]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cselib.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "params.h"
35
36 /* A list of cselib_val structures. */
37 struct elt_list
38 {
39 struct elt_list *next;
40 cselib_val *elt;
41 };
42
43 static bool cselib_record_memory;
44 static bool cselib_preserve_constants;
45 static bool cselib_any_perm_equivs;
46 static inline void promote_debug_loc (struct elt_loc_list *l);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static void new_elt_loc_list (cselib_val *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void remove_useless_values (void);
53 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
55 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56 static cselib_val *cselib_lookup_mem (rtx, int);
57 static void cselib_invalidate_regno (unsigned int, machine_mode,
58 const_rtx = NULL);
59 static void cselib_invalidate_mem (rtx);
60 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
61 static void cselib_record_sets (rtx_insn *);
62
63 struct expand_value_data
64 {
65 bitmap regs_active;
66 cselib_expand_callback callback;
67 void *callback_arg;
68 bool dummy;
69 };
70
71 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
72
73 /* There are three ways in which cselib can look up an rtx:
74 - for a REG, the reg_values table (which is indexed by regno) is used
75 - for a MEM, we recursively look up its address and then follow the
76 addr_list of that value
77 - for everything else, we compute a hash value and go through the hash
78 table. Since different rtx's can still have the same hash value,
79 this involves walking the table entries for a given value and comparing
80 the locations of the entries with the rtx we are looking up. */
81
82 struct cselib_hasher : nofree_ptr_hash <cselib_val>
83 {
84 struct key {
85 /* The rtx value and its mode (needed separately for constant
86 integers). */
87 machine_mode mode;
88 rtx x;
89 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
90 machine_mode memmode;
91 };
92 typedef key *compare_type;
93 static inline hashval_t hash (const cselib_val *);
94 static inline bool equal (const cselib_val *, const key *);
95 };
96
97 /* The hash function for our hash table. The value is always computed with
98 cselib_hash_rtx when adding an element; this function just extracts the
99 hash value from a cselib_val structure. */
100
101 inline hashval_t
102 cselib_hasher::hash (const cselib_val *v)
103 {
104 return v->hash;
105 }
106
107 /* The equality test for our hash table. The first argument V is a table
108 element (i.e. a cselib_val), while the second arg X is an rtx. We know
109 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
110 CONST of an appropriate mode. */
111
112 inline bool
113 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
114 {
115 struct elt_loc_list *l;
116 rtx x = x_arg->x;
117 machine_mode mode = x_arg->mode;
118 machine_mode memmode = x_arg->memmode;
119
120 if (mode != GET_MODE (v->val_rtx))
121 return false;
122
123 if (GET_CODE (x) == VALUE)
124 return x == v->val_rtx;
125
126 /* We don't guarantee that distinct rtx's have different hash values,
127 so we need to do a comparison. */
128 for (l = v->locs; l; l = l->next)
129 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
130 {
131 promote_debug_loc (l);
132 return true;
133 }
134
135 return false;
136 }
137
138 /* A table that enables us to look up elts by their value. */
139 static hash_table<cselib_hasher> *cselib_hash_table;
140
141 /* A table to hold preserved values. */
142 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
143
144 /* This is a global so we don't have to pass this through every function.
145 It is used in new_elt_loc_list to set SETTING_INSN. */
146 static rtx_insn *cselib_current_insn;
147
148 /* The unique id that the next create value will take. */
149 static unsigned int next_uid;
150
151 /* The number of registers we had when the varrays were last resized. */
152 static unsigned int cselib_nregs;
153
154 /* Count values without known locations, or with only locations that
155 wouldn't have been known except for debug insns. Whenever this
156 grows too big, we remove these useless values from the table.
157
158 Counting values with only debug values is a bit tricky. We don't
159 want to increment n_useless_values when we create a value for a
160 debug insn, for this would get n_useless_values out of sync, but we
161 want increment it if all locs in the list that were ever referenced
162 in nondebug insns are removed from the list.
163
164 In the general case, once we do that, we'd have to stop accepting
165 nondebug expressions in the loc list, to avoid having two values
166 equivalent that, without debug insns, would have been made into
167 separate values. However, because debug insns never introduce
168 equivalences themselves (no assignments), the only means for
169 growing loc lists is through nondebug assignments. If the locs
170 also happen to be referenced in debug insns, it will work just fine.
171
172 A consequence of this is that there's at most one debug-only loc in
173 each loc list. If we keep it in the first entry, testing whether
174 we have a debug-only loc list takes O(1).
175
176 Furthermore, since any additional entry in a loc list containing a
177 debug loc would have to come from an assignment (nondebug) that
178 references both the initial debug loc and the newly-equivalent loc,
179 the initial debug loc would be promoted to a nondebug loc, and the
180 loc list would not contain debug locs any more.
181
182 So the only case we have to be careful with in order to keep
183 n_useless_values in sync between debug and nondebug compilations is
184 to avoid incrementing n_useless_values when removing the single loc
185 from a value that turns out to not appear outside debug values. We
186 increment n_useless_debug_values instead, and leave such values
187 alone until, for other reasons, we garbage-collect useless
188 values. */
189 static int n_useless_values;
190 static int n_useless_debug_values;
191
192 /* Count values whose locs have been taken exclusively from debug
193 insns for the entire life of the value. */
194 static int n_debug_values;
195
196 /* Number of useless values before we remove them from the hash table. */
197 #define MAX_USELESS_VALUES 32
198
199 /* This table maps from register number to values. It does not
200 contain pointers to cselib_val structures, but rather elt_lists.
201 The purpose is to be able to refer to the same register in
202 different modes. The first element of the list defines the mode in
203 which the register was set; if the mode is unknown or the value is
204 no longer valid in that mode, ELT will be NULL for the first
205 element. */
206 static struct elt_list **reg_values;
207 static unsigned int reg_values_size;
208 #define REG_VALUES(i) reg_values[i]
209
210 /* The largest number of hard regs used by any entry added to the
211 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
212 static unsigned int max_value_regs;
213
214 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
215 in cselib_clear_table() for fast emptying. */
216 static unsigned int *used_regs;
217 static unsigned int n_used_regs;
218
219 /* We pass this to cselib_invalidate_mem to invalidate all of
220 memory for a non-const call instruction. */
221 static GTY(()) rtx callmem;
222
223 /* Set by discard_useless_locs if it deleted the last location of any
224 value. */
225 static int values_became_useless;
226
227 /* Used as stop element of the containing_mem list so we can check
228 presence in the list by checking the next pointer. */
229 static cselib_val dummy_val;
230
231 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
232 that is constant through the whole function and should never be
233 eliminated. */
234 static cselib_val *cfa_base_preserved_val;
235 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
236
237 /* Used to list all values that contain memory reference.
238 May or may not contain the useless values - the list is compacted
239 each time memory is invalidated. */
240 static cselib_val *first_containing_mem = &dummy_val;
241
242 static object_allocator<elt_list> elt_list_pool ("elt_list");
243 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
244 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
245
246 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
247
248 /* If nonnull, cselib will call this function before freeing useless
249 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
250 void (*cselib_discard_hook) (cselib_val *);
251
252 /* If nonnull, cselib will call this function before recording sets or
253 even clobbering outputs of INSN. All the recorded sets will be
254 represented in the array sets[n_sets]. new_val_min can be used to
255 tell whether values present in sets are introduced by this
256 instruction. */
257 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
258 int n_sets);
259
260 #define PRESERVED_VALUE_P(RTX) \
261 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
262
263 #define SP_BASED_VALUE_P(RTX) \
264 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
265
266 \f
267
268 /* Allocate a struct elt_list and fill in its two elements with the
269 arguments. */
270
271 static inline struct elt_list *
272 new_elt_list (struct elt_list *next, cselib_val *elt)
273 {
274 elt_list *el = elt_list_pool.allocate ();
275 el->next = next;
276 el->elt = elt;
277 return el;
278 }
279
280 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
281 list. */
282
283 static inline void
284 new_elt_loc_list (cselib_val *val, rtx loc)
285 {
286 struct elt_loc_list *el, *next = val->locs;
287
288 gcc_checking_assert (!next || !next->setting_insn
289 || !DEBUG_INSN_P (next->setting_insn)
290 || cselib_current_insn == next->setting_insn);
291
292 /* If we're creating the first loc in a debug insn context, we've
293 just created a debug value. Count it. */
294 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
295 n_debug_values++;
296
297 val = canonical_cselib_val (val);
298 next = val->locs;
299
300 if (GET_CODE (loc) == VALUE)
301 {
302 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
303
304 gcc_checking_assert (PRESERVED_VALUE_P (loc)
305 == PRESERVED_VALUE_P (val->val_rtx));
306
307 if (val->val_rtx == loc)
308 return;
309 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
310 {
311 /* Reverse the insertion. */
312 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
313 return;
314 }
315
316 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
317
318 if (CSELIB_VAL_PTR (loc)->locs)
319 {
320 /* Bring all locs from LOC to VAL. */
321 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
322 {
323 /* Adjust values that have LOC as canonical so that VAL
324 becomes their canonical. */
325 if (el->loc && GET_CODE (el->loc) == VALUE)
326 {
327 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
328 == loc);
329 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
330 }
331 }
332 el->next = val->locs;
333 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
334 }
335
336 if (CSELIB_VAL_PTR (loc)->addr_list)
337 {
338 /* Bring in addr_list into canonical node. */
339 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
