]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ggc-page.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "alias.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "cgraph.h"
35 #include "cfgloop.h"
36 #include "plugin.h"
37
38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40 #ifdef HAVE_MMAP_ANON
41 # undef HAVE_MMAP_DEV_ZERO
42 # define USING_MMAP
43 #endif
44
45 #ifdef HAVE_MMAP_DEV_ZERO
46 # define USING_MMAP
47 #endif
48
49 #ifndef USING_MMAP
50 #define USING_MALLOC_PAGE_GROUPS
51 #endif
52
53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
55 # define USING_MADVISE
56 #endif
57
58 /* Strategy:
59
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
65
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
70
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
73 in the current (highest-numbered) context may be collected.
74
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
81
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
86
87 /* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
92 4: Object marks as well. */
93 #define GGC_DEBUG_LEVEL (0)
94 \f
95 /* A two-level tree is used to look up the page-entry for a given
96 pointer. Two chunks of the pointer's bits are extracted to index
97 the first and second levels of the tree, as follows:
98
99 HOST_PAGE_SIZE_BITS
100 32 | |
101 msb +----------------+----+------+------+ lsb
102 | | |
103 PAGE_L1_BITS |
104 | |
105 PAGE_L2_BITS
106
107 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
108 pages are aligned on system page boundaries. The next most
109 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
110 index values in the lookup table, respectively.
111
112 For 32-bit architectures and the settings below, there are no
113 leftover bits. For architectures with wider pointers, the lookup
114 tree points to a list of pages, which must be scanned to find the
115 correct one. */
116
117 #define PAGE_L1_BITS (8)
118 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
119 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
120 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
121
122 #define LOOKUP_L1(p) \
123 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
124
125 #define LOOKUP_L2(p) \
126 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
127
128 /* The number of objects per allocation page, for objects on a page of
129 the indicated ORDER. */
130 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
131
132 /* The number of objects in P. */
133 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
134
135 /* The size of an object on a page of the indicated ORDER. */
136 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
137
138 /* For speed, we avoid doing a general integer divide to locate the
139 offset in the allocation bitmap, by precalculating numbers M, S
140 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
141 within the page which is evenly divisible by the object size Z. */
142 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
143 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
144 #define OFFSET_TO_BIT(OFFSET, ORDER) \
145 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
146
147 /* We use this structure to determine the alignment required for
148 allocations. For power-of-two sized allocations, that's not a
149 problem, but it does matter for odd-sized allocations.
150 We do not care about alignment for floating-point types. */
151
152 struct max_alignment {
153 char c;
154 union {
155 int64_t i;
156 void *p;
157 } u;
158 };
159
160 /* The biggest alignment required. */
161
162 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
163
164
165 /* The number of extra orders, not corresponding to power-of-two sized
166 objects. */
167
168 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
169
170 #define RTL_SIZE(NSLOTS) \
171 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
172
173 #define TREE_EXP_SIZE(OPS) \
174 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
175
176 /* The Ith entry is the maximum size of an object to be stored in the
177 Ith extra order. Adding a new entry to this array is the *only*
178 thing you need to do to add a new special allocation size. */
179
180 static const size_t extra_order_size_table[] = {
181 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
182 There are a lot of structures with these sizes and explicitly
183 listing them risks orders being dropped because they changed size. */
184 MAX_ALIGNMENT * 3,
185 MAX_ALIGNMENT * 5,
186 MAX_ALIGNMENT * 6,
187 MAX_ALIGNMENT * 7,
188 MAX_ALIGNMENT * 9,
189 MAX_ALIGNMENT * 10,
190 MAX_ALIGNMENT * 11,
191 MAX_ALIGNMENT * 12,
192 MAX_ALIGNMENT * 13,
193 MAX_ALIGNMENT * 14,
194 MAX_ALIGNMENT * 15,
195 sizeof (struct tree_decl_non_common),
196 sizeof (struct tree_field_decl),
197 sizeof (struct tree_parm_decl),
198 sizeof (struct tree_var_decl),
199 sizeof (struct tree_type_non_common),
200 sizeof (struct function),
201 sizeof (struct basic_block_def),
202 sizeof (struct cgraph_node),
203 sizeof (struct loop),
204 };
205
206 /* The total number of orders. */
207
208 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
209
210 /* Compute the smallest nonnegative number which when added to X gives
211 a multiple of F. */
212
213 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
214
215 /* Round X to next multiple of the page size */
216
217 #define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
218
219 /* The Ith entry is the number of objects on a page or order I. */
220
221 static unsigned objects_per_page_table[NUM_ORDERS];
222
223 /* The Ith entry is the size of an object on a page of order I. */
224
225 static size_t object_size_table[NUM_ORDERS];
226
227 /* The Ith entry is a pair of numbers (mult, shift) such that
228 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
229 for all k evenly divisible by OBJECT_SIZE(I). */
230
231 static struct
232 {
233 size_t mult;
234 unsigned int shift;
235 }
236 inverse_table[NUM_ORDERS];
237
238 /* A page_entry records the status of an allocation page. This
239 structure is dynamically sized to fit the bitmap in_use_p. */
240 struct page_entry
241 {
242 /* The next page-entry with objects of the same size, or NULL if
243 this is the last page-entry. */
244 struct page_entry *next;
245
246 /* The previous page-entry with objects of the same size, or NULL if
247 this is the first page-entry. The PREV pointer exists solely to
248 keep the cost of ggc_free manageable. */
249 struct page_entry *prev;
250
251 /* The number of bytes allocated. (This will always be a multiple
252 of the host system page size.) */
253 size_t bytes;
254
255 /* The address at which the memory is allocated. */
256 char *page;
257
258 #ifdef USING_MALLOC_PAGE_GROUPS
259 /* Back pointer to the page group this page came from. */
260 struct page_group *group;
261 #endif
262
263 /* This is the index in the by_depth varray where this page table
264 can be found. */
265 unsigned long index_by_depth;
266
267 /* Context depth of this page. */
268 unsigned short context_depth;
269
270 /* The number of free objects remaining on this page. */
271 unsigned short num_free_objects;
272
273 /* A likely candidate for the bit position of a free object for the
274 next allocation from this page. */
275 unsigned short next_bit_hint;
276
277 /* The lg of size of objects allocated from this page. */
278 unsigned char order;
279
280 /* Discarded page? */
281 bool discarded;
282
283 /* A bit vector indicating whether or not objects are in use. The
284 Nth bit is one if the Nth object on this page is allocated. This
285 array is dynamically sized. */
286 unsigned long in_use_p[1];
287 };
288
289 #ifdef USING_MALLOC_PAGE_GROUPS
290 /* A page_group describes a large allocation from malloc, from which
291 we parcel out aligned pages. */
292 struct page_group
293 {
294 /* A linked list of all extant page groups. */
295 struct page_group *next;
296
297 /* The address we received from malloc. */
298 char *allocation;
299
300 /* The size of the block. */
301 size_t alloc_size;
302
303 /* A bitmask of pages in use. */
304 unsigned int in_use;
305 };
306 #endif
307
308 #if HOST_BITS_PER_PTR <= 32
309
310 /* On 32-bit hosts, we use a two level page table, as pictured above. */
311 typedef page_entry **page_table[PAGE_L1_SIZE];
312
313 #else
314
315 /* On 64-bit hosts, we use the same two level page tables plus a linked
316 list that disambiguates the top 32-bits. There will almost always be
317 exactly one entry in the list. */
318 typedef struct page_table_chain
319 {
320 struct page_table_chain *next;
321 size_t high_bits;
322 page_entry **table[PAGE_L1_SIZE];
323 } *page_table;
324
325 #endif
326
327 class finalizer
328 {
329 public:
330 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
331
332 void *addr () const { return m_addr; }
333
334 void call () const { m_function (m_addr); }
335
336 private:
337 void *m_addr;
338 void (*m_function)(void *);
339 };
340
341 class vec_finalizer
342 {
343 public:
344 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
345 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
346
347 void call () const
348 {
349 for (size_t i = 0; i < m_n_objects; i++)
350 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
351 }
352
353 void *addr () const { return reinterpret_cast<void *> (m_addr); }
354
355 private:
356 uintptr_t m_addr;
357 void (*m_function)(void *);
358 size_t m_object_size;
359 size_t m_n_objects;
360 };
361
362 #ifdef ENABLE_GC_ALWAYS_COLLECT
363 /* List of free objects to be verified as actually free on the
364 next collection. */
365 struct free_object
366 {
367 void *object;
368 struct free_object *next;
369 };
370 #endif
371
372 /* The rest of the global variables. */
373 static struct ggc_globals
374 {
375 /* The Nth element in this array is a page with objects of size 2^N.
