]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgloopmanip.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
34
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
44
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
48 {
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
50 }
51
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
53
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
56 {
57 int i;
58
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
61 }
62
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
71 {
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
73
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
78 }
79
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
89 {
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = current_loops->tree_root, *act;
93
94 FOR_EACH_EDGE (e, ei, bb->succs)
95 {
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
98
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
102
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
105 }
106
107 if (loop == bb->loop_father)
108 return false;
109
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
112
113 return true;
114 }
115
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
120
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
123
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
126 {
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 FOR_EACH_VEC_ELT (exits, i, e)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
150 {
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
155 }
156
157 ret = true;
158 }
159
160 exits.release ();
161 return ret;
162 }
163
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
172
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
175
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
178
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
183 {
184 basic_block *queue, *qtop, *qbeg, *qend;
185 struct loop *base_loop, *target_loop;
186 edge e;
187
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
194
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
202
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
208
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
214
215 while (qbeg != qend)
216 {
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
223
224 if (from->loop_father->header == from)
225 {
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
231 {
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
236 }
237 }
238 else
239 {
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
246 }
247
248 FOR_EACH_EDGE (e, ei, from->succs)
249 {
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
252 }
253
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
256 {
257 basic_block pred = e->src;
258 struct loop *nca;
259
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
262
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
265
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 {
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
281 }
282
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
285
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
292 }
293 }
294 free (queue);
295 }
296
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
303 {
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 struct loop *l, *f;
311
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
314
315 if (!can_remove_branch_p (e))
316 return false;
317
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
325
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
332
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
338 {
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
342 }
343
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
346
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
351
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 {
361 *irred_invalidated = true;
362 break;
363 }
364
365 for (i = 0; i < nrem; i++)
366 {
367 bb = rem_bbs[i];
368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
370 && !bitmap_bit_p (seen, ae->dest->index))
371 {
372 bitmap_set_bit (seen, ae->dest->index);
373 bord_bbs[n_bord_bbs++] = ae->dest;
374
375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 *irred_invalidated = true;
377 }
378 }
379
380 /* Remove the path. */
381 from = e->src;
382 remove_branch (e);
383 dom_bbs.create (0);
384
385 /* Cancel loops contained in the path. */
386 for (i = 0; i < nrem; i++)
387 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
388 cancel_loop_tree (rem_bbs[i]->loop_father);
389
390 remove_bbs (rem_bbs, nrem);
391 free (rem_bbs);
392
393 /* Find blocks whose dominators may be affected. */
394 bitmap_clear (seen);
395 for (i = 0; i < n_bord_bbs; i++)
396 {
397 basic_block ldom;
398
399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
400 if (bitmap_bit_p (seen, bb->index))
401 continue;
402 bitmap_set_bit (seen, bb->index);
403
404 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
405 ldom;
406 ldom = next_dom_son (CDI_DOMINATORS, ldom))
407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
408 dom_bbs.safe_push (ldom);
409 }
410
411 /* Recount dominators. */
412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
413 dom_bbs.release ();
414 free (bord_bbs);
415
416 /* Fix placements of basic blocks inside loops and the placement of
417 loops in the loop tree. */
418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
419 fix_loop_placements (from->loop_father, irred_invalidated);
420
421 if (local_irred_invalidated
422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423 mark_irreducible_loops ();
424
425 return true;
426 }
427
428 /* Creates place for a new LOOP in loops structure of FN. */
429
430 void
431 place_new_loop (struct function *fn, struct loop *loop)
432 {
433 loop->num = number_of_loops (fn);
434 vec_safe_push (loops_for_fn (fn)->larray, loop);
435 }
436
437 /* Given LOOP structure with filled header and latch, find the body of the
438 corresponding loop and add it to loops tree. Insert the LOOP as a son of
439 outer. */
440
441 void
442 add_loop (struct loop *loop, struct loop *outer)
443 {
444 basic_block *bbs;
445 int i, n;
446 struct loop *subloop;
447 edge e;
448 edge_iterator ei;
449
450 /* Add it to loop structure. */
451 place_new_loop (cfun, loop);
452 flow_loop_tree_node_add (outer, loop);
453
454 /* Find its nodes. */
455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
457
458 for (i = 0; i < n; i++)
459 {
460 if (bbs[i]->loop_father == outer)
461 {
462 remove_bb_from_loops (bbs[i]);
463 add_bb_to_loop (bbs[i], loop);
464 continue;
465 }
466
467 loop->num_nodes++;
468
469 /* If we find a direct subloop of OUTER, move it to LOOP. */
470 subloop = bbs[i]->loop_father;
471 if (loop_outer (subloop) == outer
472 && subloop->header == bbs[i])
473 {
474 flow_loop_tree_node_remove (subloop);
475 flow_loop_tree_node_add (loop, subloop);
476 }
477 }
478
479 /* Update the information about loop exit edges. */
480 for (i = 0; i < n; i++)
481 {
482 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
483 {
484 rescan_loop_exit (e, false, false);
485 }
486 }
487
488 free (bbs);
489 }
490
491 /* Scale profile of loop by P. */
492
493 void
494 scale_loop_frequencies (struct loop *loop, profile_probability p)
495 {
496 basic_block *bbs;
497
498 bbs = get_loop_body (loop);
499 scale_bbs_frequencies (bbs, loop->num_nodes, p);
500 free (bbs);
501 }
502
503 /* Scale profile in LOOP by P.
504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
505 to iterate too many times.
