]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fold-const.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
86
87 /* Nonzero if we are folding constants inside an initializer; zero
88 otherwise. */
89 int folding_initializer = 0;
90
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code {
95 COMPCODE_FALSE = 0,
96 COMPCODE_LT = 1,
97 COMPCODE_EQ = 2,
98 COMPCODE_LE = 3,
99 COMPCODE_GT = 4,
100 COMPCODE_LTGT = 5,
101 COMPCODE_GE = 6,
102 COMPCODE_ORD = 7,
103 COMPCODE_UNORD = 8,
104 COMPCODE_UNLT = 9,
105 COMPCODE_UNEQ = 10,
106 COMPCODE_UNLE = 11,
107 COMPCODE_UNGT = 12,
108 COMPCODE_NE = 13,
109 COMPCODE_UNGE = 14,
110 COMPCODE_TRUE = 15
111 };
112
113 static bool negate_expr_p (tree);
114 static tree negate_expr (tree);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int twoval_comparison_p (tree, tree *, tree *);
119 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
120 static tree optimize_bit_field_compare (location_t, enum tree_code,
121 tree, tree, tree);
122 static int simple_operand_p (const_tree);
123 static bool simple_operand_p_2 (tree);
124 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
125 static tree range_predecessor (tree);
126 static tree range_successor (tree);
127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
132 static tree fold_binary_op_with_conditional_arg (location_t,
133 enum tree_code, tree,
134 tree, tree,
135 tree, tree, int);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static tree fold_negate_expr (location_t, tree);
142
143
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
146
147 static location_t
148 expr_location_or (tree t, location_t loc)
149 {
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc == UNKNOWN_LOCATION ? loc : tloc;
152 }
153
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
156
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
159 {
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
165 {
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
168 }
169 return x;
170 }
171 \f
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
174 NULL_TREE. */
175
176 tree
177 div_if_zero_remainder (const_tree arg1, const_tree arg2)
178 {
179 widest_int quo;
180
181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
182 SIGNED, &quo))
183 return wide_int_to_tree (TREE_TYPE (arg1), quo);
184
185 return NULL_TREE;
186 }
187 \f
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
195 used. */
196
197 static int fold_deferring_overflow_warnings;
198
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
203
204 static const char* fold_deferred_overflow_warning;
205
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
208
209 static enum warn_strict_overflow_code fold_deferred_overflow_code;
210
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
213
214 void
215 fold_defer_overflow_warnings (void)
216 {
217 ++fold_deferring_overflow_warnings;
218 }
219
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
227 deferred code. */
228
229 void
230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
231 {
232 const char *warnmsg;
233 location_t locus;
234
235 gcc_assert (fold_deferring_overflow_warnings > 0);
236 --fold_deferring_overflow_warnings;
237 if (fold_deferring_overflow_warnings > 0)
238 {
239 if (fold_deferred_overflow_warning != NULL
240 && code != 0
241 && code < (int) fold_deferred_overflow_code)
242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
243 return;
244 }
245
246 warnmsg = fold_deferred_overflow_warning;
247 fold_deferred_overflow_warning = NULL;
248
249 if (!issue || warnmsg == NULL)
250 return;
251
252 if (gimple_no_warning_p (stmt))
253 return;
254
255 /* Use the smallest code level when deciding to issue the
256 warning. */
257 if (code == 0 || code > (int) fold_deferred_overflow_code)
258 code = fold_deferred_overflow_code;
259
260 if (!issue_strict_overflow_warning (code))
261 return;
262
263 if (stmt == NULL)
264 locus = input_location;
265 else
266 locus = gimple_location (stmt);
267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
268 }
269
270 /* Stop deferring overflow warnings, ignoring any deferred
271 warnings. */
272
273 void
274 fold_undefer_and_ignore_overflow_warnings (void)
275 {
276 fold_undefer_overflow_warnings (false, NULL, 0);
277 }
278
279 /* Whether we are deferring overflow warnings. */
280
281 bool
282 fold_deferring_overflow_warnings_p (void)
283 {
284 return fold_deferring_overflow_warnings > 0;
285 }
286
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
289
290 void
291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
292 {
293 if (fold_deferring_overflow_warnings > 0)
294 {
295 if (fold_deferred_overflow_warning == NULL
296 || wc < fold_deferred_overflow_code)
297 {
298 fold_deferred_overflow_warning = gmsgid;
299 fold_deferred_overflow_code = wc;
300 }
301 }
302 else if (issue_strict_overflow_warning (wc))
303 warning (OPT_Wstrict_overflow, gmsgid);
304 }
305 \f
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
308
309 bool
310 negate_mathfn_p (combined_fn fn)
311 {
312 switch (fn)
313 {
314 CASE_CFN_ASIN:
315 CASE_CFN_ASINH:
316 CASE_CFN_ATAN:
317 CASE_CFN_ATANH:
318 CASE_CFN_CASIN:
319 CASE_CFN_CASINH:
320 CASE_CFN_CATAN:
321 CASE_CFN_CATANH:
322 CASE_CFN_CBRT:
323 CASE_CFN_CPROJ:
324 CASE_CFN_CSIN:
325 CASE_CFN_CSINH:
326 CASE_CFN_CTAN:
327 CASE_CFN_CTANH:
328 CASE_CFN_ERF:
329 CASE_CFN_LLROUND:
330 CASE_CFN_LROUND:
331 CASE_CFN_ROUND:
332 CASE_CFN_SIN:
333 CASE_CFN_SINH:
334 CASE_CFN_TAN:
335 CASE_CFN_TANH:
336 CASE_CFN_TRUNC:
337 return true;
338
339 CASE_CFN_LLRINT:
340 CASE_CFN_LRINT:
341 CASE_CFN_NEARBYINT:
342 CASE_CFN_RINT:
343 return !flag_rounding_math;
344
345 default:
346 break;
347 }
348 return false;
349 }
350
351 /* Check whether we may negate an integer constant T without causing
352 overflow. */
353
354 bool
355 may_negate_without_overflow_p (const_tree t)
356 {
357 tree type;
358
359 gcc_assert (TREE_CODE (t) == INTEGER_CST);
360
361 type = TREE_TYPE (t);
362 if (TYPE_UNSIGNED (type))
363 return false;
364
365 return !wi::only_sign_bit_p (wi::to_wide (t));
366 }
367
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
370
371 static bool
372 negate_expr_p (tree t)
373 {
374 tree type;
375
376 if (t == 0)
377 return false;
378
379 type = TREE_TYPE (t);
380
381 STRIP_SIGN_NOPS (t);
382 switch (TREE_CODE (t))
383 {
384 case INTEGER_CST:
385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
386 return true;
387
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t);
390 case BIT_NOT_EXPR:
391 return (INTEGRAL_TYPE_P (type)
392 && TYPE_OVERFLOW_WRAPS (type));
393
394 case FIXED_CST:
395 return true;
396
397 case NEGATE_EXPR:
398 return !TYPE_OVERFLOW_SANITIZED (type);
399
400 case REAL_CST:
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
404
405 case COMPLEX_CST:
406 return negate_expr_p (TREE_REALPART (t))
407 && negate_expr_p (TREE_IMAGPART (t));
408
409 case VECTOR_CST:
410 {
411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
412 return true;
413
414 /* Steps don't prevent negation. */
415 unsigned int count = vector_cst_encoded_nelts (t);
416 for (unsigned int i = 0; i < count; ++i)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
418 return false;
419
420 return true;
421 }
422
423 case COMPLEX_EXPR:
424 return negate_expr_p (TREE_OPERAND (t, 0))
425 && negate_expr_p (TREE_OPERAND (t, 1));
426
427 case CONJ_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0));
429
430 case PLUS_EXPR:
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
432 || HONOR_SIGNED_ZEROS (element_mode (type))
433 || (ANY_INTEGRAL_TYPE_P (type)
434 && ! TYPE_OVERFLOW_WRAPS (type)))
435 return false;
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t, 1)))
438 return true;
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t, 0));
441
442 case MINUS_EXPR:
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
445 && !HONOR_SIGNED_ZEROS (element_mode (type))
446 && (! ANY_INTEGRAL_TYPE_P (type)
447 || TYPE_OVERFLOW_WRAPS (type));
448
449 case MULT_EXPR:
450 if (TYPE_UNSIGNED (type))
451 break;
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
457 && (wi::popcount
458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
460 && (wi::popcount
461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
462 break;
463
464 /* Fall through. */
465
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
471
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 if (TYPE_UNSIGNED (type))
476 break;
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t, 0)))
481 return true;
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
487 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t, 1))))
489 return negate_expr_p (TREE_OPERAND (t, 1));
490 break;
491
492 case NOP_EXPR:
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type) == REAL_TYPE)
495 {
496 tree tem = strip_float_extensions (t);
497 if (tem != t)
498 return negate_expr_p (tem);
499 }
500 break;
501
502 case CALL_EXPR:
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t)))
505 return negate_expr_p (CALL_EXPR_ARG (t, 0));
506 break;
507
508 case RSHIFT_EXPR:
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
511 {
512 tree op1 = TREE_OPERAND (t, 1);
513 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
514 return true;
515 }
516 break;
517
518 default:
519 break;
520 }
521 return false;
522 }
523
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
527 returned. */
528
529 static tree
530 fold_negate_expr_1 (location_t loc, tree t)
531 {
532 tree type = TREE_TYPE (t);
533 tree tem;
534
535 switch (TREE_CODE (t))
536 {
537 /* Convert - (~A) to A + 1. */
538 case BIT_NOT_EXPR:
539 if (INTEGRAL_TYPE_P (type))
540 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
541 build_one_cst (type));
542 break;
543
544 case INTEGER_CST:
545 tem = fold_negate_const (t, type);
546 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
547 || (ANY_INTEGRAL_TYPE_P (type)
548 && !TYPE_OVERFLOW_TRAPS (type)
549 && TYPE_OVERFLOW_WRAPS (type))
550 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
551 return tem;
552 break;
553
554 case POLY_INT_CST:
555 case REAL_CST:
556 case FIXED_CST:
557 tem = fold_negate_const (t, type);
558 return tem;
559
560 case COMPLEX_CST:
561 {
562 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
563 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
564 if (rpart && ipart)
565 return build_complex (type, rpart, ipart);
566 }
567 break;
568
569 case VECTOR_CST:
570 {
571 tree_vector_builder elts;
572 elts.new_unary_operation (type, t, true);
573 unsigned int count = elts.encoded_nelts ();
574 for (unsigned int i = 0; i < count; ++i)
575 {
576 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
577 if (elt == NULL_TREE)
578 return NULL_TREE;
579 elts.quick_push (elt);
580 }
581
582 return elts.build ();
583 }
584
585 case COMPLEX_EXPR:
586 if (negate_expr_p (t))
587 return fold_build2_loc (loc, COMPLEX_EXPR, type,
588 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
589 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
590 break;
591
592 case CONJ_EXPR:
593 if (negate_expr_p (t))
594 return fold_build1_loc (loc, CONJ_EXPR, type,
595 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
596 break;
597
598 case NEGATE_EXPR:
599 if (!TYPE_OVERFLOW_SANITIZED (type))
600 return TREE_OPERAND (t, 0);
601 break;
602
603 case PLUS_EXPR:
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
605 && !HONOR_SIGNED_ZEROS (element_mode (type)))
606 {
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t, 1)))
609 {
610 tem = negate_expr (TREE_OPERAND (t, 1));
611 return fold_build2_loc (loc, MINUS_EXPR, type,
612 tem, TREE_OPERAND (t, 0));
613 }
614
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t, 0)))
617 {
618 tem = negate_expr (TREE_OPERAND (t, 0));
619 return fold_build2_loc (loc, MINUS_EXPR, type,
620 tem, TREE_OPERAND (t, 1));
621 }
622 }
623 break;
624
625 case MINUS_EXPR:
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
628 && !HONOR_SIGNED_ZEROS (element_mode (type)))
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
631 break;
632
633 case MULT_EXPR:
634 if (TYPE_UNSIGNED (type))
635 break;
636
637 /* Fall through. */
638
639 case RDIV_EXPR:
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
641 {
642 tem = TREE_OPERAND (t, 1);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 TREE_OPERAND (t, 0), negate_expr (tem));
646 tem = TREE_OPERAND (t, 0);
647 if (negate_expr_p (tem))
648 return fold_build2_loc (loc, TREE_CODE (t), type,
649 negate_expr (tem), TREE_OPERAND (t, 1));
650 }
651 break;
652
653 case TRUNC_DIV_EXPR:
654 case ROUND_DIV_EXPR:
655 case EXACT_DIV_EXPR:
656 if (TYPE_UNSIGNED (type))
657 break;
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t, 0)))
662 return fold_build2_loc (loc, TREE_CODE (t), type,
663 negate_expr (TREE_OPERAND (t, 0)),
664 TREE_OPERAND (t, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
670 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t, 1))))
672 && negate_expr_p (TREE_OPERAND (t, 1)))
673 return fold_build2_loc (loc, TREE_CODE (t), type,
674 TREE_OPERAND (t, 0),
675 negate_expr (TREE_OPERAND (t, 1)));
676 break;
677
678 case NOP_EXPR:
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type) == REAL_TYPE)
681 {
682 tem = strip_float_extensions (t);
683 if (tem != t && negate_expr_p (tem))
684 return fold_convert_loc (loc, type, negate_expr (tem));
685 }
686 break;
687
688 case CALL_EXPR:
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t))
691 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
692 {
693 tree fndecl, arg;
694
695 fndecl = get_callee_fndecl (t);
696 arg = negate_expr (CALL_EXPR_ARG (t, 0));
697 return build_call_expr_loc (loc, fndecl, 1, arg);
698 }
699 break;
700
701 case RSHIFT_EXPR:
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
704 {
705 tree op1 = TREE_OPERAND (t, 1);
706 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
707 {
708 tree ntype = TYPE_UNSIGNED (type)
709 ? signed_type_for (type)
710 : unsigned_type_for (type);
711 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
712 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
713 return fold_convert_loc (loc, type, temp);
714 }
715 }
716 break;
717
718 default:
719 break;
720 }
721
722 return NULL_TREE;
723 }
724
725 /* A wrapper for fold_negate_expr_1. */
726
727 static tree
728 fold_negate_expr (location_t loc, tree t)
729 {
730 tree type = TREE_TYPE (t);
731 STRIP_SIGN_NOPS (t);
732 tree tem = fold_negate_expr_1 (loc, t);
733 if (tem == NULL_TREE)
734 return NULL_TREE;
735 return fold_convert_loc (loc, type, tem);
736 }
737
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
740 return NULL_TREE. */
741
742 static tree
743 negate_expr (tree t)
744 {
745 tree type, tem;
746 location_t loc;
747
748 if (t == NULL_TREE)
749 return NULL_TREE;
750
751 loc = EXPR_LOCATION (t);
752 type = TREE_TYPE (t);
753 STRIP_SIGN_NOPS (t);
754
755 tem = fold_negate_expr (loc, t);
756 if (!tem)
757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
758 return fold_convert_loc (loc, type, tem);
759 }
760 \f
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
768
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
772
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
778
779 If IN is itself a literal or constant, return it as appropriate.
780
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
783
784 static tree
785 split_tree (tree in, tree type, enum tree_code code,
786 tree *minus_varp, tree *conp, tree *minus_conp,
787 tree *litp, tree *minus_litp, int negate_p)
788 {
789 tree var = 0;
790 *minus_varp = 0;
791 *conp = 0;
792 *minus_conp = 0;
793 *litp = 0;
794 *minus_litp = 0;
795
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in);
798
799 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
800 || TREE_CODE (in) == FIXED_CST)
801 *litp = in;
802 else if (TREE_CODE (in) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
810 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
811 || (code == MINUS_EXPR
812 && (TREE_CODE (in) == PLUS_EXPR
813 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
814 {
815 tree op0 = TREE_OPERAND (in, 0);
816 tree op1 = TREE_OPERAND (in, 1);
817 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
818 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
819
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
822 || TREE_CODE (op0) == FIXED_CST)
823 *litp = op0, op0 = 0;
824 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
825 || TREE_CODE (op1) == FIXED_CST)
826 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
827
828 if (op0 != 0 && TREE_CONSTANT (op0))
829 *conp = op0, op0 = 0;
830 else if (op1 != 0 && TREE_CONSTANT (op1))
831 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
832
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0 != 0 && op1 != 0)
836 var = in;
837 else if (op0 != 0)
838 var = op0;
839 else
840 var = op1, neg_var_p = neg1_p;
841
842 /* Now do any needed negations. */
843 if (neg_litp_p)
844 *minus_litp = *litp, *litp = 0;
845 if (neg_conp_p && *conp)
846 *minus_conp = *conp, *conp = 0;
847 if (neg_var_p && var)
848 *minus_varp = var, var = 0;
849 }
850 else if (TREE_CONSTANT (in))
851 *conp = in;
852 else if (TREE_CODE (in) == BIT_NOT_EXPR
853 && code == PLUS_EXPR)
854 {
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp = build_minus_one_cst (type);
858 *minus_varp = TREE_OPERAND (in, 0);
859 }
860 else
861 var = in;
862
863 if (negate_p)
864 {
865 if (*litp)
866 *minus_litp = *litp, *litp = 0;
867 else if (*minus_litp)
868 *litp = *minus_litp, *minus_litp = 0;
869 if (*conp)
870 *minus_conp = *conp, *conp = 0;
871 else if (*minus_conp)
872 *conp = *minus_conp, *minus_conp = 0;
873 if (var)
874 *minus_varp = var, var = 0;
875 else if (*minus_varp)
876 var = *minus_varp, *minus_varp = 0;
877 }
878
879 if (*litp
880 && TREE_OVERFLOW_P (*litp))
881 *litp = drop_tree_overflow (*litp);
882 if (*minus_litp
883 && TREE_OVERFLOW_P (*minus_litp))
884 *minus_litp = drop_tree_overflow (*minus_litp);
885
886 return var;
887 }
888
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
893
894 static tree
895 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
896 {
897 if (t1 == 0)
898 {
899 gcc_assert (t2 == 0 || code != MINUS_EXPR);
900 return t2;
901 }
902 else if (t2 == 0)
903 return t1;
904
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
909 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
910 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
911 {
912 if (code == PLUS_EXPR)
913 {
914 if (TREE_CODE (t1) == NEGATE_EXPR)
915 return build2_loc (loc, MINUS_EXPR, type,
916 fold_convert_loc (loc, type, t2),
917 fold_convert_loc (loc, type,
918 TREE_OPERAND (t1, 0)));
919 else if (TREE_CODE (t2) == NEGATE_EXPR)
920 return build2_loc (loc, MINUS_EXPR, type,
921 fold_convert_loc (loc, type, t1),
922 fold_convert_loc (loc, type,
923 TREE_OPERAND (t2, 0)));
924 else if (integer_zerop (t2))
925 return fold_convert_loc (loc, type, t1);
926 }
927 else if (code == MINUS_EXPR)
928 {
929 if (integer_zerop (t2))
930 return fold_convert_loc (loc, type, t1);
931 }
932
933 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
934 fold_convert_loc (loc, type, t2));
935 }
936
937 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
938 fold_convert_loc (loc, type, t2));
939 }
940 \f
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
943
944 static bool
945 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
946 {
947 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
948 return false;
949 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
950 return false;
951
952 switch (code)
953 {
954 case LSHIFT_EXPR:
955 case RSHIFT_EXPR:
956 case LROTATE_EXPR:
957 case RROTATE_EXPR:
958 return true;
959
960 default:
961 break;
962 }
963
964 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
965 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
966 && TYPE_MODE (type1) == TYPE_MODE (type2);
967 }
968
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
972
973 bool
974 wide_int_binop (wide_int &res,
975 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
976 signop sign, wi::overflow_type *overflow)
977 {
978 wide_int tmp;
979 *overflow = wi::OVF_NONE;
980 switch (code)
981 {
982 case BIT_IOR_EXPR:
983 res = wi::bit_or (arg1, arg2);
984 break;
985
986 case BIT_XOR_EXPR:
987 res = wi::bit_xor (arg1, arg2);
988 break;
989
990 case BIT_AND_EXPR:
991 res = wi::bit_and (arg1, arg2);
992 break;
993
994 case RSHIFT_EXPR:
995 case LSHIFT_EXPR:
996 if (wi::neg_p (arg2))
997 {
998 tmp = -arg2;
999 if (code == RSHIFT_EXPR)
1000 code = LSHIFT_EXPR;
1001 else
1002 code = RSHIFT_EXPR;
1003 }
1004 else
1005 tmp = arg2;
1006
1007 if (code == RSHIFT_EXPR)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res = wi::rshift (arg1, tmp, sign);
1012 else
1013 res = wi::lshift (arg1, tmp);
1014 break;
1015
1016 case RROTATE_EXPR:
1017 case LROTATE_EXPR:
1018 if (wi::neg_p (arg2))
1019 {
1020 tmp = -arg2;
1021 if (code == RROTATE_EXPR)
1022 code = LROTATE_EXPR;
1023 else
1024 code = RROTATE_EXPR;
1025 }
1026 else
1027 tmp = arg2;
1028
1029 if (code == RROTATE_EXPR)
1030 res = wi::rrotate (arg1, tmp);
1031 else
1032 res = wi::lrotate (arg1, tmp);
1033 break;
1034
1035 case PLUS_EXPR:
1036 res = wi::add (arg1, arg2, sign, overflow);
1037 break;
1038
1039 case MINUS_EXPR:
1040 res = wi::sub (arg1, arg2, sign, overflow);
1041 break;
1042
1043 case MULT_EXPR:
1044 res = wi::mul (arg1, arg2, sign, overflow);
1045 break;
1046
1047 case MULT_HIGHPART_EXPR:
1048 res = wi::mul_high (arg1, arg2, sign);
1049 break;
1050
1051 case TRUNC_DIV_EXPR:
1052 case EXACT_DIV_EXPR:
1053 if (arg2 == 0)
1054 return false;
1055 res = wi::div_trunc (arg1, arg2, sign, overflow);
1056 break;
1057
1058 case FLOOR_DIV_EXPR:
1059 if (arg2 == 0)
1060 return false;
1061 res = wi::div_floor (arg1, arg2, sign, overflow);
1062 break;
1063
1064 case CEIL_DIV_EXPR:
1065 if (arg2 == 0)
1066 return false;
1067 res = wi::div_ceil (arg1, arg2, sign, overflow);
1068 break;
1069
1070 case ROUND_DIV_EXPR:
1071 if (arg2 == 0)
1072 return false;
1073 res = wi::div_round (arg1, arg2, sign, overflow);
1074 break;
1075
1076 case TRUNC_MOD_EXPR:
1077 if (arg2 == 0)
1078 return false;
1079 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1080 break;
1081
1082 case FLOOR_MOD_EXPR:
1083 if (arg2 == 0)
1084 return false;
1085 res = wi::mod_floor (arg1, arg2, sign, overflow);
1086 break;
1087
1088 case CEIL_MOD_EXPR:
1089 if (arg2 == 0)
1090 return false;
1091 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1092 break;
1093
1094 case ROUND_MOD_EXPR:
1095 if (arg2 == 0)
1096 return false;
1097 res = wi::mod_round (arg1, arg2, sign, overflow);
1098 break;
1099
1100 case MIN_EXPR:
1101 res = wi::min (arg1, arg2, sign);
1102 break;
1103
1104 case MAX_EXPR:
1105 res = wi::max (arg1, arg2, sign);
1106 break;
1107
1108 default:
1109 return false;
1110 }
1111 return true;
1112 }
1113
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1117
1118 static bool
1119 poly_int_binop (poly_wide_int &res, enum tree_code code,
1120 const_tree arg1, const_tree arg2,
1121 signop sign, wi::overflow_type *overflow)
1122 {
1123 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1124 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1125 switch (code)
1126 {
1127 case PLUS_EXPR:
1128 res = wi::add (wi::to_poly_wide (arg1),
1129 wi::to_poly_wide (arg2), sign, overflow);
1130 break;
1131
1132 case MINUS_EXPR:
1133 res = wi::sub (wi::to_poly_wide (arg1),
1134 wi::to_poly_wide (arg2), sign, overflow);
1135 break;
1136
1137 case MULT_EXPR:
1138 if (TREE_CODE (arg2) == INTEGER_CST)
1139 res = wi::mul (wi::to_poly_wide (arg1),
1140 wi::to_wide (arg2), sign, overflow);
1141 else if (TREE_CODE (arg1) == INTEGER_CST)
1142 res = wi::mul (wi::to_poly_wide (arg2),
1143 wi::to_wide (arg1), sign, overflow);
1144 else
1145 return NULL_TREE;
1146 break;
1147
1148 case LSHIFT_EXPR:
1149 if (TREE_CODE (arg2) == INTEGER_CST)
1150 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1151 else
1152 return false;
1153 break;
1154
1155 case BIT_IOR_EXPR:
1156 if (TREE_CODE (arg2) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1158 &res))
1159 return false;
1160 break;
1161
1162 default:
1163 return false;
1164 }
1165 return true;
1166 }
1167
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1171
1172 tree
1173 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1174 int overflowable)
1175 {
1176 poly_wide_int poly_res;
1177 tree type = TREE_TYPE (arg1);
1178 signop sign = TYPE_SIGN (type);
1179 wi::overflow_type overflow = wi::OVF_NONE;
1180
1181 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1182 {
1183 wide_int warg1 = wi::to_wide (arg1), res;
1184 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1185 if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow))
1186 return NULL_TREE;
1187 poly_res = res;
1188 }
1189 else if (!poly_int_tree_p (arg1)
1190 || !poly_int_tree_p (arg2)
1191 || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow))
1192 return NULL_TREE;
1193 return force_fit_type (type, poly_res, overflowable,
1194 (((sign == SIGNED || overflowable == -1)
1195 && overflow)
1196 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1197 }
1198
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1201
1202 static bool
1203 distributes_over_addition_p (tree_code op, int opno)
1204 {
1205 switch (op)
1206 {
1207 case PLUS_EXPR:
1208 case MINUS_EXPR:
1209 case MULT_EXPR:
1210 return true;
1211
1212 case LSHIFT_EXPR:
1213 return opno == 1;
1214
1215 default:
1216 return false;
1217 }
1218 }
1219
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1224
1225 static tree
1226 const_binop (enum tree_code code, tree arg1, tree arg2)
1227 {
1228 /* Sanity check for the recursive cases. */
1229 if (!arg1 || !arg2)
1230 return NULL_TREE;
1231
1232 STRIP_NOPS (arg1);
1233 STRIP_NOPS (arg2);
1234
1235 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1236 {
1237 if (code == POINTER_PLUS_EXPR)
1238 return int_const_binop (PLUS_EXPR,
1239 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1240
1241 return int_const_binop (code, arg1, arg2);
1242 }
1243
1244 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1245 {
1246 machine_mode mode;
1247 REAL_VALUE_TYPE d1;
1248 REAL_VALUE_TYPE d2;
1249 REAL_VALUE_TYPE value;
1250 REAL_VALUE_TYPE result;
1251 bool inexact;
1252 tree t, type;
1253
1254 /* The following codes are handled by real_arithmetic. */
1255 switch (code)
1256 {
1257 case PLUS_EXPR:
1258 case MINUS_EXPR:
1259 case MULT_EXPR:
1260 case RDIV_EXPR:
1261 case MIN_EXPR:
1262 case MAX_EXPR:
1263 break;
1264
1265 default:
1266 return NULL_TREE;
1267 }
1268
1269 d1 = TREE_REAL_CST (arg1);
1270 d2 = TREE_REAL_CST (arg2);
1271
1272 type = TREE_TYPE (arg1);
1273 mode = TYPE_MODE (type);
1274
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1280 return NULL_TREE;
1281
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code == RDIV_EXPR
1285 && real_equal (&d2, &dconst0)
1286 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1287 return NULL_TREE;
1288
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1))
1292 {
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1294 is off. */
1295 d1.signalling = 0;
1296 t = build_real (type, d1);
1297 return t;
1298 }
1299 else if (REAL_VALUE_ISNAN (d2))
1300 {
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1302 is off. */
1303 d2.signalling = 0;
1304 t = build_real (type, d2);
1305 return t;
1306 }
1307
1308 inexact = real_arithmetic (&value, code, &d1, &d2);
1309 real_convert (&result, mode, &value);
1310
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode)
1315 && REAL_VALUE_ISINF (result)
1316 && !REAL_VALUE_ISINF (d1)
1317 && !REAL_VALUE_ISINF (d2))
1318 return NULL_TREE;
1319
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1326 && (inexact || !real_identical (&result, &value)))
1327 return NULL_TREE;
1328
1329 t = build_real (type, result);
1330
1331 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1332 return t;
1333 }
1334
1335 if (TREE_CODE (arg1) == FIXED_CST)
1336 {
1337 FIXED_VALUE_TYPE f1;
1338 FIXED_VALUE_TYPE f2;
1339 FIXED_VALUE_TYPE result;
1340 tree t, type;
1341 int sat_p;
1342 bool overflow_p;
1343
1344 /* The following codes are handled by fixed_arithmetic. */
1345 switch (code)
1346 {
1347 case PLUS_EXPR:
1348 case MINUS_EXPR:
1349 case MULT_EXPR:
1350 case TRUNC_DIV_EXPR:
1351 if (TREE_CODE (arg2) != FIXED_CST)
1352 return NULL_TREE;
1353 f2 = TREE_FIXED_CST (arg2);
1354 break;
1355
1356 case LSHIFT_EXPR:
1357 case RSHIFT_EXPR:
1358 {
1359 if (TREE_CODE (arg2) != INTEGER_CST)
1360 return NULL_TREE;
1361 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1362 f2.data.high = w2.elt (1);
1363 f2.data.low = w2.ulow ();
1364 f2.mode = SImode;
1365 }
1366 break;
1367
1368 default:
1369 return NULL_TREE;
1370 }
1371
1372 f1 = TREE_FIXED_CST (arg1);
1373 type = TREE_TYPE (arg1);
1374 sat_p = TYPE_SATURATING (type);
1375 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1376 t = build_fixed (type, result);
1377 /* Propagate overflow flags. */
1378 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1379 TREE_OVERFLOW (t) = 1;
1380 return t;
1381 }
1382
1383 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1384 {
1385 tree type = TREE_TYPE (arg1);
1386 tree r1 = TREE_REALPART (arg1);
1387 tree i1 = TREE_IMAGPART (arg1);
1388 tree r2 = TREE_REALPART (arg2);
1389 tree i2 = TREE_IMAGPART (arg2);
1390 tree real, imag;
1391
1392 switch (code)
1393 {
1394 case PLUS_EXPR:
1395 case MINUS_EXPR:
1396 real = const_binop (code, r1, r2);
1397 imag = const_binop (code, i1, i2);
1398 break;
1399
1400 case MULT_EXPR:
1401 if (COMPLEX_FLOAT_TYPE_P (type))
1402 return do_mpc_arg2 (arg1, arg2, type,
1403 /* do_nonfinite= */ folding_initializer,
1404 mpc_mul);
1405
1406 real = const_binop (MINUS_EXPR,
1407 const_binop (MULT_EXPR, r1, r2),
1408 const_binop (MULT_EXPR, i1, i2));
1409 imag = const_binop (PLUS_EXPR,
1410 const_binop (MULT_EXPR, r1, i2),
1411 const_binop (MULT_EXPR, i1, r2));
1412 break;
1413
1414 case RDIV_EXPR:
1415 if (COMPLEX_FLOAT_TYPE_P (type))
1416 return do_mpc_arg2 (arg1, arg2, type,
1417 /* do_nonfinite= */ folding_initializer,
1418 mpc_div);
1419 /* Fallthru. */
1420 case TRUNC_DIV_EXPR:
1421 case CEIL_DIV_EXPR:
1422 case FLOOR_DIV_EXPR:
1423 case ROUND_DIV_EXPR:
1424 if (flag_complex_method == 0)
1425 {
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1428
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1431 t = br*br + bi*bi
1432 */
1433 tree magsquared
1434 = const_binop (PLUS_EXPR,
1435 const_binop (MULT_EXPR, r2, r2),
1436 const_binop (MULT_EXPR, i2, i2));
1437 tree t1
1438 = const_binop (PLUS_EXPR,
1439 const_binop (MULT_EXPR, r1, r2),
1440 const_binop (MULT_EXPR, i1, i2));
1441 tree t2
1442 = const_binop (MINUS_EXPR,
1443 const_binop (MULT_EXPR, i1, r2),
1444 const_binop (MULT_EXPR, r1, i2));
1445
1446 real = const_binop (code, t1, magsquared);
1447 imag = const_binop (code, t2, magsquared);
1448 }
1449 else
1450 {
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1453
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1457 fold_abs_const (r2, TREE_TYPE (type)),
1458 fold_abs_const (i2, TREE_TYPE (type)));
1459
1460 if (integer_nonzerop (compare))
1461 {
1462 /* In the TRUE branch, we compute
1463 ratio = br/bi;
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1467 tr = tr / div;
1468 ti = ti / div; */
1469 tree ratio = const_binop (code, r2, i2);
1470 tree div = const_binop (PLUS_EXPR, i2,
1471 const_binop (MULT_EXPR, r2, ratio));
1472 real = const_binop (MULT_EXPR, r1, ratio);
1473 real = const_binop (PLUS_EXPR, real, i1);
1474 real = const_binop (code, real, div);
1475
1476 imag = const_binop (MULT_EXPR, i1, ratio);
1477 imag = const_binop (MINUS_EXPR, imag, r1);
1478 imag = const_binop (code, imag, div);
1479 }
1480 else
1481 {
1482 /* In the FALSE branch, we compute
1483 ratio = d/c;
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1487 tr = tr / div;
1488 ti = ti / div; */
1489 tree ratio = const_binop (code, i2, r2);
1490 tree div = const_binop (PLUS_EXPR, r2,
1491 const_binop (MULT_EXPR, i2, ratio));
1492
1493 real = const_binop (MULT_EXPR, i1, ratio);
1494 real = const_binop (PLUS_EXPR, real, r1);
1495 real = const_binop (code, real, div);
1496
1497 imag = const_binop (MULT_EXPR, r1, ratio);
1498 imag = const_binop (MINUS_EXPR, i1, imag);
1499 imag = const_binop (code, imag, div);
1500 }
1501 }
1502 break;
1503
1504 default:
1505 return NULL_TREE;
1506 }
1507
1508 if (real && imag)
1509 return build_complex (type, real, imag);
1510 }
1511
1512 if (TREE_CODE (arg1) == VECTOR_CST
1513 && TREE_CODE (arg2) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1516 {
1517 tree type = TREE_TYPE (arg1);
1518 bool step_ok_p;
1519 if (VECTOR_CST_STEPPED_P (arg1)
1520 && VECTOR_CST_STEPPED_P (arg2))
1521 /* We can operate directly on the encoding if:
1522
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1524 implies
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1526
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1530 else if (VECTOR_CST_STEPPED_P (arg1))
1531 /* We can operate directly on stepped encodings if:
1532
1533 a3 - a2 == a2 - a1
1534 implies:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1536
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p = distributes_over_addition_p (code, 1);
1539 else
1540 /* Similarly in reverse. */
1541 step_ok_p = distributes_over_addition_p (code, 2);
1542 tree_vector_builder elts;
1543 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1544 return NULL_TREE;
1545 unsigned int count = elts.encoded_nelts ();
1546 for (unsigned int i = 0; i < count; ++i)
1547 {
1548 tree elem1 = VECTOR_CST_ELT (arg1, i);
1549 tree elem2 = VECTOR_CST_ELT (arg2, i);
1550
1551 tree elt = const_binop (code, elem1, elem2);
1552
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt == NULL_TREE)
1556 return NULL_TREE;
1557 elts.quick_push (elt);
1558 }
1559
1560 return elts.build ();
1561 }
1562
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1) == VECTOR_CST
1565 && TREE_CODE (arg2) == INTEGER_CST)
1566 {
1567 tree type = TREE_TYPE (arg1);
1568 bool step_ok_p = distributes_over_addition_p (code, 1);
1569 tree_vector_builder elts;
1570 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1571 return NULL_TREE;
1572 unsigned int count = elts.encoded_nelts ();
1573 for (unsigned int i = 0; i < count; ++i)
1574 {
1575 tree elem1 = VECTOR_CST_ELT (arg1, i);
1576
1577 tree elt = const_binop (code, elem1, arg2);
1578
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt == NULL_TREE)
1582 return NULL_TREE;
1583 elts.quick_push (elt);
1584 }
1585
1586 return elts.build ();
1587 }
1588 return NULL_TREE;
1589 }
1590
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1593
1594 tree
1595 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1596 {
1597 if (TREE_CODE_CLASS (code) == tcc_comparison)
1598 return fold_relational_const (code, type, arg1, arg2);
1599
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1602 switch (code)
1603 {
1604 case VEC_SERIES_EXPR:
1605 if (CONSTANT_CLASS_P (arg1)
1606 && CONSTANT_CLASS_P (arg2))
1607 return build_vec_series (type, arg1, arg2);
1608 return NULL_TREE;
1609
1610 case COMPLEX_EXPR:
1611 if ((TREE_CODE (arg1) == REAL_CST
1612 && TREE_CODE (arg2) == REAL_CST)
1613 || (TREE_CODE (arg1) == INTEGER_CST
1614 && TREE_CODE (arg2) == INTEGER_CST))
1615 return build_complex (type, arg1, arg2);
1616 return NULL_TREE;
1617
1618 case POINTER_DIFF_EXPR:
1619 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1620 {
1621 poly_offset_int res = (wi::to_poly_offset (arg1)
1622 - wi::to_poly_offset (arg2));
1623 return force_fit_type (type, res, 1,
1624 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1625 }
1626 return NULL_TREE;
1627
1628 case VEC_PACK_TRUNC_EXPR:
1629 case VEC_PACK_FIX_TRUNC_EXPR:
1630 case VEC_PACK_FLOAT_EXPR:
1631 {
1632 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1633
1634 if (TREE_CODE (arg1) != VECTOR_CST
1635 || TREE_CODE (arg2) != VECTOR_CST)
1636 return NULL_TREE;
1637
1638 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1639 return NULL_TREE;
1640
1641 out_nelts = in_nelts * 2;
1642 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1643 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1644
1645 tree_vector_builder elts (type, out_nelts, 1);
1646 for (i = 0; i < out_nelts; i++)
1647 {
1648 tree elt = (i < in_nelts
1649 ? VECTOR_CST_ELT (arg1, i)
1650 : VECTOR_CST_ELT (arg2, i - in_nelts));
1651 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1652 ? NOP_EXPR
1653 : code == VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1655 TREE_TYPE (type), elt);
1656 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1657 return NULL_TREE;
1658 elts.quick_push (elt);
1659 }
1660
1661 return elts.build ();
1662 }
1663
1664 case VEC_WIDEN_MULT_LO_EXPR:
1665 case VEC_WIDEN_MULT_HI_EXPR:
1666 case VEC_WIDEN_MULT_EVEN_EXPR:
1667 case VEC_WIDEN_MULT_ODD_EXPR:
1668 {
1669 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1670
1671 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1672 return NULL_TREE;
1673
1674 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1675 return NULL_TREE;
1676 out_nelts = in_nelts / 2;
1677 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1678 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1679
1680 if (code == VEC_WIDEN_MULT_LO_EXPR)
1681 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1682 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1683 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1684 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1685 scale = 1, ofs = 0;
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1687 scale = 1, ofs = 1;
1688
1689 tree_vector_builder elts (type, out_nelts, 1);
1690 for (out = 0; out < out_nelts; out++)
1691 {
1692 unsigned int in = (out << scale) + ofs;
1693 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1694 VECTOR_CST_ELT (arg1, in));
1695 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1696 VECTOR_CST_ELT (arg2, in));
1697
1698 if (t1 == NULL_TREE || t2 == NULL_TREE)
1699 return NULL_TREE;
1700 tree elt = const_binop (MULT_EXPR, t1, t2);
1701 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1702 return NULL_TREE;
1703 elts.quick_push (elt);
1704 }
1705
1706 return elts.build ();
1707 }
1708
1709 default:;
1710 }
1711
1712 if (TREE_CODE_CLASS (code) != tcc_binary)
1713 return NULL_TREE;
1714
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type)
1717 == TYPE_SATURATING (TREE_TYPE (arg1)));
1718
1719 return const_binop (code, arg1, arg2);
1720 }
1721
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1724
1725 tree
1726 const_unop (enum tree_code code, tree type, tree arg0)
1727 {
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1733 && code != NEGATE_EXPR
1734 && code != ABS_EXPR
1735 && code != ABSU_EXPR)
1736 return NULL_TREE;
1737
1738 switch (code)
1739 {
1740 CASE_CONVERT:
1741 case FLOAT_EXPR:
1742 case FIX_TRUNC_EXPR:
1743 case FIXED_CONVERT_EXPR:
1744 return fold_convert_const (code, type, arg0);
1745
1746 case ADDR_SPACE_CONVERT_EXPR:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0)
1750 && !(targetm.addr_space.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1752 return fold_convert_const (code, type, arg0);
1753 break;
1754
1755 case VIEW_CONVERT_EXPR:
1756 return fold_view_convert_expr (type, arg0);
1757
1758 case NEGATE_EXPR:
1759 {
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1762 constants. */
1763 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1764 if (tem && CONSTANT_CLASS_P (tem))
1765 return tem;
1766 break;
1767 }
1768
1769 case ABS_EXPR:
1770 case ABSU_EXPR:
1771 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1772 return fold_abs_const (arg0, type);
1773 break;
1774
1775 case CONJ_EXPR:
1776 if (TREE_CODE (arg0) == COMPLEX_CST)
1777 {
1778 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1779 TREE_TYPE (type));
1780 return build_complex (type, TREE_REALPART (arg0), ipart);
1781 }
1782 break;
1783
1784 case BIT_NOT_EXPR:
1785 if (TREE_CODE (arg0) == INTEGER_CST)
1786 return fold_not_const (arg0, type);
1787 else if (POLY_INT_CST_P (arg0))
1788 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0) == VECTOR_CST)
1791 {
1792 tree elem;
1793
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements;
1796 elements.new_unary_operation (type, arg0, true);
1797 unsigned int i, count = elements.encoded_nelts ();
1798 for (i = 0; i < count; ++i)
1799 {
1800 elem = VECTOR_CST_ELT (arg0, i);
1801 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1802 if (elem == NULL_TREE)
1803 break;
1804 elements.quick_push (elem);
1805 }
1806 if (i == count)
1807 return elements.build ();
1808 }
1809 break;
1810
1811 case TRUTH_NOT_EXPR:
1812 if (TREE_CODE (arg0) == INTEGER_CST)
1813 return constant_boolean_node (integer_zerop (arg0), type);
1814 break;
1815
1816 case REALPART_EXPR:
1817 if (TREE_CODE (arg0) == COMPLEX_CST)
1818 return fold_convert (type, TREE_REALPART (arg0));
1819 break;
1820
1821 case IMAGPART_EXPR:
1822 if (TREE_CODE (arg0) == COMPLEX_CST)
1823 return fold_convert (type, TREE_IMAGPART (arg0));
1824 break;
1825
1826 case VEC_UNPACK_LO_EXPR:
1827 case VEC_UNPACK_HI_EXPR:
1828 case VEC_UNPACK_FLOAT_LO_EXPR:
1829 case VEC_UNPACK_FLOAT_HI_EXPR:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1832 {
1833 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1834 enum tree_code subcode;
1835
1836 if (TREE_CODE (arg0) != VECTOR_CST)
1837 return NULL_TREE;
1838
1839 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1840 return NULL_TREE;
1841 out_nelts = in_nelts / 2;
1842 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1843
1844 unsigned int offset = 0;
1845 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1846 || code == VEC_UNPACK_FLOAT_LO_EXPR
1847 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1848 offset = out_nelts;
1849
1850 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1851 subcode = NOP_EXPR;
1852 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1853 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1854 subcode = FLOAT_EXPR;
1855 else
1856 subcode = FIX_TRUNC_EXPR;
1857
1858 tree_vector_builder elts (type, out_nelts, 1);
1859 for (i = 0; i < out_nelts; i++)
1860 {
1861 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1862 VECTOR_CST_ELT (arg0, i + offset));
1863 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1864 return NULL_TREE;
1865 elts.quick_push (elt);
1866 }
1867
1868 return elts.build ();
1869 }
1870
1871 case VEC_DUPLICATE_EXPR:
1872 if (CONSTANT_CLASS_P (arg0))
1873 return build_vector_from_val (type, arg0);
1874 return NULL_TREE;
1875
1876 default:
1877 break;
1878 }
1879
1880 return NULL_TREE;
1881 }
1882
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1885
1886 tree
1887 size_int_kind (poly_int64 number, enum size_type_kind kind)
1888 {
1889 return build_int_cst (sizetype_tab[(int) kind], number);
1890 }
1891 \f
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1896
1897 tree
1898 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1899 {
1900 tree type = TREE_TYPE (arg0);
1901
1902 if (arg0 == error_mark_node || arg1 == error_mark_node)
1903 return error_mark_node;
1904
1905 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1906 TREE_TYPE (arg1)));
1907
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1910 {
1911 /* And some specific cases even faster than that. */
1912 if (code == PLUS_EXPR)
1913 {
1914 if (integer_zerop (arg0)
1915 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1916 return arg1;
1917 if (integer_zerop (arg1)
1918 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1919 return arg0;
1920 }
1921 else if (code == MINUS_EXPR)
1922 {
1923 if (integer_zerop (arg1)
1924 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1925 return arg0;
1926 }
1927 else if (code == MULT_EXPR)
1928 {
1929 if (integer_onep (arg0)
1930 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1931 return arg1;
1932 }
1933
1934 /* Handle general case of two integer constants. For sizetype
1935 constant calculations we always want to know about overflow,
1936 even in the unsigned case. */
1937 tree res = int_const_binop (code, arg0, arg1, -1);
1938 if (res != NULL_TREE)
1939 return res;
1940 }
1941
1942 return fold_build2_loc (loc, code, type, arg0, arg1);
1943 }
1944
1945 /* Given two values, either both of sizetype or both of bitsizetype,
1946 compute the difference between the two values. Return the value
1947 in signed type corresponding to the type of the operands. */
1948
1949 tree
1950 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1951 {
1952 tree type = TREE_TYPE (arg0);
1953 tree ctype;
1954
1955 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1956 TREE_TYPE (arg1)));
1957
1958 /* If the type is already signed, just do the simple thing. */
1959 if (!TYPE_UNSIGNED (type))
1960 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1961
1962 if (type == sizetype)
1963 ctype = ssizetype;
1964 else if (type == bitsizetype)
1965 ctype = sbitsizetype;
1966 else
1967 ctype = signed_type_for (type);
1968
1969 /* If either operand is not a constant, do the conversions to the signed
1970 type and subtract. The hardware will do the right thing with any
1971 overflow in the subtraction. */
1972 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1973 return size_binop_loc (loc, MINUS_EXPR,
1974 fold_convert_loc (loc, ctype, arg0),
1975 fold_convert_loc (loc, ctype, arg1));
1976
1977 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1978 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1979 overflow) and negate (which can't either). Special-case a result
1980 of zero while we're here. */
1981 if (tree_int_cst_equal (arg0, arg1))
1982 return build_int_cst (ctype, 0);
1983 else if (tree_int_cst_lt (arg1, arg0))
1984 return fold_convert_loc (loc, ctype,
1985 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1986 else
1987 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1988 fold_convert_loc (loc, ctype,
1989 size_binop_loc (loc,
1990 MINUS_EXPR,
1991 arg1, arg0)));
1992 }
1993 \f
1994 /* A subroutine of fold_convert_const handling conversions of an
1995 INTEGER_CST to another integer type. */
1996
1997 static tree
1998 fold_convert_const_int_from_int (tree type, const_tree arg1)
1999 {
2000 /* Given an integer constant, make new constant with new type,
2001 appropriately sign-extended or truncated. Use widest_int
2002 so that any extension is done according ARG1's type. */
2003 return force_fit_type (type, wi::to_widest (arg1),
2004 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2005 TREE_OVERFLOW (arg1));
2006 }
2007
2008 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2009 to an integer type. */
2010
2011 static tree
2012 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2013 {
2014 bool overflow = false;
2015 tree t;
2016
2017 /* The following code implements the floating point to integer
2018 conversion rules required by the Java Language Specification,
2019 that IEEE NaNs are mapped to zero and values that overflow
2020 the target precision saturate, i.e. values greater than
2021 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2022 are mapped to INT_MIN. These semantics are allowed by the
2023 C and C++ standards that simply state that the behavior of
2024 FP-to-integer conversion is unspecified upon overflow. */
2025
2026 wide_int val;
2027 REAL_VALUE_TYPE r;
2028 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2029
2030 switch (code)
2031 {
2032 case FIX_TRUNC_EXPR:
2033 real_trunc (&r, VOIDmode, &x);
2034 break;
2035
2036 default:
2037 gcc_unreachable ();
2038 }
2039
2040 /* If R is NaN, return zero and show we have an overflow. */
2041 if (REAL_VALUE_ISNAN (r))
2042 {
2043 overflow = true;
2044 val = wi::zero (TYPE_PRECISION (type));
2045 }
2046
2047 /* See if R is less than the lower bound or greater than the
2048 upper bound. */
2049
2050 if (! overflow)
2051 {
2052 tree lt = TYPE_MIN_VALUE (type);
2053 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2054 if (real_less (&r, &l))
2055 {
2056 overflow = true;
2057 val = wi::to_wide (lt);
2058 }
2059 }
2060
2061 if (! overflow)
2062 {
2063 tree ut = TYPE_MAX_VALUE (type);
2064 if (ut)
2065 {
2066 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2067 if (real_less (&u, &r))
2068 {
2069 overflow = true;
2070 val = wi::to_wide (ut);
2071 }
2072 }
2073 }
2074
2075 if (! overflow)
2076 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2077
2078 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2079 return t;
2080 }
2081
2082 /* A subroutine of fold_convert_const handling conversions of a
2083 FIXED_CST to an integer type. */
2084
2085 static tree
2086 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2087 {
2088 tree t;
2089 double_int temp, temp_trunc;
2090 scalar_mode mode;
2091
2092 /* Right shift FIXED_CST to temp by fbit. */
2093 temp = TREE_FIXED_CST (arg1).data;
2094 mode = TREE_FIXED_CST (arg1).mode;
2095 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2096 {
2097 temp = temp.rshift (GET_MODE_FBIT (mode),
2098 HOST_BITS_PER_DOUBLE_INT,
2099 SIGNED_FIXED_POINT_MODE_P (mode));
2100
2101 /* Left shift temp to temp_trunc by fbit. */
2102 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2103 HOST_BITS_PER_DOUBLE_INT,
2104 SIGNED_FIXED_POINT_MODE_P (mode));
2105 }
2106 else
2107 {
2108 temp = double_int_zero;
2109 temp_trunc = double_int_zero;
2110 }
2111
2112 /* If FIXED_CST is negative, we need to round the value toward 0.
