]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-fnsummary.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / ipa-fnsummary.c
1 /* Function summary pass.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Analysis of function bodies used by inter-procedural passes
22
23 We estimate for each function
24 - function body size and size after specializing into given context
25 - average function execution time in a given context
26 - function frame size
27 For each call
28 - call statement size, time and how often the parameters change
29
30 ipa_fn_summary data structures store above information locally (i.e.
31 parameters of the function itself) and globally (i.e. parameters of
32 the function created by applying all the inline decisions already
33 present in the callgraph).
34
35 We provide access to the ipa_fn_summary data structure and
36 basic logic updating the parameters when inlining is performed.
37
38 The summaries are context sensitive. Context means
39 1) partial assignment of known constant values of operands
40 2) whether function is inlined into the call or not.
41 It is easy to add more variants. To represent function size and time
42 that depends on context (i.e. it is known to be optimized away when
43 context is known either by inlining or from IP-CP and cloning),
44 we use predicates.
45
46 estimate_edge_size_and_time can be used to query
47 function size/time in the given context. ipa_merge_fn_summary_after_inlining merges
48 properties of caller and callee after inlining.
49
50 Finally pass_inline_parameters is exported. This is used to drive
51 computation of function parameters used by the early inliner. IPA
52 inlined performs analysis via its analyze_function method. */
53
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "tree.h"
59 #include "gimple.h"
60 #include "alloc-pool.h"
61 #include "tree-pass.h"
62 #include "ssa.h"
63 #include "tree-streamer.h"
64 #include "cgraph.h"
65 #include "diagnostic.h"
66 #include "fold-const.h"
67 #include "print-tree.h"
68 #include "tree-inline.h"
69 #include "gimple-pretty-print.h"
70 #include "params.h"
71 #include "cfganal.h"
72 #include "gimple-iterator.h"
73 #include "tree-cfg.h"
74 #include "tree-ssa-loop-niter.h"
75 #include "tree-ssa-loop.h"
76 #include "symbol-summary.h"
77 #include "ipa-prop.h"
78 #include "ipa-fnsummary.h"
79 #include "cfgloop.h"
80 #include "tree-scalar-evolution.h"
81 #include "ipa-utils.h"
82 #include "cfgexpand.h"
83 #include "gimplify.h"
84 #include "stringpool.h"
85 #include "attribs.h"
86
87 /* Summaries. */
88 fast_function_summary <ipa_fn_summary *, va_gc> *ipa_fn_summaries;
89 fast_call_summary <ipa_call_summary *, va_heap> *ipa_call_summaries;
90
91 /* Edge predicates goes here. */
92 static object_allocator<predicate> edge_predicate_pool ("edge predicates");
93
94
95 /* Dump IPA hints. */
96 void
97 ipa_dump_hints (FILE *f, ipa_hints hints)
98 {
99 if (!hints)
100 return;
101 fprintf (f, "IPA hints:");
102 if (hints & INLINE_HINT_indirect_call)
103 {
104 hints &= ~INLINE_HINT_indirect_call;
105 fprintf (f, " indirect_call");
106 }
107 if (hints & INLINE_HINT_loop_iterations)
108 {
109 hints &= ~INLINE_HINT_loop_iterations;
110 fprintf (f, " loop_iterations");
111 }
112 if (hints & INLINE_HINT_loop_stride)
113 {
114 hints &= ~INLINE_HINT_loop_stride;
115 fprintf (f, " loop_stride");
116 }
117 if (hints & INLINE_HINT_same_scc)
118 {
119 hints &= ~INLINE_HINT_same_scc;
120 fprintf (f, " same_scc");
121 }
122 if (hints & INLINE_HINT_in_scc)
123 {
124 hints &= ~INLINE_HINT_in_scc;
125 fprintf (f, " in_scc");
126 }
127 if (hints & INLINE_HINT_cross_module)
128 {
129 hints &= ~INLINE_HINT_cross_module;
130 fprintf (f, " cross_module");
131 }
132 if (hints & INLINE_HINT_declared_inline)
133 {
134 hints &= ~INLINE_HINT_declared_inline;
135 fprintf (f, " declared_inline");
136 }
137 if (hints & INLINE_HINT_array_index)
138 {
139 hints &= ~INLINE_HINT_array_index;
140 fprintf (f, " array_index");
141 }
142 if (hints & INLINE_HINT_known_hot)
143 {
144 hints &= ~INLINE_HINT_known_hot;
145 fprintf (f, " known_hot");
146 }
147 gcc_assert (!hints);
148 }
149
150
151 /* Record SIZE and TIME to SUMMARY.