506 Before caling this function, preheader block profile should be already
507 scaled to final count. This is necessary because loop iterations are
508 determined by comparing header edge count to latch ege count and thus
509 they need to be scaled synchronously. */
510
511 void
512 scale_loop_profile (struct loop *loop, profile_probability p,
513 gcov_type iteration_bound)
514 {
515 edge e, preheader_e;
516 edge_iterator ei;
517
518 if (dump_file && (dump_flags & TDF_DETAILS))
519 {
520 fprintf (dump_file, ";; Scaling loop %i with scale ",
521 loop->num);
522 p.dump (dump_file);
523 fprintf (dump_file, " bounding iterations to %i\n",
524 (int)iteration_bound);
525 }
526
527 /* Scale the probabilities. */
528 scale_loop_frequencies (loop, p);
529
530 if (iteration_bound == 0)
531 return;
532
533 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
534
535 if (dump_file && (dump_flags & TDF_DETAILS))
536 {
537 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
538 (int)iterations);
539 }
540
541 /* See if loop is predicted to iterate too many times. */
542 if (iterations <= iteration_bound)
543 return;
544
545 preheader_e = loop_preheader_edge (loop);
546
547 /* We could handle also loops without preheaders, but bounding is
548 currently used only by optimizers that have preheaders constructed. */
549 gcc_checking_assert (preheader_e);
550 profile_count count_in = preheader_e->count ();
551
552 if (count_in > profile_count::zero ()
553 && loop->header->count.initialized_p ())
554 {
555 profile_count count_delta = profile_count::zero ();
556
557 e = single_exit (loop);
558 if (e)
559 {
560 edge other_e;
561 FOR_EACH_EDGE (other_e, ei, e->src->succs)
562 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
563 && e != other_e)
564 break;
565
566 /* Probability of exit must be 1/iterations. */
567 count_delta = e->count ();
568 e->probability = profile_probability::always ()
569 .apply_scale (1, iteration_bound);
570 other_e->probability = e->probability.invert ();
571
572 /* In code below we only handle the following two updates. */
573 if (other_e->dest != loop->header
574 && other_e->dest != loop->latch
575 && (dump_file && (dump_flags & TDF_DETAILS)))
576 {
577 fprintf (dump_file, ";; giving up on update of paths from "
578 "exit condition to latch\n");
579 }
580 }
581 else
582 if (dump_file && (dump_flags & TDF_DETAILS))
583 fprintf (dump_file, ";; Loop has multiple exit edges; "
584 "giving up on exit condition update\n");
585
586 /* Roughly speaking we want to reduce the loop body profile by the
587 difference of loop iterations. We however can do better if
588 we look at the actual profile, if it is available. */
589 p = profile_probability::always ();
590
591 count_in = count_in.apply_scale (iteration_bound, 1);
592 p = count_in.probability_in (loop->header->count);
593 if (!(p > profile_probability::never ()))
594 p = profile_probability::very_unlikely ();
595
596 if (p == profile_probability::always ()
597 || !p.initialized_p ())
598 return;
599
600 /* If latch exists, change its count, since we changed
601 probability of exit. Theoretically we should update everything from
602 source of exit edge to latch, but for vectorizer this is enough. */
603 if (loop->latch && loop->latch != e->src)
604 loop->latch->count += count_delta;
605
606 /* Scale the probabilities. */
607 scale_loop_frequencies (loop, p);
608
609 /* Change latch's count back. */
610 if (loop->latch && loop->latch != e->src)
611 loop->latch->count -= count_delta;
612
613 if (dump_file && (dump_flags & TDF_DETAILS))
614 fprintf (dump_file, ";; guessed iterations are now %i\n",
615 (int)expected_loop_iterations_unbounded (loop, NULL, true));
616 }
617 }
618
619 /* Recompute dominance information for basic blocks outside LOOP. */
620
621 static void
622 update_dominators_in_loop (struct loop *loop)
623 {
624 vec<basic_block> dom_bbs = vNULL;
625 basic_block *body;
626 unsigned i;
627
628 auto_sbitmap seen (last_basic_block_for_fn (cfun));
629 bitmap_clear (seen);
630 body = get_loop_body (loop);
631
632 for (i = 0; i < loop->num_nodes; i++)
633 bitmap_set_bit (seen, body[i]->index);
634
635 for (i = 0; i < loop->num_nodes; i++)
636 {
637 basic_block ldom;
638
639 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
640 ldom;
641 ldom = next_dom_son (CDI_DOMINATORS, ldom))
642 if (!bitmap_bit_p (seen, ldom->index))
643 {
644 bitmap_set_bit (seen, ldom->index);
645 dom_bbs.safe_push (ldom);
646 }
647 }
648
649 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
650 free (body);
651 dom_bbs.release ();
652 }
653
654 /* Creates an if region as shown above. CONDITION is used to create
655 the test for the if.
