]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
[RFA][RISC-V] Improve constant synthesis for constants with 2 bits set
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "builtins.h"
58 #include "rtl-iter.h"
59 #include "stor-layout.h"
60 #include "opts.h"
61 #include "predict.h"
62 #include "rtx-vector-builder.h"
63 #include "gimple.h"
64 #include "gimple-ssa.h"
65 #include "gimplify.h"
66
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
71
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
74 /* Commonly used modes. */
75
76 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
79
80 /* Datastructures maintained for currently processed function in RTL form. */
81
82 struct rtl_data x_rtl;
83
84 /* Indexed by pseudo register number, gives the rtx for that pseudo.
85 Allocated in parallel with regno_pointer_align.
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89 rtx * regno_reg_rtx;
90
91 /* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
94 static GTY(()) int label_num = 1;
95
96 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
100
101 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
102
103 rtx const_true_rtx;
104
105 REAL_VALUE_TYPE dconst0;
106 REAL_VALUE_TYPE dconst1;
107 REAL_VALUE_TYPE dconst2;
108 REAL_VALUE_TYPE dconstm1;
109 REAL_VALUE_TYPE dconsthalf;
110
111 /* Record fixed-point constant 0 and 1. */
112 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
115 /* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
120 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
121
122 /* Standard pieces of rtx, to be substituted directly into things. */
123 rtx pc_rtx;
124 rtx ret_rtx;
125 rtx simple_return_rtx;
126 rtx cc0_rtx;
127
128 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
129 this pointer should normally never be dereferenced), but is required to be
130 distinct from NULL_RTX. Currently used by peephole2 pass. */
131 rtx_insn *invalid_insn_rtx;
132
133 /* A hash table storing CONST_INTs whose absolute value is greater
134 than MAX_SAVED_CONST_INT. */
135
136 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
137 {
138 typedef HOST_WIDE_INT compare_type;
139
140 static hashval_t hash (rtx i);
141 static bool equal (rtx i, HOST_WIDE_INT h);
142 };
143
144 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
145
146 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
147 {
148 static hashval_t hash (rtx x);
149 static bool equal (rtx x, rtx y);
150 };
151
152 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
153
154 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
155 {
156 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
157
158 static hashval_t hash (rtx x);
159 static bool equal (rtx x, const compare_type &y);
160 };
161
162 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
163
164 /* A hash table storing register attribute structures. */
165 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
166 {
167 static hashval_t hash (reg_attrs *x);
168 static bool equal (reg_attrs *a, reg_attrs *b);
169 };
170
171 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
172
173 /* A hash table storing all CONST_DOUBLEs. */
174 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
175 {
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
178 };
179
180 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
181
182 /* A hash table storing all CONST_FIXEDs. */
183 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
184 {
185 static hashval_t hash (rtx x);
186 static bool equal (rtx x, rtx y);
187 };
188
189 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
190
191 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
192 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
193 #define first_label_num (crtl->emit.x_first_label_num)
194
195 static void set_used_decls (tree);
196 static void mark_label_nuses (rtx);
197 #if TARGET_SUPPORTS_WIDE_INT
198 static rtx lookup_const_wide_int (rtx);
199 #endif
200 static rtx lookup_const_double (rtx);
201 static rtx lookup_const_fixed (rtx);
202 static rtx gen_const_vector (machine_mode, int);
203 static void copy_rtx_if_shared_1 (rtx *orig);
204
205 /* Probability of the conditional branch currently proceeded by try_split. */
206 profile_probability split_branch_probability;
207 \f
208 /* Returns a hash code for X (which is a really a CONST_INT). */
209
210 hashval_t
211 const_int_hasher::hash (rtx x)
212 {
213 return (hashval_t) INTVAL (x);
214 }
215
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220 bool
221 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
222 {
223 return (INTVAL (x) == y);
224 }
225
226 #if TARGET_SUPPORTS_WIDE_INT
227 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228
229 hashval_t
230 const_wide_int_hasher::hash (rtx x)
231 {
232 int i;
233 unsigned HOST_WIDE_INT hash = 0;
234 const_rtx xr = x;
235
236 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
237 hash += CONST_WIDE_INT_ELT (xr, i);
238
239 return (hashval_t) hash;
240 }
241
242 /* Returns nonzero if the value represented by X (which is really a
243 CONST_WIDE_INT) is the same as that given by Y (which is really a
244 CONST_WIDE_INT). */
245
246 bool
247 const_wide_int_hasher::equal (rtx x, rtx y)
248 {
249 int i;
250 const_rtx xr = x;
251 const_rtx yr = y;
252 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
253 return false;
254
255 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
256 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
257 return false;
258
259 return true;
260 }
261 #endif
262
263 /* Returns a hash code for CONST_POLY_INT X. */
264
265 hashval_t
266 const_poly_int_hasher::hash (rtx x)
267 {
268 inchash::hash h;
269 h.add_int (GET_MODE (x));
270 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
271 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
272 return h.end ();
273 }
274
275 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
276
277 bool
278 const_poly_int_hasher::equal (rtx x, const compare_type &y)
279 {
280 if (GET_MODE (x) != y.first)
281 return false;
282 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
283 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
284 return false;
285 return true;
286 }
287
288 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
289 hashval_t
290 const_double_hasher::hash (rtx x)
291 {
292 const_rtx const value = x;
293 hashval_t h;
294
295 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
296 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
297 else
298 {
299 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 }
303 return h;
304 }
305
306 /* Returns nonzero if the value represented by X (really a ...)
307 is the same as that represented by Y (really a ...) */
308 bool
309 const_double_hasher::equal (rtx x, rtx y)
310 {
311 const_rtx const a = x, b = y;
312
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
315 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
316 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
317 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
318 else
319 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
320 CONST_DOUBLE_REAL_VALUE (b));
321 }
322
323 /* Returns a hash code for X (which is really a CONST_FIXED). */
324
325 hashval_t
326 const_fixed_hasher::hash (rtx x)
327 {
328 const_rtx const value = x;
329 hashval_t h;
330
331 h = fixed_hash (CONST_FIXED_VALUE (value));
332 /* MODE is used in the comparison, so it should be in the hash. */
333 h ^= GET_MODE (value);
334 return h;
335 }
336
337 /* Returns nonzero if the value represented by X is the same as that
338 represented by Y. */
339
340 bool
341 const_fixed_hasher::equal (rtx x, rtx y)
342 {
343 const_rtx const a = x, b = y;
344
345 if (GET_MODE (a) != GET_MODE (b))
346 return 0;
347 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
348 }
349
350 /* Return true if the given memory attributes are equal. */
351
352 bool
353 mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
354 {
355 if (p == q)
356 return true;
357 if (!p || !q)
358 return false;
359 return (p->alias == q->alias
360 && p->offset_known_p == q->offset_known_p
361 && (!p->offset_known_p || known_eq (p->offset, q->offset))
362 && p->size_known_p == q->size_known_p
363 && (!p->size_known_p || known_eq (p->size, q->size))
364 && p->align == q->align
365 && p->addrspace == q->addrspace
366 && (p->expr == q->expr
367 || (p->expr != NULL_TREE && q->expr != NULL_TREE
368 && operand_equal_p (p->expr, q->expr, 0))));
369 }
370
371 /* Set MEM's memory attributes so that they are the same as ATTRS. */
372
373 static void
374 set_mem_attrs (rtx mem, mem_attrs *attrs)
375 {
376 /* If everything is the default, we can just clear the attributes. */
377 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
378 {
379 MEM_ATTRS (mem) = 0;
380 return;
381 }
382
383 if (!MEM_ATTRS (mem)
384 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
385 {
386 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
387 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
388 }
389 }
390
391 /* Returns a hash code for X (which is a really a reg_attrs *). */
392
393 hashval_t
394 reg_attr_hasher::hash (reg_attrs *x)
395 {
396 const reg_attrs *const p = x;
397
398 inchash::hash h;
399 h.add_ptr (p->decl);
400 h.add_poly_hwi (p->offset);
401 return h.end ();
402 }
403
404 /* Returns nonzero if the value represented by X is the same as that given by
405 Y. */
406
407 bool
408 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
409 {
410 const reg_attrs *const p = x;
411 const reg_attrs *const q = y;
412
413 return (p->decl == q->decl && known_eq (p->offset, q->offset));
414 }
415 /* Allocate a new reg_attrs structure and insert it into the hash table if
416 one identical to it is not already in the table. We are doing this for
417 MEM of mode MODE. */
418
419 static reg_attrs *
420 get_reg_attrs (tree decl, poly_int64 offset)
421 {
422 reg_attrs attrs;
423
424 /* If everything is the default, we can just return zero. */
425 if (decl == 0 && known_eq (offset, 0))
426 return 0;
427
428 attrs.decl = decl;
429 attrs.offset = offset;
430
431 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
432 if (*slot == 0)
433 {
434 *slot = ggc_alloc<reg_attrs> ();
435 memcpy (*slot, &attrs, sizeof (reg_attrs));
436 }
437
438 return *slot;
439 }
440
441
442 #if !HAVE_blockage
443 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
444 and to block register equivalences to be seen across this insn. */
445
446 rtx
447 gen_blockage (void)
448 {
449 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
450 MEM_VOLATILE_P (x) = true;
451 return x;
452 }
453 #endif
454
455
456 /* Set the mode and register number of X to MODE and REGNO. */
457
458 void
459 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
460 {
461 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
462 ? hard_regno_nregs (regno, mode)
463 : 1);
464 PUT_MODE_RAW (x, mode);
465 set_regno_raw (x, regno, nregs);
466 }
467
468 /* Initialize a fresh REG rtx with mode MODE and register REGNO. */
469
470 rtx
471 init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
472 {
473 set_mode_and_regno (x, mode, regno);
474 REG_ATTRS (x) = NULL;
475 ORIGINAL_REGNO (x) = regno;
476 return x;
477 }
478
479 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
480 don't attempt to share with the various global pieces of rtl (such as
481 frame_pointer_rtx). */
482
483 rtx
484 gen_raw_REG (machine_mode mode, unsigned int regno)
485 {
486 rtx x = rtx_alloc (REG MEM_STAT_INFO);
487 init_raw_REG (x, mode, regno);
488 return x;
489 }
490
491 /* There are some RTL codes that require special attention; the generation
492 functions do the raw handling. If you add to this list, modify
493 special_rtx in gengenrtl.c as well. */
494
495 rtx_expr_list *
496 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
497 {
498 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
499 expr_list));
500 }
501
502 rtx_insn_list *
503 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
504 {
505 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
506 insn_list));
507 }
508
509 rtx_insn *
510 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
511 basic_block bb, rtx pattern, int location, int code,
512 rtx reg_notes)
513 {
514 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
515 prev_insn, next_insn,
516 bb, pattern, location, code,
517 reg_notes));
518 }
519
520 rtx
521 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
522 {
523 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
524 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
525
526 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
527 if (const_true_rtx && arg == STORE_FLAG_VALUE)
528 return const_true_rtx;
529 #endif
530
531 /* Look up the CONST_INT in the hash table. */
532 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
533 INSERT);
534 if (*slot == 0)
535 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
536
537 return *slot;
538 }
539
540 rtx
541 gen_int_mode (poly_int64 c, machine_mode mode)
542 {
543 c = trunc_int_for_mode (c, mode);
544 if (c.is_constant ())
545 return GEN_INT (c.coeffs[0]);
546 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
547 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
548 }
549
550 /* CONST_DOUBLEs might be created from pairs of integers, or from
551 REAL_VALUE_TYPEs. Also, their length is known only at run time,
552 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
553
554 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
555 hash table. If so, return its counterpart; otherwise add it
556 to the hash table and return it. */
557 static rtx
558 lookup_const_double (rtx real)
559 {
560 rtx *slot = const_double_htab->find_slot (real, INSERT);
561 if (*slot == 0)
562 *slot = real;
563
564 return *slot;
565 }
566
567 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
568 VALUE in mode MODE. */
569 rtx
570 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
571 {
572 rtx real = rtx_alloc (CONST_DOUBLE);
573 PUT_MODE (real, mode);
574
575 real->u.rv = value;
576
577 return lookup_const_double (real);
578 }
579
580 /* Determine whether FIXED, a CONST_FIXED, already exists in the
581 hash table. If so, return its counterpart; otherwise add it
582 to the hash table and return it. */
583
584 static rtx
585 lookup_const_fixed (rtx fixed)
586 {
587 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
588 if (*slot == 0)
589 *slot = fixed;
590
591 return *slot;
592 }
593
594 /* Return a CONST_FIXED rtx for a fixed-point value specified by
595 VALUE in mode MODE. */
596
597 rtx
598 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
599 {
600 rtx fixed = rtx_alloc (CONST_FIXED);
601 PUT_MODE (fixed, mode);
602
603 fixed->u.fv = value;
604
605 return lookup_const_fixed (fixed);
606 }
607
608 #if TARGET_SUPPORTS_WIDE_INT == 0
609 /* Constructs double_int from rtx CST. */
610
611 double_int
612 rtx_to_double_int (const_rtx cst)
613 {
614 double_int r;
615
616 if (CONST_INT_P (cst))
617 r = double_int::from_shwi (INTVAL (cst));
618 else if (CONST_DOUBLE_AS_INT_P (cst))
619 {
620 r.low = CONST_DOUBLE_LOW (cst);
621 r.high = CONST_DOUBLE_HIGH (cst);
622 }
623 else
624 gcc_unreachable ();
625
626 return r;
627 }
628 #endif
629
630 #if TARGET_SUPPORTS_WIDE_INT
631 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
632 If so, return its counterpart; otherwise add it to the hash table and
633 return it. */
634
635 static rtx
636 lookup_const_wide_int (rtx wint)
637 {
638 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
639 if (*slot == 0)
640 *slot = wint;
641
642 return *slot;
643 }
644 #endif
645
646 /* Return an rtx constant for V, given that the constant has mode MODE.
647 The returned rtx will be a CONST_INT if V fits, otherwise it will be
648 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
649 (if TARGET_SUPPORTS_WIDE_INT). */
650
651 static rtx
652 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
653 {
654 unsigned int len = v.get_len ();
655 /* Not scalar_int_mode because we also allow pointer bound modes. */
656 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
657
658 /* Allow truncation but not extension since we do not know if the
659 number is signed or unsigned. */
660 gcc_assert (prec <= v.get_precision ());
661
662 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
663 return gen_int_mode (v.elt (0), mode);
664
665 #if TARGET_SUPPORTS_WIDE_INT
666 {
667 unsigned int i;
668 rtx value;
669 unsigned int blocks_needed
670 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
671
672 if (len > blocks_needed)
673 len = blocks_needed;
674
675 value = const_wide_int_alloc (len);
676
677 /* It is so tempting to just put the mode in here. Must control
678 myself ... */
679 PUT_MODE (value, VOIDmode);
680 CWI_PUT_NUM_ELEM (value, len);
681
682 for (i = 0; i < len; i++)
683 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
684
685 return lookup_const_wide_int (value);
686 }
687 #else
688 return immed_double_const (v.elt (0), v.elt (1), mode);
689 #endif
690 }
691
692 #if TARGET_SUPPORTS_WIDE_INT == 0
693 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
694 of ints: I0 is the low-order word and I1 is the high-order word.
695 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
696 implied upper bits are copies of the high bit of i1. The value
697 itself is neither signed nor unsigned. Do not use this routine for
698 non-integer modes; convert to REAL_VALUE_TYPE and use
699 const_double_from_real_value. */
700
701 rtx
702 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
703 {
704 rtx value;
705 unsigned int i;
706
707 /* There are the following cases (note that there are no modes with
708 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
709
710 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
711 gen_int_mode.
712 2) If the value of the integer fits into HOST_WIDE_INT anyway
713 (i.e., i1 consists only from copies of the sign bit, and sign
714 of i0 and i1 are the same), then we return a CONST_INT for i0.
715 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
716 scalar_mode smode;
717 if (is_a <scalar_mode> (mode, &smode)
718 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
719 return gen_int_mode (i0, mode);
720
721 /* If this integer fits in one word, return a CONST_INT. */
722 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
723 return GEN_INT (i0);
724
725 /* We use VOIDmode for integers. */
726 value = rtx_alloc (CONST_DOUBLE);
727 PUT_MODE (value, VOIDmode);
728
729 CONST_DOUBLE_LOW (value) = i0;
730 CONST_DOUBLE_HIGH (value) = i1;
731
732 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
733 XWINT (value, i) = 0;
734
735 return lookup_const_double (value);
736 }
737 #endif
738
739 /* Return an rtx representation of C in mode MODE. */
740
741 rtx
742 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
743 {
744 if (c.is_constant ())
745 return immed_wide_int_const_1 (c.coeffs[0], mode);
746
747 /* Not scalar_int_mode because we also allow pointer bound modes. */
748 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
749
750 /* Allow truncation but not extension since we do not know if the
751 number is signed or unsigned. */
752 gcc_assert (prec <= c.coeffs[0].get_precision ());
753 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
754
755 /* See whether we already have an rtx for this constant. */
756 inchash::hash h;
757 h.add_int (mode);
758 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
759 h.add_wide_int (newc.coeffs[i]);
760 const_poly_int_hasher::compare_type typed_value (mode, newc);
761 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
762 h.end (), INSERT);
763 rtx x = *slot;
764 if (x)
765 return x;
766
767 /* Create a new rtx. There's a choice to be made here between installing
768 the actual mode of the rtx or leaving it as VOIDmode (for consistency
769 with CONST_INT). In practice the handling of the codes is different
770 enough that we get no benefit from using VOIDmode, and various places
771 assume that VOIDmode implies CONST_INT. Using the real mode seems like
772 the right long-term direction anyway. */
773 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
774 size_t extra_size = twi::extra_size (prec);
775 x = rtx_alloc_v (CONST_POLY_INT,
776 sizeof (struct const_poly_int_def) + extra_size);
777 PUT_MODE (x, mode);
778 CONST_POLY_INT_COEFFS (x).set_precision (prec);
779 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
780 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
781
782 *slot = x;
783 return x;
784 }
785
786 rtx
787 gen_rtx_REG (machine_mode mode, unsigned int regno)
788 {
789 /* In case the MD file explicitly references the frame pointer, have
790 all such references point to the same frame pointer. This is
791 used during frame pointer elimination to distinguish the explicit
792 references to these registers from pseudos that happened to be
793 assigned to them.
794
795 If we have eliminated the frame pointer or arg pointer, we will
796 be using it as a normal register, for example as a spill
797 register. In such cases, we might be accessing it in a mode that
798 is not Pmode and therefore cannot use the pre-allocated rtx.
799
800 Also don't do this when we are making new REGs in reload, since
801 we don't want to get confused with the real pointers. */
802
803 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
804 {
805 if (regno == FRAME_POINTER_REGNUM
806 && (!reload_completed || frame_pointer_needed))
807 return frame_pointer_rtx;
808
809 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
810 && regno == HARD_FRAME_POINTER_REGNUM
811 && (!reload_completed || frame_pointer_needed))
812 return hard_frame_pointer_rtx;
813 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
814 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
815 && regno == ARG_POINTER_REGNUM)
816 return arg_pointer_rtx;
817 #endif
818 #ifdef RETURN_ADDRESS_POINTER_REGNUM
819 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
820 return return_address_pointer_rtx;
821 #endif
822 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
823 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
824 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
825 return pic_offset_table_rtx;
826 if (regno == STACK_POINTER_REGNUM)
827 return stack_pointer_rtx;
828 }
829
830 #if 0
831 /* If the per-function register table has been set up, try to re-use
832 an existing entry in that table to avoid useless generation of RTL.
833
834 This code is disabled for now until we can fix the various backends
835 which depend on having non-shared hard registers in some cases. Long
836 term we want to re-enable this code as it can significantly cut down
837 on the amount of useless RTL that gets generated.
838
839 We'll also need to fix some code that runs after reload that wants to
840 set ORIGINAL_REGNO. */
841
842 if (cfun
843 && cfun->emit
844 && regno_reg_rtx
845 && regno < FIRST_PSEUDO_REGISTER
846 && reg_raw_mode[regno] == mode)
847 return regno_reg_rtx[regno];
848 #endif
849
850 return gen_raw_REG (mode, regno);
851 }
852
853 rtx
854 gen_rtx_MEM (machine_mode mode, rtx addr)
855 {
856 rtx rt = gen_rtx_raw_MEM (mode, addr);
857
858 /* This field is not cleared by the mere allocation of the rtx, so
859 we clear it here. */
860 MEM_ATTRS (rt) = 0;
861
862 return rt;
863 }
864
865 /* Generate a memory referring to non-trapping constant memory. */
866
867 rtx
868 gen_const_mem (machine_mode mode, rtx addr)
869 {
870 rtx mem = gen_rtx_MEM (mode, addr);
871 MEM_READONLY_P (mem) = 1;
872 MEM_NOTRAP_P (mem) = 1;
873 return mem;
874 }
875
876 /* Generate a MEM referring to fixed portions of the frame, e.g., register
877 save areas. */
878
879 rtx
880 gen_frame_mem (machine_mode mode, rtx addr)
881 {
882 rtx mem = gen_rtx_MEM (mode, addr);
883 MEM_NOTRAP_P (mem) = 1;
884 set_mem_alias_set (mem, get_frame_alias_set ());
885 return mem;
886 }
887
888 /* Generate a MEM referring to a temporary use of the stack, not part
889 of the fixed stack frame. For example, something which is pushed
890 by a target splitter. */
891 rtx
892 gen_tmp_stack_mem (machine_mode mode, rtx addr)
893 {
894 rtx mem = gen_rtx_MEM (mode, addr);
895 MEM_NOTRAP_P (mem) = 1;
896 if (!cfun->calls_alloca)
897 set_mem_alias_set (mem, get_frame_alias_set ());
898 return mem;
899 }
900
901 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
902 this construct would be valid, and false otherwise. */
903
904 bool
905 validate_subreg (machine_mode omode, machine_mode imode,
906 const_rtx reg, poly_uint64 offset)
907 {
908 poly_uint64 isize = GET_MODE_SIZE (imode);
909 poly_uint64 osize = GET_MODE_SIZE (omode);
910
911 /* The sizes must be ordered, so that we know whether the subreg
912 is partial, paradoxical or complete. */
913 if (!ordered_p (isize, osize))
914 return false;
915
916 /* All subregs must be aligned. */
917 if (!multiple_p (offset, osize))
918 return false;
919
920 /* The subreg offset cannot be outside the inner object. */
921 if (maybe_ge (offset, isize))
922 return false;
923
924 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
925
926 /* ??? This should not be here. Temporarily continue to allow word_mode
927 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
928 Generally, backends are doing something sketchy but it'll take time to
929 fix them all. */
930 if (omode == word_mode)
931 ;
932 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
933 is the culprit here, and not the backends. */
934 else if (known_ge (osize, regsize) && known_ge (isize, osize))
935 ;
936 /* Allow component subregs of complex and vector. Though given the below
937 extraction rules, it's not always clear what that means. */
938 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
939 && GET_MODE_INNER (imode) == omode)
940 ;
941 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
942 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
943 surely isn't the cleanest way to represent this. It's questionable
944 if this ought to be represented at all -- why can't this all be hidden
945 in post-reload splitters that make arbitrarily mode changes to the
946 registers themselves. */
947 else if (VECTOR_MODE_P (omode)
948 && GET_MODE_INNER (omode) == GET_MODE_INNER (imode))
949 ;
950 /* Subregs involving floating point modes are not allowed to
951 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
952 (subreg:SI (reg:DF) 0) isn't. */
953 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
954 {
955 if (! (known_eq (isize, osize)
956 /* LRA can use subreg to store a floating point value in
957 an integer mode. Although the floating point and the
958 integer modes need the same number of hard registers,
959 the size of floating point mode can be less than the
960 integer mode. LRA also uses subregs for a register
961 should be used in different mode in on insn. */
962 || lra_in_progress))
963 return false;
964 }
965
966 /* Paradoxical subregs must have offset zero. */
967 if (maybe_gt (osize, isize))
968 return known_eq (offset, 0U);
969
970 /* This is a normal subreg. Verify that the offset is representable. */
971
972 /* For hard registers, we already have most of these rules collected in
973 subreg_offset_representable_p. */
974 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
975 {
976 unsigned int regno = REGNO (reg);
977
978 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
979 && GET_MODE_INNER (imode) == omode)
980 ;
981 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
982 return false;
983
984 return subreg_offset_representable_p (regno, imode, offset, omode);
985 }
986
987 /* The outer size must be ordered wrt the register size, otherwise
988 we wouldn't know at compile time how many registers the outer
989 mode occupies. */
990 if (!ordered_p (osize, regsize))
991 return false;
992
993 /* For pseudo registers, we want most of the same checks. Namely:
994
995 Assume that the pseudo register will be allocated to hard registers
996 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
997 the remainder must correspond to the lowpart of the containing hard
998 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
999 otherwise it is at the lowest offset.