152 The accounted code will be executed when EXEC_PRED is true.
153 When NONCONST_PRED is false the code will evaulate to constant and
154 will get optimized out in specialized clones of the function. */
155
156 void
157 ipa_fn_summary::account_size_time (int size, sreal time,
158 const predicate &exec_pred,
159 const predicate &nonconst_pred_in)
160 {
161 size_time_entry *e;
162 bool found = false;
163 int i;
164 predicate nonconst_pred;
165
166 if (exec_pred == false)
167 return;
168
169 nonconst_pred = nonconst_pred_in & exec_pred;
170
171 if (nonconst_pred == false)
172 return;
173
174 /* We need to create initial empty unconitional clause, but otherwie
175 we don't need to account empty times and sizes. */
176 if (!size && time == 0 && size_time_table)
177 return;
178
179 gcc_assert (time >= 0);
180
181 for (i = 0; vec_safe_iterate (size_time_table, i, &e); i++)
182 if (e->exec_predicate == exec_pred
183 && e->nonconst_predicate == nonconst_pred)
184 {
185 found = true;
186 break;
187 }
188 if (i == 256)
189 {
190 i = 0;
191 found = true;
192 e = &(*size_time_table)[0];
193 if (dump_file && (dump_flags & TDF_DETAILS))
194 fprintf (dump_file,
195 "\t\tReached limit on number of entries, "
196 "ignoring the predicate.");
197 }
198 if (dump_file && (dump_flags & TDF_DETAILS) && (time != 0 || size))
199 {
200 fprintf (dump_file,
201 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate exec:",
202 ((double) size) / ipa_fn_summary::size_scale,
203 (time.to_double ()), found ? "" : "new ");
204 exec_pred.dump (dump_file, conds, 0);
205 if (exec_pred != nonconst_pred)
206 {
207 fprintf (dump_file, " nonconst:");
208 nonconst_pred.dump (dump_file, conds);
209 }
210 else
211 fprintf (dump_file, "\n");
212 }
213 if (!found)
214 {
215 struct size_time_entry new_entry;
216 new_entry.size = size;
217 new_entry.time = time;
218 new_entry.exec_predicate = exec_pred;
219 new_entry.nonconst_predicate = nonconst_pred;
220 vec_safe_push (size_time_table, new_entry);
221 }
222 else
223 {
224 e->size += size;
225 e->time += time;
226 }
227 }
228
229 /* We proved E to be unreachable, redirect it to __bultin_unreachable. */
230
231 static struct cgraph_edge *
232 redirect_to_unreachable (struct cgraph_edge *e)
233 {
234 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
235 struct cgraph_node *target = cgraph_node::get_create
236 (builtin_decl_implicit (BUILT_IN_UNREACHABLE));
237
238 if (e->speculative)
239 e = e->resolve_speculation (target->decl);
240 else if (!e->callee)
241 e->make_direct (target);
242 else
243 e->redirect_callee (target);
244 struct ipa_call_summary *es = ipa_call_summaries->get (e);
245 e->inline_failed = CIF_UNREACHABLE;
246 e->count = profile_count::zero ();
247 es->call_stmt_size = 0;
248 es->call_stmt_time = 0;
249 if (callee)
250 callee->remove_symbol_and_inline_clones ();
251 return e;
252 }
253
254 /* Set predicate for edge E. */
255
256 static void
257 edge_set_predicate (struct cgraph_edge *e, predicate *predicate)
258 {
259 /* If the edge is determined to be never executed, redirect it
260 to BUILTIN_UNREACHABLE to make it clear to IPA passes the call will
261 be optimized out. */
262 if (predicate && *predicate == false
263 /* When handling speculative edges, we need to do the redirection
264 just once. Do it always on the direct edge, so we do not
265 attempt to resolve speculation while duplicating the edge. */
266 && (!e->speculative || e->callee))
267 e = redirect_to_unreachable (e);
268
269 struct ipa_call_summary *es = ipa_call_summaries->get (e);
270 if (predicate && *predicate != true)
271 {
272 if (!es->predicate)
273 es->predicate = edge_predicate_pool.allocate ();