376 If there are any pages with free objects, they will be at the
377 head of the list. NULL if there are no page-entries for this
378 object size. */
379 page_entry *pages[NUM_ORDERS];
380
381 /* The Nth element in this array is the last page with objects of
382 size 2^N. NULL if there are no page-entries for this object
383 size. */
384 page_entry *page_tails[NUM_ORDERS];
385
386 /* Lookup table for associating allocation pages with object addresses. */
387 page_table lookup;
388
389 /* The system's page size. */
390 size_t pagesize;
391 size_t lg_pagesize;
392
393 /* Bytes currently allocated. */
394 size_t allocated;
395
396 /* Bytes currently allocated at the end of the last collection. */
397 size_t allocated_last_gc;
398
399 /* Total amount of memory mapped. */
400 size_t bytes_mapped;
401
402 /* Bit N set if any allocations have been done at context depth N. */
403 unsigned long context_depth_allocations;
404
405 /* Bit N set if any collections have been done at context depth N. */
406 unsigned long context_depth_collections;
407
408 /* The current depth in the context stack. */
409 unsigned short context_depth;
410
411 /* A file descriptor open to /dev/zero for reading. */
412 #if defined (HAVE_MMAP_DEV_ZERO)
413 int dev_zero_fd;
414 #endif
415
416 /* A cache of free system pages. */
417 page_entry *free_pages;
418
419 #ifdef USING_MALLOC_PAGE_GROUPS
420 page_group *page_groups;
421 #endif
422
423 /* The file descriptor for debugging output. */
424 FILE *debug_file;
425
426 /* Current number of elements in use in depth below. */
427 unsigned int depth_in_use;
428
429 /* Maximum number of elements that can be used before resizing. */
430 unsigned int depth_max;
431
432 /* Each element of this array is an index in by_depth where the given
433 depth starts. This structure is indexed by that given depth we
434 are interested in. */
435 unsigned int *depth;
436
437 /* Current number of elements in use in by_depth below. */
438 unsigned int by_depth_in_use;
439
440 /* Maximum number of elements that can be used before resizing. */
441 unsigned int by_depth_max;
442
443 /* Each element of this array is a pointer to a page_entry, all
444 page_entries can be found in here by increasing depth.
445 index_by_depth in the page_entry is the index into this data
446 structure where that page_entry can be found. This is used to
447 speed up finding all page_entries at a particular depth. */
448 page_entry **by_depth;
449
450 /* Each element is a pointer to the saved in_use_p bits, if any,
451 zero otherwise. We allocate them all together, to enable a
452 better runtime data access pattern. */
453 unsigned long **save_in_use;
454
455 /* Finalizers for single objects. The first index is collection_depth. */
456 vec<vec<finalizer> > finalizers;
457
458 /* Finalizers for vectors of objects. */
459 vec<vec<vec_finalizer> > vec_finalizers;
460
461 #ifdef ENABLE_GC_ALWAYS_COLLECT
462 /* List of free objects to be verified as actually free on the
463 next collection. */
464 struct free_object *free_object_list;
465 #endif
466
467 struct
468 {
469 /* Total GC-allocated memory. */
470 unsigned long long total_allocated;
471 /* Total overhead for GC-allocated memory. */
472 unsigned long long total_overhead;
473
474 /* Total allocations and overhead for sizes less than 32, 64 and 128.
475 These sizes are interesting because they are typical cache line
476 sizes. */
477
478 unsigned long long total_allocated_under32;
479 unsigned long long total_overhead_under32;
480
481 unsigned long long total_allocated_under64;
482 unsigned long long total_overhead_under64;
483
484 unsigned long long total_allocated_under128;
485 unsigned long long total_overhead_under128;
486
487 /* The allocations for each of the allocation orders. */
488 unsigned long long total_allocated_per_order[NUM_ORDERS];
489
490 /* The overhead for each of the allocation orders. */
491 unsigned long long total_overhead_per_order[NUM_ORDERS];
492 } stats;
493 } G;
494
495 /* True if a gc is currently taking place. */
496
497 static bool in_gc = false;
498
499 /* The size in bytes required to maintain a bitmap for the objects
500 on a page-entry. */
501 #define BITMAP_SIZE(Num_objects) \
502 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
503
504 /* Allocate pages in chunks of this size, to throttle calls to memory
505 allocation routines. The first page is used, the rest go onto the
506 free list. This cannot be larger than HOST_BITS_PER_INT for the
507 in_use bitmask for page_group. Hosts that need a different value
508 can override this by defining GGC_QUIRE_SIZE explicitly. */
509 #ifndef GGC_QUIRE_SIZE
510 # ifdef USING_MMAP
511 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
512 # else
513 # define GGC_QUIRE_SIZE 16
514 # endif
515 #endif
516
517 /* Initial guess as to how many page table entries we might need. */
518 #define INITIAL_PTE_COUNT 128
519 \f
520 static page_entry *lookup_page_table_entry (const void *);
521 static void set_page_table_entry (void *, page_entry *);
522 #ifdef USING_MMAP
523 static char *alloc_anon (char *, size_t, bool check);
524 #endif
525 #ifdef USING_MALLOC_PAGE_GROUPS
526 static size_t page_group_index (char *, char *);
527 static void set_page_group_in_use (page_group *, char *);
528 static void clear_page_group_in_use (page_group *, char *);
529 #endif
530 static struct page_entry * alloc_page (unsigned);
531 static void free_page (struct page_entry *);
532 static void release_pages (void);
533 static void clear_marks (void);
534 static void sweep_pages (void);
535 static void ggc_recalculate_in_use_p (page_entry *);
536 static void compute_inverse (unsigned);
537 static inline void adjust_depth (void);
538 static void move_ptes_to_front (int, int);
539
540 void debug_print_page_list (int);
541 static void push_depth (unsigned int);
542 static void push_by_depth (page_entry *, unsigned long *);
543
544 /* Push an entry onto G.depth. */
545
546 inline static void
547 push_depth (unsigned int i)
548 {
549 if (G.depth_in_use >= G.depth_max)
550 {
551 G.depth_max *= 2;
552 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
553 }
554 G.depth[G.depth_in_use++] = i;
555 }
556
557 /* Push an entry onto G.by_depth and G.save_in_use. */
558
559 inline static void
560 push_by_depth (page_entry *p, unsigned long *s)
561 {
562 if (G.by_depth_in_use >= G.by_depth_max)
563 {
564 G.by_depth_max *= 2;
565 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
566 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
567 G.by_depth_max);
568 }
569 G.by_depth[G.by_depth_in_use] = p;
570 G.save_in_use[G.by_depth_in_use++] = s;
571 }
572
573 #if (GCC_VERSION < 3001)
574 #define prefetch(X) ((void) X)
575 #else
576 #define prefetch(X) __builtin_prefetch (X)
577 #endif
578
579 #define save_in_use_p_i(__i) \
580 (G.save_in_use[__i])
581 #define save_in_use_p(__p) \
582 (save_in_use_p_i (__p->index_by_depth))
583
584 /* Traverse the page table and find the entry for a page.
585 If the object wasn't allocated in GC return NULL. */
586
587 static inline page_entry *
588 safe_lookup_page_table_entry (const void *p)
589 {
590 page_entry ***base;
591 size_t L1, L2;
592
593 #if HOST_BITS_PER_PTR <= 32
594 base = &G.lookup[0];
595 #else
596 page_table table = G.lookup;
597 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
598 while (1)
599 {
600 if (table == NULL)
601 return NULL;
602 if (table->high_bits == high_bits)
603 break;
604 table = table->next;
605 }
606 base = &table->table[0];
607 #endif
608
609 /* Extract the level 1 and 2 indices. */
610 L1 = LOOKUP_L1 (p);
611 L2 = LOOKUP_L2 (p);
612 if (! base[L1])
613 return NULL;
614
615 return base[L1][L2];
616 }
617
618 /* Traverse the page table and find the entry for a page.
