALGORITHM_STC:
2555 reorder_basic_blocks_software_trace_cache ();
2556 break;
2557
2558 default:
2559 gcc_unreachable ();
2560 }
2561
2562 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2563
2564 if (dump_file)
2565 {
2566 if (dump_flags & TDF_DETAILS)
2567 dump_reg_info (dump_file);
2568 dump_flow_info (dump_file, dump_flags);
2569 }
2570
2571 /* Signal that rtl_verify_flow_info_1 can now verify that there
2572 is at most one switch between hot/cold sections. */
2573 crtl->bb_reorder_complete = true;
2574 }
2575
2576 /* Determine which partition the first basic block in the function
2577 belongs to, then find the first basic block in the current function
2578 that belongs to a different section, and insert a
2579 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2580 instruction stream. When writing out the assembly code,
2581 encountering this note will make the compiler switch between the
2582 hot and cold text sections. */
2583
2584 void
2585 insert_section_boundary_note (void)
2586 {
2587 basic_block bb;
2588 bool switched_sections = false;
2589 int current_partition = 0;
2590
2591 if (!crtl->has_bb_partition)
2592 return;
2593
2594 FOR_EACH_BB_FN (bb, cfun)
2595 {
2596 if (!current_partition)
2597 current_partition = BB_PARTITION (bb);
2598 if (BB_PARTITION (bb) != current_partition)
2599 {
2600 gcc_assert (!switched_sections);
2601 switched_sections = true;
2602 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2603 current_partition = BB_PARTITION (bb);
2604 }
2605 }
2606
2607 /* Make sure crtl->has_bb_partition matches reality even if bbpart finds
2608 some hot and some cold basic blocks, but later one of those kinds is
2609 optimized away. */
2610 crtl->has_bb_partition = switched_sections;
2611 }
2612
2613 namespace {
2614
2615 const pass_data pass_data_reorder_blocks =
2616 {
2617 RTL_PASS, /* type */
2618 "bbro", /* name */
2619 OPTGROUP_NONE, /* optinfo_flags */
2620 TV_REORDER_BLOCKS, /* tv_id */
2621 0, /* properties_required */
2622 0, /* properties_provided */
2623 0, /* properties_destroyed */
2624 0, /* todo_flags_start */
2625 0, /* todo_flags_finish */
2626 };
2627
2628 class pass_reorder_blocks : public rtl_opt_pass
2629 {
2630 public:
2631 pass_reorder_blocks (gcc::context *ctxt)
2632 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2633 {}
2634
2635 /* opt_pass methods: */
2636 virtual bool gate (function *)
2637 {
2638 if (targetm.cannot_modify_jumps_p ())
2639 return false;
2640 return (optimize > 0
2641 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2642 }
2643
2644 virtual unsigned int execute (function *);
2645
2646 }; // class pass_reorder_blocks
2647
2648 unsigned int
2649 pass_reorder_blocks::execute (function *fun)
2650 {
2651 basic_block bb;
2652
2653 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2654 splitting possibly introduced more crossjumping opportunities. */
2655 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2656
2657 reorder_basic_blocks ();
2658 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_NO_PARTITIONING);
2659
2660 FOR_EACH_BB_FN (bb, fun)
2661 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2662 bb->aux = bb->next_bb;
2663 cfg_layout_finalize ();
2664
2665 return 0;
2666 }
2667
2668 } // anon namespace
2669
2670 rtl_opt_pass *
2671 make_pass_reorder_blocks (gcc::context *ctxt)
2672 {
2673 return new pass_reorder_blocks (ctxt);
2674 }
2675
2676 /* Duplicate a block (that we already know ends in a computed jump) into its
2677 predecessors, where possible. Return whether anything is changed. */
2678 static bool
2679 maybe_duplicate_computed_goto (basic_block bb, int max_size)
2680 {
2681 if (single_pred_p (bb))
2682 return false;
2683
2684 /* Make sure that the block is small enough. */
2685 rtx_insn *insn;
2686 FOR_BB_INSNS (bb, insn)
2687 if (INSN_P (insn))
2688 {
2689 max_size -= get_attr_min_length (insn);
2690 if (max_size < 0)
2691 return false;
2692 }
2693
2694 bool changed = false;
2695 edge e;
2696 edge_iterator ei;
2697 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
2698 {
2699 basic_block pred = e->src;
2700
2701 /* Do not duplicate BB into PRED if that is the last predecessor, or if
2702 we cannot merge a copy of BB with PRED. */
2703 if (single_pred_p (bb)
2704 || !single_succ_p (pred)
2705 || e->flags & EDGE_COMPLEX