274 *es->predicate = *predicate;
275 }
276 else
277 {
278 if (es->predicate)
279 edge_predicate_pool.remove (es->predicate);
280 es->predicate = NULL;
281 }
282 }
283
284 /* Set predicate for hint *P. */
285
286 static void
287 set_hint_predicate (predicate **p, predicate new_predicate)
288 {
289 if (new_predicate == false || new_predicate == true)
290 {
291 if (*p)
292 edge_predicate_pool.remove (*p);
293 *p = NULL;
294 }
295 else
296 {
297 if (!*p)
298 *p = edge_predicate_pool.allocate ();
299 **p = new_predicate;
300 }
301 }
302
303
304 /* Compute what conditions may or may not hold given invormation about
305 parameters. RET_CLAUSE returns truths that may hold in a specialized copy,
306 whie RET_NONSPEC_CLAUSE returns truths that may hold in an nonspecialized
307 copy when called in a given context. It is a bitmask of conditions. Bit
308 0 means that condition is known to be false, while bit 1 means that condition
309 may or may not be true. These differs - for example NOT_INLINED condition
310 is always false in the second and also builtin_constant_p tests cannot use
311 the fact that parameter is indeed a constant.
312
313 KNOWN_VALS is partial mapping of parameters of NODE to constant values.
314 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
315 Return clause of possible truths. When INLINE_P is true, assume that we are
316 inlining.
317
318 ERROR_MARK means compile time invariant. */
319
320 static void
321 evaluate_conditions_for_known_args (struct cgraph_node *node,
322 bool inline_p,
323 vec<tree> known_vals,
324 vec<ipa_agg_jump_function_p>
325 known_aggs,
326 clause_t *ret_clause,
327 clause_t *ret_nonspec_clause)
328 {
329 clause_t clause = inline_p ? 0 : 1 << predicate::not_inlined_condition;
330 clause_t nonspec_clause = 1 << predicate::not_inlined_condition;
331 struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
332 int i;
333 struct condition *c;
334
335 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
336 {
337 tree val;
338 tree res;
339
340 /* We allow call stmt to have fewer arguments than the callee function
341 (especially for K&R style programs). So bound check here (we assume
342 known_aggs vector, if non-NULL, has the same length as
343 known_vals). */
344 gcc_checking_assert (!known_aggs.exists ()
345 || (known_vals.length () == known_aggs.length ()));
346 if (c->operand_num >= (int) known_vals.length ())
347 {
348 clause |= 1 << (i + predicate::first_dynamic_condition);
349 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
350 continue;
351 }
352
353 if (c->agg_contents)
354 {
355 struct ipa_agg_jump_function *agg;
356
357 if (c->code == predicate::changed
358 && !c->by_ref
359 && (known_vals[c->operand_num] == error_mark_node))
360 continue;
361
362 if (known_aggs.exists ())
363 {
364 agg = known_aggs[c->operand_num];
365 val = ipa_find_agg_cst_for_param (agg, known_vals[c->operand_num],
366 c->offset, c->by_ref);
367 }
368 else
369 val = NULL_TREE;
370 }
371 else
372 {
373 val = known_vals[c->operand_num];
374 if (val == error_mark_node && c->code != predicate::changed)
375 val = NULL_TREE;
376 }
377
378 if (!val)
379 {
380 clause |= 1 << (i + predicate::first_dynamic_condition);
381 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
382 continue;
383 }
384 if (c->code == predicate::changed)
385 {
386 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
387 continue;
388 }
389
390 if (tree_to_shwi (TYPE_SIZE (TREE_TYPE (val))) != c->size)
391 {
392 clause |= 1 << (i + predicate::first_dynamic_condition);
393 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
394 continue;
395 }
396 if (c->code == predicate::is_not_constant)
397 {