1000
1001 Given that we've already checked the mode and offset alignment,
1002 we only have to check subblock subregs here. */
1003 if (maybe_lt (osize, regsize)
1004 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
1005 {
1006 /* It is invalid for the target to pick a register size for a mode
1007 that isn't ordered wrt to the size of that mode. */
1008 poly_uint64 block_size = ordered_min (isize, regsize);
1009 unsigned int start_reg;
1010 poly_uint64 offset_within_reg;
1011 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1012 || (BYTES_BIG_ENDIAN
1013 ? maybe_ne (offset_within_reg, block_size - osize)
1014 : maybe_ne (offset_within_reg, 0U)))
1015 return false;
1016 }
1017 return true;
1018 }
1019
1020 rtx
1021 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1022 {
1023 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1024 return gen_rtx_raw_SUBREG (mode, reg, offset);
1025 }
1026
1027 /* Generate a SUBREG representing the least-significant part of REG if MODE
1028 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1029
1030 rtx
1031 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1032 {
1033 machine_mode inmode;
1034
1035 inmode = GET_MODE (reg);
1036 if (inmode == VOIDmode)
1037 inmode = mode;
1038 return gen_rtx_SUBREG (mode, reg,
1039 subreg_lowpart_offset (mode, inmode));
1040 }
1041
1042 rtx
1043 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1044 enum var_init_status status)
1045 {
1046 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1047 PAT_VAR_LOCATION_STATUS (x) = status;
1048 return x;
1049 }
1050 \f
1051
1052 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1053
1054 rtvec
1055 gen_rtvec (int n, ...)
1056 {
1057 int i;
1058 rtvec rt_val;
1059 va_list p;
1060
1061 va_start (p, n);
1062
1063 /* Don't allocate an empty rtvec... */
1064 if (n == 0)
1065 {
1066 va_end (p);
1067 return NULL_RTVEC;
1068 }
1069
1070 rt_val = rtvec_alloc (n);
1071
1072 for (i = 0; i < n; i++)
1073 rt_val->elem[i] = va_arg (p, rtx);
1074
1075 va_end (p);
1076 return rt_val;
1077 }
1078
1079 rtvec
1080 gen_rtvec_v (int n, rtx *argp)
1081 {
1082 int i;
1083 rtvec rt_val;
1084
1085 /* Don't allocate an empty rtvec... */
1086 if (n == 0)
1087 return NULL_RTVEC;
1088
1089 rt_val = rtvec_alloc (n);
1090
1091 for (i = 0; i < n; i++)
1092 rt_val->elem[i] = *argp++;
1093
1094 return rt_val;
1095 }
1096
1097 rtvec
1098 gen_rtvec_v (int n, rtx_insn **argp)
1099 {
1100 int i;
1101 rtvec rt_val;
1102
1103 /* Don't allocate an empty rtvec... */
1104 if (n == 0)
1105 return NULL_RTVEC;
1106
1107 rt_val = rtvec_alloc (n);
1108
1109 for (i = 0; i < n; i++)
1110 rt_val->elem[i] = *argp++;
1111
1112 return rt_val;
1113 }
1114
1115 \f
1116 /* Return the number of bytes between the start of an OUTER_MODE
1117 in-memory value and the start of an INNER_MODE in-memory value,
1118 given that the former is a lowpart of the latter. It may be a
1119 paradoxical lowpart, in which case the offset will be negative
1120 on big-endian targets. */
1121
1122 poly_int64
1123 byte_lowpart_offset (machine_mode outer_mode,
1124 machine_mode inner_mode)
1125 {
1126 if (paradoxical_subreg_p (outer_mode, inner_mode))
1127 return -subreg_lowpart_offset (inner_mode, outer_mode);
1128 else
1129 return subreg_lowpart_offset (outer_mode, inner_mode);
1130 }
1131
1132 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1133 from address X. For paradoxical big-endian subregs this is a
1134 negative value, otherwise it's the same as OFFSET. */
1135
1136 poly_int64
1137 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1138 poly_uint64 offset)
1139 {
1140 if (paradoxical_subreg_p (outer_mode, inner_mode))
1141 {
1142 gcc_assert (known_eq (offset, 0U));
1143 return -subreg_lowpart_offset (inner_mode, outer_mode);
1144 }
1145 return offset;
1146 }
1147
1148 /* As above, but return the offset that existing subreg X would have
1149 if SUBREG_REG (X) were stored in memory. The only significant thing
1150 about the current SUBREG_REG is its mode. */
1151
1152 poly_int64
1153 subreg_memory_offset (const_rtx x)
1154 {
1155 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1156 SUBREG_BYTE (x));
1157 }
1158 \f
1159 /* Generate a REG rtx for a new pseudo register of mode MODE.
1160 This pseudo is assigned the next sequential register number. */
1161
1162 rtx
1163 gen_reg_rtx (machine_mode mode)
1164 {
1165 rtx val;
1166 unsigned int align = GET_MODE_ALIGNMENT (mode);
1167
1168 gcc_assert (can_create_pseudo_p ());
1169
1170 /* If a virtual register with bigger mode alignment is generated,
1171 increase stack alignment estimation because it might be spilled
1172 to stack later. */
1173 if (SUPPORTS_STACK_ALIGNMENT
1174 && crtl->stack_alignment_estimated < align
1175 && !crtl->stack_realign_processed)
1176 {
1177 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1178 if (crtl->stack_alignment_estimated < min_align)
1179 crtl->stack_alignment_estimated = min_align;
1180 }
1181
1182 if (generating_concat_p
1183 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1184 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1185 {
1186 /* For complex modes, don't make a single pseudo.
1187 Instead, make a CONCAT of two pseudos.
1188 This allows noncontiguous allocation of the real and imaginary parts,
1189 which makes much better code. Besides, allocating DCmode
1190 pseudos overstrains reload on some machines like the 386. */
1191 rtx realpart, imagpart;
1192 machine_mode partmode = GET_MODE_INNER (mode);
1193
1194 realpart = gen_reg_rtx (partmode);
1195 imagpart = gen_reg_rtx (partmode);
1196 return gen_rtx_CONCAT (mode, realpart, imagpart);
1197 }
1198
1199 /* Do not call gen_reg_rtx with uninitialized crtl. */
1200 gcc_assert (crtl->emit.regno_pointer_align_length);
1201
1202 crtl->emit.ensure_regno_capacity ();
1203 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1204
1205 val = gen_raw_REG (mode, reg_rtx_no);
1206 regno_reg_rtx[reg_rtx_no++] = val;
1207 return val;
1208 }
1209
1210 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1211 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1212
1213 void
1214 emit_status::ensure_regno_capacity ()
1215 {
1216 int old_size = regno_pointer_align_length;
1217
1218 if (reg_rtx_no < old_size)
1219 return;
1220
1221 int new_size = old_size * 2;
1222 while (reg_rtx_no >= new_size)
1223 new_size *= 2;
1224
1225 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1226 memset (tmp + old_size, 0, new_size - old_size);
1227 regno_pointer_align = (unsigned char *) tmp;
1228
1229 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1230 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1231 regno_reg_rtx = new1;
1232
1233 crtl->emit.regno_pointer_align_length = new_size;
1234 }
1235
1236 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1237
1238 bool
1239 reg_is_parm_p (rtx reg)
1240 {
1241 tree decl;
1242
1243 gcc_assert (REG_P (reg));
1244 decl = REG_EXPR (reg);
1245 return (decl && TREE_CODE (decl) == PARM_DECL);
1246 }
1247
1248 /* Update NEW with the same attributes as REG, but with OFFSET added
1249 to the REG_OFFSET. */
1250
1251 static void
1252 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1253 {
1254 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1255 REG_OFFSET (reg) + offset);
1256 }
1257
1258 /* Generate a register with same attributes as REG, but with OFFSET
1259 added to the REG_OFFSET. */
1260
1261 rtx
1262 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1263 poly_int64 offset)
1264 {
1265 rtx new_rtx = gen_rtx_REG (mode, regno);
1266
1267 update_reg_offset (new_rtx, reg, offset);
1268 return new_rtx;
1269 }
1270
1271 /* Generate a new pseudo-register with the same attributes as REG, but
1272 with OFFSET added to the REG_OFFSET. */
1273
1274 rtx
1275 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1276 {
1277 rtx new_rtx = gen_reg_rtx (mode);
1278
1279 update_reg_offset (new_rtx, reg, offset);
1280 return new_rtx;
1281 }
1282
1283 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1284 new register is a (possibly paradoxical) lowpart of the old one. */
1285
1286 void
1287 adjust_reg_mode (rtx reg, machine_mode mode)
1288 {
1289 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1290 PUT_MODE (reg, mode);
1291 }
1292
1293 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1294 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1295
1296 void
1297 set_reg_attrs_from_value (rtx reg, rtx x)
1298 {
1299 poly_int64 offset;
1300 bool can_be_reg_pointer = true;
1301
1302 /* Don't call mark_reg_pointer for incompatible pointer sign
1303 extension. */
1304 while (GET_CODE (x) == SIGN_EXTEND
1305 || GET_CODE (x) == ZERO_EXTEND
1306 || GET_CODE (x) == TRUNCATE
1307 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1308 {
1309 #if defined(POINTERS_EXTEND_UNSIGNED)
1310 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1311 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1312 || (paradoxical_subreg_p (x)
1313 && ! (SUBREG_PROMOTED_VAR_P (x)
1314 && SUBREG_CHECK_PROMOTED_SIGN (x,
1315 POINTERS_EXTEND_UNSIGNED))))
1316 && !targetm.have_ptr_extend ())
1317 can_be_reg_pointer = false;
1318 #endif
1319 x = XEXP (x, 0);
1320 }
1321
1322 /* Hard registers can be reused for multiple purposes within the same
1323 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1324 on them is wrong. */
1325 if (HARD_REGISTER_P (reg))
1326 return;
1327
1328 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1329 if (MEM_P (x))
1330 {
1331 if (MEM_OFFSET_KNOWN_P (x))
1332 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1333 MEM_OFFSET (x) + offset);
1334 if (can_be_reg_pointer && MEM_POINTER (x))
1335 mark_reg_pointer (reg, 0);
1336 }
1337 else if (REG_P (x))
1338 {
1339 if (REG_ATTRS (x))
1340 update_reg_offset (reg, x, offset);
1341 if (can_be_reg_pointer && REG_POINTER (x))
1342 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1343 }
1344 }
1345
1346 /* Generate a REG rtx for a new pseudo register, copying the mode
1347 and attributes from X. */
1348
1349 rtx
1350 gen_reg_rtx_and_attrs (rtx x)
1351 {
1352 rtx reg = gen_reg_rtx (GET_MODE (x));
1353 set_reg_attrs_from_value (reg, x);
1354 return reg;
1355 }
1356
1357 /* Set the register attributes for registers contained in PARM_RTX.
1358 Use needed values from memory attributes of MEM. */
1359
1360 void
1361 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1362 {
1363 if (REG_P (parm_rtx))
1364 set_reg_attrs_from_value (parm_rtx, mem);
1365 else if (GET_CODE (parm_rtx) == PARALLEL)
1366 {
1367 /* Check for a NULL entry in the first slot, used to indicate that the
1368 parameter goes both on the stack and in registers. */
1369 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1370 for (; i < XVECLEN (parm_rtx, 0); i++)
1371 {
1372 rtx x = XVECEXP (parm_rtx, 0, i);
1373 if (REG_P (XEXP (x, 0)))
1374 REG_ATTRS (XEXP (x, 0))
1375 = get_reg_attrs (MEM_EXPR (mem),
1376 INTVAL (XEXP (x, 1)));
1377 }
1378 }
1379 }
1380
1381 /* Set the REG_ATTRS for registers in value X, given that X represents
1382 decl T. */
1383
1384 void
1385 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1386 {
1387 if (!t)
1388 return;
1389 tree tdecl = t;
1390 if (GET_CODE (x) == SUBREG)
1391 {
1392 gcc_assert (subreg_lowpart_p (x));
1393 x = SUBREG_REG (x);
1394 }
1395 if (REG_P (x))
1396 REG_ATTRS (x)
1397 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1398 DECL_P (tdecl)
1399 ? DECL_MODE (tdecl)
1400 : TYPE_MODE (TREE_TYPE (tdecl))));
1401 if (GET_CODE (x) == CONCAT)
1402 {
1403 if (REG_P (XEXP (x, 0)))
1404 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1405 if (REG_P (XEXP (x, 1)))
1406 REG_ATTRS (XEXP (x, 1))
1407 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1408 }
1409 if (GET_CODE (x) == PARALLEL)
1410 {
1411 int i, start;
1412
1413 /* Check for a NULL entry, used to indicate that the parameter goes
1414 both on the stack and in registers. */
1415 if (XEXP (XVECEXP (x, 0, 0), 0))
1416 start = 0;
1417 else
1418 start = 1;
1419
1420 for (i = start; i < XVECLEN (x, 0); i++)
1421 {
1422 rtx y = XVECEXP (x, 0, i);
1423 if (REG_P (XEXP (y, 0)))
1424 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1425 }
1426 }
1427 }
1428
1429 /* Assign the RTX X to declaration T. */
1430
1431 void
1432 set_decl_rtl (tree t, rtx x)
1433 {
1434 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1435 if (x)
1436 set_reg_attrs_for_decl_rtl (t, x);
1437 }
1438
1439 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1440 if the ABI requires the parameter to be passed by reference. */
1441
1442 void
1443 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1444 {
1445 DECL_INCOMING_RTL (t) = x;
1446 if (x && !by_reference_p)
1447 set_reg_attrs_for_decl_rtl (t, x);
1448 }
1449
1450 /* Identify REG (which may be a CONCAT) as a user register. */
1451
1452 void
1453 mark_user_reg (rtx reg)
1454 {
1455 if (GET_CODE (reg) == CONCAT)
1456 {
1457 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1458 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1459 }
1460 else
1461 {
1462 gcc_assert (REG_P (reg));
1463 REG_USERVAR_P (reg) = 1;
1464 }
1465 }
1466
1467 /* Identify REG as a probable pointer register and show its alignment
1468 as ALIGN, if nonzero. */
1469
1470 void
1471 mark_reg_pointer (rtx reg, int align)
1472 {
1473 if (! REG_POINTER (reg))
1474 {
1475 REG_POINTER (reg) = 1;
1476
1477 if (align)
1478 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1479 }
1480 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1481 /* We can no-longer be sure just how aligned this pointer is. */
1482 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1483 }
1484
1485 /* Return 1 plus largest pseudo reg number used in the current function. */
1486
1487 int
1488 max_reg_num (void)
1489 {
1490 return reg_rtx_no;
1491 }
1492
1493 /* Return 1 + the largest label number used so far in the current function. */
1494
1495 int
1496 max_label_num (void)
1497 {
1498 return label_num;
1499 }
1500
1501 /* Return first label number used in this function (if any were used). */
1502
1503 int
1504 get_first_label_num (void)
1505 {
1506 return first_label_num;
1507 }
1508
1509 /* If the rtx for label was created during the expansion of a nested
1510 function, then first_label_num won't include this label number.
1511 Fix this now so that array indices work later. */
1512
1513 void
1514 maybe_set_first_label_num (rtx_code_label *x)
1515 {
1516 if (CODE_LABEL_NUMBER (x) < first_label_num)
1517 first_label_num = CODE_LABEL_NUMBER (x);
1518 }
1519
1520 /* For use by the RTL function loader, when mingling with normal
1521 functions.
1522 Ensure that label_num is greater than the label num of X, to avoid
1523 duplicate labels in the generated assembler. */
1524
1525 void
1526 maybe_set_max_label_num (rtx_code_label *x)
1527 {
1528 if (CODE_LABEL_NUMBER (x) >= label_num)
1529 label_num = CODE_LABEL_NUMBER (x) + 1;
1530 }
1531
1532 \f
1533 /* Return a value representing some low-order bits of X, where the number
1534 of low-order bits is given by MODE. Note that no conversion is done
1535 between floating-point and fixed-point values, rather, the bit
1536 representation is returned.
1537
1538 This function handles the cases in common between gen_lowpart, below,
1539 and two variants in cse.c and combine.c. These are the cases that can
1540 be safely handled at all points in the compilation.
1541
1542 If this is not a case we can handle, return 0. */
1543
1544 rtx
1545 gen_lowpart_common (machine_mode mode, rtx x)
1546 {
1547 poly_uint64 msize = GET_MODE_SIZE (mode);
1548 machine_mode innermode;
1549
1550 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1551 so we have to make one up. Yuk. */
1552 innermode = GET_MODE (x);
1553 if (CONST_INT_P (x)
1554 && known_le (msize * BITS_PER_UNIT,
1555 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1556 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1557 else if (innermode == VOIDmode)
1558 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1559
1560 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1561
1562 if (innermode == mode)
1563 return x;
1564
1565 /* The size of the outer and inner modes must be ordered. */
1566 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1567 if (!ordered_p (msize, xsize))
1568 return 0;
1569
1570 if (SCALAR_FLOAT_MODE_P (mode))
1571 {
1572 /* Don't allow paradoxical FLOAT_MODE subregs. */
1573 if (maybe_gt (msize, xsize))
1574 return 0;
1575 }
1576 else
1577 {
1578 /* MODE must occupy no more of the underlying registers than X. */
1579 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1580 unsigned int mregs, xregs;
1581 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1582 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1583 || mregs > xregs)
1584 return 0;
1585 }
1586
1587 scalar_int_mode int_mode, int_innermode, from_mode;
1588 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1589 && is_a <scalar_int_mode> (mode, &int_mode)
1590 && is_a <scalar_int_mode> (innermode, &int_innermode)
1591 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1592 {
1593 /* If we are getting the low-order part of something that has been
1594 sign- or zero-extended, we can either just use the object being
1595 extended or make a narrower extension. If we want an even smaller
1596 piece than the size of the object being extended, call ourselves
1597 recursively.
1598
1599 This case is used mostly by combine and cse. */
1600
1601 if (from_mode == int_mode)
1602 return XEXP (x, 0);
1603 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1604 return gen_lowpart_common (int_mode, XEXP (x, 0));
1605 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1606 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1607 }
1608 else if (GET_CODE (x) == SUBREG || REG_P (x)
1609 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1610 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1611 || CONST_POLY_INT_P (x))
1612 return lowpart_subreg (mode, x, innermode);
1613
1614 /* Otherwise, we can't do this. */
1615 return 0;
1616 }
1617 \f
1618 rtx
1619 gen_highpart (machine_mode mode, rtx x)
1620 {
1621 poly_uint64 msize = GET_MODE_SIZE (mode);
1622 rtx result;
1623
1624 /* This case loses if X is a subreg. To catch bugs early,
1625 complain if an invalid MODE is used even in other cases. */
1626 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1627 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1628
1629 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1630 subreg_highpart_offset (mode, GET_MODE (x)));
1631 gcc_assert (result);
1632
1633 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1634 the target if we have a MEM. gen_highpart must return a valid operand,
1635 emitting code if necessary to do so. */
1636 if (MEM_P (result))
1637 {
1638 result = validize_mem (result);
1639 gcc_assert (result);
1640 }
1641
1642 return result;
1643 }
1644
1645 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1646 be VOIDmode constant. */
1647 rtx
1648 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1649 {
1650 if (GET_MODE (exp) != VOIDmode)
1651 {
1652 gcc_assert (GET_MODE (exp) == innermode);
1653 return gen_highpart (outermode, exp);
1654 }
1655 return simplify_gen_subreg (outermode, exp, innermode,
1656 subreg_highpart_offset (outermode, innermode));
1657 }
1658
1659 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1660 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1661
1662 poly_uint64
1663 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1664 {
1665 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1666 if (maybe_gt (outer_bytes, inner_bytes))
1667 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1668 return 0;
1669
1670 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1671 return inner_bytes - outer_bytes;
1672 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1673 return 0;
1674 else
1675 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1676 }
1677
1678 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1679 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1680
1681 poly_uint64
1682 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1683 {
1684 gcc_assert (known_ge (inner_bytes, outer_bytes));
1685
1686 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1687 return 0;
1688 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1689 return inner_bytes - outer_bytes;
1690 else
1691 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1692 (inner_bytes - outer_bytes)
1693 * BITS_PER_UNIT);
1694 }
1695
1696 /* Return 1 iff X, assumed to be a SUBREG,
1697 refers to the least significant part of its containing reg.
1698 If X is not a SUBREG, always return 1 (it is its own low part!). */
1699
1700 int
1701 subreg_lowpart_p (const_rtx x)
1702 {
1703 if (GET_CODE (x) != SUBREG)
1704 return 1;
1705 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1706 return 0;
1707
1708 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1709 GET_MODE (SUBREG_REG (x))),
1710 SUBREG_BYTE (x));
1711 }
1712 \f
1713 /* Return subword OFFSET of operand OP.
1714 The word number, OFFSET, is interpreted as the word number starting
1715 at the low-order address. OFFSET 0 is the low-order word if not
1716 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1717
1718 If we cannot extract the required word, we return zero. Otherwise,
1719 an rtx corresponding to the requested word will be returned.
1720
1721 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1722 reload has completed, a valid address will always be returned. After
1723 reload, if a valid address cannot be returned, we return zero.
1724
1725 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1726 it is the responsibility of the caller.