2706 || pred->index < NUM_FIXED_BLOCKS
2707 || (JUMP_P (BB_END (pred)) && !simplejump_p (BB_END (pred)))
2708 || (JUMP_P (BB_END (pred)) && CROSSING_JUMP_P (BB_END (pred))))
2709 {
2710 ei_next (&ei);
2711 continue;
2712 }
2713
2714 if (dump_file)
2715 fprintf (dump_file, "Duplicating computed goto bb %d into bb %d\n",
2716 bb->index, e->src->index);
2717
2718 /* Remember if PRED can be duplicated; if so, the copy of BB merged
2719 with PRED can be duplicated as well. */
2720 bool can_dup_more = can_duplicate_block_p (pred);
2721
2722 /* Make a copy of BB, merge it into PRED. */
2723 basic_block copy = duplicate_block (bb, e, NULL);
2724 emit_barrier_after_bb (copy);
2725 reorder_insns_nobb (BB_HEAD (copy), BB_END (copy), BB_END (pred));
2726 merge_blocks (pred, copy);
2727
2728 changed = true;
2729
2730 /* Try to merge the resulting merged PRED into further predecessors. */
2731 if (can_dup_more)
2732 maybe_duplicate_computed_goto (pred, max_size);
2733 }
2734
2735 return changed;
2736 }
2737
2738 /* Duplicate the blocks containing computed gotos. This basically unfactors
2739 computed gotos that were factored early on in the compilation process to
2740 speed up edge based data flow. We used to not unfactor them again, which
2741 can seriously pessimize code with many computed jumps in the source code,
2742 such as interpreters. See e.g. PR15242. */
2743 static void
2744 duplicate_computed_gotos (function *fun)
2745 {
2746 /* We are estimating the length of uncond jump insn only once
2747 since the code for getting the insn length always returns
2748 the minimal length now. */
2749 if (uncond_jump_length == 0)
2750 uncond_jump_length = get_uncond_jump_length ();
2751
2752 /* Never copy a block larger than this. */
2753 int max_size
2754 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2755
2756 bool changed = false;
2757
2758 /* Try to duplicate all blocks that end in a computed jump and that
2759 can be duplicated at all. */
2760 basic_block bb;
2761 FOR_EACH_BB_FN (bb, fun)
2762 if (computed_jump_p (BB_END (bb)) && can_duplicate_block_p (bb))
2763 changed |= maybe_duplicate_computed_goto (bb, max_size);
2764
2765 /* Duplicating blocks will redirect edges and may cause hot blocks
2766 previously reached by both hot and cold blocks to become dominated
2767 only by cold blocks. */
2768 if (changed)
2769 fixup_partitions ();
2770 }
2771
2772 namespace {
2773
2774 const pass_data pass_data_duplicate_computed_gotos =
2775 {
2776 RTL_PASS, /* type */
2777 "compgotos", /* name */
2778 OPTGROUP_NONE, /* optinfo_flags */
2779 TV_REORDER_BLOCKS, /* tv_id */
2780 0, /* properties_required */
2781 0, /* properties_provided */
2782 0, /* properties_destroyed */
2783 0, /* todo_flags_start */
2784 0, /* todo_flags_finish */
2785 };
2786
2787 class pass_duplicate_computed_gotos : public rtl_opt_pass
2788 {
2789 public:
2790 pass_duplicate_computed_gotos (gcc::context *ctxt)
2791 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2792 {}
2793
2794 /* opt_pass methods: */
2795 virtual bool gate (function *);
2796 virtual unsigned int execute (function *);
2797
2798 }; // class pass_duplicate_computed_gotos
2799
2800 bool
2801 pass_duplicate_computed_gotos::gate (function *fun)
2802 {
2803 if (targetm.cannot_modify_jumps_p ())
2804 return false;
2805 return (optimize > 0
2806 && flag_expensive_optimizations
2807 && ! optimize_function_for_size_p (fun));
2808 }
2809
2810 unsigned int
2811 pass_duplicate_computed_gotos::execute (function *fun)
2812 {
2813 duplicate_computed_gotos (fun);
2814
2815 return 0;
2816 }
2817
2818 } // anon namespace
2819
2820 rtl_opt_pass *
2821 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2822 {
2823 return new pass_duplicate_computed_gotos (ctxt);
2824 }
2825
2826 /* This function is the main 'entrance' for the optimization that
2827 partitions hot and cold basic blocks into separate sections of the
2828 .o file (to improve performance and cache locality). Ideally it
2829 would be called after all optimizations that rearrange the CFG have
2830 been called. However part of this optimization may introduce new
2831 register usage, so it must be called before register allocation has
2832 occurred. This means that this optimization is actually called
2833 well before the optimization that reorders basic blocks (see
2834 function above).