398 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
399 continue;
400 }
401
402 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
403 res = val
404 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
405 : NULL;
406
407 if (res && integer_zerop (res))
408 continue;
409
410 clause |= 1 << (i + predicate::first_dynamic_condition);
411 nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
412 }
413 *ret_clause = clause;
414 if (ret_nonspec_clause)
415 *ret_nonspec_clause = nonspec_clause;
416 }
417
418
419 /* Work out what conditions might be true at invocation of E. */
420
421 void
422 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
423 clause_t *clause_ptr,
424 clause_t *nonspec_clause_ptr,
425 vec<tree> *known_vals_ptr,
426 vec<ipa_polymorphic_call_context>
427 *known_contexts_ptr,
428 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
429 {
430 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
431 struct ipa_fn_summary *info = ipa_fn_summaries->get (callee);
432 vec<tree> known_vals = vNULL;
433 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
434
435 if (clause_ptr)
436 *clause_ptr = inline_p ? 0 : 1 << predicate::not_inlined_condition;
437 if (known_vals_ptr)
438 known_vals_ptr->create (0);
439 if (known_contexts_ptr)
440 known_contexts_ptr->create (0);
441
442 if (ipa_node_params_sum
443 && !e->call_stmt_cannot_inline_p
444 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
445 {
446 struct ipa_node_params *caller_parms_info, *callee_pi;
447 struct ipa_edge_args *args = IPA_EDGE_REF (e);
448 struct ipa_call_summary *es = ipa_call_summaries->get (e);
449 int i, count = ipa_get_cs_argument_count (args);
450
451 if (e->caller->global.inlined_to)
452 caller_parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
453 else
454 caller_parms_info = IPA_NODE_REF (e->caller);
455 callee_pi = IPA_NODE_REF (e->callee);
456
457 if (count && (info->conds || known_vals_ptr))
458 known_vals.safe_grow_cleared (count);
459 if (count && (info->conds || known_aggs_ptr))
460 known_aggs.safe_grow_cleared (count);
461 if (count && known_contexts_ptr)
462 known_contexts_ptr->safe_grow_cleared (count);
463
464 for (i = 0; i < count; i++)
465 {
466 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
467 tree cst = ipa_value_from_jfunc (caller_parms_info, jf,
468 ipa_get_type (callee_pi, i));
469
470 if (!cst && e->call_stmt
471 && i < (int)gimple_call_num_args (e->call_stmt))
472 {
473 cst = gimple_call_arg (e->call_stmt, i);
474 if (!is_gimple_min_invariant (cst))
475 cst = NULL;
476 }
477 if (cst)
478 {
479 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
480 if (known_vals.exists ())
481 known_vals[i] = cst;
482 }
483 else if (inline_p && !es->param[i].change_prob)
484 known_vals[i] = error_mark_node;
485
486 if (known_contexts_ptr)
487 (*known_contexts_ptr)[i]
488 = ipa_context_from_jfunc (caller_parms_info, e, i, jf);
489 /* TODO: When IPA-CP starts propagating and merging aggregate jump
490 functions, use its knowledge of the caller too, just like the
491 scalar case above. */
492 known_aggs[i] = &jf->agg;
493 }
494 }
495 else if (e->call_stmt && !e->call_stmt_cannot_inline_p
496 && ((clause_ptr && info->conds) || known_vals_ptr))
497 {
498 int i, count = (int)gimple_call_num_args (e->call_stmt);
499
500 if (count && (info->conds || known_vals_ptr))
501 known_vals.safe_grow_cleared (count);
502 for (i = 0; i < count; i++)
503 {
504 tree cst = gimple_call_arg (e->call_stmt, i);
505 if (!is_gimple_min_invariant (cst))
506 cst = NULL;
507 if (cst)
508 known_vals[i] = cst;
509 }
510 }
511
512 evaluate_conditions_for_known_args (callee, inline_p,
513 known_vals, known_aggs, clause_ptr,