2113 By checking if the fractional bits are not zero to add 1 to temp. */
2114 if (SIGNED_FIXED_POINT_MODE_P (mode)
2115 && temp_trunc.is_negative ()
2116 && TREE_FIXED_CST (arg1).data != temp_trunc)
2117 temp += double_int_one;
2118
2119 /* Given a fixed-point constant, make new constant with new type,
2120 appropriately sign-extended or truncated. */
2121 t = force_fit_type (type, temp, -1,
2122 (temp.is_negative ()
2123 && (TYPE_UNSIGNED (type)
2124 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2125 | TREE_OVERFLOW (arg1));
2126
2127 return t;
2128 }
2129
2130 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2131 to another floating point type. */
2132
2133 static tree
2134 fold_convert_const_real_from_real (tree type, const_tree arg1)
2135 {
2136 REAL_VALUE_TYPE value;
2137 tree t;
2138
2139 /* Don't perform the operation if flag_signaling_nans is on
2140 and the operand is a signaling NaN. */
2141 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2142 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2143 return NULL_TREE;
2144
2145 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2146 t = build_real (type, value);
2147
2148 /* If converting an infinity or NAN to a representation that doesn't
2149 have one, set the overflow bit so that we can produce some kind of
2150 error message at the appropriate point if necessary. It's not the
2151 most user-friendly message, but it's better than nothing. */
2152 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2153 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2154 TREE_OVERFLOW (t) = 1;
2155 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2156 && !MODE_HAS_NANS (TYPE_MODE (type)))
2157 TREE_OVERFLOW (t) = 1;
2158 /* Regular overflow, conversion produced an infinity in a mode that
2159 can't represent them. */
2160 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2161 && REAL_VALUE_ISINF (value)
2162 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2163 TREE_OVERFLOW (t) = 1;
2164 else
2165 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2166 return t;
2167 }
2168
2169 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2170 to a floating point type. */
2171
2172 static tree
2173 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2174 {
2175 REAL_VALUE_TYPE value;
2176 tree t;
2177
2178 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2179 &TREE_FIXED_CST (arg1));
2180 t = build_real (type, value);
2181
2182 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2183 return t;
2184 }
2185
2186 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2187 to another fixed-point type. */
2188
2189 static tree
2190 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2191 {
2192 FIXED_VALUE_TYPE value;
2193 tree t;
2194 bool overflow_p;
2195
2196 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2197 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2198 t = build_fixed (type, value);
2199
2200 /* Propagate overflow flags. */
2201 if (overflow_p | TREE_OVERFLOW (arg1))
2202 TREE_OVERFLOW (t) = 1;
2203 return t;
2204 }
2205
2206 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2207 to a fixed-point type. */
2208
2209 static tree
2210 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2211 {
2212 FIXED_VALUE_TYPE value;
2213 tree t;
2214 bool overflow_p;
2215 double_int di;
2216
2217 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2218
2219 di.low = TREE_INT_CST_ELT (arg1, 0);
2220 if (TREE_INT_CST_NUNITS (arg1) == 1)
2221 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2222 else
2223 di.high = TREE_INT_CST_ELT (arg1, 1);
2224
2225 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2226 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2227 TYPE_SATURATING (type));
2228 t = build_fixed (type, value);
2229
2230 /* Propagate overflow flags. */
2231 if (overflow_p | TREE_OVERFLOW (arg1))
2232 TREE_OVERFLOW (t) = 1;
2233 return t;
2234 }
2235
2236 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2237 to a fixed-point type. */
2238
2239 static tree
2240 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2241 {
2242 FIXED_VALUE_TYPE value;
2243 tree t;
2244 bool overflow_p;
2245
2246 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2247 &TREE_REAL_CST (arg1),
2248 TYPE_SATURATING (type));
2249 t = build_fixed (type, value);
2250
2251 /* Propagate overflow flags. */
2252 if (overflow_p | TREE_OVERFLOW (arg1))
2253 TREE_OVERFLOW (t) = 1;
2254 return t;
2255 }
2256
2257 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2258 type TYPE. If no simplification can be done return NULL_TREE. */
2259
2260 static tree
2261 fold_convert_const (enum tree_code code, tree type, tree arg1)
2262 {
2263 tree arg_type = TREE_TYPE (arg1);
2264 if (arg_type == type)
2265 return arg1;
2266
2267 /* We can't widen types, since the runtime value could overflow the
2268 original type before being extended to the new type. */
2269 if (POLY_INT_CST_P (arg1)
2270 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2271 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2272 return build_poly_int_cst (type,
2273 poly_wide_int::from (poly_int_cst_value (arg1),
2274 TYPE_PRECISION (type),
2275 TYPE_SIGN (arg_type)));
2276
2277 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2278 || TREE_CODE (type) == OFFSET_TYPE)
2279 {
2280 if (TREE_CODE (arg1) == INTEGER_CST)
2281 return fold_convert_const_int_from_int (type, arg1);
2282 else if (TREE_CODE (arg1) == REAL_CST)
2283 return fold_convert_const_int_from_real (code, type, arg1);
2284 else if (TREE_CODE (arg1) == FIXED_CST)
2285 return fold_convert_const_int_from_fixed (type, arg1);
2286 }
2287 else if (TREE_CODE (type) == REAL_TYPE)
2288 {
2289 if (TREE_CODE (arg1) == INTEGER_CST)
2290 return build_real_from_int_cst (type, arg1);
2291 else if (TREE_CODE (arg1) == REAL_CST)
2292 return fold_convert_const_real_from_real (type, arg1);
2293 else if (TREE_CODE (arg1) == FIXED_CST)
2294 return fold_convert_const_real_from_fixed (type, arg1);
2295 }
2296 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2297 {
2298 if (TREE_CODE (arg1) == FIXED_CST)
2299 return fold_convert_const_fixed_from_fixed (type, arg1);
2300 else if (TREE_CODE (arg1) == INTEGER_CST)
2301 return fold_convert_const_fixed_from_int (type, arg1);
2302 else if (TREE_CODE (arg1) == REAL_CST)
2303 return fold_convert_const_fixed_from_real (type, arg1);
2304 }
2305 else if (TREE_CODE (type) == VECTOR_TYPE)
2306 {
2307 if (TREE_CODE (arg1) == VECTOR_CST
2308 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2309 {
2310 tree elttype = TREE_TYPE (type);
2311 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2312 /* We can't handle steps directly when extending, since the
2313 values need to wrap at the original precision first. */
2314 bool step_ok_p
2315 = (INTEGRAL_TYPE_P (elttype)
2316 && INTEGRAL_TYPE_P (arg1_elttype)
2317 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2318 tree_vector_builder v;
2319 if (!v.new_unary_operation (type, arg1, step_ok_p))
2320 return NULL_TREE;
2321 unsigned int len = v.encoded_nelts ();
2322 for (unsigned int i = 0; i < len; ++i)
2323 {
2324 tree elt = VECTOR_CST_ELT (arg1, i);
2325 tree cvt = fold_convert_const (code, elttype, elt);
2326 if (cvt == NULL_TREE)
2327 return NULL_TREE;
2328 v.quick_push (cvt);
2329 }
2330 return v.build ();
2331 }
2332 }
2333 return NULL_TREE;
2334 }
2335
2336 /* Construct a vector of zero elements of vector type TYPE. */
2337
2338 static tree
2339 build_zero_vector (tree type)
2340 {
2341 tree t;
2342
2343 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2344 return build_vector_from_val (type, t);
2345 }
2346
2347 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2348
2349 bool
2350 fold_convertible_p (const_tree type, const_tree arg)
2351 {
2352 tree orig = TREE_TYPE (arg);
2353
2354 if (type == orig)
2355 return true;
2356
2357 if (TREE_CODE (arg) == ERROR_MARK
2358 || TREE_CODE (type) == ERROR_MARK
2359 || TREE_CODE (orig) == ERROR_MARK)
2360 return false;
2361
2362 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2363 return true;
2364
2365 switch (TREE_CODE (type))
2366 {
2367 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2368 case POINTER_TYPE: case REFERENCE_TYPE:
2369 case OFFSET_TYPE:
2370 return (INTEGRAL_TYPE_P (orig)
2371 || (POINTER_TYPE_P (orig)
2372 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2373 || TREE_CODE (orig) == OFFSET_TYPE);
2374
2375 case REAL_TYPE:
2376 case FIXED_POINT_TYPE:
2377 case VECTOR_TYPE:
2378 case VOID_TYPE:
2379 return TREE_CODE (type) == TREE_CODE (orig);
2380
2381 default:
2382 return false;
2383 }
2384 }
2385
2386 /* Convert expression ARG to type TYPE. Used by the middle-end for
2387 simple conversions in preference to calling the front-end's convert. */
2388
2389 tree
2390 fold_convert_loc (location_t loc, tree type, tree arg)
2391 {
2392 tree orig = TREE_TYPE (arg);
2393 tree tem;
2394
2395 if (type == orig)
2396 return arg;
2397
2398 if (TREE_CODE (arg) == ERROR_MARK
2399 || TREE_CODE (type) == ERROR_MARK
2400 || TREE_CODE (orig) == ERROR_MARK)
2401 return error_mark_node;
2402
2403 switch (TREE_CODE (type))
2404 {
2405 case POINTER_TYPE:
2406 case REFERENCE_TYPE:
2407 /* Handle conversions between pointers to different address spaces. */
2408 if (POINTER_TYPE_P (orig)
2409 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2410 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2411 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2412 /* fall through */
2413
2414 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2415 case OFFSET_TYPE:
2416 if (TREE_CODE (arg) == INTEGER_CST)
2417 {
2418 tem = fold_convert_const (NOP_EXPR, type, arg);
2419 if (tem != NULL_TREE)
2420 return tem;
2421 }
2422 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2423 || TREE_CODE (orig) == OFFSET_TYPE)
2424 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2425 if (TREE_CODE (orig) == COMPLEX_TYPE)
2426 return fold_convert_loc (loc, type,
2427 fold_build1_loc (loc, REALPART_EXPR,
2428 TREE_TYPE (orig), arg));
2429 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2430 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2431 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2432
2433 case REAL_TYPE:
2434 if (TREE_CODE (arg) == INTEGER_CST)
2435 {
2436 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2437 if (tem != NULL_TREE)
2438 return tem;
2439 }
2440 else if (TREE_CODE (arg) == REAL_CST)
2441 {
2442 tem = fold_convert_const (NOP_EXPR, type, arg);
2443 if (tem != NULL_TREE)
2444 return tem;
2445 }
2446 else if (TREE_CODE (arg) == FIXED_CST)
2447 {
2448 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2449 if (tem != NULL_TREE)
2450 return tem;
2451 }
2452
2453 switch (TREE_CODE (orig))
2454 {
2455 case INTEGER_TYPE:
2456 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2457 case POINTER_TYPE: case REFERENCE_TYPE:
2458 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2459
2460 case REAL_TYPE:
2461 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2462
2463 case FIXED_POINT_TYPE:
2464 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2465
2466 case COMPLEX_TYPE:
2467 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2468 return fold_convert_loc (loc, type, tem);
2469
2470 default:
2471 gcc_unreachable ();
2472 }
2473
2474 case FIXED_POINT_TYPE:
2475 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2476 || TREE_CODE (arg) == REAL_CST)
2477 {
2478 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2479 if (tem != NULL_TREE)
2480 goto fold_convert_exit;
2481 }
2482
2483 switch (TREE_CODE (orig))
2484 {
2485 case FIXED_POINT_TYPE:
2486 case INTEGER_TYPE:
2487 case ENUMERAL_TYPE:
2488 case BOOLEAN_TYPE:
2489 case REAL_TYPE:
2490 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2491
2492 case COMPLEX_TYPE:
2493 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2494 return fold_convert_loc (loc, type, tem);
2495
2496 default:
2497 gcc_unreachable ();
2498 }
2499
2500 case COMPLEX_TYPE:
2501 switch (TREE_CODE (orig))
2502 {
2503 case INTEGER_TYPE:
2504 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2505 case POINTER_TYPE: case REFERENCE_TYPE:
2506 case REAL_TYPE:
2507 case FIXED_POINT_TYPE:
2508 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2509 fold_convert_loc (loc, TREE_TYPE (type), arg),
2510 fold_convert_loc (loc, TREE_TYPE (type),
2511 integer_zero_node));
2512 case COMPLEX_TYPE:
2513 {
2514 tree rpart, ipart;
2515
2516 if (TREE_CODE (arg) == COMPLEX_EXPR)
2517 {
2518 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2519 TREE_OPERAND (arg, 0));
2520 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2521 TREE_OPERAND (arg, 1));
2522 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2523 }
2524
2525 arg = save_expr (arg);
2526 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2527 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2528 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2529 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2530 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2531 }
2532
2533 default:
2534 gcc_unreachable ();
2535 }
2536
2537 case VECTOR_TYPE:
2538 if (integer_zerop (arg))
2539 return build_zero_vector (type);
2540 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2541 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2542 || TREE_CODE (orig) == VECTOR_TYPE);
2543 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2544
2545 case VOID_TYPE:
2546 tem = fold_ignored_result (arg);
2547 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2548
2549 default:
2550 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2551 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2552 gcc_unreachable ();
2553 }
2554 fold_convert_exit:
2555 protected_set_expr_location_unshare (tem, loc);
2556 return tem;
2557 }
2558 \f
2559 /* Return false if expr can be assumed not to be an lvalue, true
2560 otherwise. */
2561
2562 static bool
2563 maybe_lvalue_p (const_tree x)
2564 {
2565 /* We only need to wrap lvalue tree codes. */
2566 switch (TREE_CODE (x))
2567 {
2568 case VAR_DECL:
2569 case PARM_DECL:
2570 case RESULT_DECL:
2571 case LABEL_DECL:
2572 case FUNCTION_DECL:
2573 case SSA_NAME:
2574
2575 case COMPONENT_REF:
2576 case MEM_REF:
2577 case INDIRECT_REF:
2578 case ARRAY_REF:
2579 case ARRAY_RANGE_REF:
2580 case BIT_FIELD_REF:
2581 case OBJ_TYPE_REF:
2582
2583 case REALPART_EXPR:
2584 case IMAGPART_EXPR:
2585 case PREINCREMENT_EXPR:
2586 case PREDECREMENT_EXPR:
2587 case SAVE_EXPR:
2588 case TRY_CATCH_EXPR:
2589 case WITH_CLEANUP_EXPR:
2590 case COMPOUND_EXPR:
2591 case MODIFY_EXPR:
2592 case TARGET_EXPR:
2593 case COND_EXPR:
2594 case BIND_EXPR:
2595 break;
2596
2597 default:
2598 /* Assume the worst for front-end tree codes. */
2599 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2600 break;
2601 return false;
2602 }
2603
2604 return true;
2605 }
2606
2607 /* Return an expr equal to X but certainly not valid as an lvalue. */
2608
2609 tree
2610 non_lvalue_loc (location_t loc, tree x)
2611 {
2612 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2613 us. */
2614 if (in_gimple_form)
2615 return x;
2616
2617 if (! maybe_lvalue_p (x))
2618 return x;
2619 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2620 }
2621
2622 /* When pedantic, return an expr equal to X but certainly not valid as a
2623 pedantic lvalue. Otherwise, return X. */
2624
2625 static tree
2626 pedantic_non_lvalue_loc (location_t loc, tree x)
2627 {
2628 return protected_set_expr_location_unshare (x, loc);
2629 }
2630 \f
2631 /* Given a tree comparison code, return the code that is the logical inverse.
2632 It is generally not safe to do this for floating-point comparisons, except
2633 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2634 ERROR_MARK in this case. */
2635
2636 enum tree_code
2637 invert_tree_comparison (enum tree_code code, bool honor_nans)
2638 {
2639 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2640 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2641 return ERROR_MARK;
2642
2643 switch (code)
2644 {
2645 case EQ_EXPR:
2646 return NE_EXPR;
2647 case NE_EXPR:
2648 return EQ_EXPR;
2649 case GT_EXPR:
2650 return honor_nans ? UNLE_EXPR : LE_EXPR;
2651 case GE_EXPR:
2652 return honor_nans ? UNLT_EXPR : LT_EXPR;
2653 case LT_EXPR:
2654 return honor_nans ? UNGE_EXPR : GE_EXPR;
2655 case LE_EXPR:
2656 return honor_nans ? UNGT_EXPR : GT_EXPR;
2657 case LTGT_EXPR:
2658 return UNEQ_EXPR;
2659 case UNEQ_EXPR:
2660 return LTGT_EXPR;
2661 case UNGT_EXPR:
2662 return LE_EXPR;
2663 case UNGE_EXPR:
2664 return LT_EXPR;
2665 case UNLT_EXPR:
2666 return GE_EXPR;
2667 case UNLE_EXPR:
2668 return GT_EXPR;
2669 case ORDERED_EXPR:
2670 return UNORDERED_EXPR;
2671 case UNORDERED_EXPR:
2672 return ORDERED_EXPR;
2673 default:
2674 gcc_unreachable ();
2675 }
2676 }
2677
2678 /* Similar, but return the comparison that results if the operands are
2679 swapped. This is safe for floating-point. */
2680
2681 enum tree_code
2682 swap_tree_comparison (enum tree_code code)
2683 {
2684 switch (code)
2685 {
2686 case EQ_EXPR:
2687 case NE_EXPR:
2688 case ORDERED_EXPR:
2689 case UNORDERED_EXPR:
2690 case LTGT_EXPR:
2691 case UNEQ_EXPR:
2692 return code;
2693 case GT_EXPR:
2694 return LT_EXPR;
2695 case GE_EXPR:
2696 return LE_EXPR;
2697 case LT_EXPR:
2698 return GT_EXPR;
2699 case LE_EXPR:
2700 return GE_EXPR;
2701 case UNGT_EXPR:
2702 return UNLT_EXPR;
2703 case UNGE_EXPR:
2704 return UNLE_EXPR;
2705 case UNLT_EXPR:
2706 return UNGT_EXPR;
2707 case UNLE_EXPR:
2708 return UNGE_EXPR;
2709 default:
2710 gcc_unreachable ();
2711 }
2712 }
2713
2714
2715 /* Convert a comparison tree code from an enum tree_code representation
2716 into a compcode bit-based encoding. This function is the inverse of
2717 compcode_to_comparison. */
2718
2719 static enum comparison_code
2720 comparison_to_compcode (enum tree_code code)
2721 {
2722 switch (code)
2723 {
2724 case LT_EXPR:
2725 return COMPCODE_LT;
2726 case EQ_EXPR:
2727 return COMPCODE_EQ;
2728 case LE_EXPR:
2729 return COMPCODE_LE;
2730 case GT_EXPR:
2731 return COMPCODE_GT;
2732 case NE_EXPR:
2733 return COMPCODE_NE;
2734 case GE_EXPR:
2735 return COMPCODE_GE;
2736 case ORDERED_EXPR:
2737 return COMPCODE_ORD;
2738 case UNORDERED_EXPR:
2739 return COMPCODE_UNORD;
2740 case UNLT_EXPR:
2741 return COMPCODE_UNLT;
2742 case UNEQ_EXPR:
2743 return COMPCODE_UNEQ;
2744 case UNLE_EXPR:
2745 return COMPCODE_UNLE;
2746 case UNGT_EXPR:
2747 return COMPCODE_UNGT;
2748 case LTGT_EXPR:
2749 return COMPCODE_LTGT;
2750 case UNGE_EXPR:
2751 return COMPCODE_UNGE;
2752 default:
2753 gcc_unreachable ();
2754 }
2755 }
2756
2757 /* Convert a compcode bit-based encoding of a comparison operator back
2758 to GCC's enum tree_code representation. This function is the
2759 inverse of comparison_to_compcode. */
2760
2761 static enum tree_code
2762 compcode_to_comparison (enum comparison_code code)
2763 {
2764 switch (code)
2765 {
2766 case COMPCODE_LT:
2767 return LT_EXPR;
2768 case COMPCODE_EQ:
2769 return EQ_EXPR;
2770 case COMPCODE_LE:
2771 return LE_EXPR;
2772 case COMPCODE_GT:
2773 return GT_EXPR;
2774 case COMPCODE_NE:
2775 return NE_EXPR;
2776 case COMPCODE_GE:
2777 return GE_EXPR;
2778 case COMPCODE_ORD:
2779 return ORDERED_EXPR;
2780 case COMPCODE_UNORD:
2781 return UNORDERED_EXPR;
2782 case COMPCODE_UNLT:
2783 return UNLT_EXPR;
2784 case COMPCODE_UNEQ:
2785 return UNEQ_EXPR;
2786 case COMPCODE_UNLE:
2787 return UNLE_EXPR;
2788 case COMPCODE_UNGT:
2789 return UNGT_EXPR;
2790 case COMPCODE_LTGT:
2791 return LTGT_EXPR;
2792 case COMPCODE_UNGE:
2793 return UNGE_EXPR;
2794 default:
2795 gcc_unreachable ();
2796 }
2797 }
2798
2799 /* Return true if COND1 tests the opposite condition of COND2. */
2800
2801 bool
2802 inverse_conditions_p (const_tree cond1, const_tree cond2)
2803 {
2804 return (COMPARISON_CLASS_P (cond1)
2805 && COMPARISON_CLASS_P (cond2)
2806 && (invert_tree_comparison
2807 (TREE_CODE (cond1),
2808 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2809 && operand_equal_p (TREE_OPERAND (cond1, 0),
2810 TREE_OPERAND (cond2, 0), 0)
2811 && operand_equal_p (TREE_OPERAND (cond1, 1),
2812 TREE_OPERAND (cond2, 1), 0));
2813 }
2814
2815 /* Return a tree for the comparison which is the combination of
2816 doing the AND or OR (depending on CODE) of the two operations LCODE
2817 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2818 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2819 if this makes the transformation invalid. */
2820
2821 tree
2822 combine_comparisons (location_t loc,
2823 enum tree_code code, enum tree_code lcode,
2824 enum tree_code rcode, tree truth_type,
2825 tree ll_arg, tree lr_arg)
2826 {
2827 bool honor_nans = HONOR_NANS (ll_arg);
2828 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2829 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2830 int compcode;
2831
2832 switch (code)
2833 {
2834 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2835 compcode = lcompcode & rcompcode;
2836 break;
2837
2838 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2839 compcode = lcompcode | rcompcode;
2840 break;
2841
2842 default:
2843 return NULL_TREE;
2844 }
2845
2846 if (!honor_nans)
2847 {
2848 /* Eliminate unordered comparisons, as well as LTGT and ORD
2849 which are not used unless the mode has NaNs. */
2850 compcode &= ~COMPCODE_UNORD;
2851 if (compcode == COMPCODE_LTGT)
2852 compcode = COMPCODE_NE;
2853 else if (compcode == COMPCODE_ORD)
2854 compcode = COMPCODE_TRUE;
2855 }
2856 else if (flag_trapping_math)
2857 {
2858 /* Check that the original operation and the optimized ones will trap
2859 under the same condition. */
2860 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2861 && (lcompcode != COMPCODE_EQ)
2862 && (lcompcode != COMPCODE_ORD);
2863 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2864 && (rcompcode != COMPCODE_EQ)
2865 && (rcompcode != COMPCODE_ORD);
2866 bool trap = (compcode & COMPCODE_UNORD) == 0
2867 && (compcode != COMPCODE_EQ)
2868 && (compcode != COMPCODE_ORD);
2869
2870 /* In a short-circuited boolean expression the LHS might be
2871 such that the RHS, if evaluated, will never trap. For
2872 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2873 if neither x nor y is NaN. (This is a mixed blessing: for
2874 example, the expression above will never trap, hence
2875 optimizing it to x < y would be invalid). */
2876 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2877 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2878 rtrap = false;
2879
2880 /* If the comparison was short-circuited, and only the RHS
2881 trapped, we may now generate a spurious trap. */
2882 if (rtrap && !ltrap
2883 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2884 return NULL_TREE;
2885
2886 /* If we changed the conditions that cause a trap, we lose. */
2887 if ((ltrap || rtrap) != trap)
2888 return NULL_TREE;
2889 }
2890
2891 if (compcode == COMPCODE_TRUE)
2892 return constant_boolean_node (true, truth_type);
2893 else if (compcode == COMPCODE_FALSE)
2894 return constant_boolean_node (false, truth_type);
2895 else
2896 {
2897 enum tree_code tcode;
2898
2899 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2900 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2901 }
2902 }
2903 \f
2904 /* Return nonzero if two operands (typically of the same tree node)
2905 are necessarily equal. FLAGS modifies behavior as follows:
2906
2907 If OEP_ONLY_CONST is set, only return nonzero for constants.
2908 This function tests whether the operands are indistinguishable;
2909 it does not test whether they are equal using C's == operation.
2910 The distinction is important for IEEE floating point, because
2911 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2912 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2913
2914 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2915 even though it may hold multiple values during a function.
2916 This is because a GCC tree node guarantees that nothing else is
2917 executed between the evaluation of its "operands" (which may often
2918 be evaluated in arbitrary order). Hence if the operands themselves
2919 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2920 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2921 unset means assuming isochronic (or instantaneous) tree equivalence.
2922 Unless comparing arbitrary expression trees, such as from different
2923 statements, this flag can usually be left unset.
2924
2925 If OEP_PURE_SAME is set, then pure functions with identical arguments
2926 are considered the same. It is used when the caller has other ways
2927 to ensure that global memory is unchanged in between.
2928
2929 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2930 not values of expressions.
2931
2932 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2933 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2934
2935 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2936 any operand with side effect. This is unnecesarily conservative in the
2937 case we know that arg0 and arg1 are in disjoint code paths (such as in
2938 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2939 addresses with TREE_CONSTANT flag set so we know that &var == &var
2940 even if var is volatile. */
2941
2942 int
2943 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2944 {
2945 /* When checking, verify at the outermost operand_equal_p call that
2946 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2947 hash value. */
2948 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2949 {
2950 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2951 {
2952 if (arg0 != arg1)
2953 {
2954 inchash::hash hstate0 (0), hstate1 (0);
2955 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2956 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2957 hashval_t h0 = hstate0.end ();
2958 hashval_t h1 = hstate1.end ();
2959 gcc_assert (h0 == h1);
2960 }
2961 return 1;
2962 }
2963 else
2964 return 0;
2965 }
2966
2967 STRIP_ANY_LOCATION_WRAPPER (arg0);
2968 STRIP_ANY_LOCATION_WRAPPER (arg1);
2969
2970 /* If either is ERROR_MARK, they aren't equal. */
2971 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2972 || TREE_TYPE (arg0) == error_mark_node
2973 || TREE_TYPE (arg1) == error_mark_node)
2974 return 0;
2975
2976 /* Similar, if either does not have a type (like a template id),
2977 they aren't equal. */
2978 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2979 return 0;
2980
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2986 return 0;
2987
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2991 {
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2995 return tree_int_cst_equal (arg0, arg1);
2996 }
2997
2998 if (!(flags & OEP_ADDRESS_OF))
2999 {
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3008 return 0;
3009
3010 /* If both types don't have the same precision, then it is not safe
3011 to strip NOPs. */
3012 if (element_precision (TREE_TYPE (arg0))
3013 != element_precision (TREE_TYPE (arg1)))
3014 return 0;
3015
3016 STRIP_NOPS (arg0);
3017 STRIP_NOPS (arg1);
3018 }
3019 #if 0
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3022 else
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3027 && TREE_CODE (arg0) != SSA_NAME);
3028 #endif
3029
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3034 && COMPARISON_CLASS_P (arg0)
3035 && COMPARISON_CLASS_P (arg1))
3036 {
3037 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3038
3039 if (TREE_CODE (arg0) == swap_code)
3040 return operand_equal_p (TREE_OPERAND (arg0, 0),
3041 TREE_OPERAND (arg1, 1), flags)
3042 && operand_equal_p (TREE_OPERAND (arg0, 1),
3043 TREE_OPERAND (arg1, 0), flags);
3044 }
3045
3046 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3047 {
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3050 ;
3051 else if (flags & OEP_ADDRESS_OF)
3052 {
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3055 TBAA reasons. */
3056 if (TREE_CODE (arg0) == MEM_REF
3057 && DECL_P (arg1)
3058 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0, 1)))
3061 return 1;
3062 else if (TREE_CODE (arg1) == MEM_REF
3063 && DECL_P (arg0)
3064 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1, 1)))
3067 return 1;
3068 return 0;
3069 }
3070 else
3071 return 0;
3072 }
3073
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3079 && !(flags & OEP_ADDRESS_OF)))
3080 return 0;
3081
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3092 && (TREE_CODE (arg0) == SAVE_EXPR
3093 || (flags & OEP_MATCH_SIDE_EFFECTS)
3094 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3095 return 1;
3096
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3100 switch (TREE_CODE (arg0))
3101 {
3102 case INTEGER_CST:
3103 return tree_int_cst_equal (arg0, arg1);
3104
3105 case FIXED_CST:
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3107 TREE_FIXED_CST (arg1));
3108
3109 case REAL_CST:
3110 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3111 return 1;
3112
3113
3114 if (!HONOR_SIGNED_ZEROS (arg0))
3115 {
3116 /* If we do not distinguish between signed and unsigned zero,
3117 consider them equal. */
3118 if (real_zerop (arg0) && real_zerop (arg1))
3119 return 1;
3120 }
3121 return 0;
3122
3123 case VECTOR_CST:
3124 {
3125 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3126 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3127 return 0;
3128
3129 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3130 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3131 return 0;
3132
3133 unsigned int count = vector_cst_encoded_nelts (arg0);
3134 for (unsigned int i = 0; i < count; ++i)
3135 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3136 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3137 return 0;
3138 return 1;
3139 }
3140
3141 case COMPLEX_CST:
3142 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3143 flags)
3144 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3145 flags));
3146
3147 case STRING_CST:
3148 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3149 && ! memcmp (TREE_STRING_POINTER (arg0),
3150 TREE_STRING_POINTER (arg1),
3151 TREE_STRING_LENGTH (arg0)));
3152
3153 case ADDR_EXPR:
3154 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3155 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3156 flags | OEP_ADDRESS_OF
3157 | OEP_MATCH_SIDE_EFFECTS);
3158 case CONSTRUCTOR:
3159 /* In GIMPLE empty constructors are allowed in initializers of
3160 aggregates. */
3161 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3162 default:
3163 break;
3164 }
3165
3166 if (flags & OEP_ONLY_CONST)
3167 return 0;
3168
3169 /* Define macros to test an operand from arg0 and arg1 for equality and a
3170 variant that allows null and views null as being different from any
3171 non-null value. In the latter case, if either is null, the both
3172 must be; otherwise, do the normal comparison. */
3173 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3174 TREE_OPERAND (arg1, N), flags)
3175
3176 #define OP_SAME_WITH_NULL(N) \
3177 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3178 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3179
3180 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3181 {
3182 case tcc_unary:
3183 /* Two conversions are equal only if signedness and modes match. */
3184 switch (TREE_CODE (arg0))
3185 {
3186 CASE_CONVERT:
3187 case FIX_TRUNC_EXPR:
3188 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3189 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3190 return 0;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 return OP_SAME (0);
3197
3198
3199 case tcc_comparison:
3200 case tcc_binary:
3201 if (OP_SAME (0) && OP_SAME (1))
3202 return 1;
3203
3204 /* For commutative ops, allow the other order. */
3205 return (commutative_tree_code (TREE_CODE (arg0))
3206 && operand_equal_p (TREE_OPERAND (arg0, 0),
3207 TREE_OPERAND (arg1, 1), flags)
3208 && operand_equal_p (TREE_OPERAND (arg0, 1),
3209 TREE_OPERAND (arg1, 0), flags));
3210
3211 case tcc_reference:
3212 /* If either of the pointer (or reference) expressions we are
3213 dereferencing contain a side effect, these cannot be equal,
3214 but their addresses can be. */
3215 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3216 && (TREE_SIDE_EFFECTS (arg0)
3217 || TREE_SIDE_EFFECTS (arg1)))
3218 return 0;
3219
3220 switch (TREE_CODE (arg0))
3221 {
3222 case INDIRECT_REF:
3223 if (!(flags & OEP_ADDRESS_OF))
3224 {
3225 if (TYPE_ALIGN (TREE_TYPE (arg0))
3226 != TYPE_ALIGN (TREE_TYPE (arg1)))
3227 return 0;
3228 /* Verify that the access types are compatible. */
3229 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3230 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3231 return 0;
3232 }
3233 flags &= ~OEP_ADDRESS_OF;
3234 return OP_SAME (0);
3235
3236 case IMAGPART_EXPR:
3237 /* Require the same offset. */
3238 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3239 TYPE_SIZE (TREE_TYPE (arg1)),
3240 flags & ~OEP_ADDRESS_OF))
3241 return 0;
3242
3243 /* Fallthru. */
3244 case REALPART_EXPR:
3245 case VIEW_CONVERT_EXPR:
3246 return OP_SAME (0);
3247
3248 case TARGET_MEM_REF:
3249 case MEM_REF:
3250 if (!(flags & OEP_ADDRESS_OF))
3251 {
3252 /* Require equal access sizes */
3253 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3254 && (!TYPE_SIZE (TREE_TYPE (arg0))
3255 || !TYPE_SIZE (TREE_TYPE (arg1))
3256 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3257 TYPE_SIZE (TREE_TYPE (arg1)),
3258 flags)))
3259 return 0;
3260 /* Verify that access happens in similar types. */
3261 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3262 return 0;
3263 /* Verify that accesses are TBAA compatible. */
3264 if (!alias_ptr_types_compatible_p
3265 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3266 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3267 || (MR_DEPENDENCE_CLIQUE (arg0)
3268 != MR_DEPENDENCE_CLIQUE (arg1))
3269 || (MR_DEPENDENCE_BASE (arg0)
3270 != MR_DEPENDENCE_BASE (arg1)))
3271 return 0;
3272 /* Verify that alignment is compatible. */
3273 if (TYPE_ALIGN (TREE_TYPE (arg0))
3274 != TYPE_ALIGN (TREE_TYPE (arg1)))
3275 return 0;
3276 }
3277 flags &= ~OEP_ADDRESS_OF;
3278 return (OP_SAME (0) && OP_SAME (1)
3279 /* TARGET_MEM_REF require equal extra operands. */
3280 && (TREE_CODE (arg0) != TARGET_MEM_REF
3281 || (OP_SAME_WITH_NULL (2)
3282 && OP_SAME_WITH_NULL (3)
3283 && OP_SAME_WITH_NULL (4))));
3284
3285 case ARRAY_REF:
3286 case ARRAY_RANGE_REF:
3287 if (!OP_SAME (0))
3288 return 0;
3289 flags &= ~OEP_ADDRESS_OF;
3290 /* Compare the array index by value if it is constant first as we
3291 may have different types but same value here. */
3292 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3293 TREE_OPERAND (arg1, 1))
3294 || OP_SAME (1))
3295 && OP_SAME_WITH_NULL (2)
3296 && OP_SAME_WITH_NULL (3)
3297 /* Compare low bound and element size as with OEP_ADDRESS_OF
3298 we have to account for the offset of the ref. */
3299 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3300 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3301 || (operand_equal_p (array_ref_low_bound
3302 (CONST_CAST_TREE (arg0)),
3303 array_ref_low_bound
3304 (CONST_CAST_TREE (arg1)), flags)
3305 && operand_equal_p (array_ref_element_size
3306 (CONST_CAST_TREE (arg0)),
3307 array_ref_element_size
3308 (CONST_CAST_TREE (arg1)),
3309 flags))));
3310
3311 case COMPONENT_REF:
3312 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3313 may be NULL when we're called to compare MEM_EXPRs. */
3314 if (!OP_SAME_WITH_NULL (0)
3315 || !OP_SAME (1))
3316 return 0;
3317 flags &= ~OEP_ADDRESS_OF;
3318 return OP_SAME_WITH_NULL (2);
3319
3320 case BIT_FIELD_REF:
3321 if (!OP_SAME (0))
3322 return 0;
3323 flags &= ~OEP_ADDRESS_OF;
3324 return OP_SAME (1) && OP_SAME (2);
3325
3326 default:
3327 return 0;
3328 }
3329
3330 case tcc_expression:
3331 switch (TREE_CODE (arg0))
3332 {
3333 case ADDR_EXPR:
3334 /* Be sure we pass right ADDRESS_OF flag. */
3335 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3336 return operand_equal_p (TREE_OPERAND (arg0, 0),
3337 TREE_OPERAND (arg1, 0),
3338 flags | OEP_ADDRESS_OF);
3339
3340 case TRUTH_NOT_EXPR:
3341 return OP_SAME (0);
3342
3343 case TRUTH_ANDIF_EXPR:
3344 case TRUTH_ORIF_EXPR:
3345 return OP_SAME (0) && OP_SAME (1);
3346
3347 case WIDEN_MULT_PLUS_EXPR:
3348 case WIDEN_MULT_MINUS_EXPR:
3349 if (!OP_SAME (2))
3350 return 0;
3351 /* The multiplcation operands are commutative. */
3352 /* FALLTHRU */
3353
3354 case TRUTH_AND_EXPR:
3355 case TRUTH_OR_EXPR:
3356 case TRUTH_XOR_EXPR:
3357 if (OP_SAME (0) && OP_SAME (1))
3358 return 1;
3359
3360 /* Otherwise take into account this is a commutative operation. */
3361 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3362 TREE_OPERAND (arg1, 1), flags)
3363 && operand_equal_p (TREE_OPERAND (arg0, 1),
3364 TREE_OPERAND (arg1, 0), flags));
3365
3366 case COND_EXPR:
3367 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3368 return 0;
3369 flags &= ~OEP_ADDRESS_OF;
3370 return OP_SAME (0);
3371
3372 case BIT_INSERT_EXPR:
3373 /* BIT_INSERT_EXPR has an implict operand as the type precision
3374 of op1. Need to check to make sure they are the same. */
3375 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3376 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3377 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3378 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3379 return false;
3380 /* FALLTHRU */
3381
3382 case VEC_COND_EXPR:
3383 case DOT_PROD_EXPR:
3384 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3385
3386 case MODIFY_EXPR:
3387 case INIT_EXPR:
3388 case COMPOUND_EXPR:
3389 case PREDECREMENT_EXPR:
3390 case PREINCREMENT_EXPR:
3391 case POSTDECREMENT_EXPR:
3392 case POSTINCREMENT_EXPR:
3393 if (flags & OEP_LEXICOGRAPHIC)
3394 return OP_SAME (0) && OP_SAME (1);
3395 return 0;
3396
3397 case CLEANUP_POINT_EXPR:
3398 case EXPR_STMT:
3399 case SAVE_EXPR:
3400 if (flags & OEP_LEXICOGRAPHIC)
3401 return OP_SAME (0);
3402 return 0;
3403
3404 default:
3405 return 0;
3406 }
3407
3408 case tcc_vl_exp:
3409 switch (TREE_CODE (arg0))
3410 {
3411 case CALL_EXPR:
3412 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3413 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3414 /* If not both CALL_EXPRs are either internal or normal function
3415 functions, then they are not equal. */
3416 return 0;
3417 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3418 {
3419 /* If the CALL_EXPRs call different internal functions, then they
3420 are not equal. */
3421 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3422 return 0;
3423 }
3424 else
3425 {
3426 /* If the CALL_EXPRs call different functions, then they are not
3427 equal. */
3428 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3429 flags))
3430 return 0;
3431 }
3432
3433 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3434 {
3435 unsigned int cef = call_expr_flags (arg0);
3436 if (flags & OEP_PURE_SAME)
3437 cef &= ECF_CONST | ECF_PURE;
3438 else
3439 cef &= ECF_CONST;
3440 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3441 return 0;
3442 }
3443
3444 /* Now see if all the arguments are the same. */
3445 {
3446 const_call_expr_arg_iterator iter0, iter1;
3447 const_tree a0, a1;
3448 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3449 a1 = first_const_call_expr_arg (arg1, &iter1);
3450 a0 && a1;
3451 a0 = next_const_call_expr_arg (&iter0),
3452 a1 = next_const_call_expr_arg (&iter1))
3453 if (! operand_equal_p (a0, a1, flags))
3454 return 0;
3455
3456 /* If we get here and both argument lists are exhausted
3457 then the CALL_EXPRs are equal. */
3458 return ! (a0 || a1);
3459 }
3460 default:
3461 return 0;
3462 }
3463
3464 case tcc_declaration:
3465 /* Consider __builtin_sqrt equal to sqrt. */
3466 return (TREE_CODE (arg0) == FUNCTION_DECL
3467 && fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1)
3468 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3469 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3470
3471 case tcc_exceptional:
3472 if (TREE_CODE (arg0) == CONSTRUCTOR)
3473 {
3474 /* In GIMPLE constructors are used only to build vectors from
3475 elements. Individual elements in the constructor must be
3476 indexed in increasing order and form an initial sequence.
3477
3478 We make no effort to compare constructors in generic.
3479 (see sem_variable::equals in ipa-icf which can do so for
3480 constants). */
3481 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3482 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3483 return 0;
3484
3485 /* Be sure that vectors constructed have the same representation.
3486 We only tested element precision and modes to match.
3487 Vectors may be BLKmode and thus also check that the number of
3488 parts match. */
3489 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3490 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3491 return 0;
3492
3493 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3494 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3495 unsigned int len = vec_safe_length (v0);
3496
3497 if (len != vec_safe_length (v1))
3498 return 0;
3499
3500 for (unsigned int i = 0; i < len; i++)
3501 {
3502 constructor_elt *c0 = &(*v0)[i];
3503 constructor_elt *c1 = &(*v1)[i];
3504
3505 if (!operand_equal_p (c0->value, c1->value, flags)
3506 /* In GIMPLE the indexes can be either NULL or matching i.
3507 Double check this so we won't get false
3508 positives for GENERIC. */
3509 || (c0->index
3510 && (TREE_CODE (c0->index) != INTEGER_CST
3511 || compare_tree_int (c0->index, i)))
3512 || (c1->index
3513 && (TREE_CODE (c1->index) != INTEGER_CST
3514 || compare_tree_int (c1->index, i))))
3515 return 0;
3516 }
3517 return 1;
3518 }
3519 else if (TREE_CODE (arg0) == STATEMENT_LIST
3520 && (flags & OEP_LEXICOGRAPHIC))
3521 {
3522 /* Compare the STATEMENT_LISTs. */
3523 tree_stmt_iterator tsi1, tsi2;
3524 tree body1 = CONST_CAST_TREE (arg0);
3525 tree body2 = CONST_CAST_TREE (arg1);
3526 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3527 tsi_next (&tsi1), tsi_next (&tsi2))
3528 {
3529 /* The lists don't have the same number of statements. */
3530 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3531 return 0;
3532 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3533 return 1;
3534 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3535 flags & (OEP_LEXICOGRAPHIC
3536 | OEP_NO_HASH_CHECK)))
3537 return 0;
3538 }
3539 }
3540 return 0;
3541
3542 case tcc_statement:
3543 switch (TREE_CODE (arg0))
3544 {
3545 case RETURN_EXPR:
3546 if (flags & OEP_LEXICOGRAPHIC)
3547 return OP_SAME_WITH_NULL (0);
3548 return 0;
3549 case DEBUG_BEGIN_STMT:
3550 if (flags & OEP_LEXICOGRAPHIC)
3551 return 1;
3552 return 0;
3553 default:
3554 return 0;
3555 }
3556
3557 default:
3558 return 0;
3559 }
3560
3561 #undef OP_SAME
3562 #undef OP_SAME_WITH_NULL
3563 }
3564 \f
3565 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3566 with a different signedness or a narrower precision. */
3567
3568 static bool
3569 operand_equal_for_comparison_p (tree arg0, tree arg1)
3570 {
3571 if (operand_equal_p (arg0, arg1, 0))
3572 return true;
3573
3574 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3575 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3576 return false;
3577
3578 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3579 and see if the inner values are the same. This removes any
3580 signedness comparison, which doesn't matter here. */
3581 tree op0 = arg0;
3582 tree op1 = arg1;
3583 STRIP_NOPS (op0);
3584 STRIP_NOPS (op1);
3585 if (operand_equal_p (op0, op1, 0))
3586 return true;
3587
3588 /* Discard a single widening conversion from ARG1 and see if the inner
3589 value is the same as ARG0. */
3590 if (CONVERT_EXPR_P (arg1)
3591 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3592 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3593 < TYPE_PRECISION (TREE_TYPE (arg1))
3594 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3595 return true;
3596
3597 return false;
3598 }
3599 \f
3600 /* See if ARG is an expression that is either a comparison or is performing
3601 arithmetic on comparisons. The comparisons must only be comparing
3602 two different values, which will be stored in *CVAL1 and *CVAL2; if
3603 they are nonzero it means that some operands have already been found.
3604 No variables may be used anywhere else in the expression except in the
3605 comparisons.
3606
3607 If this is true, return 1. Otherwise, return zero. */
3608
3609 static int
3610 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
3611 {
3612 enum tree_code code = TREE_CODE (arg);
3613 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3614
3615 /* We can handle some of the tcc_expression cases here. */
3616 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3617 tclass = tcc_unary;
3618 else if (tclass == tcc_expression
3619 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3620 || code == COMPOUND_EXPR))
3621 tclass = tcc_binary;
3622
3623 switch (tclass)
3624 {
3625 case tcc_unary:
3626 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
3627
3628 case tcc_binary:
3629 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3630 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
3631
3632 case tcc_constant:
3633 return 1;
3634
3635 case tcc_expression:
3636 if (code == COND_EXPR)
3637 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3638 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
3639 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
3640 return 0;
3641
3642 case tcc_comparison:
3643 /* First see if we can handle the first operand, then the second. For
3644 the second operand, we know *CVAL1 can't be zero. It must be that
3645 one side of the comparison is each of the values; test for the
3646 case where this isn't true by failing if the two operands
3647 are the same. */
3648
3649 if (operand_equal_p (TREE_OPERAND (arg, 0),
3650 TREE_OPERAND (arg, 1), 0))
3651 return 0;
3652
3653 if (*cval1 == 0)
3654 *cval1 = TREE_OPERAND (arg, 0);
3655 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3656 ;
3657 else if (*cval2 == 0)
3658 *cval2 = TREE_OPERAND (arg, 0);
3659 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3660 ;
3661 else
3662 return 0;
3663
3664 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3665 ;
3666 else if (*cval2 == 0)
3667 *cval2 = TREE_OPERAND (arg, 1);
3668 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3669 ;
3670 else
3671 return 0;
3672
3673 return 1;
3674
3675 default:
3676 return 0;
3677 }
3678 }
3679 \f
3680 /* ARG is a tree that is known to contain just arithmetic operations and
3681 comparisons. Evaluate the operations in the tree substituting NEW0 for
3682 any occurrence of OLD0 as an operand of a comparison and likewise for
3683 NEW1 and OLD1. */
3684
3685 static tree
3686 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3687 tree old1, tree new1)
3688 {
3689 tree type = TREE_TYPE (arg);
3690 enum tree_code code = TREE_CODE (arg);
3691 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3692
3693 /* We can handle some of the tcc_expression cases here. */
3694 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3695 tclass = tcc_unary;
3696 else if (tclass == tcc_expression
3697 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3698 tclass = tcc_binary;
3699
3700 switch (tclass)
3701 {
3702 case tcc_unary:
3703 return fold_build1_loc (loc, code, type,
3704 eval_subst (loc, TREE_OPERAND (arg, 0),
3705 old0, new0, old1, new1));
3706
3707 case tcc_binary:
3708 return fold_build2_loc (loc, code, type,
3709 eval_subst (loc, TREE_OPERAND (arg, 0),
3710 old0, new0, old1, new1),
3711 eval_subst (loc, TREE_OPERAND (arg, 1),
3712 old0, new0, old1, new1));
3713
3714 case tcc_expression:
3715 switch (code)
3716 {
3717 case SAVE_EXPR:
3718 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3719 old1, new1);
3720
3721 case COMPOUND_EXPR:
3722 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3723 old1, new1);
3724
3725 case COND_EXPR:
3726 return fold_build3_loc (loc, code, type,
3727 eval_subst (loc, TREE_OPERAND (arg, 0),
3728 old0, new0, old1, new1),
3729 eval_subst (loc, TREE_OPERAND (arg, 1),
3730 old0, new0, old1, new1),
3731 eval_subst (loc, TREE_OPERAND (arg, 2),
3732 old0, new0, old1, new1));
3733 default:
3734 break;
3735 }
3736 /* Fall through - ??? */
3737
3738 case tcc_comparison:
3739 {
3740 tree arg0 = TREE_OPERAND (arg, 0);
3741 tree arg1 = TREE_OPERAND (arg, 1);
3742
3743 /* We need to check both for exact equality and tree equality. The
3744 former will be true if the operand has a side-effect. In that
3745 case, we know the operand occurred exactly once. */
3746
3747 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3748 arg0 = new0;
3749 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3750 arg0 = new1;
3751
3752 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3753 arg1 = new0;
3754 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3755 arg1 = new1;
3756
3757 return fold_build2_loc (loc, code, type, arg0, arg1);
3758 }
3759
3760 default:
3761 return arg;
3762 }
3763 }
3764 \f
3765 /* Return a tree for the case when the result of an expression is RESULT
3766 converted to TYPE and OMITTED was previously an operand of the expression
3767 but is now not needed (e.g., we folded OMITTED * 0).
3768
3769 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3770 the conversion of RESULT to TYPE. */
3771
3772 tree
3773 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3774 {
3775 tree t = fold_convert_loc (loc, type, result);
3776
3777 /* If the resulting operand is an empty statement, just return the omitted
3778 statement casted to void. */
3779 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3780 return build1_loc (loc, NOP_EXPR, void_type_node,
3781 fold_ignored_result (omitted));
3782
3783 if (TREE_SIDE_EFFECTS (omitted))
3784 return build2_loc (loc, COMPOUND_EXPR, type,
3785 fold_ignored_result (omitted), t);
3786
3787 return non_lvalue_loc (loc, t);
3788 }
3789
3790 /* Return a tree for the case when the result of an expression is RESULT
3791 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3792 of the expression but are now not needed.
3793
3794 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3795 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3796 evaluated before OMITTED2. Otherwise, if neither has side effects,
3797 just do the conversion of RESULT to TYPE. */
3798
3799 tree
3800 omit_two_operands_loc (location_t loc, tree type, tree result,
3801 tree omitted1, tree omitted2)
3802 {
3803 tree t = fold_convert_loc (loc, type, result);
3804
3805 if (TREE_SIDE_EFFECTS (omitted2))
3806 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3807 if (TREE_SIDE_EFFECTS (omitted1))
3808 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3809
3810 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3811 }
3812
3813 \f
3814 /* Return a simplified tree node for the truth-negation of ARG. This
3815 never alters ARG itself. We assume that ARG is an operation that
3816 returns a truth value (0 or 1).
3817
3818 FIXME: one would think we would fold the result, but it causes
3819 problems with the dominator optimizer. */
3820
3821 static tree
3822 fold_truth_not_expr (location_t loc, tree arg)
3823 {
3824 tree type = TREE_TYPE (arg);
3825 enum tree_code code = TREE_CODE (arg);
3826 location_t loc1, loc2;
3827
3828 /* If this is a comparison, we can simply invert it, except for
3829 floating-point non-equality comparisons, in which case we just
3830 enclose a TRUTH_NOT_EXPR around what we have. */
3831
3832 if (TREE_CODE_CLASS (code) == tcc_comparison)
3833 {
3834 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3835 if (FLOAT_TYPE_P (op_type)
3836 && flag_trapping_math
3837 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3838 && code != NE_EXPR && code != EQ_EXPR)
3839 return NULL_TREE;
3840
3841 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3842 if (code == ERROR_MARK)
3843 return NULL_TREE;
3844
3845 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3846 TREE_OPERAND (arg, 1));
3847 if (TREE_NO_WARNING (arg))
3848 TREE_NO_WARNING (ret) = 1;
3849 return ret;
3850 }
3851
3852 switch (code)
3853 {
3854 case INTEGER_CST:
3855 return constant_boolean_node (integer_zerop (arg), type);
3856
3857 case TRUTH_AND_EXPR:
3858 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3859 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3860 return build2_loc (loc, TRUTH_OR_EXPR, type,
3861 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3862 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3863
3864 case TRUTH_OR_EXPR:
3865 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3866 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3867 return build2_loc (loc, TRUTH_AND_EXPR, type,
3868 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3869 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3870
3871 case TRUTH_XOR_EXPR:
3872 /* Here we can invert either operand. We invert the first operand
3873 unless the second operand is a TRUTH_NOT_EXPR in which case our
3874 result is the XOR of the first operand with the inside of the
3875 negation of the second operand. */
3876
3877 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3878 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3879 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3880 else
3881 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3882 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3883 TREE_OPERAND (arg, 1));
3884
3885 case TRUTH_ANDIF_EXPR:
3886 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3887 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3888 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3889 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3890 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3891
3892 case TRUTH_ORIF_EXPR:
3893 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3894 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3895 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3896 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3897 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3898
3899 case TRUTH_NOT_EXPR:
3900 return TREE_OPERAND (arg, 0);
3901
3902 case COND_EXPR:
3903 {
3904 tree arg1 = TREE_OPERAND (arg, 1);
3905 tree arg2 = TREE_OPERAND (arg, 2);
3906
3907 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3908 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3909
3910 /* A COND_EXPR may have a throw as one operand, which
3911 then has void type. Just leave void operands
3912 as they are. */
3913 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3914 VOID_TYPE_P (TREE_TYPE (arg1))
3915 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3916 VOID_TYPE_P (TREE_TYPE (arg2))
3917 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3918 }
3919
3920 case COMPOUND_EXPR:
3921 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3922 return build2_loc (loc, COMPOUND_EXPR, type,
3923 TREE_OPERAND (arg, 0),
3924 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3925
3926 case NON_LVALUE_EXPR:
3927 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3928 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3929
3930 CASE_CONVERT:
3931 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3932 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3933
3934 /* fall through */
3935
3936 case FLOAT_EXPR:
3937 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3938 return build1_loc (loc, TREE_CODE (arg), type,
3939 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3940
3941 case BIT_AND_EXPR:
3942 if (!integer_onep (TREE_OPERAND (arg, 1)))
3943 return NULL_TREE;
3944 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3945
3946 case SAVE_EXPR:
3947 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3948
3949 case CLEANUP_POINT_EXPR:
3950 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3951 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3952 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3953
3954 default:
3955 return NULL_TREE;
3956 }
3957 }
3958
3959 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3960 assume that ARG is an operation that returns a truth value (0 or 1
3961 for scalars, 0 or -1 for vectors). Return the folded expression if
3962 folding is successful. Otherwise, return NULL_TREE. */
3963
3964 static tree
3965 fold_invert_truthvalue (location_t loc, tree arg)
3966 {
3967 tree type = TREE_TYPE (arg);
3968 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3969 ? BIT_NOT_EXPR
3970 : TRUTH_NOT_EXPR,
3971 type, arg);
3972 }
3973
3974 /* Return a simplified tree node for the truth-negation of ARG. This
3975 never alters ARG itself. We assume that ARG is an operation that
3976 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3977
3978 tree
3979 invert_truthvalue_loc (location_t loc, tree arg)
3980 {
3981 if (TREE_CODE (arg) == ERROR_MARK)
3982 return arg;
3983
3984 tree type = TREE_TYPE (arg);
3985 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3986 ? BIT_NOT_EXPR
3987 : TRUTH_NOT_EXPR,
3988 type, arg);
3989 }
3990 \f
3991 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3992 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3993 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3994 is the original memory reference used to preserve the alias set of
3995 the access. */
3996
3997 static tree
3998 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3999 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4000 int unsignedp, int reversep)
4001 {
4002 tree result, bftype;
4003
4004 /* Attempt not to lose the access path if possible. */
4005 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4006 {
4007 tree ninner = TREE_OPERAND (orig_inner, 0);
4008 machine_mode nmode;
4009 poly_int64 nbitsize, nbitpos;
4010 tree noffset;
4011 int nunsignedp, nreversep, nvolatilep = 0;
4012 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4013 &noffset, &nmode, &nunsignedp,
4014 &nreversep, &nvolatilep);
4015 if (base == inner
4016 && noffset == NULL_TREE
4017 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4018 && !reversep
4019 && !nreversep
4020 && !nvolatilep)
4021 {
4022 inner = ninner;
4023 bitpos -= nbitpos;
4024 }
4025 }
4026
4027 alias_set_type iset = get_alias_set (orig_inner);
4028 if (iset == 0 && get_alias_set (inner) != iset)
4029 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4030 build_fold_addr_expr (inner),
4031 build_int_cst (ptr_type_node, 0));
4032
4033 if (known_eq (bitpos, 0) && !reversep)
4034 {
4035 tree size = TYPE_SIZE (TREE_TYPE (inner));
4036 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4037 || POINTER_TYPE_P (TREE_TYPE (inner)))
4038 && tree_fits_shwi_p (size)
4039 && tree_to_shwi (size) == bitsize)
4040 return fold_convert_loc (loc, type, inner);
4041 }
4042
4043 bftype = type;
4044 if (TYPE_PRECISION (bftype) != bitsize
4045 || TYPE_UNSIGNED (bftype) == !unsignedp)
4046 bftype = build_nonstandard_integer_type (bitsize, 0);
4047
4048 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4049 bitsize_int (bitsize), bitsize_int (bitpos));
4050 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4051
4052 if (bftype != type)
4053 result = fold_convert_loc (loc, type, result);
4054
4055 return result;
4056 }
4057
4058 /* Optimize a bit-field compare.
4059
4060 There are two cases: First is a compare against a constant and the
4061 second is a comparison of two items where the fields are at the same
4062 bit position relative to the start of a chunk (byte, halfword, word)
4063 large enough to contain it. In these cases we can avoid the shift
4064 implicit in bitfield extractions.
4065
4066 For constants, we emit a compare of the shifted constant with the
4067 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4068 compared. For two fields at the same position, we do the ANDs with the
4069 similar mask and compare the result of the ANDs.
4070
4071 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4072 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4073 are the left and right operands of the comparison, respectively.