619 Die (probably) if the object wasn't allocated via GC. */
620
621 static inline page_entry *
622 lookup_page_table_entry (const void *p)
623 {
624 page_entry ***base;
625 size_t L1, L2;
626
627 #if HOST_BITS_PER_PTR <= 32
628 base = &G.lookup[0];
629 #else
630 page_table table = G.lookup;
631 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
632 while (table->high_bits != high_bits)
633 table = table->next;
634 base = &table->table[0];
635 #endif
636
637 /* Extract the level 1 and 2 indices. */
638 L1 = LOOKUP_L1 (p);
639 L2 = LOOKUP_L2 (p);
640
641 return base[L1][L2];
642 }
643
644 /* Set the page table entry for a page. */
645
646 static void
647 set_page_table_entry (void *p, page_entry *entry)
648 {
649 page_entry ***base;
650 size_t L1, L2;
651
652 #if HOST_BITS_PER_PTR <= 32
653 base = &G.lookup[0];
654 #else
655 page_table table;
656 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
657 for (table = G.lookup; table; table = table->next)
658 if (table->high_bits == high_bits)
659 goto found;
660
661 /* Not found -- allocate a new table. */
662 table = XCNEW (struct page_table_chain);
663 table->next = G.lookup;
664 table->high_bits = high_bits;
665 G.lookup = table;
666 found:
667 base = &table->table[0];
668 #endif
669
670 /* Extract the level 1 and 2 indices. */
671 L1 = LOOKUP_L1 (p);
672 L2 = LOOKUP_L2 (p);
673
674 if (base[L1] == NULL)
675 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
676
677 base[L1][L2] = entry;
678 }
679
680 /* Prints the page-entry for object size ORDER, for debugging. */
681
682 DEBUG_FUNCTION void
683 debug_print_page_list (int order)
684 {
685 page_entry *p;
686 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
687 (void *) G.page_tails[order]);
688 p = G.pages[order];
689 while (p != NULL)
690 {
691 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
692 p->num_free_objects);
693 p = p->next;
694 }
695 printf ("NULL\n");
696 fflush (stdout);
697 }
698
699 #ifdef USING_MMAP
700 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
701 (if non-null). The ifdef structure here is intended to cause a
702 compile error unless exactly one of the HAVE_* is defined. */
703
704 static inline char *
705 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
706 {
707 #ifdef HAVE_MMAP_ANON
708 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
709 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
710 #endif
711 #ifdef HAVE_MMAP_DEV_ZERO
712 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
713 MAP_PRIVATE, G.dev_zero_fd, 0);
714 #endif
715
716 if (page == (char *) MAP_FAILED)
717 {
718 if (!check)
719 return NULL;
720 perror ("virtual memory exhausted");
721 exit (FATAL_EXIT_CODE);
722 }
723
724 /* Remember that we allocated this memory. */
725 G.bytes_mapped += size;
726
727 /* Pretend we don't have access to the allocated pages. We'll enable
728 access to smaller pieces of the area in ggc_internal_alloc. Discard the
729 handle to avoid handle leak. */
730 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
731
732 return page;
733 }
734 #endif
735 #ifdef USING_MALLOC_PAGE_GROUPS
736 /* Compute the index for this page into the page group. */
737
738 static inline size_t
739 page_group_index (char *allocation, char *page)
740 {
741 return (size_t) (page - allocation) >> G.lg_pagesize;
742 }
743
744 /* Set and clear the in_use bit for this page in the page group. */
745
746 static inline void
747 set_page_group_in_use (page_group *group, char *page)
748 {
749 group->in_use |= 1 << page_group_index (group->allocation, page);
750 }
751
752 static inline void
753 clear_page_group_in_use (page_group *group, char *page)
754 {
755 group->in_use &= ~(1 << page_group_index (group->allocation, page));
756 }
757 #endif
758
759 /* Allocate a new page for allocating objects of size 2^ORDER,
760 and return an entry for it. The entry is not added to the
761 appropriate page_table list. */
762
763 static inline struct page_entry *
764 alloc_page (unsigned order)
765 {
766 struct page_entry *entry, *p, **pp;
767 char *page;
768 size_t num_objects;
769 size_t bitmap_size;
770 size_t page_entry_size;
771 size_t entry_size;
772 #ifdef USING_MALLOC_PAGE_GROUPS
773 page_group *group;
774 #endif
775
776 num_objects = OBJECTS_PER_PAGE (order);
777 bitmap_size = BITMAP_SIZE (num_objects + 1);
778 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
779 entry_size = num_objects * OBJECT_SIZE (order);
780 if (entry_size < G.pagesize)
781 entry_size = G.pagesize;
782 entry_size = PAGE_ALIGN (entry_size);
783
784 entry = NULL;
785 page = NULL;
786
787 /* Check the list of free pages for one we can use. */
788 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
789 if (p->bytes == entry_size)
790 break;
791
792 if (p != NULL)
793 {
794 if (p->discarded)
795 G.bytes_mapped += p->bytes;
796 p->discarded = false;
797
798 /* Recycle the allocated memory from this page ... */
799 *pp = p->next;
800 page = p->page;
801
802 #ifdef USING_MALLOC_PAGE_GROUPS
803 group = p->group;
804 #endif
805
806 /* ... and, if possible, the page entry itself. */
807 if (p->order == order)
808 {
809 entry = p;
810 memset (entry, 0, page_entry_size);
811 }
812 else
813 free (p);
814 }
815 #ifdef USING_MMAP
816 else if (entry_size == G.pagesize)
817 {
818 /* We want just one page. Allocate a bunch of them and put the
819 extras on the freelist. (Can only do this optimization with
820 mmap for backing store.) */
821 struct page_entry *e, *f = G.free_pages;
822 int i, entries = GGC_QUIRE_SIZE;
823
824 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
825 if (page == NULL)
826 {
827 page = alloc_anon (NULL, G.pagesize, true);
828 entries = 1;
829 }
830
831 /* This loop counts down so that the chain will be in ascending
832 memory order. */
833 for (i = entries - 1; i >= 1; i--)
834 {
835 e = XCNEWVAR (struct page_entry, page_entry_size);
836 e->order = order;
837 e->bytes = G.pagesize;
838 e->page = page + (i << G.lg_pagesize);
839 e->next = f;
840 f = e;
841 }
842
843 G.free_pages = f;
844 }
845 else
846 page = alloc_anon (NULL, entry_size, true);
847 #endif
848 #ifdef USING_MALLOC_PAGE_GROUPS
849 else
850 {
851 /* Allocate a large block of memory and serve out the aligned
852 pages therein. This results in much less memory wastage
853 than the traditional implementation of valloc. */
854
855 char *allocation, *a, *enda;
856 size_t alloc_size, head_slop, tail_slop;
857 int multiple_pages = (entry_size == G.pagesize);
858
859 if (multiple_pages)
860 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
861 else
862 alloc_size = entry_size + G.pagesize - 1;
863 allocation = XNEWVEC (char, alloc_size);
864
865 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
866 head_slop = page - allocation;
867 if (multiple_pages)
868 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
869 else
870 tail_slop = alloc_size - entry_size - head_slop;
871 enda = allocation + alloc_size - tail_slop;
872
873 /* We allocated N pages, which are likely not aligned, leaving
874 us with N-1 usable pages. We plan to place the page_group
875 structure somewhere in the slop. */
876 if (head_slop >= sizeof (page_group))
877 group = (page_group *)page - 1;
878 else
879 {
880 /* We magically got an aligned allocation. Too bad, we have
881 to waste a page anyway. */
882 if (tail_slop == 0)
883 {
884 enda -= G.pagesize;
885 tail_slop += G.pagesize;
886 }
887 gcc_assert (tail_slop >= sizeof (page_group));
888 group = (page_group *)enda;
889 tail_slop -= sizeof (page_group);
890 }
891
892 /* Remember that we allocated this memory. */
893 group->next = G.page_groups;
894 group->allocation = allocation;
895 group->alloc_size = alloc_size;
896 group->in_use = 0;
897 G.page_groups = group;
898 G.bytes_mapped += alloc_size;
899
900 /* If we allocated multiple pages, put the rest on the free list. */
901 if (multiple_pages)
902 {
903 struct page_entry *e, *f = G.free_pages;
904 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
905 {
906 e = XCNEWVAR (struct page_entry, page_entry_size);
907 e->order = order;
908 e->bytes = G.pagesize;
909 e->page = a;
910 e->group = group;
911 e->next = f;
912 f = e;
913 }
914 G.free_pages = f;
915 }
916 }
917 #endif
918
919 if (entry == NULL)
920 entry = XCNEWVAR (struct page_entry, page_entry_size);
921
922 entry->bytes = entry_size;
923 entry->page = page;
924 entry->context_depth = G.context_depth;
925 entry->order = order;
926 entry->num_free_objects = num_objects;
927 entry->next_bit_hint = 1;
928
929 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
930
931 #ifdef USING_MALLOC_PAGE_GROUPS
932 entry->group = group;
933 set_page_group_in_use (group, page);
934 #endif
935
936 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
937 increment the hint. */
938 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
939 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
940
941 set_page_table_entry (page, entry);
942
943 if (GGC_DEBUG_LEVEL >= 2)
944 fprintf (G.debug_file,
945 "Allocating page at %p, object size=%lu, data %p-%p\n",
946 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
947 page + entry_size - 1);
948
949 return entry;
950 }
951
952 /* Adjust the size of G.depth so that no index greater than the one
953 used by the top of the G.by_depth is used. */
954
955 static inline void
956 adjust_depth (void)
957 {
958 page_entry *top;
959
960 if (G.by_depth_in_use)
961 {
962 top = G.by_depth[G.by_depth_in_use-1];
963
964 /* Peel back indices in depth that index into by_depth, so that
965 as new elements are added to by_depth, we note the indices
966 of those elements, if they are for new context depths. */
967 while (G.depth_in_use > (size_t)top->context_depth+1)
968 --G.depth_in_use;
969 }
970 }
971
972 /* For a page that is no longer needed, put it on the free page list. */
973
974 static void
975 free_page (page_entry *entry)
976 {
977 if (GGC_DEBUG_LEVEL >= 2)
978 fprintf (G.debug_file,
979 "Deallocating page at %p, data %p-%p\n", (void *) entry,
980 entry->page, entry->page + entry->bytes - 1);
981
982 /* Mark the page as inaccessible. Discard the handle to avoid handle
983 leak. */
984 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
985
986 set_page_table_entry (entry->page, NULL);
987
988 #ifdef USING_MALLOC_PAGE_GROUPS
989 clear_page_group_in_use (entry->group, entry->page);
990 #endif
991
992 if (G.by_depth_in_use > 1)
993 {
994 page_entry *top = G.by_depth[G.by_depth_in_use-1];
995 int i = entry->index_by_depth;
996
997 /* We cannot free a page from a context deeper than the current
998 one. */
999 gcc_assert (entry->context_depth == top->context_depth);
1000
1001 /* Put top element into freed slot. */
1002 G.by_depth[i] = top;
1003 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1004 top->index_by_depth = i;
1005 }
1006 --G.by_depth_in_use;
1007
1008 adjust_depth ();
1009
1010 entry->next = G.free_pages;
1011 G.free_pages = entry;
1012 }
1013
1014 /* Release the free page cache to the system. */
1015
1016 static void
1017 release_pages (void)
1018 {
1019 #ifdef USING_MADVISE
1020 page_entry *p, *start_p;
1021 char *start;
1022 size_t len;
1023 size_t mapped_len;
1024 page_entry *next, *prev, *newprev;
1025 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1026
1027 /* First free larger continuous areas to the OS.
1028 This allows other allocators to grab these areas if needed.
1029 This is only done on larger chunks to avoid fragmentation.
1030 This does not always work because the free_pages list is only
1031 approximately sorted. */
1032
1033 p = G.free_pages;
1034 prev = NULL;
1035 while (p)
1036 {
1037 start = p->page;
1038 start_p = p;
1039 len = 0;
1040 mapped_len = 0;
1041 newprev = prev;
1042 while (p && p->page == start + len)
1043 {
1044 len += p->bytes;
1045 if (!p->discarded)
1046 mapped_len += p->bytes;
1047 newprev = p;
1048 p = p->next;
1049 }
1050 if (len >= free_unit)
1051 {
1052 while (start_p != p)
1053 {
1054 next = start_p->next;
1055 free (start_p);
1056 start_p = next;
1057 }
1058 munmap (start, len);
1059 if (prev)
1060 prev->next = p;
1061 else
1062 G.free_pages = p;
1063 G.bytes_mapped -= mapped_len;
1064 continue;
1065 }
1066 prev = newprev;
1067 }
1068
1069 /* Now give back the fragmented pages to the OS, but keep the address
1070 space to reuse it next time. */
1071
1072 for (p = G.free_pages; p; )
1073 {
1074 if (p->discarded)
1075 {
1076 p = p->next;
1077 continue;
1078 }
1079 start = p->page;
1080 len = p->bytes;
1081 start_p = p;
1082 p = p->next;
1083 while (p && p->page == start + len)
1084 {
1085 len += p->bytes;
1086 p = p->next;
1087 }
1088 /* Give the page back to the kernel, but don't free the mapping.