514 nonspec_clause_ptr);
515
516 if (known_vals_ptr)
517 *known_vals_ptr = known_vals;
518 else
519 known_vals.release ();
520
521 if (known_aggs_ptr)
522 *known_aggs_ptr = known_aggs;
523 else
524 known_aggs.release ();
525 }
526
527
528 /* Allocate the function summary. */
529
530 static void
531 ipa_fn_summary_alloc (void)
532 {
533 gcc_checking_assert (!ipa_fn_summaries);
534 ipa_fn_summaries = ipa_fn_summary_t::create_ggc (symtab);
535 ipa_call_summaries = new ipa_call_summary_t (symtab);
536 }
537
538 ipa_call_summary::~ipa_call_summary ()
539 {
540 if (predicate)
541 edge_predicate_pool.remove (predicate);
542
543 param.release ();
544 }
545
546 ipa_fn_summary::~ipa_fn_summary ()
547 {
548 if (loop_iterations)
549 edge_predicate_pool.remove (loop_iterations);
550 if (loop_stride)
551 edge_predicate_pool.remove (loop_stride);
552 if (array_index)
553 edge_predicate_pool.remove (array_index);
554 vec_free (conds);
555 vec_free (size_time_table);
556 }
557
558 void
559 ipa_fn_summary_t::remove_callees (cgraph_node *node)
560 {
561 cgraph_edge *e;
562 for (e = node->callees; e; e = e->next_callee)
563 ipa_call_summaries->remove (e);
564 for (e = node->indirect_calls; e; e = e->next_callee)
565 ipa_call_summaries->remove (e);
566 }
567
568 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
569 Additionally care about allocating new memory slot for updated predicate
570 and set it to NULL when it becomes true or false (and thus uninteresting).
571 */
572
573 static void
574 remap_hint_predicate_after_duplication (predicate **p,
575 clause_t possible_truths)
576 {
577 predicate new_predicate;
578
579 if (!*p)
580 return;
581
582 new_predicate = (*p)->remap_after_duplication (possible_truths);
583 /* We do not want to free previous predicate; it is used by node origin. */
584 *p = NULL;
585 set_hint_predicate (p, new_predicate);
586 }
587
588
589 /* Hook that is called by cgraph.c when a node is duplicated. */
590 void
591 ipa_fn_summary_t::duplicate (cgraph_node *src,
592 cgraph_node *dst,
593 ipa_fn_summary *,
594 ipa_fn_summary *info)
595 {
596 new (info) ipa_fn_summary (*ipa_fn_summaries->get (src));
597 /* TODO: as an optimization, we may avoid copying conditions
598 that are known to be false or true. */
599 info->conds = vec_safe_copy (info->conds);
600
601 /* When there are any replacements in the function body, see if we can figure
602 out that something was optimized out. */
603 if (ipa_node_params_sum && dst->clone.tree_map)
604 {
605 vec<size_time_entry, va_gc> *entry = info->size_time_table;
606 /* Use SRC parm info since it may not be copied yet. */
607 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
608 vec<tree> known_vals = vNULL;
609 int count = ipa_get_param_count (parms_info);
610 int i, j;
611 clause_t possible_truths;
612 predicate true_pred = true;
613 size_time_entry *e;
614 int optimized_out_size = 0;
615 bool inlined_to_p = false;
616 struct cgraph_edge *edge, *next;
617
618 info->size_time_table = 0;
619 known_vals.safe_grow_cleared (count);
620 for (i = 0; i < count; i++)
621 {
622 struct ipa_replace_map *r;
623
624 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
625 {
626 if (((!r->old_tree && r->parm_num == i)
627 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
628 && r->replace_p && !r->ref_p)
629 {
630 known_vals[i] = r->new_tree;
631 break;
632 }
633 }
634 }
635 evaluate_conditions_for_known_args (dst, false,
636 known_vals,
637 vNULL,
638 &possible_truths,
639 /* We are going to specialize,
640 so ignore nonspec truths. */
641 NULL);
642 known_vals.release ();
643
644 info->account_size_time (0, 0, true_pred, true_pred);
645
646 /* Remap size_time vectors.