4074
4075 If the optimization described above can be done, we return the resulting
4076 tree. Otherwise we return zero. */
4077
4078 static tree
4079 optimize_bit_field_compare (location_t loc, enum tree_code code,
4080 tree compare_type, tree lhs, tree rhs)
4081 {
4082 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4083 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4084 tree type = TREE_TYPE (lhs);
4085 tree unsigned_type;
4086 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4087 machine_mode lmode, rmode;
4088 scalar_int_mode nmode;
4089 int lunsignedp, runsignedp;
4090 int lreversep, rreversep;
4091 int lvolatilep = 0, rvolatilep = 0;
4092 tree linner, rinner = NULL_TREE;
4093 tree mask;
4094 tree offset;
4095
4096 /* Get all the information about the extractions being done. If the bit size
4097 is the same as the size of the underlying object, we aren't doing an
4098 extraction at all and so can do nothing. We also don't want to
4099 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4100 then will no longer be able to replace it. */
4101 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4102 &lunsignedp, &lreversep, &lvolatilep);
4103 if (linner == lhs
4104 || !known_size_p (plbitsize)
4105 || !plbitsize.is_constant (&lbitsize)
4106 || !plbitpos.is_constant (&lbitpos)
4107 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4108 || offset != 0
4109 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4110 || lvolatilep)
4111 return 0;
4112
4113 if (const_p)
4114 rreversep = lreversep;
4115 else
4116 {
4117 /* If this is not a constant, we can only do something if bit positions,
4118 sizes, signedness and storage order are the same. */
4119 rinner
4120 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4121 &runsignedp, &rreversep, &rvolatilep);
4122
4123 if (rinner == rhs
4124 || maybe_ne (lbitpos, rbitpos)
4125 || maybe_ne (lbitsize, rbitsize)
4126 || lunsignedp != runsignedp
4127 || lreversep != rreversep
4128 || offset != 0
4129 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4130 || rvolatilep)
4131 return 0;
4132 }
4133
4134 /* Honor the C++ memory model and mimic what RTL expansion does. */
4135 poly_uint64 bitstart = 0;
4136 poly_uint64 bitend = 0;
4137 if (TREE_CODE (lhs) == COMPONENT_REF)
4138 {
4139 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4140 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4141 return 0;
4142 }
4143
4144 /* See if we can find a mode to refer to this field. We should be able to,
4145 but fail if we can't. */
4146 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4147 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4148 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4149 TYPE_ALIGN (TREE_TYPE (rinner))),
4150 BITS_PER_WORD, false, &nmode))
4151 return 0;
4152
4153 /* Set signed and unsigned types of the precision of this mode for the
4154 shifts below. */
4155 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4156
4157 /* Compute the bit position and size for the new reference and our offset
4158 within it. If the new reference is the same size as the original, we
4159 won't optimize anything, so return zero. */
4160 nbitsize = GET_MODE_BITSIZE (nmode);
4161 nbitpos = lbitpos & ~ (nbitsize - 1);
4162 lbitpos -= nbitpos;
4163 if (nbitsize == lbitsize)
4164 return 0;
4165
4166 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4167 lbitpos = nbitsize - lbitsize - lbitpos;
4168
4169 /* Make the mask to be used against the extracted field. */
4170 mask = build_int_cst_type (unsigned_type, -1);
4171 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4172 mask = const_binop (RSHIFT_EXPR, mask,
4173 size_int (nbitsize - lbitsize - lbitpos));
4174
4175 if (! const_p)
4176 {
4177 if (nbitpos < 0)
4178 return 0;
4179
4180 /* If not comparing with constant, just rework the comparison
4181 and return. */
4182 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4183 nbitsize, nbitpos, 1, lreversep);
4184 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4185 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4186 nbitsize, nbitpos, 1, rreversep);
4187 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4188 return fold_build2_loc (loc, code, compare_type, t1, t2);
4189 }
4190
4191 /* Otherwise, we are handling the constant case. See if the constant is too
4192 big for the field. Warn and return a tree for 0 (false) if so. We do
4193 this not only for its own sake, but to avoid having to test for this
4194 error case below. If we didn't, we might generate wrong code.
4195
4196 For unsigned fields, the constant shifted right by the field length should
4197 be all zero. For signed fields, the high-order bits should agree with
4198 the sign bit. */
4199
4200 if (lunsignedp)
4201 {
4202 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4203 {
4204 warning (0, "comparison is always %d due to width of bit-field",
4205 code == NE_EXPR);
4206 return constant_boolean_node (code == NE_EXPR, compare_type);
4207 }
4208 }
4209 else
4210 {
4211 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4212 if (tem != 0 && tem != -1)
4213 {
4214 warning (0, "comparison is always %d due to width of bit-field",
4215 code == NE_EXPR);
4216 return constant_boolean_node (code == NE_EXPR, compare_type);
4217 }
4218 }
4219
4220 if (nbitpos < 0)
4221 return 0;
4222
4223 /* Single-bit compares should always be against zero. */
4224 if (lbitsize == 1 && ! integer_zerop (rhs))
4225 {
4226 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4227 rhs = build_int_cst (type, 0);
4228 }
4229
4230 /* Make a new bitfield reference, shift the constant over the
4231 appropriate number of bits and mask it with the computed mask
4232 (in case this was a signed field). If we changed it, make a new one. */
4233 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4234 nbitsize, nbitpos, 1, lreversep);
4235
4236 rhs = const_binop (BIT_AND_EXPR,
4237 const_binop (LSHIFT_EXPR,
4238 fold_convert_loc (loc, unsigned_type, rhs),
4239 size_int (lbitpos)),
4240 mask);
4241
4242 lhs = build2_loc (loc, code, compare_type,
4243 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4244 return lhs;
4245 }
4246 \f
4247 /* Subroutine for fold_truth_andor_1: decode a field reference.
4248
4249 If EXP is a comparison reference, we return the innermost reference.
4250
4251 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4252 set to the starting bit number.
4253
4254 If the innermost field can be completely contained in a mode-sized
4255 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4256
4257 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4258 otherwise it is not changed.
4259
4260 *PUNSIGNEDP is set to the signedness of the field.
4261
4262 *PREVERSEP is set to the storage order of the field.
4263
4264 *PMASK is set to the mask used. This is either contained in a
4265 BIT_AND_EXPR or derived from the width of the field.
4266
4267 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4268
4269 Return 0 if this is not a component reference or is one that we can't
4270 do anything with. */
4271
4272 static tree
4273 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4274 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4275 int *punsignedp, int *preversep, int *pvolatilep,
4276 tree *pmask, tree *pand_mask)
4277 {
4278 tree exp = *exp_;
4279 tree outer_type = 0;
4280 tree and_mask = 0;
4281 tree mask, inner, offset;
4282 tree unsigned_type;
4283 unsigned int precision;
4284
4285 /* All the optimizations using this function assume integer fields.
4286 There are problems with FP fields since the type_for_size call
4287 below can fail for, e.g., XFmode. */
4288 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4289 return NULL_TREE;
4290
4291 /* We are interested in the bare arrangement of bits, so strip everything
4292 that doesn't affect the machine mode. However, record the type of the
4293 outermost expression if it may matter below. */
4294 if (CONVERT_EXPR_P (exp)
4295 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4296 outer_type = TREE_TYPE (exp);
4297 STRIP_NOPS (exp);
4298
4299 if (TREE_CODE (exp) == BIT_AND_EXPR)
4300 {
4301 and_mask = TREE_OPERAND (exp, 1);
4302 exp = TREE_OPERAND (exp, 0);
4303 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4304 if (TREE_CODE (and_mask) != INTEGER_CST)
4305 return NULL_TREE;
4306 }
4307
4308 poly_int64 poly_bitsize, poly_bitpos;
4309 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4310 pmode, punsignedp, preversep, pvolatilep);
4311 if ((inner == exp && and_mask == 0)
4312 || !poly_bitsize.is_constant (pbitsize)
4313 || !poly_bitpos.is_constant (pbitpos)
4314 || *pbitsize < 0
4315 || offset != 0
4316 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4317 /* Reject out-of-bound accesses (PR79731). */
4318 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4319 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4320 *pbitpos + *pbitsize) < 0))
4321 return NULL_TREE;
4322
4323 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4324 if (unsigned_type == NULL_TREE)
4325 return NULL_TREE;
4326
4327 *exp_ = exp;
4328
4329 /* If the number of bits in the reference is the same as the bitsize of
4330 the outer type, then the outer type gives the signedness. Otherwise
4331 (in case of a small bitfield) the signedness is unchanged. */
4332 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4333 *punsignedp = TYPE_UNSIGNED (outer_type);
4334
4335 /* Compute the mask to access the bitfield. */
4336 precision = TYPE_PRECISION (unsigned_type);
4337
4338 mask = build_int_cst_type (unsigned_type, -1);
4339
4340 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4341 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4342
4343 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4344 if (and_mask != 0)
4345 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4346 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4347
4348 *pmask = mask;
4349 *pand_mask = and_mask;
4350 return inner;
4351 }
4352
4353 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4354 bit positions and MASK is SIGNED. */
4355
4356 static int
4357 all_ones_mask_p (const_tree mask, unsigned int size)
4358 {
4359 tree type = TREE_TYPE (mask);
4360 unsigned int precision = TYPE_PRECISION (type);
4361
4362 /* If this function returns true when the type of the mask is
4363 UNSIGNED, then there will be errors. In particular see
4364 gcc.c-torture/execute/990326-1.c. There does not appear to be
4365 any documentation paper trail as to why this is so. But the pre
4366 wide-int worked with that restriction and it has been preserved
4367 here. */
4368 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4369 return false;
4370
4371 return wi::mask (size, false, precision) == wi::to_wide (mask);
4372 }
4373
4374 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4375 represents the sign bit of EXP's type. If EXP represents a sign
4376 or zero extension, also test VAL against the unextended type.
4377 The return value is the (sub)expression whose sign bit is VAL,
4378 or NULL_TREE otherwise. */
4379
4380 tree
4381 sign_bit_p (tree exp, const_tree val)
4382 {
4383 int width;
4384 tree t;
4385
4386 /* Tree EXP must have an integral type. */
4387 t = TREE_TYPE (exp);
4388 if (! INTEGRAL_TYPE_P (t))
4389 return NULL_TREE;
4390
4391 /* Tree VAL must be an integer constant. */
4392 if (TREE_CODE (val) != INTEGER_CST
4393 || TREE_OVERFLOW (val))
4394 return NULL_TREE;
4395
4396 width = TYPE_PRECISION (t);
4397 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4398 return exp;
4399
4400 /* Handle extension from a narrower type. */
4401 if (TREE_CODE (exp) == NOP_EXPR
4402 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4403 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4404
4405 return NULL_TREE;
4406 }
4407
4408 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4409 to be evaluated unconditionally. */
4410
4411 static int
4412 simple_operand_p (const_tree exp)
4413 {
4414 /* Strip any conversions that don't change the machine mode. */
4415 STRIP_NOPS (exp);
4416
4417 return (CONSTANT_CLASS_P (exp)
4418 || TREE_CODE (exp) == SSA_NAME
4419 || (DECL_P (exp)
4420 && ! TREE_ADDRESSABLE (exp)
4421 && ! TREE_THIS_VOLATILE (exp)
4422 && ! DECL_NONLOCAL (exp)
4423 /* Don't regard global variables as simple. They may be
4424 allocated in ways unknown to the compiler (shared memory,
4425 #pragma weak, etc). */
4426 && ! TREE_PUBLIC (exp)
4427 && ! DECL_EXTERNAL (exp)
4428 /* Weakrefs are not safe to be read, since they can be NULL.
4429 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4430 have DECL_WEAK flag set. */
4431 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4432 /* Loading a static variable is unduly expensive, but global
4433 registers aren't expensive. */
4434 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4435 }
4436
4437 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4438 to be evaluated unconditionally.
4439 I addition to simple_operand_p, we assume that comparisons, conversions,
4440 and logic-not operations are simple, if their operands are simple, too. */
4441
4442 static bool
4443 simple_operand_p_2 (tree exp)
4444 {
4445 enum tree_code code;
4446
4447 if (TREE_SIDE_EFFECTS (exp)
4448 || tree_could_trap_p (exp))
4449 return false;
4450
4451 while (CONVERT_EXPR_P (exp))
4452 exp = TREE_OPERAND (exp, 0);
4453
4454 code = TREE_CODE (exp);
4455
4456 if (TREE_CODE_CLASS (code) == tcc_comparison)
4457 return (simple_operand_p (TREE_OPERAND (exp, 0))
4458 && simple_operand_p (TREE_OPERAND (exp, 1)));
4459
4460 if (code == TRUTH_NOT_EXPR)
4461 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4462
4463 return simple_operand_p (exp);
4464 }
4465
4466 \f
4467 /* The following functions are subroutines to fold_range_test and allow it to
4468 try to change a logical combination of comparisons into a range test.
4469
4470 For example, both
4471 X == 2 || X == 3 || X == 4 || X == 5
4472 and
4473 X >= 2 && X <= 5
4474 are converted to
4475 (unsigned) (X - 2) <= 3
4476
4477 We describe each set of comparisons as being either inside or outside
4478 a range, using a variable named like IN_P, and then describe the
4479 range with a lower and upper bound. If one of the bounds is omitted,
4480 it represents either the highest or lowest value of the type.
4481
4482 In the comments below, we represent a range by two numbers in brackets
4483 preceded by a "+" to designate being inside that range, or a "-" to
4484 designate being outside that range, so the condition can be inverted by
4485 flipping the prefix. An omitted bound is represented by a "-". For
4486 example, "- [-, 10]" means being outside the range starting at the lowest
4487 possible value and ending at 10, in other words, being greater than 10.
4488 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4489 always false.
4490
4491 We set up things so that the missing bounds are handled in a consistent
4492 manner so neither a missing bound nor "true" and "false" need to be
4493 handled using a special case. */
4494
4495 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4496 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4497 and UPPER1_P are nonzero if the respective argument is an upper bound
4498 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4499 must be specified for a comparison. ARG1 will be converted to ARG0's
4500 type if both are specified. */
4501
4502 static tree
4503 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4504 tree arg1, int upper1_p)
4505 {
4506 tree tem;
4507 int result;
4508 int sgn0, sgn1;
4509
4510 /* If neither arg represents infinity, do the normal operation.
4511 Else, if not a comparison, return infinity. Else handle the special
4512 comparison rules. Note that most of the cases below won't occur, but
4513 are handled for consistency. */
4514
4515 if (arg0 != 0 && arg1 != 0)
4516 {
4517 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4518 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4519 STRIP_NOPS (tem);
4520 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4521 }
4522
4523 if (TREE_CODE_CLASS (code) != tcc_comparison)
4524 return 0;
4525
4526 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4527 for neither. In real maths, we cannot assume open ended ranges are
4528 the same. But, this is computer arithmetic, where numbers are finite.
4529 We can therefore make the transformation of any unbounded range with
4530 the value Z, Z being greater than any representable number. This permits
4531 us to treat unbounded ranges as equal. */
4532 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4533 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4534 switch (code)
4535 {
4536 case EQ_EXPR:
4537 result = sgn0 == sgn1;
4538 break;
4539 case NE_EXPR:
4540 result = sgn0 != sgn1;
4541 break;
4542 case LT_EXPR:
4543 result = sgn0 < sgn1;
4544 break;
4545 case LE_EXPR:
4546 result = sgn0 <= sgn1;
4547 break;
4548 case GT_EXPR:
4549 result = sgn0 > sgn1;
4550 break;
4551 case GE_EXPR:
4552 result = sgn0 >= sgn1;
4553 break;
4554 default:
4555 gcc_unreachable ();
4556 }
4557
4558 return constant_boolean_node (result, type);
4559 }
4560 \f
4561 /* Helper routine for make_range. Perform one step for it, return
4562 new expression if the loop should continue or NULL_TREE if it should
4563 stop. */
4564
4565 tree
4566 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4567 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4568 bool *strict_overflow_p)
4569 {
4570 tree arg0_type = TREE_TYPE (arg0);
4571 tree n_low, n_high, low = *p_low, high = *p_high;
4572 int in_p = *p_in_p, n_in_p;
4573
4574 switch (code)
4575 {
4576 case TRUTH_NOT_EXPR:
4577 /* We can only do something if the range is testing for zero. */
4578 if (low == NULL_TREE || high == NULL_TREE
4579 || ! integer_zerop (low) || ! integer_zerop (high))
4580 return NULL_TREE;
4581 *p_in_p = ! in_p;
4582 return arg0;
4583
4584 case EQ_EXPR: case NE_EXPR:
4585 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4586 /* We can only do something if the range is testing for zero
4587 and if the second operand is an integer constant. Note that
4588 saying something is "in" the range we make is done by
4589 complementing IN_P since it will set in the initial case of
4590 being not equal to zero; "out" is leaving it alone. */
4591 if (low == NULL_TREE || high == NULL_TREE
4592 || ! integer_zerop (low) || ! integer_zerop (high)
4593 || TREE_CODE (arg1) != INTEGER_CST)
4594 return NULL_TREE;
4595
4596 switch (code)
4597 {
4598 case NE_EXPR: /* - [c, c] */
4599 low = high = arg1;
4600 break;
4601 case EQ_EXPR: /* + [c, c] */
4602 in_p = ! in_p, low = high = arg1;
4603 break;
4604 case GT_EXPR: /* - [-, c] */
4605 low = 0, high = arg1;
4606 break;
4607 case GE_EXPR: /* + [c, -] */
4608 in_p = ! in_p, low = arg1, high = 0;
4609 break;
4610 case LT_EXPR: /* - [c, -] */
4611 low = arg1, high = 0;
4612 break;
4613 case LE_EXPR: /* + [-, c] */
4614 in_p = ! in_p, low = 0, high = arg1;
4615 break;
4616 default:
4617 gcc_unreachable ();
4618 }
4619
4620 /* If this is an unsigned comparison, we also know that EXP is
4621 greater than or equal to zero. We base the range tests we make
4622 on that fact, so we record it here so we can parse existing
4623 range tests. We test arg0_type since often the return type
4624 of, e.g. EQ_EXPR, is boolean. */
4625 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4626 {
4627 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4628 in_p, low, high, 1,
4629 build_int_cst (arg0_type, 0),
4630 NULL_TREE))
4631 return NULL_TREE;
4632
4633 in_p = n_in_p, low = n_low, high = n_high;
4634
4635 /* If the high bound is missing, but we have a nonzero low
4636 bound, reverse the range so it goes from zero to the low bound
4637 minus 1. */
4638 if (high == 0 && low && ! integer_zerop (low))
4639 {
4640 in_p = ! in_p;
4641 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4642 build_int_cst (TREE_TYPE (low), 1), 0);
4643 low = build_int_cst (arg0_type, 0);
4644 }
4645 }
4646
4647 *p_low = low;
4648 *p_high = high;
4649 *p_in_p = in_p;
4650 return arg0;
4651
4652 case NEGATE_EXPR:
4653 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4654 low and high are non-NULL, then normalize will DTRT. */
4655 if (!TYPE_UNSIGNED (arg0_type)
4656 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4657 {
4658 if (low == NULL_TREE)
4659 low = TYPE_MIN_VALUE (arg0_type);
4660 if (high == NULL_TREE)
4661 high = TYPE_MAX_VALUE (arg0_type);
4662 }
4663
4664 /* (-x) IN [a,b] -> x in [-b, -a] */
4665 n_low = range_binop (MINUS_EXPR, exp_type,
4666 build_int_cst (exp_type, 0),
4667 0, high, 1);
4668 n_high = range_binop (MINUS_EXPR, exp_type,
4669 build_int_cst (exp_type, 0),
4670 0, low, 0);
4671 if (n_high != 0 && TREE_OVERFLOW (n_high))
4672 return NULL_TREE;
4673 goto normalize;
4674
4675 case BIT_NOT_EXPR:
4676 /* ~ X -> -X - 1 */
4677 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4678 build_int_cst (exp_type, 1));
4679
4680 case PLUS_EXPR:
4681 case MINUS_EXPR:
4682 if (TREE_CODE (arg1) != INTEGER_CST)
4683 return NULL_TREE;
4684
4685 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4686 move a constant to the other side. */
4687 if (!TYPE_UNSIGNED (arg0_type)
4688 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4689 return NULL_TREE;
4690
4691 /* If EXP is signed, any overflow in the computation is undefined,
4692 so we don't worry about it so long as our computations on
4693 the bounds don't overflow. For unsigned, overflow is defined
4694 and this is exactly the right thing. */
4695 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4696 arg0_type, low, 0, arg1, 0);
4697 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4698 arg0_type, high, 1, arg1, 0);
4699 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4700 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4701 return NULL_TREE;
4702
4703 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4704 *strict_overflow_p = true;
4705
4706 normalize:
4707 /* Check for an unsigned range which has wrapped around the maximum
4708 value thus making n_high < n_low, and normalize it. */
4709 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4710 {
4711 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4712 build_int_cst (TREE_TYPE (n_high), 1), 0);
4713 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4714 build_int_cst (TREE_TYPE (n_low), 1), 0);
4715
4716 /* If the range is of the form +/- [ x+1, x ], we won't
4717 be able to normalize it. But then, it represents the
4718 whole range or the empty set, so make it
4719 +/- [ -, - ]. */
4720 if (tree_int_cst_equal (n_low, low)
4721 && tree_int_cst_equal (n_high, high))
4722 low = high = 0;
4723 else
4724 in_p = ! in_p;
4725 }
4726 else
4727 low = n_low, high = n_high;
4728
4729 *p_low = low;
4730 *p_high = high;
4731 *p_in_p = in_p;
4732 return arg0;
4733
4734 CASE_CONVERT:
4735 case NON_LVALUE_EXPR:
4736 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4737 return NULL_TREE;
4738
4739 if (! INTEGRAL_TYPE_P (arg0_type)
4740 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4741 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4742 return NULL_TREE;
4743
4744 n_low = low, n_high = high;
4745
4746 if (n_low != 0)
4747 n_low = fold_convert_loc (loc, arg0_type, n_low);
4748
4749 if (n_high != 0)
4750 n_high = fold_convert_loc (loc, arg0_type, n_high);
4751
4752 /* If we're converting arg0 from an unsigned type, to exp,
4753 a signed type, we will be doing the comparison as unsigned.
4754 The tests above have already verified that LOW and HIGH
4755 are both positive.
4756
4757 So we have to ensure that we will handle large unsigned
4758 values the same way that the current signed bounds treat
4759 negative values. */
4760
4761 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4762 {
4763 tree high_positive;
4764 tree equiv_type;
4765 /* For fixed-point modes, we need to pass the saturating flag
4766 as the 2nd parameter. */
4767 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4768 equiv_type
4769 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4770 TYPE_SATURATING (arg0_type));
4771 else
4772 equiv_type
4773 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4774
4775 /* A range without an upper bound is, naturally, unbounded.
4776 Since convert would have cropped a very large value, use
4777 the max value for the destination type. */
4778 high_positive
4779 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4780 : TYPE_MAX_VALUE (arg0_type);
4781
4782 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4783 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4784 fold_convert_loc (loc, arg0_type,
4785 high_positive),
4786 build_int_cst (arg0_type, 1));
4787
4788 /* If the low bound is specified, "and" the range with the
4789 range for which the original unsigned value will be
4790 positive. */
4791 if (low != 0)
4792 {
4793 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4794 1, fold_convert_loc (loc, arg0_type,
4795 integer_zero_node),
4796 high_positive))
4797 return NULL_TREE;
4798
4799 in_p = (n_in_p == in_p);
4800 }
4801 else
4802 {
4803 /* Otherwise, "or" the range with the range of the input
4804 that will be interpreted as negative. */
4805 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4806 1, fold_convert_loc (loc, arg0_type,
4807 integer_zero_node),
4808 high_positive))
4809 return NULL_TREE;
4810
4811 in_p = (in_p != n_in_p);
4812 }
4813 }
4814
4815 *p_low = n_low;
4816 *p_high = n_high;
4817 *p_in_p = in_p;
4818 return arg0;
4819
4820 default:
4821 return NULL_TREE;
4822 }
4823 }
4824
4825 /* Given EXP, a logical expression, set the range it is testing into
4826 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4827 actually being tested. *PLOW and *PHIGH will be made of the same
4828 type as the returned expression. If EXP is not a comparison, we
4829 will most likely not be returning a useful value and range. Set
4830 *STRICT_OVERFLOW_P to true if the return value is only valid
4831 because signed overflow is undefined; otherwise, do not change
4832 *STRICT_OVERFLOW_P. */
4833
4834 tree
4835 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4836 bool *strict_overflow_p)
4837 {
4838 enum tree_code code;
4839 tree arg0, arg1 = NULL_TREE;
4840 tree exp_type, nexp;
4841 int in_p;
4842 tree low, high;
4843 location_t loc = EXPR_LOCATION (exp);
4844
4845 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4846 and see if we can refine the range. Some of the cases below may not
4847 happen, but it doesn't seem worth worrying about this. We "continue"
4848 the outer loop when we've changed something; otherwise we "break"
4849 the switch, which will "break" the while. */
4850
4851 in_p = 0;
4852 low = high = build_int_cst (TREE_TYPE (exp), 0);
4853
4854 while (1)
4855 {
4856 code = TREE_CODE (exp);
4857 exp_type = TREE_TYPE (exp);
4858 arg0 = NULL_TREE;
4859
4860 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4861 {
4862 if (TREE_OPERAND_LENGTH (exp) > 0)
4863 arg0 = TREE_OPERAND (exp, 0);
4864 if (TREE_CODE_CLASS (code) == tcc_binary
4865 || TREE_CODE_CLASS (code) == tcc_comparison
4866 || (TREE_CODE_CLASS (code) == tcc_expression
4867 && TREE_OPERAND_LENGTH (exp) > 1))
4868 arg1 = TREE_OPERAND (exp, 1);
4869 }
4870 if (arg0 == NULL_TREE)
4871 break;
4872
4873 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4874 &high, &in_p, strict_overflow_p);
4875 if (nexp == NULL_TREE)
4876 break;
4877 exp = nexp;
4878 }
4879
4880 /* If EXP is a constant, we can evaluate whether this is true or false. */
4881 if (TREE_CODE (exp) == INTEGER_CST)
4882 {
4883 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4884 exp, 0, low, 0))
4885 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4886 exp, 1, high, 1)));
4887 low = high = 0;
4888 exp = 0;
4889 }
4890
4891 *pin_p = in_p, *plow = low, *phigh = high;
4892 return exp;
4893 }
4894
4895 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4896 a bitwise check i.e. when
4897 LOW == 0xXX...X00...0
4898 HIGH == 0xXX...X11...1
4899 Return corresponding mask in MASK and stem in VALUE. */
4900
4901 static bool
4902 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4903 tree *value)
4904 {
4905 if (TREE_CODE (low) != INTEGER_CST
4906 || TREE_CODE (high) != INTEGER_CST)
4907 return false;
4908
4909 unsigned prec = TYPE_PRECISION (type);
4910 wide_int lo = wi::to_wide (low, prec);
4911 wide_int hi = wi::to_wide (high, prec);
4912
4913 wide_int end_mask = lo ^ hi;
4914 if ((end_mask & (end_mask + 1)) != 0
4915 || (lo & end_mask) != 0)
4916 return false;
4917
4918 wide_int stem_mask = ~end_mask;
4919 wide_int stem = lo & stem_mask;
4920 if (stem != (hi & stem_mask))
4921 return false;
4922
4923 *mask = wide_int_to_tree (type, stem_mask);
4924 *value = wide_int_to_tree (type, stem);
4925
4926 return true;
4927 }
4928 \f
4929 /* Helper routine for build_range_check and match.pd. Return the type to
4930 perform the check or NULL if it shouldn't be optimized. */
4931
4932 tree
4933 range_check_type (tree etype)
4934 {
4935 /* First make sure that arithmetics in this type is valid, then make sure
4936 that it wraps around. */
4937 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4938 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4939 TYPE_UNSIGNED (etype));
4940
4941 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4942 {
4943 tree utype, minv, maxv;
4944
4945 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4946 for the type in question, as we rely on this here. */
4947 utype = unsigned_type_for (etype);
4948 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4949 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4950 build_int_cst (TREE_TYPE (maxv), 1), 1);
4951 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4952
4953 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4954 minv, 1, maxv, 1)))
4955 etype = utype;
4956 else
4957 return NULL_TREE;
4958 }
4959 return etype;
4960 }
4961
4962 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4963 type, TYPE, return an expression to test if EXP is in (or out of, depending
4964 on IN_P) the range. Return 0 if the test couldn't be created. */
4965
4966 tree
4967 build_range_check (location_t loc, tree type, tree exp, int in_p,
4968 tree low, tree high)
4969 {
4970 tree etype = TREE_TYPE (exp), mask, value;
4971
4972 /* Disable this optimization for function pointer expressions
4973 on targets that require function pointer canonicalization. */
4974 if (targetm.have_canonicalize_funcptr_for_compare ()
4975 && POINTER_TYPE_P (etype)
4976 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
4977 return NULL_TREE;
4978
4979 if (! in_p)
4980 {
4981 value = build_range_check (loc, type, exp, 1, low, high);
4982 if (value != 0)
4983 return invert_truthvalue_loc (loc, value);
4984
4985 return 0;
4986 }
4987
4988 if (low == 0 && high == 0)
4989 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4990
4991 if (low == 0)
4992 return fold_build2_loc (loc, LE_EXPR, type, exp,
4993 fold_convert_loc (loc, etype, high));
4994
4995 if (high == 0)
4996 return fold_build2_loc (loc, GE_EXPR, type, exp,
4997 fold_convert_loc (loc, etype, low));
4998
4999 if (operand_equal_p (low, high, 0))
5000 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5001 fold_convert_loc (loc, etype, low));
5002
5003 if (TREE_CODE (exp) == BIT_AND_EXPR
5004 && maskable_range_p (low, high, etype, &mask, &value))
5005 return fold_build2_loc (loc, EQ_EXPR, type,
5006 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5007 exp, mask),
5008 value);
5009
5010 if (integer_zerop (low))
5011 {
5012 if (! TYPE_UNSIGNED (etype))
5013 {
5014 etype = unsigned_type_for (etype);
5015 high = fold_convert_loc (loc, etype, high);
5016 exp = fold_convert_loc (loc, etype, exp);
5017 }
5018 return build_range_check (loc, type, exp, 1, 0, high);
5019 }
5020
5021 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5022 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5023 {
5024 int prec = TYPE_PRECISION (etype);
5025
5026 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5027 {
5028 if (TYPE_UNSIGNED (etype))
5029 {
5030 tree signed_etype = signed_type_for (etype);
5031 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5032 etype
5033 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5034 else
5035 etype = signed_etype;
5036 exp = fold_convert_loc (loc, etype, exp);
5037 }
5038 return fold_build2_loc (loc, GT_EXPR, type, exp,
5039 build_int_cst (etype, 0));
5040 }
5041 }
5042
5043 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5044 This requires wrap-around arithmetics for the type of the expression. */
5045 etype = range_check_type (etype);
5046 if (etype == NULL_TREE)
5047 return NULL_TREE;
5048
5049 if (POINTER_TYPE_P (etype))
5050 etype = unsigned_type_for (etype);
5051
5052 high = fold_convert_loc (loc, etype, high);
5053 low = fold_convert_loc (loc, etype, low);
5054 exp = fold_convert_loc (loc, etype, exp);
5055
5056 value = const_binop (MINUS_EXPR, high, low);
5057
5058 if (value != 0 && !TREE_OVERFLOW (value))
5059 return build_range_check (loc, type,
5060 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5061 1, build_int_cst (etype, 0), value);
5062
5063 return 0;
5064 }
5065 \f
5066 /* Return the predecessor of VAL in its type, handling the infinite case. */
5067
5068 static tree
5069 range_predecessor (tree val)
5070 {
5071 tree type = TREE_TYPE (val);
5072
5073 if (INTEGRAL_TYPE_P (type)
5074 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5075 return 0;
5076 else
5077 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5078 build_int_cst (TREE_TYPE (val), 1), 0);
5079 }
5080
5081 /* Return the successor of VAL in its type, handling the infinite case. */
5082
5083 static tree
5084 range_successor (tree val)
5085 {
5086 tree type = TREE_TYPE (val);
5087
5088 if (INTEGRAL_TYPE_P (type)
5089 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5090 return 0;
5091 else
5092 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5093 build_int_cst (TREE_TYPE (val), 1), 0);
5094 }
5095
5096 /* Given two ranges, see if we can merge them into one. Return 1 if we
5097 can, 0 if we can't. Set the output range into the specified parameters. */
5098
5099 bool
5100 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5101 tree high0, int in1_p, tree low1, tree high1)
5102 {
5103 int no_overlap;
5104 int subset;
5105 int temp;
5106 tree tem;
5107 int in_p;
5108 tree low, high;
5109 int lowequal = ((low0 == 0 && low1 == 0)
5110 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5111 low0, 0, low1, 0)));
5112 int highequal = ((high0 == 0 && high1 == 0)
5113 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5114 high0, 1, high1, 1)));
5115
5116 /* Make range 0 be the range that starts first, or ends last if they
5117 start at the same value. Swap them if it isn't. */
5118 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5119 low0, 0, low1, 0))
5120 || (lowequal
5121 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5122 high1, 1, high0, 1))))
5123 {
5124 temp = in0_p, in0_p = in1_p, in1_p = temp;
5125 tem = low0, low0 = low1, low1 = tem;
5126 tem = high0, high0 = high1, high1 = tem;
5127 }
5128
5129 /* If the second range is != high1 where high1 is the type maximum of
5130 the type, try first merging with < high1 range. */
5131 if (low1
5132 && high1
5133 && TREE_CODE (low1) == INTEGER_CST
5134 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5135 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5136 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5137 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5138 && operand_equal_p (low1, high1, 0))
5139 {
5140 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5141 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5142 !in1_p, NULL_TREE, range_predecessor (low1)))
5143 return true;
5144 /* Similarly for the second range != low1 where low1 is the type minimum
5145 of the type, try first merging with > low1 range. */
5146 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5147 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5148 !in1_p, range_successor (low1), NULL_TREE))
5149 return true;
5150 }
5151
5152 /* Now flag two cases, whether the ranges are disjoint or whether the
5153 second range is totally subsumed in the first. Note that the tests
5154 below are simplified by the ones above. */
5155 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5156 high0, 1, low1, 0));
5157 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5158 high1, 1, high0, 1));
5159
5160 /* We now have four cases, depending on whether we are including or
5161 excluding the two ranges. */
5162 if (in0_p && in1_p)
5163 {
5164 /* If they don't overlap, the result is false. If the second range
5165 is a subset it is the result. Otherwise, the range is from the start
5166 of the second to the end of the first. */
5167 if (no_overlap)
5168 in_p = 0, low = high = 0;
5169 else if (subset)
5170 in_p = 1, low = low1, high = high1;
5171 else
5172 in_p = 1, low = low1, high = high0;
5173 }
5174
5175 else if (in0_p && ! in1_p)
5176 {
5177 /* If they don't overlap, the result is the first range. If they are
5178 equal, the result is false. If the second range is a subset of the
5179 first, and the ranges begin at the same place, we go from just after
5180 the end of the second range to the end of the first. If the second
5181 range is not a subset of the first, or if it is a subset and both
5182 ranges end at the same place, the range starts at the start of the
5183 first range and ends just before the second range.
5184 Otherwise, we can't describe this as a single range. */
5185 if (no_overlap)
5186 in_p = 1, low = low0, high = high0;
5187 else if (lowequal && highequal)
5188 in_p = 0, low = high = 0;
5189 else if (subset && lowequal)
5190 {
5191 low = range_successor (high1);
5192 high = high0;
5193 in_p = 1;
5194 if (low == 0)
5195 {
5196 /* We are in the weird situation where high0 > high1 but
5197 high1 has no successor. Punt. */
5198 return 0;
5199 }
5200 }
5201 else if (! subset || highequal)
5202 {
5203 low = low0;
5204 high = range_predecessor (low1);
5205 in_p = 1;
5206 if (high == 0)
5207 {
5208 /* low0 < low1 but low1 has no predecessor. Punt. */
5209 return 0;
5210 }
5211 }
5212 else
5213 return 0;
5214 }
5215
5216 else if (! in0_p && in1_p)
5217 {
5218 /* If they don't overlap, the result is the second range. If the second
5219 is a subset of the first, the result is false. Otherwise,
5220 the range starts just after the first range and ends at the
5221 end of the second. */
5222 if (no_overlap)
5223 in_p = 1, low = low1, high = high1;
5224 else if (subset || highequal)
5225 in_p = 0, low = high = 0;
5226 else
5227 {
5228 low = range_successor (high0);
5229 high = high1;
5230 in_p = 1;
5231 if (low == 0)
5232 {
5233 /* high1 > high0 but high0 has no successor. Punt. */
5234 return 0;
5235 }
5236 }
5237 }
5238
5239 else
5240 {
5241 /* The case where we are excluding both ranges. Here the complex case
5242 is if they don't overlap. In that case, the only time we have a
5243 range is if they are adjacent. If the second is a subset of the
5244 first, the result is the first. Otherwise, the range to exclude
5245 starts at the beginning of the first range and ends at the end of the
5246 second. */
5247 if (no_overlap)
5248 {
5249 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5250 range_successor (high0),
5251 1, low1, 0)))
5252 in_p = 0, low = low0, high = high1;
5253 else
5254 {
5255 /* Canonicalize - [min, x] into - [-, x]. */
5256 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5257 switch (TREE_CODE (TREE_TYPE (low0)))
5258 {
5259 case ENUMERAL_TYPE:
5260 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5261 GET_MODE_BITSIZE
5262 (TYPE_MODE (TREE_TYPE (low0)))))
5263 break;
5264 /* FALLTHROUGH */
5265 case INTEGER_TYPE:
5266 if (tree_int_cst_equal (low0,
5267 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5268 low0 = 0;
5269 break;
5270 case POINTER_TYPE:
5271 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5272 && integer_zerop (low0))
5273 low0 = 0;
5274 break;
5275 default:
5276 break;
5277 }
5278
5279 /* Canonicalize - [x, max] into - [x, -]. */
5280 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5281 switch (TREE_CODE (TREE_TYPE (high1)))
5282 {
5283 case ENUMERAL_TYPE:
5284 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5285 GET_MODE_BITSIZE
5286 (TYPE_MODE (TREE_TYPE (high1)))))
5287 break;
5288 /* FALLTHROUGH */
5289 case INTEGER_TYPE:
5290 if (tree_int_cst_equal (high1,
5291 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5292 high1 = 0;
5293 break;
5294 case POINTER_TYPE:
5295 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5296 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5297 high1, 1,
5298 build_int_cst (TREE_TYPE (high1), 1),
5299 1)))
5300 high1 = 0;
5301 break;
5302 default:
5303 break;
5304 }
5305
5306 /* The ranges might be also adjacent between the maximum and
5307 minimum values of the given type. For
5308 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5309 return + [x + 1, y - 1]. */
5310 if (low0 == 0 && high1 == 0)
5311 {
5312 low = range_successor (high0);
5313 high = range_predecessor (low1);
5314 if (low == 0 || high == 0)
5315 return 0;
5316
5317 in_p = 1;
5318 }
5319 else
5320 return 0;
5321 }
5322 }
5323 else if (subset)
5324 in_p = 0, low = low0, high = high0;
5325 else
5326 in_p = 0, low = low0, high = high1;
5327 }
5328
5329 *pin_p = in_p, *plow = low, *phigh = high;
5330 return 1;
5331 }
5332 \f
5333
5334 /* Subroutine of fold, looking inside expressions of the form
5335 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5336 of the COND_EXPR. This function is being used also to optimize
5337 A op B ? C : A, by reversing the comparison first.
5338
5339 Return a folded expression whose code is not a COND_EXPR
5340 anymore, or NULL_TREE if no folding opportunity is found. */
5341
5342 static tree
5343 fold_cond_expr_with_comparison (location_t loc, tree type,
5344 tree arg0, tree arg1, tree arg2)
5345 {
5346 enum tree_code comp_code = TREE_CODE (arg0);
5347 tree arg00 = TREE_OPERAND (arg0, 0);
5348 tree arg01 = TREE_OPERAND (arg0, 1);
5349 tree arg1_type = TREE_TYPE (arg1);
5350 tree tem;
5351
5352 STRIP_NOPS (arg1);
5353 STRIP_NOPS (arg2);
5354
5355 /* If we have A op 0 ? A : -A, consider applying the following
5356 transformations:
5357
5358 A == 0? A : -A same as -A
5359 A != 0? A : -A same as A
5360 A >= 0? A : -A same as abs (A)
5361 A > 0? A : -A same as abs (A)
5362 A <= 0? A : -A same as -abs (A)
5363 A < 0? A : -A same as -abs (A)
5364
5365 None of these transformations work for modes with signed
5366 zeros. If A is +/-0, the first two transformations will
5367 change the sign of the result (from +0 to -0, or vice
5368 versa). The last four will fix the sign of the result,
5369 even though the original expressions could be positive or
5370 negative, depending on the sign of A.
5371
5372 Note that all these transformations are correct if A is
5373 NaN, since the two alternatives (A and -A) are also NaNs. */
5374 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5375 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5376 ? real_zerop (arg01)
5377 : integer_zerop (arg01))
5378 && ((TREE_CODE (arg2) == NEGATE_EXPR
5379 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5380 /* In the case that A is of the form X-Y, '-A' (arg2) may
5381 have already been folded to Y-X, check for that. */
5382 || (TREE_CODE (arg1) == MINUS_EXPR
5383 && TREE_CODE (arg2) == MINUS_EXPR
5384 && operand_equal_p (TREE_OPERAND (arg1, 0),
5385 TREE_OPERAND (arg2, 1), 0)
5386 && operand_equal_p (TREE_OPERAND (arg1, 1),
5387 TREE_OPERAND (arg2, 0), 0))))
5388 switch (comp_code)
5389 {
5390 case EQ_EXPR:
5391 case UNEQ_EXPR:
5392 tem = fold_convert_loc (loc, arg1_type, arg1);
5393 return fold_convert_loc (loc, type, negate_expr (tem));
5394 case NE_EXPR:
5395 case LTGT_EXPR:
5396 return fold_convert_loc (loc, type, arg1);
5397 case UNGE_EXPR:
5398 case UNGT_EXPR:
5399 if (flag_trapping_math)
5400 break;
5401 /* Fall through. */
5402 case GE_EXPR:
5403 case GT_EXPR:
5404 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5405 break;
5406 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5407 return fold_convert_loc (loc, type, tem);
5408 case UNLE_EXPR:
5409 case UNLT_EXPR:
5410 if (flag_trapping_math)
5411 break;
5412 /* FALLTHRU */
5413 case LE_EXPR:
5414 case LT_EXPR:
5415 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5416 break;
5417 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5418 return negate_expr (fold_convert_loc (loc, type, tem));
5419 default:
5420 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5421 break;
5422 }
5423
5424 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5425 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5426 both transformations are correct when A is NaN: A != 0
5427 is then true, and A == 0 is false. */
5428
5429 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5430 && integer_zerop (arg01) && integer_zerop (arg2))
5431 {
5432 if (comp_code == NE_EXPR)
5433 return fold_convert_loc (loc, type, arg1);
5434 else if (comp_code == EQ_EXPR)
5435 return build_zero_cst (type);
5436 }
5437
5438 /* Try some transformations of A op B ? A : B.
5439
5440 A == B? A : B same as B
5441 A != B? A : B same as A
5442 A >= B? A : B same as max (A, B)
5443 A > B? A : B same as max (B, A)
5444 A <= B? A : B same as min (A, B)
5445 A < B? A : B same as min (B, A)
5446
5447 As above, these transformations don't work in the presence
5448 of signed zeros. For example, if A and B are zeros of
5449 opposite sign, the first two transformations will change
5450 the sign of the result. In the last four, the original
5451 expressions give different results for (A=+0, B=-0) and
5452 (A=-0, B=+0), but the transformed expressions do not.
5453
5454 The first two transformations are correct if either A or B
5455 is a NaN. In the first transformation, the condition will
5456 be false, and B will indeed be chosen. In the case of the
5457 second transformation, the condition A != B will be true,
5458 and A will be chosen.
5459
5460 The conversions to max() and min() are not correct if B is
5461 a number and A is not. The conditions in the original
5462 expressions will be false, so all four give B. The min()
5463 and max() versions would give a NaN instead. */
5464 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5465 && operand_equal_for_comparison_p (arg01, arg2)
5466 /* Avoid these transformations if the COND_EXPR may be used
5467 as an lvalue in the C++ front-end. PR c++/19199. */
5468 && (in_gimple_form
5469 || VECTOR_TYPE_P (type)
5470 || (! lang_GNU_CXX ()
5471 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5472 || ! maybe_lvalue_p (arg1)
5473 || ! maybe_lvalue_p (arg2)))
5474 {
5475 tree comp_op0 = arg00;
5476 tree comp_op1 = arg01;
5477 tree comp_type = TREE_TYPE (comp_op0);
5478
5479 switch (comp_code)
5480 {
5481 case EQ_EXPR:
5482 return fold_convert_loc (loc, type, arg2);
5483 case NE_EXPR:
5484 return fold_convert_loc (loc, type, arg1);
5485 case LE_EXPR:
5486 case LT_EXPR:
5487 case UNLE_EXPR:
5488 case UNLT_EXPR:
5489 /* In C++ a ?: expression can be an lvalue, so put the
5490 operand which will be used if they are equal first
5491 so that we can convert this back to the
5492 corresponding COND_EXPR. */
5493 if (!HONOR_NANS (arg1))
5494 {
5495 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5496 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5497 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5498 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5499 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5500 comp_op1, comp_op0);
5501 return fold_convert_loc (loc, type, tem);
5502 }
5503 break;
5504 case GE_EXPR:
5505 case GT_EXPR:
5506 case UNGE_EXPR:
5507 case UNGT_EXPR:
5508 if (!HONOR_NANS (arg1))
5509 {
5510 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5511 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5512 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5513 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5514 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5515 comp_op1, comp_op0);
5516 return fold_convert_loc (loc, type, tem);
5517 }
5518 break;
5519 case UNEQ_EXPR:
5520 if (!HONOR_NANS (arg1))
5521 return fold_convert_loc (loc, type, arg2);
5522 break;
5523 case LTGT_EXPR:
5524 if (!HONOR_NANS (arg1))
5525 return fold_convert_loc (loc, type, arg1);
5526 break;
5527 default:
5528 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5529 break;
5530 }
5531 }
5532
5533 return NULL_TREE;
5534 }
5535
5536
5537 \f
5538 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5539 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5540 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5541 false) >= 2)
5542 #endif
5543
5544 /* EXP is some logical combination of boolean tests. See if we can
5545 merge it into some range test. Return the new tree if so. */
5546
5547 static tree
5548 fold_range_test (location_t loc, enum tree_code code, tree type,
5549 tree op0, tree op1)
5550 {
5551 int or_op = (code == TRUTH_ORIF_EXPR
5552 || code == TRUTH_OR_EXPR);
5553 int in0_p, in1_p, in_p;
5554 tree low0, low1, low, high0, high1, high;
5555 bool strict_overflow_p = false;
5556 tree tem, lhs, rhs;
5557 const char * const warnmsg = G_("assuming signed overflow does not occur "
5558 "when simplifying range test");
5559
5560 if (!INTEGRAL_TYPE_P (type))
5561 return 0;
5562
5563 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5564 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5565
5566 /* If this is an OR operation, invert both sides; we will invert
5567 again at the end. */
5568 if (or_op)
5569 in0_p = ! in0_p, in1_p = ! in1_p;
5570
5571 /* If both expressions are the same, if we can merge the ranges, and we
5572 can build the range test, return it or it inverted. If one of the
5573 ranges is always true or always false, consider it to be the same
5574 expression as the other. */
5575 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5576 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5577 in1_p, low1, high1)
5578 && (tem = (build_range_check (loc, type,
5579 lhs != 0 ? lhs
5580 : rhs != 0 ? rhs : integer_zero_node,
5581 in_p, low, high))) != 0)
5582 {
5583 if (strict_overflow_p)
5584 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5585 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5586 }
5587
5588 /* On machines where the branch cost is expensive, if this is a
5589 short-circuited branch and the underlying object on both sides
5590 is the same, make a non-short-circuit operation. */
5591 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
5592 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1)
5593 logical_op_non_short_circuit
5594 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT);
5595 if (logical_op_non_short_circuit
5596 && !flag_sanitize_coverage
5597 && lhs != 0 && rhs != 0
5598 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5599 && operand_equal_p (lhs, rhs, 0))
5600 {
5601 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5602 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5603 which cases we can't do this. */
5604 if (simple_operand_p (lhs))
5605 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5606 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5607 type, op0, op1);
5608
5609 else if (!lang_hooks.decls.global_bindings_p ()
5610 && !CONTAINS_PLACEHOLDER_P (lhs))
5611 {
5612 tree common = save_expr (lhs);
5613
5614 if ((lhs = build_range_check (loc, type, common,
5615 or_op ? ! in0_p : in0_p,
5616 low0, high0)) != 0
5617 && (rhs = build_range_check (loc, type, common,
5618 or_op ? ! in1_p : in1_p,
5619 low1, high1)) != 0)
5620 {
5621 if (strict_overflow_p)
5622 fold_overflow_warning (warnmsg,
5623 WARN_STRICT_OVERFLOW_COMPARISON);
5624 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5625 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5626 type, lhs, rhs);
5627 }
5628 }
5629 }
5630
5631 return 0;
5632 }
5633 \f
5634 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5635 bit value. Arrange things so the extra bits will be set to zero if and
5636 only if C is signed-extended to its full width. If MASK is nonzero,
5637 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5638
5639 static tree
5640 unextend (tree c, int p, int unsignedp, tree mask)
5641 {
5642 tree type = TREE_TYPE (c);
5643 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5644 tree temp;
5645
5646 if (p == modesize || unsignedp)
5647 return c;
5648
5649 /* We work by getting just the sign bit into the low-order bit, then
5650 into the high-order bit, then sign-extend. We then XOR that value
5651 with C. */
5652 temp = build_int_cst (TREE_TYPE (c),
5653 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
5654
5655 /* We must use a signed type in order to get an arithmetic right shift.
5656 However, we must also avoid introducing accidental overflows, so that
5657 a subsequent call to integer_zerop will work. Hence we must
5658 do the type conversion here. At this point, the constant is either
5659 zero or one, and the conversion to a signed type can never overflow.
5660 We could get an overflow if this conversion is done anywhere else. */
5661 if (TYPE_UNSIGNED (type))
5662 temp = fold_convert (signed_type_for (type), temp);
5663
5664 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5665 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5666 if (mask != 0)
5667 temp = const_binop (BIT_AND_EXPR, temp,
5668 fold_convert (TREE_TYPE (c), mask));
5669 /* If necessary, convert the type back to match the type of C. */
5670 if (TYPE_UNSIGNED (type))
5671 temp = fold_convert (type, temp);
5672
5673 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5674 }
5675 \f
5676 /* For an expression that has the form
5677 (A && B) || ~B
5678 or
5679 (A || B) && ~B,
5680 we can drop one of the inner expressions and simplify to
5681 A || ~B
5682 or
5683 A && ~B
5684 LOC is the location of the resulting expression. OP is the inner
5685 logical operation; the left-hand side in the examples above, while CMPOP
5686 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5687 removing a condition that guards another, as in
5688 (A != NULL && A->...) || A == NULL
5689 which we must not transform. If RHS_ONLY is true, only eliminate the
5690 right-most operand of the inner logical operation. */
5691
5692 static tree
5693 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5694 bool rhs_only)
5695 {
5696 tree type = TREE_TYPE (cmpop);
5697 enum tree_code code = TREE_CODE (cmpop);
5698 enum tree_code truthop_code = TREE_CODE (op);
5699 tree lhs = TREE_OPERAND (op, 0);
5700 tree rhs = TREE_OPERAND (op, 1);
5701 tree orig_lhs = lhs, orig_rhs = rhs;
5702 enum tree_code rhs_code = TREE_CODE (rhs);
5703 enum tree_code lhs_code = TREE_CODE (lhs);
5704 enum tree_code inv_code;
5705
5706 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5707 return NULL_TREE;
5708
5709 if (TREE_CODE_CLASS (code) != tcc_comparison)
5710 return NULL_TREE;
5711
5712 if (rhs_code == truthop_code)
5713 {
5714 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5715 if (newrhs != NULL_TREE)
5716 {
5717 rhs = newrhs;
5718 rhs_code = TREE_CODE (rhs);
5719 }
5720 }
5721 if (lhs_code == truthop_code && !rhs_only)
5722 {
5723 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5724 if (newlhs != NULL_TREE)
5725 {
5726 lhs = newlhs;
5727 lhs_code = TREE_CODE (lhs);
5728 }
5729 }
5730
5731 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5732 if (inv_code == rhs_code
5733 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5734 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5735 return lhs;
5736 if (!rhs_only && inv_code == lhs_code
5737 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5738 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5739 return rhs;
5740 if (rhs != orig_rhs || lhs != orig_lhs)
5741 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5742 lhs, rhs);
5743 return NULL_TREE;
5744 }
5745
5746 /* Find ways of folding logical expressions of LHS and RHS:
5747 Try to merge two comparisons to the same innermost item.
5748 Look for range tests like "ch >= '0' && ch <= '9'".
5749 Look for combinations of simple terms on machines with expensive branches
5750 and evaluate the RHS unconditionally.
5751
5752 For example, if we have p->a == 2 && p->b == 4 and we can make an
5753 object large enough to span both A and B, we can do this with a comparison
5754 against the object ANDed with the a mask.
5755
5756 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5757 operations to do this with one comparison.
5758
5759 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5760 function and the one above.
5761
5762 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5763 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5764
5765 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5766 two operands.
5767
5768 We return the simplified tree or 0 if no optimization is possible. */
5769
5770 static tree
5771 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5772 tree lhs, tree rhs)
5773 {
5774 /* If this is the "or" of two comparisons, we can do something if
5775 the comparisons are NE_EXPR. If this is the "and", we can do something
5776 if the comparisons are EQ_EXPR. I.e.,
5777 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5778
5779 WANTED_CODE is this operation code. For single bit fields, we can
5780 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5781 comparison for one-bit fields. */
5782
5783 enum tree_code wanted_code;
5784 enum tree_code lcode, rcode;
5785 tree ll_arg, lr_arg, rl_arg, rr_arg;
5786 tree ll_inner, lr_inner, rl_inner, rr_inner;
5787 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5788 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5789 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5790 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5791 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5792 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5793 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5794 scalar_int_mode lnmode, rnmode;
5795 tree ll_mask, lr_mask, rl_mask, rr_mask;
5796 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5797 tree l_const, r_const;
5798 tree lntype, rntype, result;
5799 HOST_WIDE_INT first_bit, end_bit;
5800 int volatilep;
5801
5802 /* Start by getting the comparison codes. Fail if anything is volatile.
5803 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5804 it were surrounded with a NE_EXPR. */
5805
5806 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5807 return 0;
5808
5809 lcode = TREE_CODE (lhs);
5810 rcode = TREE_CODE (rhs);
5811
5812 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5813 {
5814 lhs = build2 (NE_EXPR, truth_type, lhs,
5815 build_int_cst (TREE_TYPE (lhs), 0));
5816 lcode = NE_EXPR;
5817 }
5818
5819 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5820 {
5821 rhs = build2 (NE_EXPR, truth_type, rhs,
5822 build_int_cst (TREE_TYPE (rhs), 0));
5823 rcode = NE_EXPR;
5824 }
5825
5826 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5827 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5828 return 0;
5829
5830 ll_arg = TREE_OPERAND (lhs, 0);
5831 lr_arg = TREE_OPERAND (lhs, 1);
5832 rl_arg = TREE_OPERAND (rhs, 0);
5833 rr_arg = TREE_OPERAND (rhs, 1);
5834
5835 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5836 if (simple_operand_p (ll_arg)
5837 && simple_operand_p (lr_arg))
5838 {
5839 if (operand_equal_p (ll_arg, rl_arg, 0)
5840 && operand_equal_p (lr_arg, rr_arg, 0))
5841 {
5842 result = combine_comparisons (loc, code, lcode, rcode,
5843 truth_type, ll_arg, lr_arg);
5844 if (result)
5845 return result;
5846 }
5847 else if (operand_equal_p (ll_arg, rr_arg, 0)
5848 && operand_equal_p (lr_arg, rl_arg, 0))
5849 {
5850 result = combine_comparisons (loc, code, lcode,
5851 swap_tree_comparison (rcode),
5852 truth_type, ll_arg, lr_arg);
5853 if (result)
5854 return result;
5855 }
5856 }
5857
5858 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5859 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5860
5861 /* If the RHS can be evaluated unconditionally and its operands are
5862 simple, it wins to evaluate the RHS unconditionally on machines
5863 with expensive branches. In this case, this isn't a comparison
5864 that can be merged. */
5865
5866 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5867 false) >= 2
5868 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5869 && simple_operand_p (rl_arg)
5870 && simple_operand_p (rr_arg))
5871 {
5872 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5873 if (code == TRUTH_OR_EXPR
5874 && lcode == NE_EXPR && integer_zerop (lr_arg)
5875 && rcode == NE_EXPR && integer_zerop (rr_arg)
5876 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5877 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5878 return build2_loc (loc, NE_EXPR, truth_type,
5879 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5880 ll_arg, rl_arg),
5881 build_int_cst (TREE_TYPE (ll_arg), 0));
5882
5883 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5884 if (code == TRUTH_AND_EXPR
5885 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5886 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5887 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5888 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5889 return build2_loc (loc, EQ_EXPR, truth_type,
5890 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5891 ll_arg, rl_arg),
5892 build_int_cst (TREE_TYPE (ll_arg), 0));
5893 }
5894
5895 /* See if the comparisons can be merged. Then get all the parameters for
5896 each side. */
5897
5898 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5899 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5900 return 0;
5901
5902 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5903 volatilep = 0;
5904 ll_inner = decode_field_reference (loc, &ll_arg,
5905 &ll_bitsize, &ll_bitpos, &ll_mode,
5906 &ll_unsignedp, &ll_reversep, &volatilep,
5907 &ll_mask, &ll_and_mask);
5908 lr_inner = decode_field_reference (loc, &lr_arg,
5909 &lr_bitsize, &lr_bitpos, &lr_mode,
5910 &lr_unsignedp, &lr_reversep, &volatilep,
5911 &lr_mask, &lr_and_mask);
5912 rl_inner = decode_field_reference (loc, &rl_arg,
5913 &rl_bitsize, &rl_bitpos, &rl_mode,
5914 &rl_unsignedp, &rl_reversep, &volatilep,
5915 &rl_mask, &rl_and_mask);
5916 rr_inner = decode_field_reference (loc, &rr_arg,
5917 &rr_bitsize, &rr_bitpos, &rr_mode,
5918 &rr_unsignedp, &rr_reversep, &volatilep,
5919 &rr_mask, &rr_and_mask);
5920
5921 /* It must be true that the inner operation on the lhs of each
5922 comparison must be the same if we are to be able to do anything.