340 while (last->next)
341 last = last->next;
342 last->next = val->addr_list;
343 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
344 CSELIB_VAL_PTR (loc)->addr_list = NULL;
345 }
346
347 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
348 && val->next_containing_mem == NULL)
349 {
350 /* Add VAL to the containing_mem list after LOC. LOC will
351 be removed when we notice it doesn't contain any
352 MEMs. */
353 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
354 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
355 }
356
357 /* Chain LOC back to VAL. */
358 el = elt_loc_list_pool.allocate ();
359 el->loc = val->val_rtx;
360 el->setting_insn = cselib_current_insn;
361 el->next = NULL;
362 CSELIB_VAL_PTR (loc)->locs = el;
363 }
364
365 el = elt_loc_list_pool.allocate ();
366 el->loc = loc;
367 el->setting_insn = cselib_current_insn;
368 el->next = next;
369 val->locs = el;
370 }
371
372 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
373 originating from a debug insn, maintaining the debug values
374 count. */
375
376 static inline void
377 promote_debug_loc (struct elt_loc_list *l)
378 {
379 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
380 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
381 {
382 n_debug_values--;
383 l->setting_insn = cselib_current_insn;
384 if (cselib_preserve_constants && l->next)
385 {
386 gcc_assert (l->next->setting_insn
387 && DEBUG_INSN_P (l->next->setting_insn)
388 && !l->next->next);
389 l->next->setting_insn = cselib_current_insn;
390 }
391 else
392 gcc_assert (!l->next);
393 }
394 }
395
396 /* The elt_list at *PL is no longer needed. Unchain it and free its
397 storage. */
398
399 static inline void
400 unchain_one_elt_list (struct elt_list **pl)
401 {
402 struct elt_list *l = *pl;
403
404 *pl = l->next;
405 elt_list_pool.remove (l);
406 }
407
408 /* Likewise for elt_loc_lists. */
409
410 static void
411 unchain_one_elt_loc_list (struct elt_loc_list **pl)
412 {
413 struct elt_loc_list *l = *pl;
414
415 *pl = l->next;
416 elt_loc_list_pool.remove (l);
417 }
418
419 /* Likewise for cselib_vals. This also frees the addr_list associated with
420 V. */
421
422 static void
423 unchain_one_value (cselib_val *v)
424 {
425 while (v->addr_list)
426 unchain_one_elt_list (&v->addr_list);
427
428 cselib_val_pool.remove (v);
429 }
430
431 /* Remove all entries from the hash table. Also used during
432 initialization. */
433
434 void
435 cselib_clear_table (void)
436 {
437 cselib_reset_table (1);
438 }
439
440 /* Return TRUE if V is a constant, a function invariant or a VALUE
441 equivalence; FALSE otherwise. */
442
443 static bool
444 invariant_or_equiv_p (cselib_val *v)
445 {
446 struct elt_loc_list *l;
447
448 if (v == cfa_base_preserved_val)
449 return true;
450
451 /* Keep VALUE equivalences around. */
452 for (l = v->locs; l; l = l->next)
453 if (GET_CODE (l->loc) == VALUE)
454 return true;
455
456 if (v->locs != NULL
457 && v->locs->next == NULL)
458 {
459 if (CONSTANT_P (v->locs->loc)
460 && (GET_CODE (v->locs->loc) != CONST
461 || !references_value_p (v->locs->loc, 0)))
462 return true;
463 /* Although a debug expr may be bound to different expressions,
464 we can preserve it as if it was constant, to get unification
465 and proper merging within var-tracking. */
466 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
467 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
468 || GET_CODE (v->locs->loc) == ENTRY_VALUE
469 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
470 return true;
471
472 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
473 if (GET_CODE (v->locs->loc) == PLUS
474 && CONST_INT_P (XEXP (v->locs->loc, 1))
475 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
476 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
477 return true;
478 }
479
480 return false;
481 }
482
483 /* Remove from hash table all VALUEs except constants, function
484 invariants and VALUE equivalences. */
485
486 int
487 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
488 {
489 cselib_val *v = *x;
490
491 if (invariant_or_equiv_p (v))
492 {
493 cselib_hasher::key lookup = {
494 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
495 };
496 cselib_val **slot
497 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
498 v->hash, INSERT);
499 gcc_assert (!*slot);
500 *slot = v;
501 }
502
503 cselib_hash_table->clear_slot (x);
504
505 return 1;
506 }
507
508 /* Remove all entries from the hash table, arranging for the next
509 value to be numbered NUM. */
510
511 void
512 cselib_reset_table (unsigned int num)
513 {
514 unsigned int i;
515
516 max_value_regs = 0;
517
518 if (cfa_base_preserved_val)
519 {
520 unsigned int regno = cfa_base_preserved_regno;
521 unsigned int new_used_regs = 0;
522 for (i = 0; i < n_used_regs; i++)
523 if (used_regs[i] == regno)
524 {
525 new_used_regs = 1;
526 continue;
527 }
528 else
529 REG_VALUES (used_regs[i]) = 0;
530 gcc_assert (new_used_regs == 1);
531 n_used_regs = new_used_regs;
532 used_regs[0] = regno;
533 max_value_regs
534 = hard_regno_nregs (regno,
535 GET_MODE (cfa_base_preserved_val->locs->loc));
536 }
537 else
538 {
539 for (i = 0; i < n_used_regs; i++)
540 REG_VALUES (used_regs[i]) = 0;
541 n_used_regs = 0;
542 }
543
544 if (cselib_preserve_constants)
545 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
546 (NULL);
547 else
548 {
549 cselib_hash_table->empty ();
550 gcc_checking_assert (!cselib_any_perm_equivs);
551 }
552
553 n_useless_values = 0;
554 n_useless_debug_values = 0;
555 n_debug_values = 0;
556
557 next_uid = num;
558
559 first_containing_mem = &dummy_val;
560 }
561
562 /* Return the number of the next value that will be generated. */
563
564 unsigned int
565 cselib_get_next_uid (void)
566 {
567 return next_uid;
568 }
569
570 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
571 INSERTing if requested. When X is part of the address of a MEM,
572 MEMMODE should specify the mode of the MEM. */
573
574 static cselib_val **
575 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
576 enum insert_option insert, machine_mode memmode)
577 {
578 cselib_val **slot = NULL;
579 cselib_hasher::key lookup = { mode, x, memmode };
580 if (cselib_preserve_constants)
581 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
582 NO_INSERT);
583 if (!slot)
584 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
585 return slot;
586 }
587
588 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
589 only return true for values which point to a cselib_val whose value
590 element has been set to zero, which implies the cselib_val will be
591 removed. */
592
593 int
594 references_value_p (const_rtx x, int only_useless)
595 {
596 const enum rtx_code code = GET_CODE (x);
597 const char *fmt = GET_RTX_FORMAT (code);
598 int i, j;
599
600 if (GET_CODE (x) == VALUE
601 && (! only_useless ||
602 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
603 return 1;
604
605 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 {
607 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
608 return 1;
609 else if (fmt[i] == 'E')
610 for (j = 0; j < XVECLEN (x, i); j++)
611 if (references_value_p (XVECEXP (x, i, j), only_useless))
612 return 1;
613 }
614
615 return 0;
616 }
617
618 /* For all locations found in X, delete locations that reference useless
619 values (i.e. values without any location). Called through
620 htab_traverse. */
621
622 int
623 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
624 {
625 cselib_val *v = *x;
626 struct elt_loc_list **p = &v->locs;
627 bool had_locs = v->locs != NULL;
628 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
629
630 while (*p)
631 {
632 if (references_value_p ((*p)->loc, 1))
633 unchain_one_elt_loc_list (p);
634 else
635 p = &(*p)->next;
636 }
637
638 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
639 {
640 if (setting_insn && DEBUG_INSN_P (setting_insn))
641 n_useless_debug_values++;
642 else
643 n_useless_values++;
644 values_became_useless = 1;
645 }
646 return 1;
647 }
648
649 /* If X is a value with no locations, remove it from the hashtable. */
650
651 int
652 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
653 {
654 cselib_val *v = *x;
655
656 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
657 {
658 if (cselib_discard_hook)
659 cselib_discard_hook (v);
660
661 CSELIB_VAL_PTR (v->val_rtx) = NULL;
662 cselib_hash_table->clear_slot (x);
663 unchain_one_value (v);
664 n_useless_values--;
665 }
666
667 return 1;
668 }
669
670 /* Clean out useless values (i.e. those which no longer have locations
671 associated with them) from the hash table. */
672
673 static void
674 remove_useless_values (void)
675 {
676 cselib_val **p, *v;
677
678 /* First pass: eliminate locations that reference the value. That in
679 turn can make more values useless. */
680 do
681 {
682 values_became_useless = 0;
683 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
684 }
685 while (values_became_useless);
686
687 /* Second pass: actually remove the values. */
688
689 p = &first_containing_mem;
690 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
691 if (v->locs && v == canonical_cselib_val (v))
692 {
693 *p = v;
694 p = &(*p)->next_containing_mem;
695 }
696 *p = &dummy_val;
697
698 n_useless_values += n_useless_debug_values;
699 n_debug_values -= n_useless_debug_values;
700 n_useless_debug_values = 0;
701
702 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
703
704 gcc_assert (!n_useless_values);
705 }
706
707 /* Arrange for a value to not be removed from the hash table even if
708 it becomes useless. */
709
710 void
711 cselib_preserve_value (cselib_val *v)
712 {
713 PRESERVED_VALUE_P (v->val_rtx) = 1;
714 }
715
716 /* Test whether a value is preserved. */
717
718 bool
719 cselib_preserved_value_p (cselib_val *v)
720 {
721 return PRESERVED_VALUE_P (v->val_rtx);
722 }
723
724 /* Arrange for a REG value to be assumed constant through the whole function,
725 never invalidated and preserved across cselib_reset_table calls. */
726
727 void
728 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
729 {
730 if (cselib_preserve_constants
731 && v->locs
732 && REG_P (v->locs->loc))
733 {
734 cfa_base_preserved_val = v;
735 cfa_base_preserved_regno = regno;
736 }
737 }
738
739 /* Clean all non-constant expressions in the hash table, but retain
740 their values. */
741
742 void
743 cselib_preserve_only_values (void)
744 {
745 int i;
746
747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
748 cselib_invalidate_regno (i, reg_raw_mode[i]);
749
750 cselib_invalidate_mem (callmem);
751
752 remove_useless_values ();
753
754 gcc_assert (first_containing_mem == &dummy_val);
755 }
756
757 /* Arrange for a value to be marked as based on stack pointer
758 for find_base_term purposes. */
759
760 void
761 cselib_set_value_sp_based (cselib_val *v)
762 {
763 SP_BASED_VALUE_P (v->val_rtx) = 1;
764 }
765
766 /* Test whether a value is based on stack pointer for
767 find_base_term purposes. */
768
769 bool
770 cselib_sp_based_value_p (cselib_val *v)
771 {
772 return SP_BASED_VALUE_P (v->val_rtx);
773 }
774
775 /* Return the mode in which a register was last set. If X is not a
776 register, return its mode. If the mode in which the register was
777 set is not known, or the value was already clobbered, return