647 Simplify the predicate by prunning out alternatives that are known
648 to be false.
649 TODO: as on optimization, we can also eliminate conditions known
650 to be true. */
651 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
652 {
653 predicate new_exec_pred;
654 predicate new_nonconst_pred;
655 new_exec_pred = e->exec_predicate.remap_after_duplication
656 (possible_truths);
657 new_nonconst_pred = e->nonconst_predicate.remap_after_duplication
658 (possible_truths);
659 if (new_exec_pred == false || new_nonconst_pred == false)
660 optimized_out_size += e->size;
661 else
662 info->account_size_time (e->size, e->time, new_exec_pred,
663 new_nonconst_pred);
664 }
665
666 /* Remap edge predicates with the same simplification as above.
667 Also copy constantness arrays. */
668 for (edge = dst->callees; edge; edge = next)
669 {
670 predicate new_predicate;
671 struct ipa_call_summary *es = ipa_call_summaries->get_create (edge);
672 next = edge->next_callee;
673
674 if (!edge->inline_failed)
675 inlined_to_p = true;
676 if (!es->predicate)
677 continue;
678 new_predicate = es->predicate->remap_after_duplication
679 (possible_truths);
680 if (new_predicate == false && *es->predicate != false)
681 optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
682 edge_set_predicate (edge, &new_predicate);
683 }
684
685 /* Remap indirect edge predicates with the same simplificaiton as above.
686 Also copy constantness arrays. */
687 for (edge = dst->indirect_calls; edge; edge = next)
688 {
689 predicate new_predicate;
690 struct ipa_call_summary *es = ipa_call_summaries->get_create (edge);
691 next = edge->next_callee;
692
693 gcc_checking_assert (edge->inline_failed);
694 if (!es->predicate)
695 continue;
696 new_predicate = es->predicate->remap_after_duplication
697 (possible_truths);
698 if (new_predicate == false && *es->predicate != false)
699 optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
700 edge_set_predicate (edge, &new_predicate);
701 }
702 remap_hint_predicate_after_duplication (&info->loop_iterations,
703 possible_truths);
704 remap_hint_predicate_after_duplication (&info->loop_stride,
705 possible_truths);
706 remap_hint_predicate_after_duplication (&info->array_index,
707 possible_truths);
708
709 /* If inliner or someone after inliner will ever start producing
710 non-trivial clones, we will get trouble with lack of information
711 about updating self sizes, because size vectors already contains
712 sizes of the calees. */
713 gcc_assert (!inlined_to_p || !optimized_out_size);
714 }
715 else
716 {
717 info->size_time_table = vec_safe_copy (info->size_time_table);
718 if (info->loop_iterations)
719 {
720 predicate p = *info->loop_iterations;
721 info->loop_iterations = NULL;
722 set_hint_predicate (&info->loop_iterations, p);
723 }
724 if (info->loop_stride)
725 {
726 predicate p = *info->loop_stride;
727 info->loop_stride = NULL;
728 set_hint_predicate (&info->loop_stride, p);
729 }
730 if (info->array_index)
731 {
732 predicate p = *info->array_index;
733 info->array_index = NULL;
734 set_hint_predicate (&info->array_index, p);
735 }
736 }
737 if (!dst->global.inlined_to)
738 ipa_update_overall_fn_summary (dst);
739 }
740
741
742 /* Hook that is called by cgraph.c when a node is duplicated. */
743
744 void
745 ipa_call_summary_t::duplicate (struct cgraph_edge *src,
746 struct cgraph_edge *dst,
747 struct ipa_call_summary *srcinfo,
748 struct ipa_call_summary *info)
749 {
750 new (info) ipa_call_summary (*srcinfo);
751 info->predicate = NULL;
752 edge_set_predicate (dst, srcinfo->predicate);
753 info->param = srcinfo->param.copy ();
754 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
755 {
756 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
757 - eni_size_weights.call_cost);
758 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
759 - eni_time_weights.call_cost);
760 }
761 }
762
763 /* Dump edge summaries associated to NODE and recursively to all clones.