5923 Then see if we have constants. If not, the same must be true for
5924 the rhs's. */
5925 if (volatilep
5926 || ll_reversep != rl_reversep
5927 || ll_inner == 0 || rl_inner == 0
5928 || ! operand_equal_p (ll_inner, rl_inner, 0))
5929 return 0;
5930
5931 if (TREE_CODE (lr_arg) == INTEGER_CST
5932 && TREE_CODE (rr_arg) == INTEGER_CST)
5933 {
5934 l_const = lr_arg, r_const = rr_arg;
5935 lr_reversep = ll_reversep;
5936 }
5937 else if (lr_reversep != rr_reversep
5938 || lr_inner == 0 || rr_inner == 0
5939 || ! operand_equal_p (lr_inner, rr_inner, 0))
5940 return 0;
5941 else
5942 l_const = r_const = 0;
5943
5944 /* If either comparison code is not correct for our logical operation,
5945 fail. However, we can convert a one-bit comparison against zero into
5946 the opposite comparison against that bit being set in the field. */
5947
5948 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5949 if (lcode != wanted_code)
5950 {
5951 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5952 {
5953 /* Make the left operand unsigned, since we are only interested
5954 in the value of one bit. Otherwise we are doing the wrong
5955 thing below. */
5956 ll_unsignedp = 1;
5957 l_const = ll_mask;
5958 }
5959 else
5960 return 0;
5961 }
5962
5963 /* This is analogous to the code for l_const above. */
5964 if (rcode != wanted_code)
5965 {
5966 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5967 {
5968 rl_unsignedp = 1;
5969 r_const = rl_mask;
5970 }
5971 else
5972 return 0;
5973 }
5974
5975 /* See if we can find a mode that contains both fields being compared on
5976 the left. If we can't, fail. Otherwise, update all constants and masks
5977 to be relative to a field of that size. */
5978 first_bit = MIN (ll_bitpos, rl_bitpos);
5979 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5980 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5981 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5982 volatilep, &lnmode))
5983 return 0;
5984
5985 lnbitsize = GET_MODE_BITSIZE (lnmode);
5986 lnbitpos = first_bit & ~ (lnbitsize - 1);
5987 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5988 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5989
5990 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5991 {
5992 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5993 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5994 }
5995
5996 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5997 size_int (xll_bitpos));
5998 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5999 size_int (xrl_bitpos));
6000
6001 if (l_const)
6002 {
6003 l_const = fold_convert_loc (loc, lntype, l_const);
6004 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
6005 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
6006 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
6007 fold_build1_loc (loc, BIT_NOT_EXPR,
6008 lntype, ll_mask))))
6009 {
6010 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6011
6012 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6013 }
6014 }
6015 if (r_const)
6016 {
6017 r_const = fold_convert_loc (loc, lntype, r_const);
6018 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6019 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6020 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6021 fold_build1_loc (loc, BIT_NOT_EXPR,
6022 lntype, rl_mask))))
6023 {
6024 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6025
6026 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6027 }
6028 }
6029
6030 /* If the right sides are not constant, do the same for it. Also,
6031 disallow this optimization if a size, signedness or storage order
6032 mismatch occurs between the left and right sides. */
6033 if (l_const == 0)
6034 {
6035 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6036 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6037 || ll_reversep != lr_reversep
6038 /* Make sure the two fields on the right
6039 correspond to the left without being swapped. */
6040 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6041 return 0;
6042
6043 first_bit = MIN (lr_bitpos, rr_bitpos);
6044 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6045 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6046 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6047 volatilep, &rnmode))
6048 return 0;
6049
6050 rnbitsize = GET_MODE_BITSIZE (rnmode);
6051 rnbitpos = first_bit & ~ (rnbitsize - 1);
6052 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6053 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6054
6055 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6056 {
6057 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6058 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6059 }
6060
6061 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6062 rntype, lr_mask),
6063 size_int (xlr_bitpos));
6064 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6065 rntype, rr_mask),
6066 size_int (xrr_bitpos));
6067
6068 /* Make a mask that corresponds to both fields being compared.
6069 Do this for both items being compared. If the operands are the
6070 same size and the bits being compared are in the same position
6071 then we can do this by masking both and comparing the masked
6072 results. */
6073 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6074 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6075 if (lnbitsize == rnbitsize
6076 && xll_bitpos == xlr_bitpos
6077 && lnbitpos >= 0
6078 && rnbitpos >= 0)
6079 {
6080 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6081 lntype, lnbitsize, lnbitpos,
6082 ll_unsignedp || rl_unsignedp, ll_reversep);
6083 if (! all_ones_mask_p (ll_mask, lnbitsize))
6084 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6085
6086 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6087 rntype, rnbitsize, rnbitpos,
6088 lr_unsignedp || rr_unsignedp, lr_reversep);
6089 if (! all_ones_mask_p (lr_mask, rnbitsize))
6090 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6091
6092 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6093 }
6094
6095 /* There is still another way we can do something: If both pairs of
6096 fields being compared are adjacent, we may be able to make a wider
6097 field containing them both.
6098
6099 Note that we still must mask the lhs/rhs expressions. Furthermore,
6100 the mask must be shifted to account for the shift done by
6101 make_bit_field_ref. */
6102 if (((ll_bitsize + ll_bitpos == rl_bitpos
6103 && lr_bitsize + lr_bitpos == rr_bitpos)
6104 || (ll_bitpos == rl_bitpos + rl_bitsize
6105 && lr_bitpos == rr_bitpos + rr_bitsize))
6106 && ll_bitpos >= 0
6107 && rl_bitpos >= 0
6108 && lr_bitpos >= 0
6109 && rr_bitpos >= 0)
6110 {
6111 tree type;
6112
6113 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6114 ll_bitsize + rl_bitsize,
6115 MIN (ll_bitpos, rl_bitpos),
6116 ll_unsignedp, ll_reversep);
6117 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6118 lr_bitsize + rr_bitsize,
6119 MIN (lr_bitpos, rr_bitpos),
6120 lr_unsignedp, lr_reversep);
6121
6122 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6123 size_int (MIN (xll_bitpos, xrl_bitpos)));
6124 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6125 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6126
6127 /* Convert to the smaller type before masking out unwanted bits. */
6128 type = lntype;
6129 if (lntype != rntype)
6130 {
6131 if (lnbitsize > rnbitsize)
6132 {
6133 lhs = fold_convert_loc (loc, rntype, lhs);
6134 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6135 type = rntype;
6136 }
6137 else if (lnbitsize < rnbitsize)
6138 {
6139 rhs = fold_convert_loc (loc, lntype, rhs);
6140 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6141 type = lntype;
6142 }
6143 }
6144
6145 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6146 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6147
6148 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6149 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6150
6151 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6152 }
6153
6154 return 0;
6155 }
6156
6157 /* Handle the case of comparisons with constants. If there is something in
6158 common between the masks, those bits of the constants must be the same.
6159 If not, the condition is always false. Test for this to avoid generating
6160 incorrect code below. */
6161 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6162 if (! integer_zerop (result)
6163 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6164 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6165 {
6166 if (wanted_code == NE_EXPR)
6167 {
6168 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6169 return constant_boolean_node (true, truth_type);
6170 }
6171 else
6172 {
6173 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6174 return constant_boolean_node (false, truth_type);
6175 }
6176 }
6177
6178 if (lnbitpos < 0)
6179 return 0;
6180
6181 /* Construct the expression we will return. First get the component
6182 reference we will make. Unless the mask is all ones the width of
6183 that field, perform the mask operation. Then compare with the
6184 merged constant. */
6185 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6186 lntype, lnbitsize, lnbitpos,
6187 ll_unsignedp || rl_unsignedp, ll_reversep);
6188
6189 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6190 if (! all_ones_mask_p (ll_mask, lnbitsize))
6191 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6192
6193 return build2_loc (loc, wanted_code, truth_type, result,
6194 const_binop (BIT_IOR_EXPR, l_const, r_const));
6195 }
6196 \f
6197 /* T is an integer expression that is being multiplied, divided, or taken a
6198 modulus (CODE says which and what kind of divide or modulus) by a
6199 constant C. See if we can eliminate that operation by folding it with
6200 other operations already in T. WIDE_TYPE, if non-null, is a type that
6201 should be used for the computation if wider than our type.
6202
6203 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6204 (X * 2) + (Y * 4). We must, however, be assured that either the original
6205 expression would not overflow or that overflow is undefined for the type
6206 in the language in question.
6207
6208 If we return a non-null expression, it is an equivalent form of the
6209 original computation, but need not be in the original type.
6210
6211 We set *STRICT_OVERFLOW_P to true if the return values depends on
6212 signed overflow being undefined. Otherwise we do not change
6213 *STRICT_OVERFLOW_P. */
6214
6215 static tree
6216 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6217 bool *strict_overflow_p)
6218 {
6219 /* To avoid exponential search depth, refuse to allow recursion past
6220 three levels. Beyond that (1) it's highly unlikely that we'll find
6221 something interesting and (2) we've probably processed it before
6222 when we built the inner expression. */
6223
6224 static int depth;
6225 tree ret;
6226
6227 if (depth > 3)
6228 return NULL;
6229
6230 depth++;
6231 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6232 depth--;
6233
6234 return ret;
6235 }
6236
6237 static tree
6238 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6239 bool *strict_overflow_p)
6240 {
6241 tree type = TREE_TYPE (t);
6242 enum tree_code tcode = TREE_CODE (t);
6243 tree ctype = (wide_type != 0
6244 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6245 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6246 ? wide_type : type);
6247 tree t1, t2;
6248 int same_p = tcode == code;
6249 tree op0 = NULL_TREE, op1 = NULL_TREE;
6250 bool sub_strict_overflow_p;
6251
6252 /* Don't deal with constants of zero here; they confuse the code below. */
6253 if (integer_zerop (c))
6254 return NULL_TREE;
6255
6256 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6257 op0 = TREE_OPERAND (t, 0);
6258
6259 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6260 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6261
6262 /* Note that we need not handle conditional operations here since fold
6263 already handles those cases. So just do arithmetic here. */
6264 switch (tcode)
6265 {
6266 case INTEGER_CST:
6267 /* For a constant, we can always simplify if we are a multiply
6268 or (for divide and modulus) if it is a multiple of our constant. */
6269 if (code == MULT_EXPR
6270 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6271 TYPE_SIGN (type)))
6272 {
6273 tree tem = const_binop (code, fold_convert (ctype, t),
6274 fold_convert (ctype, c));
6275 /* If the multiplication overflowed, we lost information on it.
6276 See PR68142 and PR69845. */
6277 if (TREE_OVERFLOW (tem))
6278 return NULL_TREE;
6279 return tem;
6280 }
6281 break;
6282
6283 CASE_CONVERT: case NON_LVALUE_EXPR:
6284 /* If op0 is an expression ... */
6285 if ((COMPARISON_CLASS_P (op0)
6286 || UNARY_CLASS_P (op0)
6287 || BINARY_CLASS_P (op0)
6288 || VL_EXP_CLASS_P (op0)
6289 || EXPRESSION_CLASS_P (op0))
6290 /* ... and has wrapping overflow, and its type is smaller
6291 than ctype, then we cannot pass through as widening. */
6292 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6293 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6294 && (TYPE_PRECISION (ctype)
6295 > TYPE_PRECISION (TREE_TYPE (op0))))
6296 /* ... or this is a truncation (t is narrower than op0),
6297 then we cannot pass through this narrowing. */
6298 || (TYPE_PRECISION (type)
6299 < TYPE_PRECISION (TREE_TYPE (op0)))
6300 /* ... or signedness changes for division or modulus,
6301 then we cannot pass through this conversion. */
6302 || (code != MULT_EXPR
6303 && (TYPE_UNSIGNED (ctype)
6304 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6305 /* ... or has undefined overflow while the converted to
6306 type has not, we cannot do the operation in the inner type
6307 as that would introduce undefined overflow. */
6308 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6309 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6310 && !TYPE_OVERFLOW_UNDEFINED (type))))
6311 break;
6312
6313 /* Pass the constant down and see if we can make a simplification. If
6314 we can, replace this expression with the inner simplification for
6315 possible later conversion to our or some other type. */
6316 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6317 && TREE_CODE (t2) == INTEGER_CST
6318 && !TREE_OVERFLOW (t2)
6319 && (t1 = extract_muldiv (op0, t2, code,
6320 code == MULT_EXPR ? ctype : NULL_TREE,
6321 strict_overflow_p)) != 0)
6322 return t1;
6323 break;
6324
6325 case ABS_EXPR:
6326 /* If widening the type changes it from signed to unsigned, then we
6327 must avoid building ABS_EXPR itself as unsigned. */
6328 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6329 {
6330 tree cstype = (*signed_type_for) (ctype);
6331 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6332 != 0)
6333 {
6334 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6335 return fold_convert (ctype, t1);
6336 }
6337 break;
6338 }
6339 /* If the constant is negative, we cannot simplify this. */
6340 if (tree_int_cst_sgn (c) == -1)
6341 break;
6342 /* FALLTHROUGH */
6343 case NEGATE_EXPR:
6344 /* For division and modulus, type can't be unsigned, as e.g.
6345 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6346 For signed types, even with wrapping overflow, this is fine. */
6347 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6348 break;
6349 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6350 != 0)
6351 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6352 break;
6353
6354 case MIN_EXPR: case MAX_EXPR:
6355 /* If widening the type changes the signedness, then we can't perform
6356 this optimization as that changes the result. */
6357 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6358 break;
6359
6360 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6361 sub_strict_overflow_p = false;
6362 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6363 &sub_strict_overflow_p)) != 0
6364 && (t2 = extract_muldiv (op1, c, code, wide_type,
6365 &sub_strict_overflow_p)) != 0)
6366 {
6367 if (tree_int_cst_sgn (c) < 0)
6368 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6369 if (sub_strict_overflow_p)
6370 *strict_overflow_p = true;
6371 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6372 fold_convert (ctype, t2));
6373 }
6374 break;
6375
6376 case LSHIFT_EXPR: case RSHIFT_EXPR:
6377 /* If the second operand is constant, this is a multiplication
6378 or floor division, by a power of two, so we can treat it that
6379 way unless the multiplier or divisor overflows. Signed
6380 left-shift overflow is implementation-defined rather than
6381 undefined in C90, so do not convert signed left shift into
6382 multiplication. */
6383 if (TREE_CODE (op1) == INTEGER_CST
6384 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6385 /* const_binop may not detect overflow correctly,
6386 so check for it explicitly here. */
6387 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6388 wi::to_wide (op1))
6389 && (t1 = fold_convert (ctype,
6390 const_binop (LSHIFT_EXPR, size_one_node,
6391 op1))) != 0
6392 && !TREE_OVERFLOW (t1))
6393 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6394 ? MULT_EXPR : FLOOR_DIV_EXPR,
6395 ctype,
6396 fold_convert (ctype, op0),
6397 t1),
6398 c, code, wide_type, strict_overflow_p);
6399 break;
6400
6401 case PLUS_EXPR: case MINUS_EXPR:
6402 /* See if we can eliminate the operation on both sides. If we can, we
6403 can return a new PLUS or MINUS. If we can't, the only remaining
6404 cases where we can do anything are if the second operand is a
6405 constant. */
6406 sub_strict_overflow_p = false;
6407 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6408 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6409 if (t1 != 0 && t2 != 0
6410 && TYPE_OVERFLOW_WRAPS (ctype)
6411 && (code == MULT_EXPR
6412 /* If not multiplication, we can only do this if both operands
6413 are divisible by c. */
6414 || (multiple_of_p (ctype, op0, c)
6415 && multiple_of_p (ctype, op1, c))))
6416 {
6417 if (sub_strict_overflow_p)
6418 *strict_overflow_p = true;
6419 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6420 fold_convert (ctype, t2));
6421 }
6422
6423 /* If this was a subtraction, negate OP1 and set it to be an addition.
6424 This simplifies the logic below. */
6425 if (tcode == MINUS_EXPR)
6426 {
6427 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6428 /* If OP1 was not easily negatable, the constant may be OP0. */
6429 if (TREE_CODE (op0) == INTEGER_CST)
6430 {
6431 std::swap (op0, op1);
6432 std::swap (t1, t2);
6433 }
6434 }
6435
6436 if (TREE_CODE (op1) != INTEGER_CST)
6437 break;
6438
6439 /* If either OP1 or C are negative, this optimization is not safe for
6440 some of the division and remainder types while for others we need
6441 to change the code. */
6442 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6443 {
6444 if (code == CEIL_DIV_EXPR)
6445 code = FLOOR_DIV_EXPR;
6446 else if (code == FLOOR_DIV_EXPR)
6447 code = CEIL_DIV_EXPR;
6448 else if (code != MULT_EXPR
6449 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6450 break;
6451 }
6452
6453 /* If it's a multiply or a division/modulus operation of a multiple
6454 of our constant, do the operation and verify it doesn't overflow. */
6455 if (code == MULT_EXPR
6456 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6457 TYPE_SIGN (type)))
6458 {
6459 op1 = const_binop (code, fold_convert (ctype, op1),
6460 fold_convert (ctype, c));
6461 /* We allow the constant to overflow with wrapping semantics. */
6462 if (op1 == 0
6463 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6464 break;
6465 }
6466 else
6467 break;
6468
6469 /* If we have an unsigned type, we cannot widen the operation since it
6470 will change the result if the original computation overflowed. */
6471 if (TYPE_UNSIGNED (ctype) && ctype != type)
6472 break;
6473
6474 /* The last case is if we are a multiply. In that case, we can
6475 apply the distributive law to commute the multiply and addition
6476 if the multiplication of the constants doesn't overflow
6477 and overflow is defined. With undefined overflow
6478 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
6479 But fold_plusminus_mult_expr would factor back any power-of-two
6480 value so do not distribute in the first place in this case. */
6481 if (code == MULT_EXPR
6482 && TYPE_OVERFLOW_WRAPS (ctype)
6483 && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c)))))
6484 return fold_build2 (tcode, ctype,
6485 fold_build2 (code, ctype,
6486 fold_convert (ctype, op0),
6487 fold_convert (ctype, c)),
6488 op1);
6489
6490 break;
6491
6492 case MULT_EXPR:
6493 /* We have a special case here if we are doing something like
6494 (C * 8) % 4 since we know that's zero. */
6495 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6496 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6497 /* If the multiplication can overflow we cannot optimize this. */
6498 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6499 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6500 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6501 TYPE_SIGN (type)))
6502 {
6503 *strict_overflow_p = true;
6504 return omit_one_operand (type, integer_zero_node, op0);
6505 }
6506
6507 /* ... fall through ... */
6508
6509 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6510 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6511 /* If we can extract our operation from the LHS, do so and return a
6512 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6513 do something only if the second operand is a constant. */
6514 if (same_p
6515 && TYPE_OVERFLOW_WRAPS (ctype)
6516 && (t1 = extract_muldiv (op0, c, code, wide_type,
6517 strict_overflow_p)) != 0)
6518 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6519 fold_convert (ctype, op1));
6520 else if (tcode == MULT_EXPR && code == MULT_EXPR
6521 && TYPE_OVERFLOW_WRAPS (ctype)
6522 && (t1 = extract_muldiv (op1, c, code, wide_type,
6523 strict_overflow_p)) != 0)
6524 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6525 fold_convert (ctype, t1));
6526 else if (TREE_CODE (op1) != INTEGER_CST)
6527 return 0;
6528
6529 /* If these are the same operation types, we can associate them
6530 assuming no overflow. */
6531 if (tcode == code)
6532 {
6533 bool overflow_p = false;
6534 wi::overflow_type overflow_mul;
6535 signop sign = TYPE_SIGN (ctype);
6536 unsigned prec = TYPE_PRECISION (ctype);
6537 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6538 wi::to_wide (c, prec),
6539 sign, &overflow_mul);
6540 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6541 if (overflow_mul
6542 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6543 overflow_p = true;
6544 if (!overflow_p)
6545 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6546 wide_int_to_tree (ctype, mul));
6547 }
6548
6549 /* If these operations "cancel" each other, we have the main
6550 optimizations of this pass, which occur when either constant is a
6551 multiple of the other, in which case we replace this with either an
6552 operation or CODE or TCODE.
6553
6554 If we have an unsigned type, we cannot do this since it will change
6555 the result if the original computation overflowed. */
6556 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6557 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6558 || (tcode == MULT_EXPR
6559 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6560 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6561 && code != MULT_EXPR)))
6562 {
6563 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6564 TYPE_SIGN (type)))
6565 {
6566 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6567 *strict_overflow_p = true;
6568 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6569 fold_convert (ctype,
6570 const_binop (TRUNC_DIV_EXPR,
6571 op1, c)));
6572 }
6573 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6574 TYPE_SIGN (type)))
6575 {
6576 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6577 *strict_overflow_p = true;
6578 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6579 fold_convert (ctype,
6580 const_binop (TRUNC_DIV_EXPR,
6581 c, op1)));
6582 }
6583 }
6584 break;
6585
6586 default:
6587 break;
6588 }
6589
6590 return 0;
6591 }
6592 \f
6593 /* Return a node which has the indicated constant VALUE (either 0 or
6594 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6595 and is of the indicated TYPE. */
6596
6597 tree
6598 constant_boolean_node (bool value, tree type)
6599 {
6600 if (type == integer_type_node)
6601 return value ? integer_one_node : integer_zero_node;
6602 else if (type == boolean_type_node)
6603 return value ? boolean_true_node : boolean_false_node;
6604 else if (TREE_CODE (type) == VECTOR_TYPE)
6605 return build_vector_from_val (type,
6606 build_int_cst (TREE_TYPE (type),
6607 value ? -1 : 0));
6608 else
6609 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6610 }
6611
6612
6613 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6614 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6615 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6616 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6617 COND is the first argument to CODE; otherwise (as in the example
6618 given here), it is the second argument. TYPE is the type of the
6619 original expression. Return NULL_TREE if no simplification is
6620 possible. */
6621
6622 static tree
6623 fold_binary_op_with_conditional_arg (location_t loc,
6624 enum tree_code code,
6625 tree type, tree op0, tree op1,
6626 tree cond, tree arg, int cond_first_p)
6627 {
6628 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6629 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6630 tree test, true_value, false_value;
6631 tree lhs = NULL_TREE;
6632 tree rhs = NULL_TREE;
6633 enum tree_code cond_code = COND_EXPR;
6634
6635 /* Do not move possibly trapping operations into the conditional as this
6636 pessimizes code and causes gimplification issues when applied late. */
6637 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
6638 ANY_INTEGRAL_TYPE_P (type)
6639 && TYPE_OVERFLOW_TRAPS (type), op1))
6640 return NULL_TREE;
6641
6642 if (TREE_CODE (cond) == COND_EXPR
6643 || TREE_CODE (cond) == VEC_COND_EXPR)
6644 {
6645 test = TREE_OPERAND (cond, 0);
6646 true_value = TREE_OPERAND (cond, 1);
6647 false_value = TREE_OPERAND (cond, 2);
6648 /* If this operand throws an expression, then it does not make
6649 sense to try to perform a logical or arithmetic operation
6650 involving it. */
6651 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6652 lhs = true_value;
6653 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6654 rhs = false_value;
6655 }
6656 else if (!(TREE_CODE (type) != VECTOR_TYPE
6657 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6658 {
6659 tree testtype = TREE_TYPE (cond);
6660 test = cond;
6661 true_value = constant_boolean_node (true, testtype);
6662 false_value = constant_boolean_node (false, testtype);
6663 }
6664 else
6665 /* Detect the case of mixing vector and scalar types - bail out. */
6666 return NULL_TREE;
6667
6668 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6669 cond_code = VEC_COND_EXPR;
6670
6671 /* This transformation is only worthwhile if we don't have to wrap ARG
6672 in a SAVE_EXPR and the operation can be simplified without recursing
6673 on at least one of the branches once its pushed inside the COND_EXPR. */
6674 if (!TREE_CONSTANT (arg)
6675 && (TREE_SIDE_EFFECTS (arg)
6676 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6677 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6678 return NULL_TREE;
6679
6680 arg = fold_convert_loc (loc, arg_type, arg);
6681 if (lhs == 0)
6682 {
6683 true_value = fold_convert_loc (loc, cond_type, true_value);
6684 if (cond_first_p)
6685 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6686 else
6687 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6688 }
6689 if (rhs == 0)
6690 {
6691 false_value = fold_convert_loc (loc, cond_type, false_value);
6692 if (cond_first_p)
6693 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6694 else
6695 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6696 }
6697
6698 /* Check that we have simplified at least one of the branches. */
6699 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6700 return NULL_TREE;
6701
6702 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6703 }
6704
6705 \f
6706 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6707
6708 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6709 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6710 ADDEND is the same as X.
6711
6712 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6713 and finite. The problematic cases are when X is zero, and its mode
6714 has signed zeros. In the case of rounding towards -infinity,
6715 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6716 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6717
6718 bool
6719 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6720 {
6721 if (!real_zerop (addend))
6722 return false;
6723
6724 /* Don't allow the fold with -fsignaling-nans. */
6725 if (HONOR_SNANS (type))
6726 return false;
6727
6728 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6729 if (!HONOR_SIGNED_ZEROS (type))
6730 return true;
6731
6732 /* There is no case that is safe for all rounding modes. */
6733 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
6734 return false;
6735
6736 /* In a vector or complex, we would need to check the sign of all zeros. */
6737 if (TREE_CODE (addend) == VECTOR_CST)
6738 addend = uniform_vector_p (addend);
6739 if (!addend || TREE_CODE (addend) != REAL_CST)
6740 return false;
6741
6742 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6743 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6744 negate = !negate;
6745
6746 /* The mode has signed zeros, and we have to honor their sign.
6747 In this situation, there is only one case we can return true for.
6748 X - 0 is the same as X with default rounding. */
6749 return negate;
6750 }
6751
6752 /* Subroutine of match.pd that optimizes comparisons of a division by
6753 a nonzero integer constant against an integer constant, i.e.
6754 X/C1 op C2.
6755
6756 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6757 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6758
6759 enum tree_code
6760 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6761 tree *hi, bool *neg_overflow)
6762 {
6763 tree prod, tmp, type = TREE_TYPE (c1);
6764 signop sign = TYPE_SIGN (type);
6765 wi::overflow_type overflow;
6766
6767 /* We have to do this the hard way to detect unsigned overflow.
6768 prod = int_const_binop (MULT_EXPR, c1, c2); */
6769 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
6770 prod = force_fit_type (type, val, -1, overflow);
6771 *neg_overflow = false;
6772
6773 if (sign == UNSIGNED)
6774 {
6775 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6776 *lo = prod;
6777
6778 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6779 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
6780 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6781 }
6782 else if (tree_int_cst_sgn (c1) >= 0)
6783 {
6784 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6785 switch (tree_int_cst_sgn (c2))
6786 {
6787 case -1:
6788 *neg_overflow = true;
6789 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6790 *hi = prod;
6791 break;
6792
6793 case 0:
6794 *lo = fold_negate_const (tmp, type);
6795 *hi = tmp;
6796 break;
6797
6798 case 1:
6799 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6800 *lo = prod;
6801 break;
6802
6803 default:
6804 gcc_unreachable ();
6805 }
6806 }
6807 else
6808 {
6809 /* A negative divisor reverses the relational operators. */
6810 code = swap_tree_comparison (code);
6811
6812 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6813 switch (tree_int_cst_sgn (c2))
6814 {
6815 case -1:
6816 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6817 *lo = prod;
6818 break;
6819
6820 case 0:
6821 *hi = fold_negate_const (tmp, type);
6822 *lo = tmp;
6823 break;
6824
6825 case 1:
6826 *neg_overflow = true;
6827 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6828 *hi = prod;
6829 break;
6830
6831 default:
6832 gcc_unreachable ();
6833 }
6834 }
6835
6836 if (code != EQ_EXPR && code != NE_EXPR)
6837 return code;
6838
6839 if (TREE_OVERFLOW (*lo)
6840 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6841 *lo = NULL_TREE;
6842 if (TREE_OVERFLOW (*hi)
6843 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6844 *hi = NULL_TREE;
6845
6846 return code;
6847 }
6848
6849
6850 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6851 equality/inequality test, then return a simplified form of the test
6852 using a sign testing. Otherwise return NULL. TYPE is the desired
6853 result type. */
6854
6855 static tree
6856 fold_single_bit_test_into_sign_test (location_t loc,
6857 enum tree_code code, tree arg0, tree arg1,
6858 tree result_type)
6859 {
6860 /* If this is testing a single bit, we can optimize the test. */
6861 if ((code == NE_EXPR || code == EQ_EXPR)
6862 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6863 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6864 {
6865 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6866 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6867 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6868
6869 if (arg00 != NULL_TREE
6870 /* This is only a win if casting to a signed type is cheap,
6871 i.e. when arg00's type is not a partial mode. */
6872 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6873 {
6874 tree stype = signed_type_for (TREE_TYPE (arg00));
6875 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6876 result_type,
6877 fold_convert_loc (loc, stype, arg00),
6878 build_int_cst (stype, 0));
6879 }
6880 }
6881
6882 return NULL_TREE;
6883 }
6884
6885 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6886 equality/inequality test, then return a simplified form of
6887 the test using shifts and logical operations. Otherwise return
6888 NULL. TYPE is the desired result type. */
6889
6890 tree
6891 fold_single_bit_test (location_t loc, enum tree_code code,
6892 tree arg0, tree arg1, tree result_type)
6893 {
6894 /* If this is testing a single bit, we can optimize the test. */
6895 if ((code == NE_EXPR || code == EQ_EXPR)
6896 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6897 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6898 {
6899 tree inner = TREE_OPERAND (arg0, 0);
6900 tree type = TREE_TYPE (arg0);
6901 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6902 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6903 int ops_unsigned;
6904 tree signed_type, unsigned_type, intermediate_type;
6905 tree tem, one;
6906
6907 /* First, see if we can fold the single bit test into a sign-bit
6908 test. */
6909 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6910 result_type);
6911 if (tem)
6912 return tem;
6913
6914 /* Otherwise we have (A & C) != 0 where C is a single bit,
6915 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6916 Similarly for (A & C) == 0. */
6917
6918 /* If INNER is a right shift of a constant and it plus BITNUM does
6919 not overflow, adjust BITNUM and INNER. */
6920 if (TREE_CODE (inner) == RSHIFT_EXPR
6921 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6922 && bitnum < TYPE_PRECISION (type)
6923 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
6924 TYPE_PRECISION (type) - bitnum))
6925 {
6926 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6927 inner = TREE_OPERAND (inner, 0);
6928 }
6929
6930 /* If we are going to be able to omit the AND below, we must do our
6931 operations as unsigned. If we must use the AND, we have a choice.
6932 Normally unsigned is faster, but for some machines signed is. */
6933 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6934 && !flag_syntax_only) ? 0 : 1;
6935
6936 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6937 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6938 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6939 inner = fold_convert_loc (loc, intermediate_type, inner);
6940
6941 if (bitnum != 0)
6942 inner = build2 (RSHIFT_EXPR, intermediate_type,
6943 inner, size_int (bitnum));
6944
6945 one = build_int_cst (intermediate_type, 1);
6946
6947 if (code == EQ_EXPR)
6948 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6949
6950 /* Put the AND last so it can combine with more things. */
6951 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6952
6953 /* Make sure to return the proper type. */
6954 inner = fold_convert_loc (loc, result_type, inner);
6955
6956 return inner;
6957 }
6958 return NULL_TREE;
6959 }
6960
6961 /* Test whether it is preferable two swap two operands, ARG0 and
6962 ARG1, for example because ARG0 is an integer constant and ARG1
6963 isn't. */
6964
6965 bool
6966 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6967 {
6968 if (CONSTANT_CLASS_P (arg1))
6969 return 0;
6970 if (CONSTANT_CLASS_P (arg0))
6971 return 1;
6972
6973 STRIP_NOPS (arg0);
6974 STRIP_NOPS (arg1);
6975
6976 if (TREE_CONSTANT (arg1))
6977 return 0;
6978 if (TREE_CONSTANT (arg0))
6979 return 1;
6980
6981 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6982 for commutative and comparison operators. Ensuring a canonical
6983 form allows the optimizers to find additional redundancies without
6984 having to explicitly check for both orderings. */
6985 if (TREE_CODE (arg0) == SSA_NAME
6986 && TREE_CODE (arg1) == SSA_NAME
6987 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6988 return 1;
6989
6990 /* Put SSA_NAMEs last. */
6991 if (TREE_CODE (arg1) == SSA_NAME)
6992 return 0;
6993 if (TREE_CODE (arg0) == SSA_NAME)
6994 return 1;
6995
6996 /* Put variables last. */
6997 if (DECL_P (arg1))
6998 return 0;
6999 if (DECL_P (arg0))
7000 return 1;
7001
7002 return 0;
7003 }
7004
7005
7006 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7007 means A >= Y && A != MAX, but in this case we know that
7008 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7009
7010 static tree
7011 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7012 {
7013 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7014
7015 if (TREE_CODE (bound) == LT_EXPR)
7016 a = TREE_OPERAND (bound, 0);
7017 else if (TREE_CODE (bound) == GT_EXPR)
7018 a = TREE_OPERAND (bound, 1);
7019 else
7020 return NULL_TREE;
7021
7022 typea = TREE_TYPE (a);
7023 if (!INTEGRAL_TYPE_P (typea)
7024 && !POINTER_TYPE_P (typea))
7025 return NULL_TREE;
7026
7027 if (TREE_CODE (ineq) == LT_EXPR)
7028 {
7029 a1 = TREE_OPERAND (ineq, 1);
7030 y = TREE_OPERAND (ineq, 0);
7031 }
7032 else if (TREE_CODE (ineq) == GT_EXPR)
7033 {
7034 a1 = TREE_OPERAND (ineq, 0);
7035 y = TREE_OPERAND (ineq, 1);
7036 }
7037 else
7038 return NULL_TREE;
7039
7040 if (TREE_TYPE (a1) != typea)
7041 return NULL_TREE;
7042
7043 if (POINTER_TYPE_P (typea))
7044 {
7045 /* Convert the pointer types into integer before taking the difference. */
7046 tree ta = fold_convert_loc (loc, ssizetype, a);
7047 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7048 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7049 }
7050 else
7051 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7052
7053 if (!diff || !integer_onep (diff))
7054 return NULL_TREE;
7055
7056 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7057 }
7058
7059 /* Fold a sum or difference of at least one multiplication.
7060 Returns the folded tree or NULL if no simplification could be made. */
7061
7062 static tree
7063 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7064 tree arg0, tree arg1)
7065 {
7066 tree arg00, arg01, arg10, arg11;
7067 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7068
7069 /* (A * C) +- (B * C) -> (A+-B) * C.
7070 (A * C) +- A -> A * (C+-1).
7071 We are most concerned about the case where C is a constant,
7072 but other combinations show up during loop reduction. Since
7073 it is not difficult, try all four possibilities. */
7074
7075 if (TREE_CODE (arg0) == MULT_EXPR)
7076 {
7077 arg00 = TREE_OPERAND (arg0, 0);
7078 arg01 = TREE_OPERAND (arg0, 1);
7079 }
7080 else if (TREE_CODE (arg0) == INTEGER_CST)
7081 {
7082 arg00 = build_one_cst (type);
7083 arg01 = arg0;
7084 }
7085 else
7086 {
7087 /* We cannot generate constant 1 for fract. */
7088 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7089 return NULL_TREE;
7090 arg00 = arg0;
7091 arg01 = build_one_cst (type);
7092 }
7093 if (TREE_CODE (arg1) == MULT_EXPR)
7094 {
7095 arg10 = TREE_OPERAND (arg1, 0);
7096 arg11 = TREE_OPERAND (arg1, 1);
7097 }
7098 else if (TREE_CODE (arg1) == INTEGER_CST)
7099 {
7100 arg10 = build_one_cst (type);
7101 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7102 the purpose of this canonicalization. */
7103 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7104 && negate_expr_p (arg1)
7105 && code == PLUS_EXPR)
7106 {
7107 arg11 = negate_expr (arg1);
7108 code = MINUS_EXPR;
7109 }
7110 else
7111 arg11 = arg1;
7112 }
7113 else
7114 {
7115 /* We cannot generate constant 1 for fract. */
7116 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7117 return NULL_TREE;
7118 arg10 = arg1;
7119 arg11 = build_one_cst (type);
7120 }
7121 same = NULL_TREE;
7122
7123 /* Prefer factoring a common non-constant. */
7124 if (operand_equal_p (arg00, arg10, 0))
7125 same = arg00, alt0 = arg01, alt1 = arg11;
7126 else if (operand_equal_p (arg01, arg11, 0))
7127 same = arg01, alt0 = arg00, alt1 = arg10;
7128 else if (operand_equal_p (arg00, arg11, 0))
7129 same = arg00, alt0 = arg01, alt1 = arg10;
7130 else if (operand_equal_p (arg01, arg10, 0))
7131 same = arg01, alt0 = arg00, alt1 = arg11;
7132
7133 /* No identical multiplicands; see if we can find a common
7134 power-of-two factor in non-power-of-two multiplies. This
7135 can help in multi-dimensional array access. */
7136 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7137 {
7138 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7139 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7140 HOST_WIDE_INT tmp;
7141 bool swap = false;
7142 tree maybe_same;
7143
7144 /* Move min of absolute values to int11. */
7145 if (absu_hwi (int01) < absu_hwi (int11))
7146 {
7147 tmp = int01, int01 = int11, int11 = tmp;
7148 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7149 maybe_same = arg01;
7150 swap = true;
7151 }
7152 else
7153 maybe_same = arg11;
7154
7155 const unsigned HOST_WIDE_INT factor = absu_hwi (int11);
7156 if (factor > 1
7157 && pow2p_hwi (factor)
7158 && (int01 & (factor - 1)) == 0
7159 /* The remainder should not be a constant, otherwise we
7160 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7161 increased the number of multiplications necessary. */
7162 && TREE_CODE (arg10) != INTEGER_CST)
7163 {
7164 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7165 build_int_cst (TREE_TYPE (arg00),
7166 int01 / int11));
7167 alt1 = arg10;
7168 same = maybe_same;
7169 if (swap)
7170 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7171 }
7172 }
7173
7174 if (!same)
7175 return NULL_TREE;
7176
7177 if (! ANY_INTEGRAL_TYPE_P (type)
7178 || TYPE_OVERFLOW_WRAPS (type)
7179 /* We are neither factoring zero nor minus one. */
7180 || TREE_CODE (same) == INTEGER_CST)
7181 return fold_build2_loc (loc, MULT_EXPR, type,
7182 fold_build2_loc (loc, code, type,
7183 fold_convert_loc (loc, type, alt0),
7184 fold_convert_loc (loc, type, alt1)),
7185 fold_convert_loc (loc, type, same));
7186
7187 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7188 same may be minus one and thus the multiplication may overflow. Perform
7189 the sum operation in an unsigned type. */
7190 tree utype = unsigned_type_for (type);
7191 tree tem = fold_build2_loc (loc, code, utype,
7192 fold_convert_loc (loc, utype, alt0),
7193 fold_convert_loc (loc, utype, alt1));
7194 /* If the sum evaluated to a constant that is not -INF the multiplication
7195 cannot overflow. */
7196 if (TREE_CODE (tem) == INTEGER_CST
7197 && (wi::to_wide (tem)
7198 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7199 return fold_build2_loc (loc, MULT_EXPR, type,
7200 fold_convert (type, tem), same);
7201
7202 /* Do not resort to unsigned multiplication because
7203 we lose the no-overflow property of the expression. */
7204 return NULL_TREE;
7205 }
7206
7207 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7208 specified by EXPR into the buffer PTR of length LEN bytes.
7209 Return the number of bytes placed in the buffer, or zero
7210 upon failure. */
7211
7212 static int
7213 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7214 {
7215 tree type = TREE_TYPE (expr);
7216 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7217 int byte, offset, word, words;
7218 unsigned char value;
7219
7220 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7221 return 0;
7222 if (off == -1)
7223 off = 0;
7224
7225 if (ptr == NULL)
7226 /* Dry run. */
7227 return MIN (len, total_bytes - off);
7228
7229 words = total_bytes / UNITS_PER_WORD;
7230
7231 for (byte = 0; byte < total_bytes; byte++)
7232 {
7233 int bitpos = byte * BITS_PER_UNIT;
7234 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7235 number of bytes. */
7236 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7237
7238 if (total_bytes > UNITS_PER_WORD)
7239 {
7240 word = byte / UNITS_PER_WORD;
7241 if (WORDS_BIG_ENDIAN)
7242 word = (words - 1) - word;
7243 offset = word * UNITS_PER_WORD;
7244 if (BYTES_BIG_ENDIAN)
7245 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7246 else
7247 offset += byte % UNITS_PER_WORD;
7248 }
7249 else
7250 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7251 if (offset >= off && offset - off < len)
7252 ptr[offset - off] = value;
7253 }
7254 return MIN (len, total_bytes - off);
7255 }
7256
7257
7258 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7259 specified by EXPR into the buffer PTR of length LEN bytes.
7260 Return the number of bytes placed in the buffer, or zero
7261 upon failure. */
7262
7263 static int
7264 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7265 {
7266 tree type = TREE_TYPE (expr);
7267 scalar_mode mode = SCALAR_TYPE_MODE (type);
7268 int total_bytes = GET_MODE_SIZE (mode);
7269 FIXED_VALUE_TYPE value;
7270 tree i_value, i_type;
7271
7272 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7273 return 0;
7274
7275 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7276
7277 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7278 return 0;
7279
7280 value = TREE_FIXED_CST (expr);
7281 i_value = double_int_to_tree (i_type, value.data);
7282
7283 return native_encode_int (i_value, ptr, len, off);
7284 }
7285
7286
7287 /* Subroutine of native_encode_expr. Encode the REAL_CST
7288 specified by EXPR into the buffer PTR of length LEN bytes.
7289 Return the number of bytes placed in the buffer, or zero
7290 upon failure. */
7291
7292 static int
7293 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7294 {
7295 tree type = TREE_TYPE (expr);
7296 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7297 int byte, offset, word, words, bitpos;
7298 unsigned char value;
7299
7300 /* There are always 32 bits in each long, no matter the size of
7301 the hosts long. We handle floating point representations with
7302 up to 192 bits. */
7303 long tmp[6];
7304
7305 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7306 return 0;
7307 if (off == -1)
7308 off = 0;
7309
7310 if (ptr == NULL)
7311 /* Dry run. */
7312 return MIN (len, total_bytes - off);
7313
7314 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7315
7316 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7317
7318 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7319 bitpos += BITS_PER_UNIT)
7320 {
7321 byte = (bitpos / BITS_PER_UNIT) & 3;
7322 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7323
7324 if (UNITS_PER_WORD < 4)
7325 {
7326 word = byte / UNITS_PER_WORD;
7327 if (WORDS_BIG_ENDIAN)
7328 word = (words - 1) - word;
7329 offset = word * UNITS_PER_WORD;
7330 if (BYTES_BIG_ENDIAN)
7331 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7332 else
7333 offset += byte % UNITS_PER_WORD;
7334 }
7335 else
7336 {
7337 offset = byte;
7338 if (BYTES_BIG_ENDIAN)
7339 {
7340 /* Reverse bytes within each long, or within the entire float
7341 if it's smaller than a long (for HFmode). */
7342 offset = MIN (3, total_bytes - 1) - offset;
7343 gcc_assert (offset >= 0);
7344 }
7345 }
7346 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7347 if (offset >= off
7348 && offset - off < len)
7349 ptr[offset - off] = value;
7350 }
7351 return MIN (len, total_bytes - off);
7352 }
7353
7354 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7355 specified by EXPR into the buffer PTR of length LEN bytes.
7356 Return the number of bytes placed in the buffer, or zero
7357 upon failure. */
7358
7359 static int
7360 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7361 {
7362 int rsize, isize;
7363 tree part;
7364
7365 part = TREE_REALPART (expr);
7366 rsize = native_encode_expr (part, ptr, len, off);
7367 if (off == -1 && rsize == 0)
7368 return 0;
7369 part = TREE_IMAGPART (expr);
7370 if (off != -1)
7371 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7372 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7373 len - rsize, off);
7374 if (off == -1 && isize != rsize)
7375 return 0;
7376 return rsize + isize;
7377 }
7378
7379
7380 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7381 specified by EXPR into the buffer PTR of length LEN bytes.
7382 Return the number of bytes placed in the buffer, or zero
7383 upon failure. */
7384
7385 static int
7386 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7387 {
7388 unsigned HOST_WIDE_INT i, count;
7389 int size, offset;
7390 tree itype, elem;
7391
7392 offset = 0;
7393 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7394 return 0;
7395 itype = TREE_TYPE (TREE_TYPE (expr));
7396 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7397 for (i = 0; i < count; i++)
7398 {
7399 if (off >= size)
7400 {
7401 off -= size;
7402 continue;
7403 }
7404 elem = VECTOR_CST_ELT (expr, i);
7405 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7406 len - offset, off);
7407 if ((off == -1 && res != size) || res == 0)
7408 return 0;
7409 offset += res;
7410 if (offset >= len)
7411 return (off == -1 && i < count - 1) ? 0 : offset;
7412 if (off != -1)
7413 off = 0;
7414 }
7415 return offset;
7416 }
7417
7418
7419 /* Subroutine of native_encode_expr. Encode the STRING_CST
7420 specified by EXPR into the buffer PTR of length LEN bytes.
7421 Return the number of bytes placed in the buffer, or zero
7422 upon failure. */
7423
7424 static int
7425 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7426 {
7427 tree type = TREE_TYPE (expr);
7428
7429 /* Wide-char strings are encoded in target byte-order so native
7430 encoding them is trivial. */
7431 if (BITS_PER_UNIT != CHAR_BIT
7432 || TREE_CODE (type) != ARRAY_TYPE
7433 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7434 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7435 return 0;
7436
7437 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7438 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7439 return 0;
7440 if (off == -1)
7441 off = 0;
7442 if (ptr == NULL)
7443 /* Dry run. */;
7444 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7445 {
7446 int written = 0;
7447 if (off < TREE_STRING_LENGTH (expr))
7448 {
7449 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7450 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7451 }
7452 memset (ptr + written, 0,
7453 MIN (total_bytes - written, len - written));
7454 }
7455 else
7456 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7457 return MIN (total_bytes - off, len);
7458 }
7459
7460
7461 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7462 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7463 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7464 anything, just do a dry run. If OFF is not -1 then start
7465 the encoding at byte offset OFF and encode at most LEN bytes.
7466 Return the number of bytes placed in the buffer, or zero upon failure. */
7467
7468 int
7469 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7470 {
7471 /* We don't support starting at negative offset and -1 is special. */
7472 if (off < -1)
7473 return 0;
7474
7475 switch (TREE_CODE (expr))
7476 {
7477 case INTEGER_CST:
7478 return native_encode_int (expr, ptr, len, off);
7479
7480 case REAL_CST:
7481 return native_encode_real (expr, ptr, len, off);
7482
7483 case FIXED_CST:
7484 return native_encode_fixed (expr, ptr, len, off);
7485
7486 case COMPLEX_CST:
7487 return native_encode_complex (expr, ptr, len, off);
7488
7489 case VECTOR_CST:
7490 return native_encode_vector (expr, ptr, len, off);
7491
7492 case STRING_CST:
7493 return native_encode_string (expr, ptr, len, off);
7494
7495 default:
7496 return 0;
7497 }
7498 }
7499
7500
7501 /* Subroutine of native_interpret_expr. Interpret the contents of
7502 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7503 If the buffer cannot be interpreted, return NULL_TREE. */
7504
7505 static tree
7506 native_interpret_int (tree type, const unsigned char *ptr, int len)
7507 {
7508 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7509
7510 if (total_bytes > len
7511 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7512 return NULL_TREE;
7513
7514 wide_int result = wi::from_buffer (ptr, total_bytes);
7515
7516 return wide_int_to_tree (type, result);
7517 }
7518
7519
7520 /* Subroutine of native_interpret_expr. Interpret the contents of
7521 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7522 If the buffer cannot be interpreted, return NULL_TREE. */
7523
7524 static tree
7525 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7526 {
7527 scalar_mode mode = SCALAR_TYPE_MODE (type);
7528 int total_bytes = GET_MODE_SIZE (mode);
7529 double_int result;
7530 FIXED_VALUE_TYPE fixed_value;
7531
7532 if (total_bytes > len
7533 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7534 return NULL_TREE;
7535
7536 result = double_int::from_buffer (ptr, total_bytes);
7537 fixed_value = fixed_from_double_int (result, mode);
7538
7539 return build_fixed (type, fixed_value);
7540 }
7541
7542
7543 /* Subroutine of native_interpret_expr. Interpret the contents of
7544 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7545 If the buffer cannot be interpreted, return NULL_TREE. */
7546
7547 static tree
7548 native_interpret_real (tree type, const unsigned char *ptr, int len)
7549 {
7550 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7551 int total_bytes = GET_MODE_SIZE (mode);
7552 unsigned char value;
7553 /* There are always 32 bits in each long, no matter the size of
7554 the hosts long. We handle floating point representations with
7555 up to 192 bits. */
7556 REAL_VALUE_TYPE r;
7557 long tmp[6];
7558
7559 if (total_bytes > len || total_bytes > 24)
7560 return NULL_TREE;
7561 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7562
7563 memset (tmp, 0, sizeof (tmp));
7564 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7565 bitpos += BITS_PER_UNIT)
7566 {
7567 /* Both OFFSET and BYTE index within a long;
7568 bitpos indexes the whole float. */
7569 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7570 if (UNITS_PER_WORD < 4)
7571 {
7572 int word = byte / UNITS_PER_WORD;
7573 if (WORDS_BIG_ENDIAN)
7574 word = (words - 1) - word;
7575 offset = word * UNITS_PER_WORD;
7576 if (BYTES_BIG_ENDIAN)
7577 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7578 else
7579 offset += byte % UNITS_PER_WORD;
7580 }
7581 else
7582 {
7583 offset = byte;
7584 if (BYTES_BIG_ENDIAN)
7585 {
7586 /* Reverse bytes within each long, or within the entire float
7587 if it's smaller than a long (for HFmode). */
7588 offset = MIN (3, total_bytes - 1) - offset;
7589 gcc_assert (offset >= 0);
7590 }
7591 }
7592 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7593
7594 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7595 }
7596
7597 real_from_target (&r, tmp, mode);
7598 return build_real (type, r);
7599 }
7600
7601
7602 /* Subroutine of native_interpret_expr. Interpret the contents of
7603 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7604 If the buffer cannot be interpreted, return NULL_TREE. */
7605
7606 static tree
7607 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7608 {
7609 tree etype, rpart, ipart;
7610 int size;
7611
7612 etype = TREE_TYPE (type);
7613 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7614 if (size * 2 > len)
7615 return NULL_TREE;
7616 rpart = native_interpret_expr (etype, ptr, size);
7617 if (!rpart)
7618 return NULL_TREE;
7619 ipart = native_interpret_expr (etype, ptr+size, size);
7620 if (!ipart)
7621 return NULL_TREE;
7622 return build_complex (type, rpart, ipart);
7623 }
7624
7625
7626 /* Subroutine of native_interpret_expr. Interpret the contents of
7627 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7628 If the buffer cannot be interpreted, return NULL_TREE. */
7629
7630 static tree
7631 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
7632 {
7633 tree etype, elem;
7634 unsigned int i, size;
7635 unsigned HOST_WIDE_INT count;
7636
7637 etype = TREE_TYPE (type);
7638 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7639 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
7640 || size * count > len)
7641 return NULL_TREE;
7642
7643 tree_vector_builder elements (type, count, 1);
7644 for (i = 0; i < count; ++i)
7645 {
7646 elem = native_interpret_expr (etype, ptr+(i*size), size);
7647 if (!elem)
7648 return NULL_TREE;
7649 elements.quick_push (elem);
7650 }
7651 return elements.build ();
7652 }
7653
7654
7655 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7656 the buffer PTR of length LEN as a constant of type TYPE. For
7657 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7658 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7659 return NULL_TREE. */
7660
7661 tree
7662 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7663 {
7664 switch (TREE_CODE (type))
7665 {
7666 case INTEGER_TYPE:
7667 case ENUMERAL_TYPE:
7668 case BOOLEAN_TYPE:
7669 case POINTER_TYPE:
7670 case REFERENCE_TYPE:
7671 return native_interpret_int (type, ptr, len);
7672
7673 case REAL_TYPE:
7674 return native_interpret_real (type, ptr, len);
7675
7676 case FIXED_POINT_TYPE:
7677 return native_interpret_fixed (type, ptr, len);
7678
7679 case COMPLEX_TYPE:
7680 return native_interpret_complex (type, ptr, len);
7681
7682 case VECTOR_TYPE:
7683 return native_interpret_vector (type, ptr, len);
7684
7685 default:
7686 return NULL_TREE;
7687 }
7688 }
7689
7690 /* Returns true if we can interpret the contents of a native encoding
7691 as TYPE. */
7692
7693 static bool
7694 can_native_interpret_type_p (tree type)
7695 {
7696 switch (TREE_CODE (type))
7697 {
7698 case INTEGER_TYPE:
7699 case ENUMERAL_TYPE:
7700 case BOOLEAN_TYPE:
7701 case POINTER_TYPE:
7702 case REFERENCE_TYPE:
7703 case FIXED_POINT_TYPE:
7704 case REAL_TYPE:
7705 case COMPLEX_TYPE:
7706 case VECTOR_TYPE:
7707 return true;
7708 default:
7709 return false;
7710 }
7711 }
7712
7713
7714 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7715 TYPE at compile-time. If we're unable to perform the conversion
7716 return NULL_TREE. */
7717
7718 static tree
7719 fold_view_convert_expr (tree type, tree expr)
7720 {
7721 /* We support up to 512-bit values (for V8DFmode). */
7722 unsigned char buffer[64];
7723 int len;
7724
7725 /* Check that the host and target are sane. */
7726 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7727 return NULL_TREE;
7728
7729 len = native_encode_expr (expr, buffer, sizeof (buffer));
7730 if (len == 0)
7731 return NULL_TREE;
7732
7733 return native_interpret_expr (type, buffer, len);
7734 }
7735
7736 /* Build an expression for the address of T. Folds away INDIRECT_REF
7737 to avoid confusing the gimplify process. */
7738
7739 tree
7740 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7741 {
7742 /* The size of the object is not relevant when talking about its address. */
7743 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7744 t = TREE_OPERAND (t, 0);
7745
7746 if (TREE_CODE (t) == INDIRECT_REF)
7747 {
7748 t = TREE_OPERAND (t, 0);
7749
7750 if (TREE_TYPE (t) != ptrtype)
7751 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7752 }
7753 else if (TREE_CODE (t) == MEM_REF
7754 && integer_zerop (TREE_OPERAND (t, 1)))
7755 return TREE_OPERAND (t, 0);
7756 else if (TREE_CODE (t) == MEM_REF
7757 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7758 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7759 TREE_OPERAND (t, 0),
7760 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7761 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7762 {
7763 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7764
7765 if (TREE_TYPE (t) != ptrtype)
7766 t = fold_convert_loc (loc, ptrtype, t);
7767 }
7768 else
7769 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7770
7771 return t;
7772 }
7773
7774 /* Build an expression for the address of T. */
7775
7776 tree
7777 build_fold_addr_expr_loc (location_t loc, tree t)
7778 {
7779 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7780
7781 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7782 }
7783
7784 /* Fold a unary expression of code CODE and type TYPE with operand
7785 OP0. Return the folded expression if folding is successful.
7786 Otherwise, return NULL_TREE. */
7787
7788 tree
7789 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7790 {
7791 tree tem;
7792 tree arg0;
7793 enum tree_code_class kind = TREE_CODE_CLASS (code);
7794
7795 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7796 && TREE_CODE_LENGTH (code) == 1);
7797
7798 arg0 = op0;
7799 if (arg0)
7800 {
7801 if (CONVERT_EXPR_CODE_P (code)
7802 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7803 {
7804 /* Don't use STRIP_NOPS, because signedness of argument type
7805 matters. */
7806 STRIP_SIGN_NOPS (arg0);
7807 }
7808 else
7809 {
7810 /* Strip any conversions that don't change the mode. This
7811 is safe for every expression, except for a comparison
7812 expression because its signedness is derived from its
7813 operands.