656
657 |
658 | ------------- -------------
659 | | pred_bb | | pred_bb |
660 | ------------- -------------
661 | | |
662 | | | ENTRY_EDGE
663 | | ENTRY_EDGE V
664 | | ====> -------------
665 | | | cond_bb |
666 | | | CONDITION |
667 | | -------------
668 | V / \
669 | ------------- e_false / \ e_true
670 | | succ_bb | V V
671 | ------------- ----------- -----------
672 | | false_bb | | true_bb |
673 | ----------- -----------
674 | \ /
675 | \ /
676 | V V
677 | -------------
678 | | join_bb |
679 | -------------
680 | | exit_edge (result)
681 | V
682 | -----------
683 | | succ_bb |
684 | -----------
685 |
686 */
687
688 edge
689 create_empty_if_region_on_edge (edge entry_edge, tree condition)
690 {
691
692 basic_block cond_bb, true_bb, false_bb, join_bb;
693 edge e_true, e_false, exit_edge;
694 gcond *cond_stmt;
695 tree simple_cond;
696 gimple_stmt_iterator gsi;
697
698 cond_bb = split_edge (entry_edge);
699
700 /* Insert condition in cond_bb. */
701 gsi = gsi_last_bb (cond_bb);
702 simple_cond =
703 force_gimple_operand_gsi (&gsi, condition, true, NULL,
704 false, GSI_NEW_STMT);
705 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
706 gsi = gsi_last_bb (cond_bb);
707 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
708
709 join_bb = split_edge (single_succ_edge (cond_bb));
710
711 e_true = single_succ_edge (cond_bb);
712 true_bb = split_edge (e_true);
713
714 e_false = make_edge (cond_bb, join_bb, 0);
715 false_bb = split_edge (e_false);
716
717 e_true->flags &= ~EDGE_FALLTHRU;
718 e_true->flags |= EDGE_TRUE_VALUE;
719 e_false->flags &= ~EDGE_FALLTHRU;
720 e_false->flags |= EDGE_FALSE_VALUE;
721
722 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
723 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
724 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
725 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
726
727 exit_edge = single_succ_edge (join_bb);
728
729 if (single_pred_p (exit_edge->dest))
730 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
731
732 return exit_edge;
733 }
734
735 /* create_empty_loop_on_edge
736 |
737 | - pred_bb - ------ pred_bb ------
738 | | | | iv0 = initial_value |
739 | -----|----- ---------|-----------
740 | | ______ | entry_edge
741 | | entry_edge / | |
742 | | ====> | -V---V- loop_header -------------
743 | V | | iv_before = phi (iv0, iv_after) |
744 | - succ_bb - | ---|-----------------------------
745 | | | | |
746 | ----------- | ---V--- loop_body ---------------
747 | | | iv_after = iv_before + stride |
748 | | | if (iv_before < upper_bound) |
749 | | ---|--------------\--------------
750 | | | \ exit_e
751 | | V \
752 | | - loop_latch - V- succ_bb -
753 | | | | | |
754 | | /------------- -----------
755 | \ ___ /
756
757 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
758 that is used before the increment of IV. IV_BEFORE should be used for
759 adding code to the body that uses the IV. OUTER is the outer loop in
760 which the new loop should be inserted.
761
762 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
763 inserted on the loop entry edge. This implies that this function
764 should be used only when the UPPER_BOUND expression is a loop
765 invariant. */
766
767 struct loop *
768 create_empty_loop_on_edge (edge entry_edge,
769 tree initial_value,
770 tree stride, tree upper_bound,
771 tree iv,
772 tree *iv_before,
773 tree *iv_after,
774 struct loop *outer)
775 {
776 basic_block loop_header, loop_latch, succ_bb, pred_bb;
777 struct loop *loop;
778 gimple_stmt_iterator gsi;
779 gimple_seq stmts;
780 gcond *cond_expr;
781 tree exit_test;
782 edge exit_e;
783
784 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
785
786 /* Create header, latch and wire up the loop. */
787 pred_bb = entry_edge->src;
788 loop_header = split_edge (entry_edge);
789 loop_latch = split_edge (single_succ_edge (loop_header));
790 succ_bb = single_succ (loop_latch);
791 make_edge (loop_header, succ_bb, 0);
792 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
793
794 /* Set immediate dominator information. */
795 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
796 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
797 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
798
799 /* Initialize a loop structure and put it in a loop hierarchy. */
800 loop = alloc_loop ();
801 loop->header = loop_header;
802 loop->latch = loop_latch;
803 add_loop (loop, outer);
804
805 /* TODO: Fix counts. */
806 scale_loop_frequencies (loop, profile_probability::even ());
807
808 /* Update dominators. */
809 update_dominators_in_loop (loop);
810
811 /* Modify edge flags. */
812 exit_e = single_exit (loop);
813 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
814 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
815
816 /* Construct IV code in loop. */
817 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
818 if (stmts)
819 {
820 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
821 gsi_commit_edge_inserts ();
822 }
823
824 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
825 if (stmts)
826 {
827 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
828 gsi_commit_edge_inserts ();
829 }
830
831 gsi = gsi_last_bb (loop_header);
832 create_iv (initial_value, stride, iv, loop, &gsi, false,
833 iv_before, iv_after);
834
835 /* Insert loop exit condition. */
836 cond_expr = gimple_build_cond
837 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
838
839 exit_test = gimple_cond_lhs (cond_expr);
840 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
841 false, GSI_NEW_STMT);
842 gimple_cond_set_lhs (cond_expr, exit_test);
843 gsi = gsi_last_bb (exit_e->src);
844 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
845
846 split_block_after_labels (loop_header);
847
848 return loop;
849 }
850
851 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
852 latch to header and update loop tree and dominators
853 accordingly. Everything between them plus LATCH_EDGE destination must
854 be dominated by HEADER_EDGE destination, and back-reachable from
855 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
856 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
857 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
858 Returns the newly created loop. Frequencies and counts in the new loop
859 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
860
861 struct loop *
862 loopify (edge latch_edge, edge header_edge,
863 basic_block switch_bb, edge true_edge, edge false_edge,
864 bool redirect_all_edges, profile_probability true_scale,
865 profile_probability false_scale)
866 {
867 basic_block succ_bb = latch_edge->dest;
868 basic_block pred_bb = header_edge->src;
869 struct loop *loop = alloc_loop ();
870 struct loop *outer = loop_outer (succ_bb->loop_father);
871 profile_count cnt;
872
873 loop->header = header_edge->dest;
874 loop->latch = latch_edge->src;
875
876 cnt = header_edge->count ();
877
878 /* Redirect edges. */
879 loop_redirect_edge (latch_edge, loop->header);
880 loop_redirect_edge (true_edge, succ_bb);
881
882 /* During loop versioning, one of the switch_bb edge is already properly
883 set. Do not redirect it again unless redirect_all_edges is true. */
884 if (redirect_all_edges)
885 {
886 loop_redirect_edge (header_edge, switch_bb);
887 loop_redirect_edge (false_edge, loop->header);
888
889 /* Update dominators. */
890 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
891 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
892 }
893
894 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
895
896 /* Compute new loop. */
897 add_loop (loop, outer);
898
899 /* Add switch_bb to appropriate loop. */
900 if (switch_bb->loop_father)
901 remove_bb_from_loops (switch_bb);
902 add_bb_to_loop (switch_bb, outer);
903
904 /* Fix counts. */
905 if (redirect_all_edges)
906 {
907 switch_bb->count = cnt;
908 }
909 scale_loop_frequencies (loop, false_scale);
910 scale_loop_frequencies (succ_bb->loop_father, true_scale);
911 update_dominators_in_loop (loop);
912
913 return loop;
914 }
915
916 /* Remove the latch edge of a LOOP and update loops to indicate that
917 the LOOP was removed. After this function, original loop latch will
918 have no successor, which caller is expected to fix somehow.