1089 This avoids fragmentation in the virtual memory map of the
1090 process. Next time we can reuse it by just touching it. */
1091 madvise (start, len, MADV_DONTNEED);
1092 /* Don't count those pages as mapped to not touch the garbage collector
1093 unnecessarily. */
1094 G.bytes_mapped -= len;
1095 while (start_p != p)
1096 {
1097 start_p->discarded = true;
1098 start_p = start_p->next;
1099 }
1100 }
1101 #endif
1102 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1103 page_entry *p, *next;
1104 char *start;
1105 size_t len;
1106
1107 /* Gather up adjacent pages so they are unmapped together. */
1108 p = G.free_pages;
1109
1110 while (p)
1111 {
1112 start = p->page;
1113 next = p->next;
1114 len = p->bytes;
1115 free (p);
1116 p = next;
1117
1118 while (p && p->page == start + len)
1119 {
1120 next = p->next;
1121 len += p->bytes;
1122 free (p);
1123 p = next;
1124 }
1125
1126 munmap (start, len);
1127 G.bytes_mapped -= len;
1128 }
1129
1130 G.free_pages = NULL;
1131 #endif
1132 #ifdef USING_MALLOC_PAGE_GROUPS
1133 page_entry **pp, *p;
1134 page_group **gp, *g;
1135
1136 /* Remove all pages from free page groups from the list. */
1137 pp = &G.free_pages;
1138 while ((p = *pp) != NULL)
1139 if (p->group->in_use == 0)
1140 {
1141 *pp = p->next;
1142 free (p);
1143 }
1144 else
1145 pp = &p->next;
1146
1147 /* Remove all free page groups, and release the storage. */
1148 gp = &G.page_groups;
1149 while ((g = *gp) != NULL)
1150 if (g->in_use == 0)
1151 {
1152 *gp = g->next;
1153 G.bytes_mapped -= g->alloc_size;
1154 free (g->allocation);
1155 }
1156 else
1157 gp = &g->next;
1158 #endif
1159 }
1160
1161 /* This table provides a fast way to determine ceil(log_2(size)) for
1162 allocation requests. The minimum allocation size is eight bytes. */
1163 #define NUM_SIZE_LOOKUP 512
1164 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1165 {
1166 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1167 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1168 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1169 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1170 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1171 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1172 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1173 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1174 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1175 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1176 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1177 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1178 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1179 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1180 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1183 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1184 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1185 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1186 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1187 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1188 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1198 };
1199
1200 /* For a given size of memory requested for allocation, return the
1201 actual size that is going to be allocated, as well as the size
1202 order. */
1203
1204 static void
1205 ggc_round_alloc_size_1 (size_t requested_size,
1206 size_t *size_order,
1207 size_t *alloced_size)
1208 {
1209 size_t order, object_size;
1210
1211 if (requested_size < NUM_SIZE_LOOKUP)
1212 {
1213 order = size_lookup[requested_size];
1214 object_size = OBJECT_SIZE (order);
1215 }
1216 else
1217 {
1218 order = 10;
1219 while (requested_size > (object_size = OBJECT_SIZE (order)))
1220 order++;
1221 }
1222
1223 if (size_order)
1224 *size_order = order;
1225 if (alloced_size)
1226 *alloced_size = object_size;
1227 }
1228
1229 /* For a given size of memory requested for allocation, return the
1230 actual size that is going to be allocated. */
1231
1232 size_t
1233 ggc_round_alloc_size (size_t requested_size)
1234 {
1235 size_t size = 0;
1236
1237 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1238 return size;
1239 }
1240
1241 /* Push a finalizer onto the appropriate vec. */
1242
1243 static void
1244 add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1245 {
1246 if (f == NULL)
1247 /* No finalizer. */;
1248 else if (n == 1)
1249 {
1250 finalizer fin (result, f);
1251 G.finalizers[G.context_depth].safe_push (fin);
1252 }
1253 else
1254 {
1255 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1256 G.vec_finalizers[G.context_depth].safe_push (fin);
1257 }
1258 }
1259
1260 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1261
1262 void *
1263 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1264 MEM_STAT_DECL)
1265 {
1266 size_t order, word, bit, object_offset, object_size;
1267 struct page_entry *entry;
1268 void *result;
1269
1270 ggc_round_alloc_size_1 (size, &order, &object_size);
1271
1272 /* If there are non-full pages for this size allocation, they are at
1273 the head of the list. */
1274 entry = G.pages[order];
1275
1276 /* If there is no page for this object size, or all pages in this
1277 context are full, allocate a new page. */
1278 if (entry == NULL || entry->num_free_objects == 0)
1279 {
1280 struct page_entry *new_entry;
1281 new_entry = alloc_page (order);
1282
1283 new_entry->index_by_depth = G.by_depth_in_use;
1284 push_by_depth (new_entry, 0);
1285
1286 /* We can skip context depths, if we do, make sure we go all the
1287 way to the new depth. */
1288 while (new_entry->context_depth >= G.depth_in_use)
1289 push_depth (G.by_depth_in_use-1);
1290
1291 /* If this is the only entry, it's also the tail. If it is not
1292 the only entry, then we must update the PREV pointer of the
1293 ENTRY (G.pages[order]) to point to our new page entry. */
1294 if (entry == NULL)
1295 G.page_tails[order] = new_entry;
1296 else
1297 entry->prev = new_entry;
1298
1299 /* Put new pages at the head of the page list. By definition the
1300 entry at the head of the list always has a NULL pointer. */
1301 new_entry->next = entry;
1302 new_entry->prev = NULL;
1303 entry = new_entry;
1304 G.pages[order] = new_entry;
1305
1306 /* For a new page, we know the word and bit positions (in the
1307 in_use bitmap) of the first available object -- they're zero. */
1308 new_entry->next_bit_hint = 1;
1309 word = 0;
1310 bit = 0;
1311 object_offset = 0;
1312 }
1313 else
1314 {
1315 /* First try to use the hint left from the previous allocation
1316 to locate a clear bit in the in-use bitmap. We've made sure
1317 that the one-past-the-end bit is always set, so if the hint
1318 has run over, this test will fail. */
1319 unsigned hint = entry->next_bit_hint;
1320 word = hint / HOST_BITS_PER_LONG;
1321 bit = hint % HOST_BITS_PER_LONG;
1322
1323 /* If the hint didn't work, scan the bitmap from the beginning. */
1324 if ((entry->in_use_p[word] >> bit) & 1)
1325 {
1326 word = bit = 0;
1327 while (~entry->in_use_p[word] == 0)
1328 ++word;
1329
1330 #if GCC_VERSION >= 3004
1331 bit = __builtin_ctzl (~entry->in_use_p[word]);
1332 #else
1333 while ((entry->in_use_p[word] >> bit) & 1)
1334 ++bit;
1335 #endif
1336
1337 hint = word * HOST_BITS_PER_LONG + bit;
1338 }
1339
1340 /* Next time, try the next bit. */
1341 entry->next_bit_hint = hint + 1;
1342
1343 object_offset = hint * object_size;
1344 }
1345
1346 /* Set the in-use bit. */
1347 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1348
1349 /* Keep a running total of the number of free objects. If this page
1350 fills up, we may have to move it to the end of the list if the
1351 next page isn't full. If the next page is full, all subsequent
1352 pages are full, so there's no need to move it. */
1353 if (--entry->num_free_objects == 0
1354 && entry->next != NULL
1355 && entry->next->num_free_objects > 0)
1356 {
1357 /* We have a new head for the list. */
1358 G.pages[order] = entry->next;
1359
1360 /* We are moving ENTRY to the end of the page table list.