2835
2836 This optimization checks the feedback information to determine
2837 which basic blocks are hot/cold, updates flags on the basic blocks
2838 to indicate which section they belong in. This information is
2839 later used for writing out sections in the .o file. Because hot
2840 and cold sections can be arbitrarily large (within the bounds of
2841 memory), far beyond the size of a single function, it is necessary
2842 to fix up all edges that cross section boundaries, to make sure the
2843 instructions used can actually span the required distance. The
2844 fixes are described below.
2845
2846 Fall-through edges must be changed into jumps; it is not safe or
2847 legal to fall through across a section boundary. Whenever a
2848 fall-through edge crossing a section boundary is encountered, a new
2849 basic block is inserted (in the same section as the fall-through
2850 source), and the fall through edge is redirected to the new basic
2851 block. The new basic block contains an unconditional jump to the
2852 original fall-through target. (If the unconditional jump is
2853 insufficient to cross section boundaries, that is dealt with a
2854 little later, see below).
2855
2856 In order to deal with architectures that have short conditional
2857 branches (which cannot span all of memory) we take any conditional
2858 jump that attempts to cross a section boundary and add a level of
2859 indirection: it becomes a conditional jump to a new basic block, in
2860 the same section. The new basic block contains an unconditional
2861 jump to the original target, in the other section.
2862
2863 For those architectures whose unconditional branch is also
2864 incapable of reaching all of memory, those unconditional jumps are
2865 converted into indirect jumps, through a register.
2866
2867 IMPORTANT NOTE: This optimization causes some messy interactions
2868 with the cfg cleanup optimizations; those optimizations want to
2869 merge blocks wherever possible, and to collapse indirect jump
2870 sequences (change "A jumps to B jumps to C" directly into "A jumps
2871 to C"). Those optimizations can undo the jump fixes that
2872 partitioning is required to make (see above), in order to ensure
2873 that jumps attempting to cross section boundaries are really able
2874 to cover whatever distance the jump requires (on many architectures
2875 conditional or unconditional jumps are not able to reach all of
2876 memory). Therefore tests have to be inserted into each such
2877 optimization to make sure that it does not undo stuff necessary to
2878 cross partition boundaries. This would be much less of a problem
2879 if we could perform this optimization later in the compilation, but
2880 unfortunately the fact that we may need to create indirect jumps
2881 (through registers) requires that this optimization be performed
2882 before register allocation.
2883
2884 Hot and cold basic blocks are partitioned and put in separate
2885 sections of the .o file, to reduce paging and improve cache
2886 performance (hopefully). This can result in bits of code from the
2887 same function being widely separated in the .o file. However this
2888 is not obvious to the current bb structure. Therefore we must take
2889 care to ensure that: 1). There are no fall_thru edges that cross
2890 between sections; 2). For those architectures which have "short"
2891 conditional branches, all conditional branches that attempt to
2892 cross between sections are converted to unconditional branches;
2893 and, 3). For those architectures which have "short" unconditional
2894 branches, all unconditional branches that attempt to cross between
2895 sections are converted to indirect jumps.
2896
2897 The code for fixing up fall_thru edges that cross between hot and
2898 cold basic blocks does so by creating new basic blocks containing
2899 unconditional branches to the appropriate label in the "other"
2900 section. The new basic block is then put in the same (hot or cold)
2901 section as the original conditional branch, and the fall_thru edge
2902 is modified to fall into the new basic block instead. By adding
2903 this level of indirection we end up with only unconditional branches
2904 crossing between hot and cold sections.
2905
2906 Conditional branches are dealt with by adding a level of indirection.
2907 A new basic block is added in the same (hot/cold) section as the
2908 conditional branch, and the conditional branch is retargeted to the
2909 new basic block. The new basic block contains an unconditional branch
2910 to the original target of the conditional branch (in the other section).