1727
1728 MODE is the mode of OP in case it is a CONST_INT.
1729
1730 ??? This is still rather broken for some cases. The problem for the
1731 moment is that all callers of this thing provide no 'goal mode' to
1732 tell us to work with. This exists because all callers were written
1733 in a word based SUBREG world.
1734 Now use of this function can be deprecated by simplify_subreg in most
1735 cases.
1736 */
1737
1738 rtx
1739 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1740 machine_mode mode)
1741 {
1742 if (mode == VOIDmode)
1743 mode = GET_MODE (op);
1744
1745 gcc_assert (mode != VOIDmode);
1746
1747 /* If OP is narrower than a word, fail. */
1748 if (mode != BLKmode
1749 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1750 return 0;
1751
1752 /* If we want a word outside OP, return zero. */
1753 if (mode != BLKmode
1754 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1755 return const0_rtx;
1756
1757 /* Form a new MEM at the requested address. */
1758 if (MEM_P (op))
1759 {
1760 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1761
1762 if (! validate_address)
1763 return new_rtx;
1764
1765 else if (reload_completed)
1766 {
1767 if (! strict_memory_address_addr_space_p (word_mode,
1768 XEXP (new_rtx, 0),
1769 MEM_ADDR_SPACE (op)))
1770 return 0;
1771 }
1772 else
1773 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1774 }
1775
1776 /* Rest can be handled by simplify_subreg. */
1777 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1778 }
1779
1780 /* Similar to `operand_subword', but never return 0. If we can't
1781 extract the required subword, put OP into a register and try again.
1782 The second attempt must succeed. We always validate the address in
1783 this case.
1784
1785 MODE is the mode of OP, in case it is CONST_INT. */
1786
1787 rtx
1788 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1789 {
1790 rtx result = operand_subword (op, offset, 1, mode);
1791
1792 if (result)
1793 return result;
1794
1795 if (mode != BLKmode && mode != VOIDmode)
1796 {
1797 /* If this is a register which cannot be accessed by words, copy it
1798 to a pseudo register. */
1799 if (REG_P (op))
1800 op = copy_to_reg (op);
1801 else
1802 op = force_reg (mode, op);
1803 }
1804
1805 result = operand_subword (op, offset, 1, mode);
1806 gcc_assert (result);
1807
1808 return result;
1809 }
1810 \f
1811 mem_attrs::mem_attrs ()
1812 : expr (NULL_TREE),
1813 offset (0),
1814 size (0),
1815 alias (0),
1816 align (0),
1817 addrspace (ADDR_SPACE_GENERIC),
1818 offset_known_p (false),
1819 size_known_p (false)
1820 {}
1821
1822 /* Returns 1 if both MEM_EXPR can be considered equal
1823 and 0 otherwise. */
1824
1825 int
1826 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1827 {
1828 if (expr1 == expr2)
1829 return 1;
1830
1831 if (! expr1 || ! expr2)
1832 return 0;
1833
1834 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1835 return 0;
1836
1837 return operand_equal_p (expr1, expr2, 0);
1838 }
1839
1840 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1841 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1842 -1 if not known. */
1843
1844 int
1845 get_mem_align_offset (rtx mem, unsigned int align)
1846 {
1847 tree expr;
1848 poly_uint64 offset;
1849
1850 /* This function can't use
1851 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1852 || (MAX (MEM_ALIGN (mem),
1853 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1854 < align))
1855 return -1;
1856 else
1857 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1858 for two reasons:
1859 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1860 for <variable>. get_inner_reference doesn't handle it and
1861 even if it did, the alignment in that case needs to be determined
1862 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1863 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1864 isn't sufficiently aligned, the object it is in might be. */
1865 gcc_assert (MEM_P (mem));
1866 expr = MEM_EXPR (mem);
1867 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1868 return -1;
1869
1870 offset = MEM_OFFSET (mem);
1871 if (DECL_P (expr))
1872 {
1873 if (DECL_ALIGN (expr) < align)
1874 return -1;
1875 }
1876 else if (INDIRECT_REF_P (expr))
1877 {
1878 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1879 return -1;
1880 }
1881 else if (TREE_CODE (expr) == COMPONENT_REF)
1882 {
1883 while (1)
1884 {
1885 tree inner = TREE_OPERAND (expr, 0);
1886 tree field = TREE_OPERAND (expr, 1);
1887 tree byte_offset = component_ref_field_offset (expr);
1888 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1889
1890 poly_uint64 suboffset;
1891 if (!byte_offset
1892 || !poly_int_tree_p (byte_offset, &suboffset)
1893 || !tree_fits_uhwi_p (bit_offset))
1894 return -1;
1895
1896 offset += suboffset;
1897 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1898
1899 if (inner == NULL_TREE)
1900 {
1901 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1902 < (unsigned int) align)
1903 return -1;
1904 break;
1905 }
1906 else if (DECL_P (inner))
1907 {
1908 if (DECL_ALIGN (inner) < align)
1909 return -1;
1910 break;
1911 }
1912 else if (TREE_CODE (inner) != COMPONENT_REF)
1913 return -1;
1914 expr = inner;
1915 }
1916 }
1917 else
1918 return -1;
1919
1920 HOST_WIDE_INT misalign;
1921 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1922 return -1;
1923 return misalign;
1924 }
1925
1926 /* Given REF (a MEM) and T, either the type of X or the expression
1927 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1928 if we are making a new object of this type. BITPOS is nonzero if
1929 there is an offset outstanding on T that will be applied later. */
1930
1931 void
1932 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1933 poly_int64 bitpos)
1934 {
1935 poly_int64 apply_bitpos = 0;
1936 tree type;
1937 class mem_attrs attrs, *defattrs, *refattrs;
1938 addr_space_t as;
1939
1940 /* It can happen that type_for_mode was given a mode for which there
1941 is no language-level type. In which case it returns NULL, which
1942 we can see here. */
1943 if (t == NULL_TREE)
1944 return;
1945
1946 type = TYPE_P (t) ? t : TREE_TYPE (t);
1947 if (type == error_mark_node)
1948 return;
1949
1950 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1951 wrong answer, as it assumes that DECL_RTL already has the right alias
1952 info. Callers should not set DECL_RTL until after the call to
1953 set_mem_attributes. */
1954 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1955
1956 /* Get the alias set from the expression or type (perhaps using a
1957 front-end routine) and use it. */
1958 attrs.alias = get_alias_set (t);
1959
1960 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1961 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1962
1963 /* Default values from pre-existing memory attributes if present. */
1964 refattrs = MEM_ATTRS (ref);
1965 if (refattrs)
1966 {
1967 /* ??? Can this ever happen? Calling this routine on a MEM that
1968 already carries memory attributes should probably be invalid. */
1969 attrs.expr = refattrs->expr;
1970 attrs.offset_known_p = refattrs->offset_known_p;
1971 attrs.offset = refattrs->offset;
1972 attrs.size_known_p = refattrs->size_known_p;
1973 attrs.size = refattrs->size;
1974 attrs.align = refattrs->align;
1975 }
1976
1977 /* Otherwise, default values from the mode of the MEM reference. */
1978 else
1979 {
1980 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1981 gcc_assert (!defattrs->expr);
1982 gcc_assert (!defattrs->offset_known_p);
1983
1984 /* Respect mode size. */
1985 attrs.size_known_p = defattrs->size_known_p;
1986 attrs.size = defattrs->size;
1987 /* ??? Is this really necessary? We probably should always get
1988 the size from the type below. */
1989
1990 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1991 if T is an object, always compute the object alignment below. */
1992 if (TYPE_P (t))
1993 attrs.align = defattrs->align;
1994 else
1995 attrs.align = BITS_PER_UNIT;
1996 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1997 e.g. if the type carries an alignment attribute. Should we be
1998 able to simply always use TYPE_ALIGN? */
1999 }
2000
2001 /* We can set the alignment from the type if we are making an object or if
2002 this is an INDIRECT_REF. */
2003 if (objectp || TREE_CODE (t) == INDIRECT_REF)
2004 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
2005
2006 /* If the size is known, we can set that. */
2007 tree new_size = TYPE_SIZE_UNIT (type);
2008
2009 /* The address-space is that of the type. */
2010 as = TYPE_ADDR_SPACE (type);
2011
2012 /* If T is not a type, we may be able to deduce some more information about
2013 the expression. */
2014 if (! TYPE_P (t))
2015 {
2016 tree base;
2017
2018 if (TREE_THIS_VOLATILE (t))
2019 MEM_VOLATILE_P (ref) = 1;
2020
2021 /* Now remove any conversions: they don't change what the underlying
2022 object is. Likewise for SAVE_EXPR. */
2023 while (CONVERT_EXPR_P (t)
2024 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2025 || TREE_CODE (t) == SAVE_EXPR)
2026 t = TREE_OPERAND (t, 0);
2027
2028 /* Note whether this expression can trap. */
2029 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2030
2031 base = get_base_address (t);
2032 if (base)
2033 {
2034 if (DECL_P (base)
2035 && TREE_READONLY (base)
2036 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2037 && !TREE_THIS_VOLATILE (base))
2038 MEM_READONLY_P (ref) = 1;
2039
2040 /* Mark static const strings readonly as well. */
2041 if (TREE_CODE (base) == STRING_CST
2042 && TREE_READONLY (base)
2043 && TREE_STATIC (base))
2044 MEM_READONLY_P (ref) = 1;
2045
2046 /* Address-space information is on the base object. */
2047 if (TREE_CODE (base) == MEM_REF
2048 || TREE_CODE (base) == TARGET_MEM_REF)
2049 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2050 0))));
2051 else
2052 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2053 }
2054
2055 /* If this expression uses it's parent's alias set, mark it such
2056 that we won't change it. */
2057 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2058 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2059
2060 /* If this is a decl, set the attributes of the MEM from it. */
2061 if (DECL_P (t))
2062 {
2063 attrs.expr = t;
2064 attrs.offset_known_p = true;
2065 attrs.offset = 0;
2066 apply_bitpos = bitpos;
2067 new_size = DECL_SIZE_UNIT (t);
2068 }
2069
2070 /* ??? If we end up with a constant here do record a MEM_EXPR. */
2071 else if (CONSTANT_CLASS_P (t))
2072 ;
2073
2074 /* If this is a field reference, record it. */
2075 else if (TREE_CODE (t) == COMPONENT_REF)
2076 {
2077 attrs.expr = t;
2078 attrs.offset_known_p = true;
2079 attrs.offset = 0;
2080 apply_bitpos = bitpos;
2081 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2082 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2083 }
2084
2085 /* If this is an array reference, look for an outer field reference. */
2086 else if (TREE_CODE (t) == ARRAY_REF)
2087 {
2088 tree off_tree = size_zero_node;
2089 /* We can't modify t, because we use it at the end of the
2090 function. */
2091 tree t2 = t;
2092
2093 do
2094 {
2095 tree index = TREE_OPERAND (t2, 1);
2096 tree low_bound = array_ref_low_bound (t2);
2097 tree unit_size = array_ref_element_size (t2);
2098
2099 /* We assume all arrays have sizes that are a multiple of a byte.
2100 First subtract the lower bound, if any, in the type of the
2101 index, then convert to sizetype and multiply by the size of
2102 the array element. */
2103 if (! integer_zerop (low_bound))
2104 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2105 index, low_bound);
2106
2107 off_tree = size_binop (PLUS_EXPR,
2108 size_binop (MULT_EXPR,
2109 fold_convert (sizetype,
2110 index),
2111 unit_size),
2112 off_tree);
2113 t2 = TREE_OPERAND (t2, 0);
2114 }
2115 while (TREE_CODE (t2) == ARRAY_REF);
2116
2117 if (DECL_P (t2)
2118 || (TREE_CODE (t2) == COMPONENT_REF
2119 /* For trailing arrays t2 doesn't have a size that
2120 covers all valid accesses. */
2121 && ! array_at_struct_end_p (t)))
2122 {
2123 attrs.expr = t2;
2124 attrs.offset_known_p = false;
2125 if (poly_int_tree_p (off_tree, &attrs.offset))
2126 {
2127 attrs.offset_known_p = true;
2128 apply_bitpos = bitpos;
2129 }
2130 }
2131 /* Else do not record a MEM_EXPR. */
2132 }
2133
2134 /* If this is an indirect reference, record it. */
2135 else if (TREE_CODE (t) == MEM_REF
2136 || TREE_CODE (t) == TARGET_MEM_REF)
2137 {
2138 attrs.expr = t;
2139 attrs.offset_known_p = true;
2140 attrs.offset = 0;
2141 apply_bitpos = bitpos;
2142 }
2143
2144 /* If this is a reference based on a partitioned decl replace the
2145 base with a MEM_REF of the pointer representative we created
2146 during stack slot partitioning. */
2147 if (attrs.expr
2148 && VAR_P (base)
2149 && ! is_global_var (base)
2150 && cfun->gimple_df->decls_to_pointers != NULL)
2151 {
2152 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2153 if (namep)
2154 {
2155 attrs.expr = unshare_expr (attrs.expr);
2156 tree *orig_base = &attrs.expr;
2157 while (handled_component_p (*orig_base))
2158 orig_base = &TREE_OPERAND (*orig_base, 0);
2159 tree aptrt = reference_alias_ptr_type (*orig_base);
2160 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2161 build_int_cst (aptrt, 0));
2162 }
2163 }
2164
2165 /* Compute the alignment. */
2166 unsigned int obj_align;
2167 unsigned HOST_WIDE_INT obj_bitpos;
2168 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2169 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2170 if (diff_align != 0)
2171 obj_align = MIN (obj_align, diff_align);
2172 attrs.align = MAX (attrs.align, obj_align);
2173 }
2174
2175 poly_uint64 const_size;
2176 if (poly_int_tree_p (new_size, &const_size))
2177 {
2178 attrs.size_known_p = true;
2179 attrs.size = const_size;
2180 }
2181
2182 /* If we modified OFFSET based on T, then subtract the outstanding
2183 bit position offset. Similarly, increase the size of the accessed
2184 object to contain the negative offset. */
2185 if (maybe_ne (apply_bitpos, 0))
2186 {
2187 gcc_assert (attrs.offset_known_p);
2188 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2189 attrs.offset -= bytepos;
2190 if (attrs.size_known_p)
2191 attrs.size += bytepos;
2192 }
2193
2194 /* Now set the attributes we computed above. */
2195 attrs.addrspace = as;
2196 set_mem_attrs (ref, &attrs);
2197 }
2198
2199 void
2200 set_mem_attributes (rtx ref, tree t, int objectp)
2201 {
2202 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2203 }
2204
2205 /* Set the alias set of MEM to SET. */
2206
2207 void
2208 set_mem_alias_set (rtx mem, alias_set_type set)
2209 {
2210 /* If the new and old alias sets don't conflict, something is wrong. */
2211 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2212 mem_attrs attrs (*get_mem_attrs (mem));
2213 attrs.alias = set;
2214 set_mem_attrs (mem, &attrs);
2215 }
2216
2217 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2218
2219 void
2220 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2221 {
2222 mem_attrs attrs (*get_mem_attrs (mem));
2223 attrs.addrspace = addrspace;
2224 set_mem_attrs (mem, &attrs);
2225 }
2226
2227 /* Set the alignment of MEM to ALIGN bits. */
2228
2229 void
2230 set_mem_align (rtx mem, unsigned int align)
2231 {
2232 mem_attrs attrs (*get_mem_attrs (mem));
2233 attrs.align = align;
2234 set_mem_attrs (mem, &attrs);
2235 }
2236
2237 /* Set the expr for MEM to EXPR. */
2238
2239 void
2240 set_mem_expr (rtx mem, tree expr)
2241 {
2242 mem_attrs attrs (*get_mem_attrs (mem));
2243 attrs.expr = expr;
2244 set_mem_attrs (mem, &attrs);
2245 }
2246
2247 /* Set the offset of MEM to OFFSET. */
2248
2249 void
2250 set_mem_offset (rtx mem, poly_int64 offset)
2251 {
2252 mem_attrs attrs (*get_mem_attrs (mem));
2253 attrs.offset_known_p = true;
2254 attrs.offset = offset;
2255 set_mem_attrs (mem, &attrs);
2256 }
2257
2258 /* Clear the offset of MEM. */
2259
2260 void
2261 clear_mem_offset (rtx mem)
2262 {
2263 mem_attrs attrs (*get_mem_attrs (mem));
2264 attrs.offset_known_p = false;
2265 set_mem_attrs (mem, &attrs);
2266 }
2267
2268 /* Set the size of MEM to SIZE. */
2269
2270 void
2271 set_mem_size (rtx mem, poly_int64 size)
2272 {
2273 mem_attrs attrs (*get_mem_attrs (mem));
2274 attrs.size_known_p = true;
2275 attrs.size = size;
2276 set_mem_attrs (mem, &attrs);
2277 }
2278
2279 /* Clear the size of MEM. */
2280
2281 void
2282 clear_mem_size (rtx mem)
2283 {
2284 mem_attrs attrs (*get_mem_attrs (mem));
2285 attrs.size_known_p = false;
2286 set_mem_attrs (mem, &attrs);
2287 }
2288 \f
2289 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2290 and its address changed to ADDR. (VOIDmode means don't change the mode.
2291 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2292 returned memory location is required to be valid. INPLACE is true if any
2293 changes can be made directly to MEMREF or false if MEMREF must be treated
2294 as immutable.
2295
2296 The memory attributes are not changed. */
2297
2298 static rtx
2299 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2300 bool inplace)
2301 {
2302 addr_space_t as;
2303 rtx new_rtx;
2304
2305 gcc_assert (MEM_P (memref));
2306 as = MEM_ADDR_SPACE (memref);
2307 if (mode == VOIDmode)
2308 mode = GET_MODE (memref);
2309 if (addr == 0)
2310 addr = XEXP (memref, 0);
2311 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2312 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2313 return memref;
2314
2315 /* Don't validate address for LRA. LRA can make the address valid
2316 by itself in most efficient way. */
2317 if (validate && !lra_in_progress)
2318 {
2319 if (reload_in_progress || reload_completed)
2320 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2321 else
2322 addr = memory_address_addr_space (mode, addr, as);
2323 }
2324
2325 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2326 return memref;
2327
2328 if (inplace)
2329 {
2330 XEXP (memref, 0) = addr;
2331 return memref;
2332 }
2333
2334 new_rtx = gen_rtx_MEM (mode, addr);
2335 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2336 return new_rtx;
2337 }
2338
2339 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2340 way we are changing MEMREF, so we only preserve the alias set. */
2341
2342 rtx
2343 change_address (rtx memref, machine_mode mode, rtx addr)
2344 {
2345 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2346 machine_mode mmode = GET_MODE (new_rtx);
2347 class mem_attrs *defattrs;
2348
2349 mem_attrs attrs (*get_mem_attrs (memref));
2350 defattrs = mode_mem_attrs[(int) mmode];
2351 attrs.expr = NULL_TREE;
2352 attrs.offset_known_p = false;
2353 attrs.size_known_p = defattrs->size_known_p;
2354 attrs.size = defattrs->size;
2355 attrs.align = defattrs->align;
2356
2357 /* If there are no changes, just return the original memory reference. */
2358 if (new_rtx == memref)
2359 {
2360 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2361 return new_rtx;
2362
2363 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2364 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2365 }
2366
2367 set_mem_attrs (new_rtx, &attrs);
2368 return new_rtx;
2369 }
2370
2371 /* Return a memory reference like MEMREF, but with its mode changed
2372 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2373 nonzero, the memory address is forced to be valid.
2374 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2375 and the caller is responsible for adjusting MEMREF base register.
2376 If ADJUST_OBJECT is zero, the underlying object associated with the
2377 memory reference is left unchanged and the caller is responsible for
2378 dealing with it. Otherwise, if the new memory reference is outside
2379 the underlying object, even partially, then the object is dropped.
2380 SIZE, if nonzero, is the size of an access in cases where MODE
2381 has no inherent size. */
2382
2383 rtx
2384 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2385 int validate, int adjust_address, int adjust_object,
2386 poly_int64 size)
2387 {
2388 rtx addr = XEXP (memref, 0);
2389 rtx new_rtx;
2390 scalar_int_mode address_mode;
2391 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2392 unsigned HOST_WIDE_INT max_align;
2393 #ifdef POINTERS_EXTEND_UNSIGNED
2394 scalar_int_mode pointer_mode
2395 = targetm.addr_space.pointer_mode (attrs.addrspace);
2396 #endif
2397
2398 /* VOIDmode means no mode change for change_address_1. */
2399 if (mode == VOIDmode)
2400 mode = GET_MODE (memref);
2401
2402 /* Take the size of non-BLKmode accesses from the mode. */
2403 defattrs = mode_mem_attrs[(int) mode];
2404 if (defattrs->size_known_p)
2405 size = defattrs->size;
2406
2407 /* If there are no changes, just return the original memory reference. */
2408 if (mode == GET_MODE (memref)
2409 && known_eq (offset, 0)
2410 && (known_eq (size, 0)
2411 || (attrs.size_known_p && known_eq (attrs.size, size)))
2412 && (!validate || memory_address_addr_space_p (mode, addr,
2413 attrs.addrspace)))
2414 return memref;
2415
2416 /* ??? Prefer to create garbage instead of creating shared rtl.
2417 This may happen even if offset is nonzero -- consider
2418 (plus (plus reg reg) const_int) -- so do this always. */
2419 addr = copy_rtx (addr);
2420
2421 /* Convert a possibly large offset to a signed value within the
2422 range of the target address space. */
2423 address_mode = get_address_mode (memref);
2424 offset = trunc_int_for_mode (offset, address_mode);
2425
2426 if (adjust_address)
2427 {
2428 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2429 object, we can merge it into the LO_SUM. */
2430 if (GET_MODE (memref) != BLKmode
2431 && GET_CODE (addr) == LO_SUM
2432 && known_in_range_p (offset,
2433 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2434 / BITS_PER_UNIT)))
2435 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2436 plus_constant (address_mode,
2437 XEXP (addr, 1), offset));
2438 #ifdef POINTERS_EXTEND_UNSIGNED
2439 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2440 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2441 the fact that pointers are not allowed to overflow. */
2442 else if (POINTERS_EXTEND_UNSIGNED > 0
2443 && GET_CODE (addr) == ZERO_EXTEND
2444 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2445 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2446 addr = gen_rtx_ZERO_EXTEND (address_mode,
2447 plus_constant (pointer_mode,
2448 XEXP (addr, 0), offset));
2449 #endif
2450 else
2451 addr = plus_constant (address_mode, addr, offset);
2452 }
2453
2454 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2455
2456 /* If the address is a REG, change_address_1 rightfully returns memref,
2457 but this would destroy memref's MEM_ATTRS. */
2458 if (new_rtx == memref && maybe_ne (offset, 0))
2459 new_rtx = copy_rtx (new_rtx);
2460
2461 /* Conservatively drop the object if we don't know where we start from. */
2462 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2463 {
2464 attrs.expr = NULL_TREE;
2465 attrs.alias = 0;
2466 }
2467
2468 /* Compute the new values of the memory attributes due to this adjustment.