778 VOIDmode. */
779
780 machine_mode
781 cselib_reg_set_mode (const_rtx x)
782 {
783 if (!REG_P (x))
784 return GET_MODE (x);
785
786 if (REG_VALUES (REGNO (x)) == NULL
787 || REG_VALUES (REGNO (x))->elt == NULL)
788 return VOIDmode;
789
790 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
791 }
792
793 /* If x is a PLUS or an autoinc operation, expand the operation,
794 storing the offset, if any, in *OFF. */
795
796 static rtx
797 autoinc_split (rtx x, rtx *off, machine_mode memmode)
798 {
799 switch (GET_CODE (x))
800 {
801 case PLUS:
802 *off = XEXP (x, 1);
803 return XEXP (x, 0);
804
805 case PRE_DEC:
806 if (memmode == VOIDmode)
807 return x;
808
809 *off = gen_int_mode (-GET_MODE_SIZE (memmode), GET_MODE (x));
810 return XEXP (x, 0);
811
812 case PRE_INC:
813 if (memmode == VOIDmode)
814 return x;
815
816 *off = gen_int_mode (GET_MODE_SIZE (memmode), GET_MODE (x));
817 return XEXP (x, 0);
818
819 case PRE_MODIFY:
820 return XEXP (x, 1);
821
822 case POST_DEC:
823 case POST_INC:
824 case POST_MODIFY:
825 return XEXP (x, 0);
826
827 default:
828 return x;
829 }
830 }
831
832 /* Return nonzero if we can prove that X and Y contain the same value,
833 taking our gathered information into account. MEMMODE holds the
834 mode of the enclosing MEM, if any, as required to deal with autoinc
835 addressing modes. If X and Y are not (known to be) part of
836 addresses, MEMMODE should be VOIDmode. */
837
838 int
839 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
840 {
841 enum rtx_code code;
842 const char *fmt;
843 int i;
844
845 if (REG_P (x) || MEM_P (x))
846 {
847 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
848
849 if (e)
850 x = e->val_rtx;
851 }
852
853 if (REG_P (y) || MEM_P (y))
854 {
855 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
856
857 if (e)
858 y = e->val_rtx;
859 }
860
861 if (x == y)
862 return 1;
863
864 if (GET_CODE (x) == VALUE)
865 {
866 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
867 struct elt_loc_list *l;
868
869 if (GET_CODE (y) == VALUE)
870 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
871
872 if (depth == 128)
873 return 0;
874
875 for (l = e->locs; l; l = l->next)
876 {
877 rtx t = l->loc;
878
879 /* Avoid infinite recursion. We know we have the canonical
880 value, so we can just skip any values in the equivalence
881 list. */
882 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
883 continue;
884 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
885 return 1;
886 }
887
888 return 0;
889 }
890 else if (GET_CODE (y) == VALUE)
891 {
892 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
893 struct elt_loc_list *l;
894
895 if (depth == 128)
896 return 0;
897
898 for (l = e->locs; l; l = l->next)
899 {
900 rtx t = l->loc;
901
902 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
903 continue;
904 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
905 return 1;
906 }
907
908 return 0;
909 }
910
911 if (GET_MODE (x) != GET_MODE (y))
912 return 0;
913
914 if (GET_CODE (x) != GET_CODE (y))
915 {
916 rtx xorig = x, yorig = y;
917 rtx xoff = NULL, yoff = NULL;
918
919 x = autoinc_split (x, &xoff, memmode);
920 y = autoinc_split (y, &yoff, memmode);
921
922 if (!xoff != !yoff)
923 return 0;
924
925 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
926 return 0;
927
928 /* Don't recurse if nothing changed. */
929 if (x != xorig || y != yorig)
930 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
931
932 return 0;
933 }
934
935 /* These won't be handled correctly by the code below. */
936 switch (GET_CODE (x))
937 {
938 CASE_CONST_UNIQUE:
939 case DEBUG_EXPR:
940 return 0;
941
942 case DEBUG_IMPLICIT_PTR:
943 return DEBUG_IMPLICIT_PTR_DECL (x)
944 == DEBUG_IMPLICIT_PTR_DECL (y);
945
946 case DEBUG_PARAMETER_REF:
947 return DEBUG_PARAMETER_REF_DECL (x)
948 == DEBUG_PARAMETER_REF_DECL (y);
949
950 case ENTRY_VALUE:
951 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
952 use rtx_equal_for_cselib_1 to compare the operands. */
953 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
954
955 case LABEL_REF:
956 return label_ref_label (x) == label_ref_label (y);
957
958 case REG:
959 return REGNO (x) == REGNO (y);
960
961 case MEM:
962 /* We have to compare any autoinc operations in the addresses
963 using this MEM's mode. */
964 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
965 depth);
966
967 default:
968 break;
969 }
970
971 code = GET_CODE (x);
972 fmt = GET_RTX_FORMAT (code);
973
974 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
975 {
976 int j;
977
978 switch (fmt[i])
979 {
980 case 'w':
981 if (XWINT (x, i) != XWINT (y, i))
982 return 0;
983 break;
984
985 case 'n':
986 case 'i':
987 if (XINT (x, i) != XINT (y, i))
988 return 0;
989 break;
990
991 case 'p':
992 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
993 return 0;
994 break;
995
996 case 'V':
997 case 'E':
998 /* Two vectors must have the same length. */
999 if (XVECLEN (x, i) != XVECLEN (y, i))
1000 return 0;
1001
1002 /* And the corresponding elements must match. */
1003 for (j = 0; j < XVECLEN (x, i); j++)
1004 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
1005 XVECEXP (y, i, j), memmode, depth))
1006 return 0;
1007 break;
1008
1009 case 'e':
1010 if (i == 1
1011 && targetm.commutative_p (x, UNKNOWN)
1012 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1013 depth)
1014 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1015 depth))
1016 return 1;
1017 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1018 depth))
1019 return 0;
1020 break;
1021
1022 case 'S':
1023 case 's':
1024 if (strcmp (XSTR (x, i), XSTR (y, i)))
1025 return 0;
1026 break;
1027
1028 case 'u':
1029 /* These are just backpointers, so they don't matter. */
1030 break;
1031
1032 case '0':
1033 case 't':
1034 break;
1035
1036 /* It is believed that rtx's at this level will never
1037 contain anything but integers and other rtx's,
1038 except for within LABEL_REFs and SYMBOL_REFs. */
1039 default:
1040 gcc_unreachable ();
1041 }
1042 }
1043 return 1;
1044 }
1045
1046 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1047 For registers and memory locations, we look up their cselib_val structure
1048 and return its VALUE element.
1049 Possible reasons for return 0 are: the object is volatile, or we couldn't
1050 find a register or memory location in the table and CREATE is zero. If
1051 CREATE is nonzero, table elts are created for regs and mem.
1052 N.B. this hash function returns the same hash value for RTXes that
1053 differ only in the order of operands, thus it is suitable for comparisons
1054 that take commutativity into account.
1055 If we wanted to also support associative rules, we'd have to use a different
1056 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1057 MEMMODE indicates the mode of an enclosing MEM, and it's only
1058 used to compute autoinc values.
1059 We used to have a MODE argument for hashing for CONST_INTs, but that
1060 didn't make sense, since it caused spurious hash differences between
1061 (set (reg:SI 1) (const_int))
1062 (plus:SI (reg:SI 2) (reg:SI 1))
1063 and
1064 (plus:SI (reg:SI 2) (const_int))
1065 If the mode is important in any context, it must be checked specifically
1066 in a comparison anyway, since relying on hash differences is unsafe. */
1067
1068 static unsigned int
1069 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1070 {
1071 cselib_val *e;
1072 poly_int64 offset;
1073 int i, j;
1074 enum rtx_code code;
1075 const char *fmt;
1076 unsigned int hash = 0;
1077
1078 code = GET_CODE (x);
1079 hash += (unsigned) code + (unsigned) GET_MODE (x);
1080
1081 switch (code)
1082 {
1083 case VALUE:
1084 e = CSELIB_VAL_PTR (x);
1085 return e->hash;
1086
1087 case MEM:
1088 case REG:
1089 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1090 if (! e)
1091 return 0;
1092
1093 return e->hash;
1094
1095 case DEBUG_EXPR:
1096 hash += ((unsigned) DEBUG_EXPR << 7)
1097 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1098 return hash ? hash : (unsigned int) DEBUG_EXPR;
1099
1100 case DEBUG_IMPLICIT_PTR:
1101 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1102 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1103 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1104
1105 case DEBUG_PARAMETER_REF:
1106 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1107 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1108 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1109
1110 case ENTRY_VALUE:
1111 /* ENTRY_VALUEs are function invariant, thus try to avoid
1112 recursing on argument if ENTRY_VALUE is one of the
1113 forms emitted by expand_debug_expr, otherwise
1114 ENTRY_VALUE hash would depend on the current value
1115 in some register or memory. */
1116 if (REG_P (ENTRY_VALUE_EXP (x)))
1117 hash += (unsigned int) REG
1118 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1119 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1120 else if (MEM_P (ENTRY_VALUE_EXP (x))
1121 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1122 hash += (unsigned int) MEM
1123 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1124 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1125 else
1126 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1127 return hash ? hash : (unsigned int) ENTRY_VALUE;
1128
1129 case CONST_INT:
1130 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1131 return hash ? hash : (unsigned int) CONST_INT;
1132
1133 case CONST_WIDE_INT:
1134 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1135 hash += CONST_WIDE_INT_ELT (x, i);
1136 return hash;
1137
1138 case CONST_POLY_INT:
1139 {
1140 inchash::hash h;
1141 h.add_int (hash);
1142 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1143 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1144 return h.end ();
1145 }
1146
1147 case CONST_DOUBLE:
1148 /* This is like the general case, except that it only counts
1149 the integers representing the constant. */
1150 hash += (unsigned) code + (unsigned) GET_MODE (x);
1151 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1152 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1153 + (unsigned) CONST_DOUBLE_HIGH (x));
1154 else
1155 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1156 return hash ? hash : (unsigned int) CONST_DOUBLE;
1157
1158 case CONST_FIXED:
1159 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1160 hash += fixed_hash (CONST_FIXED_VALUE (x));
1161 return hash ? hash : (unsigned int) CONST_FIXED;
1162
1163 case CONST_VECTOR:
1164 {
1165 int units;
1166 rtx elt;
1167
1168 units = const_vector_encoded_nelts (x);
1169
1170 for (i = 0; i < units; ++i)
1171 {
1172 elt = CONST_VECTOR_ENCODED_ELT (x, i);
1173 hash += cselib_hash_rtx (elt, 0, memmode);
1174 }
1175
1176 return hash;
1177 }
1178
1179 /* Assume there is only one rtx object for any given label. */
1180 case LABEL_REF:
1181 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1182 differences and differences between each stage's debugging dumps. */
1183 hash += (((unsigned int) LABEL_REF << 7)
1184 + CODE_LABEL_NUMBER (label_ref_label (x)));
1185 return hash ? hash : (unsigned int) LABEL_REF;
1186
1187 case SYMBOL_REF:
1188 {
1189 /* Don't hash on the symbol's address to avoid bootstrap differences.