2911
2912 Unconditional branches are dealt with by converting them into
2913 indirect jumps. */
2914
2915 namespace {
2916
2917 const pass_data pass_data_partition_blocks =
2918 {
2919 RTL_PASS, /* type */
2920 "bbpart", /* name */
2921 OPTGROUP_NONE, /* optinfo_flags */
2922 TV_REORDER_BLOCKS, /* tv_id */
2923 PROP_cfglayout, /* properties_required */
2924 0, /* properties_provided */
2925 0, /* properties_destroyed */
2926 0, /* todo_flags_start */
2927 0, /* todo_flags_finish */
2928 };
2929
2930 class pass_partition_blocks : public rtl_opt_pass
2931 {
2932 public:
2933 pass_partition_blocks (gcc::context *ctxt)
2934 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2935 {}
2936
2937 /* opt_pass methods: */
2938 virtual bool gate (function *);
2939 virtual unsigned int execute (function *);
2940
2941 }; // class pass_partition_blocks
2942
2943 bool
2944 pass_partition_blocks::gate (function *fun)
2945 {
2946 /* The optimization to partition hot/cold basic blocks into separate
2947 sections of the .o file does not work well with linkonce or with
2948 user defined section attributes or with naked attribute. Don't call
2949 it if either case arises. */
2950 return (flag_reorder_blocks_and_partition
2951 && optimize
2952 /* See pass_reorder_blocks::gate. We should not partition if
2953 we are going to omit the reordering. */
2954 && optimize_function_for_speed_p (fun)
2955 && !DECL_COMDAT_GROUP (current_function_decl)
2956 && !lookup_attribute ("section", DECL_ATTRIBUTES (fun->decl))
2957 && !lookup_attribute ("naked", DECL_ATTRIBUTES (fun->decl))
2958 /* Workaround a bug in GDB where read_partial_die doesn't cope
2959 with DIEs with DW_AT_ranges, see PR81115. */
2960 && !(in_lto_p && MAIN_NAME_P (DECL_NAME (fun->decl))));
2961 }
2962
2963 unsigned
2964 pass_partition_blocks::execute (function *fun)
2965 {
2966 vec<edge> crossing_edges;
2967
2968 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2969 return 0;
2970
2971 df_set_flags (DF_DEFER_INSN_RESCAN);
2972
2973 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2974 if (!crossing_edges.exists ())
2975 /* Make sure to process deferred rescans and clear changeable df flags. */
2976 return TODO_df_finish;
2977
2978 crtl->has_bb_partition = true;
2979
2980 /* Make sure the source of any crossing edge ends in a jump and the
2981 destination of any crossing edge has a label. */
2982 add_labels_and_missing_jumps (crossing_edges);
2983
2984 /* Convert all crossing fall_thru edges to non-crossing fall
2985 thrus to unconditional jumps (that jump to the original fall
2986 through dest). */
2987 fix_up_fall_thru_edges ();
2988
2989 /* If the architecture does not have conditional branches that can
2990 span all of memory, convert crossing conditional branches into
2991 crossing unconditional branches. */
2992 if (!HAS_LONG_COND_BRANCH)
2993 fix_crossing_conditional_branches ();
2994
2995 /* If the architecture does not have unconditional branches that
2996 can span all of memory, convert crossing unconditional branches
2997 into indirect jumps. Since adding an indirect jump also adds
2998 a new register usage, update the register usage information as
2999 well. */
3000 if (!HAS_LONG_UNCOND_BRANCH)
3001 fix_crossing_unconditional_branches ();
3002
3003 update_crossing_jump_flags ();
3004
3005 /* Clear bb->aux fields that the above routines were using. */
3006 clear_aux_for_blocks ();
3007
3008 crossing_edges.release ();
3009
3010 /* ??? FIXME: DF generates the bb info for a block immediately.
3011 And by immediately, I mean *during* creation of the block.
3012
3013 #0 df_bb_refs_collect
3014 #1 in df_bb_refs_record
3015 #2 in create_basic_block_structure
3016
3017 Which means that the bb_has_eh_pred test in df_bb_refs_collect
3018 will *always* fail, because no edges can have been added to the
3019 block yet. Which of course means we don't add the right
3020 artificial refs, which means we fail df_verify (much) later.
3021
3022 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
3023 that we also shouldn't grab data from the new blocks those new
3024 insns are in either. In this way one can create the block, link
3025 it up properly, and have everything Just Work later, when deferred
3026 insns are processed.
3027
3028 In the meantime, we have no other option but to throw away all
3029 of the DF data and recompute it all. */
3030 if (fun->eh->lp_array)
3031 {
3032 df_finish_pass (true);
3033 df_scan_alloc (NULL);
3034 df_scan_blocks ();
3035 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
3036 data. We blindly generated all of them when creating the new
3037 landing pad. Delete those assignments we don't use. */
3038 df_set_flags (DF_LR_RUN_DCE);
3039 df_analyze ();
3040 }
3041
3042 /* Make sure to process deferred rescans and clear changeable df flags. */
3043 return TODO_df_finish;
3044 }
3045
3046 } // anon namespace
3047
3048 rtl_opt_pass *
3049 make_pass_partition_blocks (gcc::context *ctxt)
3050 {
3051 return new pass_partition_blocks (ctxt);
3052 }