2469 We add the offsets and update the alignment. */
2470 if (attrs.offset_known_p)
2471 {
2472 attrs.offset += offset;
2473
2474 /* Drop the object if the new left end is not within its bounds. */
2475 if (adjust_object && maybe_lt (attrs.offset, 0))
2476 {
2477 attrs.expr = NULL_TREE;
2478 attrs.alias = 0;
2479 }
2480 }
2481
2482 /* Compute the new alignment by taking the MIN of the alignment and the
2483 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2484 if zero. */
2485 if (maybe_ne (offset, 0))
2486 {
2487 max_align = known_alignment (offset) * BITS_PER_UNIT;
2488 attrs.align = MIN (attrs.align, max_align);
2489 }
2490
2491 if (maybe_ne (size, 0))
2492 {
2493 /* Drop the object if the new right end is not within its bounds. */
2494 if (adjust_object && maybe_gt (offset + size, attrs.size))
2495 {
2496 attrs.expr = NULL_TREE;
2497 attrs.alias = 0;
2498 }
2499 attrs.size_known_p = true;
2500 attrs.size = size;
2501 }
2502 else if (attrs.size_known_p)
2503 {
2504 gcc_assert (!adjust_object);
2505 attrs.size -= offset;
2506 /* ??? The store_by_pieces machinery generates negative sizes,
2507 so don't assert for that here. */
2508 }
2509
2510 set_mem_attrs (new_rtx, &attrs);
2511
2512 return new_rtx;
2513 }
2514
2515 /* Return a memory reference like MEMREF, but with its mode changed
2516 to MODE and its address changed to ADDR, which is assumed to be
2517 MEMREF offset by OFFSET bytes. If VALIDATE is
2518 nonzero, the memory address is forced to be valid. */
2519
2520 rtx
2521 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2522 poly_int64 offset, int validate)
2523 {
2524 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2525 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2526 }
2527
2528 /* Return a memory reference like MEMREF, but whose address is changed by
2529 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2530 known to be in OFFSET (possibly 1). */
2531
2532 rtx
2533 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2534 {
2535 rtx new_rtx, addr = XEXP (memref, 0);
2536 machine_mode address_mode;
2537 class mem_attrs *defattrs;
2538
2539 mem_attrs attrs (*get_mem_attrs (memref));
2540 address_mode = get_address_mode (memref);
2541 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2542
2543 /* At this point we don't know _why_ the address is invalid. It
2544 could have secondary memory references, multiplies or anything.
2545
2546 However, if we did go and rearrange things, we can wind up not
2547 being able to recognize the magic around pic_offset_table_rtx.
2548 This stuff is fragile, and is yet another example of why it is
2549 bad to expose PIC machinery too early. */
2550 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2551 attrs.addrspace)
2552 && GET_CODE (addr) == PLUS
2553 && XEXP (addr, 0) == pic_offset_table_rtx)
2554 {
2555 addr = force_reg (GET_MODE (addr), addr);
2556 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2557 }
2558
2559 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2560 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2561
2562 /* If there are no changes, just return the original memory reference. */
2563 if (new_rtx == memref)
2564 return new_rtx;
2565
2566 /* Update the alignment to reflect the offset. Reset the offset, which
2567 we don't know. */
2568 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2569 attrs.offset_known_p = false;
2570 attrs.size_known_p = defattrs->size_known_p;
2571 attrs.size = defattrs->size;
2572 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2573 set_mem_attrs (new_rtx, &attrs);
2574 return new_rtx;
2575 }
2576
2577 /* Return a memory reference like MEMREF, but with its address changed to
2578 ADDR. The caller is asserting that the actual piece of memory pointed
2579 to is the same, just the form of the address is being changed, such as
2580 by putting something into a register. INPLACE is true if any changes
2581 can be made directly to MEMREF or false if MEMREF must be treated as
2582 immutable. */
2583
2584 rtx
2585 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2586 {
2587 /* change_address_1 copies the memory attribute structure without change
2588 and that's exactly what we want here. */
2589 update_temp_slot_address (XEXP (memref, 0), addr);
2590 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2591 }
2592
2593 /* Likewise, but the reference is not required to be valid. */
2594
2595 rtx
2596 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2597 {
2598 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2599 }
2600
2601 /* Return a memory reference like MEMREF, but with its mode widened to
2602 MODE and offset by OFFSET. This would be used by targets that e.g.
2603 cannot issue QImode memory operations and have to use SImode memory
2604 operations plus masking logic. */
2605
2606 rtx
2607 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2608 {
2609 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2610 poly_uint64 size = GET_MODE_SIZE (mode);
2611
2612 /* If there are no changes, just return the original memory reference. */
2613 if (new_rtx == memref)
2614 return new_rtx;
2615
2616 mem_attrs attrs (*get_mem_attrs (new_rtx));
2617
2618 /* If we don't know what offset we were at within the expression, then
2619 we can't know if we've overstepped the bounds. */
2620 if (! attrs.offset_known_p)
2621 attrs.expr = NULL_TREE;
2622
2623 while (attrs.expr)
2624 {
2625 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2626 {
2627 tree field = TREE_OPERAND (attrs.expr, 1);
2628 tree offset = component_ref_field_offset (attrs.expr);
2629
2630 if (! DECL_SIZE_UNIT (field))
2631 {
2632 attrs.expr = NULL_TREE;
2633 break;
2634 }
2635
2636 /* Is the field at least as large as the access? If so, ok,
2637 otherwise strip back to the containing structure. */
2638 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2639 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2640 && known_ge (attrs.offset, 0))
2641 break;
2642
2643 poly_uint64 suboffset;
2644 if (!poly_int_tree_p (offset, &suboffset))
2645 {
2646 attrs.expr = NULL_TREE;
2647 break;
2648 }
2649
2650 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2651 attrs.offset += suboffset;
2652 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2653 / BITS_PER_UNIT);
2654 }
2655 /* Similarly for the decl. */
2656 else if (DECL_P (attrs.expr)
2657 && DECL_SIZE_UNIT (attrs.expr)
2658 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2659 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2660 size)
2661 && known_ge (attrs.offset, 0))
2662 break;
2663 else
2664 {
2665 /* The widened memory access overflows the expression, which means
2666 that it could alias another expression. Zap it. */
2667 attrs.expr = NULL_TREE;
2668 break;
2669 }
2670 }
2671
2672 if (! attrs.expr)
2673 attrs.offset_known_p = false;
2674
2675 /* The widened memory may alias other stuff, so zap the alias set. */
2676 /* ??? Maybe use get_alias_set on any remaining expression. */
2677 attrs.alias = 0;
2678 attrs.size_known_p = true;
2679 attrs.size = size;
2680 set_mem_attrs (new_rtx, &attrs);
2681 return new_rtx;
2682 }
2683 \f
2684 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2685 static GTY(()) tree spill_slot_decl;
2686
2687 tree
2688 get_spill_slot_decl (bool force_build_p)
2689 {
2690 tree d = spill_slot_decl;
2691 rtx rd;
2692
2693 if (d || !force_build_p)
2694 return d;
2695
2696 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2697 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2698 DECL_ARTIFICIAL (d) = 1;
2699 DECL_IGNORED_P (d) = 1;
2700 TREE_USED (d) = 1;
2701 spill_slot_decl = d;
2702
2703 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2704 MEM_NOTRAP_P (rd) = 1;
2705 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2706 attrs.alias = new_alias_set ();
2707 attrs.expr = d;
2708 set_mem_attrs (rd, &attrs);
2709 SET_DECL_RTL (d, rd);
2710
2711 return d;
2712 }
2713
2714 /* Given MEM, a result from assign_stack_local, fill in the memory
2715 attributes as appropriate for a register allocator spill slot.
2716 These slots are not aliasable by other memory. We arrange for
2717 them all to use a single MEM_EXPR, so that the aliasing code can
2718 work properly in the case of shared spill slots. */
2719
2720 void
2721 set_mem_attrs_for_spill (rtx mem)
2722 {
2723 rtx addr;
2724
2725 mem_attrs attrs (*get_mem_attrs (mem));
2726 attrs.expr = get_spill_slot_decl (true);
2727 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2728 attrs.addrspace = ADDR_SPACE_GENERIC;
2729
2730 /* We expect the incoming memory to be of the form:
2731 (mem:MODE (plus (reg sfp) (const_int offset)))
2732 with perhaps the plus missing for offset = 0. */
2733 addr = XEXP (mem, 0);
2734 attrs.offset_known_p = true;
2735 strip_offset (addr, &attrs.offset);
2736
2737 set_mem_attrs (mem, &attrs);
2738 MEM_NOTRAP_P (mem) = 1;
2739 }
2740 \f
2741 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2742
2743 rtx_code_label *
2744 gen_label_rtx (void)
2745 {
2746 return as_a <rtx_code_label *> (
2747 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2748 NULL, label_num++, NULL));
2749 }
2750 \f
2751 /* For procedure integration. */
2752
2753 /* Install new pointers to the first and last insns in the chain.
2754 Also, set cur_insn_uid to one higher than the last in use.
2755 Used for an inline-procedure after copying the insn chain. */
2756
2757 void
2758 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2759 {
2760 rtx_insn *insn;
2761
2762 set_first_insn (first);
2763 set_last_insn (last);
2764 cur_insn_uid = 0;
2765
2766 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
2767 {
2768 int debug_count = 0;
2769
2770 cur_insn_uid = param_min_nondebug_insn_uid - 1;
2771 cur_debug_insn_uid = 0;
2772
2773 for (insn = first; insn; insn = NEXT_INSN (insn))
2774 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
2775 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2776 else
2777 {
2778 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2779 if (DEBUG_INSN_P (insn))
2780 debug_count++;
2781 }
2782
2783 if (debug_count)
2784 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
2785 else
2786 cur_debug_insn_uid++;
2787 }
2788 else
2789 for (insn = first; insn; insn = NEXT_INSN (insn))
2790 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2791
2792 cur_insn_uid++;
2793 }
2794 \f
2795 /* Go through all the RTL insn bodies and copy any invalid shared
2796 structure. This routine should only be called once. */
2797
2798 static void
2799 unshare_all_rtl_1 (rtx_insn *insn)
2800 {
2801 /* Unshare just about everything else. */
2802 unshare_all_rtl_in_chain (insn);
2803
2804 /* Make sure the addresses of stack slots found outside the insn chain
2805 (such as, in DECL_RTL of a variable) are not shared
2806 with the insn chain.
2807
2808 This special care is necessary when the stack slot MEM does not
2809 actually appear in the insn chain. If it does appear, its address
2810 is unshared from all else at that point. */
2811 unsigned int i;
2812 rtx temp;
2813 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2814 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2815 }
2816
2817 /* Go through all the RTL insn bodies and copy any invalid shared
2818 structure, again. This is a fairly expensive thing to do so it
2819 should be done sparingly. */
2820
2821 void
2822 unshare_all_rtl_again (rtx_insn *insn)
2823 {
2824 rtx_insn *p;
2825 tree decl;
2826
2827 for (p = insn; p; p = NEXT_INSN (p))
2828 if (INSN_P (p))
2829 {
2830 reset_used_flags (PATTERN (p));
2831 reset_used_flags (REG_NOTES (p));
2832 if (CALL_P (p))
2833 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2834 }
2835
2836 /* Make sure that virtual stack slots are not shared. */
2837 set_used_decls (DECL_INITIAL (cfun->decl));
2838
2839 /* Make sure that virtual parameters are not shared. */
2840 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2841 set_used_flags (DECL_RTL (decl));
2842
2843 rtx temp;
2844 unsigned int i;
2845 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2846 reset_used_flags (temp);
2847
2848 unshare_all_rtl_1 (insn);
2849 }
2850
2851 unsigned int
2852 unshare_all_rtl (void)
2853 {
2854 unshare_all_rtl_1 (get_insns ());
2855
2856 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2857 {
2858 if (DECL_RTL_SET_P (decl))
2859 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2860 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2861 }
2862
2863 return 0;
2864 }
2865
2866
2867 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2868 Recursively does the same for subexpressions. */
2869
2870 static void
2871 verify_rtx_sharing (rtx orig, rtx insn)
2872 {
2873 rtx x = orig;
2874 int i;
2875 enum rtx_code code;
2876 const char *format_ptr;
2877
2878 if (x == 0)
2879 return;
2880
2881 code = GET_CODE (x);
2882
2883 /* These types may be freely shared. */
2884
2885 switch (code)
2886 {
2887 case REG:
2888 case DEBUG_EXPR:
2889 case VALUE:
2890 CASE_CONST_ANY:
2891 case SYMBOL_REF:
2892 case LABEL_REF:
2893 case CODE_LABEL:
2894 case PC:
2895 case CC0:
2896 case RETURN:
2897 case SIMPLE_RETURN:
2898 case SCRATCH:
2899 /* SCRATCH must be shared because they represent distinct values. */
2900 return;
2901 case CLOBBER:
2902 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2903 clobbers or clobbers of hard registers that originated as pseudos.
2904 This is needed to allow safe register renaming. */
2905 if (REG_P (XEXP (x, 0))
2906 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2907 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2908 return;
2909 break;
2910
2911 case CONST:
2912 if (shared_const_p (orig))
2913 return;
2914 break;
2915
2916 case MEM:
2917 /* A MEM is allowed to be shared if its address is constant. */
2918 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2919 || reload_completed || reload_in_progress)
2920 return;
2921
2922 break;
2923
2924 default:
2925 break;
2926 }
2927
2928 /* This rtx may not be shared. If it has already been seen,
2929 replace it with a copy of itself. */
2930 if (flag_checking && RTX_FLAG (x, used))
2931 {
2932 error ("invalid rtl sharing found in the insn");
2933 debug_rtx (insn);
2934 error ("shared rtx");
2935 debug_rtx (x);
2936 internal_error ("internal consistency failure");
2937 }
2938 gcc_assert (!RTX_FLAG (x, used));
2939
2940 RTX_FLAG (x, used) = 1;
2941
2942 /* Now scan the subexpressions recursively. */
2943
2944 format_ptr = GET_RTX_FORMAT (code);
2945
2946 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2947 {
2948 switch (*format_ptr++)
2949 {
2950 case 'e':
2951 verify_rtx_sharing (XEXP (x, i), insn);
2952 break;
2953
2954 case 'E':
2955 if (XVEC (x, i) != NULL)
2956 {
2957 int j;
2958 int len = XVECLEN (x, i);
2959
2960 for (j = 0; j < len; j++)
2961 {
2962 /* We allow sharing of ASM_OPERANDS inside single
2963 instruction. */
2964 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2965 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2966 == ASM_OPERANDS))
2967 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2968 else
2969 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2970 }
2971 }
2972 break;
2973 }
2974 }
2975 return;
2976 }
2977
2978 /* Reset used-flags for INSN. */
2979
2980 static void
2981 reset_insn_used_flags (rtx insn)
2982 {
2983 gcc_assert (INSN_P (insn));
2984 reset_used_flags (PATTERN (insn));
2985 reset_used_flags (REG_NOTES (insn));
2986 if (CALL_P (insn))
2987 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2988 }
2989
2990 /* Go through all the RTL insn bodies and clear all the USED bits. */
2991
2992 static void
2993 reset_all_used_flags (void)
2994 {
2995 rtx_insn *p;
2996
2997 for (p = get_insns (); p; p = NEXT_INSN (p))
2998 if (INSN_P (p))
2999 {
3000 rtx pat = PATTERN (p);
3001 if (GET_CODE (pat) != SEQUENCE)
3002 reset_insn_used_flags (p);
3003 else
3004 {
3005 gcc_assert (REG_NOTES (p) == NULL);
3006 for (int i = 0; i < XVECLEN (pat, 0); i++)
3007 {
3008 rtx insn = XVECEXP (pat, 0, i);
3009 if (INSN_P (insn))
3010 reset_insn_used_flags (insn);
3011 }
3012 }
3013 }
3014 }
3015
3016 /* Verify sharing in INSN. */
3017
3018 static void
3019 verify_insn_sharing (rtx insn)
3020 {
3021 gcc_assert (INSN_P (insn));
3022 verify_rtx_sharing (PATTERN (insn), insn);
3023 verify_rtx_sharing (REG_NOTES (insn), insn);
3024 if (CALL_P (insn))
3025 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
3026 }
3027
3028 /* Go through all the RTL insn bodies and check that there is no unexpected
3029 sharing in between the subexpressions. */
3030
3031 DEBUG_FUNCTION void
3032 verify_rtl_sharing (void)
3033 {
3034 rtx_insn *p;
3035
3036 timevar_push (TV_VERIFY_RTL_SHARING);
3037
3038 reset_all_used_flags ();
3039
3040 for (p = get_insns (); p; p = NEXT_INSN (p))
3041 if (INSN_P (p))
3042 {
3043 rtx pat = PATTERN (p);
3044 if (GET_CODE (pat) != SEQUENCE)
3045 verify_insn_sharing (p);
3046 else
3047 for (int i = 0; i < XVECLEN (pat, 0); i++)
3048 {
3049 rtx insn = XVECEXP (pat, 0, i);
3050 if (INSN_P (insn))
3051 verify_insn_sharing (insn);
3052 }
3053 }
3054
3055 reset_all_used_flags ();
3056
3057 timevar_pop (TV_VERIFY_RTL_SHARING);
3058 }
3059
3060 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3061 Assumes the mark bits are cleared at entry. */
3062
3063 void
3064 unshare_all_rtl_in_chain (rtx_insn *insn)
3065 {
3066 for (; insn; insn = NEXT_INSN (insn))
3067 if (INSN_P (insn))
3068 {
3069 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3070 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3071 if (CALL_P (insn))
3072 CALL_INSN_FUNCTION_USAGE (insn)
3073 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3074 }
3075 }
3076
3077 /* Go through all virtual stack slots of a function and mark them as
3078 shared. We never replace the DECL_RTLs themselves with a copy,
3079 but expressions mentioned into a DECL_RTL cannot be shared with
3080 expressions in the instruction stream.
3081
3082 Note that reload may convert pseudo registers into memories in-place.
3083 Pseudo registers are always shared, but MEMs never are. Thus if we
3084 reset the used flags on MEMs in the instruction stream, we must set
3085 them again on MEMs that appear in DECL_RTLs. */
3086
3087 static void
3088 set_used_decls (tree blk)
3089 {
3090 tree t;
3091
3092 /* Mark decls. */
3093 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3094 if (DECL_RTL_SET_P (t))
3095 set_used_flags (DECL_RTL (t));
3096
3097 /* Now process sub-blocks. */
3098 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3099 set_used_decls (t);
3100 }
3101
3102 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3103 Recursively does the same for subexpressions. Uses
3104 copy_rtx_if_shared_1 to reduce stack space. */
3105
3106 rtx
3107 copy_rtx_if_shared (rtx orig)
3108 {
3109 copy_rtx_if_shared_1 (&orig);
3110 return orig;
3111 }
3112
3113 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3114 use. Recursively does the same for subexpressions. */
3115
3116 static void
3117 copy_rtx_if_shared_1 (rtx *orig1)
3118 {
3119 rtx x;
3120 int i;
3121 enum rtx_code code;
3122 rtx *last_ptr;
3123 const char *format_ptr;
3124 int copied = 0;
3125 int length;
3126
3127 /* Repeat is used to turn tail-recursion into iteration. */
3128 repeat:
3129 x = *orig1;
3130
3131 if (x == 0)
3132 return;
3133
3134 code = GET_CODE (x);
3135
3136 /* These types may be freely shared. */
3137
3138 switch (code)
3139 {
3140 case REG:
3141 case DEBUG_EXPR:
3142 case VALUE:
3143 CASE_CONST_ANY:
3144 case SYMBOL_REF:
3145 case LABEL_REF:
3146 case CODE_LABEL:
3147 case PC:
3148 case CC0:
3149 case RETURN:
3150 case SIMPLE_RETURN:
3151 case SCRATCH:
3152 /* SCRATCH must be shared because they represent distinct values. */
3153 return;
3154 case CLOBBER:
3155 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3156 clobbers or clobbers of hard registers that originated as pseudos.
3157 This is needed to allow safe register renaming. */
3158 if (REG_P (XEXP (x, 0))
3159 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3160 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3161 return;
3162 break;
3163
3164 case CONST:
3165 if (shared_const_p (x))
3166 return;
3167 break;
3168
3169 case DEBUG_INSN:
3170 case INSN:
3171 case JUMP_INSN:
3172 case CALL_INSN:
3173 case NOTE:
3174 case BARRIER:
3175 /* The chain of insns is not being copied. */
3176 return;
3177
3178 default:
3179 break;
3180 }
3181
3182 /* This rtx may not be shared. If it has already been seen,
3183 replace it with a copy of itself. */
3184
3185 if (RTX_FLAG (x, used))
3186 {
3187 x = shallow_copy_rtx (x);
3188 copied = 1;
3189 }
3190 RTX_FLAG (x, used) = 1;
3191
3192 /* Now scan the subexpressions recursively.
3193 We can store any replaced subexpressions directly into X
3194 since we know X is not shared! Any vectors in X
3195 must be copied if X was copied. */
3196
3197 format_ptr = GET_RTX_FORMAT (code);
3198 length = GET_RTX_LENGTH (code);
3199 last_ptr = NULL;
3200
3201 for (i = 0; i < length; i++)
3202 {
3203 switch (*format_ptr++)
3204 {
3205 case 'e':
3206 if (last_ptr)
3207 copy_rtx_if_shared_1 (last_ptr);
3208 last_ptr = &XEXP (x, i);
3209 break;
3210
3211 case 'E':
3212 if (XVEC (x, i) != NULL)
3213 {
3214 int j;
3215 int len = XVECLEN (x, i);
3216
3217 /* Copy the vector iff I copied the rtx and the length
3218 is nonzero. */
3219 if (copied && len > 0)
3220 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3221
3222 /* Call recursively on all inside the vector. */
3223 for (j = 0; j < len; j++)
3224 {
3225 if (last_ptr)
3226 copy_rtx_if_shared_1 (last_ptr);
3227 last_ptr = &XVECEXP (x, i, j);
3228 }
3229 }
3230 break;
3231 }
3232 }
3233 *orig1 = x;
3234 if (last_ptr)
3235 {
3236 orig1 = last_ptr;
3237 goto repeat;
3238 }
3239 return;
3240 }
3241
3242 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3243
3244 static void
3245 mark_used_flags (rtx x, int flag)
3246 {
3247 int i, j;
3248 enum rtx_code code;
3249 const char *format_ptr;
3250 int length;
3251
3252 /* Repeat is used to turn tail-recursion into iteration. */
3253 repeat:
3254 if (x == 0)
3255 return;
3256
3257 code = GET_CODE (x);
3258
3259 /* These types may be freely shared so we needn't do any resetting
3260 for them. */
3261
3262 switch (code)
3263 {
3264 case REG:
3265 case DEBUG_EXPR:
3266 case VALUE:
3267 CASE_CONST_ANY:
3268 case SYMBOL_REF:
3269 case CODE_LABEL:
3270 case PC:
3271 case CC0:
3272 case RETURN:
3273 case SIMPLE_RETURN:
3274 return;
3275
3276 case DEBUG_INSN:
3277 case INSN:
3278 case JUMP_INSN:
3279 case CALL_INSN:
3280 case NOTE:
3281 case LABEL_REF:
3282 case BARRIER:
3283 /* The chain of insns is not being copied. */
3284 return;
3285
3286 default:
3287 break;
3288 }
3289
3290 RTX_FLAG (x, used) = flag;
3291
3292 format_ptr = GET_RTX_FORMAT (code);
3293 length = GET_RTX_LENGTH (code);
3294
3295 for (i = 0; i < length; i++)
3296 {
3297 switch (*format_ptr++)
3298 {
3299 case 'e':
3300 if (i == length-1)
3301 {
3302 x = XEXP (x, i);
3303 goto repeat;
3304 }
3305 mark_used_flags (XEXP (x, i), flag);
3306 break;
3307
3308 case 'E':
3309 for (j = 0; j < XVECLEN (x, i); j++)
3310 mark_used_flags (XVECEXP (x, i, j), flag);
3311 break;
3312 }
3313 }
3314 }
3315
3316 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3317 to look for shared sub-parts. */
3318
3319 void
3320 reset_used_flags (rtx x)
3321 {
3322 mark_used_flags (x, 0);
3323 }
3324
3325 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3326 to look for shared sub-parts. */
3327
3328 void
3329 set_used_flags (rtx x)
3330 {
3331 mark_used_flags (x, 1);
3332 }
3333 \f
3334 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3335 Return X or the rtx for the pseudo reg the value of X was copied into.