1190 Different hash values may cause expressions to be recorded in
1191 different orders and thus different registers to be used in the
1192 final assembler. This also avoids differences in the dump files
1193 between various stages. */
1194 unsigned int h = 0;
1195 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1196
1197 while (*p)
1198 h += (h << 7) + *p++; /* ??? revisit */
1199
1200 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1201 return hash ? hash : (unsigned int) SYMBOL_REF;
1202 }
1203
1204 case PRE_DEC:
1205 case PRE_INC:
1206 /* We can't compute these without knowing the MEM mode. */
1207 gcc_assert (memmode != VOIDmode);
1208 offset = GET_MODE_SIZE (memmode);
1209 if (code == PRE_DEC)
1210 offset = -offset;
1211 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1212 like (mem:MEMMODE (plus (reg) (const_int I))). */
1213 hash += (unsigned) PLUS - (unsigned)code
1214 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1215 + cselib_hash_rtx (gen_int_mode (offset, GET_MODE (x)),
1216 create, memmode);
1217 return hash ? hash : 1 + (unsigned) PLUS;
1218
1219 case PRE_MODIFY:
1220 gcc_assert (memmode != VOIDmode);
1221 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1222
1223 case POST_DEC:
1224 case POST_INC:
1225 case POST_MODIFY:
1226 gcc_assert (memmode != VOIDmode);
1227 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1228
1229 case PC:
1230 case CC0:
1231 case CALL:
1232 case UNSPEC_VOLATILE:
1233 return 0;
1234
1235 case ASM_OPERANDS:
1236 if (MEM_VOLATILE_P (x))
1237 return 0;
1238
1239 break;
1240
1241 default:
1242 break;
1243 }
1244
1245 i = GET_RTX_LENGTH (code) - 1;
1246 fmt = GET_RTX_FORMAT (code);
1247 for (; i >= 0; i--)
1248 {
1249 switch (fmt[i])
1250 {
1251 case 'e':
1252 {
1253 rtx tem = XEXP (x, i);
1254 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1255
1256 if (tem_hash == 0)
1257 return 0;
1258
1259 hash += tem_hash;
1260 }
1261 break;
1262 case 'E':
1263 for (j = 0; j < XVECLEN (x, i); j++)
1264 {
1265 unsigned int tem_hash
1266 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1267
1268 if (tem_hash == 0)
1269 return 0;
1270
1271 hash += tem_hash;
1272 }
1273 break;
1274
1275 case 's':
1276 {
1277 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1278
1279 if (p)
1280 while (*p)
1281 hash += *p++;
1282 break;
1283 }
1284
1285 case 'i':
1286 hash += XINT (x, i);
1287 break;
1288
1289 case 'p':
1290 hash += constant_lower_bound (SUBREG_BYTE (x));
1291 break;
1292
1293 case '0':
1294 case 't':
1295 /* unused */
1296 break;
1297
1298 default:
1299 gcc_unreachable ();
1300 }
1301 }
1302
1303 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1304 }
1305
1306 /* Create a new value structure for VALUE and initialize it. The mode of the
1307 value is MODE. */
1308
1309 static inline cselib_val *
1310 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1311 {
1312 cselib_val *e = cselib_val_pool.allocate ();
1313
1314 gcc_assert (hash);
1315 gcc_assert (next_uid);
1316
1317 e->hash = hash;
1318 e->uid = next_uid++;
1319 /* We use an alloc pool to allocate this RTL construct because it
1320 accounts for about 8% of the overall memory usage. We know
1321 precisely when we can have VALUE RTXen (when cselib is active)
1322 so we don't need to put them in garbage collected memory.
1323 ??? Why should a VALUE be an RTX in the first place? */
1324 e->val_rtx = (rtx_def*) value_pool.allocate ();
1325 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1326 PUT_CODE (e->val_rtx, VALUE);
1327 PUT_MODE (e->val_rtx, mode);
1328 CSELIB_VAL_PTR (e->val_rtx) = e;
1329 e->addr_list = 0;
1330 e->locs = 0;
1331 e->next_containing_mem = 0;
1332
1333 if (dump_file && (dump_flags & TDF_CSELIB))
1334 {
1335 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1336 if (flag_dump_noaddr || flag_dump_unnumbered)
1337 fputs ("# ", dump_file);
1338 else
1339 fprintf (dump_file, "%p ", (void*)e);
1340 print_rtl_single (dump_file, x);
1341 fputc ('\n', dump_file);
1342 }
1343
1344 return e;
1345 }
1346
1347 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1348 contains the data at this address. X is a MEM that represents the
1349 value. Update the two value structures to represent this situation. */
1350
1351 static void
1352 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1353 {
1354 addr_elt = canonical_cselib_val (addr_elt);
1355 mem_elt = canonical_cselib_val (mem_elt);
1356
1357 /* Avoid duplicates. */
1358 addr_space_t as = MEM_ADDR_SPACE (x);
1359 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1360 if (MEM_P (l->loc)
1361 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1362 && MEM_ADDR_SPACE (l->loc) == as)
1363 {
1364 promote_debug_loc (l);
1365 return;
1366 }
1367
1368 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1369 new_elt_loc_list (mem_elt,
1370 replace_equiv_address_nv (x, addr_elt->val_rtx));
1371 if (mem_elt->next_containing_mem == NULL)
1372 {
1373 mem_elt->next_containing_mem = first_containing_mem;
1374 first_containing_mem = mem_elt;
1375 }
1376 }
1377
1378 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1379 If CREATE, make a new one if we haven't seen it before. */
1380
1381 static cselib_val *
1382 cselib_lookup_mem (rtx x, int create)
1383 {
1384 machine_mode mode = GET_MODE (x);
1385 machine_mode addr_mode;
1386 cselib_val **slot;
1387 cselib_val *addr;
1388 cselib_val *mem_elt;
1389
1390 if (MEM_VOLATILE_P (x) || mode == BLKmode
1391 || !cselib_record_memory
1392 || (FLOAT_MODE_P (mode) && flag_float_store))
1393 return 0;
1394
1395 addr_mode = GET_MODE (XEXP (x, 0));
1396 if (addr_mode == VOIDmode)
1397 addr_mode = Pmode;
1398
1399 /* Look up the value for the address. */
1400 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1401 if (! addr)
1402 return 0;
1403 addr = canonical_cselib_val (addr);
1404
1405 /* Find a value that describes a value of our mode at that address. */
1406 addr_space_t as = MEM_ADDR_SPACE (x);
1407 for (elt_list *l = addr->addr_list; l; l = l->next)
1408 if (GET_MODE (l->elt->val_rtx) == mode)
1409 {
1410 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1411 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1412 {
1413 promote_debug_loc (l->elt->locs);
1414 return l->elt;
1415 }
1416 }
1417
1418 if (! create)
1419 return 0;
1420
1421 mem_elt = new_cselib_val (next_uid, mode, x);
1422 add_mem_for_addr (addr, mem_elt, x);
1423 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1424 *slot = mem_elt;
1425 return mem_elt;
1426 }
1427
1428 /* Search through the possible substitutions in P. We prefer a non reg
1429 substitution because this allows us to expand the tree further. If
1430 we find, just a reg, take the lowest regno. There may be several
1431 non-reg results, we just take the first one because they will all
1432 expand to the same place. */
1433
1434 static rtx
1435 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1436 int max_depth)
1437 {
1438 rtx reg_result = NULL;
1439 unsigned int regno = UINT_MAX;
1440 struct elt_loc_list *p_in = p;
1441
1442 for (; p; p = p->next)
1443 {
1444 /* Return these right away to avoid returning stack pointer based
1445 expressions for frame pointer and vice versa, which is something
1446 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1447 for more details. */
1448 if (REG_P (p->loc)
1449 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1450 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1451 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1452 || REGNO (p->loc) == cfa_base_preserved_regno))
1453 return p->loc;
1454 /* Avoid infinite recursion trying to expand a reg into a
1455 the same reg. */
1456 if ((REG_P (p->loc))
1457 && (REGNO (p->loc) < regno)
1458 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1459 {
1460 reg_result = p->loc;
1461 regno = REGNO (p->loc);
1462 }
1463 /* Avoid infinite recursion and do not try to expand the
1464 value. */
1465 else if (GET_CODE (p->loc) == VALUE
1466 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1467 continue;
1468 else if (!REG_P (p->loc))
1469 {
1470 rtx result, note;
1471 if (dump_file && (dump_flags & TDF_CSELIB))
1472 {
1473 print_inline_rtx (dump_file, p->loc, 0);
1474 fprintf (dump_file, "\n");
1475 }
1476 if (GET_CODE (p->loc) == LO_SUM
1477 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1478 && p->setting_insn
1479 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1480 && XEXP (note, 0) == XEXP (p->loc, 1))
1481 return XEXP (p->loc, 1);
1482 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1483 if (result)
1484 return result;
1485 }
1486
1487 }
1488
1489 if (regno != UINT_MAX)
1490 {
1491 rtx result;
1492 if (dump_file && (dump_flags & TDF_CSELIB))
1493 fprintf (dump_file, "r%d\n", regno);
1494
1495 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1496 if (result)
1497 return result;
1498 }
1499
1500 if (dump_file && (dump_flags & TDF_CSELIB))
1501 {
1502 if (reg_result)
1503 {
1504 print_inline_rtx (dump_file, reg_result, 0);
1505 fprintf (dump_file, "\n");
1506 }
1507 else
1508 fprintf (dump_file, "NULL\n");
1509 }
1510 return reg_result;
1511 }
1512
1513
1514 /* Forward substitute and expand an expression out to its roots.
1515 This is the opposite of common subexpression. Because local value
1516 numbering is such a weak optimization, the expanded expression is
1517 pretty much unique (not from a pointer equals point of view but
1518 from a tree shape point of view.