919
920 If this may cause the information about irreducible regions to become
921 invalid, IRRED_INVALIDATED is set to true.
922
923 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
924 basic blocks that had non-trivial update on their loop_father.*/
925
926 void
927 unloop (struct loop *loop, bool *irred_invalidated,
928 bitmap loop_closed_ssa_invalidated)
929 {
930 basic_block *body;
931 struct loop *ploop;
932 unsigned i, n;
933 basic_block latch = loop->latch;
934 bool dummy = false;
935
936 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
937 *irred_invalidated = true;
938
939 /* This is relatively straightforward. The dominators are unchanged, as
940 loop header dominates loop latch, so the only thing we have to care of
941 is the placement of loops and basic blocks inside the loop tree. We
942 move them all to the loop->outer, and then let fix_bb_placements do
943 its work. */
944
945 body = get_loop_body (loop);
946 n = loop->num_nodes;
947 for (i = 0; i < n; i++)
948 if (body[i]->loop_father == loop)
949 {
950 remove_bb_from_loops (body[i]);
951 add_bb_to_loop (body[i], loop_outer (loop));
952 }
953 free (body);
954
955 while (loop->inner)
956 {
957 ploop = loop->inner;
958 flow_loop_tree_node_remove (ploop);
959 flow_loop_tree_node_add (loop_outer (loop), ploop);
960 }
961
962 /* Remove the loop and free its data. */
963 delete_loop (loop);
964
965 remove_edge (single_succ_edge (latch));
966
967 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
968 there is an irreducible region inside the cancelled loop, the flags will
969 be still correct. */
970 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
971 }
972
973 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
974 condition stated in description of fix_loop_placement holds for them.
975 It is used in case when we removed some edges coming out of LOOP, which
976 may cause the right placement of LOOP inside loop tree to change.
977
978 IRRED_INVALIDATED is set to true if a change in the loop structures might
979 invalidate the information about irreducible regions. */
980
981 static void
982 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
983 {
984 struct loop *outer;
985
986 while (loop_outer (loop))
987 {
988 outer = loop_outer (loop);
989 if (!fix_loop_placement (loop, irred_invalidated))
990 break;
991
992 /* Changing the placement of a loop in the loop tree may alter the
993 validity of condition 2) of the description of fix_bb_placement
994 for its preheader, because the successor is the header and belongs
995 to the loop. So call fix_bb_placements to fix up the placement
996 of the preheader and (possibly) of its predecessors. */
997 fix_bb_placements (loop_preheader_edge (loop)->src,
998 irred_invalidated, NULL);
999 loop = outer;
1000 }
1001 }
1002
1003 /* Duplicate loop bounds and other information we store about
1004 the loop into its duplicate. */
1005
1006 void
1007 copy_loop_info (struct loop *loop, struct loop *target)
1008 {
1009 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1010 target->any_upper_bound = loop->any_upper_bound;
1011 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1012 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1013 target->nb_iterations_likely_upper_bound
1014 = loop->nb_iterations_likely_upper_bound;
1015 target->any_estimate = loop->any_estimate;
1016 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1017 target->estimate_state = loop->estimate_state;
1018 target->safelen = loop->safelen;
1019 target->simdlen = loop->simdlen;
1020 target->constraints = loop->constraints;
1021 target->can_be_parallel = loop->can_be_parallel;
1022 target->warned_aggressive_loop_optimizations
1023 |= loop->warned_aggressive_loop_optimizations;
1024 target->dont_vectorize = loop->dont_vectorize;
1025 target->force_vectorize = loop->force_vectorize;
1026 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1027 target->unroll = loop->unroll;
1028 target->owned_clique = loop->owned_clique;
1029 }
1030
1031 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1032 created loop into loops structure. If AFTER is non-null
1033 the new loop is added at AFTER->next, otherwise in front of TARGETs
1034 sibling list. */
1035 struct loop *
1036 duplicate_loop (struct loop *loop, struct loop *target, struct loop *after)
1037 {
1038 struct loop *cloop;
1039 cloop = alloc_loop ();
1040 place_new_loop (cfun, cloop);
1041
1042 copy_loop_info (loop, cloop);
1043
1044 /* Mark the new loop as copy of LOOP. */
1045 set_loop_copy (loop, cloop);
1046
1047 /* Add it to target. */
1048 flow_loop_tree_node_add (target, cloop, after);
1049
1050 return cloop;
1051 }
1052
1053 /* Copies structure of subloops of LOOP into TARGET loop, placing
1054 newly created loops into loop tree at the end of TARGETs sibling
1055 list in the original order. */
1056 void
1057 duplicate_subloops (struct loop *loop, struct loop *target)
1058 {
1059 struct loop *aloop, *cloop, *tail;
1060
1061 for (tail = target->inner; tail && tail->next; tail = tail->next)
1062 ;
1063 for (aloop = loop->inner; aloop; aloop = aloop->next)
1064 {
1065 cloop = duplicate_loop (aloop, target, tail);
1066 tail = cloop;
1067 gcc_assert(!tail->next);
1068 duplicate_subloops (aloop, cloop);
1069 }
1070 }
1071
1072 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1073 into TARGET loop, placing newly created loops into loop tree adding
1074 them to TARGETs sibling list at the end in order. */
1075 static void
1076 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1077 {
1078 struct loop *aloop, *tail;
1079 int i;
1080
1081 for (tail = target->inner; tail && tail->next; tail = tail->next)
1082 ;
1083 for (i = 0; i < n; i++)
1084 {