1361 The new page at the head of the list will have NULL in
1362 its PREV field and ENTRY will have NULL in its NEXT field. */
1363 entry->next->prev = NULL;
1364 entry->next = NULL;
1365
1366 /* Append ENTRY to the tail of the list. */
1367 entry->prev = G.page_tails[order];
1368 G.page_tails[order]->next = entry;
1369 G.page_tails[order] = entry;
1370 }
1371
1372 /* Calculate the object's address. */
1373 result = entry->page + object_offset;
1374 if (GATHER_STATISTICS)
1375 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1376 result FINAL_PASS_MEM_STAT);
1377
1378 #ifdef ENABLE_GC_CHECKING
1379 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1380 exact same semantics in presence of memory bugs, regardless of
1381 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1382 handle to avoid handle leak. */
1383 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1384
1385 /* `Poison' the entire allocated object, including any padding at
1386 the end. */
1387 memset (result, 0xaf, object_size);
1388
1389 /* Make the bytes after the end of the object unaccessible. Discard the
1390 handle to avoid handle leak. */
1391 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1392 object_size - size));
1393 #endif
1394
1395 /* Tell Valgrind that the memory is there, but its content isn't
1396 defined. The bytes at the end of the object are still marked
1397 unaccessible. */
1398 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1399
1400 /* Keep track of how many bytes are being allocated. This
1401 information is used in deciding when to collect. */
1402 G.allocated += object_size;
1403
1404 /* For timevar statistics. */
1405 timevar_ggc_mem_total += object_size;
1406
1407 if (f)
1408 add_finalizer (result, f, s, n);
1409
1410 if (GATHER_STATISTICS)
1411 {
1412 size_t overhead = object_size - size;
1413
1414 G.stats.total_overhead += overhead;
1415 G.stats.total_allocated += object_size;
1416 G.stats.total_overhead_per_order[order] += overhead;
1417 G.stats.total_allocated_per_order[order] += object_size;
1418
1419 if (size <= 32)
1420 {
1421 G.stats.total_overhead_under32 += overhead;
1422 G.stats.total_allocated_under32 += object_size;
1423 }
1424 if (size <= 64)
1425 {
1426 G.stats.total_overhead_under64 += overhead;
1427 G.stats.total_allocated_under64 += object_size;
1428 }
1429 if (size <= 128)
1430 {
1431 G.stats.total_overhead_under128 += overhead;
1432 G.stats.total_allocated_under128 += object_size;
1433 }
1434 }
1435
1436 if (GGC_DEBUG_LEVEL >= 3)
1437 fprintf (G.debug_file,
1438 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1439 (unsigned long) size, (unsigned long) object_size, result,
1440 (void *) entry);
1441
1442 return result;
1443 }
1444
1445 /* Mark function for strings. */
1446
1447 void
1448 gt_ggc_m_S (const void *p)
1449 {
1450 page_entry *entry;
1451 unsigned bit, word;
1452 unsigned long mask;
1453 unsigned long offset;
1454
1455 if (!p)
1456 return;
1457
1458 /* Look up the page on which the object is alloced. If it was not
1459 GC allocated, gracefully bail out. */
1460 entry = safe_lookup_page_table_entry (p);
1461 if (!entry)
1462 return;
1463
1464 /* Calculate the index of the object on the page; this is its bit
1465 position in the in_use_p bitmap. Note that because a char* might
1466 point to the middle of an object, we need special code here to
1467 make sure P points to the start of an object. */
1468 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1469 if (offset)
1470 {
1471 /* Here we've seen a char* which does not point to the beginning
1472 of an allocated object. We assume it points to the middle of
1473 a STRING_CST. */
1474 gcc_assert (offset == offsetof (struct tree_string, str));
1475 p = ((const char *) p) - offset;
1476 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1477 return;
1478 }
1479
1480 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1481 word = bit / HOST_BITS_PER_LONG;
1482 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1483
1484 /* If the bit was previously set, skip it. */
1485 if (entry->in_use_p[word] & mask)
1486 return;
1487
1488 /* Otherwise set it, and decrement the free object count. */
1489 entry->in_use_p[word] |= mask;
1490 entry->num_free_objects -= 1;
1491
1492 if (GGC_DEBUG_LEVEL >= 4)
1493 fprintf (G.debug_file, "Marking %p\n", p);
1494
1495 return;
1496 }
1497
1498
1499 /* User-callable entry points for marking string X. */
1500
1501 void
1502 gt_ggc_mx (const char *& x)
1503 {
1504 gt_ggc_m_S (x);
1505 }
1506
1507 void
1508 gt_ggc_mx (unsigned char *& x)
1509 {
1510 gt_ggc_m_S (x);
1511 }
1512
1513 void
1514 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1515 {
1516 }
1517
1518 /* If P is not marked, marks it and return false. Otherwise return true.
1519 P must have been allocated by the GC allocator; it mustn't point to
1520 static objects, stack variables, or memory allocated with malloc. */
1521
1522 int
1523 ggc_set_mark (const void *p)
1524 {
1525 page_entry *entry;
1526 unsigned bit, word;
1527 unsigned long mask;
1528
1529 /* Look up the page on which the object is alloced. If the object
1530 wasn't allocated by the collector, we'll probably die. */
1531 entry = lookup_page_table_entry (p);
1532 gcc_assert (entry);
1533
1534 /* Calculate the index of the object on the page; this is its bit
1535 position in the in_use_p bitmap. */
1536 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1537 word = bit / HOST_BITS_PER_LONG;
1538 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1539
1540 /* If the bit was previously set, skip it. */
1541 if (entry->in_use_p[word] & mask)
1542 return 1;
1543
1544 /* Otherwise set it, and decrement the free object count. */
1545 entry->in_use_p[word] |= mask;
1546 entry->num_free_objects -= 1;
1547
1548 if (GGC_DEBUG_LEVEL >= 4)
1549 fprintf (G.debug_file, "Marking %p\n", p);
1550
1551 return 0;
1552 }
1553
1554 /* Return 1 if P has been marked, zero otherwise.
1555 P must have been allocated by the GC allocator; it mustn't point to
1556 static objects, stack variables, or memory allocated with malloc. */
1557
1558 int
1559 ggc_marked_p (const void *p)
1560 {
1561 page_entry *entry;
1562 unsigned bit, word;
1563 unsigned long mask;
1564
1565 /* Look up the page on which the object is alloced. If the object
1566 wasn't allocated by the collector, we'll probably die. */
1567 entry = lookup_page_table_entry (p);
1568 gcc_assert (entry);
1569
1570 /* Calculate the index of the object on the page; this is its bit
1571 position in the in_use_p bitmap. */
1572 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1573 word = bit / HOST_BITS_PER_LONG;
1574 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1575
1576 return (entry->in_use_p[word] & mask) != 0;
1577 }
1578
1579 /* Return the size of the gc-able object P. */
1580
1581 size_t
1582 ggc_get_size (const void *p)
1583 {
1584 page_entry *pe = lookup_page_table_entry (p);
1585 return OBJECT_SIZE (pe->order);
1586 }
1587
1588 /* Release the memory for object P. */
1589
1590 void
1591 ggc_free (void *p)
1592 {
1593 if (in_gc)
1594 return;
1595
1596 page_entry *pe = lookup_page_table_entry (p);
1597 size_t order = pe->order;
1598 size_t size = OBJECT_SIZE (order);
1599
1600 if (GATHER_STATISTICS)
1601 ggc_free_overhead (p);
1602
1603 if (GGC_DEBUG_LEVEL >= 3)
1604 fprintf (G.debug_file,
1605 "Freeing object, actual size=%lu, at %p on %p\n",
1606 (unsigned long) size, p, (void *) pe);
1607
1608 #ifdef ENABLE_GC_CHECKING
1609 /* Poison the data, to indicate the data is garbage. */
1610 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1611 memset (p, 0xa5, size);
1612 #endif
1613 /* Let valgrind know the object is free. */
1614 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1615
1616 #ifdef ENABLE_GC_ALWAYS_COLLECT
1617 /* In the completely-anal-checking mode, we do *not* immediately free
1618 the data, but instead verify that the data is *actually* not
1619 reachable the next time we collect. */
1620 {
1621 struct free_object *fo = XNEW (struct free_object);
1622 fo->object = p;
1623 fo->next = G.free_object_list;
1624 G.free_object_list = fo;
1625 }
1626 #else
1627 {
1628 unsigned int bit_offset, word, bit;
1629
1630 G.allocated -= size;
1631
1632 /* Mark the object not-in-use. */
1633 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1634 word = bit_offset / HOST_BITS_PER_LONG;
1635 bit = bit_offset % HOST_BITS_PER_LONG;
1636 pe->in_use_p[word] &= ~(1UL << bit);
1637
1638 if (pe->num_free_objects++ == 0)
1639 {
1640 page_entry *p, *q;
1641
1642 /* If the page is completely full, then it's supposed to
1643 be after all pages that aren't. Since we've freed one
1644 object from a page that was full, we need to move the
1645 page to the head of the list.