3336 OTHER must be valid as a SET_DEST. */
3337
3338 rtx
3339 make_safe_from (rtx x, rtx other)
3340 {
3341 while (1)
3342 switch (GET_CODE (other))
3343 {
3344 case SUBREG:
3345 other = SUBREG_REG (other);
3346 break;
3347 case STRICT_LOW_PART:
3348 case SIGN_EXTEND:
3349 case ZERO_EXTEND:
3350 other = XEXP (other, 0);
3351 break;
3352 default:
3353 goto done;
3354 }
3355 done:
3356 if ((MEM_P (other)
3357 && ! CONSTANT_P (x)
3358 && !REG_P (x)
3359 && GET_CODE (x) != SUBREG)
3360 || (REG_P (other)
3361 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3362 || reg_mentioned_p (other, x))))
3363 {
3364 rtx temp = gen_reg_rtx (GET_MODE (x));
3365 emit_move_insn (temp, x);
3366 return temp;
3367 }
3368 return x;
3369 }
3370 \f
3371 /* Emission of insns (adding them to the doubly-linked list). */
3372
3373 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3374
3375 rtx_insn *
3376 get_last_insn_anywhere (void)
3377 {
3378 struct sequence_stack *seq;
3379 for (seq = get_current_sequence (); seq; seq = seq->next)
3380 if (seq->last != 0)
3381 return seq->last;
3382 return 0;
3383 }
3384
3385 /* Return the first nonnote insn emitted in current sequence or current
3386 function. This routine looks inside SEQUENCEs. */
3387
3388 rtx_insn *
3389 get_first_nonnote_insn (void)
3390 {
3391 rtx_insn *insn = get_insns ();
3392
3393 if (insn)
3394 {
3395 if (NOTE_P (insn))
3396 for (insn = next_insn (insn);
3397 insn && NOTE_P (insn);
3398 insn = next_insn (insn))
3399 continue;
3400 else
3401 {
3402 if (NONJUMP_INSN_P (insn)
3403 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3404 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3405 }
3406 }
3407
3408 return insn;
3409 }
3410
3411 /* Return the last nonnote insn emitted in current sequence or current
3412 function. This routine looks inside SEQUENCEs. */
3413
3414 rtx_insn *
3415 get_last_nonnote_insn (void)
3416 {
3417 rtx_insn *insn = get_last_insn ();
3418
3419 if (insn)
3420 {
3421 if (NOTE_P (insn))
3422 for (insn = previous_insn (insn);
3423 insn && NOTE_P (insn);
3424 insn = previous_insn (insn))
3425 continue;
3426 else
3427 {
3428 if (NONJUMP_INSN_P (insn))
3429 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3430 insn = seq->insn (seq->len () - 1);
3431 }
3432 }
3433
3434 return insn;
3435 }
3436
3437 /* Return the number of actual (non-debug) insns emitted in this
3438 function. */
3439
3440 int
3441 get_max_insn_count (void)
3442 {
3443 int n = cur_insn_uid;
3444
3445 /* The table size must be stable across -g, to avoid codegen
3446 differences due to debug insns, and not be affected by
3447 -fmin-insn-uid, to avoid excessive table size and to simplify
3448 debugging of -fcompare-debug failures. */
3449 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
3450 n -= cur_debug_insn_uid;
3451 else
3452 n -= param_min_nondebug_insn_uid;
3453
3454 return n;
3455 }
3456
3457 \f
3458 /* Return the next insn. If it is a SEQUENCE, return the first insn
3459 of the sequence. */
3460
3461 rtx_insn *
3462 next_insn (rtx_insn *insn)
3463 {
3464 if (insn)
3465 {
3466 insn = NEXT_INSN (insn);
3467 if (insn && NONJUMP_INSN_P (insn)
3468 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3469 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3470 }
3471
3472 return insn;
3473 }
3474
3475 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3476 of the sequence. */
3477
3478 rtx_insn *
3479 previous_insn (rtx_insn *insn)
3480 {
3481 if (insn)
3482 {
3483 insn = PREV_INSN (insn);
3484 if (insn && NONJUMP_INSN_P (insn))
3485 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3486 insn = seq->insn (seq->len () - 1);
3487 }
3488
3489 return insn;
3490 }
3491
3492 /* Return the next insn after INSN that is not a NOTE. This routine does not
3493 look inside SEQUENCEs. */
3494
3495 rtx_insn *
3496 next_nonnote_insn (rtx_insn *insn)
3497 {
3498 while (insn)
3499 {
3500 insn = NEXT_INSN (insn);
3501 if (insn == 0 || !NOTE_P (insn))
3502 break;
3503 }
3504
3505 return insn;
3506 }
3507
3508 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3509 routine does not look inside SEQUENCEs. */
3510
3511 rtx_insn *
3512 next_nondebug_insn (rtx_insn *insn)
3513 {
3514 while (insn)
3515 {
3516 insn = NEXT_INSN (insn);
3517 if (insn == 0 || !DEBUG_INSN_P (insn))
3518 break;
3519 }
3520
3521 return insn;
3522 }
3523
3524 /* Return the previous insn before INSN that is not a NOTE. This routine does
3525 not look inside SEQUENCEs. */
3526
3527 rtx_insn *
3528 prev_nonnote_insn (rtx_insn *insn)
3529 {
3530 while (insn)
3531 {
3532 insn = PREV_INSN (insn);
3533 if (insn == 0 || !NOTE_P (insn))
3534 break;
3535 }
3536
3537 return insn;
3538 }
3539
3540 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3541 This routine does not look inside SEQUENCEs. */
3542
3543 rtx_insn *
3544 prev_nondebug_insn (rtx_insn *insn)
3545 {
3546 while (insn)
3547 {
3548 insn = PREV_INSN (insn);
3549 if (insn == 0 || !DEBUG_INSN_P (insn))
3550 break;
3551 }
3552
3553 return insn;
3554 }
3555
3556 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3557 This routine does not look inside SEQUENCEs. */
3558
3559 rtx_insn *
3560 next_nonnote_nondebug_insn (rtx_insn *insn)
3561 {
3562 while (insn)
3563 {
3564 insn = NEXT_INSN (insn);
3565 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3566 break;
3567 }
3568
3569 return insn;
3570 }
3571
3572 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3573 but stop the search before we enter another basic block. This
3574 routine does not look inside SEQUENCEs. */
3575
3576 rtx_insn *
3577 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3578 {
3579 while (insn)
3580 {
3581 insn = NEXT_INSN (insn);
3582 if (insn == 0)
3583 break;
3584 if (DEBUG_INSN_P (insn))
3585 continue;
3586 if (!NOTE_P (insn))
3587 break;
3588 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3589 return NULL;
3590 }
3591
3592 return insn;
3593 }
3594
3595 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3596 This routine does not look inside SEQUENCEs. */
3597
3598 rtx_insn *
3599 prev_nonnote_nondebug_insn (rtx_insn *insn)
3600 {
3601 while (insn)
3602 {
3603 insn = PREV_INSN (insn);
3604 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3605 break;
3606 }
3607
3608 return insn;
3609 }
3610
3611 /* Return the previous insn before INSN that is not a NOTE nor
3612 DEBUG_INSN, but stop the search before we enter another basic
3613 block. This routine does not look inside SEQUENCEs. */
3614
3615 rtx_insn *
3616 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3617 {
3618 while (insn)
3619 {
3620 insn = PREV_INSN (insn);
3621 if (insn == 0)
3622 break;
3623 if (DEBUG_INSN_P (insn))
3624 continue;
3625 if (!NOTE_P (insn))
3626 break;
3627 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3628 return NULL;
3629 }
3630
3631 return insn;
3632 }
3633
3634 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3635 or 0, if there is none. This routine does not look inside
3636 SEQUENCEs. */
3637
3638 rtx_insn *
3639 next_real_insn (rtx_insn *insn)
3640 {
3641 while (insn)
3642 {
3643 insn = NEXT_INSN (insn);
3644 if (insn == 0 || INSN_P (insn))
3645 break;
3646 }
3647
3648 return insn;
3649 }
3650
3651 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3652 or 0, if there is none. This routine does not look inside
3653 SEQUENCEs. */
3654
3655 rtx_insn *
3656 prev_real_insn (rtx_insn *insn)
3657 {
3658 while (insn)
3659 {
3660 insn = PREV_INSN (insn);
3661 if (insn == 0 || INSN_P (insn))
3662 break;
3663 }
3664
3665 return insn;
3666 }
3667
3668 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3669 or 0, if there is none. This routine does not look inside
3670 SEQUENCEs. */
3671
3672 rtx_insn *
3673 next_real_nondebug_insn (rtx uncast_insn)
3674 {
3675 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3676
3677 while (insn)
3678 {
3679 insn = NEXT_INSN (insn);
3680 if (insn == 0 || NONDEBUG_INSN_P (insn))
3681 break;
3682 }
3683
3684 return insn;
3685 }
3686
3687 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3688 or 0, if there is none. This routine does not look inside
3689 SEQUENCEs. */
3690
3691 rtx_insn *
3692 prev_real_nondebug_insn (rtx_insn *insn)
3693 {
3694 while (insn)
3695 {
3696 insn = PREV_INSN (insn);
3697 if (insn == 0 || NONDEBUG_INSN_P (insn))
3698 break;
3699 }
3700
3701 return insn;
3702 }
3703
3704 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3705 This routine does not look inside SEQUENCEs. */
3706
3707 rtx_call_insn *
3708 last_call_insn (void)
3709 {
3710 rtx_insn *insn;
3711
3712 for (insn = get_last_insn ();
3713 insn && !CALL_P (insn);
3714 insn = PREV_INSN (insn))
3715 ;
3716
3717 return safe_as_a <rtx_call_insn *> (insn);
3718 }
3719
3720 /* Find the next insn after INSN that really does something. This routine
3721 does not look inside SEQUENCEs. After reload this also skips over
3722 standalone USE and CLOBBER insn. */
3723
3724 int
3725 active_insn_p (const rtx_insn *insn)
3726 {
3727 return (CALL_P (insn) || JUMP_P (insn)
3728 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3729 || (NONJUMP_INSN_P (insn)
3730 && (! reload_completed
3731 || (GET_CODE (PATTERN (insn)) != USE
3732 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3733 }
3734
3735 rtx_insn *
3736 next_active_insn (rtx_insn *insn)
3737 {
3738 while (insn)
3739 {
3740 insn = NEXT_INSN (insn);
3741 if (insn == 0 || active_insn_p (insn))
3742 break;
3743 }
3744
3745 return insn;
3746 }
3747
3748 /* Find the last insn before INSN that really does something. This routine
3749 does not look inside SEQUENCEs. After reload this also skips over
3750 standalone USE and CLOBBER insn. */
3751
3752 rtx_insn *
3753 prev_active_insn (rtx_insn *insn)
3754 {
3755 while (insn)
3756 {
3757 insn = PREV_INSN (insn);
3758 if (insn == 0 || active_insn_p (insn))
3759 break;
3760 }
3761
3762 return insn;
3763 }
3764 \f
3765 /* Return the next insn that uses CC0 after INSN, which is assumed to
3766 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3767 applied to the result of this function should yield INSN).
3768
3769 Normally, this is simply the next insn. However, if a REG_CC_USER note
3770 is present, it contains the insn that uses CC0.
3771
3772 Return 0 if we can't find the insn. */
3773
3774 rtx_insn *
3775 next_cc0_user (rtx_insn *insn)
3776 {
3777 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3778
3779 if (note)
3780 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3781
3782 insn = next_nonnote_insn (insn);
3783 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3784 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3785
3786 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3787 return insn;
3788
3789 return 0;
3790 }
3791
3792 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3793 note, it is the previous insn. */
3794
3795 rtx_insn *
3796 prev_cc0_setter (rtx_insn *insn)
3797 {
3798 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3799
3800 if (note)
3801 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3802
3803 insn = prev_nonnote_insn (insn);
3804 gcc_assert (sets_cc0_p (PATTERN (insn)));
3805
3806 return insn;
3807 }
3808
3809 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3810
3811 static int
3812 find_auto_inc (const_rtx x, const_rtx reg)
3813 {
3814 subrtx_iterator::array_type array;
3815 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3816 {
3817 const_rtx x = *iter;
3818 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3819 && rtx_equal_p (reg, XEXP (x, 0)))
3820 return true;
3821 }
3822 return false;
3823 }
3824
3825 /* Increment the label uses for all labels present in rtx. */
3826
3827 static void
3828 mark_label_nuses (rtx x)
3829 {
3830 enum rtx_code code;
3831 int i, j;
3832 const char *fmt;
3833
3834 code = GET_CODE (x);
3835 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3836 LABEL_NUSES (label_ref_label (x))++;
3837
3838 fmt = GET_RTX_FORMAT (code);
3839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3840 {
3841 if (fmt[i] == 'e')
3842 mark_label_nuses (XEXP (x, i));
3843 else if (fmt[i] == 'E')
3844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3845 mark_label_nuses (XVECEXP (x, i, j));
3846 }
3847 }
3848
3849 \f
3850 /* Try splitting insns that can be split for better scheduling.
3851 PAT is the pattern which might split.
3852 TRIAL is the insn providing PAT.
3853 LAST is nonzero if we should return the last insn of the sequence produced.
3854
3855 If this routine succeeds in splitting, it returns the first or last
3856 replacement insn depending on the value of LAST. Otherwise, it
3857 returns TRIAL. If the insn to be returned can be split, it will be. */
3858
3859 rtx_insn *
3860 try_split (rtx pat, rtx_insn *trial, int last)
3861 {
3862 rtx_insn *before, *after;
3863 rtx note;
3864 rtx_insn *seq, *tem;
3865 profile_probability probability;
3866 rtx_insn *insn_last, *insn;
3867 int njumps = 0;
3868 rtx_insn *call_insn = NULL;
3869
3870 /* We're not good at redistributing frame information. */
3871 if (RTX_FRAME_RELATED_P (trial))
3872 return trial;
3873
3874 if (any_condjump_p (trial)
3875 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3876 split_branch_probability
3877 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3878 else
3879 split_branch_probability = profile_probability::uninitialized ();
3880
3881 probability = split_branch_probability;
3882
3883 seq = split_insns (pat, trial);
3884
3885 split_branch_probability = profile_probability::uninitialized ();
3886
3887 if (!seq)
3888 return trial;
3889
3890 /* Avoid infinite loop if any insn of the result matches
3891 the original pattern. */
3892 insn_last = seq;
3893 while (1)
3894 {
3895 if (INSN_P (insn_last)
3896 && rtx_equal_p (PATTERN (insn_last), pat))
3897 return trial;
3898 if (!NEXT_INSN (insn_last))
3899 break;
3900 insn_last = NEXT_INSN (insn_last);
3901 }
3902
3903 /* We will be adding the new sequence to the function. The splitters
3904 may have introduced invalid RTL sharing, so unshare the sequence now. */
3905 unshare_all_rtl_in_chain (seq);
3906
3907 /* Mark labels and copy flags. */
3908 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3909 {
3910 if (JUMP_P (insn))
3911 {
3912 if (JUMP_P (trial))
3913 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3914 mark_jump_label (PATTERN (insn), insn, 0);
3915 njumps++;
3916 if (probability.initialized_p ()
3917 && any_condjump_p (insn)
3918 && !find_reg_note (insn, REG_BR_PROB, 0))
3919 {
3920 /* We can preserve the REG_BR_PROB notes only if exactly
3921 one jump is created, otherwise the machine description
3922 is responsible for this step using
3923 split_branch_probability variable. */
3924 gcc_assert (njumps == 1);
3925 add_reg_br_prob_note (insn, probability);
3926 }
3927 }
3928 }
3929
3930 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3931 in SEQ and copy any additional information across. */
3932 if (CALL_P (trial))
3933 {
3934 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3935 if (CALL_P (insn))
3936 {
3937 gcc_assert (call_insn == NULL_RTX);
3938 call_insn = insn;
3939
3940 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3941 target may have explicitly specified. */
3942 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3943 while (*p)
3944 p = &XEXP (*p, 1);
3945 *p = CALL_INSN_FUNCTION_USAGE (trial);
3946
3947 /* If the old call was a sibling call, the new one must
3948 be too. */
3949 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3950 }
3951 }
3952
3953 /* Copy notes, particularly those related to the CFG. */
3954 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3955 {
3956 switch (REG_NOTE_KIND (note))
3957 {
3958 case REG_EH_REGION:
3959 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3960 break;
3961
3962 case REG_NORETURN:
3963 case REG_SETJMP:
3964 case REG_TM:
3965 case REG_CALL_NOCF_CHECK:
3966 case REG_CALL_ARG_LOCATION:
3967 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3968 {
3969 if (CALL_P (insn))
3970 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3971 }
3972 break;
3973
3974 case REG_NON_LOCAL_GOTO:
3975 case REG_LABEL_TARGET:
3976 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3977 {
3978 if (JUMP_P (insn))
3979 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3980 }
3981 break;
3982
3983 case REG_INC:
3984 if (!AUTO_INC_DEC)
3985 break;
3986
3987 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3988 {
3989 rtx reg = XEXP (note, 0);
3990 if (!FIND_REG_INC_NOTE (insn, reg)
3991 && find_auto_inc (PATTERN (insn), reg))
3992 add_reg_note (insn, REG_INC, reg);
3993 }
3994 break;
3995
3996 case REG_ARGS_SIZE:
3997 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3998 break;
3999
4000 case REG_CALL_DECL:
4001 gcc_assert (call_insn != NULL_RTX);
4002 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
4003 break;
4004
4005 default:
4006 break;
4007 }
4008 }
4009
4010 /* If there are LABELS inside the split insns increment the
4011 usage count so we don't delete the label. */
4012 if (INSN_P (trial))
4013 {
4014 insn = insn_last;
4015 while (insn != NULL_RTX)
4016 {
4017 /* JUMP_P insns have already been "marked" above. */
4018 if (NONJUMP_INSN_P (insn))
4019 mark_label_nuses (PATTERN (insn));
4020
4021 insn = PREV_INSN (insn);
4022 }
4023 }
4024
4025 before = PREV_INSN (trial);
4026 after = NEXT_INSN (trial);
4027
4028 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
4029
4030 delete_insn (trial);
4031
4032 /* Recursively call try_split for each new insn created; by the
4033 time control returns here that insn will be fully split, so
4034 set LAST and continue from the insn after the one returned.
4035 We can't use next_active_insn here since AFTER may be a note.
4036 Ignore deleted insns, which can be occur if not optimizing. */
4037 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4038 if (! tem->deleted () && INSN_P (tem))
4039 tem = try_split (PATTERN (tem), tem, 1);
4040
4041 /* Return either the first or the last insn, depending on which was
4042 requested. */
4043 return last
4044 ? (after ? PREV_INSN (after) : get_last_insn ())
4045 : NEXT_INSN (before);
4046 }
4047 \f
4048 /* Make and return an INSN rtx, initializing all its slots.
4049 Store PATTERN in the pattern slots. */
4050
4051 rtx_insn *
4052 make_insn_raw (rtx pattern)
4053 {
4054 rtx_insn *insn;
4055
4056 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
4057
4058 INSN_UID (insn) = cur_insn_uid++;
4059 PATTERN (insn) = pattern;
4060 INSN_CODE (insn) = -1;
4061 REG_NOTES (insn) = NULL;
4062 INSN_LOCATION (insn) = curr_insn_location ();
4063 BLOCK_FOR_INSN (insn) = NULL;
4064
4065 #ifdef ENABLE_RTL_CHECKING
4066 if (insn
4067 && INSN_P (insn)
4068 && (returnjump_p (insn)
4069 || (GET_CODE (insn) == SET
4070 && SET_DEST (insn) == pc_rtx)))
4071 {
4072 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4073 debug_rtx (insn);
4074 }
4075 #endif
4076
4077 return insn;
4078 }
4079
4080 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4081
4082 static rtx_insn *
4083 make_debug_insn_raw (rtx pattern)
4084 {
4085 rtx_debug_insn *insn;
4086
4087 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
4088 INSN_UID (insn) = cur_debug_insn_uid++;
4089 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
4090 INSN_UID (insn) = cur_insn_uid++;
4091
4092 PATTERN (insn) = pattern;
4093 INSN_CODE (insn) = -1;
4094 REG_NOTES (insn) = NULL;
4095 INSN_LOCATION (insn) = curr_insn_location ();
4096 BLOCK_FOR_INSN (insn) = NULL;
4097
4098 return insn;
4099 }
4100
4101 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4102
4103 static rtx_insn *
4104 make_jump_insn_raw (rtx pattern)
4105 {
4106 rtx_jump_insn *insn;
4107
4108 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
4109 INSN_UID (insn) = cur_insn_uid++;
4110
4111 PATTERN (insn) = pattern;
4112 INSN_CODE (insn) = -1;
4113 REG_NOTES (insn) = NULL;
4114 JUMP_LABEL (insn) = NULL;
4115 INSN_LOCATION (insn) = curr_insn_location ();
4116 BLOCK_FOR_INSN (insn) = NULL;
4117
4118 return insn;
4119 }
4120
4121 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4122
4123 static rtx_insn *
4124 make_call_insn_raw (rtx pattern)
4125 {
4126 rtx_call_insn *insn;
4127
4128 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
4129 INSN_UID (insn) = cur_insn_uid++;
4130
4131 PATTERN (insn) = pattern;
4132 INSN_CODE (insn) = -1;
4133 REG_NOTES (insn) = NULL;
4134 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4135 INSN_LOCATION (insn) = curr_insn_location ();
4136 BLOCK_FOR_INSN (insn) = NULL;
4137
4138 return insn;
4139 }
4140
4141 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4142
4143 static rtx_note *
4144 make_note_raw (enum insn_note subtype)
4145 {
4146 /* Some notes are never created this way at all. These notes are
4147 only created by patching out insns. */
4148 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4149 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4150
4151 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
4152 INSN_UID (note) = cur_insn_uid++;
4153 NOTE_KIND (note) = subtype;
4154 BLOCK_FOR_INSN (note) = NULL;
4155 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4156 return note;
4157 }
4158 \f
4159 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4160 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4161 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4162
4163 static inline void
4164 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4165 {
4166 SET_PREV_INSN (insn) = prev;
4167 SET_NEXT_INSN (insn) = next;
4168 if (prev != NULL)
4169 {
4170 SET_NEXT_INSN (prev) = insn;
4171 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4172 {
4173 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4174 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4175 }
4176 }
4177 if (next != NULL)
4178 {
4179 SET_PREV_INSN (next) = insn;
4180 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4181 {
4182 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4183 SET_PREV_INSN (sequence->insn (0)) = insn;
4184 }
4185 }
4186
4187 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4188 {
4189 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4190 SET_PREV_INSN (sequence->insn (0)) = prev;
4191 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4192 }
4193 }
4194
4195 /* Add INSN to the end of the doubly-linked list.