1519
1520 This function returns NULL if the expansion fails. The expansion
1521 will fail if there is no value number for one of the operands or if
1522 one of the operands has been overwritten between the current insn
1523 and the beginning of the basic block. For instance x has no
1524 expansion in:
1525
1526 r1 <- r1 + 3
1527 x <- r1 + 8
1528
1529 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1530 It is clear on return. */
1531
1532 rtx
1533 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1534 {
1535 struct expand_value_data evd;
1536
1537 evd.regs_active = regs_active;
1538 evd.callback = NULL;
1539 evd.callback_arg = NULL;
1540 evd.dummy = false;
1541
1542 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1543 }
1544
1545 /* Same as cselib_expand_value_rtx, but using a callback to try to
1546 resolve some expressions. The CB function should return ORIG if it
1547 can't or does not want to deal with a certain RTX. Any other
1548 return value, including NULL, will be used as the expansion for
1549 VALUE, without any further changes. */
1550
1551 rtx
1552 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1553 cselib_expand_callback cb, void *data)
1554 {
1555 struct expand_value_data evd;
1556
1557 evd.regs_active = regs_active;
1558 evd.callback = cb;
1559 evd.callback_arg = data;
1560 evd.dummy = false;
1561
1562 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1563 }
1564
1565 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1566 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1567 would return NULL or non-NULL, without allocating new rtx. */
1568
1569 bool
1570 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1571 cselib_expand_callback cb, void *data)
1572 {
1573 struct expand_value_data evd;
1574
1575 evd.regs_active = regs_active;
1576 evd.callback = cb;
1577 evd.callback_arg = data;
1578 evd.dummy = true;
1579
1580 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1581 }
1582
1583 /* Internal implementation of cselib_expand_value_rtx and
1584 cselib_expand_value_rtx_cb. */
1585
1586 static rtx
1587 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1588 int max_depth)
1589 {
1590 rtx copy, scopy;
1591 int i, j;
1592 RTX_CODE code;
1593 const char *format_ptr;
1594 machine_mode mode;
1595
1596 code = GET_CODE (orig);
1597
1598 /* For the context of dse, if we end up expand into a huge tree, we
1599 will not have a useful address, so we might as well just give up
1600 quickly. */
1601 if (max_depth <= 0)
1602 return NULL;
1603
1604 switch (code)
1605 {
1606 case REG:
1607 {
1608 struct elt_list *l = REG_VALUES (REGNO (orig));
1609
1610 if (l && l->elt == NULL)
1611 l = l->next;
1612 for (; l; l = l->next)
1613 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1614 {
1615 rtx result;
1616 unsigned regno = REGNO (orig);
1617
1618 /* The only thing that we are not willing to do (this
1619 is requirement of dse and if others potential uses
1620 need this function we should add a parm to control
1621 it) is that we will not substitute the
1622 STACK_POINTER_REGNUM, FRAME_POINTER or the
1623 HARD_FRAME_POINTER.
1624
1625 These expansions confuses the code that notices that
1626 stores into the frame go dead at the end of the
1627 function and that the frame is not effected by calls
1628 to subroutines. If you allow the
1629 STACK_POINTER_REGNUM substitution, then dse will
1630 think that parameter pushing also goes dead which is
1631 wrong. If you allow the FRAME_POINTER or the
1632 HARD_FRAME_POINTER then you lose the opportunity to
1633 make the frame assumptions. */
1634 if (regno == STACK_POINTER_REGNUM
1635 || regno == FRAME_POINTER_REGNUM
1636 || regno == HARD_FRAME_POINTER_REGNUM
1637 || regno == cfa_base_preserved_regno)
1638 return orig;
1639
1640 bitmap_set_bit (evd->regs_active, regno);
1641
1642 if (dump_file && (dump_flags & TDF_CSELIB))
1643 fprintf (dump_file, "expanding: r%d into: ", regno);
1644
1645 result = expand_loc (l->elt->locs, evd, max_depth);
1646 bitmap_clear_bit (evd->regs_active, regno);
1647
1648 if (result)
1649 return result;
1650 else
1651 return orig;
1652 }
1653 return orig;
1654 }
1655
1656 CASE_CONST_ANY:
1657 case SYMBOL_REF:
1658 case CODE_LABEL:
1659 case PC:
1660 case CC0:
1661 case SCRATCH:
1662 /* SCRATCH must be shared because they represent distinct values. */
1663 return orig;
1664 case CLOBBER:
1665 case CLOBBER_HIGH:
1666 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1667 return orig;
1668 break;
1669
1670 case CONST:
1671 if (shared_const_p (orig))
1672 return orig;
1673 break;
1674
1675 case SUBREG:
1676 {
1677 rtx subreg;
1678
1679 if (evd->callback)
1680 {
1681 subreg = evd->callback (orig, evd->regs_active, max_depth,
1682 evd->callback_arg);
1683 if (subreg != orig)
1684 return subreg;
1685 }
1686
1687 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1688 max_depth - 1);
1689 if (!subreg)
1690 return NULL;
1691 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1692 GET_MODE (SUBREG_REG (orig)),
1693 SUBREG_BYTE (orig));
1694 if (scopy == NULL
1695 || (GET_CODE (scopy) == SUBREG
1696 && !REG_P (SUBREG_REG (scopy))
1697 && !MEM_P (SUBREG_REG (scopy))))
1698 return NULL;
1699
1700 return scopy;
1701 }
1702
1703 case VALUE:
1704 {
1705 rtx result;
1706
1707 if (dump_file && (dump_flags & TDF_CSELIB))
1708 {
1709 fputs ("\nexpanding ", dump_file);
1710 print_rtl_single (dump_file, orig);
1711 fputs (" into...", dump_file);
1712 }
1713
1714 if (evd->callback)
1715 {
1716 result = evd->callback (orig, evd->regs_active, max_depth,
1717 evd->callback_arg);
1718
1719 if (result != orig)
1720 return result;
1721 }
1722
1723 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1724 return result;
1725 }
1726
1727 case DEBUG_EXPR:
1728 if (evd->callback)
1729 return evd->callback (orig, evd->regs_active, max_depth,
1730 evd->callback_arg);
1731 return orig;
1732
1733 default:
1734 break;
1735 }
1736
1737 /* Copy the various flags, fields, and other information. We assume
1738 that all fields need copying, and then clear the fields that should
1739 not be copied. That is the sensible default behavior, and forces
1740 us to explicitly document why we are *not* copying a flag. */
1741 if (evd->dummy)
1742 copy = NULL;
1743 else
1744 copy = shallow_copy_rtx (orig);
1745
1746 format_ptr = GET_RTX_FORMAT (code);
1747
1748 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1749 switch (*format_ptr++)
1750 {
1751 case 'e':
1752 if (XEXP (orig, i) != NULL)
1753 {
1754 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1755 max_depth - 1);
1756 if (!result)
1757 return NULL;
1758 if (copy)
1759 XEXP (copy, i) = result;
1760 }
1761 break;
1762
1763 case 'E':
1764 case 'V':
1765 if (XVEC (orig, i) != NULL)
1766 {
1767 if (copy)
1768 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1769 for (j = 0; j < XVECLEN (orig, i); j++)
1770 {
1771 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1772 evd, max_depth - 1);
1773 if (!result)
1774 return NULL;
1775 if (copy)
1776 XVECEXP (copy, i, j) = result;
1777 }
1778 }
1779 break;
1780
1781 case 't':
1782 case 'w':
1783 case 'i':
1784 case 's':
1785 case 'S':
1786 case 'T':
1787 case 'u':
1788 case 'B':
1789 case '0':
1790 /* These are left unchanged. */
1791 break;
1792
1793 default:
1794 gcc_unreachable ();
1795 }
1796
1797 if (evd->dummy)
1798 return orig;
1799
1800 mode = GET_MODE (copy);
1801 /* If an operand has been simplified into CONST_INT, which doesn't
1802 have a mode and the mode isn't derivable from whole rtx's mode,
1803 try simplify_*_operation first with mode from original's operand
1804 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1805 scopy = copy;
1806 switch (GET_RTX_CLASS (code))
1807 {
1808 case RTX_UNARY:
1809 if (CONST_INT_P (XEXP (copy, 0))
1810 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1811 {
1812 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1813 GET_MODE (XEXP (orig, 0)));
1814 if (scopy)
1815 return scopy;
1816 }
1817 break;
1818 case RTX_COMM_ARITH:
1819 case RTX_BIN_ARITH:
1820 /* These expressions can derive operand modes from the whole rtx's mode. */
1821 break;
1822 case RTX_TERNARY:
1823 case RTX_BITFIELD_OPS:
1824 if (CONST_INT_P (XEXP (copy, 0))
1825 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1826 {
1827 scopy = simplify_ternary_operation (code, mode,
1828 GET_MODE (XEXP (orig, 0)),
1829 XEXP (copy, 0), XEXP (copy, 1),
1830 XEXP (copy, 2));
1831 if (scopy)
1832 return scopy;
1833 }
1834 break;
1835 case RTX_COMPARE:
1836 case RTX_COMM_COMPARE:
1837 if (CONST_INT_P (XEXP (copy, 0))
1838 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1839 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1840 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1841 {
1842 scopy = simplify_relational_operation (code, mode,
1843 (GET_MODE (XEXP (orig, 0))
1844 != VOIDmode)
1845 ? GET_MODE (XEXP (orig, 0))
1846 : GET_MODE (XEXP (orig, 1)),
1847 XEXP (copy, 0),
1848 XEXP (copy, 1));
1849 if (scopy)
1850 return scopy;
1851 }
1852 break;
1853 default:
1854 break;
1855 }
1856 scopy = simplify_rtx (copy);
1857 if (scopy)
1858 return scopy;
1859 return copy;
1860 }
1861
1862 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1863 with VALUE expressions. This way, it becomes independent of changes
1864 to registers and memory.
1865 X isn't actually modified; if modifications are needed, new rtl is
1866 allocated. However, the return value can share rtl with X.
1867 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1868
1869 rtx
1870 cselib_subst_to_values (rtx x, machine_mode memmode)
1871 {
1872 enum rtx_code code = GET_CODE (x);
1873 const char *fmt = GET_RTX_FORMAT (code);
1874 cselib_val *e;
1875 struct elt_list *l;
1876 rtx copy = x;
1877 int i;
1878 poly_int64 offset;
1879
1880 switch (code)
1881 {
1882 case REG:
1883 l = REG_VALUES (REGNO (x));
1884 if (l && l->elt == NULL)
1885 l = l->next;
1886 for (; l; l = l->next)
1887 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1888 return l->elt->val_rtx;
1889
1890 gcc_unreachable ();
1891
1892 case MEM:
1893 e = cselib_lookup_mem (x, 0);
1894 /* This used to happen for autoincrements, but we deal with them
1895 properly now. Remove the if stmt for the next release. */
1896 if (! e)
1897 {
1898 /* Assign a value that doesn't match any other. */
1899 e = new_cselib_val (next_uid, GET_MODE (x), x);
1900 }
1901 return e->val_rtx;
1902
1903 case ENTRY_VALUE:
1904 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1905 if (! e)
1906 break;
1907 return e->val_rtx;
1908
1909 CASE_CONST_ANY:
1910 return x;
1911
1912 case PRE_DEC:
1913 case PRE_INC:
1914 gcc_assert (memmode != VOIDmode);
1915 offset = GET_MODE_SIZE (memmode);
1916 if (code == PRE_DEC)
1917 offset = -offset;
1918 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1919 XEXP (x, 0), offset),
1920 memmode);
1921
1922 case PRE_MODIFY:
1923 gcc_assert (memmode != VOIDmode);
1924 return cselib_subst_to_values (XEXP (x, 1), memmode);
1925
1926 case POST_DEC:
1927 case POST_INC:
1928 case POST_MODIFY:
1929 gcc_assert (memmode != VOIDmode);
1930 return cselib_subst_to_values (XEXP (x, 0), memmode);
1931
1932 default:
1933 break;
1934 }
1935
1936 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1937 {
1938 if (fmt[i] == 'e')
1939 {
1940 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1941
1942 if (t != XEXP (x, i))
1943 {
1944 if (x == copy)
1945 copy = shallow_copy_rtx (x);
1946 XEXP (copy, i) = t;
1947 }
1948 }
1949 else if (fmt[i] == 'E')
1950 {
1951 int j;
1952
1953 for (j = 0; j < XVECLEN (x, i); j++)
1954 {
1955 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1956
1957 if (t != XVECEXP (x, i, j))
1958 {
1959 if (XVEC (x, i) == XVEC (copy, i))
1960 {
1961 if (x == copy)
1962 copy = shallow_copy_rtx (x);
1963 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1964 }
1965 XVECEXP (copy, i, j) = t;
1966 }
1967 }
1968 }
1969 }
1970
1971 return copy;
1972 }
1973
1974 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1975
1976 rtx
1977 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
1978 {
1979 rtx ret;
1980 gcc_assert (!cselib_current_insn);
1981 cselib_current_insn = insn;
1982 ret = cselib_subst_to_values (x, memmode);
1983 cselib_current_insn = NULL;
1984 return ret;
1985 }
1986
1987 /* Look up the rtl expression X in our tables and return the value it
1988 has. If CREATE is zero, we return NULL if we don't know the value.