1646
1647 PE is the node we want to move. Q is the previous node
1648 and P is the next node in the list. */
1649 q = pe->prev;
1650 if (q && q->num_free_objects == 0)
1651 {
1652 p = pe->next;
1653
1654 q->next = p;
1655
1656 /* If PE was at the end of the list, then Q becomes the
1657 new end of the list. If PE was not the end of the
1658 list, then we need to update the PREV field for P. */
1659 if (!p)
1660 G.page_tails[order] = q;
1661 else
1662 p->prev = q;
1663
1664 /* Move PE to the head of the list. */
1665 pe->next = G.pages[order];
1666 pe->prev = NULL;
1667 G.pages[order]->prev = pe;
1668 G.pages[order] = pe;
1669 }
1670
1671 /* Reset the hint bit to point to the only free object. */
1672 pe->next_bit_hint = bit_offset;
1673 }
1674 }
1675 #endif
1676 }
1677 \f
1678 /* Subroutine of init_ggc which computes the pair of numbers used to
1679 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1680
1681 This algorithm is taken from Granlund and Montgomery's paper
1682 "Division by Invariant Integers using Multiplication"
1683 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1684 constants). */
1685
1686 static void
1687 compute_inverse (unsigned order)
1688 {
1689 size_t size, inv;
1690 unsigned int e;
1691
1692 size = OBJECT_SIZE (order);
1693 e = 0;
1694 while (size % 2 == 0)
1695 {
1696 e++;
1697 size >>= 1;
1698 }
1699
1700 inv = size;
1701 while (inv * size != 1)
1702 inv = inv * (2 - inv*size);
1703
1704 DIV_MULT (order) = inv;
1705 DIV_SHIFT (order) = e;
1706 }
1707
1708 /* Initialize the ggc-mmap allocator. */
1709 void
1710 init_ggc (void)
1711 {
1712 static bool init_p = false;
1713 unsigned order;
1714
1715 if (init_p)
1716 return;
1717 init_p = true;
1718
1719 G.pagesize = getpagesize ();
1720 G.lg_pagesize = exact_log2 (G.pagesize);
1721
1722 #ifdef HAVE_MMAP_DEV_ZERO
1723 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1724 if (G.dev_zero_fd == -1)
1725 internal_error ("open /dev/zero: %m");
1726 #endif
1727
1728 #if 0
1729 G.debug_file = fopen ("ggc-mmap.debug", "w");
1730 #else
1731 G.debug_file = stdout;
1732 #endif
1733
1734 #ifdef USING_MMAP
1735 /* StunOS has an amazing off-by-one error for the first mmap allocation
1736 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1737 believe, is an unaligned page allocation, which would cause us to
1738 hork badly if we tried to use it. */
1739 {
1740 char *p = alloc_anon (NULL, G.pagesize, true);
1741 struct page_entry *e;
1742 if ((uintptr_t)p & (G.pagesize - 1))
1743 {
1744 /* How losing. Discard this one and try another. If we still
1745 can't get something useful, give up. */
1746
1747 p = alloc_anon (NULL, G.pagesize, true);
1748 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1749 }
1750
1751 /* We have a good page, might as well hold onto it... */
1752 e = XCNEW (struct page_entry);
1753 e->bytes = G.pagesize;
1754 e->page = p;
1755 e->next = G.free_pages;
1756 G.free_pages = e;
1757 }
1758 #endif
1759
1760 /* Initialize the object size table. */
1761 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1762 object_size_table[order] = (size_t) 1 << order;
1763 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1764 {
1765 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1766
1767 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1768 so that we're sure of getting aligned memory. */
1769 s = ROUND_UP (s, MAX_ALIGNMENT);
1770 object_size_table[order] = s;
1771 }
1772
1773 /* Initialize the objects-per-page and inverse tables. */
1774 for (order = 0; order < NUM_ORDERS; ++order)
1775 {
1776 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1777 if (objects_per_page_table[order] == 0)
1778 objects_per_page_table[order] = 1;
1779 compute_inverse (order);
1780 }
1781
1782 /* Reset the size_lookup array to put appropriately sized objects in
1783 the special orders. All objects bigger than the previous power
1784 of two, but no greater than the special size, should go in the
1785 new order. */
1786 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1787 {
1788 int o;
1789 int i;
1790
1791 i = OBJECT_SIZE (order);
1792 if (i >= NUM_SIZE_LOOKUP)
1793 continue;
1794
1795 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1796 size_lookup[i] = order;
1797 }
1798
1799 G.depth_in_use = 0;
1800 G.depth_max = 10;
1801 G.depth = XNEWVEC (unsigned int, G.depth_max);
1802
1803 G.by_depth_in_use = 0;
1804 G.by_depth_max = INITIAL_PTE_COUNT;
1805 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1806 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1807
1808 /* Allocate space for the depth 0 finalizers. */
1809 G.finalizers.safe_push (vNULL);
1810 G.vec_finalizers.safe_push (vNULL);
1811 gcc_assert (G.finalizers.length() == 1);
1812 }
1813
1814 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1815 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1816
1817 static void
1818 ggc_recalculate_in_use_p (page_entry *p)
1819 {
1820 unsigned int i;
1821 size_t num_objects;
1822
1823 /* Because the past-the-end bit in in_use_p is always set, we
1824 pretend there is one additional object. */
1825 num_objects = OBJECTS_IN_PAGE (p) + 1;
1826
1827 /* Reset the free object count. */
1828 p->num_free_objects = num_objects;
1829
1830 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1831 for (i = 0;
1832 i < CEIL (BITMAP_SIZE (num_objects),
1833 sizeof (*p->in_use_p));
1834 ++i)
1835 {
1836 unsigned long j;
1837
1838 /* Something is in use if it is marked, or if it was in use in a
1839 context further down the context stack. */
1840 p->in_use_p[i] |= save_in_use_p (p)[i];
1841
1842 /* Decrement the free object count for every object allocated. */
1843 for (j = p->in_use_p[i]; j; j >>= 1)
1844 p->num_free_objects -= (j & 1);
1845 }
1846
1847 gcc_assert (p->num_free_objects < num_objects);
1848 }
1849 \f
1850 /* Unmark all objects. */
1851
1852 static void
1853 clear_marks (void)
1854 {
1855 unsigned order;
1856
1857 for (order = 2; order < NUM_ORDERS; order++)
1858 {
1859 page_entry *p;
1860
1861 for (p = G.pages[order]; p != NULL; p = p->next)
1862 {
1863 size_t num_objects = OBJECTS_IN_PAGE (p);
1864 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1865
1866 /* The data should be page-aligned. */
1867 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1868
1869 /* Pages that aren't in the topmost context are not collected;
1870 nevertheless, we need their in-use bit vectors to store GC
1871 marks. So, back them up first. */
1872 if (p->context_depth < G.context_depth)
1873 {
1874 if (! save_in_use_p (p))
1875 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1876 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1877 }
1878
1879 /* Reset reset the number of free objects and clear the
1880 in-use bits. These will be adjusted by mark_obj. */
1881 p->num_free_objects = num_objects;
1882 memset (p->in_use_p, 0, bitmap_size);
1883
1884 /* Make sure the one-past-the-end bit is always set. */
1885 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1886 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1887 }
1888 }
1889 }
1890
1891 /* Check if any blocks with a registered finalizer have become unmarked. If so
1892 run the finalizer and unregister it because the block is about to be freed.
1893 Note that no garantee is made about what order finalizers will run in so
1894 touching other objects in gc memory is extremely unwise. */
1895
1896 static void
1897 ggc_handle_finalizers ()
1898 {
1899 unsigned dlen = G.finalizers.length();
1900 for (unsigned d = G.context_depth; d < dlen; ++d)
1901 {
1902 vec<finalizer> &v = G.finalizers[d];
1903 unsigned length = v.length ();
1904 for (unsigned int i = 0; i < length;)
1905 {
1906 finalizer &f = v[i];
1907 if (!ggc_marked_p (f.addr ()))
1908 {
1909 f.call ();
1910 v.unordered_remove (i);
1911 length--;
1912 }
1913 else
1914 i++;
1915 }
1916 }
1917
1918 gcc_assert (dlen == G.vec_finalizers.length());
1919 for (unsigned d = G.context_depth; d < dlen; ++d)
1920 {
1921 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1922 unsigned length = vv.length ();
1923 for (unsigned int i = 0; i < length;)
1924 {
1925 vec_finalizer &f = vv[i];
1926 if (!ggc_marked_p (f.addr ()))
1927 {
1928 f.call ();
1929 vv.unordered_remove (i);
1930 length--;
1931 }
1932 else
1933 i++;
1934 }
1935 }
1936 }
1937
1938 /* Free all empty pages. Partially empty pages need no attention
1939 because the `mark' bit doubles as an `unused' bit. */
1940
1941 static void
1942 sweep_pages (void)
1943 {
1944 unsigned order;
1945
1946 for (order = 2; order < NUM_ORDERS; order++)
1947 {
1948 /* The last page-entry to consider, regardless of entries
1949 placed at the end of the list. */
1950 page_entry * const last = G.page_tails[order];
1951
1952 size_t num_objects;
1953 size_t live_objects;
1954 page_entry *p, *previous;
1955 int done;
1956
1957 p = G.pages[order];
1958 if (p == NULL)
1959 continue;
1960
1961 previous = NULL;
1962 do
1963 {
1964 page_entry *next = p->next;
1965
1966 /* Loop until all entries have been examined. */
1967 done = (p == last);
1968
1969 num_objects = OBJECTS_IN_PAGE (p);
1970
1971 /* Add all live objects on this page to the count of
1972 allocated memory. */
1973 live_objects = num_objects - p->num_free_objects;
1974
1975 G.allocated += OBJECT_SIZE (order) * live_objects;
1976
1977 /* Only objects on pages in the topmost context should get
1978 collected. */
1979 if (p->context_depth < G.context_depth)
1980 ;
1981
1982 /* Remove the page if it's empty. */
1983 else if (live_objects == 0)
1984 {