4196 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4197
4198 void
4199 add_insn (rtx_insn *insn)
4200 {
4201 rtx_insn *prev = get_last_insn ();
4202 link_insn_into_chain (insn, prev, NULL);
4203 if (get_insns () == NULL)
4204 set_first_insn (insn);
4205 set_last_insn (insn);
4206 }
4207
4208 /* Add INSN into the doubly-linked list after insn AFTER. */
4209
4210 static void
4211 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4212 {
4213 rtx_insn *next = NEXT_INSN (after);
4214
4215 gcc_assert (!optimize || !after->deleted ());
4216
4217 link_insn_into_chain (insn, after, next);
4218
4219 if (next == NULL)
4220 {
4221 struct sequence_stack *seq;
4222
4223 for (seq = get_current_sequence (); seq; seq = seq->next)
4224 if (after == seq->last)
4225 {
4226 seq->last = insn;
4227 break;
4228 }
4229 }
4230 }
4231
4232 /* Add INSN into the doubly-linked list before insn BEFORE. */
4233
4234 static void
4235 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4236 {
4237 rtx_insn *prev = PREV_INSN (before);
4238
4239 gcc_assert (!optimize || !before->deleted ());
4240
4241 link_insn_into_chain (insn, prev, before);
4242
4243 if (prev == NULL)
4244 {
4245 struct sequence_stack *seq;
4246
4247 for (seq = get_current_sequence (); seq; seq = seq->next)
4248 if (before == seq->first)
4249 {
4250 seq->first = insn;
4251 break;
4252 }
4253
4254 gcc_assert (seq);
4255 }
4256 }
4257
4258 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4259 If BB is NULL, an attempt is made to infer the bb from before.
4260
4261 This and the next function should be the only functions called
4262 to insert an insn once delay slots have been filled since only
4263 they know how to update a SEQUENCE. */
4264
4265 void
4266 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4267 {
4268 add_insn_after_nobb (insn, after);
4269 if (!BARRIER_P (after)
4270 && !BARRIER_P (insn)
4271 && (bb = BLOCK_FOR_INSN (after)))
4272 {
4273 set_block_for_insn (insn, bb);
4274 if (INSN_P (insn))
4275 df_insn_rescan (insn);
4276 /* Should not happen as first in the BB is always
4277 either NOTE or LABEL. */
4278 if (BB_END (bb) == after
4279 /* Avoid clobbering of structure when creating new BB. */
4280 && !BARRIER_P (insn)
4281 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4282 BB_END (bb) = insn;
4283 }
4284 }
4285
4286 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4287 If BB is NULL, an attempt is made to infer the bb from before.
4288
4289 This and the previous function should be the only functions called
4290 to insert an insn once delay slots have been filled since only
4291 they know how to update a SEQUENCE. */
4292
4293 void
4294 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4295 {
4296 add_insn_before_nobb (insn, before);
4297
4298 if (!bb
4299 && !BARRIER_P (before)
4300 && !BARRIER_P (insn))
4301 bb = BLOCK_FOR_INSN (before);
4302
4303 if (bb)
4304 {
4305 set_block_for_insn (insn, bb);
4306 if (INSN_P (insn))
4307 df_insn_rescan (insn);
4308 /* Should not happen as first in the BB is always either NOTE or
4309 LABEL. */
4310 gcc_assert (BB_HEAD (bb) != insn
4311 /* Avoid clobbering of structure when creating new BB. */
4312 || BARRIER_P (insn)
4313 || NOTE_INSN_BASIC_BLOCK_P (insn));
4314 }
4315 }
4316
4317 /* Replace insn with an deleted instruction note. */
4318
4319 void
4320 set_insn_deleted (rtx_insn *insn)
4321 {
4322 if (INSN_P (insn))
4323 df_insn_delete (insn);
4324 PUT_CODE (insn, NOTE);
4325 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4326 }
4327
4328
4329 /* Unlink INSN from the insn chain.
4330
4331 This function knows how to handle sequences.
4332
4333 This function does not invalidate data flow information associated with
4334 INSN (i.e. does not call df_insn_delete). That makes this function
4335 usable for only disconnecting an insn from the chain, and re-emit it
4336 elsewhere later.
4337
4338 To later insert INSN elsewhere in the insn chain via add_insn and
4339 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4340 the caller. Nullifying them here breaks many insn chain walks.
4341
4342 To really delete an insn and related DF information, use delete_insn. */
4343
4344 void
4345 remove_insn (rtx_insn *insn)
4346 {
4347 rtx_insn *next = NEXT_INSN (insn);
4348 rtx_insn *prev = PREV_INSN (insn);
4349 basic_block bb;
4350
4351 if (prev)
4352 {
4353 SET_NEXT_INSN (prev) = next;
4354 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4355 {
4356 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4357 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4358 }
4359 }
4360 else
4361 {
4362 struct sequence_stack *seq;
4363
4364 for (seq = get_current_sequence (); seq; seq = seq->next)
4365 if (insn == seq->first)
4366 {
4367 seq->first = next;
4368 break;
4369 }
4370
4371 gcc_assert (seq);
4372 }
4373
4374 if (next)
4375 {
4376 SET_PREV_INSN (next) = prev;
4377 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4378 {
4379 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4380 SET_PREV_INSN (sequence->insn (0)) = prev;
4381 }
4382 }
4383 else
4384 {
4385 struct sequence_stack *seq;
4386
4387 for (seq = get_current_sequence (); seq; seq = seq->next)
4388 if (insn == seq->last)
4389 {
4390 seq->last = prev;
4391 break;
4392 }
4393
4394 gcc_assert (seq);
4395 }
4396
4397 /* Fix up basic block boundaries, if necessary. */
4398 if (!BARRIER_P (insn)
4399 && (bb = BLOCK_FOR_INSN (insn)))
4400 {
4401 if (BB_HEAD (bb) == insn)
4402 {
4403 /* Never ever delete the basic block note without deleting whole
4404 basic block. */
4405 gcc_assert (!NOTE_P (insn));
4406 BB_HEAD (bb) = next;
4407 }
4408 if (BB_END (bb) == insn)
4409 BB_END (bb) = prev;
4410 }
4411 }
4412
4413 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4414
4415 void
4416 add_function_usage_to (rtx call_insn, rtx call_fusage)
4417 {
4418 gcc_assert (call_insn && CALL_P (call_insn));
4419
4420 /* Put the register usage information on the CALL. If there is already
4421 some usage information, put ours at the end. */
4422 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4423 {
4424 rtx link;
4425
4426 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4427 link = XEXP (link, 1))
4428 ;
4429
4430 XEXP (link, 1) = call_fusage;
4431 }
4432 else
4433 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4434 }
4435
4436 /* Delete all insns made since FROM.
4437 FROM becomes the new last instruction. */
4438
4439 void
4440 delete_insns_since (rtx_insn *from)
4441 {
4442 if (from == 0)
4443 set_first_insn (0);
4444 else
4445 SET_NEXT_INSN (from) = 0;
4446 set_last_insn (from);
4447 }
4448
4449 /* This function is deprecated, please use sequences instead.
4450
4451 Move a consecutive bunch of insns to a different place in the chain.
4452 The insns to be moved are those between FROM and TO.
4453 They are moved to a new position after the insn AFTER.
4454 AFTER must not be FROM or TO or any insn in between.
4455
4456 This function does not know about SEQUENCEs and hence should not be
4457 called after delay-slot filling has been done. */
4458
4459 void
4460 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4461 {
4462 if (flag_checking)
4463 {
4464 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4465 gcc_assert (after != x);
4466 gcc_assert (after != to);
4467 }
4468
4469 /* Splice this bunch out of where it is now. */
4470 if (PREV_INSN (from))
4471 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4472 if (NEXT_INSN (to))
4473 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4474 if (get_last_insn () == to)
4475 set_last_insn (PREV_INSN (from));
4476 if (get_insns () == from)
4477 set_first_insn (NEXT_INSN (to));
4478
4479 /* Make the new neighbors point to it and it to them. */
4480 if (NEXT_INSN (after))
4481 SET_PREV_INSN (NEXT_INSN (after)) = to;
4482
4483 SET_NEXT_INSN (to) = NEXT_INSN (after);
4484 SET_PREV_INSN (from) = after;
4485 SET_NEXT_INSN (after) = from;
4486 if (after == get_last_insn ())
4487 set_last_insn (to);
4488 }
4489
4490 /* Same as function above, but take care to update BB boundaries. */
4491 void
4492 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4493 {
4494 rtx_insn *prev = PREV_INSN (from);
4495 basic_block bb, bb2;
4496
4497 reorder_insns_nobb (from, to, after);
4498
4499 if (!BARRIER_P (after)
4500 && (bb = BLOCK_FOR_INSN (after)))
4501 {
4502 rtx_insn *x;
4503 df_set_bb_dirty (bb);
4504
4505 if (!BARRIER_P (from)
4506 && (bb2 = BLOCK_FOR_INSN (from)))
4507 {
4508 if (BB_END (bb2) == to)
4509 BB_END (bb2) = prev;
4510 df_set_bb_dirty (bb2);
4511 }
4512
4513 if (BB_END (bb) == after)
4514 BB_END (bb) = to;
4515
4516 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4517 if (!BARRIER_P (x))
4518 df_insn_change_bb (x, bb);
4519 }
4520 }
4521
4522 \f
4523 /* Emit insn(s) of given code and pattern
4524 at a specified place within the doubly-linked list.
4525
4526 All of the emit_foo global entry points accept an object
4527 X which is either an insn list or a PATTERN of a single
4528 instruction.
4529
4530 There are thus a few canonical ways to generate code and
4531 emit it at a specific place in the instruction stream. For
4532 example, consider the instruction named SPOT and the fact that
4533 we would like to emit some instructions before SPOT. We might
4534 do it like this:
4535
4536 start_sequence ();
4537 ... emit the new instructions ...
4538 insns_head = get_insns ();
4539 end_sequence ();
4540
4541 emit_insn_before (insns_head, SPOT);
4542
4543 It used to be common to generate SEQUENCE rtl instead, but that
4544 is a relic of the past which no longer occurs. The reason is that
4545 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4546 generated would almost certainly die right after it was created. */
4547
4548 static rtx_insn *
4549 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4550 basic_block bb,
4551 rtx_insn *(*make_raw) (rtx))
4552 {
4553 rtx_insn *insn;
4554
4555 gcc_assert (before);
4556
4557 if (x == NULL_RTX)
4558 return last;
4559
4560 switch (GET_CODE (x))
4561 {
4562 case DEBUG_INSN:
4563 case INSN:
4564 case JUMP_INSN:
4565 case CALL_INSN:
4566 case CODE_LABEL:
4567 case BARRIER:
4568 case NOTE:
4569 insn = as_a <rtx_insn *> (x);
4570 while (insn)
4571 {
4572 rtx_insn *next = NEXT_INSN (insn);
4573 add_insn_before (insn, before, bb);
4574 last = insn;
4575 insn = next;
4576 }
4577 break;
4578
4579 #ifdef ENABLE_RTL_CHECKING
4580 case SEQUENCE:
4581 gcc_unreachable ();
4582 break;
4583 #endif
4584
4585 default:
4586 last = (*make_raw) (x);
4587 add_insn_before (last, before, bb);
4588 break;
4589 }
4590
4591 return last;
4592 }
4593
4594 /* Make X be output before the instruction BEFORE. */
4595
4596 rtx_insn *
4597 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4598 {
4599 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4600 }
4601
4602 /* Make an instruction with body X and code JUMP_INSN
4603 and output it before the instruction BEFORE. */
4604
4605 rtx_jump_insn *
4606 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4607 {
4608 return as_a <rtx_jump_insn *> (
4609 emit_pattern_before_noloc (x, before, NULL, NULL,
4610 make_jump_insn_raw));
4611 }
4612
4613 /* Make an instruction with body X and code CALL_INSN
4614 and output it before the instruction BEFORE. */
4615
4616 rtx_insn *
4617 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4618 {
4619 return emit_pattern_before_noloc (x, before, NULL, NULL,
4620 make_call_insn_raw);
4621 }
4622
4623 /* Make an instruction with body X and code DEBUG_INSN
4624 and output it before the instruction BEFORE. */
4625
4626 rtx_insn *
4627 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4628 {
4629 return emit_pattern_before_noloc (x, before, NULL, NULL,
4630 make_debug_insn_raw);
4631 }
4632
4633 /* Make an insn of code BARRIER
4634 and output it before the insn BEFORE. */
4635
4636 rtx_barrier *
4637 emit_barrier_before (rtx_insn *before)
4638 {
4639 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4640
4641 INSN_UID (insn) = cur_insn_uid++;
4642
4643 add_insn_before (insn, before, NULL);
4644 return insn;
4645 }
4646
4647 /* Emit the label LABEL before the insn BEFORE. */
4648
4649 rtx_code_label *
4650 emit_label_before (rtx_code_label *label, rtx_insn *before)
4651 {
4652 gcc_checking_assert (INSN_UID (label) == 0);
4653 INSN_UID (label) = cur_insn_uid++;
4654 add_insn_before (label, before, NULL);
4655 return label;
4656 }
4657 \f
4658 /* Helper for emit_insn_after, handles lists of instructions
4659 efficiently. */
4660
4661 static rtx_insn *
4662 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4663 {
4664 rtx_insn *last;
4665 rtx_insn *after_after;
4666 if (!bb && !BARRIER_P (after))
4667 bb = BLOCK_FOR_INSN (after);
4668
4669 if (bb)
4670 {
4671 df_set_bb_dirty (bb);
4672 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4673 if (!BARRIER_P (last))
4674 {
4675 set_block_for_insn (last, bb);
4676 df_insn_rescan (last);
4677 }
4678 if (!BARRIER_P (last))
4679 {
4680 set_block_for_insn (last, bb);
4681 df_insn_rescan (last);
4682 }
4683 if (BB_END (bb) == after)
4684 BB_END (bb) = last;
4685 }
4686 else
4687 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4688 continue;
4689
4690 after_after = NEXT_INSN (after);
4691
4692 SET_NEXT_INSN (after) = first;
4693 SET_PREV_INSN (first) = after;
4694 SET_NEXT_INSN (last) = after_after;
4695 if (after_after)
4696 SET_PREV_INSN (after_after) = last;
4697
4698 if (after == get_last_insn ())
4699 set_last_insn (last);
4700
4701 return last;
4702 }
4703
4704 static rtx_insn *
4705 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4706 rtx_insn *(*make_raw)(rtx))
4707 {
4708 rtx_insn *last = after;
4709
4710 gcc_assert (after);
4711
4712 if (x == NULL_RTX)
4713 return last;
4714
4715 switch (GET_CODE (x))
4716 {
4717 case DEBUG_INSN:
4718 case INSN:
4719 case JUMP_INSN:
4720 case CALL_INSN:
4721 case CODE_LABEL:
4722 case BARRIER:
4723 case NOTE:
4724 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4725 break;
4726
4727 #ifdef ENABLE_RTL_CHECKING
4728 case SEQUENCE:
4729 gcc_unreachable ();
4730 break;
4731 #endif
4732
4733 default:
4734 last = (*make_raw) (x);
4735 add_insn_after (last, after, bb);
4736 break;
4737 }
4738
4739 return last;
4740 }
4741
4742 /* Make X be output after the insn AFTER and set the BB of insn. If
4743 BB is NULL, an attempt is made to infer the BB from AFTER. */
4744
4745 rtx_insn *
4746 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4747 {
4748 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4749 }
4750
4751
4752 /* Make an insn of code JUMP_INSN with body X
4753 and output it after the insn AFTER. */
4754
4755 rtx_jump_insn *
4756 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4757 {
4758 return as_a <rtx_jump_insn *> (
4759 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4760 }
4761
4762 /* Make an instruction with body X and code CALL_INSN
4763 and output it after the instruction AFTER. */
4764
4765 rtx_insn *
4766 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4767 {
4768 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4769 }
4770
4771 /* Make an instruction with body X and code CALL_INSN
4772 and output it after the instruction AFTER. */
4773
4774 rtx_insn *
4775 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4776 {
4777 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4778 }
4779
4780 /* Make an insn of code BARRIER
4781 and output it after the insn AFTER. */
4782
4783 rtx_barrier *
4784 emit_barrier_after (rtx_insn *after)
4785 {
4786 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4787
4788 INSN_UID (insn) = cur_insn_uid++;
4789
4790 add_insn_after (insn, after, NULL);
4791 return insn;
4792 }
4793
4794 /* Emit the label LABEL after the insn AFTER. */
4795
4796 rtx_insn *
4797 emit_label_after (rtx_insn *label, rtx_insn *after)
4798 {
4799 gcc_checking_assert (INSN_UID (label) == 0);
4800 INSN_UID (label) = cur_insn_uid++;
4801 add_insn_after (label, after, NULL);
4802 return label;
4803 }
4804 \f
4805 /* Notes require a bit of special handling: Some notes need to have their
4806 BLOCK_FOR_INSN set, others should never have it set, and some should
4807 have it set or clear depending on the context. */
4808
4809 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4810 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4811 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4812
4813 static bool
4814 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4815 {
4816 switch (subtype)
4817 {
4818 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4819 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4820 return true;
4821
4822 /* Notes for var tracking and EH region markers can appear between or
4823 inside basic blocks. If the caller is emitting on the basic block
4824 boundary, do not set BLOCK_FOR_INSN on the new note. */
4825 case NOTE_INSN_VAR_LOCATION:
4826 case NOTE_INSN_EH_REGION_BEG:
4827 case NOTE_INSN_EH_REGION_END:
4828 return on_bb_boundary_p;
4829
4830 /* Otherwise, BLOCK_FOR_INSN must be set. */
4831 default:
4832 return false;
4833 }
4834 }
4835
4836 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4837
4838 rtx_note *
4839 emit_note_after (enum insn_note subtype, rtx_insn *after)
4840 {
4841 rtx_note *note = make_note_raw (subtype);
4842 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4843 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4844
4845 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4846 add_insn_after_nobb (note, after);
4847 else
4848 add_insn_after (note, after, bb);
4849 return note;
4850 }
4851
4852 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4853
4854 rtx_note *
4855 emit_note_before (enum insn_note subtype, rtx_insn *before)
4856 {
4857 rtx_note *note = make_note_raw (subtype);
4858 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4859 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4860
4861 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4862 add_insn_before_nobb (note, before);
4863 else
4864 add_insn_before (note, before, bb);
4865 return note;
4866 }
4867 \f
4868 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4869 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4870
4871 static rtx_insn *
4872 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4873 rtx_insn *(*make_raw) (rtx))
4874 {
4875 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4876
4877 if (pattern == NULL_RTX || !loc)
4878 return last;
4879
4880 after = NEXT_INSN (after);
4881 while (1)
4882 {
4883 if (active_insn_p (after)
4884 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4885 && !INSN_LOCATION (after))
4886 INSN_LOCATION (after) = loc;
4887 if (after == last)
4888 break;
4889 after = NEXT_INSN (after);
4890 }
4891 return last;
4892 }
4893
4894 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4895 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4896 any DEBUG_INSNs. */
4897
4898 static rtx_insn *
4899 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4900 rtx_insn *(*make_raw) (rtx))
4901 {
4902 rtx_insn *prev = after;
4903
4904 if (skip_debug_insns)
4905 while (DEBUG_INSN_P (prev))
4906 prev = PREV_INSN (prev);
4907
4908 if (INSN_P (prev))
4909 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4910 make_raw);
4911 else
4912 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4913 }
4914
4915 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4916 rtx_insn *
4917 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4918 {
4919 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4920 }
4921
4922 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4923 rtx_insn *
4924 emit_insn_after (rtx pattern, rtx_insn *after)
4925 {
4926 return emit_pattern_after (pattern, after, true, make_insn_raw);
4927 }
4928
4929 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4930 rtx_jump_insn *
4931 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4932 {
4933 return as_a <rtx_jump_insn *> (
4934 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4935 }
4936
4937 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4938 rtx_jump_insn *
4939 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4940 {
4941 return as_a <rtx_jump_insn *> (
4942 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4943 }
4944
4945 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4946 rtx_insn *
4947 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4948 {
4949 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4950 }
4951
4952 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4953 rtx_insn *
4954 emit_call_insn_after (rtx pattern, rtx_insn *after)
4955 {
4956 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4957 }
4958
4959 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4960 rtx_insn *
4961 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4962 {
4963 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4964 }
4965
4966 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4967 rtx_insn *
4968 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4969 {
4970 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4971 }
4972
4973 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4974 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4975 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4976 CALL_INSN, etc. */
4977
4978 static rtx_insn *
4979 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4980 bool insnp, rtx_insn *(*make_raw) (rtx))
4981 {
4982 rtx_insn *first = PREV_INSN (before);
4983 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4984 insnp ? before : NULL,
4985 NULL, make_raw);
4986
4987 if (pattern == NULL_RTX || !loc)
4988 return last;
4989
4990 if (!first)
4991 first = get_insns ();
4992 else
4993 first = NEXT_INSN (first);
4994 while (1)
4995 {
4996 if (active_insn_p (first)
4997 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4998 && !INSN_LOCATION (first))
4999 INSN_LOCATION (first) = loc;
5000 if (first == last)
5001 break;
5002 first = NEXT_INSN (first);
5003 }
5004 return last;
5005 }
5006
5007 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
5008 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
5009 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
5010 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
5011
5012 static rtx_insn *
5013 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
5014 bool insnp, rtx_insn *(*make_raw) (rtx))
5015 {
5016 rtx_insn *next = before;
5017
5018 if (skip_debug_insns)
5019 while (DEBUG_INSN_P (next))
5020 next = PREV_INSN (next);
5021
5022 if (INSN_P (next))
5023 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
5024 insnp, make_raw);
5025 else
5026 return emit_pattern_before_noloc (pattern, before,
5027 insnp ? before : NULL,
5028 NULL, make_raw);
5029 }
5030
5031 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5032 rtx_insn *
5033 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5034 {
5035 return emit_pattern_before_setloc (pattern, before, loc, true,
5036 make_insn_raw);
5037 }
5038
5039 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5040 rtx_insn *
5041 emit_insn_before (rtx pattern, rtx_insn *before)
5042 {
5043 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5044 }
5045
5046 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5047 rtx_jump_insn *
5048 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5049 {
5050 return as_a <rtx_jump_insn *> (
5051 emit_pattern_before_setloc (pattern, before, loc, false,
5052 make_jump_insn_raw));
5053 }
5054
5055 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5056 rtx_jump_insn *
5057 emit_jump_insn_before (rtx pattern, rtx_insn *before)
5058 {
5059 return as_a <rtx_jump_insn *> (
5060 emit_pattern_before (pattern, before, true, false,
5061 make_jump_insn_raw));
5062 }
5063
5064 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5065 rtx_insn *
5066 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5067 {
5068 return emit_pattern_before_setloc (pattern, before, loc, false,
5069 make_call_insn_raw);
5070 }
5071
5072 /* Like emit_call_insn_before_noloc,
5073 but set insn_location according to BEFORE. */
5074 rtx_insn *
5075 emit_call_insn_before (rtx pattern, rtx_insn *before)
5076 {
5077 return emit_pattern_before (pattern, before, true, false,
5078 make_call_insn_raw);
5079 }
5080
5081 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5082 rtx_insn *
5083 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5084 {
5085 return emit_pattern_before_setloc (pattern, before, loc, false,
5086 make_debug_insn_raw);
5087 }
5088
5089 /* Like emit_debug_insn_before_noloc,
5090 but set insn_location according to BEFORE. */
5091 rtx_insn *
5092 emit_debug_insn_before (rtx pattern, rtx_insn *before)
5093 {
5094 return emit_pattern_before (pattern, before, false, false,
5095 make_debug_insn_raw);