1085 aloop = duplicate_loop (copied_loops[i], target, tail);
1086 tail = aloop;
1087 gcc_assert(!tail->next);
1088 duplicate_subloops (copied_loops[i], aloop);
1089 }
1090 }
1091
1092 /* Redirects edge E to basic block DEST. */
1093 static void
1094 loop_redirect_edge (edge e, basic_block dest)
1095 {
1096 if (e->dest == dest)
1097 return;
1098
1099 redirect_edge_and_branch_force (e, dest);
1100 }
1101
1102 /* Check whether LOOP's body can be duplicated. */
1103 bool
1104 can_duplicate_loop_p (const struct loop *loop)
1105 {
1106 int ret;
1107 basic_block *bbs = get_loop_body (loop);
1108
1109 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1110 free (bbs);
1111
1112 return ret;
1113 }
1114
1115 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1116 loop structure and dominators (order of inner subloops is retained).
1117 E's destination must be LOOP header for this to work, i.e. it must be entry
1118 or latch edge of this loop; these are unique, as the loops must have
1119 preheaders for this function to work correctly (in case E is latch, the
1120 function unrolls the loop, if E is entry edge, it peels the loop). Store
1121 edges created by copying ORIG edge from copies corresponding to set bits in
1122 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1123 are numbered in order given by control flow through them) into TO_REMOVE
1124 array. Returns false if duplication is
1125 impossible. */
1126
1127 bool
1128 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1129 unsigned int ndupl, sbitmap wont_exit,
1130 edge orig, vec<edge> *to_remove,
1131 int flags)
1132 {
1133 struct loop *target, *aloop;
1134 struct loop **orig_loops;
1135 unsigned n_orig_loops;
1136 basic_block header = loop->header, latch = loop->latch;
1137 basic_block *new_bbs, *bbs, *first_active;
1138 basic_block new_bb, bb, first_active_latch = NULL;
1139 edge ae, latch_edge;
1140 edge spec_edges[2], new_spec_edges[2];
1141 const int SE_LATCH = 0;
1142 const int SE_ORIG = 1;
1143 unsigned i, j, n;
1144 int is_latch = (latch == e->src);
1145 profile_probability *scale_step = NULL;
1146 profile_probability scale_main = profile_probability::always ();
1147 profile_probability scale_act = profile_probability::always ();
1148 profile_count after_exit_num = profile_count::zero (),
1149 after_exit_den = profile_count::zero ();
1150 bool scale_after_exit = false;
1151 int add_irreducible_flag;
1152 basic_block place_after;
1153 bitmap bbs_to_scale = NULL;
1154 bitmap_iterator bi;
1155
1156 gcc_assert (e->dest == loop->header);
1157 gcc_assert (ndupl > 0);
1158
1159 if (orig)
1160 {
1161 /* Orig must be edge out of the loop. */
1162 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1163 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1164 }
1165
1166 n = loop->num_nodes;
1167 bbs = get_loop_body_in_dom_order (loop);
1168 gcc_assert (bbs[0] == loop->header);
1169 gcc_assert (bbs[n - 1] == loop->latch);
1170
1171 /* Check whether duplication is possible. */
1172 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1173 {
1174 free (bbs);
1175 return false;
1176 }
1177 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1178
1179 /* In case we are doing loop peeling and the loop is in the middle of
1180 irreducible region, the peeled copies will be inside it too. */
1181 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1182 gcc_assert (!is_latch || !add_irreducible_flag);
1183
1184 /* Find edge from latch. */
1185 latch_edge = loop_latch_edge (loop);
1186
1187 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1188 {
1189 /* Calculate coefficients by that we have to scale counts
1190 of duplicated loop bodies. */
1191 profile_count count_in = header->count;
1192 profile_count count_le = latch_edge->count ();
1193 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1194 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1195 profile_probability prob_pass_wont_exit =
1196 (count_le + count_out_orig).probability_in (count_in);
1197
1198 if (orig && orig->probability.initialized_p ()
1199 && !(orig->probability == profile_probability::always ()))
1200 {
1201 /* The blocks that are dominated by a removed exit edge ORIG have
1202 frequencies scaled by this. */
1203 if (orig->count ().initialized_p ())
1204 {
1205 after_exit_num = orig->src->count;
1206 after_exit_den = after_exit_num - orig->count ();
1207 scale_after_exit = true;
1208 }
1209 bbs_to_scale = BITMAP_ALLOC (NULL);
1210 for (i = 0; i < n; i++)
1211 {
1212 if (bbs[i] != orig->src
1213 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1214 bitmap_set_bit (bbs_to_scale, i);
1215 }
1216 }
1217
1218 scale_step = XNEWVEC (profile_probability, ndupl);
1219
1220 for (i = 1; i <= ndupl; i++)
1221 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1222 ? prob_pass_wont_exit
1223 : prob_pass_thru;
1224
1225 /* Complete peeling is special as the probability of exit in last
1226 copy becomes 1. */
1227 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1228 {
1229 profile_count wanted_count = e->count ();
1230
1231 gcc_assert (!is_latch);
1232 /* First copy has count of incoming edge. Each subsequent
1233 count should be reduced by prob_pass_wont_exit. Caller
1234 should've managed the flags so all except for original loop
1235 has won't exist set. */
1236 scale_act = wanted_count.probability_in (count_in);
1237 /* Now simulate the duplication adjustments and compute header
1238 frequency of the last copy. */
1239 for (i = 0; i < ndupl; i++)
1240 wanted_count = wanted_count.apply_probability (scale_step [i]);
1241 scale_main = wanted_count.probability_in (count_in);
1242 }
1243 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1244 First iteration will be original loop followed by duplicated bodies.