1989 Otherwise, we create a new one if possible, using mode MODE if X
1990 doesn't have a mode (i.e. because it's a constant). When X is part
1991 of an address, MEMMODE should be the mode of the enclosing MEM if
1992 we're tracking autoinc expressions. */
1993
1994 static cselib_val *
1995 cselib_lookup_1 (rtx x, machine_mode mode,
1996 int create, machine_mode memmode)
1997 {
1998 cselib_val **slot;
1999 cselib_val *e;
2000 unsigned int hashval;
2001
2002 if (GET_MODE (x) != VOIDmode)
2003 mode = GET_MODE (x);
2004
2005 if (GET_CODE (x) == VALUE)
2006 return CSELIB_VAL_PTR (x);
2007
2008 if (REG_P (x))
2009 {
2010 struct elt_list *l;
2011 unsigned int i = REGNO (x);
2012
2013 l = REG_VALUES (i);
2014 if (l && l->elt == NULL)
2015 l = l->next;
2016 for (; l; l = l->next)
2017 if (mode == GET_MODE (l->elt->val_rtx))
2018 {
2019 promote_debug_loc (l->elt->locs);
2020 return l->elt;
2021 }
2022
2023 if (! create)
2024 return 0;
2025
2026 if (i < FIRST_PSEUDO_REGISTER)
2027 {
2028 unsigned int n = hard_regno_nregs (i, mode);
2029
2030 if (n > max_value_regs)
2031 max_value_regs = n;
2032 }
2033
2034 e = new_cselib_val (next_uid, GET_MODE (x), x);
2035 new_elt_loc_list (e, x);
2036
2037 scalar_int_mode int_mode;
2038 if (REG_VALUES (i) == 0)
2039 {
2040 /* Maintain the invariant that the first entry of
2041 REG_VALUES, if present, must be the value used to set the
2042 register, or NULL. */
2043 used_regs[n_used_regs++] = i;
2044 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2045 }
2046 else if (cselib_preserve_constants
2047 && is_int_mode (mode, &int_mode))
2048 {
2049 /* During var-tracking, try harder to find equivalences
2050 for SUBREGs. If a setter sets say a DImode register
2051 and user uses that register only in SImode, add a lowpart
2052 subreg location. */
2053 struct elt_list *lwider = NULL;
2054 scalar_int_mode lmode;
2055 l = REG_VALUES (i);
2056 if (l && l->elt == NULL)
2057 l = l->next;
2058 for (; l; l = l->next)
2059 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2060 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2061 && (lwider == NULL
2062 || partial_subreg_p (lmode,
2063 GET_MODE (lwider->elt->val_rtx))))
2064 {
2065 struct elt_loc_list *el;
2066 if (i < FIRST_PSEUDO_REGISTER
2067 && hard_regno_nregs (i, lmode) != 1)
2068 continue;
2069 for (el = l->elt->locs; el; el = el->next)
2070 if (!REG_P (el->loc))
2071 break;
2072 if (el)
2073 lwider = l;
2074 }
2075 if (lwider)
2076 {
2077 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2078 GET_MODE (lwider->elt->val_rtx));
2079 if (sub)
2080 new_elt_loc_list (e, sub);
2081 }
2082 }
2083 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2084 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2085 *slot = e;
2086 return e;
2087 }
2088
2089 if (MEM_P (x))
2090 return cselib_lookup_mem (x, create);
2091
2092 hashval = cselib_hash_rtx (x, create, memmode);
2093 /* Can't even create if hashing is not possible. */
2094 if (! hashval)
2095 return 0;
2096
2097 slot = cselib_find_slot (mode, x, hashval,
2098 create ? INSERT : NO_INSERT, memmode);
2099 if (slot == 0)
2100 return 0;
2101
2102 e = (cselib_val *) *slot;
2103 if (e)
2104 return e;
2105
2106 e = new_cselib_val (hashval, mode, x);
2107
2108 /* We have to fill the slot before calling cselib_subst_to_values:
2109 the hash table is inconsistent until we do so, and
2110 cselib_subst_to_values will need to do lookups. */
2111 *slot = e;
2112 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2113 return e;
2114 }
2115
2116 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2117
2118 cselib_val *
2119 cselib_lookup_from_insn (rtx x, machine_mode mode,
2120 int create, machine_mode memmode, rtx_insn *insn)
2121 {
2122 cselib_val *ret;
2123
2124 gcc_assert (!cselib_current_insn);
2125 cselib_current_insn = insn;
2126
2127 ret = cselib_lookup (x, mode, create, memmode);
2128
2129 cselib_current_insn = NULL;
2130
2131 return ret;
2132 }
2133
2134 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2135 maintains invariants related with debug insns. */
2136
2137 cselib_val *
2138 cselib_lookup (rtx x, machine_mode mode,
2139 int create, machine_mode memmode)
2140 {
2141 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2142
2143 /* ??? Should we return NULL if we're not to create an entry, the
2144 found loc is a debug loc and cselib_current_insn is not DEBUG?
2145 If so, we should also avoid converting val to non-DEBUG; probably
2146 easiest setting cselib_current_insn to NULL before the call
2147 above. */
2148
2149 if (dump_file && (dump_flags & TDF_CSELIB))
2150 {
2151 fputs ("cselib lookup ", dump_file);
2152 print_inline_rtx (dump_file, x, 2);
2153 fprintf (dump_file, " => %u:%u\n",
2154 ret ? ret->uid : 0,
2155 ret ? ret->hash : 0);
2156 }
2157
2158 return ret;
2159 }
2160
2161 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2162 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2163 is used to determine how many hard registers are being changed. If MODE
2164 is VOIDmode, then only REGNO is being changed; this is used when
2165 invalidating call clobbered registers across a call. */
2166
2167 static void
2168 cselib_invalidate_regno (unsigned int regno, machine_mode mode,
2169 const_rtx setter)
2170 {
2171 unsigned int endregno;
2172 unsigned int i;
2173
2174 /* If we see pseudos after reload, something is _wrong_. */
2175 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2176 || reg_renumber[regno] < 0);
2177
2178 /* Determine the range of registers that must be invalidated. For
2179 pseudos, only REGNO is affected. For hard regs, we must take MODE
2180 into account, and we must also invalidate lower register numbers
2181 if they contain values that overlap REGNO. */
2182 if (regno < FIRST_PSEUDO_REGISTER)
2183 {
2184 gcc_assert (mode != VOIDmode);
2185
2186 if (regno < max_value_regs)
2187 i = 0;
2188 else
2189 i = regno - max_value_regs;
2190
2191 endregno = end_hard_regno (mode, regno);
2192
2193 if (setter && GET_CODE (setter) == CLOBBER_HIGH)
2194 gcc_assert (endregno == regno + 1);
2195 }
2196 else
2197 {
2198 i = regno;
2199 endregno = regno + 1;
2200 }
2201
2202 for (; i < endregno; i++)
2203 {
2204 struct elt_list **l = &REG_VALUES (i);
2205
2206 /* Go through all known values for this reg; if it overlaps the range
2207 we're invalidating, remove the value. */
2208 while (*l)
2209 {
2210 cselib_val *v = (*l)->elt;
2211 bool had_locs;
2212 rtx_insn *setting_insn;
2213 struct elt_loc_list **p;
2214 unsigned int this_last = i;
2215
2216 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2217 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2218
2219 if (this_last < regno || v == NULL
2220 || (v == cfa_base_preserved_val
2221 && i == cfa_base_preserved_regno))
2222 {
2223 l = &(*l)->next;
2224 continue;
2225 }
2226
2227 /* Ignore if clobber high and the register isn't clobbered. */
2228 if (setter && GET_CODE (setter) == CLOBBER_HIGH)
2229 {
2230 gcc_assert (endregno == regno + 1);
2231 const_rtx x = XEXP (setter, 0);
2232 if (!reg_is_clobbered_by_clobber_high (i, GET_MODE (v->val_rtx),
2233 x))
2234 {
2235 l = &(*l)->next;
2236 continue;
2237 }
2238 }
2239
2240 /* We have an overlap. */
2241 if (*l == REG_VALUES (i))
2242 {
2243 /* Maintain the invariant that the first entry of
2244 REG_VALUES, if present, must be the value used to set
2245 the register, or NULL. This is also nice because
2246 then we won't push the same regno onto user_regs
2247 multiple times. */
2248 (*l)->elt = NULL;
2249 l = &(*l)->next;
2250 }
2251 else
2252 unchain_one_elt_list (l);
2253
2254 v = canonical_cselib_val (v);
2255
2256 had_locs = v->locs != NULL;
2257 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2258
2259 /* Now, we clear the mapping from value to reg. It must exist, so
2260 this code will crash intentionally if it doesn't. */
2261 for (p = &v->locs; ; p = &(*p)->next)
2262 {
2263 rtx x = (*p)->loc;
2264
2265 if (REG_P (x) && REGNO (x) == i)
2266 {
2267 unchain_one_elt_loc_list (p);
2268 break;
2269 }
2270 }
2271
2272 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2273 {
2274 if (setting_insn && DEBUG_INSN_P (setting_insn))
2275 n_useless_debug_values++;
2276 else
2277 n_useless_values++;
2278 }
2279 }
2280 }
2281 }
2282 \f
2283 /* Invalidate any locations in the table which are changed because of a
2284 store to MEM_RTX. If this is called because of a non-const call
2285 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2286
2287 static void
2288 cselib_invalidate_mem (rtx mem_rtx)
2289 {
2290 cselib_val **vp, *v, *next;
2291 int num_mems = 0;
2292 rtx mem_addr;
2293
2294 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2295 mem_rtx = canon_rtx (mem_rtx);
2296
2297 vp = &first_containing_mem;
2298 for (v = *vp; v != &dummy_val; v = next)
2299 {
2300 bool has_mem = false;
2301 struct elt_loc_list **p = &v->locs;
2302 bool had_locs = v->locs != NULL;
2303 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2304
2305 while (*p)
2306 {
2307 rtx x = (*p)->loc;
2308 cselib_val *addr;
2309 struct elt_list **mem_chain;
2310
2311 /* MEMs may occur in locations only at the top level; below
2312 that every MEM or REG is substituted by its VALUE. */
2313 if (!MEM_P (x))
2314 {
2315 p = &(*p)->next;
2316 continue;
2317 }
2318 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2319 && ! canon_anti_dependence (x, false, mem_rtx,
2320 GET_MODE (mem_rtx), mem_addr))
2321 {
2322 has_mem = true;
2323 num_mems++;
2324 p = &(*p)->next;