1985 /* If P was the first page in the list, then NEXT
1986 becomes the new first page in the list, otherwise
1987 splice P out of the forward pointers. */
1988 if (! previous)
1989 G.pages[order] = next;
1990 else
1991 previous->next = next;
1992
1993 /* Splice P out of the back pointers too. */
1994 if (next)
1995 next->prev = previous;
1996
1997 /* Are we removing the last element? */
1998 if (p == G.page_tails[order])
1999 G.page_tails[order] = previous;
2000 free_page (p);
2001 p = previous;
2002 }
2003
2004 /* If the page is full, move it to the end. */
2005 else if (p->num_free_objects == 0)
2006 {
2007 /* Don't move it if it's already at the end. */
2008 if (p != G.page_tails[order])
2009 {
2010 /* Move p to the end of the list. */
2011 p->next = NULL;
2012 p->prev = G.page_tails[order];
2013 G.page_tails[order]->next = p;
2014
2015 /* Update the tail pointer... */
2016 G.page_tails[order] = p;
2017
2018 /* ... and the head pointer, if necessary. */
2019 if (! previous)
2020 G.pages[order] = next;
2021 else
2022 previous->next = next;
2023
2024 /* And update the backpointer in NEXT if necessary. */
2025 if (next)
2026 next->prev = previous;
2027
2028 p = previous;
2029 }
2030 }
2031
2032 /* If we've fallen through to here, it's a page in the
2033 topmost context that is neither full nor empty. Such a
2034 page must precede pages at lesser context depth in the
2035 list, so move it to the head. */
2036 else if (p != G.pages[order])
2037 {
2038 previous->next = p->next;
2039
2040 /* Update the backchain in the next node if it exists. */
2041 if (p->next)
2042 p->next->prev = previous;
2043
2044 /* Move P to the head of the list. */
2045 p->next = G.pages[order];
2046 p->prev = NULL;
2047 G.pages[order]->prev = p;
2048
2049 /* Update the head pointer. */
2050 G.pages[order] = p;
2051
2052 /* Are we moving the last element? */
2053 if (G.page_tails[order] == p)
2054 G.page_tails[order] = previous;
2055 p = previous;
2056 }
2057
2058 previous = p;
2059 p = next;
2060 }
2061 while (! done);
2062
2063 /* Now, restore the in_use_p vectors for any pages from contexts
2064 other than the current one. */
2065 for (p = G.pages[order]; p; p = p->next)
2066 if (p->context_depth != G.context_depth)
2067 ggc_recalculate_in_use_p (p);
2068 }
2069 }
2070
2071 #ifdef ENABLE_GC_CHECKING
2072 /* Clobber all free objects. */
2073
2074 static void
2075 poison_pages (void)
2076 {
2077 unsigned order;
2078
2079 for (order = 2; order < NUM_ORDERS; order++)
2080 {
2081 size_t size = OBJECT_SIZE (order);
2082 page_entry *p;
2083
2084 for (p = G.pages[order]; p != NULL; p = p->next)
2085 {
2086 size_t num_objects;
2087 size_t i;
2088
2089 if (p->context_depth != G.context_depth)
2090 /* Since we don't do any collection for pages in pushed
2091 contexts, there's no need to do any poisoning. And
2092 besides, the IN_USE_P array isn't valid until we pop
2093 contexts. */
2094 continue;
2095
2096 num_objects = OBJECTS_IN_PAGE (p);
2097 for (i = 0; i < num_objects; i++)
2098 {
2099 size_t word, bit;
2100 word = i / HOST_BITS_PER_LONG;
2101 bit = i % HOST_BITS_PER_LONG;
2102 if (((p->in_use_p[word] >> bit) & 1) == 0)
2103 {
2104 char *object = p->page + i * size;
2105
2106 /* Keep poison-by-write when we expect to use Valgrind,
2107 so the exact same memory semantics is kept, in case
2108 there are memory errors. We override this request
2109 below. */
2110 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2111 size));
2112 memset (object, 0xa5, size);
2113
2114 /* Drop the handle to avoid handle leak. */
2115 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2116 }
2117 }
2118 }
2119 }
2120 }
2121 #else
2122 #define poison_pages()
2123 #endif
2124
2125 #ifdef ENABLE_GC_ALWAYS_COLLECT
2126 /* Validate that the reportedly free objects actually are. */
2127
2128 static void
2129 validate_free_objects (void)
2130 {
2131 struct free_object *f, *next, *still_free = NULL;
2132
2133 for (f = G.free_object_list; f ; f = next)
2134 {
2135 page_entry *pe = lookup_page_table_entry (f->object);
2136 size_t bit, word;
2137
2138 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2139 word = bit / HOST_BITS_PER_LONG;
2140 bit = bit % HOST_BITS_PER_LONG;
2141 next = f->next;
2142
2143 /* Make certain it isn't visible from any root. Notice that we
2144 do this check before sweep_pages merges save_in_use_p. */
2145 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2146
2147 /* If the object comes from an outer context, then retain the
2148 free_object entry, so that we can verify that the address
2149 isn't live on the stack in some outer context. */
2150 if (pe->context_depth != G.context_depth)
2151 {
2152 f->next = still_free;
2153 still_free = f;
2154 }
2155 else
2156 free (f);
2157 }
2158
2159 G.free_object_list = still_free;
2160 }
2161 #else
2162 #define validate_free_objects()
2163 #endif
2164
2165 /* Top level mark-and-sweep routine. */
2166
2167 void
2168 ggc_collect (void)
2169 {
2170 /* Avoid frequent unnecessary work by skipping collection if the
2171 total allocations haven't expanded much since the last
2172 collection. */
2173 float allocated_last_gc =
2174 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2175
2176 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2177 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2178 return;
2179
2180 timevar_push (TV_GC);
2181 if (!quiet_flag)
2182 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2183 if (GGC_DEBUG_LEVEL >= 2)
2184 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2185
2186 /* Zero the total allocated bytes. This will be recalculated in the
2187 sweep phase. */
2188 G.allocated = 0;
2189
2190 /* Release the pages we freed the last time we collected, but didn't
2191 reuse in the interim. */
2192 release_pages ();
2193
2194 /* Indicate that we've seen collections at this context depth. */
2195 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2196
2197 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2198
2199 in_gc = true;
2200 clear_marks ();
2201 ggc_mark_roots ();
2202 ggc_handle_finalizers ();
2203
2204 if (GATHER_STATISTICS)
2205 ggc_prune_overhead_list ();
2206
2207 poison_pages ();
2208 validate_free_objects ();
2209 sweep_pages ();
2210
2211 in_gc = false;
2212 G.allocated_last_gc = G.allocated;
2213
2214 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2215
2216 timevar_pop (TV_GC);
2217
2218 if (!quiet_flag)
2219 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2220 if (GGC_DEBUG_LEVEL >= 2)
2221 fprintf (G.debug_file, "END COLLECTING\n");
2222 }
2223
2224 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2225 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2226 reachable. */
2227
2228 void
2229 ggc_grow (void)
2230 {
2231 if (!flag_checking)
2232 G.allocated_last_gc = MAX (G.allocated_last_gc,
2233 G.allocated);
2234 else
2235 ggc_collect ();
2236 if (!quiet_flag)
2237 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2238 }
2239
2240 void
2241 ggc_print_statistics (void)
2242 {
2243 struct ggc_statistics stats;
2244 unsigned int i;
2245 size_t total_overhead = 0;
2246
2247 /* Clear the statistics. */
2248 memset (&stats, 0, sizeof (stats));
2249
2250 /* Make sure collection will really occur. */
2251 G.allocated_last_gc = 0;
2252
2253 /* Collect and print the statistics common across collectors. */
2254 ggc_print_common_statistics (stderr, &stats);
2255
2256 /* Release free pages so that we will not count the bytes allocated
2257 there as part of the total allocated memory. */
2258 release_pages ();
2259
2260 /* Collect some information about the various sizes of
2261 allocation. */
2262 fprintf (stderr,
2263 "Memory still allocated at the end of the compilation process\n");
2264 fprintf (stderr, "%-8s %10s %10s %10s\n",
2265 "Size", "Allocated", "Used", "Overhead");
2266 for (i = 0; i < NUM_ORDERS; ++i)
2267 {
2268 page_entry *p;
2269 size_t allocated;
2270 size_t in_use;
2271 size_t overhead;
2272
2273 /* Skip empty entries. */
2274 if (!G.pages[i])
2275 continue;
2276
2277 overhead = allocated = in_use = 0;
2278
2279 /* Figure out the total number of bytes allocated for objects of
2280 this size, and how many of them are actually in use. Also figure
2281 out how much memory the page table is using. */
2282 for (p = G.pages[i]; p; p = p->next)
2283 {
2284 allocated += p->bytes;
2285 in_use +=
2286 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2287
2288 overhead += (sizeof (page_entry) - sizeof (long)
2289 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2290 }
2291 fprintf (stderr, "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " "
2292 PRsa (10) "\n",
2293 (uint64_t)OBJECT_SIZE (i),
2294 SIZE_AMOUNT (allocated),
2295 SIZE_AMOUNT (in_use),
2296 SIZE_AMOUNT (overhead));
2297 total_overhead += overhead;
2298 }
2299 fprintf (stderr, "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n",
2300 "Total",
2301 SIZE_AMOUNT (G.bytes_mapped),
2302 SIZE_AMOUNT (G.allocated),
2303 SIZE_AMOUNT (total_overhead));
2304
2305 if (GATHER_STATISTICS)
2306 {
2307 fprintf (stderr, "\nTotal allocations and overheads during "
2308 "the compilation process\n");
2309
2310 fprintf (stderr, "Total Overhead: "
2311 PRsa (9) "\n",
2312 SIZE_AMOUNT (G.stats.total_overhead));
2313 fprintf (stderr, "Total Allocated: "
2314 PRsa (9) "\n",
2315 SIZE_AMOUNT (G.stats.total_allocated));
2316
2317 fprintf (stderr, "Total Overhead under 32B: "
2318 PRsa (9) "\n",
2319 SIZE_AMOUNT (G.stats.total_overhead_under32));
2320 fprintf (stderr, "Total Allocated under 32B: "
2321 PRsa (9) "\n",