1245 It is necessary to scale down the original so we get right overall
1246 number of iterations. */
1247 else if (is_latch)
1248 {
1249 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1250 ? prob_pass_wont_exit
1251 : prob_pass_thru;
1252 profile_probability p = prob_pass_main;
1253 profile_count scale_main_den = count_in;
1254 for (i = 0; i < ndupl; i++)
1255 {
1256 scale_main_den += count_in.apply_probability (p);
1257 p = p * scale_step[i];
1258 }
1259 /* If original loop is executed COUNT_IN times, the unrolled
1260 loop will account SCALE_MAIN_DEN times. */
1261 scale_main = count_in.probability_in (scale_main_den);
1262 scale_act = scale_main * prob_pass_main;
1263 }
1264 else
1265 {
1266 profile_count preheader_count = e->count ();
1267 for (i = 0; i < ndupl; i++)
1268 scale_main = scale_main * scale_step[i];
1269 scale_act = preheader_count.probability_in (count_in);
1270 }
1271 }
1272
1273 /* Loop the new bbs will belong to. */
1274 target = e->src->loop_father;
1275
1276 /* Original loops. */
1277 n_orig_loops = 0;
1278 for (aloop = loop->inner; aloop; aloop = aloop->next)
1279 n_orig_loops++;
1280 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1281 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1282 orig_loops[i] = aloop;
1283
1284 set_loop_copy (loop, target);
1285
1286 first_active = XNEWVEC (basic_block, n);
1287 if (is_latch)
1288 {
1289 memcpy (first_active, bbs, n * sizeof (basic_block));
1290 first_active_latch = latch;
1291 }
1292
1293 spec_edges[SE_ORIG] = orig;
1294 spec_edges[SE_LATCH] = latch_edge;
1295
1296 place_after = e->src;
1297 for (j = 0; j < ndupl; j++)
1298 {
1299 /* Copy loops. */
1300 copy_loops_to (orig_loops, n_orig_loops, target);
1301
1302 /* Copy bbs. */
1303 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1304 place_after, true);
1305 place_after = new_spec_edges[SE_LATCH]->src;
1306
1307 if (flags & DLTHE_RECORD_COPY_NUMBER)
1308 for (i = 0; i < n; i++)
1309 {
1310 gcc_assert (!new_bbs[i]->aux);
1311 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1312 }
1313
1314 /* Note whether the blocks and edges belong to an irreducible loop. */
1315 if (add_irreducible_flag)
1316 {
1317 for (i = 0; i < n; i++)
1318 new_bbs[i]->flags |= BB_DUPLICATED;
1319 for (i = 0; i < n; i++)
1320 {
1321 edge_iterator ei;
1322 new_bb = new_bbs[i];
1323 if (new_bb->loop_father == target)
1324 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1325
1326 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1327 if ((ae->dest->flags & BB_DUPLICATED)
1328 && (ae->src->loop_father == target
1329 || ae->dest->loop_father == target))
1330 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1331 }
1332 for (i = 0; i < n; i++)
1333 new_bbs[i]->flags &= ~BB_DUPLICATED;
1334 }
1335
1336 /* Redirect the special edges. */
1337 if (is_latch)
1338 {
1339 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1340 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1341 loop->header);
1342 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1343 latch = loop->latch = new_bbs[n - 1];
1344 e = latch_edge = new_spec_edges[SE_LATCH];
1345 }
1346 else
1347 {
1348 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1349 loop->header);
1350 redirect_edge_and_branch_force (e, new_bbs[0]);
1351 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1352 e = new_spec_edges[SE_LATCH];
1353 }
1354
1355 /* Record exit edge in this copy. */
1356 if (orig && bitmap_bit_p (wont_exit, j + 1))
1357 {
1358 if (to_remove)
1359 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1360 force_edge_cold (new_spec_edges[SE_ORIG], true);
1361
1362 /* Scale the frequencies of the blocks dominated by the exit. */
1363 if (bbs_to_scale && scale_after_exit)
1364 {
1365 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1366 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1367 after_exit_den);
1368 }
1369 }
1370
1371 /* Record the first copy in the control flow order if it is not
1372 the original loop (i.e. in case of peeling). */
1373 if (!first_active_latch)
1374 {
1375 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1376 first_active_latch = new_bbs[n - 1];
1377 }
1378
1379 /* Set counts and frequencies. */
1380 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1381 {
1382 scale_bbs_frequencies (new_bbs, n, scale_act);
1383 scale_act = scale_act * scale_step[j];
1384 }
1385 }
1386 free (new_bbs);
1387 free (orig_loops);
1388
1389 /* Record the exit edge in the original loop body, and update the frequencies. */
1390 if (orig && bitmap_bit_p (wont_exit, 0))
1391 {
1392 if (to_remove)
1393 to_remove->safe_push (orig);
1394 force_edge_cold (orig, true);
1395
1396 /* Scale the frequencies of the blocks dominated by the exit. */
1397 if (bbs_to_scale && scale_after_exit)
1398 {
1399 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1400 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1401 after_exit_den);
1402 }
1403 }
1404
1405 /* Update the original loop. */
1406 if (!is_latch)
1407 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1408 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1409 {
1410 scale_bbs_frequencies (bbs, n, scale_main);
1411 free (scale_step);
1412 }
1413
1414 /* Update dominators of outer blocks if affected. */
1415 for (i = 0; i < n; i++)
1416 {
1417 basic_block dominated, dom_bb;
1418 vec<basic_block> dom_bbs;
1419 unsigned j;
1420
1421 bb = bbs[i];
1422 bb->aux = 0;
1423
1424 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1425 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1426 {