7814
7815 Note that this is done as an internal manipulation within
7816 the constant folder, in order to find the simplest
7817 representation of the arguments so that their form can be
7818 studied. In any cases, the appropriate type conversions
7819 should be put back in the tree that will get out of the
7820 constant folder. */
7821 STRIP_NOPS (arg0);
7822 }
7823
7824 if (CONSTANT_CLASS_P (arg0))
7825 {
7826 tree tem = const_unop (code, type, arg0);
7827 if (tem)
7828 {
7829 if (TREE_TYPE (tem) != type)
7830 tem = fold_convert_loc (loc, type, tem);
7831 return tem;
7832 }
7833 }
7834 }
7835
7836 tem = generic_simplify (loc, code, type, op0);
7837 if (tem)
7838 return tem;
7839
7840 if (TREE_CODE_CLASS (code) == tcc_unary)
7841 {
7842 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7843 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7844 fold_build1_loc (loc, code, type,
7845 fold_convert_loc (loc, TREE_TYPE (op0),
7846 TREE_OPERAND (arg0, 1))));
7847 else if (TREE_CODE (arg0) == COND_EXPR)
7848 {
7849 tree arg01 = TREE_OPERAND (arg0, 1);
7850 tree arg02 = TREE_OPERAND (arg0, 2);
7851 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7852 arg01 = fold_build1_loc (loc, code, type,
7853 fold_convert_loc (loc,
7854 TREE_TYPE (op0), arg01));
7855 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7856 arg02 = fold_build1_loc (loc, code, type,
7857 fold_convert_loc (loc,
7858 TREE_TYPE (op0), arg02));
7859 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7860 arg01, arg02);
7861
7862 /* If this was a conversion, and all we did was to move into
7863 inside the COND_EXPR, bring it back out. But leave it if
7864 it is a conversion from integer to integer and the
7865 result precision is no wider than a word since such a
7866 conversion is cheap and may be optimized away by combine,
7867 while it couldn't if it were outside the COND_EXPR. Then return
7868 so we don't get into an infinite recursion loop taking the
7869 conversion out and then back in. */
7870
7871 if ((CONVERT_EXPR_CODE_P (code)
7872 || code == NON_LVALUE_EXPR)
7873 && TREE_CODE (tem) == COND_EXPR
7874 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7875 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7876 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7877 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7878 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7879 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7880 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7881 && (INTEGRAL_TYPE_P
7882 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7883 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7884 || flag_syntax_only))
7885 tem = build1_loc (loc, code, type,
7886 build3 (COND_EXPR,
7887 TREE_TYPE (TREE_OPERAND
7888 (TREE_OPERAND (tem, 1), 0)),
7889 TREE_OPERAND (tem, 0),
7890 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7891 TREE_OPERAND (TREE_OPERAND (tem, 2),
7892 0)));
7893 return tem;
7894 }
7895 }
7896
7897 switch (code)
7898 {
7899 case NON_LVALUE_EXPR:
7900 if (!maybe_lvalue_p (op0))
7901 return fold_convert_loc (loc, type, op0);
7902 return NULL_TREE;
7903
7904 CASE_CONVERT:
7905 case FLOAT_EXPR:
7906 case FIX_TRUNC_EXPR:
7907 if (COMPARISON_CLASS_P (op0))
7908 {
7909 /* If we have (type) (a CMP b) and type is an integral type, return
7910 new expression involving the new type. Canonicalize
7911 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7912 non-integral type.
7913 Do not fold the result as that would not simplify further, also
7914 folding again results in recursions. */
7915 if (TREE_CODE (type) == BOOLEAN_TYPE)
7916 return build2_loc (loc, TREE_CODE (op0), type,
7917 TREE_OPERAND (op0, 0),
7918 TREE_OPERAND (op0, 1));
7919 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7920 && TREE_CODE (type) != VECTOR_TYPE)
7921 return build3_loc (loc, COND_EXPR, type, op0,
7922 constant_boolean_node (true, type),
7923 constant_boolean_node (false, type));
7924 }
7925
7926 /* Handle (T *)&A.B.C for A being of type T and B and C
7927 living at offset zero. This occurs frequently in
7928 C++ upcasting and then accessing the base. */
7929 if (TREE_CODE (op0) == ADDR_EXPR
7930 && POINTER_TYPE_P (type)
7931 && handled_component_p (TREE_OPERAND (op0, 0)))
7932 {
7933 poly_int64 bitsize, bitpos;
7934 tree offset;
7935 machine_mode mode;
7936 int unsignedp, reversep, volatilep;
7937 tree base
7938 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7939 &offset, &mode, &unsignedp, &reversep,
7940 &volatilep);
7941 /* If the reference was to a (constant) zero offset, we can use
7942 the address of the base if it has the same base type
7943 as the result type and the pointer type is unqualified. */
7944 if (!offset
7945 && known_eq (bitpos, 0)
7946 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7947 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7948 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7949 return fold_convert_loc (loc, type,
7950 build_fold_addr_expr_loc (loc, base));
7951 }
7952
7953 if (TREE_CODE (op0) == MODIFY_EXPR
7954 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7955 /* Detect assigning a bitfield. */
7956 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7957 && DECL_BIT_FIELD
7958 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7959 {
7960 /* Don't leave an assignment inside a conversion
7961 unless assigning a bitfield. */
7962 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7963 /* First do the assignment, then return converted constant. */
7964 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7965 TREE_NO_WARNING (tem) = 1;
7966 TREE_USED (tem) = 1;
7967 return tem;
7968 }
7969
7970 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7971 constants (if x has signed type, the sign bit cannot be set
7972 in c). This folds extension into the BIT_AND_EXPR.
7973 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7974 very likely don't have maximal range for their precision and this
7975 transformation effectively doesn't preserve non-maximal ranges. */
7976 if (TREE_CODE (type) == INTEGER_TYPE
7977 && TREE_CODE (op0) == BIT_AND_EXPR
7978 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7979 {
7980 tree and_expr = op0;
7981 tree and0 = TREE_OPERAND (and_expr, 0);
7982 tree and1 = TREE_OPERAND (and_expr, 1);
7983 int change = 0;
7984
7985 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7986 || (TYPE_PRECISION (type)
7987 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7988 change = 1;
7989 else if (TYPE_PRECISION (TREE_TYPE (and1))
7990 <= HOST_BITS_PER_WIDE_INT
7991 && tree_fits_uhwi_p (and1))
7992 {
7993 unsigned HOST_WIDE_INT cst;
7994
7995 cst = tree_to_uhwi (and1);
7996 cst &= HOST_WIDE_INT_M1U
7997 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7998 change = (cst == 0);
7999 if (change
8000 && !flag_syntax_only
8001 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
8002 == ZERO_EXTEND))
8003 {
8004 tree uns = unsigned_type_for (TREE_TYPE (and0));
8005 and0 = fold_convert_loc (loc, uns, and0);
8006 and1 = fold_convert_loc (loc, uns, and1);
8007 }
8008 }
8009 if (change)
8010 {
8011 tem = force_fit_type (type, wi::to_widest (and1), 0,
8012 TREE_OVERFLOW (and1));
8013 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8014 fold_convert_loc (loc, type, and0), tem);
8015 }
8016 }
8017
8018 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
8019 cast (T1)X will fold away. We assume that this happens when X itself
8020 is a cast. */
8021 if (POINTER_TYPE_P (type)
8022 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8023 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
8024 {
8025 tree arg00 = TREE_OPERAND (arg0, 0);
8026 tree arg01 = TREE_OPERAND (arg0, 1);
8027
8028 return fold_build_pointer_plus_loc
8029 (loc, fold_convert_loc (loc, type, arg00), arg01);
8030 }
8031
8032 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8033 of the same precision, and X is an integer type not narrower than
8034 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8035 if (INTEGRAL_TYPE_P (type)
8036 && TREE_CODE (op0) == BIT_NOT_EXPR
8037 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8038 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8039 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8040 {
8041 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8042 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8043 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8044 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8045 fold_convert_loc (loc, type, tem));
8046 }
8047
8048 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8049 type of X and Y (integer types only). */
8050 if (INTEGRAL_TYPE_P (type)
8051 && TREE_CODE (op0) == MULT_EXPR
8052 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8053 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8054 {
8055 /* Be careful not to introduce new overflows. */
8056 tree mult_type;
8057 if (TYPE_OVERFLOW_WRAPS (type))
8058 mult_type = type;
8059 else
8060 mult_type = unsigned_type_for (type);
8061
8062 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8063 {
8064 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8065 fold_convert_loc (loc, mult_type,
8066 TREE_OPERAND (op0, 0)),
8067 fold_convert_loc (loc, mult_type,
8068 TREE_OPERAND (op0, 1)));
8069 return fold_convert_loc (loc, type, tem);
8070 }
8071 }
8072
8073 return NULL_TREE;
8074
8075 case VIEW_CONVERT_EXPR:
8076 if (TREE_CODE (op0) == MEM_REF)
8077 {
8078 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
8079 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
8080 tem = fold_build2_loc (loc, MEM_REF, type,
8081 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8082 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
8083 return tem;
8084 }
8085
8086 return NULL_TREE;
8087
8088 case NEGATE_EXPR:
8089 tem = fold_negate_expr (loc, arg0);
8090 if (tem)
8091 return fold_convert_loc (loc, type, tem);
8092 return NULL_TREE;
8093
8094 case ABS_EXPR:
8095 /* Convert fabs((double)float) into (double)fabsf(float). */
8096 if (TREE_CODE (arg0) == NOP_EXPR
8097 && TREE_CODE (type) == REAL_TYPE)
8098 {
8099 tree targ0 = strip_float_extensions (arg0);
8100 if (targ0 != arg0)
8101 return fold_convert_loc (loc, type,
8102 fold_build1_loc (loc, ABS_EXPR,
8103 TREE_TYPE (targ0),
8104 targ0));
8105 }
8106 return NULL_TREE;
8107
8108 case BIT_NOT_EXPR:
8109 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8110 if (TREE_CODE (arg0) == BIT_XOR_EXPR
8111 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8112 fold_convert_loc (loc, type,
8113 TREE_OPERAND (arg0, 0)))))
8114 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8115 fold_convert_loc (loc, type,
8116 TREE_OPERAND (arg0, 1)));
8117 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8118 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8119 fold_convert_loc (loc, type,
8120 TREE_OPERAND (arg0, 1)))))
8121 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8122 fold_convert_loc (loc, type,
8123 TREE_OPERAND (arg0, 0)), tem);
8124
8125 return NULL_TREE;
8126
8127 case TRUTH_NOT_EXPR:
8128 /* Note that the operand of this must be an int
8129 and its values must be 0 or 1.
8130 ("true" is a fixed value perhaps depending on the language,
8131 but we don't handle values other than 1 correctly yet.) */
8132 tem = fold_truth_not_expr (loc, arg0);
8133 if (!tem)
8134 return NULL_TREE;
8135 return fold_convert_loc (loc, type, tem);
8136
8137 case INDIRECT_REF:
8138 /* Fold *&X to X if X is an lvalue. */
8139 if (TREE_CODE (op0) == ADDR_EXPR)
8140 {
8141 tree op00 = TREE_OPERAND (op0, 0);
8142 if ((VAR_P (op00)
8143 || TREE_CODE (op00) == PARM_DECL
8144 || TREE_CODE (op00) == RESULT_DECL)
8145 && !TREE_READONLY (op00))
8146 return op00;
8147 }
8148 return NULL_TREE;
8149
8150 default:
8151 return NULL_TREE;
8152 } /* switch (code) */
8153 }
8154
8155
8156 /* If the operation was a conversion do _not_ mark a resulting constant
8157 with TREE_OVERFLOW if the original constant was not. These conversions
8158 have implementation defined behavior and retaining the TREE_OVERFLOW
8159 flag here would confuse later passes such as VRP. */
8160 tree
8161 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8162 tree type, tree op0)
8163 {
8164 tree res = fold_unary_loc (loc, code, type, op0);
8165 if (res
8166 && TREE_CODE (res) == INTEGER_CST
8167 && TREE_CODE (op0) == INTEGER_CST
8168 && CONVERT_EXPR_CODE_P (code))
8169 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8170
8171 return res;
8172 }
8173
8174 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8175 operands OP0 and OP1. LOC is the location of the resulting expression.
8176 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8177 Return the folded expression if folding is successful. Otherwise,
8178 return NULL_TREE. */
8179 static tree
8180 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8181 tree arg0, tree arg1, tree op0, tree op1)
8182 {
8183 tree tem;
8184
8185 /* We only do these simplifications if we are optimizing. */
8186 if (!optimize)
8187 return NULL_TREE;
8188
8189 /* Check for things like (A || B) && (A || C). We can convert this
8190 to A || (B && C). Note that either operator can be any of the four
8191 truth and/or operations and the transformation will still be
8192 valid. Also note that we only care about order for the
8193 ANDIF and ORIF operators. If B contains side effects, this
8194 might change the truth-value of A. */
8195 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8196 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8197 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8198 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8199 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8200 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8201 {
8202 tree a00 = TREE_OPERAND (arg0, 0);
8203 tree a01 = TREE_OPERAND (arg0, 1);
8204 tree a10 = TREE_OPERAND (arg1, 0);
8205 tree a11 = TREE_OPERAND (arg1, 1);
8206 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8207 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8208 && (code == TRUTH_AND_EXPR
8209 || code == TRUTH_OR_EXPR));
8210
8211 if (operand_equal_p (a00, a10, 0))
8212 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8213 fold_build2_loc (loc, code, type, a01, a11));
8214 else if (commutative && operand_equal_p (a00, a11, 0))
8215 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8216 fold_build2_loc (loc, code, type, a01, a10));
8217 else if (commutative && operand_equal_p (a01, a10, 0))
8218 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8219 fold_build2_loc (loc, code, type, a00, a11));
8220
8221 /* This case if tricky because we must either have commutative
8222 operators or else A10 must not have side-effects. */
8223
8224 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8225 && operand_equal_p (a01, a11, 0))
8226 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8227 fold_build2_loc (loc, code, type, a00, a10),
8228 a01);
8229 }
8230
8231 /* See if we can build a range comparison. */
8232 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
8233 return tem;
8234
8235 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8236 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8237 {
8238 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8239 if (tem)
8240 return fold_build2_loc (loc, code, type, tem, arg1);
8241 }
8242
8243 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8244 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8245 {
8246 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8247 if (tem)
8248 return fold_build2_loc (loc, code, type, arg0, tem);
8249 }
8250
8251 /* Check for the possibility of merging component references. If our
8252 lhs is another similar operation, try to merge its rhs with our
8253 rhs. Then try to merge our lhs and rhs. */
8254 if (TREE_CODE (arg0) == code
8255 && (tem = fold_truth_andor_1 (loc, code, type,
8256 TREE_OPERAND (arg0, 1), arg1)) != 0)
8257 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8258
8259 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8260 return tem;
8261
8262 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
8263 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1)
8264 logical_op_non_short_circuit
8265 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT);
8266 if (logical_op_non_short_circuit
8267 && !flag_sanitize_coverage
8268 && (code == TRUTH_AND_EXPR
8269 || code == TRUTH_ANDIF_EXPR
8270 || code == TRUTH_OR_EXPR
8271 || code == TRUTH_ORIF_EXPR))
8272 {
8273 enum tree_code ncode, icode;
8274
8275 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8276 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8277 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8278
8279 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8280 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8281 We don't want to pack more than two leafs to a non-IF AND/OR
8282 expression.
8283 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8284 equal to IF-CODE, then we don't want to add right-hand operand.
8285 If the inner right-hand side of left-hand operand has
8286 side-effects, or isn't simple, then we can't add to it,
8287 as otherwise we might destroy if-sequence. */
8288 if (TREE_CODE (arg0) == icode
8289 && simple_operand_p_2 (arg1)
8290 /* Needed for sequence points to handle trappings, and
8291 side-effects. */
8292 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8293 {
8294 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8295 arg1);
8296 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8297 tem);
8298 }
8299 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8300 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8301 else if (TREE_CODE (arg1) == icode
8302 && simple_operand_p_2 (arg0)
8303 /* Needed for sequence points to handle trappings, and
8304 side-effects. */
8305 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8306 {
8307 tem = fold_build2_loc (loc, ncode, type,
8308 arg0, TREE_OPERAND (arg1, 0));
8309 return fold_build2_loc (loc, icode, type, tem,
8310 TREE_OPERAND (arg1, 1));
8311 }
8312 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8313 into (A OR B).
8314 For sequence point consistancy, we need to check for trapping,
8315 and side-effects. */
8316 else if (code == icode && simple_operand_p_2 (arg0)
8317 && simple_operand_p_2 (arg1))
8318 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8319 }
8320
8321 return NULL_TREE;
8322 }
8323
8324 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8325 by changing CODE to reduce the magnitude of constants involved in
8326 ARG0 of the comparison.
8327 Returns a canonicalized comparison tree if a simplification was
8328 possible, otherwise returns NULL_TREE.
8329 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8330 valid if signed overflow is undefined. */
8331
8332 static tree
8333 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8334 tree arg0, tree arg1,
8335 bool *strict_overflow_p)
8336 {
8337 enum tree_code code0 = TREE_CODE (arg0);
8338 tree t, cst0 = NULL_TREE;
8339 int sgn0;
8340
8341 /* Match A +- CST code arg1. We can change this only if overflow
8342 is undefined. */
8343 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8344 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8345 /* In principle pointers also have undefined overflow behavior,
8346 but that causes problems elsewhere. */
8347 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8348 && (code0 == MINUS_EXPR
8349 || code0 == PLUS_EXPR)
8350 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8351 return NULL_TREE;
8352
8353 /* Identify the constant in arg0 and its sign. */
8354 cst0 = TREE_OPERAND (arg0, 1);
8355 sgn0 = tree_int_cst_sgn (cst0);
8356
8357 /* Overflowed constants and zero will cause problems. */
8358 if (integer_zerop (cst0)
8359 || TREE_OVERFLOW (cst0))
8360 return NULL_TREE;
8361
8362 /* See if we can reduce the magnitude of the constant in
8363 arg0 by changing the comparison code. */
8364 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8365 if (code == LT_EXPR
8366 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8367 code = LE_EXPR;
8368 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8369 else if (code == GT_EXPR
8370 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8371 code = GE_EXPR;
8372 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8373 else if (code == LE_EXPR
8374 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8375 code = LT_EXPR;
8376 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8377 else if (code == GE_EXPR
8378 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8379 code = GT_EXPR;
8380 else
8381 return NULL_TREE;
8382 *strict_overflow_p = true;
8383
8384 /* Now build the constant reduced in magnitude. But not if that
8385 would produce one outside of its types range. */
8386 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8387 && ((sgn0 == 1
8388 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8389 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8390 || (sgn0 == -1
8391 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8392 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8393 return NULL_TREE;
8394
8395 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8396 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8397 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8398 t = fold_convert (TREE_TYPE (arg1), t);
8399
8400 return fold_build2_loc (loc, code, type, t, arg1);
8401 }
8402
8403 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8404 overflow further. Try to decrease the magnitude of constants involved
8405 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8406 and put sole constants at the second argument position.
8407 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8408
8409 static tree
8410 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8411 tree arg0, tree arg1)
8412 {
8413 tree t;
8414 bool strict_overflow_p;
8415 const char * const warnmsg = G_("assuming signed overflow does not occur "
8416 "when reducing constant in comparison");
8417
8418 /* Try canonicalization by simplifying arg0. */
8419 strict_overflow_p = false;
8420 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8421 &strict_overflow_p);
8422 if (t)
8423 {
8424 if (strict_overflow_p)
8425 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8426 return t;
8427 }
8428
8429 /* Try canonicalization by simplifying arg1 using the swapped
8430 comparison. */
8431 code = swap_tree_comparison (code);
8432 strict_overflow_p = false;
8433 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8434 &strict_overflow_p);
8435 if (t && strict_overflow_p)
8436 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8437 return t;
8438 }
8439
8440 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8441 space. This is used to avoid issuing overflow warnings for
8442 expressions like &p->x which cannot wrap. */
8443
8444 static bool
8445 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
8446 {
8447 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8448 return true;
8449
8450 if (maybe_lt (bitpos, 0))
8451 return true;
8452
8453 poly_wide_int wi_offset;
8454 int precision = TYPE_PRECISION (TREE_TYPE (base));
8455 if (offset == NULL_TREE)
8456 wi_offset = wi::zero (precision);
8457 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
8458 return true;
8459 else
8460 wi_offset = wi::to_poly_wide (offset);
8461
8462 wi::overflow_type overflow;
8463 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
8464 precision);
8465 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8466 if (overflow)
8467 return true;
8468
8469 poly_uint64 total_hwi, size;
8470 if (!total.to_uhwi (&total_hwi)
8471 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
8472 &size)
8473 || known_eq (size, 0U))
8474 return true;
8475
8476 if (known_le (total_hwi, size))
8477 return false;
8478
8479 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8480 array. */
8481 if (TREE_CODE (base) == ADDR_EXPR
8482 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
8483 &size)
8484 && maybe_ne (size, 0U)
8485 && known_le (total_hwi, size))
8486 return false;
8487
8488 return true;
8489 }
8490
8491 /* Return a positive integer when the symbol DECL is known to have
8492 a nonzero address, zero when it's known not to (e.g., it's a weak
8493 symbol), and a negative integer when the symbol is not yet in the
8494 symbol table and so whether or not its address is zero is unknown.
8495 For function local objects always return positive integer. */
8496 static int
8497 maybe_nonzero_address (tree decl)
8498 {
8499 if (DECL_P (decl) && decl_in_symtab_p (decl))
8500 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8501 return symbol->nonzero_address ();
8502
8503 /* Function local objects are never NULL. */
8504 if (DECL_P (decl)
8505 && (DECL_CONTEXT (decl)
8506 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8507 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8508 return 1;
8509
8510 return -1;
8511 }
8512
8513 /* Subroutine of fold_binary. This routine performs all of the
8514 transformations that are common to the equality/inequality
8515 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8516 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8517 fold_binary should call fold_binary. Fold a comparison with
8518 tree code CODE and type TYPE with operands OP0 and OP1. Return
8519 the folded comparison or NULL_TREE. */
8520
8521 static tree
8522 fold_comparison (location_t loc, enum tree_code code, tree type,
8523 tree op0, tree op1)
8524 {
8525 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8526 tree arg0, arg1, tem;
8527
8528 arg0 = op0;
8529 arg1 = op1;
8530
8531 STRIP_SIGN_NOPS (arg0);
8532 STRIP_SIGN_NOPS (arg1);
8533
8534 /* For comparisons of pointers we can decompose it to a compile time
8535 comparison of the base objects and the offsets into the object.
8536 This requires at least one operand being an ADDR_EXPR or a
8537 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8538 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8539 && (TREE_CODE (arg0) == ADDR_EXPR
8540 || TREE_CODE (arg1) == ADDR_EXPR
8541 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8542 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8543 {
8544 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8545 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
8546 machine_mode mode;
8547 int volatilep, reversep, unsignedp;
8548 bool indirect_base0 = false, indirect_base1 = false;
8549
8550 /* Get base and offset for the access. Strip ADDR_EXPR for
8551 get_inner_reference, but put it back by stripping INDIRECT_REF
8552 off the base object if possible. indirect_baseN will be true
8553 if baseN is not an address but refers to the object itself. */
8554 base0 = arg0;
8555 if (TREE_CODE (arg0) == ADDR_EXPR)
8556 {
8557 base0
8558 = get_inner_reference (TREE_OPERAND (arg0, 0),
8559 &bitsize, &bitpos0, &offset0, &mode,
8560 &unsignedp, &reversep, &volatilep);
8561 if (TREE_CODE (base0) == INDIRECT_REF)
8562 base0 = TREE_OPERAND (base0, 0);
8563 else
8564 indirect_base0 = true;
8565 }
8566 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8567 {
8568 base0 = TREE_OPERAND (arg0, 0);
8569 STRIP_SIGN_NOPS (base0);
8570 if (TREE_CODE (base0) == ADDR_EXPR)
8571 {
8572 base0
8573 = get_inner_reference (TREE_OPERAND (base0, 0),
8574 &bitsize, &bitpos0, &offset0, &mode,
8575 &unsignedp, &reversep, &volatilep);
8576 if (TREE_CODE (base0) == INDIRECT_REF)
8577 base0 = TREE_OPERAND (base0, 0);
8578 else
8579 indirect_base0 = true;
8580 }
8581 if (offset0 == NULL_TREE || integer_zerop (offset0))
8582 offset0 = TREE_OPERAND (arg0, 1);
8583 else
8584 offset0 = size_binop (PLUS_EXPR, offset0,
8585 TREE_OPERAND (arg0, 1));
8586 if (poly_int_tree_p (offset0))
8587 {
8588 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
8589 TYPE_PRECISION (sizetype));
8590 tem <<= LOG2_BITS_PER_UNIT;
8591 tem += bitpos0;
8592 if (tem.to_shwi (&bitpos0))
8593 offset0 = NULL_TREE;
8594 }
8595 }
8596
8597 base1 = arg1;
8598 if (TREE_CODE (arg1) == ADDR_EXPR)
8599 {
8600 base1
8601 = get_inner_reference (TREE_OPERAND (arg1, 0),
8602 &bitsize, &bitpos1, &offset1, &mode,
8603 &unsignedp, &reversep, &volatilep);
8604 if (TREE_CODE (base1) == INDIRECT_REF)
8605 base1 = TREE_OPERAND (base1, 0);
8606 else
8607 indirect_base1 = true;
8608 }
8609 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8610 {
8611 base1 = TREE_OPERAND (arg1, 0);
8612 STRIP_SIGN_NOPS (base1);
8613 if (TREE_CODE (base1) == ADDR_EXPR)
8614 {
8615 base1
8616 = get_inner_reference (TREE_OPERAND (base1, 0),
8617 &bitsize, &bitpos1, &offset1, &mode,
8618 &unsignedp, &reversep, &volatilep);
8619 if (TREE_CODE (base1) == INDIRECT_REF)
8620 base1 = TREE_OPERAND (base1, 0);
8621 else
8622 indirect_base1 = true;
8623 }
8624 if (offset1 == NULL_TREE || integer_zerop (offset1))
8625 offset1 = TREE_OPERAND (arg1, 1);
8626 else
8627 offset1 = size_binop (PLUS_EXPR, offset1,
8628 TREE_OPERAND (arg1, 1));
8629 if (poly_int_tree_p (offset1))
8630 {
8631 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
8632 TYPE_PRECISION (sizetype));
8633 tem <<= LOG2_BITS_PER_UNIT;
8634 tem += bitpos1;
8635 if (tem.to_shwi (&bitpos1))
8636 offset1 = NULL_TREE;
8637 }
8638 }
8639
8640 /* If we have equivalent bases we might be able to simplify. */
8641 if (indirect_base0 == indirect_base1
8642 && operand_equal_p (base0, base1,
8643 indirect_base0 ? OEP_ADDRESS_OF : 0))
8644 {
8645 /* We can fold this expression to a constant if the non-constant
8646 offset parts are equal. */
8647 if ((offset0 == offset1
8648 || (offset0 && offset1
8649 && operand_equal_p (offset0, offset1, 0)))
8650 && (equality_code
8651 || (indirect_base0
8652 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8653 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8654 {
8655 if (!equality_code
8656 && maybe_ne (bitpos0, bitpos1)
8657 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8658 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8659 fold_overflow_warning (("assuming pointer wraparound does not "
8660 "occur when comparing P +- C1 with "
8661 "P +- C2"),
8662 WARN_STRICT_OVERFLOW_CONDITIONAL);
8663
8664 switch (code)
8665 {
8666 case EQ_EXPR:
8667 if (known_eq (bitpos0, bitpos1))
8668 return constant_boolean_node (true, type);
8669 if (known_ne (bitpos0, bitpos1))
8670 return constant_boolean_node (false, type);
8671 break;
8672 case NE_EXPR:
8673 if (known_ne (bitpos0, bitpos1))
8674 return constant_boolean_node (true, type);
8675 if (known_eq (bitpos0, bitpos1))
8676 return constant_boolean_node (false, type);
8677 break;
8678 case LT_EXPR:
8679 if (known_lt (bitpos0, bitpos1))
8680 return constant_boolean_node (true, type);
8681 if (known_ge (bitpos0, bitpos1))
8682 return constant_boolean_node (false, type);
8683 break;
8684 case LE_EXPR:
8685 if (known_le (bitpos0, bitpos1))
8686 return constant_boolean_node (true, type);
8687 if (known_gt (bitpos0, bitpos1))
8688 return constant_boolean_node (false, type);
8689 break;
8690 case GE_EXPR:
8691 if (known_ge (bitpos0, bitpos1))
8692 return constant_boolean_node (true, type);
8693 if (known_lt (bitpos0, bitpos1))
8694 return constant_boolean_node (false, type);
8695 break;
8696 case GT_EXPR:
8697 if (known_gt (bitpos0, bitpos1))
8698 return constant_boolean_node (true, type);
8699 if (known_le (bitpos0, bitpos1))
8700 return constant_boolean_node (false, type);
8701 break;
8702 default:;
8703 }
8704 }
8705 /* We can simplify the comparison to a comparison of the variable
8706 offset parts if the constant offset parts are equal.
8707 Be careful to use signed sizetype here because otherwise we
8708 mess with array offsets in the wrong way. This is possible
8709 because pointer arithmetic is restricted to retain within an
8710 object and overflow on pointer differences is undefined as of
8711 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8712 else if (known_eq (bitpos0, bitpos1)
8713 && (equality_code
8714 || (indirect_base0
8715 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8716 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8717 {
8718 /* By converting to signed sizetype we cover middle-end pointer
8719 arithmetic which operates on unsigned pointer types of size
8720 type size and ARRAY_REF offsets which are properly sign or
8721 zero extended from their type in case it is narrower than
8722 sizetype. */
8723 if (offset0 == NULL_TREE)
8724 offset0 = build_int_cst (ssizetype, 0);
8725 else
8726 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8727 if (offset1 == NULL_TREE)
8728 offset1 = build_int_cst (ssizetype, 0);
8729 else
8730 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8731
8732 if (!equality_code
8733 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8734 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8735 fold_overflow_warning (("assuming pointer wraparound does not "
8736 "occur when comparing P +- C1 with "
8737 "P +- C2"),
8738 WARN_STRICT_OVERFLOW_COMPARISON);
8739
8740 return fold_build2_loc (loc, code, type, offset0, offset1);
8741 }
8742 }
8743 /* For equal offsets we can simplify to a comparison of the
8744 base addresses. */
8745 else if (known_eq (bitpos0, bitpos1)
8746 && (indirect_base0
8747 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8748 && (indirect_base1
8749 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8750 && ((offset0 == offset1)
8751 || (offset0 && offset1
8752 && operand_equal_p (offset0, offset1, 0))))
8753 {
8754 if (indirect_base0)
8755 base0 = build_fold_addr_expr_loc (loc, base0);
8756 if (indirect_base1)
8757 base1 = build_fold_addr_expr_loc (loc, base1);
8758 return fold_build2_loc (loc, code, type, base0, base1);
8759 }
8760 /* Comparison between an ordinary (non-weak) symbol and a null
8761 pointer can be eliminated since such symbols must have a non
8762 null address. In C, relational expressions between pointers
8763 to objects and null pointers are undefined. The results
8764 below follow the C++ rules with the additional property that
8765 every object pointer compares greater than a null pointer.
8766 */
8767 else if (((DECL_P (base0)
8768 && maybe_nonzero_address (base0) > 0
8769 /* Avoid folding references to struct members at offset 0 to
8770 prevent tests like '&ptr->firstmember == 0' from getting
8771 eliminated. When ptr is null, although the -> expression
8772 is strictly speaking invalid, GCC retains it as a matter
8773 of QoI. See PR c/44555. */
8774 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
8775 || CONSTANT_CLASS_P (base0))
8776 && indirect_base0
8777 /* The caller guarantees that when one of the arguments is
8778 constant (i.e., null in this case) it is second. */
8779 && integer_zerop (arg1))
8780 {
8781 switch (code)
8782 {
8783 case EQ_EXPR:
8784 case LE_EXPR:
8785 case LT_EXPR:
8786 return constant_boolean_node (false, type);
8787 case GE_EXPR:
8788 case GT_EXPR:
8789 case NE_EXPR:
8790 return constant_boolean_node (true, type);
8791 default:
8792 gcc_unreachable ();
8793 }
8794 }
8795 }
8796
8797 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8798 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8799 the resulting offset is smaller in absolute value than the
8800 original one and has the same sign. */
8801 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8802 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8803 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8804 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8805 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8806 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8807 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8808 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8809 {
8810 tree const1 = TREE_OPERAND (arg0, 1);
8811 tree const2 = TREE_OPERAND (arg1, 1);
8812 tree variable1 = TREE_OPERAND (arg0, 0);
8813 tree variable2 = TREE_OPERAND (arg1, 0);
8814 tree cst;
8815 const char * const warnmsg = G_("assuming signed overflow does not "
8816 "occur when combining constants around "
8817 "a comparison");
8818
8819 /* Put the constant on the side where it doesn't overflow and is
8820 of lower absolute value and of same sign than before. */
8821 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8822 ? MINUS_EXPR : PLUS_EXPR,
8823 const2, const1);
8824 if (!TREE_OVERFLOW (cst)
8825 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8826 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8827 {
8828 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8829 return fold_build2_loc (loc, code, type,
8830 variable1,
8831 fold_build2_loc (loc, TREE_CODE (arg1),
8832 TREE_TYPE (arg1),
8833 variable2, cst));
8834 }
8835
8836 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8837 ? MINUS_EXPR : PLUS_EXPR,
8838 const1, const2);
8839 if (!TREE_OVERFLOW (cst)
8840 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8841 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8842 {
8843 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8844 return fold_build2_loc (loc, code, type,
8845 fold_build2_loc (loc, TREE_CODE (arg0),
8846 TREE_TYPE (arg0),
8847 variable1, cst),
8848 variable2);
8849 }
8850 }
8851
8852 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8853 if (tem)
8854 return tem;
8855
8856 /* If we are comparing an expression that just has comparisons
8857 of two integer values, arithmetic expressions of those comparisons,
8858 and constants, we can simplify it. There are only three cases
8859 to check: the two values can either be equal, the first can be
8860 greater, or the second can be greater. Fold the expression for
8861 those three values. Since each value must be 0 or 1, we have
8862 eight possibilities, each of which corresponds to the constant 0
8863 or 1 or one of the six possible comparisons.
8864
8865 This handles common cases like (a > b) == 0 but also handles
8866 expressions like ((x > y) - (y > x)) > 0, which supposedly
8867 occur in macroized code. */
8868
8869 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8870 {
8871 tree cval1 = 0, cval2 = 0;
8872
8873 if (twoval_comparison_p (arg0, &cval1, &cval2)
8874 /* Don't handle degenerate cases here; they should already
8875 have been handled anyway. */
8876 && cval1 != 0 && cval2 != 0
8877 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8878 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8879 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8880 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8881 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8882 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8883 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8884 {
8885 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8886 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8887
8888 /* We can't just pass T to eval_subst in case cval1 or cval2
8889 was the same as ARG1. */
8890
8891 tree high_result
8892 = fold_build2_loc (loc, code, type,
8893 eval_subst (loc, arg0, cval1, maxval,
8894 cval2, minval),
8895 arg1);
8896 tree equal_result
8897 = fold_build2_loc (loc, code, type,
8898 eval_subst (loc, arg0, cval1, maxval,
8899 cval2, maxval),
8900 arg1);
8901 tree low_result
8902 = fold_build2_loc (loc, code, type,
8903 eval_subst (loc, arg0, cval1, minval,
8904 cval2, maxval),
8905 arg1);
8906
8907 /* All three of these results should be 0 or 1. Confirm they are.
8908 Then use those values to select the proper code to use. */
8909
8910 if (TREE_CODE (high_result) == INTEGER_CST
8911 && TREE_CODE (equal_result) == INTEGER_CST
8912 && TREE_CODE (low_result) == INTEGER_CST)
8913 {
8914 /* Make a 3-bit mask with the high-order bit being the
8915 value for `>', the next for '=', and the low for '<'. */
8916 switch ((integer_onep (high_result) * 4)
8917 + (integer_onep (equal_result) * 2)
8918 + integer_onep (low_result))
8919 {
8920 case 0:
8921 /* Always false. */
8922 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8923 case 1:
8924 code = LT_EXPR;
8925 break;
8926 case 2:
8927 code = EQ_EXPR;
8928 break;
8929 case 3:
8930 code = LE_EXPR;
8931 break;
8932 case 4:
8933 code = GT_EXPR;
8934 break;
8935 case 5:
8936 code = NE_EXPR;
8937 break;
8938 case 6:
8939 code = GE_EXPR;
8940 break;
8941 case 7:
8942 /* Always true. */
8943 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8944 }
8945
8946 return fold_build2_loc (loc, code, type, cval1, cval2);
8947 }
8948 }
8949 }
8950
8951 return NULL_TREE;
8952 }
8953
8954
8955 /* Subroutine of fold_binary. Optimize complex multiplications of the
8956 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8957 argument EXPR represents the expression "z" of type TYPE. */
8958
8959 static tree
8960 fold_mult_zconjz (location_t loc, tree type, tree expr)
8961 {
8962 tree itype = TREE_TYPE (type);
8963 tree rpart, ipart, tem;
8964
8965 if (TREE_CODE (expr) == COMPLEX_EXPR)
8966 {
8967 rpart = TREE_OPERAND (expr, 0);
8968 ipart = TREE_OPERAND (expr, 1);
8969 }
8970 else if (TREE_CODE (expr) == COMPLEX_CST)
8971 {
8972 rpart = TREE_REALPART (expr);
8973 ipart = TREE_IMAGPART (expr);
8974 }
8975 else
8976 {
8977 expr = save_expr (expr);
8978 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8979 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8980 }
8981
8982 rpart = save_expr (rpart);
8983 ipart = save_expr (ipart);
8984 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8985 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8986 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8987 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8988 build_zero_cst (itype));
8989 }
8990
8991
8992 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8993 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8994 true if successful. */
8995
8996 static bool
8997 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
8998 {
8999 unsigned HOST_WIDE_INT i, nunits;
9000
9001 if (TREE_CODE (arg) == VECTOR_CST
9002 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
9003 {
9004 for (i = 0; i < nunits; ++i)
9005 elts[i] = VECTOR_CST_ELT (arg, i);
9006 }
9007 else if (TREE_CODE (arg) == CONSTRUCTOR)
9008 {
9009 constructor_elt *elt;
9010
9011 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9012 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9013 return false;
9014 else
9015 elts[i] = elt->value;
9016 }
9017 else
9018 return false;
9019 for (; i < nelts; i++)
9020 elts[i]
9021 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9022 return true;
9023 }
9024
9025 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9026 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9027 NULL_TREE otherwise. */
9028
9029 tree
9030 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
9031 {
9032 unsigned int i;
9033 unsigned HOST_WIDE_INT nelts;
9034 bool need_ctor = false;
9035
9036 if (!sel.length ().is_constant (&nelts))
9037 return NULL_TREE;
9038 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
9039 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
9040 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
9041 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9042 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9043 return NULL_TREE;
9044
9045 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
9046 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
9047 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
9048 return NULL_TREE;
9049
9050 tree_vector_builder out_elts (type, nelts, 1);
9051 for (i = 0; i < nelts; i++)
9052 {
9053 HOST_WIDE_INT index;
9054 if (!sel[i].is_constant (&index))
9055 return NULL_TREE;
9056 if (!CONSTANT_CLASS_P (in_elts[index]))
9057 need_ctor = true;
9058 out_elts.quick_push (unshare_expr (in_elts[index]));
9059 }
9060
9061 if (need_ctor)
9062 {
9063 vec<constructor_elt, va_gc> *v;
9064 vec_alloc (v, nelts);
9065 for (i = 0; i < nelts; i++)
9066 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
9067 return build_constructor (type, v);
9068 }
9069 else
9070 return out_elts.build ();
9071 }
9072
9073 /* Try to fold a pointer difference of type TYPE two address expressions of
9074 array references AREF0 and AREF1 using location LOC. Return a
9075 simplified expression for the difference or NULL_TREE. */
9076
9077 static tree
9078 fold_addr_of_array_ref_difference (location_t loc, tree type,
9079 tree aref0, tree aref1,
9080 bool use_pointer_diff)
9081 {
9082 tree base0 = TREE_OPERAND (aref0, 0);
9083 tree base1 = TREE_OPERAND (aref1, 0);
9084 tree base_offset = build_int_cst (type, 0);
9085
9086 /* If the bases are array references as well, recurse. If the bases
9087 are pointer indirections compute the difference of the pointers.
9088 If the bases are equal, we are set. */
9089 if ((TREE_CODE (base0) == ARRAY_REF
9090 && TREE_CODE (base1) == ARRAY_REF
9091 && (base_offset
9092 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
9093 use_pointer_diff)))
9094 || (INDIRECT_REF_P (base0)
9095 && INDIRECT_REF_P (base1)
9096 && (base_offset
9097 = use_pointer_diff
9098 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
9099 TREE_OPERAND (base0, 0),
9100 TREE_OPERAND (base1, 0))
9101 : fold_binary_loc (loc, MINUS_EXPR, type,
9102 fold_convert (type,
9103 TREE_OPERAND (base0, 0)),
9104 fold_convert (type,
9105 TREE_OPERAND (base1, 0)))))
9106 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
9107 {
9108 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9109 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9110 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9111 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
9112 return fold_build2_loc (loc, PLUS_EXPR, type,
9113 base_offset,
9114 fold_build2_loc (loc, MULT_EXPR, type,
9115 diff, esz));
9116 }
9117 return NULL_TREE;
9118 }
9119
9120 /* If the real or vector real constant CST of type TYPE has an exact
9121 inverse, return it, else return NULL. */
9122
9123 tree
9124 exact_inverse (tree type, tree cst)
9125 {
9126 REAL_VALUE_TYPE r;
9127 tree unit_type;
9128 machine_mode mode;
9129
9130 switch (TREE_CODE (cst))
9131 {
9132 case REAL_CST:
9133 r = TREE_REAL_CST (cst);
9134
9135 if (exact_real_inverse (TYPE_MODE (type), &r))
9136 return build_real (type, r);
9137
9138 return NULL_TREE;
9139
9140 case VECTOR_CST:
9141 {
9142 unit_type = TREE_TYPE (type);
9143 mode = TYPE_MODE (unit_type);
9144
9145 tree_vector_builder elts;
9146 if (!elts.new_unary_operation (type, cst, false))
9147 return NULL_TREE;
9148 unsigned int count = elts.encoded_nelts ();
9149 for (unsigned int i = 0; i < count; ++i)
9150 {
9151 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9152 if (!exact_real_inverse (mode, &r))
9153 return NULL_TREE;
9154 elts.quick_push (build_real (unit_type, r));
9155 }
9156
9157 return elts.build ();
9158 }
9159
9160 default:
9161 return NULL_TREE;
9162 }
9163 }
9164
9165 /* Mask out the tz least significant bits of X of type TYPE where
9166 tz is the number of trailing zeroes in Y. */
9167 static wide_int
9168 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9169 {
9170 int tz = wi::ctz (y);
9171 if (tz > 0)
9172 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9173 return x;
9174 }
9175
9176 /* Return true when T is an address and is known to be nonzero.
9177 For floating point we further ensure that T is not denormal.
9178 Similar logic is present in nonzero_address in rtlanal.h.
9179
9180 If the return value is based on the assumption that signed overflow
9181 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9182 change *STRICT_OVERFLOW_P. */
9183
9184 static bool
9185 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9186 {
9187 tree type = TREE_TYPE (t);
9188 enum tree_code code;
9189
9190 /* Doing something useful for floating point would need more work. */
9191 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9192 return false;
9193
9194 code = TREE_CODE (t);
9195 switch (TREE_CODE_CLASS (code))
9196 {
9197 case tcc_unary:
9198 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9199 strict_overflow_p);
9200 case tcc_binary:
9201 case tcc_comparison:
9202 return tree_binary_nonzero_warnv_p (code, type,
9203 TREE_OPERAND (t, 0),
9204 TREE_OPERAND (t, 1),
9205 strict_overflow_p);
9206 case tcc_constant:
9207 case tcc_declaration:
9208 case tcc_reference:
9209 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9210
9211 default:
9212 break;
9213 }
9214
9215 switch (code)
9216 {
9217 case TRUTH_NOT_EXPR:
9218 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9219 strict_overflow_p);
9220
9221 case TRUTH_AND_EXPR:
9222 case TRUTH_OR_EXPR:
9223 case TRUTH_XOR_EXPR:
9224 return tree_binary_nonzero_warnv_p (code, type,
9225 TREE_OPERAND (t, 0),
9226 TREE_OPERAND (t, 1),
9227 strict_overflow_p);
9228
9229 case COND_EXPR:
9230 case CONSTRUCTOR:
9231 case OBJ_TYPE_REF:
9232 case ASSERT_EXPR:
9233 case ADDR_EXPR:
9234 case WITH_SIZE_EXPR:
9235 case SSA_NAME:
9236 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9237
9238 case COMPOUND_EXPR:
9239 case MODIFY_EXPR:
9240 case BIND_EXPR:
9241 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9242 strict_overflow_p);
9243
9244 case SAVE_EXPR:
9245 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9246 strict_overflow_p);
9247
9248 case CALL_EXPR:
9249 {
9250 tree fndecl = get_callee_fndecl (t);
9251 if (!fndecl) return false;
9252 if (flag_delete_null_pointer_checks && !flag_check_new
9253 && DECL_IS_OPERATOR_NEW (fndecl)
9254 && !TREE_NOTHROW (fndecl))
9255 return true;
9256 if (flag_delete_null_pointer_checks
9257 && lookup_attribute ("returns_nonnull",
9258 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9259 return true;
9260 return alloca_call_p (t);
9261 }
9262
9263 default:
9264 break;
9265 }
9266 return false;
9267 }
9268
9269 /* Return true when T is an address and is known to be nonzero.
9270 Handle warnings about undefined signed overflow. */
9271
9272 bool
9273 tree_expr_nonzero_p (tree t)
9274 {
9275 bool ret, strict_overflow_p;
9276
9277 strict_overflow_p = false;
9278 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9279 if (strict_overflow_p)
9280 fold_overflow_warning (("assuming signed overflow does not occur when "
9281 "determining that expression is always "
9282 "non-zero"),
9283 WARN_STRICT_OVERFLOW_MISC);
9284 return ret;
9285 }
9286
9287 /* Return true if T is known not to be equal to an integer W. */
9288
9289 bool
9290 expr_not_equal_to (tree t, const wide_int &w)
9291 {
9292 wide_int min, max, nz;
9293 value_range_kind rtype;
9294 switch (TREE_CODE (t))
9295 {
9296 case INTEGER_CST:
9297 return wi::to_wide (t) != w;
9298
9299 case SSA_NAME:
9300 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9301 return false;
9302 rtype = get_range_info (t, &min, &max);
9303 if (rtype == VR_RANGE)
9304 {
9305 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9306 return true;
9307 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9308 return true;
9309 }
9310 else if (rtype == VR_ANTI_RANGE
9311 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9312 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9313 return true;
9314 /* If T has some known zero bits and W has any of those bits set,
9315 then T is known not to be equal to W. */
9316 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9317 TYPE_PRECISION (TREE_TYPE (t))), 0))
9318 return true;
9319 return false;
9320
9321 default:
9322 return false;
9323 }
9324 }
9325
9326 /* Fold a binary expression of code CODE and type TYPE with operands
9327 OP0 and OP1. LOC is the location of the resulting expression.
9328 Return the folded expression if folding is successful. Otherwise,
9329 return NULL_TREE. */
9330
9331 tree
9332 fold_binary_loc (location_t loc, enum tree_code code, tree type,
9333 tree op0, tree op1)
9334 {
9335 enum tree_code_class kind = TREE_CODE_CLASS (code);
9336 tree arg0, arg1, tem;
9337 tree t1 = NULL_TREE;
9338 bool strict_overflow_p;
9339 unsigned int prec;
9340
9341 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9342 && TREE_CODE_LENGTH (code) == 2
9343 && op0 != NULL_TREE
9344 && op1 != NULL_TREE);
9345
9346 arg0 = op0;
9347 arg1 = op1;
9348
9349 /* Strip any conversions that don't change the mode. This is
9350 safe for every expression, except for a comparison expression
9351 because its signedness is derived from its operands. So, in
9352 the latter case, only strip conversions that don't change the
9353 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9354 preserved.
9355
9356 Note that this is done as an internal manipulation within the
9357 constant folder, in order to find the simplest representation
9358 of the arguments so that their form can be studied. In any
9359 cases, the appropriate type conversions should be put back in
9360 the tree that will get out of the constant folder. */
9361
9362 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9363 {
9364 STRIP_SIGN_NOPS (arg0);
9365 STRIP_SIGN_NOPS (arg1);
9366 }
9367 else
9368 {
9369 STRIP_NOPS (arg0);
9370 STRIP_NOPS (arg1);
9371 }
9372
9373 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9374 constant but we can't do arithmetic on them. */
9375 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9376 {
9377 tem = const_binop (code, type, arg0, arg1);
9378 if (tem != NULL_TREE)
9379 {
9380 if (TREE_TYPE (tem) != type)
9381 tem = fold_convert_loc (loc, type, tem);
9382 return tem;
9383 }
9384 }
9385
9386 /* If this is a commutative operation, and ARG0 is a constant, move it
9387 to ARG1 to reduce the number of tests below. */
9388 if (commutative_tree_code (code)
9389 && tree_swap_operands_p (arg0, arg1))
9390 return fold_build2_loc (loc, code, type, op1, op0);
9391
9392 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9393 to ARG1 to reduce the number of tests below. */
9394 if (kind == tcc_comparison
9395 && tree_swap_operands_p (arg0, arg1))
9396 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9397
9398 tem = generic_simplify (loc, code, type, op0, op1);
9399 if (tem)
9400 return tem;
9401
9402 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9403
9404 First check for cases where an arithmetic operation is applied to a
9405 compound, conditional, or comparison operation. Push the arithmetic
9406 operation inside the compound or conditional to see if any folding
9407 can then be done. Convert comparison to conditional for this purpose.
9408 The also optimizes non-constant cases that used to be done in
9409 expand_expr.