2325 continue;
2326 }
2327
2328 /* This one overlaps. */
2329 /* We must have a mapping from this MEM's address to the
2330 value (E). Remove that, too. */
2331 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2332 addr = canonical_cselib_val (addr);
2333 gcc_checking_assert (v == canonical_cselib_val (v));
2334 mem_chain = &addr->addr_list;
2335 for (;;)
2336 {
2337 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2338
2339 if (canon == v)
2340 {
2341 unchain_one_elt_list (mem_chain);
2342 break;
2343 }
2344
2345 /* Record canonicalized elt. */
2346 (*mem_chain)->elt = canon;
2347
2348 mem_chain = &(*mem_chain)->next;
2349 }
2350
2351 unchain_one_elt_loc_list (p);
2352 }
2353
2354 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2355 {
2356 if (setting_insn && DEBUG_INSN_P (setting_insn))
2357 n_useless_debug_values++;
2358 else
2359 n_useless_values++;
2360 }
2361
2362 next = v->next_containing_mem;
2363 if (has_mem)
2364 {
2365 *vp = v;
2366 vp = &(*vp)->next_containing_mem;
2367 }
2368 else
2369 v->next_containing_mem = NULL;
2370 }
2371 *vp = &dummy_val;
2372 }
2373
2374 /* Invalidate DEST, which is being assigned to or clobbered by SETTER. */
2375
2376 void
2377 cselib_invalidate_rtx (rtx dest, const_rtx setter)
2378 {
2379 while (GET_CODE (dest) == SUBREG
2380 || GET_CODE (dest) == ZERO_EXTRACT
2381 || GET_CODE (dest) == STRICT_LOW_PART)
2382 dest = XEXP (dest, 0);
2383
2384 if (REG_P (dest))
2385 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest), setter);
2386 else if (MEM_P (dest))
2387 cselib_invalidate_mem (dest);
2388 }
2389
2390 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2391
2392 static void
2393 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx setter,
2394 void *data ATTRIBUTE_UNUSED)
2395 {
2396 cselib_invalidate_rtx (dest, setter);
2397 }
2398
2399 /* Record the result of a SET instruction. DEST is being set; the source
2400 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2401 describes its address. */
2402
2403 static void
2404 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2405 {
2406 if (src_elt == 0 || side_effects_p (dest))
2407 return;
2408
2409 if (REG_P (dest))
2410 {
2411 unsigned int dreg = REGNO (dest);
2412 if (dreg < FIRST_PSEUDO_REGISTER)
2413 {
2414 unsigned int n = REG_NREGS (dest);
2415
2416 if (n > max_value_regs)
2417 max_value_regs = n;
2418 }
2419
2420 if (REG_VALUES (dreg) == 0)
2421 {
2422 used_regs[n_used_regs++] = dreg;
2423 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2424 }
2425 else
2426 {
2427 /* The register should have been invalidated. */
2428 gcc_assert (REG_VALUES (dreg)->elt == 0);
2429 REG_VALUES (dreg)->elt = src_elt;
2430 }
2431
2432 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2433 n_useless_values--;
2434 new_elt_loc_list (src_elt, dest);
2435 }
2436 else if (MEM_P (dest) && dest_addr_elt != 0
2437 && cselib_record_memory)
2438 {
2439 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2440 n_useless_values--;
2441 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2442 }
2443 }
2444
2445 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2446
2447 void
2448 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2449 {
2450 cselib_val *nelt;
2451 rtx_insn *save_cselib_current_insn = cselib_current_insn;
2452
2453 gcc_checking_assert (elt);
2454 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2455 gcc_checking_assert (!side_effects_p (x));
2456
2457 cselib_current_insn = insn;
2458
2459 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2460
2461 if (nelt != elt)
2462 {
2463 cselib_any_perm_equivs = true;
2464
2465 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2466 cselib_preserve_value (nelt);
2467
2468 new_elt_loc_list (nelt, elt->val_rtx);
2469 }
2470
2471 cselib_current_insn = save_cselib_current_insn;
2472 }
2473
2474 /* Return TRUE if any permanent equivalences have been recorded since
2475 the table was last initialized. */
2476 bool
2477 cselib_have_permanent_equivalences (void)
2478 {
2479 return cselib_any_perm_equivs;
2480 }
2481
2482 /* There is no good way to determine how many elements there can be
2483 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2484 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2485
2486 struct cselib_record_autoinc_data
2487 {
2488 struct cselib_set *sets;
2489 int n_sets;
2490 };
2491
2492 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2493 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2494
2495 static int
2496 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2497 rtx dest, rtx src, rtx srcoff, void *arg)
2498 {
2499 struct cselib_record_autoinc_data *data;
2500 data = (struct cselib_record_autoinc_data *)arg;
2501
2502 data->sets[data->n_sets].dest = dest;
2503
2504 if (srcoff)
2505 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2506 else
2507 data->sets[data->n_sets].src = src;
2508
2509 data->n_sets++;
2510
2511 return 0;
2512 }
2513
2514 /* Record the effects of any sets and autoincs in INSN. */
2515 static void
2516 cselib_record_sets (rtx_insn *insn)
2517 {
2518 int n_sets = 0;
2519 int i;
2520 struct cselib_set sets[MAX_SETS];
2521 rtx body = PATTERN (insn);
2522 rtx cond = 0;
2523 int n_sets_before_autoinc;
2524 int n_strict_low_parts = 0;
2525 struct cselib_record_autoinc_data data;
2526
2527 body = PATTERN (insn);
2528 if (GET_CODE (body) == COND_EXEC)
2529 {
2530 cond = COND_EXEC_TEST (body);
2531 body = COND_EXEC_CODE (body);
2532 }
2533
2534 /* Find all sets. */
2535 if (GET_CODE (body) == SET)
2536 {
2537 sets[0].src = SET_SRC (body);
2538 sets[0].dest = SET_DEST (body);
2539 n_sets = 1;
2540 }
2541 else if (GET_CODE (body) == PARALLEL)
2542 {
2543 /* Look through the PARALLEL and record the values being
2544 set, if possible. Also handle any CLOBBERs. */
2545 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2546 {
2547 rtx x = XVECEXP (body, 0, i);
2548
2549 if (GET_CODE (x) == SET)
2550 {
2551 sets[n_sets].src = SET_SRC (x);
2552 sets[n_sets].dest = SET_DEST (x);
2553 n_sets++;
2554 }
2555 }
2556 }
2557
2558 if (n_sets == 1
2559 && MEM_P (sets[0].src)
2560 && !cselib_record_memory
2561 && MEM_READONLY_P (sets[0].src))
2562 {
2563 rtx note = find_reg_equal_equiv_note (insn);
2564
2565 if (note && CONSTANT_P (XEXP (note, 0)))
2566 sets[0].src = XEXP (note, 0);
2567 }
2568
2569 data.sets = sets;
2570 data.n_sets = n_sets_before_autoinc = n_sets;
2571 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2572 n_sets = data.n_sets;
2573
2574 /* Look up the values that are read. Do this before invalidating the
2575 locations that are written. */
2576 for (i = 0; i < n_sets; i++)
2577 {
2578 rtx dest = sets[i].dest;
2579 rtx orig = dest;
2580
2581 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2582 the low part after invalidating any knowledge about larger modes. */
2583 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2584 sets[i].dest = dest = XEXP (dest, 0);
2585
2586 /* We don't know how to record anything but REG or MEM. */
2587 if (REG_P (dest)
2588 || (MEM_P (dest) && cselib_record_memory))
2589 {
2590 rtx src = sets[i].src;
2591 if (cond)
2592 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2593 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2594 if (MEM_P (dest))
2595 {
2596 machine_mode address_mode = get_address_mode (dest);
2597
2598 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2599 address_mode, 1,
2600 GET_MODE (dest));
2601 }
2602 else
2603 sets[i].dest_addr_elt = 0;
2604 }
2605
2606 /* Improve handling of STRICT_LOW_PART if the current value is known
2607 to be const0_rtx, then the low bits will be set to dest and higher
2608 bits will remain zero. Used in code like:
2609
2610 {di:SI=0;clobber flags:CC;}
2611 flags:CCNO=cmp(bx:SI,0)
2612 strict_low_part(di:QI)=flags:CCNO<=0
2613
2614 where we can note both that di:QI=flags:CCNO<=0 and
2615 also that because di:SI is known to be 0 and strict_low_part(di:QI)
2616 preserves the upper bits that di:SI=zero_extend(flags:CCNO<=0). */
2617 scalar_int_mode mode;
2618 if (dest != orig
2619 && cselib_record_sets_hook
2620 && REG_P (dest)
2621 && HARD_REGISTER_P (dest)
2622 && sets[i].src_elt
2623 && is_a <scalar_int_mode> (GET_MODE (dest), &mode)
2624 && n_sets + n_strict_low_parts < MAX_SETS)
2625 {
2626 opt_scalar_int_mode wider_mode_iter;
2627 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2628 {
2629 scalar_int_mode wider_mode = wider_mode_iter.require ();
2630 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
2631 break;
2632
2633 rtx reg = gen_lowpart (wider_mode, dest);
2634 if (!REG_P (reg))
2635 break;
2636
2637 cselib_val *v = cselib_lookup (reg, wider_mode, 0, VOIDmode);
2638 if (!v)
2639 continue;
2640
2641 struct elt_loc_list *l;
2642 for (l = v->locs; l; l = l->next)
2643 if (l->loc == const0_rtx)
2644 break;
2645
2646 if (!l)
2647 continue;
2648
2649 sets[n_sets + n_strict_low_parts].dest = reg;
2650 sets[n_sets + n_strict_low_parts].src = dest;
2651 sets[n_sets + n_strict_low_parts++].src_elt = sets[i].src_elt;
2652 break;
2653 }
2654 }
2655 }
2656
2657 if (cselib_record_sets_hook)
2658 cselib_record_sets_hook (insn, sets, n_sets);
2659
2660 /* Invalidate all locations written by this insn. Note that the elts we
2661 looked up in the previous loop aren't affected, just some of their
2662 locations may go away. */
2663 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2664
2665 for (i = n_sets_before_autoinc; i < n_sets; i++)
2666 cselib_invalidate_rtx (sets[i].dest);
2667