1427 if (flow_bb_inside_loop_p (loop, dominated))
1428 continue;
1429 dom_bb = nearest_common_dominator (
1430 CDI_DOMINATORS, first_active[i], first_active_latch);
1431 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1432 }
1433 dom_bbs.release ();
1434 }
1435 free (first_active);
1436
1437 free (bbs);
1438 BITMAP_FREE (bbs_to_scale);
1439
1440 return true;
1441 }
1442
1443 /* A callback for make_forwarder block, to redirect all edges except for
1444 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1445 whether to redirect it. */
1446
1447 edge mfb_kj_edge;
1448 bool
1449 mfb_keep_just (edge e)
1450 {
1451 return e != mfb_kj_edge;
1452 }
1453
1454 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1455
1456 static bool
1457 has_preds_from_loop (basic_block block, struct loop *loop)
1458 {
1459 edge e;
1460 edge_iterator ei;
1461
1462 FOR_EACH_EDGE (e, ei, block->preds)
1463 if (e->src->loop_father == loop)
1464 return true;
1465 return false;
1466 }
1467
1468 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1469 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1470 entry; otherwise we also force preheader block to have only one successor.
1471 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1472 to be a fallthru predecessor to the loop header and to have only
1473 predecessors from outside of the loop.
1474 The function also updates dominators. */
1475
1476 basic_block
1477 create_preheader (struct loop *loop, int flags)
1478 {
1479 edge e;
1480 basic_block dummy;
1481 int nentry = 0;
1482 bool irred = false;
1483 bool latch_edge_was_fallthru;
1484 edge one_succ_pred = NULL, single_entry = NULL;
1485 edge_iterator ei;
1486
1487 FOR_EACH_EDGE (e, ei, loop->header->preds)
1488 {
1489 if (e->src == loop->latch)
1490 continue;
1491 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1492 nentry++;
1493 single_entry = e;
1494 if (single_succ_p (e->src))
1495 one_succ_pred = e;
1496 }
1497 gcc_assert (nentry);
1498 if (nentry == 1)
1499 {
1500 bool need_forwarder_block = false;
1501
1502 /* We do not allow entry block to be the loop preheader, since we
1503 cannot emit code there. */
1504 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1505 need_forwarder_block = true;
1506 else
1507 {
1508 /* If we want simple preheaders, also force the preheader to have
1509 just a single successor. */
1510 if ((flags & CP_SIMPLE_PREHEADERS)
1511 && !single_succ_p (single_entry->src))
1512 need_forwarder_block = true;
1513 /* If we want fallthru preheaders, also create forwarder block when
1514 preheader ends with a jump or has predecessors from loop. */
1515 else if ((flags & CP_FALLTHRU_PREHEADERS)
1516 && (JUMP_P (BB_END (single_entry->src))
1517 || has_preds_from_loop (single_entry->src, loop)))
1518 need_forwarder_block = true;
1519 }
1520 if (! need_forwarder_block)
1521 return NULL;
1522 }
1523
1524 mfb_kj_edge = loop_latch_edge (loop);
1525 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1526 if (nentry == 1
1527 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1528 || (single_entry->flags & EDGE_CROSSING) == 0))
1529 dummy = split_edge (single_entry);
1530 else
1531 {
1532 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1533 dummy = fallthru->src;
1534 loop->header = fallthru->dest;
1535 }
1536
1537 /* Try to be clever in placing the newly created preheader. The idea is to
1538 avoid breaking any "fallthruness" relationship between blocks.
1539
1540 The preheader was created just before the header and all incoming edges
1541 to the header were redirected to the preheader, except the latch edge.
1542 So the only problematic case is when this latch edge was a fallthru
1543 edge: it is not anymore after the preheader creation so we have broken
1544 the fallthruness. We're therefore going to look for a better place. */
1545 if (latch_edge_was_fallthru)
1546 {
1547 if (one_succ_pred)
1548 e = one_succ_pred;
1549 else
1550 e = EDGE_PRED (dummy, 0);
1551
1552 move_block_after (dummy, e->src);
1553 }
1554
1555 if (irred)
1556 {
1557 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1558 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1559 }
1560
1561 if (dump_file)
1562 fprintf (dump_file, "Created preheader block for loop %i\n",
1563 loop->num);
1564
1565 if (flags & CP_FALLTHRU_PREHEADERS)
1566 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1567 && !JUMP_P (BB_END (dummy)));
1568
1569 return dummy;
1570 }
1571
1572 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1573
1574 void
1575 create_preheaders (int flags)
1576 {
1577 struct loop *loop;
1578
1579 if (!current_loops)
1580 return;
1581
1582 FOR_EACH_LOOP (loop, 0)
1583 create_preheader (loop, flags);
1584 loops_state_set (LOOPS_HAVE_PREHEADERS);
1585 }
1586
1587 /* Forces all loop latches to have only single successor. */
1588
1589 void
1590 force_single_succ_latches (void)
1591 {
1592 struct loop *loop;
1593 edge e;
1594
1595 FOR_EACH_LOOP (loop, 0)
1596 {
1597 if (loop->latch != loop->header && single_succ_p (loop->latch))
1598 continue;
1599
1600 e = find_edge (loop->latch, loop->header);
1601 gcc_checking_assert (e != NULL);
1602
1603 split_edge (e);
1604 }
1605 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1606 }
1607
1608 /* This function is called from loop_version. It splits the entry edge
1609 of the loop we want to version, adds the versioning condition, and
1610 adjust the edges to the two versions of the loop appropriately.