9410
9411 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9412 one of the operands is a comparison and the other is a comparison, a
9413 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9414 code below would make the expression more complex. Change it to a
9415 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9416 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9417
9418 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9419 || code == EQ_EXPR || code == NE_EXPR)
9420 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
9421 && ((truth_value_p (TREE_CODE (arg0))
9422 && (truth_value_p (TREE_CODE (arg1))
9423 || (TREE_CODE (arg1) == BIT_AND_EXPR
9424 && integer_onep (TREE_OPERAND (arg1, 1)))))
9425 || (truth_value_p (TREE_CODE (arg1))
9426 && (truth_value_p (TREE_CODE (arg0))
9427 || (TREE_CODE (arg0) == BIT_AND_EXPR
9428 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9429 {
9430 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9431 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9432 : TRUTH_XOR_EXPR,
9433 boolean_type_node,
9434 fold_convert_loc (loc, boolean_type_node, arg0),
9435 fold_convert_loc (loc, boolean_type_node, arg1));
9436
9437 if (code == EQ_EXPR)
9438 tem = invert_truthvalue_loc (loc, tem);
9439
9440 return fold_convert_loc (loc, type, tem);
9441 }
9442
9443 if (TREE_CODE_CLASS (code) == tcc_binary
9444 || TREE_CODE_CLASS (code) == tcc_comparison)
9445 {
9446 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9447 {
9448 tem = fold_build2_loc (loc, code, type,
9449 fold_convert_loc (loc, TREE_TYPE (op0),
9450 TREE_OPERAND (arg0, 1)), op1);
9451 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9452 tem);
9453 }
9454 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9455 {
9456 tem = fold_build2_loc (loc, code, type, op0,
9457 fold_convert_loc (loc, TREE_TYPE (op1),
9458 TREE_OPERAND (arg1, 1)));
9459 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9460 tem);
9461 }
9462
9463 if (TREE_CODE (arg0) == COND_EXPR
9464 || TREE_CODE (arg0) == VEC_COND_EXPR
9465 || COMPARISON_CLASS_P (arg0))
9466 {
9467 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9468 arg0, arg1,
9469 /*cond_first_p=*/1);
9470 if (tem != NULL_TREE)
9471 return tem;
9472 }
9473
9474 if (TREE_CODE (arg1) == COND_EXPR
9475 || TREE_CODE (arg1) == VEC_COND_EXPR
9476 || COMPARISON_CLASS_P (arg1))
9477 {
9478 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9479 arg1, arg0,
9480 /*cond_first_p=*/0);
9481 if (tem != NULL_TREE)
9482 return tem;
9483 }
9484 }
9485
9486 switch (code)
9487 {
9488 case MEM_REF:
9489 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9490 if (TREE_CODE (arg0) == ADDR_EXPR
9491 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9492 {
9493 tree iref = TREE_OPERAND (arg0, 0);
9494 return fold_build2 (MEM_REF, type,
9495 TREE_OPERAND (iref, 0),
9496 int_const_binop (PLUS_EXPR, arg1,
9497 TREE_OPERAND (iref, 1)));
9498 }
9499
9500 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9501 if (TREE_CODE (arg0) == ADDR_EXPR
9502 && handled_component_p (TREE_OPERAND (arg0, 0)))
9503 {
9504 tree base;
9505 poly_int64 coffset;
9506 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9507 &coffset);
9508 if (!base)
9509 return NULL_TREE;
9510 return fold_build2 (MEM_REF, type,
9511 build_fold_addr_expr (base),
9512 int_const_binop (PLUS_EXPR, arg1,
9513 size_int (coffset)));
9514 }
9515
9516 return NULL_TREE;
9517
9518 case POINTER_PLUS_EXPR:
9519 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9520 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9521 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9522 return fold_convert_loc (loc, type,
9523 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9524 fold_convert_loc (loc, sizetype,
9525 arg1),
9526 fold_convert_loc (loc, sizetype,
9527 arg0)));
9528
9529 return NULL_TREE;
9530
9531 case PLUS_EXPR:
9532 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9533 {
9534 /* X + (X / CST) * -CST is X % CST. */
9535 if (TREE_CODE (arg1) == MULT_EXPR
9536 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9537 && operand_equal_p (arg0,
9538 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9539 {
9540 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9541 tree cst1 = TREE_OPERAND (arg1, 1);
9542 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9543 cst1, cst0);
9544 if (sum && integer_zerop (sum))
9545 return fold_convert_loc (loc, type,
9546 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9547 TREE_TYPE (arg0), arg0,
9548 cst0));
9549 }
9550 }
9551
9552 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9553 one. Make sure the type is not saturating and has the signedness of
9554 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9555 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9556 if ((TREE_CODE (arg0) == MULT_EXPR
9557 || TREE_CODE (arg1) == MULT_EXPR)
9558 && !TYPE_SATURATING (type)
9559 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9560 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9561 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9562 {
9563 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9564 if (tem)
9565 return tem;
9566 }
9567
9568 if (! FLOAT_TYPE_P (type))
9569 {
9570 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9571 (plus (plus (mult) (mult)) (foo)) so that we can
9572 take advantage of the factoring cases below. */
9573 if (ANY_INTEGRAL_TYPE_P (type)
9574 && TYPE_OVERFLOW_WRAPS (type)
9575 && (((TREE_CODE (arg0) == PLUS_EXPR
9576 || TREE_CODE (arg0) == MINUS_EXPR)
9577 && TREE_CODE (arg1) == MULT_EXPR)
9578 || ((TREE_CODE (arg1) == PLUS_EXPR
9579 || TREE_CODE (arg1) == MINUS_EXPR)
9580 && TREE_CODE (arg0) == MULT_EXPR)))
9581 {
9582 tree parg0, parg1, parg, marg;
9583 enum tree_code pcode;
9584
9585 if (TREE_CODE (arg1) == MULT_EXPR)
9586 parg = arg0, marg = arg1;
9587 else
9588 parg = arg1, marg = arg0;
9589 pcode = TREE_CODE (parg);
9590 parg0 = TREE_OPERAND (parg, 0);
9591 parg1 = TREE_OPERAND (parg, 1);
9592 STRIP_NOPS (parg0);
9593 STRIP_NOPS (parg1);
9594
9595 if (TREE_CODE (parg0) == MULT_EXPR
9596 && TREE_CODE (parg1) != MULT_EXPR)
9597 return fold_build2_loc (loc, pcode, type,
9598 fold_build2_loc (loc, PLUS_EXPR, type,
9599 fold_convert_loc (loc, type,
9600 parg0),
9601 fold_convert_loc (loc, type,
9602 marg)),
9603 fold_convert_loc (loc, type, parg1));
9604 if (TREE_CODE (parg0) != MULT_EXPR
9605 && TREE_CODE (parg1) == MULT_EXPR)
9606 return
9607 fold_build2_loc (loc, PLUS_EXPR, type,
9608 fold_convert_loc (loc, type, parg0),
9609 fold_build2_loc (loc, pcode, type,
9610 fold_convert_loc (loc, type, marg),
9611 fold_convert_loc (loc, type,
9612 parg1)));
9613 }
9614 }
9615 else
9616 {
9617 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9618 to __complex__ ( x, y ). This is not the same for SNaNs or
9619 if signed zeros are involved. */
9620 if (!HONOR_SNANS (element_mode (arg0))
9621 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9622 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9623 {
9624 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9625 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9626 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9627 bool arg0rz = false, arg0iz = false;
9628 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9629 || (arg0i && (arg0iz = real_zerop (arg0i))))
9630 {
9631 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9632 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9633 if (arg0rz && arg1i && real_zerop (arg1i))
9634 {
9635 tree rp = arg1r ? arg1r
9636 : build1 (REALPART_EXPR, rtype, arg1);
9637 tree ip = arg0i ? arg0i
9638 : build1 (IMAGPART_EXPR, rtype, arg0);
9639 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9640 }
9641 else if (arg0iz && arg1r && real_zerop (arg1r))
9642 {
9643 tree rp = arg0r ? arg0r
9644 : build1 (REALPART_EXPR, rtype, arg0);
9645 tree ip = arg1i ? arg1i
9646 : build1 (IMAGPART_EXPR, rtype, arg1);
9647 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9648 }
9649 }
9650 }
9651
9652 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9653 We associate floats only if the user has specified
9654 -fassociative-math. */
9655 if (flag_associative_math
9656 && TREE_CODE (arg1) == PLUS_EXPR
9657 && TREE_CODE (arg0) != MULT_EXPR)
9658 {
9659 tree tree10 = TREE_OPERAND (arg1, 0);
9660 tree tree11 = TREE_OPERAND (arg1, 1);
9661 if (TREE_CODE (tree11) == MULT_EXPR
9662 && TREE_CODE (tree10) == MULT_EXPR)
9663 {
9664 tree tree0;
9665 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9666 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9667 }
9668 }
9669 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9670 We associate floats only if the user has specified
9671 -fassociative-math. */
9672 if (flag_associative_math
9673 && TREE_CODE (arg0) == PLUS_EXPR
9674 && TREE_CODE (arg1) != MULT_EXPR)
9675 {
9676 tree tree00 = TREE_OPERAND (arg0, 0);
9677 tree tree01 = TREE_OPERAND (arg0, 1);
9678 if (TREE_CODE (tree01) == MULT_EXPR
9679 && TREE_CODE (tree00) == MULT_EXPR)
9680 {
9681 tree tree0;
9682 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9683 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9684 }
9685 }
9686 }
9687
9688 bit_rotate:
9689 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9690 is a rotate of A by C1 bits. */
9691 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9692 is a rotate of A by B bits.
9693 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9694 though in this case CODE must be | and not + or ^, otherwise
9695 it doesn't return A when B is 0. */
9696 {
9697 enum tree_code code0, code1;
9698 tree rtype;
9699 code0 = TREE_CODE (arg0);
9700 code1 = TREE_CODE (arg1);
9701 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9702 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9703 && operand_equal_p (TREE_OPERAND (arg0, 0),
9704 TREE_OPERAND (arg1, 0), 0)
9705 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9706 TYPE_UNSIGNED (rtype))
9707 /* Only create rotates in complete modes. Other cases are not
9708 expanded properly. */
9709 && (element_precision (rtype)
9710 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9711 {
9712 tree tree01, tree11;
9713 tree orig_tree01, orig_tree11;
9714 enum tree_code code01, code11;
9715
9716 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
9717 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
9718 STRIP_NOPS (tree01);
9719 STRIP_NOPS (tree11);
9720 code01 = TREE_CODE (tree01);
9721 code11 = TREE_CODE (tree11);
9722 if (code11 != MINUS_EXPR
9723 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
9724 {
9725 std::swap (code0, code1);
9726 std::swap (code01, code11);
9727 std::swap (tree01, tree11);
9728 std::swap (orig_tree01, orig_tree11);
9729 }
9730 if (code01 == INTEGER_CST
9731 && code11 == INTEGER_CST
9732 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9733 == element_precision (rtype)))
9734 {
9735 tem = build2_loc (loc, LROTATE_EXPR,
9736 rtype, TREE_OPERAND (arg0, 0),
9737 code0 == LSHIFT_EXPR
9738 ? orig_tree01 : orig_tree11);
9739 return fold_convert_loc (loc, type, tem);
9740 }
9741 else if (code11 == MINUS_EXPR)
9742 {
9743 tree tree110, tree111;
9744 tree110 = TREE_OPERAND (tree11, 0);
9745 tree111 = TREE_OPERAND (tree11, 1);
9746 STRIP_NOPS (tree110);
9747 STRIP_NOPS (tree111);
9748 if (TREE_CODE (tree110) == INTEGER_CST
9749 && compare_tree_int (tree110,
9750 element_precision (rtype)) == 0
9751 && operand_equal_p (tree01, tree111, 0))
9752 {
9753 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9754 ? LROTATE_EXPR : RROTATE_EXPR),
9755 rtype, TREE_OPERAND (arg0, 0),
9756 orig_tree01);
9757 return fold_convert_loc (loc, type, tem);
9758 }
9759 }
9760 else if (code == BIT_IOR_EXPR
9761 && code11 == BIT_AND_EXPR
9762 && pow2p_hwi (element_precision (rtype)))
9763 {
9764 tree tree110, tree111;
9765 tree110 = TREE_OPERAND (tree11, 0);
9766 tree111 = TREE_OPERAND (tree11, 1);
9767 STRIP_NOPS (tree110);
9768 STRIP_NOPS (tree111);
9769 if (TREE_CODE (tree110) == NEGATE_EXPR
9770 && TREE_CODE (tree111) == INTEGER_CST
9771 && compare_tree_int (tree111,
9772 element_precision (rtype) - 1) == 0
9773 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
9774 {
9775 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9776 ? LROTATE_EXPR : RROTATE_EXPR),
9777 rtype, TREE_OPERAND (arg0, 0),
9778 orig_tree01);
9779 return fold_convert_loc (loc, type, tem);
9780 }
9781 }
9782 }
9783 }
9784
9785 associate:
9786 /* In most languages, can't associate operations on floats through
9787 parentheses. Rather than remember where the parentheses were, we
9788 don't associate floats at all, unless the user has specified
9789 -fassociative-math.
9790 And, we need to make sure type is not saturating. */
9791
9792 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9793 && !TYPE_SATURATING (type))
9794 {
9795 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9796 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9797 tree atype = type;
9798 bool ok = true;
9799
9800 /* Split both trees into variables, constants, and literals. Then
9801 associate each group together, the constants with literals,
9802 then the result with variables. This increases the chances of
9803 literals being recombined later and of generating relocatable
9804 expressions for the sum of a constant and literal. */
9805 var0 = split_tree (arg0, type, code,
9806 &minus_var0, &con0, &minus_con0,
9807 &lit0, &minus_lit0, 0);
9808 var1 = split_tree (arg1, type, code,
9809 &minus_var1, &con1, &minus_con1,
9810 &lit1, &minus_lit1, code == MINUS_EXPR);
9811
9812 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9813 if (code == MINUS_EXPR)
9814 code = PLUS_EXPR;
9815
9816 /* With undefined overflow prefer doing association in a type
9817 which wraps on overflow, if that is one of the operand types. */
9818 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
9819 && !TYPE_OVERFLOW_WRAPS (type))
9820 {
9821 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9822 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9823 atype = TREE_TYPE (arg0);
9824 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9825 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9826 atype = TREE_TYPE (arg1);
9827 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9828 }
9829
9830 /* With undefined overflow we can only associate constants with one
9831 variable, and constants whose association doesn't overflow. */
9832 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
9833 && !TYPE_OVERFLOW_WRAPS (atype))
9834 {
9835 if ((var0 && var1) || (minus_var0 && minus_var1))
9836 {
9837 /* ??? If split_tree would handle NEGATE_EXPR we could
9838 simply reject these cases and the allowed cases would
9839 be the var0/minus_var1 ones. */
9840 tree tmp0 = var0 ? var0 : minus_var0;
9841 tree tmp1 = var1 ? var1 : minus_var1;
9842 bool one_neg = false;
9843
9844 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9845 {
9846 tmp0 = TREE_OPERAND (tmp0, 0);
9847 one_neg = !one_neg;
9848 }
9849 if (CONVERT_EXPR_P (tmp0)
9850 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9851 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9852 <= TYPE_PRECISION (atype)))
9853 tmp0 = TREE_OPERAND (tmp0, 0);
9854 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9855 {
9856 tmp1 = TREE_OPERAND (tmp1, 0);
9857 one_neg = !one_neg;
9858 }
9859 if (CONVERT_EXPR_P (tmp1)
9860 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9861 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9862 <= TYPE_PRECISION (atype)))
9863 tmp1 = TREE_OPERAND (tmp1, 0);
9864 /* The only case we can still associate with two variables
9865 is if they cancel out. */
9866 if (!one_neg
9867 || !operand_equal_p (tmp0, tmp1, 0))
9868 ok = false;
9869 }
9870 else if ((var0 && minus_var1
9871 && ! operand_equal_p (var0, minus_var1, 0))
9872 || (minus_var0 && var1
9873 && ! operand_equal_p (minus_var0, var1, 0)))
9874 ok = false;
9875 }
9876
9877 /* Only do something if we found more than two objects. Otherwise,
9878 nothing has changed and we risk infinite recursion. */
9879 if (ok
9880 && ((var0 != 0) + (var1 != 0)
9881 + (minus_var0 != 0) + (minus_var1 != 0)
9882 + (con0 != 0) + (con1 != 0)
9883 + (minus_con0 != 0) + (minus_con1 != 0)
9884 + (lit0 != 0) + (lit1 != 0)
9885 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
9886 {
9887 var0 = associate_trees (loc, var0, var1, code, atype);
9888 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9889 code, atype);
9890 con0 = associate_trees (loc, con0, con1, code, atype);
9891 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9892 code, atype);
9893 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9894 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9895 code, atype);
9896
9897 if (minus_var0 && var0)
9898 {
9899 var0 = associate_trees (loc, var0, minus_var0,
9900 MINUS_EXPR, atype);
9901 minus_var0 = 0;
9902 }
9903 if (minus_con0 && con0)
9904 {
9905 con0 = associate_trees (loc, con0, minus_con0,
9906 MINUS_EXPR, atype);
9907 minus_con0 = 0;
9908 }
9909
9910 /* Preserve the MINUS_EXPR if the negative part of the literal is
9911 greater than the positive part. Otherwise, the multiplicative
9912 folding code (i.e extract_muldiv) may be fooled in case
9913 unsigned constants are subtracted, like in the following
9914 example: ((X*2 + 4) - 8U)/2. */
9915 if (minus_lit0 && lit0)
9916 {
9917 if (TREE_CODE (lit0) == INTEGER_CST
9918 && TREE_CODE (minus_lit0) == INTEGER_CST
9919 && tree_int_cst_lt (lit0, minus_lit0)
9920 /* But avoid ending up with only negated parts. */
9921 && (var0 || con0))
9922 {
9923 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9924 MINUS_EXPR, atype);
9925 lit0 = 0;
9926 }
9927 else
9928 {
9929 lit0 = associate_trees (loc, lit0, minus_lit0,
9930 MINUS_EXPR, atype);
9931 minus_lit0 = 0;
9932 }
9933 }
9934
9935 /* Don't introduce overflows through reassociation. */
9936 if ((lit0 && TREE_OVERFLOW_P (lit0))
9937 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9938 return NULL_TREE;
9939
9940 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9941 con0 = associate_trees (loc, con0, lit0, code, atype);
9942 lit0 = 0;
9943 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9944 code, atype);
9945 minus_lit0 = 0;
9946
9947 /* Eliminate minus_con0. */
9948 if (minus_con0)
9949 {
9950 if (con0)
9951 con0 = associate_trees (loc, con0, minus_con0,
9952 MINUS_EXPR, atype);
9953 else if (var0)
9954 var0 = associate_trees (loc, var0, minus_con0,
9955 MINUS_EXPR, atype);
9956 else
9957 gcc_unreachable ();
9958 minus_con0 = 0;
9959 }
9960
9961 /* Eliminate minus_var0. */
9962 if (minus_var0)
9963 {
9964 if (con0)
9965 con0 = associate_trees (loc, con0, minus_var0,
9966 MINUS_EXPR, atype);
9967 else
9968 gcc_unreachable ();
9969 minus_var0 = 0;
9970 }
9971
9972 return
9973 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9974 code, atype));
9975 }
9976 }
9977
9978 return NULL_TREE;
9979
9980 case POINTER_DIFF_EXPR:
9981 case MINUS_EXPR:
9982 /* Fold &a[i] - &a[j] to i-j. */
9983 if (TREE_CODE (arg0) == ADDR_EXPR
9984 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9985 && TREE_CODE (arg1) == ADDR_EXPR
9986 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9987 {
9988 tree tem = fold_addr_of_array_ref_difference (loc, type,
9989 TREE_OPERAND (arg0, 0),
9990 TREE_OPERAND (arg1, 0),
9991 code
9992 == POINTER_DIFF_EXPR);
9993 if (tem)
9994 return tem;
9995 }
9996
9997 /* Further transformations are not for pointers. */
9998 if (code == POINTER_DIFF_EXPR)
9999 return NULL_TREE;
10000
10001 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10002 if (TREE_CODE (arg0) == NEGATE_EXPR
10003 && negate_expr_p (op1)
10004 /* If arg0 is e.g. unsigned int and type is int, then this could
10005 introduce UB, because if A is INT_MIN at runtime, the original
10006 expression can be well defined while the latter is not.
10007 See PR83269. */
10008 && !(ANY_INTEGRAL_TYPE_P (type)
10009 && TYPE_OVERFLOW_UNDEFINED (type)
10010 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10011 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10012 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
10013 fold_convert_loc (loc, type,
10014 TREE_OPERAND (arg0, 0)));
10015
10016 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10017 __complex__ ( x, -y ). This is not the same for SNaNs or if
10018 signed zeros are involved. */
10019 if (!HONOR_SNANS (element_mode (arg0))
10020 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10021 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10022 {
10023 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10024 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10025 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10026 bool arg0rz = false, arg0iz = false;
10027 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10028 || (arg0i && (arg0iz = real_zerop (arg0i))))
10029 {
10030 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10031 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10032 if (arg0rz && arg1i && real_zerop (arg1i))
10033 {
10034 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10035 arg1r ? arg1r
10036 : build1 (REALPART_EXPR, rtype, arg1));
10037 tree ip = arg0i ? arg0i
10038 : build1 (IMAGPART_EXPR, rtype, arg0);
10039 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10040 }
10041 else if (arg0iz && arg1r && real_zerop (arg1r))
10042 {
10043 tree rp = arg0r ? arg0r
10044 : build1 (REALPART_EXPR, rtype, arg0);
10045 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10046 arg1i ? arg1i
10047 : build1 (IMAGPART_EXPR, rtype, arg1));
10048 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10049 }
10050 }
10051 }
10052
10053 /* A - B -> A + (-B) if B is easily negatable. */
10054 if (negate_expr_p (op1)
10055 && ! TYPE_OVERFLOW_SANITIZED (type)
10056 && ((FLOAT_TYPE_P (type)
10057 /* Avoid this transformation if B is a positive REAL_CST. */
10058 && (TREE_CODE (op1) != REAL_CST
10059 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
10060 || INTEGRAL_TYPE_P (type)))
10061 return fold_build2_loc (loc, PLUS_EXPR, type,
10062 fold_convert_loc (loc, type, arg0),
10063 negate_expr (op1));
10064
10065 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10066 one. Make sure the type is not saturating and has the signedness of
10067 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10068 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10069 if ((TREE_CODE (arg0) == MULT_EXPR
10070 || TREE_CODE (arg1) == MULT_EXPR)
10071 && !TYPE_SATURATING (type)
10072 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10073 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10074 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10075 {
10076 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10077 if (tem)
10078 return tem;
10079 }
10080
10081 goto associate;
10082
10083 case MULT_EXPR:
10084 if (! FLOAT_TYPE_P (type))
10085 {
10086 /* Transform x * -C into -x * C if x is easily negatable. */
10087 if (TREE_CODE (op1) == INTEGER_CST
10088 && tree_int_cst_sgn (op1) == -1
10089 && negate_expr_p (op0)
10090 && negate_expr_p (op1)
10091 && (tem = negate_expr (op1)) != op1
10092 && ! TREE_OVERFLOW (tem))
10093 return fold_build2_loc (loc, MULT_EXPR, type,
10094 fold_convert_loc (loc, type,
10095 negate_expr (op0)), tem);
10096
10097 strict_overflow_p = false;
10098 if (TREE_CODE (arg1) == INTEGER_CST
10099 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10100 &strict_overflow_p)) != 0)
10101 {
10102 if (strict_overflow_p)
10103 fold_overflow_warning (("assuming signed overflow does not "
10104 "occur when simplifying "
10105 "multiplication"),
10106 WARN_STRICT_OVERFLOW_MISC);
10107 return fold_convert_loc (loc, type, tem);
10108 }
10109
10110 /* Optimize z * conj(z) for integer complex numbers. */
10111 if (TREE_CODE (arg0) == CONJ_EXPR
10112 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10113 return fold_mult_zconjz (loc, type, arg1);
10114 if (TREE_CODE (arg1) == CONJ_EXPR
10115 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10116 return fold_mult_zconjz (loc, type, arg0);
10117 }
10118 else
10119 {
10120 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10121 This is not the same for NaNs or if signed zeros are
10122 involved. */
10123 if (!HONOR_NANS (arg0)
10124 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10125 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10126 && TREE_CODE (arg1) == COMPLEX_CST
10127 && real_zerop (TREE_REALPART (arg1)))
10128 {
10129 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10130 if (real_onep (TREE_IMAGPART (arg1)))
10131 return
10132 fold_build2_loc (loc, COMPLEX_EXPR, type,
10133 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10134 rtype, arg0)),
10135 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10136 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10137 return
10138 fold_build2_loc (loc, COMPLEX_EXPR, type,
10139 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10140 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10141 rtype, arg0)));
10142 }
10143
10144 /* Optimize z * conj(z) for floating point complex numbers.
10145 Guarded by flag_unsafe_math_optimizations as non-finite
10146 imaginary components don't produce scalar results. */
10147 if (flag_unsafe_math_optimizations
10148 && TREE_CODE (arg0) == CONJ_EXPR
10149 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10150 return fold_mult_zconjz (loc, type, arg1);
10151 if (flag_unsafe_math_optimizations
10152 && TREE_CODE (arg1) == CONJ_EXPR
10153 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10154 return fold_mult_zconjz (loc, type, arg0);
10155 }
10156 goto associate;
10157
10158 case BIT_IOR_EXPR:
10159 /* Canonicalize (X & C1) | C2. */
10160 if (TREE_CODE (arg0) == BIT_AND_EXPR
10161 && TREE_CODE (arg1) == INTEGER_CST
10162 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10163 {
10164 int width = TYPE_PRECISION (type), w;
10165 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
10166 wide_int c2 = wi::to_wide (arg1);
10167
10168 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10169 if ((c1 & c2) == c1)
10170 return omit_one_operand_loc (loc, type, arg1,
10171 TREE_OPERAND (arg0, 0));
10172
10173 wide_int msk = wi::mask (width, false,
10174 TYPE_PRECISION (TREE_TYPE (arg1)));
10175
10176 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10177 if (wi::bit_and_not (msk, c1 | c2) == 0)
10178 {
10179 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10180 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10181 }
10182
10183 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10184 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10185 mode which allows further optimizations. */
10186 c1 &= msk;
10187 c2 &= msk;
10188 wide_int c3 = wi::bit_and_not (c1, c2);
10189 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10190 {
10191 wide_int mask = wi::mask (w, false,
10192 TYPE_PRECISION (type));
10193 if (((c1 | c2) & mask) == mask
10194 && wi::bit_and_not (c1, mask) == 0)
10195 {
10196 c3 = mask;
10197 break;
10198 }
10199 }
10200
10201 if (c3 != c1)
10202 {
10203 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10204 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
10205 wide_int_to_tree (type, c3));
10206 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10207 }
10208 }
10209
10210 /* See if this can be simplified into a rotate first. If that
10211 is unsuccessful continue in the association code. */
10212 goto bit_rotate;
10213
10214 case BIT_XOR_EXPR:
10215 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10216 if (TREE_CODE (arg0) == BIT_AND_EXPR
10217 && INTEGRAL_TYPE_P (type)
10218 && integer_onep (TREE_OPERAND (arg0, 1))
10219 && integer_onep (arg1))
10220 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10221 build_zero_cst (TREE_TYPE (arg0)));
10222
10223 /* See if this can be simplified into a rotate first. If that
10224 is unsuccessful continue in the association code. */
10225 goto bit_rotate;
10226
10227 case BIT_AND_EXPR:
10228 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10229 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10230 && INTEGRAL_TYPE_P (type)
10231 && integer_onep (TREE_OPERAND (arg0, 1))
10232 && integer_onep (arg1))
10233 {
10234 tree tem2;
10235 tem = TREE_OPERAND (arg0, 0);
10236 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10237 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10238 tem, tem2);
10239 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10240 build_zero_cst (TREE_TYPE (tem)));
10241 }
10242 /* Fold ~X & 1 as (X & 1) == 0. */
10243 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10244 && INTEGRAL_TYPE_P (type)
10245 && integer_onep (arg1))
10246 {
10247 tree tem2;
10248 tem = TREE_OPERAND (arg0, 0);
10249 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10250 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10251 tem, tem2);
10252 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10253 build_zero_cst (TREE_TYPE (tem)));
10254 }
10255 /* Fold !X & 1 as X == 0. */
10256 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10257 && integer_onep (arg1))
10258 {
10259 tem = TREE_OPERAND (arg0, 0);
10260 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10261 build_zero_cst (TREE_TYPE (tem)));
10262 }
10263
10264 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10265 multiple of 1 << CST. */
10266 if (TREE_CODE (arg1) == INTEGER_CST)
10267 {
10268 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10269 wide_int ncst1 = -cst1;
10270 if ((cst1 & ncst1) == ncst1
10271 && multiple_of_p (type, arg0,
10272 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10273 return fold_convert_loc (loc, type, arg0);
10274 }
10275
10276 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10277 bits from CST2. */
10278 if (TREE_CODE (arg1) == INTEGER_CST
10279 && TREE_CODE (arg0) == MULT_EXPR
10280 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10281 {
10282 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
10283 wide_int masked
10284 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
10285
10286 if (masked == 0)
10287 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10288 arg0, arg1);
10289 else if (masked != warg1)
10290 {
10291 /* Avoid the transform if arg1 is a mask of some
10292 mode which allows further optimizations. */
10293 int pop = wi::popcount (warg1);
10294 if (!(pop >= BITS_PER_UNIT
10295 && pow2p_hwi (pop)
10296 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10297 return fold_build2_loc (loc, code, type, op0,
10298 wide_int_to_tree (type, masked));
10299 }
10300 }
10301
10302 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10303 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10304 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10305 {
10306 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10307
10308 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
10309 if (mask == -1)
10310 return
10311 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10312 }
10313
10314 goto associate;
10315
10316 case RDIV_EXPR:
10317 /* Don't touch a floating-point divide by zero unless the mode
10318 of the constant can represent infinity. */
10319 if (TREE_CODE (arg1) == REAL_CST
10320 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10321 && real_zerop (arg1))
10322 return NULL_TREE;
10323
10324 /* (-A) / (-B) -> A / B */
10325 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10326 return fold_build2_loc (loc, RDIV_EXPR, type,
10327 TREE_OPERAND (arg0, 0),
10328 negate_expr (arg1));
10329 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10330 return fold_build2_loc (loc, RDIV_EXPR, type,
10331 negate_expr (arg0),
10332 TREE_OPERAND (arg1, 0));
10333 return NULL_TREE;
10334
10335 case TRUNC_DIV_EXPR:
10336 /* Fall through */
10337
10338 case FLOOR_DIV_EXPR:
10339 /* Simplify A / (B << N) where A and B are positive and B is
10340 a power of 2, to A >> (N + log2(B)). */
10341 strict_overflow_p = false;
10342 if (TREE_CODE (arg1) == LSHIFT_EXPR
10343 && (TYPE_UNSIGNED (type)
10344 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10345 {
10346 tree sval = TREE_OPERAND (arg1, 0);
10347 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10348 {
10349 tree sh_cnt = TREE_OPERAND (arg1, 1);
10350 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10351 wi::exact_log2 (wi::to_wide (sval)));
10352
10353 if (strict_overflow_p)
10354 fold_overflow_warning (("assuming signed overflow does not "
10355 "occur when simplifying A / (B << N)"),
10356 WARN_STRICT_OVERFLOW_MISC);
10357
10358 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10359 sh_cnt, pow2);
10360 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10361 fold_convert_loc (loc, type, arg0), sh_cnt);
10362 }
10363 }
10364
10365 /* Fall through */
10366
10367 case ROUND_DIV_EXPR:
10368 case CEIL_DIV_EXPR:
10369 case EXACT_DIV_EXPR:
10370 if (integer_zerop (arg1))
10371 return NULL_TREE;
10372
10373 /* Convert -A / -B to A / B when the type is signed and overflow is
10374 undefined. */
10375 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10376 && TREE_CODE (op0) == NEGATE_EXPR
10377 && negate_expr_p (op1))
10378 {
10379 if (INTEGRAL_TYPE_P (type))
10380 fold_overflow_warning (("assuming signed overflow does not occur "
10381 "when distributing negation across "
10382 "division"),
10383 WARN_STRICT_OVERFLOW_MISC);
10384 return fold_build2_loc (loc, code, type,
10385 fold_convert_loc (loc, type,
10386 TREE_OPERAND (arg0, 0)),
10387 negate_expr (op1));
10388 }
10389 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10390 && TREE_CODE (arg1) == NEGATE_EXPR
10391 && negate_expr_p (op0))
10392 {
10393 if (INTEGRAL_TYPE_P (type))
10394 fold_overflow_warning (("assuming signed overflow does not occur "
10395 "when distributing negation across "
10396 "division"),
10397 WARN_STRICT_OVERFLOW_MISC);
10398 return fold_build2_loc (loc, code, type,
10399 negate_expr (op0),
10400 fold_convert_loc (loc, type,
10401 TREE_OPERAND (arg1, 0)));
10402 }
10403
10404 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10405 operation, EXACT_DIV_EXPR.
10406
10407 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10408 At one time others generated faster code, it's not clear if they do
10409 after the last round to changes to the DIV code in expmed.c. */
10410 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10411 && multiple_of_p (type, arg0, arg1))
10412 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10413 fold_convert (type, arg0),
10414 fold_convert (type, arg1));
10415
10416 strict_overflow_p = false;
10417 if (TREE_CODE (arg1) == INTEGER_CST
10418 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10419 &strict_overflow_p)) != 0)
10420 {
10421 if (strict_overflow_p)
10422 fold_overflow_warning (("assuming signed overflow does not occur "
10423 "when simplifying division"),
10424 WARN_STRICT_OVERFLOW_MISC);
10425 return fold_convert_loc (loc, type, tem);
10426 }
10427
10428 return NULL_TREE;
10429
10430 case CEIL_MOD_EXPR:
10431 case FLOOR_MOD_EXPR:
10432 case ROUND_MOD_EXPR:
10433 case TRUNC_MOD_EXPR:
10434 strict_overflow_p = false;
10435 if (TREE_CODE (arg1) == INTEGER_CST
10436 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10437 &strict_overflow_p)) != 0)
10438 {
10439 if (strict_overflow_p)
10440 fold_overflow_warning (("assuming signed overflow does not occur "
10441 "when simplifying modulus"),
10442 WARN_STRICT_OVERFLOW_MISC);
10443 return fold_convert_loc (loc, type, tem);
10444 }
10445
10446 return NULL_TREE;
10447
10448 case LROTATE_EXPR:
10449 case RROTATE_EXPR:
10450 case RSHIFT_EXPR:
10451 case LSHIFT_EXPR:
10452 /* Since negative shift count is not well-defined,
10453 don't try to compute it in the compiler. */
10454 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10455 return NULL_TREE;
10456
10457 prec = element_precision (type);
10458
10459 /* If we have a rotate of a bit operation with the rotate count and
10460 the second operand of the bit operation both constant,
10461 permute the two operations. */
10462 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10463 && (TREE_CODE (arg0) == BIT_AND_EXPR
10464 || TREE_CODE (arg0) == BIT_IOR_EXPR
10465 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10466 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10467 {
10468 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10469 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10470 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10471 fold_build2_loc (loc, code, type,
10472 arg00, arg1),
10473 fold_build2_loc (loc, code, type,
10474 arg01, arg1));
10475 }
10476
10477 /* Two consecutive rotates adding up to the some integer
10478 multiple of the precision of the type can be ignored. */
10479 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10480 && TREE_CODE (arg0) == RROTATE_EXPR
10481 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10482 && wi::umod_trunc (wi::to_wide (arg1)
10483 + wi::to_wide (TREE_OPERAND (arg0, 1)),
10484 prec) == 0)
10485 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10486
10487 return NULL_TREE;
10488
10489 case MIN_EXPR:
10490 case MAX_EXPR:
10491 goto associate;
10492
10493 case TRUTH_ANDIF_EXPR:
10494 /* Note that the operands of this must be ints
10495 and their values must be 0 or 1.
10496 ("true" is a fixed value perhaps depending on the language.) */
10497 /* If first arg is constant zero, return it. */
10498 if (integer_zerop (arg0))
10499 return fold_convert_loc (loc, type, arg0);
10500 /* FALLTHRU */
10501 case TRUTH_AND_EXPR:
10502 /* If either arg is constant true, drop it. */
10503 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10504 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10505 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10506 /* Preserve sequence points. */
10507 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10508 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10509 /* If second arg is constant zero, result is zero, but first arg
10510 must be evaluated. */
10511 if (integer_zerop (arg1))
10512 return omit_one_operand_loc (loc, type, arg1, arg0);
10513 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10514 case will be handled here. */
10515 if (integer_zerop (arg0))
10516 return omit_one_operand_loc (loc, type, arg0, arg1);
10517
10518 /* !X && X is always false. */
10519 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10520 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10521 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10522 /* X && !X is always false. */
10523 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10524 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10525 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10526
10527 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10528 means A >= Y && A != MAX, but in this case we know that
10529 A < X <= MAX. */
10530
10531 if (!TREE_SIDE_EFFECTS (arg0)
10532 && !TREE_SIDE_EFFECTS (arg1))
10533 {
10534 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10535 if (tem && !operand_equal_p (tem, arg0, 0))
10536 return fold_build2_loc (loc, code, type, tem, arg1);
10537
10538 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10539 if (tem && !operand_equal_p (tem, arg1, 0))
10540 return fold_build2_loc (loc, code, type, arg0, tem);
10541 }
10542
10543 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10544 != NULL_TREE)
10545 return tem;
10546
10547 return NULL_TREE;
10548
10549 case TRUTH_ORIF_EXPR:
10550 /* Note that the operands of this must be ints
10551 and their values must be 0 or true.
10552 ("true" is a fixed value perhaps depending on the language.) */
10553 /* If first arg is constant true, return it. */
10554 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10555 return fold_convert_loc (loc, type, arg0);
10556 /* FALLTHRU */
10557 case TRUTH_OR_EXPR:
10558 /* If either arg is constant zero, drop it. */
10559 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10560 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10561 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10562 /* Preserve sequence points. */
10563 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10564 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10565 /* If second arg is constant true, result is true, but we must
10566 evaluate first arg. */
10567 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10568 return omit_one_operand_loc (loc, type, arg1, arg0);
10569 /* Likewise for first arg, but note this only occurs here for
10570 TRUTH_OR_EXPR. */
10571 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10572 return omit_one_operand_loc (loc, type, arg0, arg1);
10573
10574 /* !X || X is always true. */
10575 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10576 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10577 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10578 /* X || !X is always true. */
10579 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10580 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10581 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10582
10583 /* (X && !Y) || (!X && Y) is X ^ Y */
10584 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10585 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10586 {
10587 tree a0, a1, l0, l1, n0, n1;
10588
10589 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10590 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10591
10592 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10593 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10594
10595 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10596 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10597
10598 if ((operand_equal_p (n0, a0, 0)
10599 && operand_equal_p (n1, a1, 0))
10600 || (operand_equal_p (n0, a1, 0)
10601 && operand_equal_p (n1, a0, 0)))
10602 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10603 }
10604
10605 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10606 != NULL_TREE)
10607 return tem;
10608
10609 return NULL_TREE;
10610
10611 case TRUTH_XOR_EXPR:
10612 /* If the second arg is constant zero, drop it. */
10613 if (integer_zerop (arg1))
10614 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10615 /* If the second arg is constant true, this is a logical inversion. */
10616 if (integer_onep (arg1))
10617 {
10618 tem = invert_truthvalue_loc (loc, arg0);
10619 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10620 }
10621 /* Identical arguments cancel to zero. */
10622 if (operand_equal_p (arg0, arg1, 0))
10623 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10624
10625 /* !X ^ X is always true. */
10626 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10627 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10628 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10629
10630 /* X ^ !X is always true. */
10631 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10632 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10633 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10634
10635 return NULL_TREE;
10636
10637 case EQ_EXPR:
10638 case NE_EXPR:
10639 STRIP_NOPS (arg0);
10640 STRIP_NOPS (arg1);
10641
10642 tem = fold_comparison (loc, code, type, op0, op1);
10643 if (tem != NULL_TREE)
10644 return tem;
10645
10646 /* bool_var != 1 becomes !bool_var. */
10647 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10648 && code == NE_EXPR)
10649 return fold_convert_loc (loc, type,
10650 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10651 TREE_TYPE (arg0), arg0));
10652
10653 /* bool_var == 0 becomes !bool_var. */
10654 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10655 && code == EQ_EXPR)
10656 return fold_convert_loc (loc, type,
10657 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10658 TREE_TYPE (arg0), arg0));
10659
10660 /* !exp != 0 becomes !exp */
10661 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10662 && code == NE_EXPR)
10663 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10664
10665 /* If this is an EQ or NE comparison with zero and ARG0 is
10666 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10667 two operations, but the latter can be done in one less insn
10668 on machines that have only two-operand insns or on which a
10669 constant cannot be the first operand. */
10670 if (TREE_CODE (arg0) == BIT_AND_EXPR
10671 && integer_zerop (arg1))
10672 {
10673 tree arg00 = TREE_OPERAND (arg0, 0);
10674 tree arg01 = TREE_OPERAND (arg0, 1);
10675 if (TREE_CODE (arg00) == LSHIFT_EXPR
10676 && integer_onep (TREE_OPERAND (arg00, 0)))
10677 {
10678 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10679 arg01, TREE_OPERAND (arg00, 1));
10680 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10681 build_int_cst (TREE_TYPE (arg0), 1));
10682 return fold_build2_loc (loc, code, type,
10683 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10684 arg1);
10685 }
10686 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10687 && integer_onep (TREE_OPERAND (arg01, 0)))
10688 {
10689 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10690 arg00, TREE_OPERAND (arg01, 1));
10691 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10692 build_int_cst (TREE_TYPE (arg0), 1));
10693 return fold_build2_loc (loc, code, type,
10694 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10695 arg1);
10696 }
10697 }
10698
10699 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10700 C1 is a valid shift constant, and C2 is a power of two, i.e.
10701 a single bit. */
10702 if (TREE_CODE (arg0) == BIT_AND_EXPR
10703 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10704 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10705 == INTEGER_CST
10706 && integer_pow2p (TREE_OPERAND (arg0, 1))
10707 && integer_zerop (arg1))
10708 {
10709 tree itype = TREE_TYPE (arg0);
10710 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10711 prec = TYPE_PRECISION (itype);
10712
10713 /* Check for a valid shift count. */
10714 if (wi::ltu_p (wi::to_wide (arg001), prec))
10715 {
10716 tree arg01 = TREE_OPERAND (arg0, 1);
10717 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10718 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10719 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10720 can be rewritten as (X & (C2 << C1)) != 0. */
10721 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10722 {
10723 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10724 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10725 return fold_build2_loc (loc, code, type, tem,
10726 fold_convert_loc (loc, itype, arg1));
10727 }
10728 /* Otherwise, for signed (arithmetic) shifts,
10729 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10730 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10731 else if (!TYPE_UNSIGNED (itype))
10732 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10733 arg000, build_int_cst (itype, 0));
10734 /* Otherwise, of unsigned (logical) shifts,
10735 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10736 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10737 else
10738 return omit_one_operand_loc (loc, type,
10739 code == EQ_EXPR ? integer_one_node
10740 : integer_zero_node,
10741 arg000);
10742 }
10743 }
10744
10745 /* If this is a comparison of a field, we may be able to simplify it. */
10746 if ((TREE_CODE (arg0) == COMPONENT_REF
10747 || TREE_CODE (arg0) == BIT_FIELD_REF)
10748 /* Handle the constant case even without -O
10749 to make sure the warnings are given. */
10750 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10751 {
10752 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10753 if (t1)
10754 return t1;
10755 }
10756
10757 /* Optimize comparisons of strlen vs zero to a compare of the
10758 first character of the string vs zero. To wit,
10759 strlen(ptr) == 0 => *ptr == 0
10760 strlen(ptr) != 0 => *ptr != 0
10761 Other cases should reduce to one of these two (or a constant)
10762 due to the return value of strlen being unsigned. */
10763 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
10764 {
10765 tree fndecl = get_callee_fndecl (arg0);
10766
10767 if (fndecl
10768 && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN)
10769 && call_expr_nargs (arg0) == 1
10770 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
10771 == POINTER_TYPE))
10772 {
10773 tree ptrtype
10774 = build_pointer_type (build_qualified_type (char_type_node,
10775 TYPE_QUAL_CONST));
10776 tree ptr = fold_convert_loc (loc, ptrtype,
10777 CALL_EXPR_ARG (arg0, 0));
10778 tree iref = build_fold_indirect_ref_loc (loc, ptr);
10779 return fold_build2_loc (loc, code, type, iref,
10780 build_int_cst (TREE_TYPE (iref), 0));
10781 }
10782 }
10783
10784 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10785 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10786 if (TREE_CODE (arg0) == RSHIFT_EXPR
10787 && integer_zerop (arg1)
10788 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10789 {
10790 tree arg00 = TREE_OPERAND (arg0, 0);
10791 tree arg01 = TREE_OPERAND (arg0, 1);
10792 tree itype = TREE_TYPE (arg00);
10793 if (wi::to_wide (arg01) == element_precision (itype) - 1)
10794 {
10795 if (TYPE_UNSIGNED (itype))
10796 {
10797 itype = signed_type_for (itype);
10798 arg00 = fold_convert_loc (loc, itype, arg00);
10799 }
10800 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10801 type, arg00, build_zero_cst (itype));
10802 }
10803 }
10804
10805 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10806 (X & C) == 0 when C is a single bit. */
10807 if (TREE_CODE (arg0) == BIT_AND_EXPR
10808 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10809 && integer_zerop (arg1)
10810 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10811 {
10812 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10813 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10814 TREE_OPERAND (arg0, 1));
10815 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10816 type, tem,
10817 fold_convert_loc (loc, TREE_TYPE (arg0),
10818 arg1));
10819 }
10820
10821 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10822 constant C is a power of two, i.e. a single bit. */
10823 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10824 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10825 && integer_zerop (arg1)
10826 && integer_pow2p (TREE_OPERAND (arg0, 1))
10827 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10828 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10829 {
10830 tree arg00 = TREE_OPERAND (arg0, 0);
10831 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10832 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10833 }
10834
10835 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10836 when is C is a power of two, i.e. a single bit. */
10837 if (TREE_CODE (arg0) == BIT_AND_EXPR
10838 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10839 && integer_zerop (arg1)
10840 && integer_pow2p (TREE_OPERAND (arg0, 1))
10841 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10842 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10843 {
10844 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10845 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10846 arg000, TREE_OPERAND (arg0, 1));
10847 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10848 tem, build_int_cst (TREE_TYPE (tem), 0));
10849 }
10850
10851 if (integer_zerop (arg1)
10852 && tree_expr_nonzero_p (arg0))
10853 {
10854 tree res = constant_boolean_node (code==NE_EXPR, type);
10855 return omit_one_operand_loc (loc, type, res, arg0);
10856 }
10857
10858 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10859 if (TREE_CODE (arg0) == BIT_AND_EXPR
10860 && TREE_CODE (arg1) == BIT_AND_EXPR)
10861 {
10862 tree arg00 = TREE_OPERAND (arg0, 0);
10863 tree arg01 = TREE_OPERAND (arg0, 1);
10864 tree arg10 = TREE_OPERAND (arg1, 0);
10865 tree arg11 = TREE_OPERAND (arg1, 1);
10866 tree itype = TREE_TYPE (arg0);
10867
10868 if (operand_equal_p (arg01, arg11, 0))
10869 {
10870 tem = fold_convert_loc (loc, itype, arg10);
10871 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10872 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10873 return fold_build2_loc (loc, code, type, tem,
10874 build_zero_cst (itype));
10875 }
10876 if (operand_equal_p (arg01, arg10, 0))
10877 {
10878 tem = fold_convert_loc (loc, itype, arg11);
10879 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10880 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10881 return fold_build2_loc (loc, code, type, tem,
10882 build_zero_cst (itype));
10883 }
10884 if (operand_equal_p (arg00, arg11, 0))
10885 {
10886 tem = fold_convert_loc (loc, itype, arg10);
10887 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10888 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10889 return fold_build2_loc (loc, code, type, tem,
10890 build_zero_cst (itype));
10891 }
10892 if (operand_equal_p (arg00, arg10, 0))
10893 {
10894 tem = fold_convert_loc (loc, itype, arg11);
10895 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10896 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10897 return fold_build2_loc (loc, code, type, tem,
10898 build_zero_cst (itype));
10899 }
10900 }
10901
10902 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10903 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10904 {
10905 tree arg00 = TREE_OPERAND (arg0, 0);
10906 tree arg01 = TREE_OPERAND (arg0, 1);
10907 tree arg10 = TREE_OPERAND (arg1, 0);
10908 tree arg11 = TREE_OPERAND (arg1, 1);
10909 tree itype = TREE_TYPE (arg0);
10910
10911 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10912 operand_equal_p guarantees no side-effects so we don't need
10913 to use omit_one_operand on Z. */
10914 if (operand_equal_p (arg01, arg11, 0))
10915 return fold_build2_loc (loc, code, type, arg00,
10916 fold_convert_loc (loc, TREE_TYPE (arg00),
10917 arg10));
10918 if (operand_equal_p (arg01, arg10, 0))
10919 return fold_build2_loc (loc, code, type, arg00,
10920 fold_convert_loc (loc, TREE_TYPE (arg00),
10921 arg11));
10922 if (operand_equal_p (arg00, arg11, 0))
10923 return fold_build2_loc (loc, code, type, arg01,
10924 fold_convert_loc (loc, TREE_TYPE (arg01),
10925 arg10));
10926 if (operand_equal_p (arg00, arg10, 0))
10927 return fold_build2_loc (loc, code, type, arg01,
10928 fold_convert_loc (loc, TREE_TYPE (arg01),
10929 arg11));
10930
10931 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10932 if (TREE_CODE (arg01) == INTEGER_CST
10933 && TREE_CODE (arg11) == INTEGER_CST)
10934 {
10935 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10936 fold_convert_loc (loc, itype, arg11));
10937 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10938 return fold_build2_loc (loc, code, type, tem,
10939 fold_convert_loc (loc, itype, arg10));
10940 }
10941 }
10942
10943 /* Attempt to simplify equality/inequality comparisons of complex
10944 values. Only lower the comparison if the result is known or
10945 can be simplified to a single scalar comparison. */
10946 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10947 || TREE_CODE (arg0) == COMPLEX_CST)
10948 && (TREE_CODE (arg1) == COMPLEX_EXPR
10949 || TREE_CODE (arg1) == COMPLEX_CST))
10950 {
10951 tree real0, imag0, real1, imag1;
10952 tree rcond, icond;
10953
10954 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10955 {
10956 real0 = TREE_OPERAND (arg0, 0);
10957 imag0 = TREE_OPERAND (arg0, 1);
10958 }
10959 else
10960 {
10961 real0 = TREE_REALPART (arg0);
10962 imag0 = TREE_IMAGPART (arg0);
10963 }
10964
10965 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10966 {
10967 real1 = TREE_OPERAND (arg1, 0);
10968 imag1 = TREE_OPERAND (arg1, 1);
10969 }
10970 else
10971 {
10972 real1 = TREE_REALPART (arg1);
10973 imag1 = TREE_IMAGPART (arg1);
10974 }
10975
10976 rcond = fold_binary_loc (loc, code, type, real0, real1);
10977 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10978 {
10979 if (integer_zerop (rcond))
10980 {
10981 if (code == EQ_EXPR)
10982 return omit_two_operands_loc (loc, type, boolean_false_node,
10983 imag0, imag1);
10984 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10985 }
10986 else
10987 {
10988 if (code == NE_EXPR)
10989 return omit_two_operands_loc (loc, type, boolean_true_node,
10990 imag0, imag1);
10991 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10992 }
10993 }
10994
10995 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10996 if (icond && TREE_CODE (icond) == INTEGER_CST)
10997 {
10998 if (integer_zerop (icond))
10999 {
11000 if (code == EQ_EXPR)
11001 return omit_two_operands_loc (loc, type, boolean_false_node,
11002 real0, real1);
11003 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11004 }
11005 else
11006 {
11007 if (code == NE_EXPR)
11008 return omit_two_operands_loc (loc, type, boolean_true_node,
11009 real0, real1);
11010 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11011 }
11012 }
11013 }
11014
11015 return NULL_TREE;
11016
11017 case LT_EXPR:
11018 case GT_EXPR:
11019 case LE_EXPR:
11020 case GE_EXPR:
11021 tem = fold_comparison (loc, code, type, op0, op1);
11022 if (tem != NULL_TREE)
11023 return tem;
11024
11025 /* Transform comparisons of the form X +- C CMP X. */
11026 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11027 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11028 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11029 && !HONOR_SNANS (arg0))
11030 {
11031 tree arg01 = TREE_OPERAND (arg0, 1);
11032 enum tree_code code0 = TREE_CODE (arg0);
11033 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11034
11035 /* (X - c) > X becomes false. */
11036 if (code == GT_EXPR
11037 && ((code0 == MINUS_EXPR && is_positive >= 0)
11038 || (code0 == PLUS_EXPR && is_positive <= 0)))
11039 return constant_boolean_node (0, type);
11040
11041 /* Likewise (X + c) < X becomes false. */
11042 if (code == LT_EXPR
11043 && ((code0 == PLUS_EXPR && is_positive >= 0)
11044 || (code0 == MINUS_EXPR && is_positive <= 0)))
11045 return constant_boolean_node (0, type);
11046
11047 /* Convert (X - c) <= X to true. */
11048 if (!HONOR_NANS (arg1)
11049 && code == LE_EXPR
11050 && ((code0 == MINUS_EXPR && is_positive >= 0)
11051 || (code0 == PLUS_EXPR && is_positive <= 0)))
11052 return constant_boolean_node (1, type);
11053
11054 /* Convert (X + c) >= X to true. */
11055 if (!HONOR_NANS (arg1)
11056 && code == GE_EXPR
11057 && ((code0 == PLUS_EXPR && is_positive >= 0)
11058 || (code0 == MINUS_EXPR && is_positive <= 0)))
11059 return constant_boolean_node (1, type);
11060 }
11061
11062 /* If we are comparing an ABS_EXPR with a constant, we can
11063 convert all the cases into explicit comparisons, but they may
11064 well not be faster than doing the ABS and one comparison.
11065 But ABS (X) <= C is a range comparison, which becomes a subtraction
11066 and a comparison, and is probably faster. */
11067 if (code == LE_EXPR
11068 && TREE_CODE (arg1) == INTEGER_CST
11069 && TREE_CODE (arg0) == ABS_EXPR
11070 && ! TREE_SIDE_EFFECTS (arg0)
11071 && (tem = negate_expr (arg1)) != 0
11072 && TREE_CODE (tem) == INTEGER_CST
11073 && !TREE_OVERFLOW (tem))
11074 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11075 build2 (GE_EXPR, type,
11076 TREE_OPERAND (arg0, 0), tem),
11077 build2 (LE_EXPR, type,
11078 TREE_OPERAND (arg0, 0), arg1));
11079
11080 /* Convert ABS_EXPR<x> >= 0 to true. */
11081 strict_overflow_p = false;
11082 if (code == GE_EXPR
11083 && (integer_zerop (arg1)
11084 || (! HONOR_NANS (arg0)
11085 && real_zerop (arg1)))
11086 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11087 {
11088 if (strict_overflow_p)
11089 fold_overflow_warning (("assuming signed overflow does not occur "
11090 "when simplifying comparison of "
11091 "absolute value and zero"),
11092 WARN_STRICT_OVERFLOW_CONDITIONAL);
11093 return omit_one_operand_loc (loc, type,
11094 constant_boolean_node (true, type),
11095 arg0);
11096 }
11097
11098 /* Convert ABS_EXPR<x> < 0 to false. */
11099 strict_overflow_p = false;
11100 if (code == LT_EXPR
11101 && (integer_zerop (arg1) || real_zerop (arg1))
11102 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11103 {
11104 if (strict_overflow_p)
11105 fold_overflow_warning (("assuming signed overflow does not occur "
11106 "when simplifying comparison of "
11107 "absolute value and zero"),
11108 WARN_STRICT_OVERFLOW_CONDITIONAL);
11109 return omit_one_operand_loc (loc, type,
11110 constant_boolean_node (false, type),
11111 arg0);
11112 }
11113
11114 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11115 and similarly for >= into !=. */
11116 if ((code == LT_EXPR || code == GE_EXPR)
11117 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11118 && TREE_CODE (arg1) == LSHIFT_EXPR
11119 && integer_onep (TREE_OPERAND (arg1, 0)))
11120 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11121 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11122 TREE_OPERAND (arg1, 1)),
11123 build_zero_cst (TREE_TYPE (arg0)));
11124
11125 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11126 otherwise Y might be >= # of bits in X's type and thus e.g.
11127 (unsigned char) (1 << Y) for Y 15 might be 0.