5096 }
5097 \f
5098 /* Take X and emit it at the end of the doubly-linked
5099 INSN list.
5100
5101 Returns the last insn emitted. */
5102
5103 rtx_insn *
5104 emit_insn (rtx x)
5105 {
5106 rtx_insn *last = get_last_insn ();
5107 rtx_insn *insn;
5108
5109 if (x == NULL_RTX)
5110 return last;
5111
5112 switch (GET_CODE (x))
5113 {
5114 case DEBUG_INSN:
5115 case INSN:
5116 case JUMP_INSN:
5117 case CALL_INSN:
5118 case CODE_LABEL:
5119 case BARRIER:
5120 case NOTE:
5121 insn = as_a <rtx_insn *> (x);
5122 while (insn)
5123 {
5124 rtx_insn *next = NEXT_INSN (insn);
5125 add_insn (insn);
5126 last = insn;
5127 insn = next;
5128 }
5129 break;
5130
5131 #ifdef ENABLE_RTL_CHECKING
5132 case JUMP_TABLE_DATA:
5133 case SEQUENCE:
5134 gcc_unreachable ();
5135 break;
5136 #endif
5137
5138 default:
5139 last = make_insn_raw (x);
5140 add_insn (last);
5141 break;
5142 }
5143
5144 return last;
5145 }
5146
5147 /* Make an insn of code DEBUG_INSN with pattern X
5148 and add it to the end of the doubly-linked list. */
5149
5150 rtx_insn *
5151 emit_debug_insn (rtx x)
5152 {
5153 rtx_insn *last = get_last_insn ();
5154 rtx_insn *insn;
5155
5156 if (x == NULL_RTX)
5157 return last;
5158
5159 switch (GET_CODE (x))
5160 {
5161 case DEBUG_INSN:
5162 case INSN:
5163 case JUMP_INSN:
5164 case CALL_INSN:
5165 case CODE_LABEL:
5166 case BARRIER:
5167 case NOTE:
5168 insn = as_a <rtx_insn *> (x);
5169 while (insn)
5170 {
5171 rtx_insn *next = NEXT_INSN (insn);
5172 add_insn (insn);
5173 last = insn;
5174 insn = next;
5175 }
5176 break;
5177
5178 #ifdef ENABLE_RTL_CHECKING
5179 case JUMP_TABLE_DATA:
5180 case SEQUENCE:
5181 gcc_unreachable ();
5182 break;
5183 #endif
5184
5185 default:
5186 last = make_debug_insn_raw (x);
5187 add_insn (last);
5188 break;
5189 }
5190
5191 return last;
5192 }
5193
5194 /* Make an insn of code JUMP_INSN with pattern X
5195 and add it to the end of the doubly-linked list. */
5196
5197 rtx_insn *
5198 emit_jump_insn (rtx x)
5199 {
5200 rtx_insn *last = NULL;
5201 rtx_insn *insn;
5202
5203 switch (GET_CODE (x))
5204 {
5205 case DEBUG_INSN:
5206 case INSN:
5207 case JUMP_INSN:
5208 case CALL_INSN:
5209 case CODE_LABEL:
5210 case BARRIER:
5211 case NOTE:
5212 insn = as_a <rtx_insn *> (x);
5213 while (insn)
5214 {
5215 rtx_insn *next = NEXT_INSN (insn);
5216 add_insn (insn);
5217 last = insn;
5218 insn = next;
5219 }
5220 break;
5221
5222 #ifdef ENABLE_RTL_CHECKING
5223 case JUMP_TABLE_DATA:
5224 case SEQUENCE:
5225 gcc_unreachable ();
5226 break;
5227 #endif
5228
5229 default:
5230 last = make_jump_insn_raw (x);
5231 add_insn (last);
5232 break;
5233 }
5234
5235 return last;
5236 }
5237
5238 /* Make an insn of code CALL_INSN with pattern X
5239 and add it to the end of the doubly-linked list. */
5240
5241 rtx_insn *
5242 emit_call_insn (rtx x)
5243 {
5244 rtx_insn *insn;
5245
5246 switch (GET_CODE (x))
5247 {
5248 case DEBUG_INSN:
5249 case INSN:
5250 case JUMP_INSN:
5251 case CALL_INSN:
5252 case CODE_LABEL:
5253 case BARRIER:
5254 case NOTE:
5255 insn = emit_insn (x);
5256 break;
5257
5258 #ifdef ENABLE_RTL_CHECKING
5259 case SEQUENCE:
5260 case JUMP_TABLE_DATA:
5261 gcc_unreachable ();
5262 break;
5263 #endif
5264
5265 default:
5266 insn = make_call_insn_raw (x);
5267 add_insn (insn);
5268 break;
5269 }
5270
5271 return insn;
5272 }
5273
5274 /* Add the label LABEL to the end of the doubly-linked list. */
5275
5276 rtx_code_label *
5277 emit_label (rtx uncast_label)
5278 {
5279 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5280
5281 gcc_checking_assert (INSN_UID (label) == 0);
5282 INSN_UID (label) = cur_insn_uid++;
5283 add_insn (label);
5284 return label;
5285 }
5286
5287 /* Make an insn of code JUMP_TABLE_DATA
5288 and add it to the end of the doubly-linked list. */
5289
5290 rtx_jump_table_data *
5291 emit_jump_table_data (rtx table)
5292 {
5293 rtx_jump_table_data *jump_table_data =
5294 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5295 INSN_UID (jump_table_data) = cur_insn_uid++;
5296 PATTERN (jump_table_data) = table;
5297 BLOCK_FOR_INSN (jump_table_data) = NULL;
5298 add_insn (jump_table_data);
5299 return jump_table_data;
5300 }
5301
5302 /* Make an insn of code BARRIER
5303 and add it to the end of the doubly-linked list. */
5304
5305 rtx_barrier *
5306 emit_barrier (void)
5307 {
5308 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5309 INSN_UID (barrier) = cur_insn_uid++;
5310 add_insn (barrier);
5311 return barrier;
5312 }
5313
5314 /* Emit a copy of note ORIG. */
5315
5316 rtx_note *
5317 emit_note_copy (rtx_note *orig)
5318 {
5319 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5320 rtx_note *note = make_note_raw (kind);
5321 NOTE_DATA (note) = NOTE_DATA (orig);
5322 add_insn (note);
5323 return note;
5324 }
5325
5326 /* Make an insn of code NOTE or type NOTE_NO
5327 and add it to the end of the doubly-linked list. */
5328
5329 rtx_note *
5330 emit_note (enum insn_note kind)
5331 {
5332 rtx_note *note = make_note_raw (kind);
5333 add_insn (note);
5334 return note;
5335 }
5336
5337 /* Emit a clobber of lvalue X. */
5338
5339 rtx_insn *
5340 emit_clobber (rtx x)
5341 {
5342 /* CONCATs should not appear in the insn stream. */
5343 if (GET_CODE (x) == CONCAT)
5344 {
5345 emit_clobber (XEXP (x, 0));
5346 return emit_clobber (XEXP (x, 1));
5347 }
5348 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5349 }
5350
5351 /* Return a sequence of insns to clobber lvalue X. */
5352
5353 rtx_insn *
5354 gen_clobber (rtx x)
5355 {
5356 rtx_insn *seq;
5357
5358 start_sequence ();
5359 emit_clobber (x);
5360 seq = get_insns ();
5361 end_sequence ();
5362 return seq;
5363 }
5364
5365 /* Emit a use of rvalue X. */
5366
5367 rtx_insn *
5368 emit_use (rtx x)
5369 {
5370 /* CONCATs should not appear in the insn stream. */
5371 if (GET_CODE (x) == CONCAT)
5372 {
5373 emit_use (XEXP (x, 0));
5374 return emit_use (XEXP (x, 1));
5375 }
5376 return emit_insn (gen_rtx_USE (VOIDmode, x));
5377 }
5378
5379 /* Return a sequence of insns to use rvalue X. */
5380
5381 rtx_insn *
5382 gen_use (rtx x)
5383 {
5384 rtx_insn *seq;
5385
5386 start_sequence ();
5387 emit_use (x);
5388 seq = get_insns ();
5389 end_sequence ();
5390 return seq;
5391 }
5392
5393 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5394 Return the set in INSN that such notes describe, or NULL if the notes
5395 have no meaning for INSN. */
5396
5397 rtx
5398 set_for_reg_notes (rtx insn)
5399 {
5400 rtx pat, reg;
5401
5402 if (!INSN_P (insn))
5403 return NULL_RTX;
5404
5405 pat = PATTERN (insn);
5406 if (GET_CODE (pat) == PARALLEL)
5407 {
5408 /* We do not use single_set because that ignores SETs of unused
5409 registers. REG_EQUAL and REG_EQUIV notes really do require the
5410 PARALLEL to have a single SET. */
5411 if (multiple_sets (insn))
5412 return NULL_RTX;
5413 pat = XVECEXP (pat, 0, 0);
5414 }
5415
5416 if (GET_CODE (pat) != SET)
5417 return NULL_RTX;
5418
5419 reg = SET_DEST (pat);
5420
5421 /* Notes apply to the contents of a STRICT_LOW_PART. */
5422 if (GET_CODE (reg) == STRICT_LOW_PART
5423 || GET_CODE (reg) == ZERO_EXTRACT)
5424 reg = XEXP (reg, 0);
5425
5426 /* Check that we have a register. */
5427 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5428 return NULL_RTX;
5429
5430 return pat;
5431 }
5432
5433 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5434 note of this type already exists, remove it first. */
5435
5436 rtx
5437 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5438 {
5439 rtx note = find_reg_note (insn, kind, NULL_RTX);
5440
5441 switch (kind)
5442 {
5443 case REG_EQUAL:
5444 case REG_EQUIV:
5445 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5446 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5447 return NULL_RTX;
5448
5449 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5450 It serves no useful purpose and breaks eliminate_regs. */
5451 if (GET_CODE (datum) == ASM_OPERANDS)
5452 return NULL_RTX;
5453
5454 /* Notes with side effects are dangerous. Even if the side-effect
5455 initially mirrors one in PATTERN (INSN), later optimizations
5456 might alter the way that the final register value is calculated
5457 and so move or alter the side-effect in some way. The note would
5458 then no longer be a valid substitution for SET_SRC. */
5459 if (side_effects_p (datum))
5460 return NULL_RTX;
5461 break;
5462
5463 default:
5464 break;
5465 }
5466
5467 if (note)
5468 XEXP (note, 0) = datum;
5469 else
5470 {
5471 add_reg_note (insn, kind, datum);
5472 note = REG_NOTES (insn);
5473 }
5474
5475 switch (kind)
5476 {
5477 case REG_EQUAL:
5478 case REG_EQUIV:
5479 df_notes_rescan (as_a <rtx_insn *> (insn));
5480 break;
5481 default:
5482 break;
5483 }
5484
5485 return note;
5486 }
5487
5488 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5489 rtx
5490 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5491 {
5492 rtx set = set_for_reg_notes (insn);
5493
5494 if (set && SET_DEST (set) == dst)
5495 return set_unique_reg_note (insn, kind, datum);
5496 return NULL_RTX;
5497 }
5498 \f
5499 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5500 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5501 is true.
5502
5503 If X is a label, it is simply added into the insn chain. */
5504
5505 rtx_insn *
5506 emit (rtx x, bool allow_barrier_p)
5507 {
5508 enum rtx_code code = classify_insn (x);
5509
5510 switch (code)
5511 {
5512 case CODE_LABEL:
5513 return emit_label (x);
5514 case INSN:
5515 return emit_insn (x);
5516 case JUMP_INSN:
5517 {
5518 rtx_insn *insn = emit_jump_insn (x);
5519 if (allow_barrier_p
5520 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5521 return emit_barrier ();
5522 return insn;
5523 }
5524 case CALL_INSN:
5525 return emit_call_insn (x);
5526 case DEBUG_INSN:
5527 return emit_debug_insn (x);
5528 default:
5529 gcc_unreachable ();
5530 }
5531 }
5532 \f
5533 /* Space for free sequence stack entries. */
5534 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5535
5536 /* Begin emitting insns to a sequence. If this sequence will contain
5537 something that might cause the compiler to pop arguments to function
5538 calls (because those pops have previously been deferred; see
5539 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5540 before calling this function. That will ensure that the deferred
5541 pops are not accidentally emitted in the middle of this sequence. */
5542
5543 void
5544 start_sequence (void)
5545 {
5546 struct sequence_stack *tem;
5547
5548 if (free_sequence_stack != NULL)
5549 {
5550 tem = free_sequence_stack;
5551 free_sequence_stack = tem->next;
5552 }
5553 else
5554 tem = ggc_alloc<sequence_stack> ();
5555
5556 tem->next = get_current_sequence ()->next;
5557 tem->first = get_insns ();
5558 tem->last = get_last_insn ();
5559 get_current_sequence ()->next = tem;
5560
5561 set_first_insn (0);
5562 set_last_insn (0);
5563 }
5564
5565 /* Set up the insn chain starting with FIRST as the current sequence,
5566 saving the previously current one. See the documentation for
5567 start_sequence for more information about how to use this function. */
5568
5569 void
5570 push_to_sequence (rtx_insn *first)
5571 {
5572 rtx_insn *last;
5573
5574 start_sequence ();
5575
5576 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5577 ;
5578
5579 set_first_insn (first);
5580 set_last_insn (last);
5581 }
5582
5583 /* Like push_to_sequence, but take the last insn as an argument to avoid
5584 looping through the list. */
5585
5586 void
5587 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5588 {
5589 start_sequence ();
5590
5591 set_first_insn (first);
5592 set_last_insn (last);
5593 }
5594
5595 /* Set up the outer-level insn chain
5596 as the current sequence, saving the previously current one. */
5597
5598 void
5599 push_topmost_sequence (void)
5600 {
5601 struct sequence_stack *top;
5602
5603 start_sequence ();
5604
5605 top = get_topmost_sequence ();
5606 set_first_insn (top->first);
5607 set_last_insn (top->last);
5608 }
5609
5610 /* After emitting to the outer-level insn chain, update the outer-level
5611 insn chain, and restore the previous saved state. */
5612
5613 void
5614 pop_topmost_sequence (void)
5615 {
5616 struct sequence_stack *top;
5617
5618 top = get_topmost_sequence ();
5619 top->first = get_insns ();
5620 top->last = get_last_insn ();
5621
5622 end_sequence ();
5623 }
5624
5625 /* After emitting to a sequence, restore previous saved state.
5626
5627 To get the contents of the sequence just made, you must call
5628 `get_insns' *before* calling here.
5629
5630 If the compiler might have deferred popping arguments while
5631 generating this sequence, and this sequence will not be immediately
5632 inserted into the instruction stream, use do_pending_stack_adjust
5633 before calling get_insns. That will ensure that the deferred
5634 pops are inserted into this sequence, and not into some random
5635 location in the instruction stream. See INHIBIT_DEFER_POP for more
5636 information about deferred popping of arguments. */
5637
5638 void
5639 end_sequence (void)
5640 {
5641 struct sequence_stack *tem = get_current_sequence ()->next;
5642
5643 set_first_insn (tem->first);
5644 set_last_insn (tem->last);
5645 get_current_sequence ()->next = tem->next;
5646
5647 memset (tem, 0, sizeof (*tem));
5648 tem->next = free_sequence_stack;
5649 free_sequence_stack = tem;
5650 }
5651
5652 /* Return 1 if currently emitting into a sequence. */
5653
5654 int
5655 in_sequence_p (void)
5656 {
5657 return get_current_sequence ()->next != 0;
5658 }
5659 \f
5660 /* Put the various virtual registers into REGNO_REG_RTX. */
5661
5662 static void
5663 init_virtual_regs (void)
5664 {
5665 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5666 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5667 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5668 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5669 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5670 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5671 = virtual_preferred_stack_boundary_rtx;
5672 }
5673
5674 \f
5675 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5676 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5677 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5678 static int copy_insn_n_scratches;
5679
5680 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5681 copied an ASM_OPERANDS.
5682 In that case, it is the original input-operand vector. */
5683 static rtvec orig_asm_operands_vector;
5684
5685 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5686 copied an ASM_OPERANDS.
5687 In that case, it is the copied input-operand vector. */
5688 static rtvec copy_asm_operands_vector;
5689
5690 /* Likewise for the constraints vector. */
5691 static rtvec orig_asm_constraints_vector;
5692 static rtvec copy_asm_constraints_vector;
5693
5694 /* Recursively create a new copy of an rtx for copy_insn.
5695 This function differs from copy_rtx in that it handles SCRATCHes and
5696 ASM_OPERANDs properly.
5697 Normally, this function is not used directly; use copy_insn as front end.
5698 However, you could first copy an insn pattern with copy_insn and then use
5699 this function afterwards to properly copy any REG_NOTEs containing
5700 SCRATCHes. */
5701
5702 rtx
5703 copy_insn_1 (rtx orig)
5704 {
5705 rtx copy;
5706 int i, j;
5707 RTX_CODE code;
5708 const char *format_ptr;
5709
5710 if (orig == NULL)
5711 return NULL;
5712
5713 code = GET_CODE (orig);
5714
5715 switch (code)
5716 {
5717 case REG:
5718 case DEBUG_EXPR:
5719 CASE_CONST_ANY:
5720 case SYMBOL_REF:
5721 case CODE_LABEL:
5722 case PC:
5723 case CC0:
5724 case RETURN:
5725 case SIMPLE_RETURN:
5726 return orig;
5727 case CLOBBER:
5728 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5729 clobbers or clobbers of hard registers that originated as pseudos.
5730 This is needed to allow safe register renaming. */
5731 if (REG_P (XEXP (orig, 0))
5732 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5733 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5734 return orig;
5735 break;
5736
5737 case SCRATCH:
5738 for (i = 0; i < copy_insn_n_scratches; i++)
5739 if (copy_insn_scratch_in[i] == orig)
5740 return copy_insn_scratch_out[i];
5741 break;
5742
5743 case CONST:
5744 if (shared_const_p (orig))
5745 return orig;
5746 break;
5747
5748 /* A MEM with a constant address is not sharable. The problem is that
5749 the constant address may need to be reloaded. If the mem is shared,
5750 then reloading one copy of this mem will cause all copies to appear
5751 to have been reloaded. */
5752
5753 default:
5754 break;
5755 }
5756
5757 /* Copy the various flags, fields, and other information. We assume
5758 that all fields need copying, and then clear the fields that should
5759 not be copied. That is the sensible default behavior, and forces
5760 us to explicitly document why we are *not* copying a flag. */
5761 copy = shallow_copy_rtx (orig);
5762
5763 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5764 if (INSN_P (orig))
5765 {
5766 RTX_FLAG (copy, jump) = 0;
5767 RTX_FLAG (copy, call) = 0;
5768 RTX_FLAG (copy, frame_related) = 0;
5769 }
5770
5771 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5772
5773 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5774 switch (*format_ptr++)
5775 {
5776 case 'e':
5777 if (XEXP (orig, i) != NULL)
5778 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5779 break;
5780
5781 case 'E':
5782 case 'V':
5783 if (XVEC (orig, i) == orig_asm_constraints_vector)
5784 XVEC (copy, i) = copy_asm_constraints_vector;
5785 else if (XVEC (orig, i) == orig_asm_operands_vector)
5786 XVEC (copy, i) = copy_asm_operands_vector;
5787 else if (XVEC (orig, i) != NULL)
5788 {
5789 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5790 for (j = 0; j < XVECLEN (copy, i); j++)
5791 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5792 }
5793 break;
5794
5795 case 't':
5796 case 'w':
5797 case 'i':
5798 case 'p':
5799 case 's':
5800 case 'S':
5801 case 'u':
5802 case '0':
5803 /* These are left unchanged. */
5804 break;
5805
5806 default:
5807 gcc_unreachable ();
5808 }
5809
5810 if (code == SCRATCH)
5811 {
5812 i = copy_insn_n_scratches++;
5813 gcc_assert (i < MAX_RECOG_OPERANDS);
5814 copy_insn_scratch_in[i] = orig;
5815 copy_insn_scratch_out[i] = copy;
5816 }
5817 else if (code == ASM_OPERANDS)
5818 {
5819 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5820 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5821 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5822 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5823 }
5824
5825 return copy;
5826 }
5827
5828 /* Create a new copy of an rtx.