1611 e is an incoming edge. Returns the basic block containing the
1612 condition.
1613
1614 --- edge e ---- > [second_head]
1615
1616 Split it and insert new conditional expression and adjust edges.
1617
1618 --- edge e ---> [cond expr] ---> [first_head]
1619 |
1620 +---------> [second_head]
1621
1622 THEN_PROB is the probability of then branch of the condition.
1623 ELSE_PROB is the probability of else branch. Note that they may be both
1624 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1625 IFN_LOOP_DIST_ALIAS. */
1626
1627 static basic_block
1628 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1629 edge e, void *cond_expr,
1630 profile_probability then_prob,
1631 profile_probability else_prob)
1632 {
1633 basic_block new_head = NULL;
1634 edge e1;
1635
1636 gcc_assert (e->dest == second_head);
1637
1638 /* Split edge 'e'. This will create a new basic block, where we can
1639 insert conditional expr. */
1640 new_head = split_edge (e);
1641
1642 lv_add_condition_to_bb (first_head, second_head, new_head,
1643 cond_expr);
1644
1645 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1646 e = single_succ_edge (new_head);
1647 e1 = make_edge (new_head, first_head,
1648 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1649 e1->probability = then_prob;
1650 e->probability = else_prob;
1651
1652 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1653 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1654
1655 /* Adjust loop header phi nodes. */
1656 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1657
1658 return new_head;
1659 }
1660
1661 /* Main entry point for Loop Versioning transformation.
1662
1663 This transformation given a condition and a loop, creates
1664 -if (condition) { loop_copy1 } else { loop_copy2 },
1665 where loop_copy1 is the loop transformed in one way, and loop_copy2
1666 is the loop transformed in another way (or unchanged). COND_EXPR
1667 may be a run time test for things that were not resolved by static
1668 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1669
1670 If non-NULL, CONDITION_BB is set to the basic block containing the
1671 condition.
1672
1673 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1674 is the ratio by that the frequencies in the original loop should
1675 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1676 new loop should be scaled.
1677
1678 If PLACE_AFTER is true, we place the new loop after LOOP in the
1679 instruction stream, otherwise it is placed before LOOP. */
1680
1681 struct loop *
1682 loop_version (struct loop *loop,
1683 void *cond_expr, basic_block *condition_bb,
1684 profile_probability then_prob, profile_probability else_prob,
1685 profile_probability then_scale, profile_probability else_scale,
1686 bool place_after)
1687 {
1688 basic_block first_head, second_head;
1689 edge entry, latch_edge, true_edge, false_edge;
1690 int irred_flag;
1691 struct loop *nloop;
1692 basic_block cond_bb;
1693
1694 /* Record entry and latch edges for the loop */
1695 entry = loop_preheader_edge (loop);
1696 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1697 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1698
1699 /* Note down head of loop as first_head. */
1700 first_head = entry->dest;
1701
1702 /* Duplicate loop. */
1703 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1704 NULL, NULL, NULL, 0))
1705 {
1706 entry->flags |= irred_flag;
1707 return NULL;
1708 }
1709
1710 /* After duplication entry edge now points to new loop head block.
1711 Note down new head as second_head. */
1712 second_head = entry->dest;
1713
1714 /* Split loop entry edge and insert new block with cond expr. */
1715 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1716 entry, cond_expr, then_prob, else_prob);
1717 if (condition_bb)
1718 *condition_bb = cond_bb;
1719
1720 if (!cond_bb)
1721 {
1722 entry->flags |= irred_flag;
1723 return NULL;
1724 }
1725
1726 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1727
1728 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1729 nloop = loopify (latch_edge,
1730 single_pred_edge (get_bb_copy (loop->header)),
1731 cond_bb, true_edge, false_edge,
1732 false /* Do not redirect all edges. */,
1733 then_scale, else_scale);
1734
1735 copy_loop_info (loop, nloop);
1736
1737 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1738 lv_flush_pending_stmts (latch_edge);
1739
1740 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1741 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1742 lv_flush_pending_stmts (false_edge);
1743 /* Adjust irreducible flag. */
1744 if (irred_flag)
1745 {
1746 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1747 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1748 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1749 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1750 }
1751
1752 if (place_after)
1753 {
1754 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1755 unsigned i;
1756
1757 after = loop->latch;
1758
1759 for (i = 0; i < nloop->num_nodes; i++)
1760 {
1761 move_block_after (bbs[i], after);
1762 after = bbs[i];
1763 }
1764 free (bbs);
1765 }
1766
1767 /* At this point condition_bb is loop preheader with two successors,
1768 first_head and second_head. Make sure that loop preheader has only
1769 one successor. */
1770 split_edge (loop_preheader_edge (loop));
1771 split_edge (loop_preheader_edge (nloop));
1772
1773 return nloop;
1774 }