11128 If the cast is widening, then 1 << Y should have unsigned type,
11129 otherwise if Y is number of bits in the signed shift type minus 1,
11130 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11131 31 might be 0xffffffff80000000. */
11132 if ((code == LT_EXPR || code == GE_EXPR)
11133 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11134 && CONVERT_EXPR_P (arg1)
11135 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11136 && (element_precision (TREE_TYPE (arg1))
11137 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11138 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11139 || (element_precision (TREE_TYPE (arg1))
11140 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11141 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11142 {
11143 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11144 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11145 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11146 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11147 build_zero_cst (TREE_TYPE (arg0)));
11148 }
11149
11150 return NULL_TREE;
11151
11152 case UNORDERED_EXPR:
11153 case ORDERED_EXPR:
11154 case UNLT_EXPR:
11155 case UNLE_EXPR:
11156 case UNGT_EXPR:
11157 case UNGE_EXPR:
11158 case UNEQ_EXPR:
11159 case LTGT_EXPR:
11160 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11161 {
11162 tree targ0 = strip_float_extensions (arg0);
11163 tree targ1 = strip_float_extensions (arg1);
11164 tree newtype = TREE_TYPE (targ0);
11165
11166 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11167 newtype = TREE_TYPE (targ1);
11168
11169 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11170 return fold_build2_loc (loc, code, type,
11171 fold_convert_loc (loc, newtype, targ0),
11172 fold_convert_loc (loc, newtype, targ1));
11173 }
11174
11175 return NULL_TREE;
11176
11177 case COMPOUND_EXPR:
11178 /* When pedantic, a compound expression can be neither an lvalue
11179 nor an integer constant expression. */
11180 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11181 return NULL_TREE;
11182 /* Don't let (0, 0) be null pointer constant. */
11183 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11184 : fold_convert_loc (loc, type, arg1);
11185 return pedantic_non_lvalue_loc (loc, tem);
11186
11187 case ASSERT_EXPR:
11188 /* An ASSERT_EXPR should never be passed to fold_binary. */
11189 gcc_unreachable ();
11190
11191 default:
11192 return NULL_TREE;
11193 } /* switch (code) */
11194 }
11195
11196 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11197 ((A & N) + B) & M -> (A + B) & M
11198 Similarly if (N & M) == 0,
11199 ((A | N) + B) & M -> (A + B) & M
11200 and for - instead of + (or unary - instead of +)
11201 and/or ^ instead of |.
11202 If B is constant and (B & M) == 0, fold into A & M.
11203
11204 This function is a helper for match.pd patterns. Return non-NULL
11205 type in which the simplified operation should be performed only
11206 if any optimization is possible.
11207
11208 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11209 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11210 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11211 +/-. */
11212 tree
11213 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
11214 tree arg00, enum tree_code code00, tree arg000, tree arg001,
11215 tree arg01, enum tree_code code01, tree arg010, tree arg011,
11216 tree *pmop)
11217 {
11218 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
11219 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
11220 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11221 if (~cst1 == 0
11222 || (cst1 & (cst1 + 1)) != 0
11223 || !INTEGRAL_TYPE_P (type)
11224 || (!TYPE_OVERFLOW_WRAPS (type)
11225 && TREE_CODE (type) != INTEGER_TYPE)
11226 || (wi::max_value (type) & cst1) != cst1)
11227 return NULL_TREE;
11228
11229 enum tree_code codes[2] = { code00, code01 };
11230 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
11231 int which = 0;
11232 wide_int cst0;
11233
11234 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11235 arg1 (M) is == (1LL << cst) - 1.
11236 Store C into PMOP[0] and D into PMOP[1]. */
11237 pmop[0] = arg00;
11238 pmop[1] = arg01;
11239 which = code != NEGATE_EXPR;
11240
11241 for (; which >= 0; which--)
11242 switch (codes[which])
11243 {
11244 case BIT_AND_EXPR:
11245 case BIT_IOR_EXPR:
11246 case BIT_XOR_EXPR:
11247 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
11248 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
11249 if (codes[which] == BIT_AND_EXPR)
11250 {
11251 if (cst0 != cst1)
11252 break;
11253 }
11254 else if (cst0 != 0)
11255 break;
11256 /* If C or D is of the form (A & N) where
11257 (N & M) == M, or of the form (A | N) or
11258 (A ^ N) where (N & M) == 0, replace it with A. */
11259 pmop[which] = arg0xx[2 * which];
11260 break;
11261 case ERROR_MARK:
11262 if (TREE_CODE (pmop[which]) != INTEGER_CST)
11263 break;
11264 /* If C or D is a N where (N & M) == 0, it can be
11265 omitted (replaced with 0). */
11266 if ((code == PLUS_EXPR
11267 || (code == MINUS_EXPR && which == 0))
11268 && (cst1 & wi::to_wide (pmop[which])) == 0)
11269 pmop[which] = build_int_cst (type, 0);
11270 /* Similarly, with C - N where (-N & M) == 0. */
11271 if (code == MINUS_EXPR
11272 && which == 1
11273 && (cst1 & -wi::to_wide (pmop[which])) == 0)
11274 pmop[which] = build_int_cst (type, 0);
11275 break;
11276 default:
11277 gcc_unreachable ();
11278 }
11279
11280 /* Only build anything new if we optimized one or both arguments above. */
11281 if (pmop[0] == arg00 && pmop[1] == arg01)
11282 return NULL_TREE;
11283
11284 if (TYPE_OVERFLOW_WRAPS (type))
11285 return type;
11286 else
11287 return unsigned_type_for (type);
11288 }
11289
11290 /* Used by contains_label_[p1]. */
11291
11292 struct contains_label_data
11293 {
11294 hash_set<tree> *pset;
11295 bool inside_switch_p;
11296 };
11297
11298 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11299 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11300 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11301
11302 static tree
11303 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
11304 {
11305 contains_label_data *d = (contains_label_data *) data;
11306 switch (TREE_CODE (*tp))
11307 {
11308 case LABEL_EXPR:
11309 return *tp;
11310
11311 case CASE_LABEL_EXPR:
11312 if (!d->inside_switch_p)
11313 return *tp;
11314 return NULL_TREE;
11315
11316 case SWITCH_EXPR:
11317 if (!d->inside_switch_p)
11318 {
11319 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
11320 return *tp;
11321 d->inside_switch_p = true;
11322 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
11323 return *tp;
11324 d->inside_switch_p = false;
11325 *walk_subtrees = 0;
11326 }
11327 return NULL_TREE;
11328
11329 case GOTO_EXPR:
11330 *walk_subtrees = 0;
11331 return NULL_TREE;
11332
11333 default:
11334 return NULL_TREE;
11335 }
11336 }
11337
11338 /* Return whether the sub-tree ST contains a label which is accessible from
11339 outside the sub-tree. */
11340
11341 static bool
11342 contains_label_p (tree st)
11343 {
11344 hash_set<tree> pset;
11345 contains_label_data data = { &pset, false };
11346 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
11347 }
11348
11349 /* Fold a ternary expression of code CODE and type TYPE with operands
11350 OP0, OP1, and OP2. Return the folded expression if folding is
11351 successful. Otherwise, return NULL_TREE. */
11352
11353 tree
11354 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11355 tree op0, tree op1, tree op2)
11356 {
11357 tree tem;
11358 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11359 enum tree_code_class kind = TREE_CODE_CLASS (code);
11360
11361 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11362 && TREE_CODE_LENGTH (code) == 3);
11363
11364 /* If this is a commutative operation, and OP0 is a constant, move it
11365 to OP1 to reduce the number of tests below. */
11366 if (commutative_ternary_tree_code (code)
11367 && tree_swap_operands_p (op0, op1))
11368 return fold_build3_loc (loc, code, type, op1, op0, op2);
11369
11370 tem = generic_simplify (loc, code, type, op0, op1, op2);
11371 if (tem)
11372 return tem;
11373
11374 /* Strip any conversions that don't change the mode. This is safe
11375 for every expression, except for a comparison expression because
11376 its signedness is derived from its operands. So, in the latter
11377 case, only strip conversions that don't change the signedness.
11378
11379 Note that this is done as an internal manipulation within the
11380 constant folder, in order to find the simplest representation of
11381 the arguments so that their form can be studied. In any cases,
11382 the appropriate type conversions should be put back in the tree
11383 that will get out of the constant folder. */
11384 if (op0)
11385 {
11386 arg0 = op0;
11387 STRIP_NOPS (arg0);
11388 }
11389
11390 if (op1)
11391 {
11392 arg1 = op1;
11393 STRIP_NOPS (arg1);
11394 }
11395
11396 if (op2)
11397 {
11398 arg2 = op2;
11399 STRIP_NOPS (arg2);
11400 }
11401
11402 switch (code)
11403 {
11404 case COMPONENT_REF:
11405 if (TREE_CODE (arg0) == CONSTRUCTOR
11406 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11407 {
11408 unsigned HOST_WIDE_INT idx;
11409 tree field, value;
11410 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11411 if (field == arg1)
11412 return value;
11413 }
11414 return NULL_TREE;
11415
11416 case COND_EXPR:
11417 case VEC_COND_EXPR:
11418 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11419 so all simple results must be passed through pedantic_non_lvalue. */
11420 if (TREE_CODE (arg0) == INTEGER_CST)
11421 {
11422 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11423 tem = integer_zerop (arg0) ? op2 : op1;
11424 /* Only optimize constant conditions when the selected branch
11425 has the same type as the COND_EXPR. This avoids optimizing
11426 away "c ? x : throw", where the throw has a void type.
11427 Avoid throwing away that operand which contains label. */
11428 if ((!TREE_SIDE_EFFECTS (unused_op)
11429 || !contains_label_p (unused_op))
11430 && (! VOID_TYPE_P (TREE_TYPE (tem))
11431 || VOID_TYPE_P (type)))
11432 return pedantic_non_lvalue_loc (loc, tem);
11433 return NULL_TREE;
11434 }
11435 else if (TREE_CODE (arg0) == VECTOR_CST)
11436 {
11437 unsigned HOST_WIDE_INT nelts;
11438 if ((TREE_CODE (arg1) == VECTOR_CST
11439 || TREE_CODE (arg1) == CONSTRUCTOR)
11440 && (TREE_CODE (arg2) == VECTOR_CST
11441 || TREE_CODE (arg2) == CONSTRUCTOR)
11442 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
11443 {
11444 vec_perm_builder sel (nelts, nelts, 1);
11445 for (unsigned int i = 0; i < nelts; i++)
11446 {
11447 tree val = VECTOR_CST_ELT (arg0, i);
11448 if (integer_all_onesp (val))
11449 sel.quick_push (i);
11450 else if (integer_zerop (val))
11451 sel.quick_push (nelts + i);
11452 else /* Currently unreachable. */
11453 return NULL_TREE;
11454 }
11455 vec_perm_indices indices (sel, 2, nelts);
11456 tree t = fold_vec_perm (type, arg1, arg2, indices);
11457 if (t != NULL_TREE)
11458 return t;
11459 }
11460 }
11461
11462 /* If we have A op B ? A : C, we may be able to convert this to a
11463 simpler expression, depending on the operation and the values
11464 of B and C. Signed zeros prevent all of these transformations,
11465 for reasons given above each one.
11466
11467 Also try swapping the arguments and inverting the conditional. */
11468 if (COMPARISON_CLASS_P (arg0)
11469 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
11470 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
11471 {
11472 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11473 if (tem)
11474 return tem;
11475 }
11476
11477 if (COMPARISON_CLASS_P (arg0)
11478 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11479 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11480 {
11481 location_t loc0 = expr_location_or (arg0, loc);
11482 tem = fold_invert_truthvalue (loc0, arg0);
11483 if (tem && COMPARISON_CLASS_P (tem))
11484 {
11485 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11486 if (tem)
11487 return tem;
11488 }
11489 }
11490
11491 /* If the second operand is simpler than the third, swap them
11492 since that produces better jump optimization results. */
11493 if (truth_value_p (TREE_CODE (arg0))
11494 && tree_swap_operands_p (op1, op2))
11495 {
11496 location_t loc0 = expr_location_or (arg0, loc);
11497 /* See if this can be inverted. If it can't, possibly because
11498 it was a floating-point inequality comparison, don't do
11499 anything. */
11500 tem = fold_invert_truthvalue (loc0, arg0);
11501 if (tem)
11502 return fold_build3_loc (loc, code, type, tem, op2, op1);
11503 }
11504
11505 /* Convert A ? 1 : 0 to simply A. */
11506 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11507 : (integer_onep (op1)
11508 && !VECTOR_TYPE_P (type)))
11509 && integer_zerop (op2)
11510 /* If we try to convert OP0 to our type, the
11511 call to fold will try to move the conversion inside
11512 a COND, which will recurse. In that case, the COND_EXPR
11513 is probably the best choice, so leave it alone. */
11514 && type == TREE_TYPE (arg0))
11515 return pedantic_non_lvalue_loc (loc, arg0);
11516
11517 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11518 over COND_EXPR in cases such as floating point comparisons. */
11519 if (integer_zerop (op1)
11520 && code == COND_EXPR
11521 && integer_onep (op2)
11522 && !VECTOR_TYPE_P (type)
11523 && truth_value_p (TREE_CODE (arg0)))
11524 return pedantic_non_lvalue_loc (loc,
11525 fold_convert_loc (loc, type,
11526 invert_truthvalue_loc (loc,
11527 arg0)));
11528
11529 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11530 if (TREE_CODE (arg0) == LT_EXPR
11531 && integer_zerop (TREE_OPERAND (arg0, 1))
11532 && integer_zerop (op2)
11533 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11534 {
11535 /* sign_bit_p looks through both zero and sign extensions,
11536 but for this optimization only sign extensions are
11537 usable. */
11538 tree tem2 = TREE_OPERAND (arg0, 0);
11539 while (tem != tem2)
11540 {
11541 if (TREE_CODE (tem2) != NOP_EXPR
11542 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11543 {
11544 tem = NULL_TREE;
11545 break;
11546 }
11547 tem2 = TREE_OPERAND (tem2, 0);
11548 }
11549 /* sign_bit_p only checks ARG1 bits within A's precision.
11550 If <sign bit of A> has wider type than A, bits outside
11551 of A's precision in <sign bit of A> need to be checked.
11552 If they are all 0, this optimization needs to be done
11553 in unsigned A's type, if they are all 1 in signed A's type,
11554 otherwise this can't be done. */
11555 if (tem
11556 && TYPE_PRECISION (TREE_TYPE (tem))
11557 < TYPE_PRECISION (TREE_TYPE (arg1))
11558 && TYPE_PRECISION (TREE_TYPE (tem))
11559 < TYPE_PRECISION (type))
11560 {
11561 int inner_width, outer_width;
11562 tree tem_type;
11563
11564 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11565 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11566 if (outer_width > TYPE_PRECISION (type))
11567 outer_width = TYPE_PRECISION (type);
11568
11569 wide_int mask = wi::shifted_mask
11570 (inner_width, outer_width - inner_width, false,
11571 TYPE_PRECISION (TREE_TYPE (arg1)));
11572
11573 wide_int common = mask & wi::to_wide (arg1);
11574 if (common == mask)
11575 {
11576 tem_type = signed_type_for (TREE_TYPE (tem));
11577 tem = fold_convert_loc (loc, tem_type, tem);
11578 }
11579 else if (common == 0)
11580 {
11581 tem_type = unsigned_type_for (TREE_TYPE (tem));
11582 tem = fold_convert_loc (loc, tem_type, tem);
11583 }
11584 else
11585 tem = NULL;
11586 }
11587
11588 if (tem)
11589 return
11590 fold_convert_loc (loc, type,
11591 fold_build2_loc (loc, BIT_AND_EXPR,
11592 TREE_TYPE (tem), tem,
11593 fold_convert_loc (loc,
11594 TREE_TYPE (tem),
11595 arg1)));
11596 }
11597
11598 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11599 already handled above. */
11600 if (TREE_CODE (arg0) == BIT_AND_EXPR
11601 && integer_onep (TREE_OPERAND (arg0, 1))
11602 && integer_zerop (op2)
11603 && integer_pow2p (arg1))
11604 {
11605 tree tem = TREE_OPERAND (arg0, 0);
11606 STRIP_NOPS (tem);
11607 if (TREE_CODE (tem) == RSHIFT_EXPR
11608 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11609 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11610 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11611 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11612 fold_convert_loc (loc, type,
11613 TREE_OPERAND (tem, 0)),
11614 op1);
11615 }
11616
11617 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11618 is probably obsolete because the first operand should be a
11619 truth value (that's why we have the two cases above), but let's
11620 leave it in until we can confirm this for all front-ends. */
11621 if (integer_zerop (op2)
11622 && TREE_CODE (arg0) == NE_EXPR
11623 && integer_zerop (TREE_OPERAND (arg0, 1))
11624 && integer_pow2p (arg1)
11625 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11626 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11627 arg1, OEP_ONLY_CONST)
11628 /* operand_equal_p compares just value, not precision, so e.g.
11629 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
11630 second operand 32-bit -128, which is not a power of two (or vice
11631 versa. */
11632 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
11633 return pedantic_non_lvalue_loc (loc,
11634 fold_convert_loc (loc, type,
11635 TREE_OPERAND (arg0,
11636 0)));
11637
11638 /* Disable the transformations below for vectors, since
11639 fold_binary_op_with_conditional_arg may undo them immediately,
11640 yielding an infinite loop. */
11641 if (code == VEC_COND_EXPR)
11642 return NULL_TREE;
11643
11644 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11645 if (integer_zerop (op2)
11646 && truth_value_p (TREE_CODE (arg0))
11647 && truth_value_p (TREE_CODE (arg1))
11648 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11649 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11650 : TRUTH_ANDIF_EXPR,
11651 type, fold_convert_loc (loc, type, arg0), op1);
11652
11653 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11654 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11655 && truth_value_p (TREE_CODE (arg0))
11656 && truth_value_p (TREE_CODE (arg1))
11657 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11658 {
11659 location_t loc0 = expr_location_or (arg0, loc);
11660 /* Only perform transformation if ARG0 is easily inverted. */
11661 tem = fold_invert_truthvalue (loc0, arg0);
11662 if (tem)
11663 return fold_build2_loc (loc, code == VEC_COND_EXPR
11664 ? BIT_IOR_EXPR
11665 : TRUTH_ORIF_EXPR,
11666 type, fold_convert_loc (loc, type, tem),
11667 op1);
11668 }
11669
11670 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11671 if (integer_zerop (arg1)
11672 && truth_value_p (TREE_CODE (arg0))
11673 && truth_value_p (TREE_CODE (op2))
11674 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11675 {
11676 location_t loc0 = expr_location_or (arg0, loc);
11677 /* Only perform transformation if ARG0 is easily inverted. */
11678 tem = fold_invert_truthvalue (loc0, arg0);
11679 if (tem)
11680 return fold_build2_loc (loc, code == VEC_COND_EXPR
11681 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11682 type, fold_convert_loc (loc, type, tem),
11683 op2);
11684 }
11685
11686 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11687 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11688 && truth_value_p (TREE_CODE (arg0))
11689 && truth_value_p (TREE_CODE (op2))
11690 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11691 return fold_build2_loc (loc, code == VEC_COND_EXPR
11692 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11693 type, fold_convert_loc (loc, type, arg0), op2);
11694
11695 return NULL_TREE;
11696
11697 case CALL_EXPR:
11698 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11699 of fold_ternary on them. */
11700 gcc_unreachable ();
11701
11702 case BIT_FIELD_REF:
11703 if (TREE_CODE (arg0) == VECTOR_CST
11704 && (type == TREE_TYPE (TREE_TYPE (arg0))
11705 || (VECTOR_TYPE_P (type)
11706 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
11707 && tree_fits_uhwi_p (op1)
11708 && tree_fits_uhwi_p (op2))
11709 {
11710 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11711 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11712 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11713 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11714
11715 if (n != 0
11716 && (idx % width) == 0
11717 && (n % width) == 0
11718 && known_le ((idx + n) / width,
11719 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
11720 {
11721 idx = idx / width;
11722 n = n / width;
11723
11724 if (TREE_CODE (arg0) == VECTOR_CST)
11725 {
11726 if (n == 1)
11727 {
11728 tem = VECTOR_CST_ELT (arg0, idx);
11729 if (VECTOR_TYPE_P (type))
11730 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
11731 return tem;
11732 }
11733
11734 tree_vector_builder vals (type, n, 1);
11735 for (unsigned i = 0; i < n; ++i)
11736 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
11737 return vals.build ();
11738 }
11739 }
11740 }
11741
11742 /* On constants we can use native encode/interpret to constant
11743 fold (nearly) all BIT_FIELD_REFs. */
11744 if (CONSTANT_CLASS_P (arg0)
11745 && can_native_interpret_type_p (type)
11746 && BITS_PER_UNIT == 8
11747 && tree_fits_uhwi_p (op1)
11748 && tree_fits_uhwi_p (op2))
11749 {
11750 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11751 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11752 /* Limit us to a reasonable amount of work. To relax the
11753 other limitations we need bit-shifting of the buffer
11754 and rounding up the size. */
11755 if (bitpos % BITS_PER_UNIT == 0
11756 && bitsize % BITS_PER_UNIT == 0
11757 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11758 {
11759 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11760 unsigned HOST_WIDE_INT len
11761 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11762 bitpos / BITS_PER_UNIT);
11763 if (len > 0
11764 && len * BITS_PER_UNIT >= bitsize)
11765 {
11766 tree v = native_interpret_expr (type, b,
11767 bitsize / BITS_PER_UNIT);
11768 if (v)
11769 return v;
11770 }
11771 }
11772 }
11773
11774 return NULL_TREE;
11775
11776 case VEC_PERM_EXPR:
11777 /* Perform constant folding of BIT_INSERT_EXPR. */
11778 if (TREE_CODE (arg2) == VECTOR_CST
11779 && TREE_CODE (op0) == VECTOR_CST
11780 && TREE_CODE (op1) == VECTOR_CST)
11781 {
11782 /* Build a vector of integers from the tree mask. */
11783 vec_perm_builder builder;
11784 if (!tree_to_vec_perm_builder (&builder, arg2))
11785 return NULL_TREE;
11786
11787 /* Create a vec_perm_indices for the integer vector. */
11788 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
11789 bool single_arg = (op0 == op1);
11790 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
11791 return fold_vec_perm (type, op0, op1, sel);
11792 }
11793 return NULL_TREE;
11794
11795 case BIT_INSERT_EXPR:
11796 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11797 if (TREE_CODE (arg0) == INTEGER_CST
11798 && TREE_CODE (arg1) == INTEGER_CST)
11799 {
11800 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11801 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11802 wide_int tem = (wi::to_wide (arg0)
11803 & wi::shifted_mask (bitpos, bitsize, true,
11804 TYPE_PRECISION (type)));
11805 wide_int tem2
11806 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11807 bitsize), bitpos);
11808 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11809 }
11810 else if (TREE_CODE (arg0) == VECTOR_CST
11811 && CONSTANT_CLASS_P (arg1)
11812 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11813 TREE_TYPE (arg1)))
11814 {
11815 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11816 unsigned HOST_WIDE_INT elsize
11817 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11818 if (bitpos % elsize == 0)
11819 {
11820 unsigned k = bitpos / elsize;
11821 unsigned HOST_WIDE_INT nelts;
11822 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11823 return arg0;
11824 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
11825 {
11826 tree_vector_builder elts (type, nelts, 1);
11827 elts.quick_grow (nelts);
11828 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
11829 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
11830 return elts.build ();
11831 }
11832 }
11833 }
11834 return NULL_TREE;
11835
11836 default:
11837 return NULL_TREE;
11838 } /* switch (code) */
11839 }
11840
11841 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11842 of an array (or vector). */
11843
11844 tree
11845 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11846 {
11847 tree index_type = NULL_TREE;
11848 offset_int low_bound = 0;
11849
11850 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11851 {
11852 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11853 if (domain_type && TYPE_MIN_VALUE (domain_type))
11854 {
11855 /* Static constructors for variably sized objects makes no sense. */
11856 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11857 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11858 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11859 }
11860 }
11861
11862 if (index_type)
11863 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11864 TYPE_SIGN (index_type));
11865
11866 offset_int index = low_bound - 1;
11867 if (index_type)
11868 index = wi::ext (index, TYPE_PRECISION (index_type),
11869 TYPE_SIGN (index_type));
11870
11871 offset_int max_index;
11872 unsigned HOST_WIDE_INT cnt;
11873 tree cfield, cval;
11874
11875 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11876 {
11877 /* Array constructor might explicitly set index, or specify a range,
11878 or leave index NULL meaning that it is next index after previous
11879 one. */
11880 if (cfield)
11881 {
11882 if (TREE_CODE (cfield) == INTEGER_CST)
11883 max_index = index = wi::to_offset (cfield);
11884 else
11885 {
11886 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11887 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11888 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11889 }
11890 }
11891 else
11892 {
11893 index += 1;
11894 if (index_type)
11895 index = wi::ext (index, TYPE_PRECISION (index_type),
11896 TYPE_SIGN (index_type));
11897 max_index = index;
11898 }
11899
11900 /* Do we have match? */
11901 if (wi::cmpu (access_index, index) >= 0
11902 && wi::cmpu (access_index, max_index) <= 0)
11903 return cval;
11904 }
11905 return NULL_TREE;
11906 }
11907
11908 /* Perform constant folding and related simplification of EXPR.
11909 The related simplifications include x*1 => x, x*0 => 0, etc.,
11910 and application of the associative law.
11911 NOP_EXPR conversions may be removed freely (as long as we
11912 are careful not to change the type of the overall expression).
11913 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11914 but we can constant-fold them if they have constant operands. */
11915
11916 #ifdef ENABLE_FOLD_CHECKING
11917 # define fold(x) fold_1 (x)
11918 static tree fold_1 (tree);
11919 static
11920 #endif
11921 tree
11922 fold (tree expr)
11923 {
11924 const tree t = expr;
11925 enum tree_code code = TREE_CODE (t);
11926 enum tree_code_class kind = TREE_CODE_CLASS (code);
11927 tree tem;
11928 location_t loc = EXPR_LOCATION (expr);
11929
11930 /* Return right away if a constant. */
11931 if (kind == tcc_constant)
11932 return t;
11933
11934 /* CALL_EXPR-like objects with variable numbers of operands are
11935 treated specially. */
11936 if (kind == tcc_vl_exp)
11937 {
11938 if (code == CALL_EXPR)
11939 {
11940 tem = fold_call_expr (loc, expr, false);
11941 return tem ? tem : expr;
11942 }
11943 return expr;
11944 }
11945
11946 if (IS_EXPR_CODE_CLASS (kind))
11947 {
11948 tree type = TREE_TYPE (t);
11949 tree op0, op1, op2;
11950
11951 switch (TREE_CODE_LENGTH (code))
11952 {
11953 case 1:
11954 op0 = TREE_OPERAND (t, 0);
11955 tem = fold_unary_loc (loc, code, type, op0);
11956 return tem ? tem : expr;
11957 case 2:
11958 op0 = TREE_OPERAND (t, 0);
11959 op1 = TREE_OPERAND (t, 1);
11960 tem = fold_binary_loc (loc, code, type, op0, op1);
11961 return tem ? tem : expr;
11962 case 3:
11963 op0 = TREE_OPERAND (t, 0);
11964 op1 = TREE_OPERAND (t, 1);
11965 op2 = TREE_OPERAND (t, 2);
11966 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11967 return tem ? tem : expr;
11968 default:
11969 break;
11970 }
11971 }
11972
11973 switch (code)
11974 {
11975 case ARRAY_REF:
11976 {
11977 tree op0 = TREE_OPERAND (t, 0);
11978 tree op1 = TREE_OPERAND (t, 1);
11979
11980 if (TREE_CODE (op1) == INTEGER_CST
11981 && TREE_CODE (op0) == CONSTRUCTOR
11982 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11983 {
11984 tree val = get_array_ctor_element_at_index (op0,
11985 wi::to_offset (op1));
11986 if (val)
11987 return val;
11988 }
11989
11990 return t;
11991 }
11992
11993 /* Return a VECTOR_CST if possible. */
11994 case CONSTRUCTOR:
11995 {
11996 tree type = TREE_TYPE (t);
11997 if (TREE_CODE (type) != VECTOR_TYPE)
11998 return t;
11999
12000 unsigned i;
12001 tree val;
12002 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12003 if (! CONSTANT_CLASS_P (val))
12004 return t;
12005
12006 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12007 }
12008
12009 case CONST_DECL:
12010 return fold (DECL_INITIAL (t));
12011
12012 default:
12013 return t;
12014 } /* switch (code) */
12015 }
12016
12017 #ifdef ENABLE_FOLD_CHECKING
12018 #undef fold
12019
12020 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12021 hash_table<nofree_ptr_hash<const tree_node> > *);
12022 static void fold_check_failed (const_tree, const_tree);
12023 void print_fold_checksum (const_tree);
12024
12025 /* When --enable-checking=fold, compute a digest of expr before
12026 and after actual fold call to see if fold did not accidentally
12027 change original expr. */
12028
12029 tree
12030 fold (tree expr)
12031 {
12032 tree ret;
12033 struct md5_ctx ctx;
12034 unsigned char checksum_before[16], checksum_after[16];
12035 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12036
12037 md5_init_ctx (&ctx);
12038 fold_checksum_tree (expr, &ctx, &ht);
12039 md5_finish_ctx (&ctx, checksum_before);
12040 ht.empty ();
12041
12042 ret = fold_1 (expr);
12043
12044 md5_init_ctx (&ctx);
12045 fold_checksum_tree (expr, &ctx, &ht);
12046 md5_finish_ctx (&ctx, checksum_after);
12047
12048 if (memcmp (checksum_before, checksum_after, 16))
12049 fold_check_failed (expr, ret);
12050
12051 return ret;
12052 }
12053
12054 void
12055 print_fold_checksum (const_tree expr)
12056 {
12057 struct md5_ctx ctx;
12058 unsigned char checksum[16], cnt;
12059 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12060
12061 md5_init_ctx (&ctx);
12062 fold_checksum_tree (expr, &ctx, &ht);
12063 md5_finish_ctx (&ctx, checksum);
12064 for (cnt = 0; cnt < 16; ++cnt)
12065 fprintf (stderr, "%02x", checksum[cnt]);
12066 putc ('\n', stderr);
12067 }
12068
12069 static void
12070 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12071 {
12072 internal_error ("fold check: original tree changed by fold");
12073 }
12074
12075 static void
12076 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12077 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12078 {
12079 const tree_node **slot;
12080 enum tree_code code;
12081 union tree_node *buf;
12082 int i, len;
12083
12084 recursive_label:
12085 if (expr == NULL)
12086 return;
12087 slot = ht->find_slot (expr, INSERT);
12088 if (*slot != NULL)
12089 return;
12090 *slot = expr;
12091 code = TREE_CODE (expr);
12092 if (TREE_CODE_CLASS (code) == tcc_declaration
12093 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12094 {
12095 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12096 size_t sz = tree_size (expr);
12097 buf = XALLOCAVAR (union tree_node, sz);
12098 memcpy ((char *) buf, expr, sz);
12099 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
12100 buf->decl_with_vis.symtab_node = NULL;
12101 buf->base.nowarning_flag = 0;
12102 expr = (tree) buf;
12103 }
12104 else if (TREE_CODE_CLASS (code) == tcc_type
12105 && (TYPE_POINTER_TO (expr)
12106 || TYPE_REFERENCE_TO (expr)
12107 || TYPE_CACHED_VALUES_P (expr)
12108 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12109 || TYPE_NEXT_VARIANT (expr)
12110 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12111 {
12112 /* Allow these fields to be modified. */
12113 tree tmp;
12114 size_t sz = tree_size (expr);
12115 buf = XALLOCAVAR (union tree_node, sz);
12116 memcpy ((char *) buf, expr, sz);
12117 expr = tmp = (tree) buf;
12118 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12119 TYPE_POINTER_TO (tmp) = NULL;
12120 TYPE_REFERENCE_TO (tmp) = NULL;
12121 TYPE_NEXT_VARIANT (tmp) = NULL;
12122 TYPE_ALIAS_SET (tmp) = -1;
12123 if (TYPE_CACHED_VALUES_P (tmp))
12124 {
12125 TYPE_CACHED_VALUES_P (tmp) = 0;
12126 TYPE_CACHED_VALUES (tmp) = NULL;
12127 }
12128 }
12129 else if (TREE_NO_WARNING (expr) && (DECL_P (expr) || EXPR_P (expr)))
12130 {
12131 /* Allow TREE_NO_WARNING to be set. Perhaps we shouldn't allow that
12132 and change builtins.c etc. instead - see PR89543. */
12133 size_t sz = tree_size (expr);
12134 buf = XALLOCAVAR (union tree_node, sz);
12135 memcpy ((char *) buf, expr, sz);
12136 buf->base.nowarning_flag = 0;
12137 expr = (tree) buf;
12138 }
12139 md5_process_bytes (expr, tree_size (expr), ctx);
12140 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12141 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12142 if (TREE_CODE_CLASS (code) != tcc_type
12143 && TREE_CODE_CLASS (code) != tcc_declaration
12144 && code != TREE_LIST
12145 && code != SSA_NAME
12146 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12147 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12148 switch (TREE_CODE_CLASS (code))
12149 {
12150 case tcc_constant:
12151 switch (code)
12152 {
12153 case STRING_CST:
12154 md5_process_bytes (TREE_STRING_POINTER (expr),
12155 TREE_STRING_LENGTH (expr), ctx);
12156 break;
12157 case COMPLEX_CST:
12158 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12159 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12160 break;
12161 case VECTOR_CST:
12162 len = vector_cst_encoded_nelts (expr);
12163 for (i = 0; i < len; ++i)
12164 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
12165 break;
12166 default:
12167 break;
12168 }
12169 break;
12170 case tcc_exceptional:
12171 switch (code)
12172 {
12173 case TREE_LIST:
12174 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12175 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12176 expr = TREE_CHAIN (expr);
12177 goto recursive_label;
12178 break;
12179 case TREE_VEC:
12180 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12181 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12182 break;
12183 default:
12184 break;
12185 }
12186 break;
12187 case tcc_expression:
12188 case tcc_reference:
12189 case tcc_comparison:
12190 case tcc_unary:
12191 case tcc_binary:
12192 case tcc_statement:
12193 case tcc_vl_exp:
12194 len = TREE_OPERAND_LENGTH (expr);
12195 for (i = 0; i < len; ++i)
12196 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12197 break;
12198 case tcc_declaration:
12199 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12200 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12201 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12202 {
12203 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12204 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12205 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12206 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12207 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12208 }
12209
12210 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12211 {
12212 if (TREE_CODE (expr) == FUNCTION_DECL)
12213 {
12214 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12215 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12216 }
12217 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12218 }
12219 break;
12220 case tcc_type:
12221 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12222 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12223 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12224 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12225 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12226 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12227 if (INTEGRAL_TYPE_P (expr)
12228 || SCALAR_FLOAT_TYPE_P (expr))
12229 {
12230 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12231 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12232 }
12233 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12234 if (TREE_CODE (expr) == RECORD_TYPE
12235 || TREE_CODE (expr) == UNION_TYPE
12236 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12237 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12238 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12239 break;
12240 default:
12241 break;
12242 }
12243 }
12244
12245 /* Helper function for outputting the checksum of a tree T. When
12246 debugging with gdb, you can "define mynext" to be "next" followed
12247 by "call debug_fold_checksum (op0)", then just trace down till the
12248 outputs differ. */
12249
12250 DEBUG_FUNCTION void
12251 debug_fold_checksum (const_tree t)
12252 {
12253 int i;
12254 unsigned char checksum[16];
12255 struct md5_ctx ctx;
12256 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12257
12258 md5_init_ctx (&ctx);
12259 fold_checksum_tree (t, &ctx, &ht);
12260 md5_finish_ctx (&ctx, checksum);
12261 ht.empty ();
12262
12263 for (i = 0; i < 16; i++)
12264 fprintf (stderr, "%d ", checksum[i]);
12265
12266 fprintf (stderr, "\n");
12267 }
12268
12269 #endif
12270
12271 /* Fold a unary tree expression with code CODE of type TYPE with an
12272 operand OP0. LOC is the location of the resulting expression.
12273 Return a folded expression if successful. Otherwise, return a tree
12274 expression with code CODE of type TYPE with an operand OP0. */
12275
12276 tree
12277 fold_build1_loc (location_t loc,
12278 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12279 {
12280 tree tem;
12281 #ifdef ENABLE_FOLD_CHECKING
12282 unsigned char checksum_before[16], checksum_after[16];
12283 struct md5_ctx ctx;
12284 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12285
12286 md5_init_ctx (&ctx);
12287 fold_checksum_tree (op0, &ctx, &ht);
12288 md5_finish_ctx (&ctx, checksum_before);
12289 ht.empty ();
12290 #endif
12291
12292 tem = fold_unary_loc (loc, code, type, op0);
12293 if (!tem)
12294 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12295
12296 #ifdef ENABLE_FOLD_CHECKING
12297 md5_init_ctx (&ctx);
12298 fold_checksum_tree (op0, &ctx, &ht);
12299 md5_finish_ctx (&ctx, checksum_after);
12300
12301 if (memcmp (checksum_before, checksum_after, 16))
12302 fold_check_failed (op0, tem);
12303 #endif
12304 return tem;
12305 }
12306
12307 /* Fold a binary tree expression with code CODE of type TYPE with
12308 operands OP0 and OP1. LOC is the location of the resulting
12309 expression. Return a folded expression if successful. Otherwise,
12310 return a tree expression with code CODE of type TYPE with operands
12311 OP0 and OP1. */
12312
12313 tree
12314 fold_build2_loc (location_t loc,
12315 enum tree_code code, tree type, tree op0, tree op1
12316 MEM_STAT_DECL)
12317 {
12318 tree tem;
12319 #ifdef ENABLE_FOLD_CHECKING
12320 unsigned char checksum_before_op0[16],
12321 checksum_before_op1[16],
12322 checksum_after_op0[16],
12323 checksum_after_op1[16];
12324 struct md5_ctx ctx;
12325 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12326
12327 md5_init_ctx (&ctx);
12328 fold_checksum_tree (op0, &ctx, &ht);
12329 md5_finish_ctx (&ctx, checksum_before_op0);
12330 ht.empty ();
12331
12332 md5_init_ctx (&ctx);
12333 fold_checksum_tree (op1, &ctx, &ht);
12334 md5_finish_ctx (&ctx, checksum_before_op1);
12335 ht.empty ();
12336 #endif
12337
12338 tem = fold_binary_loc (loc, code, type, op0, op1);
12339 if (!tem)
12340 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12341
12342 #ifdef ENABLE_FOLD_CHECKING
12343 md5_init_ctx (&ctx);
12344 fold_checksum_tree (op0, &ctx, &ht);
12345 md5_finish_ctx (&ctx, checksum_after_op0);
12346 ht.empty ();
12347
12348 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12349 fold_check_failed (op0, tem);
12350
12351 md5_init_ctx (&ctx);
12352 fold_checksum_tree (op1, &ctx, &ht);
12353 md5_finish_ctx (&ctx, checksum_after_op1);
12354
12355 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12356 fold_check_failed (op1, tem);
12357 #endif
12358 return tem;
12359 }
12360
12361 /* Fold a ternary tree expression with code CODE of type TYPE with
12362 operands OP0, OP1, and OP2. Return a folded expression if
12363 successful. Otherwise, return a tree expression with code CODE of
12364 type TYPE with operands OP0, OP1, and OP2. */
12365
12366 tree
12367 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12368 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12369 {
12370 tree tem;
12371 #ifdef ENABLE_FOLD_CHECKING
12372 unsigned char checksum_before_op0[16],
12373 checksum_before_op1[16],
12374 checksum_before_op2[16],
12375 checksum_after_op0[16],
12376 checksum_after_op1[16],
12377 checksum_after_op2[16];
12378 struct md5_ctx ctx;
12379 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12380
12381 md5_init_ctx (&ctx);
12382 fold_checksum_tree (op0, &ctx, &ht);
12383 md5_finish_ctx (&ctx, checksum_before_op0);
12384 ht.empty ();
12385
12386 md5_init_ctx (&ctx);
12387 fold_checksum_tree (op1, &ctx, &ht);
12388 md5_finish_ctx (&ctx, checksum_before_op1);
12389 ht.empty ();
12390
12391 md5_init_ctx (&ctx);
12392 fold_checksum_tree (op2, &ctx, &ht);
12393 md5_finish_ctx (&ctx, checksum_before_op2);
12394 ht.empty ();
12395 #endif
12396
12397 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12398 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12399 if (!tem)
12400 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12401
12402 #ifdef ENABLE_FOLD_CHECKING
12403 md5_init_ctx (&ctx);
12404 fold_checksum_tree (op0, &ctx, &ht);
12405 md5_finish_ctx (&ctx, checksum_after_op0);
12406 ht.empty ();
12407
12408 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12409 fold_check_failed (op0, tem);
12410
12411 md5_init_ctx (&ctx);
12412 fold_checksum_tree (op1, &ctx, &ht);
12413 md5_finish_ctx (&ctx, checksum_after_op1);
12414 ht.empty ();
12415
12416 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12417 fold_check_failed (op1, tem);
12418
12419 md5_init_ctx (&ctx);
12420 fold_checksum_tree (op2, &ctx, &ht);
12421 md5_finish_ctx (&ctx, checksum_after_op2);
12422
12423 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12424 fold_check_failed (op2, tem);
12425 #endif
12426 return tem;
12427 }
12428
12429 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12430 arguments in ARGARRAY, and a null static chain.
12431 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12432 of type TYPE from the given operands as constructed by build_call_array. */
12433
12434 tree
12435 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12436 int nargs, tree *argarray)
12437 {
12438 tree tem;
12439 #ifdef ENABLE_FOLD_CHECKING
12440 unsigned char checksum_before_fn[16],
12441 checksum_before_arglist[16],
12442 checksum_after_fn[16],
12443 checksum_after_arglist[16];
12444 struct md5_ctx ctx;
12445 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12446 int i;
12447
12448 md5_init_ctx (&ctx);
12449 fold_checksum_tree (fn, &ctx, &ht);
12450 md5_finish_ctx (&ctx, checksum_before_fn);
12451 ht.empty ();
12452
12453 md5_init_ctx (&ctx);
12454 for (i = 0; i < nargs; i++)
12455 fold_checksum_tree (argarray[i], &ctx, &ht);
12456 md5_finish_ctx (&ctx, checksum_before_arglist);
12457 ht.empty ();
12458 #endif
12459
12460 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12461 if (!tem)
12462 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12463
12464 #ifdef ENABLE_FOLD_CHECKING
12465 md5_init_ctx (&ctx);
12466 fold_checksum_tree (fn, &ctx, &ht);
12467 md5_finish_ctx (&ctx, checksum_after_fn);
12468 ht.empty ();
12469
12470 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12471 fold_check_failed (fn, tem);
12472
12473 md5_init_ctx (&ctx);
12474 for (i = 0; i < nargs; i++)
12475 fold_checksum_tree (argarray[i], &ctx, &ht);
12476 md5_finish_ctx (&ctx, checksum_after_arglist);
12477
12478 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12479 fold_check_failed (NULL_TREE, tem);
12480 #endif
12481 return tem;
12482 }
12483
12484 /* Perform constant folding and related simplification of initializer
12485 expression EXPR. These behave identically to "fold_buildN" but ignore
12486 potential run-time traps and exceptions that fold must preserve. */
12487
12488 #define START_FOLD_INIT \
12489 int saved_signaling_nans = flag_signaling_nans;\
12490 int saved_trapping_math = flag_trapping_math;\
12491 int saved_rounding_math = flag_rounding_math;\
12492 int saved_trapv = flag_trapv;\
12493 int saved_folding_initializer = folding_initializer;\
12494 flag_signaling_nans = 0;\
12495 flag_trapping_math = 0;\
12496 flag_rounding_math = 0;\
12497 flag_trapv = 0;\
12498 folding_initializer = 1;
12499
12500 #define END_FOLD_INIT \
12501 flag_signaling_nans = saved_signaling_nans;\
12502 flag_trapping_math = saved_trapping_math;\
12503 flag_rounding_math = saved_rounding_math;\
12504 flag_trapv = saved_trapv;\
12505 folding_initializer = saved_folding_initializer;
12506
12507 tree
12508 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12509 tree type, tree op)
12510 {
12511 tree result;
12512 START_FOLD_INIT;
12513
12514 result = fold_build1_loc (loc, code, type, op);
12515
12516 END_FOLD_INIT;
12517 return result;
12518 }
12519
12520 tree
12521 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12522 tree type, tree op0, tree op1)
12523 {
12524 tree result;
12525 START_FOLD_INIT;
12526
12527 result = fold_build2_loc (loc, code, type, op0, op1);
12528
12529 END_FOLD_INIT;
12530 return result;
12531 }
12532
12533 tree
12534 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12535 int nargs, tree *argarray)
12536 {
12537 tree result;
12538 START_FOLD_INIT;
12539
12540 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12541
12542 END_FOLD_INIT;
12543 return result;
12544 }
12545
12546 #undef START_FOLD_INIT
12547 #undef END_FOLD_INIT
12548
12549 /* Determine if first argument is a multiple of second argument. Return 0 if
12550 it is not, or we cannot easily determined it to be.
12551
12552 An example of the sort of thing we care about (at this point; this routine
12553 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12554 fold cases do now) is discovering that
12555
12556 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12557
12558 is a multiple of
12559
12560 SAVE_EXPR (J * 8)
12561
12562 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12563
12564 This code also handles discovering that
12565
12566 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12567
12568 is a multiple of 8 so we don't have to worry about dealing with a
12569 possible remainder.
12570
12571 Note that we *look* inside a SAVE_EXPR only to determine how it was
12572 calculated; it is not safe for fold to do much of anything else with the
12573 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12574 at run time. For example, the latter example above *cannot* be implemented
12575 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12576 evaluation time of the original SAVE_EXPR is not necessarily the same at
12577 the time the new expression is evaluated. The only optimization of this
12578 sort that would be valid is changing
12579
12580 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12581
12582 divided by 8 to
12583
12584 SAVE_EXPR (I) * SAVE_EXPR (J)
12585
12586 (where the same SAVE_EXPR (J) is used in the original and the
12587 transformed version). */
12588
12589 int
12590 multiple_of_p (tree type, const_tree top, const_tree bottom)
12591 {
12592 gimple *stmt;
12593 tree t1, op1, op2;
12594
12595 if (operand_equal_p (top, bottom, 0))
12596 return 1;
12597
12598 if (TREE_CODE (type) != INTEGER_TYPE)
12599 return 0;
12600
12601 switch (TREE_CODE (top))
12602 {
12603 case BIT_AND_EXPR:
12604 /* Bitwise and provides a power of two multiple. If the mask is
12605 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12606 if (!integer_pow2p (bottom))
12607 return 0;
12608 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12609 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12610
12611 case MULT_EXPR:
12612 if (TREE_CODE (bottom) == INTEGER_CST)
12613 {
12614 op1 = TREE_OPERAND (top, 0);
12615 op2 = TREE_OPERAND (top, 1);
12616 if (TREE_CODE (op1) == INTEGER_CST)
12617 std::swap (op1, op2);
12618 if (TREE_CODE (op2) == INTEGER_CST)
12619 {
12620 if (multiple_of_p (type, op2, bottom))
12621 return 1;
12622 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12623 if (multiple_of_p (type, bottom, op2))
12624 {
12625 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
12626 wi::to_widest (op2));
12627 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
12628 {
12629 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
12630 return multiple_of_p (type, op1, op2);
12631 }
12632 }
12633 return multiple_of_p (type, op1, bottom);
12634 }
12635 }
12636 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12637 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12638
12639 case MINUS_EXPR:
12640 /* It is impossible to prove if op0 - op1 is multiple of bottom
12641 precisely, so be conservative here checking if both op0 and op1
12642 are multiple of bottom. Note we check the second operand first
12643 since it's usually simpler. */
12644 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12645 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12646
12647 case PLUS_EXPR:
12648 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12649 as op0 - 3 if the expression has unsigned type. For example,
12650 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12651 op1 = TREE_OPERAND (top, 1);
12652 if (TYPE_UNSIGNED (type)
12653 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12654 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12655 return (multiple_of_p (type, op1, bottom)
12656 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12657
12658 case LSHIFT_EXPR:
12659 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12660 {
12661 op1 = TREE_OPERAND (top, 1);
12662 /* const_binop may not detect overflow correctly,
12663 so check for it explicitly here. */
12664 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
12665 wi::to_wide (op1))
12666 && (t1 = fold_convert (type,
12667 const_binop (LSHIFT_EXPR, size_one_node,
12668 op1))) != 0
12669 && !TREE_OVERFLOW (t1))
12670 return multiple_of_p (type, t1, bottom);
12671 }
12672 return 0;
12673
12674 case NOP_EXPR:
12675 /* Can't handle conversions from non-integral or wider integral type. */
12676 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12677 || (TYPE_PRECISION (type)
12678 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12679 return 0;
12680
12681 /* fall through */
12682
12683 case SAVE_EXPR:
12684 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12685
12686 case COND_EXPR:
12687 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12688 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12689
12690 case INTEGER_CST:
12691 if (TREE_CODE (bottom) != INTEGER_CST
12692 || integer_zerop (bottom)
12693 || (TYPE_UNSIGNED (type)
12694 && (tree_int_cst_sgn (top) < 0
12695 || tree_int_cst_sgn (bottom) < 0)))
12696 return 0;
12697 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12698 SIGNED);
12699
12700 case SSA_NAME:
12701 if (TREE_CODE (bottom) == INTEGER_CST
12702 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12703 && gimple_code (stmt) == GIMPLE_ASSIGN)
12704 {
12705 enum tree_code code = gimple_assign_rhs_code (stmt);
12706
12707 /* Check for special cases to see if top is defined as multiple
12708 of bottom:
12709
12710 top = (X & ~(bottom - 1) ; bottom is power of 2
12711
12712 or
12713
12714 Y = X % bottom
12715 top = X - Y. */
12716 if (code == BIT_AND_EXPR
12717 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12718 && TREE_CODE (op2) == INTEGER_CST
12719 && integer_pow2p (bottom)
12720 && wi::multiple_of_p (wi::to_widest (op2),
12721 wi::to_widest (bottom), UNSIGNED))
12722 return 1;
12723
12724 op1 = gimple_assign_rhs1 (stmt);
12725 if (code == MINUS_EXPR
12726 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12727 && TREE_CODE (op2) == SSA_NAME
12728 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12729 && gimple_code (stmt) == GIMPLE_ASSIGN
12730 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12731 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12732 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12733 return 1;
12734 }
12735
12736 /* fall through */
12737
12738 default:
12739 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
12740 return multiple_p (wi::to_poly_widest (top),
12741 wi::to_poly_widest (bottom));
12742
12743 return 0;
12744 }
12745 }
12746
12747 #define tree_expr_nonnegative_warnv_p(X, Y) \
12748 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12749
12750 #define RECURSE(X) \
12751 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12752
12753 /* Return true if CODE or TYPE is known to be non-negative. */
12754
12755 static bool
12756 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12757 {
12758 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12759 && truth_value_p (code))
12760 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12761 have a signed:1 type (where the value is -1 and 0). */
12762 return true;
12763 return false;
12764 }
12765
12766 /* Return true if (CODE OP0) is known to be non-negative. If the return
12767 value is based on the assumption that signed overflow is undefined,
12768 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12769 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12770
12771 bool
12772 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12773 bool *strict_overflow_p, int depth)
12774 {
12775 if (TYPE_UNSIGNED (type))
12776 return true;
12777
12778 switch (code)
12779 {
12780 case ABS_EXPR:
12781 /* We can't return 1 if flag_wrapv is set because
12782 ABS_EXPR<INT_MIN> = INT_MIN. */
12783 if (!ANY_INTEGRAL_TYPE_P (type))
12784 return true;
12785 if (TYPE_OVERFLOW_UNDEFINED (type))
12786 {
12787 *strict_overflow_p = true;
12788 return true;
12789 }
12790 break;
12791
12792 case NON_LVALUE_EXPR:
12793 case FLOAT_EXPR:
12794 case FIX_TRUNC_EXPR:
12795 return RECURSE (op0);
12796
12797 CASE_CONVERT:
12798 {
12799 tree inner_type = TREE_TYPE (op0);
12800 tree outer_type = type;
12801
12802 if (TREE_CODE (outer_type) == REAL_TYPE)
12803 {
12804 if (TREE_CODE (inner_type) == REAL_TYPE)
12805 return RECURSE (op0);
12806 if (INTEGRAL_TYPE_P (inner_type))
12807 {
12808 if (TYPE_UNSIGNED (inner_type))
12809 return true;
12810 return RECURSE (op0);
12811 }
12812 }
12813 else if (INTEGRAL_TYPE_P (outer_type))
12814 {
12815 if (TREE_CODE (inner_type) == REAL_TYPE)
12816 return RECURSE (op0);
12817 if (INTEGRAL_TYPE_P (inner_type))
12818 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12819 && TYPE_UNSIGNED (inner_type);
12820 }
12821 }
12822 break;
12823
12824 default:
12825 return tree_simple_nonnegative_warnv_p (code, type);
12826 }
12827
12828 /* We don't know sign of `t', so be conservative and return false. */
12829 return false;
12830 }
12831
12832 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12833 value is based on the assumption that signed overflow is undefined,
12834 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12835 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12836
12837 bool
12838 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12839 tree op1, bool *strict_overflow_p,
12840 int depth)
12841 {
12842 if (TYPE_UNSIGNED (type))
12843 return true;
12844
12845 switch (code)
12846 {
12847 case POINTER_PLUS_EXPR:
12848 case PLUS_EXPR:
12849 if (FLOAT_TYPE_P (type))
12850 return RECURSE (op0) && RECURSE (op1);
12851
12852 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12853 both unsigned and at least 2 bits shorter than the result. */
12854 if (TREE_CODE (type) == INTEGER_TYPE
12855 && TREE_CODE (op0) == NOP_EXPR
12856 && TREE_CODE (op1) == NOP_EXPR)
12857 {
12858 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12859 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12860 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12861 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12862 {
12863 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12864 TYPE_PRECISION (inner2)) + 1;
12865 return prec < TYPE_PRECISION (type);
12866 }
12867 }
12868 break;
12869
12870 case MULT_EXPR:
12871 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12872 {
12873 /* x * x is always non-negative for floating point x
12874 or without overflow. */
12875 if (operand_equal_p (op0, op1, 0)
12876 || (RECURSE (op0) && RECURSE (op1)))
12877 {
12878 if (ANY_INTEGRAL_TYPE_P (type)
12879 && TYPE_OVERFLOW_UNDEFINED (type))
12880 *strict_overflow_p = true;
12881 return true;
12882 }
12883 }
12884
12885 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12886 both unsigned and their total bits is shorter than the result. */
12887 if (TREE_CODE (type) == INTEGER_TYPE
12888 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12889 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12890 {
12891 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12892 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12893 : TREE_TYPE (op0);
12894 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12895 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12896 : TREE_TYPE (op1);
12897
12898 bool unsigned0 = TYPE_UNSIGNED (inner0);
12899 bool unsigned1 = TYPE_UNSIGNED (inner1);
12900
12901 if (TREE_CODE (op0) == INTEGER_CST)
12902 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12903
12904 if (TREE_CODE (op1) == INTEGER_CST)
12905 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12906
12907 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12908 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12909 {
12910 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12911 ? tree_int_cst_min_precision (op0, UNSIGNED)
12912 : TYPE_PRECISION (inner0);
12913
12914 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12915 ? tree_int_cst_min_precision (op1, UNSIGNED)
12916 : TYPE_PRECISION (inner1);
12917
12918 return precision0 + precision1 < TYPE_PRECISION (type);
12919 }
12920 }
12921 return false;
12922
12923 case BIT_AND_EXPR:
12924 case MAX_EXPR:
12925 return RECURSE (op0) || RECURSE (op1);
12926
12927 case BIT_IOR_EXPR:
12928 case BIT_XOR_EXPR:
12929 case MIN_EXPR:
12930 case RDIV_EXPR:
12931 case TRUNC_DIV_EXPR:
12932 case CEIL_DIV_EXPR:
12933 case FLOOR_DIV_EXPR:
12934 case ROUND_DIV_EXPR:
12935 return RECURSE (op0) && RECURSE (op1);
12936
12937 case TRUNC_MOD_EXPR:
12938 return RECURSE (op0);
12939
12940 case FLOOR_MOD_EXPR:
12941 return RECURSE (op1);
12942
12943 case CEIL_MOD_EXPR:
12944 case ROUND_MOD_EXPR:
12945 default:
12946 return tree_simple_nonnegative_warnv_p (code, type);
12947 }
12948
12949 /* We don't know sign of `t', so be conservative and return false. */
12950 return false;
12951 }
12952
12953 /* Return true if T is known to be non-negative. If the return
12954 value is based on the assumption that signed overflow is undefined,
12955 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12956 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12957
12958 bool
12959 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12960 {
12961 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12962 return true;
12963
12964 switch (TREE_CODE (t))
12965 {
12966 case INTEGER_CST:
12967 return tree_int_cst_sgn (t) >= 0;
12968
12969 case REAL_CST:
12970 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12971
12972 case FIXED_CST:
12973 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12974
12975 case COND_EXPR:
12976 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12977
12978 case SSA_NAME:
12979 /* Limit the depth of recursion to avoid quadratic behavior.