2668 /* If this is an asm, look for duplicate sets. This can happen when the
2669 user uses the same value as an output multiple times. This is valid
2670 if the outputs are not actually used thereafter. Treat this case as
2671 if the value isn't actually set. We do this by smashing the destination
2672 to pc_rtx, so that we won't record the value later. */
2673 if (n_sets >= 2 && asm_noperands (body) >= 0)
2674 {
2675 for (i = 0; i < n_sets; i++)
2676 {
2677 rtx dest = sets[i].dest;
2678 if (REG_P (dest) || MEM_P (dest))
2679 {
2680 int j;
2681 for (j = i + 1; j < n_sets; j++)
2682 if (rtx_equal_p (dest, sets[j].dest))
2683 {
2684 sets[i].dest = pc_rtx;
2685 sets[j].dest = pc_rtx;
2686 }
2687 }
2688 }
2689 }
2690
2691 /* Now enter the equivalences in our tables. */
2692 for (i = 0; i < n_sets; i++)
2693 {
2694 rtx dest = sets[i].dest;
2695 if (REG_P (dest)
2696 || (MEM_P (dest) && cselib_record_memory))
2697 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2698 }
2699
2700 /* And deal with STRICT_LOW_PART. */
2701 for (i = 0; i < n_strict_low_parts; i++)
2702 {
2703 if (! PRESERVED_VALUE_P (sets[n_sets + i].src_elt->val_rtx))
2704 continue;
2705 machine_mode dest_mode = GET_MODE (sets[n_sets + i].dest);
2706 cselib_val *v
2707 = cselib_lookup (sets[n_sets + i].dest, dest_mode, 1, VOIDmode);
2708 cselib_preserve_value (v);
2709 rtx r = gen_rtx_ZERO_EXTEND (dest_mode,
2710 sets[n_sets + i].src_elt->val_rtx);
2711 cselib_add_permanent_equiv (v, r, insn);
2712 }
2713 }
2714
2715 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2716
2717 bool
2718 fp_setter_insn (rtx_insn *insn)
2719 {
2720 rtx expr, pat = NULL_RTX;
2721
2722 if (!RTX_FRAME_RELATED_P (insn))
2723 return false;
2724
2725 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2726 if (expr)
2727 pat = XEXP (expr, 0);
2728 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2729 return false;
2730
2731 /* Don't return true for frame pointer restores in the epilogue. */
2732 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2733 return false;
2734 return true;
2735 }
2736
2737 /* Record the effects of INSN. */
2738
2739 void
2740 cselib_process_insn (rtx_insn *insn)
2741 {
2742 int i;
2743 rtx x;
2744
2745 cselib_current_insn = insn;
2746
2747 /* Forget everything at a CODE_LABEL or a setjmp. */
2748 if ((LABEL_P (insn)
2749 || (CALL_P (insn)
2750 && find_reg_note (insn, REG_SETJMP, NULL)))
2751 && !cselib_preserve_constants)
2752 {
2753 cselib_reset_table (next_uid);
2754 cselib_current_insn = NULL;
2755 return;
2756 }
2757
2758 if (! INSN_P (insn))
2759 {
2760 cselib_current_insn = NULL;
2761 return;
2762 }
2763
2764 /* If this is a call instruction, forget anything stored in a
2765 call clobbered register, or, if this is not a const call, in
2766 memory. */
2767 if (CALL_P (insn))
2768 {
2769 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2770 if (call_used_regs[i]
2771 || (REG_VALUES (i) && REG_VALUES (i)->elt
2772 && (targetm.hard_regno_call_part_clobbered
2773 (insn, i, GET_MODE (REG_VALUES (i)->elt->val_rtx)))))
2774 cselib_invalidate_regno (i, reg_raw_mode[i]);
2775
2776 /* Since it is not clear how cselib is going to be used, be
2777 conservative here and treat looping pure or const functions
2778 as if they were regular functions. */
2779 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2780 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2781 cselib_invalidate_mem (callmem);
2782 else
2783 /* For const/pure calls, invalidate any argument slots because
2784 they are owned by the callee. */
2785 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2786 if (GET_CODE (XEXP (x, 0)) == USE
2787 && MEM_P (XEXP (XEXP (x, 0), 0)))
2788 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
2789 }
2790
2791 cselib_record_sets (insn);
2792
2793 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2794 after we have processed the insn. */
2795 if (CALL_P (insn))
2796 {
2797 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2798 {
2799 gcc_assert (GET_CODE (XEXP (x, 0)) != CLOBBER_HIGH);
2800 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2801 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2802 }
2803 /* Flush everything on setjmp. */
2804 if (cselib_preserve_constants
2805 && find_reg_note (insn, REG_SETJMP, NULL))
2806 {
2807 cselib_preserve_only_values ();
2808 cselib_reset_table (next_uid);
2809 }
2810 }
2811
2812 /* On setter of the hard frame pointer if frame_pointer_needed,
2813 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2814 VALUEs are distinct. */
2815 if (reload_completed
2816 && frame_pointer_needed
2817 && fp_setter_insn (insn))
2818 cselib_invalidate_rtx (stack_pointer_rtx);
2819
2820 cselib_current_insn = NULL;
2821
2822 if (n_useless_values > MAX_USELESS_VALUES
2823 /* remove_useless_values is linear in the hash table size. Avoid
2824 quadratic behavior for very large hashtables with very few
2825 useless elements. */
2826 && ((unsigned int)n_useless_values
2827 > (cselib_hash_table->elements () - n_debug_values) / 4))
2828 remove_useless_values ();
2829 }
2830
2831 /* Initialize cselib for one pass. The caller must also call
2832 init_alias_analysis. */
2833
2834 void
2835 cselib_init (int record_what)
2836 {
2837 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2838 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2839 cselib_any_perm_equivs = false;
2840
2841 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2842 see canon_true_dependence. This is only created once. */
2843 if (! callmem)
2844 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2845
2846 cselib_nregs = max_reg_num ();
2847
2848 /* We preserve reg_values to allow expensive clearing of the whole thing.
2849 Reallocate it however if it happens to be too large. */
2850 if (!reg_values || reg_values_size < cselib_nregs
2851 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2852 {
2853 free (reg_values);
2854 /* Some space for newly emit instructions so we don't end up
2855 reallocating in between passes. */
2856 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2857 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2858 }
2859 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2860 n_used_regs = 0;
2861 /* FIXME: enable sanitization (PR87845) */
2862 cselib_hash_table
2863 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2864 /* sanitize_eq_and_hash */ false);
2865 if (cselib_preserve_constants)
2866 cselib_preserved_hash_table
2867 = new hash_table<cselib_hasher> (31, /* ggc */ false,
2868 /* sanitize_eq_and_hash */ false);
2869 next_uid = 1;
2870 }
2871
2872 /* Called when the current user is done with cselib. */
2873
2874 void
2875 cselib_finish (void)
2876 {
2877 bool preserved = cselib_preserve_constants;
2878 cselib_discard_hook = NULL;
2879 cselib_preserve_constants = false;
2880 cselib_any_perm_equivs = false;
2881 cfa_base_preserved_val = NULL;
2882 cfa_base_preserved_regno = INVALID_REGNUM;
2883 elt_list_pool.release ();
2884 elt_loc_list_pool.release ();
2885 cselib_val_pool.release ();
2886 value_pool.release ();
2887 cselib_clear_table ();
2888 delete cselib_hash_table;
2889 cselib_hash_table = NULL;
2890 if (preserved)
2891 delete cselib_preserved_hash_table;
2892 cselib_preserved_hash_table = NULL;
2893 free (used_regs);
2894 used_regs = 0;
2895 n_useless_values = 0;
2896 n_useless_debug_values = 0;
2897 n_debug_values = 0;
2898 next_uid = 0;
2899 }
2900
2901 /* Dump the cselib_val *X to FILE *OUT. */
2902
2903 int
2904 dump_cselib_val (cselib_val **x, FILE *out)
2905 {
2906 cselib_val *v = *x;
2907 bool need_lf = true;
2908
2909 print_inline_rtx (out, v->val_rtx, 0);
2910
2911 if (v->locs)
2912 {
2913 struct elt_loc_list *l = v->locs;
2914 if (need_lf)
2915 {
2916 fputc ('\n', out);
2917 need_lf = false;
2918 }
2919 fputs (" locs:", out);
2920 do
2921 {
2922 if (l->setting_insn)
2923 fprintf (out, "\n from insn %i ",
2924 INSN_UID (l->setting_insn));
2925 else
2926 fprintf (out, "\n ");
2927 print_inline_rtx (out, l->loc, 4);
2928 }
2929 while ((l = l->next));
2930 fputc ('\n', out);
2931 }
2932 else
2933 {
2934 fputs (" no locs", out);
2935 need_lf = true;
2936 }
2937
2938 if (v->addr_list)
2939 {
2940 struct elt_list *e = v->addr_list;
2941 if (need_lf)
2942 {
2943 fputc ('\n', out);
2944 need_lf = false;
2945 }
2946 fputs (" addr list:", out);
2947 do
2948 {
2949 fputs ("\n ", out);
2950 print_inline_rtx (out, e->elt->val_rtx, 2);
2951 }
2952 while ((e = e->next));
2953 fputc ('\n', out);
2954 }
2955 else
2956 {
2957 fputs (" no addrs", out);
2958 need_lf = true;
2959 }
2960
2961 if (v->next_containing_mem == &dummy_val)
2962 fputs (" last mem\n", out);
2963 else if (v->next_containing_mem)
2964 {
2965 fputs (" next mem ", out);
2966 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2967 fputc ('\n', out);
2968 }
2969 else if (need_lf)
2970 fputc ('\n', out);
2971
2972 return 1;
2973 }
2974
2975 /* Dump to OUT everything in the CSELIB table. */
2976
2977 void
2978 dump_cselib_table (FILE *out)
2979 {
2980 fprintf (out, "cselib hash table:\n");
2981 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
2982 fprintf (out, "cselib preserved hash table:\n");
2983 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
2984 if (first_containing_mem != &dummy_val)
2985 {
2986 fputs ("first mem ", out);
2987 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2988 fputc ('\n', out);
2989 }
2990 fprintf (out, "next uid %i\n", next_uid);
2991 }
2992
2993 #include "gt-cselib.h"