2322 SIZE_AMOUNT (G.stats.total_allocated_under32));
2323 fprintf (stderr, "Total Overhead under 64B: "
2324 PRsa (9) "\n",
2325 SIZE_AMOUNT (G.stats.total_overhead_under64));
2326 fprintf (stderr, "Total Allocated under 64B: "
2327 PRsa (9) "\n",
2328 SIZE_AMOUNT (G.stats.total_allocated_under64));
2329 fprintf (stderr, "Total Overhead under 128B: "
2330 PRsa (9) "\n",
2331 SIZE_AMOUNT (G.stats.total_overhead_under128));
2332 fprintf (stderr, "Total Allocated under 128B: "
2333 PRsa (9) "\n",
2334 SIZE_AMOUNT (G.stats.total_allocated_under128));
2335
2336 for (i = 0; i < NUM_ORDERS; i++)
2337 if (G.stats.total_allocated_per_order[i])
2338 {
2339 fprintf (stderr, "Total Overhead page size %9" PRIu64 ": "
2340 PRsa (9) "\n",
2341 (uint64_t)OBJECT_SIZE (i),
2342 SIZE_AMOUNT (G.stats.total_overhead_per_order[i]));
2343 fprintf (stderr, "Total Allocated page size %9" PRIu64 ": "
2344 PRsa (9) "\n",
2345 (uint64_t)OBJECT_SIZE (i),
2346 SIZE_AMOUNT (G.stats.total_allocated_per_order[i]));
2347 }
2348 }
2349 }
2350 \f
2351 struct ggc_pch_ondisk
2352 {
2353 unsigned totals[NUM_ORDERS];
2354 };
2355
2356 struct ggc_pch_data
2357 {
2358 struct ggc_pch_ondisk d;
2359 uintptr_t base[NUM_ORDERS];
2360 size_t written[NUM_ORDERS];
2361 };
2362
2363 struct ggc_pch_data *
2364 init_ggc_pch (void)
2365 {
2366 return XCNEW (struct ggc_pch_data);
2367 }
2368
2369 void
2370 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2371 size_t size, bool is_string ATTRIBUTE_UNUSED)
2372 {
2373 unsigned order;
2374
2375 if (size < NUM_SIZE_LOOKUP)
2376 order = size_lookup[size];
2377 else
2378 {
2379 order = 10;
2380 while (size > OBJECT_SIZE (order))
2381 order++;
2382 }
2383
2384 d->d.totals[order]++;
2385 }
2386
2387 size_t
2388 ggc_pch_total_size (struct ggc_pch_data *d)
2389 {
2390 size_t a = 0;
2391 unsigned i;
2392
2393 for (i = 0; i < NUM_ORDERS; i++)
2394 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2395 return a;
2396 }
2397
2398 void
2399 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2400 {
2401 uintptr_t a = (uintptr_t) base;
2402 unsigned i;
2403
2404 for (i = 0; i < NUM_ORDERS; i++)
2405 {
2406 d->base[i] = a;
2407 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2408 }
2409 }
2410
2411
2412 char *
2413 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2414 size_t size, bool is_string ATTRIBUTE_UNUSED)
2415 {
2416 unsigned order;
2417 char *result;
2418
2419 if (size < NUM_SIZE_LOOKUP)
2420 order = size_lookup[size];
2421 else
2422 {
2423 order = 10;
2424 while (size > OBJECT_SIZE (order))
2425 order++;
2426 }
2427
2428 result = (char *) d->base[order];
2429 d->base[order] += OBJECT_SIZE (order);
2430 return result;
2431 }
2432
2433 void
2434 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2435 FILE *f ATTRIBUTE_UNUSED)
2436 {
2437 /* Nothing to do. */
2438 }
2439
2440 void
2441 ggc_pch_write_object (struct ggc_pch_data *d,
2442 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2443 size_t size, bool is_string ATTRIBUTE_UNUSED)
2444 {
2445 unsigned order;
2446 static const char emptyBytes[256] = { 0 };
2447
2448 if (size < NUM_SIZE_LOOKUP)
2449 order = size_lookup[size];
2450 else
2451 {
2452 order = 10;
2453 while (size > OBJECT_SIZE (order))
2454 order++;
2455 }
2456
2457 if (fwrite (x, size, 1, f) != 1)
2458 fatal_error (input_location, "cannot write PCH file: %m");
2459
2460 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2461 object out to OBJECT_SIZE(order). This happens for strings. */
2462
2463 if (size != OBJECT_SIZE (order))
2464 {
2465 unsigned padding = OBJECT_SIZE (order) - size;
2466
2467 /* To speed small writes, we use a nulled-out array that's larger
2468 than most padding requests as the source for our null bytes. This
2469 permits us to do the padding with fwrite() rather than fseek(), and
2470 limits the chance the OS may try to flush any outstanding writes. */
2471 if (padding <= sizeof (emptyBytes))
2472 {
2473 if (fwrite (emptyBytes, 1, padding, f) != padding)
2474 fatal_error (input_location, "cannot write PCH file");
2475 }
2476 else
2477 {
2478 /* Larger than our buffer? Just default to fseek. */
2479 if (fseek (f, padding, SEEK_CUR) != 0)
2480 fatal_error (input_location, "cannot write PCH file");
2481 }
2482 }
2483
2484 d->written[order]++;
2485 if (d->written[order] == d->d.totals[order]
2486 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2487 G.pagesize),
2488 SEEK_CUR) != 0)
2489 fatal_error (input_location, "cannot write PCH file: %m");
2490 }
2491
2492 void
2493 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2494 {
2495 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2496 fatal_error (input_location, "cannot write PCH file: %m");
2497 free (d);
2498 }
2499
2500 /* Move the PCH PTE entries just added to the end of by_depth, to the
2501 front. */
2502
2503 static void
2504 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2505 {
2506 /* First, we swap the new entries to the front of the varrays. */
2507 page_entry **new_by_depth;
2508 unsigned long **new_save_in_use;
2509
2510 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2511 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2512
2513 memcpy (&new_by_depth[0],
2514 &G.by_depth[count_old_page_tables],
2515 count_new_page_tables * sizeof (void *));
2516 memcpy (&new_by_depth[count_new_page_tables],
2517 &G.by_depth[0],
2518 count_old_page_tables * sizeof (void *));
2519 memcpy (&new_save_in_use[0],
2520 &G.save_in_use[count_old_page_tables],
2521 count_new_page_tables * sizeof (void *));
2522 memcpy (&new_save_in_use[count_new_page_tables],
2523 &G.save_in_use[0],
2524 count_old_page_tables * sizeof (void *));
2525
2526 free (G.by_depth);
2527 free (G.save_in_use);
2528
2529 G.by_depth = new_by_depth;
2530 G.save_in_use = new_save_in_use;
2531
2532 /* Now update all the index_by_depth fields. */
2533 for (unsigned i = G.by_depth_in_use; i--;)
2534 {
2535 page_entry *p = G.by_depth[i];
2536 p->index_by_depth = i;
2537 }
2538
2539 /* And last, we update the depth pointers in G.depth. The first
2540 entry is already 0, and context 0 entries always start at index
2541 0, so there is nothing to update in the first slot. We need a
2542 second slot, only if we have old ptes, and if we do, they start
2543 at index count_new_page_tables. */
2544 if (count_old_page_tables)
2545 push_depth (count_new_page_tables);
2546 }
2547
2548 void
2549 ggc_pch_read (FILE *f, void *addr)
2550 {
2551 struct ggc_pch_ondisk d;
2552 unsigned i;
2553 char *offs = (char *) addr;
2554 unsigned long count_old_page_tables;
2555 unsigned long count_new_page_tables;
2556
2557 count_old_page_tables = G.by_depth_in_use;
2558
2559 /* We've just read in a PCH file. So, every object that used to be
2560 allocated is now free. */
2561 clear_marks ();
2562 #ifdef ENABLE_GC_CHECKING
2563 poison_pages ();
2564 #endif
2565 /* Since we free all the allocated objects, the free list becomes
2566 useless. Validate it now, which will also clear it. */
2567 validate_free_objects ();
2568
2569 /* No object read from a PCH file should ever be freed. So, set the
2570 context depth to 1, and set the depth of all the currently-allocated
2571 pages to be 1 too. PCH pages will have depth 0. */
2572 gcc_assert (!G.context_depth);
2573 G.context_depth = 1;
2574 /* Allocate space for the depth 1 finalizers. */
2575 G.finalizers.safe_push (vNULL);
2576 G.vec_finalizers.safe_push (vNULL);
2577 gcc_assert (G.finalizers.length() == 2);
2578 for (i = 0; i < NUM_ORDERS; i++)
2579 {
2580 page_entry *p;
2581 for (p = G.pages[i]; p != NULL; p = p->next)
2582 p->context_depth = G.context_depth;
2583 }
2584
2585 /* Allocate the appropriate page-table entries for the pages read from
2586 the PCH file. */
2587 if (fread (&d, sizeof (d), 1, f) != 1)
2588 fatal_error (input_location, "cannot read PCH file: %m");
2589
2590 for (i = 0; i < NUM_ORDERS; i++)
2591 {
2592 struct page_entry *entry;
2593 char *pte;
2594 size_t bytes;
2595 size_t num_objs;
2596 size_t j;
2597
2598 if (d.totals[i] == 0)
2599 continue;
2600
2601 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2602 num_objs = bytes / OBJECT_SIZE (i);
2603 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2604 - sizeof (long)
2605 + BITMAP_SIZE (num_objs + 1)));
2606 entry->bytes = bytes;
2607 entry->page = offs;
2608 entry->context_depth = 0;
2609 offs += bytes;
2610 entry->num_free_objects = 0;
2611 entry->order = i;
2612
2613 for (j = 0;
2614 j + HOST_BITS_PER_LONG <= num_objs + 1;
2615 j += HOST_BITS_PER_LONG)
2616 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2617 for (; j < num_objs + 1; j++)
2618 entry->in_use_p[j / HOST_BITS_PER_LONG]
2619 |= 1L << (j % HOST_BITS_PER_LONG);
2620
2621 for (pte = entry->page;
2622 pte < entry->page + entry->bytes;
2623 pte += G.pagesize)
2624 set_page_table_entry (pte, entry);
2625
2626 if (G.page_tails[i] != NULL)
2627 G.page_tails[i]->next = entry;
2628 else
2629 G.pages[i] = entry;
2630 G.page_tails[i] = entry;
2631
2632 /* We start off by just adding all the new information to the
2633 end of the varrays, later, we will move the new information
2634 to the front of the varrays, as the PCH page tables are at
2635 context 0. */
2636 push_by_depth (entry, 0);
2637 }
2638
2639 /* Now, we update the various data structures that speed page table
2640 handling. */
2641 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2642
2643 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2644
2645 /* Update the statistics. */
2646 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2647 }