5829 This function differs from copy_rtx in that it handles SCRATCHes and
5830 ASM_OPERANDs properly.
5831 INSN doesn't really have to be a full INSN; it could be just the
5832 pattern. */
5833 rtx
5834 copy_insn (rtx insn)
5835 {
5836 copy_insn_n_scratches = 0;
5837 orig_asm_operands_vector = 0;
5838 orig_asm_constraints_vector = 0;
5839 copy_asm_operands_vector = 0;
5840 copy_asm_constraints_vector = 0;
5841 return copy_insn_1 (insn);
5842 }
5843
5844 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5845 on that assumption that INSN itself remains in its original place. */
5846
5847 rtx_insn *
5848 copy_delay_slot_insn (rtx_insn *insn)
5849 {
5850 /* Copy INSN with its rtx_code, all its notes, location etc. */
5851 insn = as_a <rtx_insn *> (copy_rtx (insn));
5852 INSN_UID (insn) = cur_insn_uid++;
5853 return insn;
5854 }
5855
5856 /* Initialize data structures and variables in this file
5857 before generating rtl for each function. */
5858
5859 void
5860 init_emit (void)
5861 {
5862 set_first_insn (NULL);
5863 set_last_insn (NULL);
5864 if (param_min_nondebug_insn_uid)
5865 cur_insn_uid = param_min_nondebug_insn_uid;
5866 else
5867 cur_insn_uid = 1;
5868 cur_debug_insn_uid = 1;
5869 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5870 first_label_num = label_num;
5871 get_current_sequence ()->next = NULL;
5872
5873 /* Init the tables that describe all the pseudo regs. */
5874
5875 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5876
5877 crtl->emit.regno_pointer_align
5878 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5879
5880 regno_reg_rtx
5881 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5882
5883 /* Put copies of all the hard registers into regno_reg_rtx. */
5884 memcpy (regno_reg_rtx,
5885 initial_regno_reg_rtx,
5886 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5887
5888 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5889 init_virtual_regs ();
5890
5891 /* Indicate that the virtual registers and stack locations are
5892 all pointers. */
5893 REG_POINTER (stack_pointer_rtx) = 1;
5894 REG_POINTER (frame_pointer_rtx) = 1;
5895 REG_POINTER (hard_frame_pointer_rtx) = 1;
5896 REG_POINTER (arg_pointer_rtx) = 1;
5897
5898 REG_POINTER (virtual_incoming_args_rtx) = 1;
5899 REG_POINTER (virtual_stack_vars_rtx) = 1;
5900 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5901 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5902 REG_POINTER (virtual_cfa_rtx) = 1;
5903
5904 #ifdef STACK_BOUNDARY
5905 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5906 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5907 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5908 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5909
5910 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5911 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5912 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5913 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5914
5915 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5916 #endif
5917
5918 #ifdef INIT_EXPANDERS
5919 INIT_EXPANDERS;
5920 #endif
5921 }
5922
5923 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5924
5925 wide_int
5926 const_vector_int_elt (const_rtx x, unsigned int i)
5927 {
5928 /* First handle elements that are directly encoded. */
5929 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5930 if (i < (unsigned int) XVECLEN (x, 0))
5931 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5932
5933 /* Identify the pattern that contains element I and work out the index of
5934 the last encoded element for that pattern. */
5935 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5936 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5937 unsigned int count = i / npatterns;
5938 unsigned int pattern = i % npatterns;
5939 unsigned int final_i = encoded_nelts - npatterns + pattern;
5940
5941 /* If there are no steps, the final encoded value is the right one. */
5942 if (!CONST_VECTOR_STEPPED_P (x))
5943 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5944
5945 /* Otherwise work out the value from the last two encoded elements. */
5946 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5947 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5948 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5949 rtx_mode_t (v1, elt_mode));
5950 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5951 }
5952
5953 /* Return the value of element I of CONST_VECTOR X. */
5954
5955 rtx
5956 const_vector_elt (const_rtx x, unsigned int i)
5957 {
5958 /* First handle elements that are directly encoded. */
5959 if (i < (unsigned int) XVECLEN (x, 0))
5960 return CONST_VECTOR_ENCODED_ELT (x, i);
5961
5962 /* If there are no steps, the final encoded value is the right one. */
5963 if (!CONST_VECTOR_STEPPED_P (x))
5964 {
5965 /* Identify the pattern that contains element I and work out the index of
5966 the last encoded element for that pattern. */
5967 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5968 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5969 unsigned int pattern = i % npatterns;
5970 unsigned int final_i = encoded_nelts - npatterns + pattern;
5971 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5972 }
5973
5974 /* Otherwise work out the value from the last two encoded elements. */
5975 return immed_wide_int_const (const_vector_int_elt (x, i),
5976 GET_MODE_INNER (GET_MODE (x)));
5977 }
5978
5979 /* Return true if X is a valid element for a CONST_VECTOR of the given
5980 mode. */
5981
5982 bool
5983 valid_for_const_vector_p (machine_mode, rtx x)
5984 {
5985 return (CONST_SCALAR_INT_P (x)
5986 || CONST_DOUBLE_AS_FLOAT_P (x)
5987 || CONST_FIXED_P (x));
5988 }
5989
5990 /* Generate a vector constant of mode MODE in which every element has
5991 value ELT. */
5992
5993 rtx
5994 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5995 {
5996 rtx_vector_builder builder (mode, 1, 1);
5997 builder.quick_push (elt);
5998 return builder.build ();
5999 }
6000
6001 /* Return a vector rtx of mode MODE in which every element has value X.
6002 The result will be a constant if X is constant. */
6003
6004 rtx
6005 gen_vec_duplicate (machine_mode mode, rtx x)
6006 {
6007 if (valid_for_const_vector_p (mode, x))
6008 return gen_const_vec_duplicate (mode, x);
6009 return gen_rtx_VEC_DUPLICATE (mode, x);
6010 }
6011
6012 /* A subroutine of const_vec_series_p that handles the case in which:
6013
6014 (GET_CODE (X) == CONST_VECTOR
6015 && CONST_VECTOR_NPATTERNS (X) == 1
6016 && !CONST_VECTOR_DUPLICATE_P (X))
6017
6018 is known to hold. */
6019
6020 bool
6021 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
6022 {
6023 /* Stepped sequences are only defined for integers, to avoid specifying
6024 rounding behavior. */
6025 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
6026 return false;
6027
6028 /* A non-duplicated vector with two elements can always be seen as a
6029 series with a nonzero step. Longer vectors must have a stepped
6030 encoding. */
6031 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
6032 && !CONST_VECTOR_STEPPED_P (x))
6033 return false;
6034
6035 /* Calculate the step between the first and second elements. */
6036 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6037 rtx base = CONST_VECTOR_ELT (x, 0);
6038 rtx step = simplify_binary_operation (MINUS, inner,
6039 CONST_VECTOR_ENCODED_ELT (x, 1), base);
6040 if (rtx_equal_p (step, CONST0_RTX (inner)))
6041 return false;
6042
6043 /* If we have a stepped encoding, check that the step between the
6044 second and third elements is the same as STEP. */
6045 if (CONST_VECTOR_STEPPED_P (x))
6046 {
6047 rtx diff = simplify_binary_operation (MINUS, inner,
6048 CONST_VECTOR_ENCODED_ELT (x, 2),
6049 CONST_VECTOR_ENCODED_ELT (x, 1));
6050 if (!rtx_equal_p (step, diff))
6051 return false;
6052 }
6053
6054 *base_out = base;
6055 *step_out = step;
6056 return true;
6057 }
6058
6059 /* Generate a vector constant of mode MODE in which element I has
6060 the value BASE + I * STEP. */
6061
6062 rtx
6063 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6064 {
6065 gcc_assert (valid_for_const_vector_p (mode, base)
6066 && valid_for_const_vector_p (mode, step));
6067
6068 rtx_vector_builder builder (mode, 1, 3);
6069 builder.quick_push (base);
6070 for (int i = 1; i < 3; ++i)
6071 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6072 builder[i - 1], step));
6073 return builder.build ();
6074 }
6075
6076 /* Generate a vector of mode MODE in which element I has the value
6077 BASE + I * STEP. The result will be a constant if BASE and STEP
6078 are both constants. */
6079
6080 rtx
6081 gen_vec_series (machine_mode mode, rtx base, rtx step)
6082 {
6083 if (step == const0_rtx)
6084 return gen_vec_duplicate (mode, base);
6085 if (valid_for_const_vector_p (mode, base)
6086 && valid_for_const_vector_p (mode, step))
6087 return gen_const_vec_series (mode, base, step);
6088 return gen_rtx_VEC_SERIES (mode, base, step);
6089 }
6090
6091 /* Generate a new vector constant for mode MODE and constant value
6092 CONSTANT. */
6093
6094 static rtx
6095 gen_const_vector (machine_mode mode, int constant)
6096 {
6097 machine_mode inner = GET_MODE_INNER (mode);
6098
6099 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6100
6101 rtx el = const_tiny_rtx[constant][(int) inner];
6102 gcc_assert (el);
6103
6104 return gen_const_vec_duplicate (mode, el);
6105 }
6106
6107 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6108 all elements are zero, and the one vector when all elements are one. */
6109 rtx
6110 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6111 {
6112 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6113
6114 /* If the values are all the same, check to see if we can use one of the
6115 standard constant vectors. */
6116 if (rtvec_all_equal_p (v))
6117 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6118
6119 unsigned int nunits = GET_NUM_ELEM (v);
6120 rtx_vector_builder builder (mode, nunits, 1);
6121 for (unsigned int i = 0; i < nunits; ++i)
6122 builder.quick_push (RTVEC_ELT (v, i));
6123 return builder.build (v);
6124 }
6125
6126 /* Initialise global register information required by all functions. */
6127
6128 void
6129 init_emit_regs (void)
6130 {
6131 int i;
6132 machine_mode mode;
6133 mem_attrs *attrs;
6134
6135 /* Reset register attributes */
6136 reg_attrs_htab->empty ();
6137
6138 /* We need reg_raw_mode, so initialize the modes now. */
6139 init_reg_modes_target ();
6140
6141 /* Assign register numbers to the globally defined register rtx. */
6142 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6143 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6144 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6145 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6146 virtual_incoming_args_rtx =
6147 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6148 virtual_stack_vars_rtx =
6149 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6150 virtual_stack_dynamic_rtx =
6151 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6152 virtual_outgoing_args_rtx =
6153 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6154 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6155 virtual_preferred_stack_boundary_rtx =
6156 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6157
6158 /* Initialize RTL for commonly used hard registers. These are
6159 copied into regno_reg_rtx as we begin to compile each function. */
6160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6161 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6162
6163 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6164 return_address_pointer_rtx
6165 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6166 #endif
6167
6168 pic_offset_table_rtx = NULL_RTX;
6169 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6170 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6171
6172 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6173 {
6174 mode = (machine_mode) i;
6175 attrs = ggc_cleared_alloc<mem_attrs> ();
6176 attrs->align = BITS_PER_UNIT;
6177 attrs->addrspace = ADDR_SPACE_GENERIC;
6178 if (mode != BLKmode && mode != VOIDmode)
6179 {
6180 attrs->size_known_p = true;
6181 attrs->size = GET_MODE_SIZE (mode);
6182 if (STRICT_ALIGNMENT)
6183 attrs->align = GET_MODE_ALIGNMENT (mode);
6184 }
6185 mode_mem_attrs[i] = attrs;
6186 }
6187
6188 split_branch_probability = profile_probability::uninitialized ();
6189 }
6190
6191 /* Initialize global machine_mode variables. */
6192
6193 void
6194 init_derived_machine_modes (void)
6195 {
6196 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6197 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6198 {
6199 scalar_int_mode mode = mode_iter.require ();
6200
6201 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6202 && !opt_byte_mode.exists ())
6203 opt_byte_mode = mode;
6204
6205 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6206 && !opt_word_mode.exists ())
6207 opt_word_mode = mode;
6208 }
6209
6210 byte_mode = opt_byte_mode.require ();
6211 word_mode = opt_word_mode.require ();
6212 ptr_mode = as_a <scalar_int_mode>
6213 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6214 }
6215
6216 /* Create some permanent unique rtl objects shared between all functions. */
6217
6218 void
6219 init_emit_once (void)
6220 {
6221 int i;
6222 machine_mode mode;
6223 scalar_float_mode double_mode;
6224 opt_scalar_mode smode_iter;
6225
6226 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6227 CONST_FIXED, and memory attribute hash tables. */
6228 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
6229
6230 #if TARGET_SUPPORTS_WIDE_INT
6231 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
6232 #endif
6233 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6234
6235 if (NUM_POLY_INT_COEFFS > 1)
6236 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6237
6238 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
6239
6240 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
6241
6242 #ifdef INIT_EXPANDERS
6243 /* This is to initialize {init|mark|free}_machine_status before the first
6244 call to push_function_context_to. This is needed by the Chill front
6245 end which calls push_function_context_to before the first call to
6246 init_function_start. */
6247 INIT_EXPANDERS;
6248 #endif
6249
6250 /* Create the unique rtx's for certain rtx codes and operand values. */
6251
6252 /* Process stack-limiting command-line options. */
6253 if (opt_fstack_limit_symbol_arg != NULL)
6254 stack_limit_rtx
6255 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6256 if (opt_fstack_limit_register_no >= 0)
6257 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6258
6259 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6260 tries to use these variables. */
6261 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6262 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6263 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6264
6265 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6266 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6267 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6268 else
6269 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6270
6271 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6272
6273 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6274 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6275 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6276
6277 dconstm1 = dconst1;
6278 dconstm1.sign = 1;
6279
6280 dconsthalf = dconst1;
6281 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6282
6283 for (i = 0; i < 3; i++)
6284 {
6285 const REAL_VALUE_TYPE *const r =
6286 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6287
6288 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6289 const_tiny_rtx[i][(int) mode] =
6290 const_double_from_real_value (*r, mode);
6291
6292 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6293 const_tiny_rtx[i][(int) mode] =
6294 const_double_from_real_value (*r, mode);
6295
6296 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6297
6298 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6299 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6300
6301 for (mode = MIN_MODE_PARTIAL_INT;
6302 mode <= MAX_MODE_PARTIAL_INT;
6303 mode = (machine_mode)((int)(mode) + 1))
6304 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6305 }
6306
6307 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6308
6309 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6310 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6311
6312 /* For BImode, 1 and -1 are unsigned and signed interpretations
6313 of the same value. */
6314 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6315 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6316 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6317
6318 for (mode = MIN_MODE_PARTIAL_INT;
6319 mode <= MAX_MODE_PARTIAL_INT;
6320 mode = (machine_mode)((int)(mode) + 1))
6321 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6322
6323 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6324 {
6325 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6326 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6327 }
6328
6329 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6330 {
6331 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6332 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6333 }
6334
6335 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6336 interpretations of the same value. */
6337 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6338 {
6339 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6340 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6341 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6342 }
6343
6344 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6345 {
6346 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6347 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6348 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6349 }
6350
6351 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6352 {
6353 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6354 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6355 }
6356
6357 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6358 {
6359 scalar_mode smode = smode_iter.require ();
6360 FCONST0 (smode).data.high = 0;
6361 FCONST0 (smode).data.low = 0;
6362 FCONST0 (smode).mode = smode;
6363 const_tiny_rtx[0][(int) smode]
6364 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6365 }
6366
6367 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6368 {
6369 scalar_mode smode = smode_iter.require ();
6370 FCONST0 (smode).data.high = 0;
6371 FCONST0 (smode).data.low = 0;
6372 FCONST0 (smode).mode = smode;
6373 const_tiny_rtx[0][(int) smode]
6374 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6375 }
6376
6377 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6378 {
6379 scalar_mode smode = smode_iter.require ();
6380 FCONST0 (smode).data.high = 0;
6381 FCONST0 (smode).data.low = 0;
6382 FCONST0 (smode).mode = smode;
6383 const_tiny_rtx[0][(int) smode]
6384 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6385
6386 /* We store the value 1. */
6387 FCONST1 (smode).data.high = 0;
6388 FCONST1 (smode).data.low = 0;
6389 FCONST1 (smode).mode = smode;
6390 FCONST1 (smode).data
6391 = double_int_one.lshift (GET_MODE_FBIT (smode),
6392 HOST_BITS_PER_DOUBLE_INT,
6393 SIGNED_FIXED_POINT_MODE_P (smode));
6394 const_tiny_rtx[1][(int) smode]
6395 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6396 }
6397
6398 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6399 {
6400 scalar_mode smode = smode_iter.require ();
6401 FCONST0 (smode).data.high = 0;
6402 FCONST0 (smode).data.low = 0;
6403 FCONST0 (smode).mode = smode;
6404 const_tiny_rtx[0][(int) smode]
6405 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6406
6407 /* We store the value 1. */
6408 FCONST1 (smode).data.high = 0;
6409 FCONST1 (smode).data.low = 0;
6410 FCONST1 (smode).mode = smode;
6411 FCONST1 (smode).data
6412 = double_int_one.lshift (GET_MODE_FBIT (smode),
6413 HOST_BITS_PER_DOUBLE_INT,
6414 SIGNED_FIXED_POINT_MODE_P (smode));
6415 const_tiny_rtx[1][(int) smode]
6416 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6417 }
6418
6419 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6420 {
6421 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6422 }
6423
6424 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6425 {
6426 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6427 }
6428
6429 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6430 {
6431 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6432 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6433 }
6434
6435 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6436 {
6437 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6438 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6439 }
6440
6441 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6442 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6443 const_tiny_rtx[0][i] = const0_rtx;
6444
6445 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6446 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6447 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6448 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6449 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6450 /*prev_insn=*/NULL,
6451 /*next_insn=*/NULL,
6452 /*bb=*/NULL,
6453 /*pattern=*/NULL_RTX,
6454 /*location=*/-1,
6455 CODE_FOR_nothing,
6456 /*reg_notes=*/NULL_RTX);
6457 }
6458 \f
6459 /* Produce exact duplicate of insn INSN after AFTER.
6460 Care updating of libcall regions if present. */
6461
6462 rtx_insn *
6463 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6464 {
6465 rtx_insn *new_rtx;
6466 rtx link;
6467
6468 switch (GET_CODE (insn))
6469 {
6470 case INSN:
6471 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6472 break;
6473
6474 case JUMP_INSN:
6475 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6476 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6477 break;
6478
6479 case DEBUG_INSN:
6480 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6481 break;
6482
6483 case CALL_INSN:
6484 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6485 if (CALL_INSN_FUNCTION_USAGE (insn))
6486 CALL_INSN_FUNCTION_USAGE (new_rtx)
6487 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6488 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6489 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6490 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6491 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6492 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6493 break;
6494
6495 default:
6496 gcc_unreachable ();
6497 }
6498
6499 /* Update LABEL_NUSES. */
6500 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6501
6502 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6503
6504 /* If the old insn is frame related, then so is the new one. This is
6505 primarily needed for IA-64 unwind info which marks epilogue insns,
6506 which may be duplicated by the basic block reordering code. */
6507 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6508
6509 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6510 rtx *ptail = &REG_NOTES (new_rtx);
6511 while (*ptail != NULL_RTX)
6512 ptail = &XEXP (*ptail, 1);
6513
6514 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6515 will make them. REG_LABEL_TARGETs are created there too, but are
6516 supposed to be sticky, so we copy them. */
6517 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6518 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6519 {
6520 *ptail = duplicate_reg_note (link);
6521 ptail = &XEXP (*ptail, 1);
6522 }
6523
6524 INSN_CODE (new_rtx) = INSN_CODE (insn);
6525 return new_rtx;
6526 }
6527
6528 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6529 rtx
6530 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6531 {
6532 if (hard_reg_clobbers[mode][regno])
6533 return hard_reg_clobbers[mode][regno];
6534 else
6535 return (hard_reg_clobbers[mode][regno] =
6536 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6537 }
6538
6539 location_t prologue_location;
6540 location_t epilogue_location;
6541
6542 /* Hold current location information and last location information, so the
6543 datastructures are built lazily only when some instructions in given
6544 place are needed. */
6545 static location_t curr_location;
6546
6547 /* Allocate insn location datastructure. */
6548 void
6549 insn_locations_init (void)
6550 {
6551 prologue_location = epilogue_location = 0;
6552 curr_location = UNKNOWN_LOCATION;
6553 }
6554
6555 /* At the end of emit stage, clear current location. */
6556 void
6557 insn_locations_finalize (void)
6558 {
6559 epilogue_location = curr_location;
6560 curr_location = UNKNOWN_LOCATION;
6561 }
6562
6563 /* Set current location. */
6564 void
6565 set_curr_insn_location (location_t location)
6566 {
6567 curr_location = location;
6568 }
6569
6570 /* Get current location. */
6571 location_t
6572 curr_insn_location (void)
6573 {
6574 return curr_location;
6575 }
6576
6577 /* Set the location of the insn chain starting at INSN to LOC. */
6578 void
6579 set_insn_locations (rtx_insn *insn, location_t loc)
6580 {
6581 while (insn)
6582 {
6583 if (INSN_P (insn))
6584 INSN_LOCATION (insn) = loc;
6585 insn = NEXT_INSN (insn);
6586 }
6587 }
6588
6589 /* Return lexical scope block insn belongs to. */
6590 tree
6591 insn_scope (const rtx_insn *insn)
6592 {
6593 return LOCATION_BLOCK (INSN_LOCATION (insn));
6594 }
6595
6596 /* Return line number of the statement that produced this insn. */
6597 int
6598 insn_line (const rtx_insn *insn)
6599 {
6600 return LOCATION_LINE (INSN_LOCATION (insn));
6601 }
6602
6603 /* Return source file of the statement that produced this insn. */
6604 const char *
6605 insn_file (const rtx_insn *insn)
6606 {
6607 return LOCATION_FILE (INSN_LOCATION (insn));
6608 }
6609
6610 /* Return expanded location of the statement that produced this insn. */
6611 expanded_location
6612 insn_location (const rtx_insn *insn)
6613 {
6614 return expand_location (INSN_LOCATION (insn));
6615 }
6616
6617 /* Return true if memory model MODEL requires a pre-operation (release-style)
6618 barrier or a post-operation (acquire-style) barrier. While not universal,
6619 this function matches behavior of several targets. */
6620
6621 bool
6622 need_atomic_barrier_p (enum memmodel model, bool pre)
6623 {
6624 switch (model & MEMMODEL_BASE_MASK)
6625 {
6626 case MEMMODEL_RELAXED:
6627 case MEMMODEL_CONSUME:
6628 return false;
6629 case MEMMODEL_RELEASE:
6630 return pre;
6631 case MEMMODEL_ACQUIRE:
6632 return !pre;
6633 case MEMMODEL_ACQ_REL:
6634 case MEMMODEL_SEQ_CST:
6635 return true;
6636 default:
6637 gcc_unreachable ();
6638 }
6639 }
6640
6641 /* Return a constant shift amount for shifting a value of mode MODE
6642 by VALUE bits. */
6643
6644 rtx
6645 gen_int_shift_amount (machine_mode, poly_int64 value)
6646 {
6647 /* Use a 64-bit mode, to avoid any truncation.
6648
6649 ??? Perhaps this should be automatically derived from the .md files
6650 instead, or perhaps have a target hook. */
6651 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6652 ? DImode
6653 : int_mode_for_size (64, 0).require ());
6654 return gen_int_mode (value, shift_mode);
6655 }
6656
6657 /* Initialize fields of rtl_data related to stack alignment. */
6658
6659 void
6660 rtl_data::init_stack_alignment ()
6661 {
6662 stack_alignment_needed = STACK_BOUNDARY;
6663 max_used_stack_slot_alignment = STACK_BOUNDARY;
6664 stack_alignment_estimated = 0;
6665 preferred_stack_boundary = STACK_BOUNDARY;
6666 }
6667
6668 \f
6669 #include "gt-emit-rtl.h"