12980 This is expected to catch almost all occurrences in practice.
12981 If this code misses important cases that unbounded recursion
12982 would not, passes that need this information could be revised
12983 to provide it through dataflow propagation. */
12984 return (!name_registered_for_update_p (t)
12985 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12986 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12987 strict_overflow_p, depth));
12988
12989 default:
12990 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12991 }
12992 }
12993
12994 /* Return true if T is known to be non-negative. If the return
12995 value is based on the assumption that signed overflow is undefined,
12996 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12997 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12998
12999 bool
13000 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13001 bool *strict_overflow_p, int depth)
13002 {
13003 switch (fn)
13004 {
13005 CASE_CFN_ACOS:
13006 CASE_CFN_ACOSH:
13007 CASE_CFN_CABS:
13008 CASE_CFN_COSH:
13009 CASE_CFN_ERFC:
13010 CASE_CFN_EXP:
13011 CASE_CFN_EXP10:
13012 CASE_CFN_EXP2:
13013 CASE_CFN_FABS:
13014 CASE_CFN_FDIM:
13015 CASE_CFN_HYPOT:
13016 CASE_CFN_POW10:
13017 CASE_CFN_FFS:
13018 CASE_CFN_PARITY:
13019 CASE_CFN_POPCOUNT:
13020 CASE_CFN_CLZ:
13021 CASE_CFN_CLRSB:
13022 case CFN_BUILT_IN_BSWAP32:
13023 case CFN_BUILT_IN_BSWAP64:
13024 /* Always true. */
13025 return true;
13026
13027 CASE_CFN_SQRT:
13028 CASE_CFN_SQRT_FN:
13029 /* sqrt(-0.0) is -0.0. */
13030 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13031 return true;
13032 return RECURSE (arg0);
13033
13034 CASE_CFN_ASINH:
13035 CASE_CFN_ATAN:
13036 CASE_CFN_ATANH:
13037 CASE_CFN_CBRT:
13038 CASE_CFN_CEIL:
13039 CASE_CFN_CEIL_FN:
13040 CASE_CFN_ERF:
13041 CASE_CFN_EXPM1:
13042 CASE_CFN_FLOOR:
13043 CASE_CFN_FLOOR_FN:
13044 CASE_CFN_FMOD:
13045 CASE_CFN_FREXP:
13046 CASE_CFN_ICEIL:
13047 CASE_CFN_IFLOOR:
13048 CASE_CFN_IRINT:
13049 CASE_CFN_IROUND:
13050 CASE_CFN_LCEIL:
13051 CASE_CFN_LDEXP:
13052 CASE_CFN_LFLOOR:
13053 CASE_CFN_LLCEIL:
13054 CASE_CFN_LLFLOOR:
13055 CASE_CFN_LLRINT:
13056 CASE_CFN_LLROUND:
13057 CASE_CFN_LRINT:
13058 CASE_CFN_LROUND:
13059 CASE_CFN_MODF:
13060 CASE_CFN_NEARBYINT:
13061 CASE_CFN_NEARBYINT_FN:
13062 CASE_CFN_RINT:
13063 CASE_CFN_RINT_FN:
13064 CASE_CFN_ROUND:
13065 CASE_CFN_ROUND_FN:
13066 CASE_CFN_SCALB:
13067 CASE_CFN_SCALBLN:
13068 CASE_CFN_SCALBN:
13069 CASE_CFN_SIGNBIT:
13070 CASE_CFN_SIGNIFICAND:
13071 CASE_CFN_SINH:
13072 CASE_CFN_TANH:
13073 CASE_CFN_TRUNC:
13074 CASE_CFN_TRUNC_FN:
13075 /* True if the 1st argument is nonnegative. */
13076 return RECURSE (arg0);
13077
13078 CASE_CFN_FMAX:
13079 CASE_CFN_FMAX_FN:
13080 /* True if the 1st OR 2nd arguments are nonnegative. */
13081 return RECURSE (arg0) || RECURSE (arg1);
13082
13083 CASE_CFN_FMIN:
13084 CASE_CFN_FMIN_FN:
13085 /* True if the 1st AND 2nd arguments are nonnegative. */
13086 return RECURSE (arg0) && RECURSE (arg1);
13087
13088 CASE_CFN_COPYSIGN:
13089 CASE_CFN_COPYSIGN_FN:
13090 /* True if the 2nd argument is nonnegative. */
13091 return RECURSE (arg1);
13092
13093 CASE_CFN_POWI:
13094 /* True if the 1st argument is nonnegative or the second
13095 argument is an even integer. */
13096 if (TREE_CODE (arg1) == INTEGER_CST
13097 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13098 return true;
13099 return RECURSE (arg0);
13100
13101 CASE_CFN_POW:
13102 /* True if the 1st argument is nonnegative or the second
13103 argument is an even integer valued real. */
13104 if (TREE_CODE (arg1) == REAL_CST)
13105 {
13106 REAL_VALUE_TYPE c;
13107 HOST_WIDE_INT n;
13108
13109 c = TREE_REAL_CST (arg1);
13110 n = real_to_integer (&c);
13111 if ((n & 1) == 0)
13112 {
13113 REAL_VALUE_TYPE cint;
13114 real_from_integer (&cint, VOIDmode, n, SIGNED);
13115 if (real_identical (&c, &cint))
13116 return true;
13117 }
13118 }
13119 return RECURSE (arg0);
13120
13121 default:
13122 break;
13123 }
13124 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13125 }
13126
13127 /* Return true if T is known to be non-negative. If the return
13128 value is based on the assumption that signed overflow is undefined,
13129 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13130 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13131
13132 static bool
13133 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13134 {
13135 enum tree_code code = TREE_CODE (t);
13136 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13137 return true;
13138
13139 switch (code)
13140 {
13141 case TARGET_EXPR:
13142 {
13143 tree temp = TARGET_EXPR_SLOT (t);
13144 t = TARGET_EXPR_INITIAL (t);
13145
13146 /* If the initializer is non-void, then it's a normal expression
13147 that will be assigned to the slot. */
13148 if (!VOID_TYPE_P (t))
13149 return RECURSE (t);
13150
13151 /* Otherwise, the initializer sets the slot in some way. One common
13152 way is an assignment statement at the end of the initializer. */
13153 while (1)
13154 {
13155 if (TREE_CODE (t) == BIND_EXPR)
13156 t = expr_last (BIND_EXPR_BODY (t));
13157 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13158 || TREE_CODE (t) == TRY_CATCH_EXPR)
13159 t = expr_last (TREE_OPERAND (t, 0));
13160 else if (TREE_CODE (t) == STATEMENT_LIST)
13161 t = expr_last (t);
13162 else
13163 break;
13164 }
13165 if (TREE_CODE (t) == MODIFY_EXPR
13166 && TREE_OPERAND (t, 0) == temp)
13167 return RECURSE (TREE_OPERAND (t, 1));
13168
13169 return false;
13170 }
13171
13172 case CALL_EXPR:
13173 {
13174 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13175 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13176
13177 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13178 get_call_combined_fn (t),
13179 arg0,
13180 arg1,
13181 strict_overflow_p, depth);
13182 }
13183 case COMPOUND_EXPR:
13184 case MODIFY_EXPR:
13185 return RECURSE (TREE_OPERAND (t, 1));
13186
13187 case BIND_EXPR:
13188 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13189
13190 case SAVE_EXPR:
13191 return RECURSE (TREE_OPERAND (t, 0));
13192
13193 default:
13194 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13195 }
13196 }
13197
13198 #undef RECURSE
13199 #undef tree_expr_nonnegative_warnv_p
13200
13201 /* Return true if T is known to be non-negative. If the return
13202 value is based on the assumption that signed overflow is undefined,
13203 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13204 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13205
13206 bool
13207 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13208 {
13209 enum tree_code code;
13210 if (t == error_mark_node)
13211 return false;
13212
13213 code = TREE_CODE (t);
13214 switch (TREE_CODE_CLASS (code))
13215 {
13216 case tcc_binary:
13217 case tcc_comparison:
13218 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13219 TREE_TYPE (t),
13220 TREE_OPERAND (t, 0),
13221 TREE_OPERAND (t, 1),
13222 strict_overflow_p, depth);
13223
13224 case tcc_unary:
13225 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13226 TREE_TYPE (t),
13227 TREE_OPERAND (t, 0),
13228 strict_overflow_p, depth);
13229
13230 case tcc_constant:
13231 case tcc_declaration:
13232 case tcc_reference:
13233 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13234
13235 default:
13236 break;
13237 }
13238
13239 switch (code)
13240 {
13241 case TRUTH_AND_EXPR:
13242 case TRUTH_OR_EXPR:
13243 case TRUTH_XOR_EXPR:
13244 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13245 TREE_TYPE (t),
13246 TREE_OPERAND (t, 0),
13247 TREE_OPERAND (t, 1),
13248 strict_overflow_p, depth);
13249 case TRUTH_NOT_EXPR:
13250 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13251 TREE_TYPE (t),
13252 TREE_OPERAND (t, 0),
13253 strict_overflow_p, depth);
13254
13255 case COND_EXPR:
13256 case CONSTRUCTOR:
13257 case OBJ_TYPE_REF:
13258 case ASSERT_EXPR:
13259 case ADDR_EXPR:
13260 case WITH_SIZE_EXPR:
13261 case SSA_NAME:
13262 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13263
13264 default:
13265 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13266 }
13267 }
13268
13269 /* Return true if `t' is known to be non-negative. Handle warnings
13270 about undefined signed overflow. */
13271
13272 bool
13273 tree_expr_nonnegative_p (tree t)
13274 {
13275 bool ret, strict_overflow_p;
13276
13277 strict_overflow_p = false;
13278 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13279 if (strict_overflow_p)
13280 fold_overflow_warning (("assuming signed overflow does not occur when "
13281 "determining that expression is always "
13282 "non-negative"),
13283 WARN_STRICT_OVERFLOW_MISC);
13284 return ret;
13285 }
13286
13287
13288 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13289 For floating point we further ensure that T is not denormal.
13290 Similar logic is present in nonzero_address in rtlanal.h.
13291
13292 If the return value is based on the assumption that signed overflow
13293 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13294 change *STRICT_OVERFLOW_P. */
13295
13296 bool
13297 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13298 bool *strict_overflow_p)
13299 {
13300 switch (code)
13301 {
13302 case ABS_EXPR:
13303 return tree_expr_nonzero_warnv_p (op0,
13304 strict_overflow_p);
13305
13306 case NOP_EXPR:
13307 {
13308 tree inner_type = TREE_TYPE (op0);
13309 tree outer_type = type;
13310
13311 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13312 && tree_expr_nonzero_warnv_p (op0,
13313 strict_overflow_p));
13314 }
13315 break;
13316
13317 case NON_LVALUE_EXPR:
13318 return tree_expr_nonzero_warnv_p (op0,
13319 strict_overflow_p);
13320
13321 default:
13322 break;
13323 }
13324
13325 return false;
13326 }
13327
13328 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13329 For floating point we further ensure that T is not denormal.
13330 Similar logic is present in nonzero_address in rtlanal.h.
13331
13332 If the return value is based on the assumption that signed overflow
13333 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13334 change *STRICT_OVERFLOW_P. */
13335
13336 bool
13337 tree_binary_nonzero_warnv_p (enum tree_code code,
13338 tree type,
13339 tree op0,
13340 tree op1, bool *strict_overflow_p)
13341 {
13342 bool sub_strict_overflow_p;
13343 switch (code)
13344 {
13345 case POINTER_PLUS_EXPR:
13346 case PLUS_EXPR:
13347 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13348 {
13349 /* With the presence of negative values it is hard
13350 to say something. */
13351 sub_strict_overflow_p = false;
13352 if (!tree_expr_nonnegative_warnv_p (op0,
13353 &sub_strict_overflow_p)
13354 || !tree_expr_nonnegative_warnv_p (op1,
13355 &sub_strict_overflow_p))
13356 return false;
13357 /* One of operands must be positive and the other non-negative. */
13358 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13359 overflows, on a twos-complement machine the sum of two
13360 nonnegative numbers can never be zero. */
13361 return (tree_expr_nonzero_warnv_p (op0,
13362 strict_overflow_p)
13363 || tree_expr_nonzero_warnv_p (op1,
13364 strict_overflow_p));
13365 }
13366 break;
13367
13368 case MULT_EXPR:
13369 if (TYPE_OVERFLOW_UNDEFINED (type))
13370 {
13371 if (tree_expr_nonzero_warnv_p (op0,
13372 strict_overflow_p)
13373 && tree_expr_nonzero_warnv_p (op1,
13374 strict_overflow_p))
13375 {
13376 *strict_overflow_p = true;
13377 return true;
13378 }
13379 }
13380 break;
13381
13382 case MIN_EXPR:
13383 sub_strict_overflow_p = false;
13384 if (tree_expr_nonzero_warnv_p (op0,
13385 &sub_strict_overflow_p)
13386 && tree_expr_nonzero_warnv_p (op1,
13387 &sub_strict_overflow_p))
13388 {
13389 if (sub_strict_overflow_p)
13390 *strict_overflow_p = true;
13391 }
13392 break;
13393
13394 case MAX_EXPR:
13395 sub_strict_overflow_p = false;
13396 if (tree_expr_nonzero_warnv_p (op0,
13397 &sub_strict_overflow_p))
13398 {
13399 if (sub_strict_overflow_p)
13400 *strict_overflow_p = true;
13401
13402 /* When both operands are nonzero, then MAX must be too. */
13403 if (tree_expr_nonzero_warnv_p (op1,
13404 strict_overflow_p))
13405 return true;
13406
13407 /* MAX where operand 0 is positive is positive. */
13408 return tree_expr_nonnegative_warnv_p (op0,
13409 strict_overflow_p);
13410 }
13411 /* MAX where operand 1 is positive is positive. */
13412 else if (tree_expr_nonzero_warnv_p (op1,
13413 &sub_strict_overflow_p)
13414 && tree_expr_nonnegative_warnv_p (op1,
13415 &sub_strict_overflow_p))
13416 {
13417 if (sub_strict_overflow_p)
13418 *strict_overflow_p = true;
13419 return true;
13420 }
13421 break;
13422
13423 case BIT_IOR_EXPR:
13424 return (tree_expr_nonzero_warnv_p (op1,
13425 strict_overflow_p)
13426 || tree_expr_nonzero_warnv_p (op0,
13427 strict_overflow_p));
13428
13429 default:
13430 break;
13431 }
13432
13433 return false;
13434 }
13435
13436 /* Return true when T is an address and is known to be nonzero.
13437 For floating point we further ensure that T is not denormal.
13438 Similar logic is present in nonzero_address in rtlanal.h.
13439
13440 If the return value is based on the assumption that signed overflow
13441 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13442 change *STRICT_OVERFLOW_P. */
13443
13444 bool
13445 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13446 {
13447 bool sub_strict_overflow_p;
13448 switch (TREE_CODE (t))
13449 {
13450 case INTEGER_CST:
13451 return !integer_zerop (t);
13452
13453 case ADDR_EXPR:
13454 {
13455 tree base = TREE_OPERAND (t, 0);
13456
13457 if (!DECL_P (base))
13458 base = get_base_address (base);
13459
13460 if (base && TREE_CODE (base) == TARGET_EXPR)
13461 base = TARGET_EXPR_SLOT (base);
13462
13463 if (!base)
13464 return false;
13465
13466 /* For objects in symbol table check if we know they are non-zero.
13467 Don't do anything for variables and functions before symtab is built;
13468 it is quite possible that they will be declared weak later. */
13469 int nonzero_addr = maybe_nonzero_address (base);
13470 if (nonzero_addr >= 0)
13471 return nonzero_addr;
13472
13473 /* Constants are never weak. */
13474 if (CONSTANT_CLASS_P (base))
13475 return true;
13476
13477 return false;
13478 }
13479
13480 case COND_EXPR:
13481 sub_strict_overflow_p = false;
13482 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13483 &sub_strict_overflow_p)
13484 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13485 &sub_strict_overflow_p))
13486 {
13487 if (sub_strict_overflow_p)
13488 *strict_overflow_p = true;
13489 return true;
13490 }
13491 break;
13492
13493 case SSA_NAME:
13494 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13495 break;
13496 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13497
13498 default:
13499 break;
13500 }
13501 return false;
13502 }
13503
13504 #define integer_valued_real_p(X) \
13505 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13506
13507 #define RECURSE(X) \
13508 ((integer_valued_real_p) (X, depth + 1))
13509
13510 /* Return true if the floating point result of (CODE OP0) has an
13511 integer value. We also allow +Inf, -Inf and NaN to be considered
13512 integer values. Return false for signaling NaN.
13513
13514 DEPTH is the current nesting depth of the query. */
13515
13516 bool
13517 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13518 {
13519 switch (code)
13520 {
13521 case FLOAT_EXPR:
13522 return true;
13523
13524 case ABS_EXPR:
13525 return RECURSE (op0);
13526
13527 CASE_CONVERT:
13528 {
13529 tree type = TREE_TYPE (op0);
13530 if (TREE_CODE (type) == INTEGER_TYPE)
13531 return true;
13532 if (TREE_CODE (type) == REAL_TYPE)
13533 return RECURSE (op0);
13534 break;
13535 }
13536
13537 default:
13538 break;
13539 }
13540 return false;
13541 }
13542
13543 /* Return true if the floating point result of (CODE OP0 OP1) has an
13544 integer value. We also allow +Inf, -Inf and NaN to be considered
13545 integer values. Return false for signaling NaN.
13546
13547 DEPTH is the current nesting depth of the query. */
13548
13549 bool
13550 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13551 {
13552 switch (code)
13553 {
13554 case PLUS_EXPR:
13555 case MINUS_EXPR:
13556 case MULT_EXPR:
13557 case MIN_EXPR:
13558 case MAX_EXPR:
13559 return RECURSE (op0) && RECURSE (op1);
13560
13561 default:
13562 break;
13563 }
13564 return false;
13565 }
13566
13567 /* Return true if the floating point result of calling FNDECL with arguments
13568 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13569 considered integer values. Return false for signaling NaN. If FNDECL
13570 takes fewer than 2 arguments, the remaining ARGn are null.
13571
13572 DEPTH is the current nesting depth of the query. */
13573
13574 bool
13575 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13576 {
13577 switch (fn)
13578 {
13579 CASE_CFN_CEIL:
13580 CASE_CFN_CEIL_FN:
13581 CASE_CFN_FLOOR:
13582 CASE_CFN_FLOOR_FN:
13583 CASE_CFN_NEARBYINT:
13584 CASE_CFN_NEARBYINT_FN:
13585 CASE_CFN_RINT:
13586 CASE_CFN_RINT_FN:
13587 CASE_CFN_ROUND:
13588 CASE_CFN_ROUND_FN:
13589 CASE_CFN_TRUNC:
13590 CASE_CFN_TRUNC_FN:
13591 return true;
13592
13593 CASE_CFN_FMIN:
13594 CASE_CFN_FMIN_FN:
13595 CASE_CFN_FMAX:
13596 CASE_CFN_FMAX_FN:
13597 return RECURSE (arg0) && RECURSE (arg1);
13598
13599 default:
13600 break;
13601 }
13602 return false;
13603 }
13604
13605 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13606 has an integer value. We also allow +Inf, -Inf and NaN to be
13607 considered integer values. Return false for signaling NaN.
13608
13609 DEPTH is the current nesting depth of the query. */
13610
13611 bool
13612 integer_valued_real_single_p (tree t, int depth)
13613 {
13614 switch (TREE_CODE (t))
13615 {
13616 case REAL_CST:
13617 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13618
13619 case COND_EXPR:
13620 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13621
13622 case SSA_NAME:
13623 /* Limit the depth of recursion to avoid quadratic behavior.
13624 This is expected to catch almost all occurrences in practice.
13625 If this code misses important cases that unbounded recursion
13626 would not, passes that need this information could be revised
13627 to provide it through dataflow propagation. */
13628 return (!name_registered_for_update_p (t)
13629 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13630 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13631 depth));
13632
13633 default:
13634 break;
13635 }
13636 return false;
13637 }
13638
13639 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13640 has an integer value. We also allow +Inf, -Inf and NaN to be
13641 considered integer values. Return false for signaling NaN.
13642
13643 DEPTH is the current nesting depth of the query. */
13644
13645 static bool
13646 integer_valued_real_invalid_p (tree t, int depth)
13647 {
13648 switch (TREE_CODE (t))
13649 {
13650 case COMPOUND_EXPR:
13651 case MODIFY_EXPR:
13652 case BIND_EXPR:
13653 return RECURSE (TREE_OPERAND (t, 1));
13654
13655 case SAVE_EXPR:
13656 return RECURSE (TREE_OPERAND (t, 0));
13657
13658 default:
13659 break;
13660 }
13661 return false;
13662 }
13663
13664 #undef RECURSE
13665 #undef integer_valued_real_p
13666
13667 /* Return true if the floating point expression T has an integer value.
13668 We also allow +Inf, -Inf and NaN to be considered integer values.
13669 Return false for signaling NaN.
13670
13671 DEPTH is the current nesting depth of the query. */
13672
13673 bool
13674 integer_valued_real_p (tree t, int depth)
13675 {
13676 if (t == error_mark_node)
13677 return false;
13678
13679 STRIP_ANY_LOCATION_WRAPPER (t);
13680
13681 tree_code code = TREE_CODE (t);
13682 switch (TREE_CODE_CLASS (code))
13683 {
13684 case tcc_binary:
13685 case tcc_comparison:
13686 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13687 TREE_OPERAND (t, 1), depth);
13688
13689 case tcc_unary:
13690 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13691
13692 case tcc_constant:
13693 case tcc_declaration:
13694 case tcc_reference:
13695 return integer_valued_real_single_p (t, depth);
13696
13697 default:
13698 break;
13699 }
13700
13701 switch (code)
13702 {
13703 case COND_EXPR:
13704 case SSA_NAME:
13705 return integer_valued_real_single_p (t, depth);
13706
13707 case CALL_EXPR:
13708 {
13709 tree arg0 = (call_expr_nargs (t) > 0
13710 ? CALL_EXPR_ARG (t, 0)
13711 : NULL_TREE);
13712 tree arg1 = (call_expr_nargs (t) > 1
13713 ? CALL_EXPR_ARG (t, 1)
13714 : NULL_TREE);
13715 return integer_valued_real_call_p (get_call_combined_fn (t),
13716 arg0, arg1, depth);
13717 }
13718
13719 default:
13720 return integer_valued_real_invalid_p (t, depth);
13721 }
13722 }
13723
13724 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13725 attempt to fold the expression to a constant without modifying TYPE,
13726 OP0 or OP1.
13727
13728 If the expression could be simplified to a constant, then return
13729 the constant. If the expression would not be simplified to a
13730 constant, then return NULL_TREE. */
13731
13732 tree
13733 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13734 {
13735 tree tem = fold_binary (code, type, op0, op1);
13736 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13737 }
13738
13739 /* Given the components of a unary expression CODE, TYPE and OP0,
13740 attempt to fold the expression to a constant without modifying
13741 TYPE or OP0.
13742
13743 If the expression could be simplified to a constant, then return
13744 the constant. If the expression would not be simplified to a
13745 constant, then return NULL_TREE. */
13746
13747 tree
13748 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13749 {
13750 tree tem = fold_unary (code, type, op0);
13751 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13752 }
13753
13754 /* If EXP represents referencing an element in a constant string
13755 (either via pointer arithmetic or array indexing), return the
13756 tree representing the value accessed, otherwise return NULL. */
13757
13758 tree
13759 fold_read_from_constant_string (tree exp)
13760 {
13761 if ((TREE_CODE (exp) == INDIRECT_REF
13762 || TREE_CODE (exp) == ARRAY_REF)
13763 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13764 {
13765 tree exp1 = TREE_OPERAND (exp, 0);
13766 tree index;
13767 tree string;
13768 location_t loc = EXPR_LOCATION (exp);
13769
13770 if (TREE_CODE (exp) == INDIRECT_REF)
13771 string = string_constant (exp1, &index, NULL, NULL);
13772 else
13773 {
13774 tree low_bound = array_ref_low_bound (exp);
13775 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13776
13777 /* Optimize the special-case of a zero lower bound.
13778
13779 We convert the low_bound to sizetype to avoid some problems
13780 with constant folding. (E.g. suppose the lower bound is 1,
13781 and its mode is QI. Without the conversion,l (ARRAY
13782 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13783 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13784 if (! integer_zerop (low_bound))
13785 index = size_diffop_loc (loc, index,
13786 fold_convert_loc (loc, sizetype, low_bound));
13787
13788 string = exp1;
13789 }
13790
13791 scalar_int_mode char_mode;
13792 if (string
13793 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13794 && TREE_CODE (string) == STRING_CST
13795 && TREE_CODE (index) == INTEGER_CST
13796 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13797 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13798 &char_mode)
13799 && GET_MODE_SIZE (char_mode) == 1)
13800 return build_int_cst_type (TREE_TYPE (exp),
13801 (TREE_STRING_POINTER (string)
13802 [TREE_INT_CST_LOW (index)]));
13803 }
13804 return NULL;
13805 }
13806
13807 /* Folds a read from vector element at IDX of vector ARG. */
13808
13809 tree
13810 fold_read_from_vector (tree arg, poly_uint64 idx)
13811 {
13812 unsigned HOST_WIDE_INT i;
13813 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
13814 && known_ge (idx, 0u)
13815 && idx.is_constant (&i))
13816 {
13817 if (TREE_CODE (arg) == VECTOR_CST)
13818 return VECTOR_CST_ELT (arg, i);
13819 else if (TREE_CODE (arg) == CONSTRUCTOR)
13820 {
13821 if (i >= CONSTRUCTOR_NELTS (arg))
13822 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
13823 return CONSTRUCTOR_ELT (arg, i)->value;
13824 }
13825 }
13826 return NULL_TREE;
13827 }
13828
13829 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13830 an integer constant, real, or fixed-point constant.
13831
13832 TYPE is the type of the result. */
13833
13834 static tree
13835 fold_negate_const (tree arg0, tree type)
13836 {
13837 tree t = NULL_TREE;
13838
13839 switch (TREE_CODE (arg0))
13840 {
13841 case REAL_CST:
13842 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13843 break;
13844
13845 case FIXED_CST:
13846 {
13847 FIXED_VALUE_TYPE f;
13848 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13849 &(TREE_FIXED_CST (arg0)), NULL,
13850 TYPE_SATURATING (type));
13851 t = build_fixed (type, f);
13852 /* Propagate overflow flags. */
13853 if (overflow_p | TREE_OVERFLOW (arg0))
13854 TREE_OVERFLOW (t) = 1;
13855 break;
13856 }
13857
13858 default:
13859 if (poly_int_tree_p (arg0))
13860 {
13861 wi::overflow_type overflow;
13862 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
13863 t = force_fit_type (type, res, 1,
13864 (overflow && ! TYPE_UNSIGNED (type))
13865 || TREE_OVERFLOW (arg0));
13866 break;
13867 }
13868
13869 gcc_unreachable ();
13870 }
13871
13872 return t;
13873 }
13874
13875 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13876 an integer constant or real constant.
13877
13878 TYPE is the type of the result. */
13879
13880 tree
13881 fold_abs_const (tree arg0, tree type)
13882 {
13883 tree t = NULL_TREE;
13884
13885 switch (TREE_CODE (arg0))
13886 {
13887 case INTEGER_CST:
13888 {
13889 /* If the value is unsigned or non-negative, then the absolute value
13890 is the same as the ordinary value. */
13891 wide_int val = wi::to_wide (arg0);
13892 wi::overflow_type overflow = wi::OVF_NONE;
13893 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
13894 ;
13895
13896 /* If the value is negative, then the absolute value is
13897 its negation. */
13898 else
13899 val = wi::neg (val, &overflow);
13900
13901 /* Force to the destination type, set TREE_OVERFLOW for signed
13902 TYPE only. */
13903 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
13904 }
13905 break;
13906
13907 case REAL_CST:
13908 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13909 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13910 else
13911 t = arg0;
13912 break;
13913
13914 default:
13915 gcc_unreachable ();
13916 }
13917
13918 return t;
13919 }
13920
13921 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13922 constant. TYPE is the type of the result. */
13923
13924 static tree
13925 fold_not_const (const_tree arg0, tree type)
13926 {
13927 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13928
13929 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
13930 }
13931
13932 /* Given CODE, a relational operator, the target type, TYPE and two
13933 constant operands OP0 and OP1, return the result of the
13934 relational operation. If the result is not a compile time
13935 constant, then return NULL_TREE. */
13936
13937 static tree
13938 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13939 {
13940 int result, invert;
13941
13942 /* From here on, the only cases we handle are when the result is
13943 known to be a constant. */
13944
13945 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13946 {
13947 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13948 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13949
13950 /* Handle the cases where either operand is a NaN. */
13951 if (real_isnan (c0) || real_isnan (c1))
13952 {
13953 switch (code)
13954 {
13955 case EQ_EXPR:
13956 case ORDERED_EXPR:
13957 result = 0;
13958 break;
13959
13960 case NE_EXPR:
13961 case UNORDERED_EXPR:
13962 case UNLT_EXPR:
13963 case UNLE_EXPR:
13964 case UNGT_EXPR:
13965 case UNGE_EXPR:
13966 case UNEQ_EXPR:
13967 result = 1;
13968 break;
13969
13970 case LT_EXPR:
13971 case LE_EXPR:
13972 case GT_EXPR:
13973 case GE_EXPR:
13974 case LTGT_EXPR:
13975 if (flag_trapping_math)
13976 return NULL_TREE;
13977 result = 0;
13978 break;
13979
13980 default:
13981 gcc_unreachable ();
13982 }
13983
13984 return constant_boolean_node (result, type);
13985 }
13986
13987 return constant_boolean_node (real_compare (code, c0, c1), type);
13988 }
13989
13990 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13991 {
13992 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13993 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13994 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13995 }
13996
13997 /* Handle equality/inequality of complex constants. */
13998 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13999 {
14000 tree rcond = fold_relational_const (code, type,
14001 TREE_REALPART (op0),
14002 TREE_REALPART (op1));
14003 tree icond = fold_relational_const (code, type,
14004 TREE_IMAGPART (op0),
14005 TREE_IMAGPART (op1));
14006 if (code == EQ_EXPR)
14007 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14008 else if (code == NE_EXPR)
14009 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14010 else
14011 return NULL_TREE;
14012 }
14013
14014 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14015 {
14016 if (!VECTOR_TYPE_P (type))
14017 {
14018 /* Have vector comparison with scalar boolean result. */
14019 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
14020 && known_eq (VECTOR_CST_NELTS (op0),
14021 VECTOR_CST_NELTS (op1)));
14022 unsigned HOST_WIDE_INT nunits;
14023 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
14024 return NULL_TREE;
14025 for (unsigned i = 0; i < nunits; i++)
14026 {
14027 tree elem0 = VECTOR_CST_ELT (op0, i);
14028 tree elem1 = VECTOR_CST_ELT (op1, i);
14029 tree tmp = fold_relational_const (code, type, elem0, elem1);
14030 if (tmp == NULL_TREE)
14031 return NULL_TREE;
14032 if (integer_zerop (tmp))
14033 return constant_boolean_node (false, type);
14034 }
14035 return constant_boolean_node (true, type);
14036 }
14037 tree_vector_builder elts;
14038 if (!elts.new_binary_operation (type, op0, op1, false))
14039 return NULL_TREE;
14040 unsigned int count = elts.encoded_nelts ();
14041 for (unsigned i = 0; i < count; i++)
14042 {
14043 tree elem_type = TREE_TYPE (type);
14044 tree elem0 = VECTOR_CST_ELT (op0, i);
14045 tree elem1 = VECTOR_CST_ELT (op1, i);
14046
14047 tree tem = fold_relational_const (code, elem_type,
14048 elem0, elem1);
14049
14050 if (tem == NULL_TREE)
14051 return NULL_TREE;
14052
14053 elts.quick_push (build_int_cst (elem_type,
14054 integer_zerop (tem) ? 0 : -1));
14055 }
14056
14057 return elts.build ();
14058 }
14059
14060 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14061
14062 To compute GT, swap the arguments and do LT.
14063 To compute GE, do LT and invert the result.
14064 To compute LE, swap the arguments, do LT and invert the result.
14065 To compute NE, do EQ and invert the result.
14066
14067 Therefore, the code below must handle only EQ and LT. */
14068
14069 if (code == LE_EXPR || code == GT_EXPR)
14070 {
14071 std::swap (op0, op1);
14072 code = swap_tree_comparison (code);
14073 }
14074
14075 /* Note that it is safe to invert for real values here because we
14076 have already handled the one case that it matters. */
14077
14078 invert = 0;
14079 if (code == NE_EXPR || code == GE_EXPR)
14080 {
14081 invert = 1;
14082 code = invert_tree_comparison (code, false);
14083 }
14084
14085 /* Compute a result for LT or EQ if args permit;
14086 Otherwise return T. */
14087 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14088 {
14089 if (code == EQ_EXPR)
14090 result = tree_int_cst_equal (op0, op1);
14091 else
14092 result = tree_int_cst_lt (op0, op1);
14093 }
14094 else
14095 return NULL_TREE;
14096
14097 if (invert)
14098 result ^= 1;
14099 return constant_boolean_node (result, type);
14100 }
14101
14102 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14103 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14104 itself. */
14105
14106 tree
14107 fold_build_cleanup_point_expr (tree type, tree expr)
14108 {
14109 /* If the expression does not have side effects then we don't have to wrap
14110 it with a cleanup point expression. */
14111 if (!TREE_SIDE_EFFECTS (expr))
14112 return expr;
14113
14114 /* If the expression is a return, check to see if the expression inside the
14115 return has no side effects or the right hand side of the modify expression
14116 inside the return. If either don't have side effects set we don't need to
14117 wrap the expression in a cleanup point expression. Note we don't check the
14118 left hand side of the modify because it should always be a return decl. */
14119 if (TREE_CODE (expr) == RETURN_EXPR)
14120 {
14121 tree op = TREE_OPERAND (expr, 0);
14122 if (!op || !TREE_SIDE_EFFECTS (op))
14123 return expr;
14124 op = TREE_OPERAND (op, 1);
14125 if (!TREE_SIDE_EFFECTS (op))
14126 return expr;
14127 }
14128
14129 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14130 }
14131
14132 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14133 of an indirection through OP0, or NULL_TREE if no simplification is
14134 possible. */
14135
14136 tree
14137 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14138 {
14139 tree sub = op0;
14140 tree subtype;
14141 poly_uint64 const_op01;
14142
14143 STRIP_NOPS (sub);
14144 subtype = TREE_TYPE (sub);
14145 if (!POINTER_TYPE_P (subtype)
14146 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14147 return NULL_TREE;
14148
14149 if (TREE_CODE (sub) == ADDR_EXPR)
14150 {
14151 tree op = TREE_OPERAND (sub, 0);
14152 tree optype = TREE_TYPE (op);
14153
14154 /* *&CONST_DECL -> to the value of the const decl. */
14155 if (TREE_CODE (op) == CONST_DECL)
14156 return DECL_INITIAL (op);
14157 /* *&p => p; make sure to handle *&"str"[cst] here. */
14158 if (type == optype)
14159 {
14160 tree fop = fold_read_from_constant_string (op);
14161 if (fop)
14162 return fop;
14163 else
14164 return op;
14165 }
14166 /* *(foo *)&fooarray => fooarray[0] */
14167 else if (TREE_CODE (optype) == ARRAY_TYPE
14168 && type == TREE_TYPE (optype)
14169 && (!in_gimple_form
14170 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14171 {
14172 tree type_domain = TYPE_DOMAIN (optype);
14173 tree min_val = size_zero_node;
14174 if (type_domain && TYPE_MIN_VALUE (type_domain))
14175 min_val = TYPE_MIN_VALUE (type_domain);
14176 if (in_gimple_form
14177 && TREE_CODE (min_val) != INTEGER_CST)
14178 return NULL_TREE;
14179 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14180 NULL_TREE, NULL_TREE);
14181 }
14182 /* *(foo *)&complexfoo => __real__ complexfoo */
14183 else if (TREE_CODE (optype) == COMPLEX_TYPE
14184 && type == TREE_TYPE (optype))
14185 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14186 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14187 else if (VECTOR_TYPE_P (optype)
14188 && type == TREE_TYPE (optype))
14189 {
14190 tree part_width = TYPE_SIZE (type);
14191 tree index = bitsize_int (0);
14192 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
14193 index);
14194 }
14195 }
14196
14197 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14198 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
14199 {
14200 tree op00 = TREE_OPERAND (sub, 0);
14201 tree op01 = TREE_OPERAND (sub, 1);
14202
14203 STRIP_NOPS (op00);
14204 if (TREE_CODE (op00) == ADDR_EXPR)
14205 {
14206 tree op00type;
14207 op00 = TREE_OPERAND (op00, 0);
14208 op00type = TREE_TYPE (op00);
14209
14210 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14211 if (VECTOR_TYPE_P (op00type)
14212 && type == TREE_TYPE (op00type)
14213 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14214 but we want to treat offsets with MSB set as negative.
14215 For the code below negative offsets are invalid and
14216 TYPE_SIZE of the element is something unsigned, so
14217 check whether op01 fits into poly_int64, which implies
14218 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14219 then just use poly_uint64 because we want to treat the
14220 value as unsigned. */
14221 && tree_fits_poly_int64_p (op01))
14222 {
14223 tree part_width = TYPE_SIZE (type);
14224 poly_uint64 max_offset
14225 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14226 * TYPE_VECTOR_SUBPARTS (op00type));
14227 if (known_lt (const_op01, max_offset))
14228 {
14229 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
14230 return fold_build3_loc (loc,
14231 BIT_FIELD_REF, type, op00,
14232 part_width, index);
14233 }
14234 }
14235 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14236 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14237 && type == TREE_TYPE (op00type))
14238 {
14239 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
14240 const_op01))
14241 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14242 }
14243 /* ((foo *)&fooarray)[1] => fooarray[1] */
14244 else if (TREE_CODE (op00type) == ARRAY_TYPE
14245 && type == TREE_TYPE (op00type))
14246 {
14247 tree type_domain = TYPE_DOMAIN (op00type);
14248 tree min_val = size_zero_node;
14249 if (type_domain && TYPE_MIN_VALUE (type_domain))
14250 min_val = TYPE_MIN_VALUE (type_domain);
14251 poly_uint64 type_size, index;
14252 if (poly_int_tree_p (min_val)
14253 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
14254 && multiple_p (const_op01, type_size, &index))
14255 {
14256 poly_offset_int off = index + wi::to_poly_offset (min_val);
14257 op01 = wide_int_to_tree (sizetype, off);
14258 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14259 NULL_TREE, NULL_TREE);
14260 }
14261 }
14262 }
14263 }
14264
14265 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14266 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14267 && type == TREE_TYPE (TREE_TYPE (subtype))
14268 && (!in_gimple_form
14269 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14270 {
14271 tree type_domain;
14272 tree min_val = size_zero_node;
14273 sub = build_fold_indirect_ref_loc (loc, sub);
14274 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14275 if (type_domain && TYPE_MIN_VALUE (type_domain))
14276 min_val = TYPE_MIN_VALUE (type_domain);
14277 if (in_gimple_form
14278 && TREE_CODE (min_val) != INTEGER_CST)
14279 return NULL_TREE;
14280 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14281 NULL_TREE);
14282 }
14283
14284 return NULL_TREE;
14285 }
14286
14287 /* Builds an expression for an indirection through T, simplifying some
14288 cases. */
14289
14290 tree
14291 build_fold_indirect_ref_loc (location_t loc, tree t)
14292 {
14293 tree type = TREE_TYPE (TREE_TYPE (t));
14294 tree sub = fold_indirect_ref_1 (loc, type, t);
14295
14296 if (sub)
14297 return sub;
14298
14299 return build1_loc (loc, INDIRECT_REF, type, t);
14300 }
14301
14302 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14303
14304 tree
14305 fold_indirect_ref_loc (location_t loc, tree t)
14306 {
14307 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14308
14309 if (sub)
14310 return sub;
14311 else
14312 return t;
14313 }
14314
14315 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14316 whose result is ignored. The type of the returned tree need not be
14317 the same as the original expression. */
14318
14319 tree
14320 fold_ignored_result (tree t)
14321 {
14322 if (!TREE_SIDE_EFFECTS (t))
14323 return integer_zero_node;
14324
14325 for (;;)
14326 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14327 {
14328 case tcc_unary:
14329 t = TREE_OPERAND (t, 0);
14330 break;
14331
14332 case tcc_binary:
14333 case tcc_comparison:
14334 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14335 t = TREE_OPERAND (t, 0);
14336 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14337 t = TREE_OPERAND (t, 1);
14338 else
14339 return t;
14340 break;
14341
14342 case tcc_expression:
14343 switch (TREE_CODE (t))
14344 {
14345 case COMPOUND_EXPR:
14346 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14347 return t;
14348 t = TREE_OPERAND (t, 0);
14349 break;
14350
14351 case COND_EXPR:
14352 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14353 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14354 return t;
14355 t = TREE_OPERAND (t, 0);
14356 break;
14357
14358 default:
14359 return t;
14360 }
14361 break;
14362
14363 default:
14364 return t;
14365 }
14366 }
14367
14368 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14369
14370 tree
14371 round_up_loc (location_t loc, tree value, unsigned int divisor)
14372 {
14373 tree div = NULL_TREE;
14374
14375 if (divisor == 1)
14376 return value;
14377
14378 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14379 have to do anything. Only do this when we are not given a const,
14380 because in that case, this check is more expensive than just
14381 doing it. */
14382 if (TREE_CODE (value) != INTEGER_CST)
14383 {
14384 div = build_int_cst (TREE_TYPE (value), divisor);
14385
14386 if (multiple_of_p (TREE_TYPE (value), value, div))
14387 return value;
14388 }
14389
14390 /* If divisor is a power of two, simplify this to bit manipulation. */
14391 if (pow2_or_zerop (divisor))
14392 {
14393 if (TREE_CODE (value) == INTEGER_CST)
14394 {
14395 wide_int val = wi::to_wide (value);
14396 bool overflow_p;
14397
14398 if ((val & (divisor - 1)) == 0)
14399 return value;
14400
14401 overflow_p = TREE_OVERFLOW (value);
14402 val += divisor - 1;
14403 val &= (int) -divisor;
14404 if (val == 0)
14405 overflow_p = true;
14406
14407 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14408 }
14409 else
14410 {
14411 tree t;
14412
14413 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14414 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14415 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14416 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14417 }
14418 }
14419 else
14420 {
14421 if (!div)
14422 div = build_int_cst (TREE_TYPE (value), divisor);
14423 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14424 value = size_binop_loc (loc, MULT_EXPR, value, div);
14425 }
14426
14427 return value;
14428 }
14429
14430 /* Likewise, but round down. */
14431
14432 tree
14433 round_down_loc (location_t loc, tree value, int divisor)
14434 {
14435 tree div = NULL_TREE;
14436
14437 gcc_assert (divisor > 0);
14438 if (divisor == 1)
14439 return value;
14440
14441 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14442 have to do anything. Only do this when we are not given a const,
14443 because in that case, this check is more expensive than just
14444 doing it. */
14445 if (TREE_CODE (value) != INTEGER_CST)
14446 {
14447 div = build_int_cst (TREE_TYPE (value), divisor);
14448
14449 if (multiple_of_p (TREE_TYPE (value), value, div))
14450 return value;
14451 }
14452
14453 /* If divisor is a power of two, simplify this to bit manipulation. */
14454 if (pow2_or_zerop (divisor))
14455 {
14456 tree t;
14457
14458 t = build_int_cst (TREE_TYPE (value), -divisor);
14459 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14460 }
14461 else
14462 {
14463 if (!div)
14464 div = build_int_cst (TREE_TYPE (value), divisor);
14465 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14466 value = size_binop_loc (loc, MULT_EXPR, value, div);
14467 }
14468
14469 return value;
14470 }
14471
14472 /* Returns the pointer to the base of the object addressed by EXP and
14473 extracts the information about the offset of the access, storing it
14474 to PBITPOS and POFFSET. */
14475
14476 static tree
14477 split_address_to_core_and_offset (tree exp,
14478 poly_int64_pod *pbitpos, tree *poffset)
14479 {
14480 tree core;
14481 machine_mode mode;
14482 int unsignedp, reversep, volatilep;
14483 poly_int64 bitsize;
14484 location_t loc = EXPR_LOCATION (exp);
14485
14486 if (TREE_CODE (exp) == ADDR_EXPR)
14487 {
14488 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14489 poffset, &mode, &unsignedp, &reversep,
14490 &volatilep);
14491 core = build_fold_addr_expr_loc (loc, core);
14492 }
14493 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14494 {
14495 core = TREE_OPERAND (exp, 0);
14496 STRIP_NOPS (core);
14497 *pbitpos = 0;
14498 *poffset = TREE_OPERAND (exp, 1);
14499 if (poly_int_tree_p (*poffset))
14500 {
14501 poly_offset_int tem
14502 = wi::sext (wi::to_poly_offset (*poffset),
14503 TYPE_PRECISION (TREE_TYPE (*poffset)));
14504 tem <<= LOG2_BITS_PER_UNIT;
14505 if (tem.to_shwi (pbitpos))
14506 *poffset = NULL_TREE;
14507 }
14508 }
14509 else
14510 {
14511 core = exp;
14512 *pbitpos = 0;
14513 *poffset = NULL_TREE;
14514 }
14515
14516 return core;
14517 }
14518
14519 /* Returns true if addresses of E1 and E2 differ by a constant, false
14520 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14521
14522 bool
14523 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
14524 {
14525 tree core1, core2;
14526 poly_int64 bitpos1, bitpos2;
14527 tree toffset1, toffset2, tdiff, type;
14528
14529 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14530 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14531
14532 poly_int64 bytepos1, bytepos2;
14533 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
14534 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
14535 || !operand_equal_p (core1, core2, 0))
14536 return false;
14537
14538 if (toffset1 && toffset2)
14539 {
14540 type = TREE_TYPE (toffset1);
14541 if (type != TREE_TYPE (toffset2))
14542 toffset2 = fold_convert (type, toffset2);
14543
14544 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14545 if (!cst_and_fits_in_hwi (tdiff))
14546 return false;
14547
14548 *diff = int_cst_value (tdiff);
14549 }
14550 else if (toffset1 || toffset2)
14551 {
14552 /* If only one of the offsets is non-constant, the difference cannot
14553 be a constant. */
14554 return false;
14555 }
14556 else
14557 *diff = 0;
14558
14559 *diff += bytepos1 - bytepos2;
14560 return true;
14561 }
14562
14563 /* Return OFF converted to a pointer offset type suitable as offset for
14564 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14565 tree
14566 convert_to_ptrofftype_loc (location_t loc, tree off)
14567 {
14568 return fold_convert_loc (loc, sizetype, off);
14569 }
14570
14571 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14572 tree
14573 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14574 {
14575 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14576 ptr, convert_to_ptrofftype_loc (loc, off));
14577 }
14578
14579 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14580 tree
14581 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14582 {
14583 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14584 ptr, size_int (off));
14585 }
14586
14587 /* Return a pointer P to a NUL-terminated string representing the sequence
14588 of constant characters referred to by SRC (or a subsequence of such
14589 characters within it if SRC is a reference to a string plus some
14590 constant offset). If STRLEN is non-null, store the number of bytes
14591 in the string constant including the terminating NUL char. *STRLEN is
14592 typically strlen(P) + 1 in the absence of embedded NUL characters. */
14593
14594 const char *
14595 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen /* = NULL */)
14596 {
14597 tree offset_node;
14598 tree mem_size;
14599
14600 if (strlen)
14601 *strlen = 0;
14602
14603 src = string_constant (src, &offset_node, &mem_size, NULL);
14604 if (src == 0)
14605 return NULL;
14606
14607 unsigned HOST_WIDE_INT offset = 0;
14608 if (offset_node != NULL_TREE)
14609 {
14610 if (!tree_fits_uhwi_p (offset_node))
14611 return NULL;
14612 else
14613 offset = tree_to_uhwi (offset_node);
14614 }
14615
14616 if (!tree_fits_uhwi_p (mem_size))
14617 return NULL;
14618
14619 /* STRING_LENGTH is the size of the string literal, including any
14620 embedded NULs. STRING_SIZE is the size of the array the string
14621 literal is stored in. */
14622 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14623 unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size);
14624
14625 /* Ideally this would turn into a gcc_checking_assert over time. */
14626 if (string_length > string_size)
14627 string_length = string_size;
14628
14629 const char *string = TREE_STRING_POINTER (src);
14630
14631 /* Ideally this would turn into a gcc_checking_assert over time. */
14632 if (string_length > string_size)
14633 string_length = string_size;
14634
14635 if (string_length == 0
14636 || offset >= string_size)
14637 return NULL;
14638
14639 if (strlen)
14640 {
14641 /* Compute and store the length of the substring at OFFSET.
14642 All offsets past the initial length refer to null strings. */
14643 if (offset < string_length)
14644 *strlen = string_length - offset;
14645 else
14646 *strlen = 1;
14647 }
14648 else
14649 {
14650 tree eltype = TREE_TYPE (TREE_TYPE (src));
14651 /* Support only properly NUL-terminated single byte strings. */
14652 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
14653 return NULL;
14654 if (string[string_length - 1] != '\0')
14655 return NULL;
14656 }
14657
14658 return offset < string_length ? string + offset : "";
14659 }
14660
14661 /* Given a tree T, compute which bits in T may be nonzero. */
14662
14663 wide_int
14664 tree_nonzero_bits (const_tree t)
14665 {
14666 switch (TREE_CODE (t))
14667 {
14668 case INTEGER_CST:
14669 return wi::to_wide (t);
14670 case SSA_NAME:
14671 return get_nonzero_bits (t);
14672 case NON_LVALUE_EXPR:
14673 case SAVE_EXPR:
14674 return tree_nonzero_bits (TREE_OPERAND (t, 0));
14675 case BIT_AND_EXPR:
14676 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14677 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14678 case BIT_IOR_EXPR:
14679 case BIT_XOR_EXPR:
14680 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14681 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14682 case COND_EXPR:
14683 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
14684 tree_nonzero_bits (TREE_OPERAND (t, 2)));
14685 CASE_CONVERT:
14686 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14687 TYPE_PRECISION (TREE_TYPE (t)),
14688 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
14689 case PLUS_EXPR:
14690 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
14691 {
14692 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
14693 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
14694 if (wi::bit_and (nzbits1, nzbits2) == 0)
14695 return wi::bit_or (nzbits1, nzbits2);
14696 }
14697 break;
14698 case LSHIFT_EXPR:
14699 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14700 {
14701 tree type = TREE_TYPE (t);
14702 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14703 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14704 TYPE_PRECISION (type));
14705 return wi::neg_p (arg1)
14706 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
14707 : wi::lshift (nzbits, arg1);
14708 }
14709 break;
14710 case RSHIFT_EXPR:
14711 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14712 {
14713 tree type = TREE_TYPE (t);
14714 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14715 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14716 TYPE_PRECISION (type));
14717 return wi::neg_p (arg1)
14718 ? wi::lshift (nzbits, -arg1)
14719 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
14720 }
14721 break;
14722 default:
14723 break;
14724 }
14725
14726 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
14727 }
14728
14729 #if CHECKING_P
14730
14731 namespace selftest {
14732
14733 /* Helper functions for writing tests of folding trees. */
14734
14735 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14736
14737 static void
14738 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14739 tree constant)
14740 {
14741 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14742 }
14743
14744 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14745 wrapping WRAPPED_EXPR. */
14746
14747 static void
14748 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14749 tree wrapped_expr)
14750 {
14751 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14752 ASSERT_NE (wrapped_expr, result);
14753 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14754 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14755 }
14756
14757 /* Verify that various arithmetic binary operations are folded
14758 correctly. */
14759
14760 static void
14761 test_arithmetic_folding ()
14762 {
14763 tree type = integer_type_node;
14764 tree x = create_tmp_var_raw (type, "x");
14765 tree zero = build_zero_cst (type);
14766 tree one = build_int_cst (type, 1);
14767
14768 /* Addition. */
14769 /* 1 <-- (0 + 1) */
14770 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14771 one);
14772 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14773 one);
14774
14775 /* (nonlvalue)x <-- (x + 0) */
14776 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14777 x);
14778
14779 /* Subtraction. */
14780 /* 0 <-- (x - x) */
14781 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14782 zero);
14783 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14784 x);
14785
14786 /* Multiplication. */
14787 /* 0 <-- (x * 0) */
14788 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14789 zero);
14790
14791 /* (nonlvalue)x <-- (x * 1) */
14792 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14793 x);
14794 }
14795
14796 /* Verify that various binary operations on vectors are folded
14797 correctly. */
14798
14799 static void
14800 test_vector_folding ()
14801 {
14802 tree inner_type = integer_type_node;
14803 tree type = build_vector_type (inner_type, 4);
14804 tree zero = build_zero_cst (type);
14805 tree one = build_one_cst (type);
14806
14807 /* Verify equality tests that return a scalar boolean result. */
14808 tree res_type = boolean_type_node;
14809 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14810 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14811 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14812 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14813 }
14814
14815 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14816
14817 static void
14818 test_vec_duplicate_folding ()
14819 {
14820 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
14821 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
14822 /* This will be 1 if VEC_MODE isn't a vector mode. */
14823 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
14824
14825 tree type = build_vector_type (ssizetype, nunits);
14826 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
14827 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
14828 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
14829 }
14830
14831 /* Run all of the selftests within this file. */
14832
14833 void
14834 fold_const_c_tests ()
14835 {
14836 test_arithmetic_folding ();
14837 test_vector_folding ();
14838 test_vec_duplicate_folding ();
14839 }
14840
14841 } // namespace selftest
14842
14843 #endif /* CHECKING_P */