764 Indent by INDENT. */
765
766 static void
767 dump_ipa_call_summary (FILE *f, int indent, struct cgraph_node *node,
768 struct ipa_fn_summary *info)
769 {
770 struct cgraph_edge *edge;
771 for (edge = node->callees; edge; edge = edge->next_callee)
772 {
773 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
774 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
775 int i;
776
777 fprintf (f,
778 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4.2f size:%2i time: %2i",
779 indent, "", callee->name (), callee->order,
780 !edge->inline_failed
781 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
782 indent, "", es->loop_depth, edge->sreal_frequency ().to_double (),
783 es->call_stmt_size, es->call_stmt_time);
784
785 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
786 if (s != NULL)
787 fprintf (f, "callee size:%2i stack:%2i",
788 (int) (s->size / ipa_fn_summary::size_scale),
789 (int) s->estimated_stack_size);
790
791 if (es->predicate)
792 {
793 fprintf (f, " predicate: ");
794 es->predicate->dump (f, info->conds);
795 }
796 else
797 fprintf (f, "\n");
798 if (es->param.exists ())
799 for (i = 0; i < (int) es->param.length (); i++)
800 {
801 int prob = es->param[i].change_prob;
802
803 if (!prob)
804 fprintf (f, "%*s op%i is compile time invariant\n",
805 indent + 2, "", i);
806 else if (prob != REG_BR_PROB_BASE)
807 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
808 prob * 100.0 / REG_BR_PROB_BASE);
809 }
810 if (!edge->inline_failed)
811 {
812 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
813 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
814 " callee size %i\n",
815 indent + 2, "",
816 (int) s->stack_frame_offset,
817 (int) s->estimated_self_stack_size,
818 (int) s->estimated_stack_size);
819 dump_ipa_call_summary (f, indent + 2, callee, info);
820 }
821 }
822 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
823 {
824 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
825 fprintf (f, "%*sindirect call loop depth:%2i freq:%4.2f size:%2i"
826 " time: %2i",
827 indent, "",
828 es->loop_depth,
829 edge->sreal_frequency ().to_double (), es->call_stmt_size,
830 es->call_stmt_time);
831 if (es->predicate)
832 {
833 fprintf (f, "predicate: ");
834 es->predicate->dump (f, info->conds);
835 }
836 else
837 fprintf (f, "\n");
838 }
839 }
840
841
842 void
843 ipa_dump_fn_summary (FILE *f, struct cgraph_node *node)
844 {
845 if (node->definition)
846 {
847 struct ipa_fn_summary *s = ipa_fn_summaries->get (node);
848 if (s != NULL)
849 {
850 size_time_entry *e;
851 int i;
852 fprintf (f, "IPA function summary for %s", node->dump_name ());
853 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
854 fprintf (f, " always_inline");
855 if (s->inlinable)
856 fprintf (f, " inlinable");
857 if (s->fp_expressions)
858 fprintf (f, " fp_expression");
859 fprintf (f, "\n global time: %f\n", s->time.to_double ());
860 fprintf (f, " self size: %i\n", s->self_size);
861 fprintf (f, " global size: %i\n", s->size);
862 fprintf (f, " min size: %i\n", s->min_size);
863 fprintf (f, " self stack: %i\n",
864 (int) s->estimated_self_stack_size);
865 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
866 if (s->growth)
867 fprintf (f, " estimated growth:%i\n", (int) s->growth);
868 if (s->scc_no)
869 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
870 for (i = 0; vec_safe_iterate (s->size_time_table, i, &e); i++)
871 {
872 fprintf (f, " size:%f, time:%f",
873 (double) e->size / ipa_fn_summary::size_scale,
874 e->time.to_double ());
875 if (e->exec_predicate != true)
876 {
877 fprintf (f, ", executed if:");
878 e->exec_predicate.dump (f, s->conds, 0);
879 }
880 if (e->exec_predicate != e->nonconst_predicate)
881 {
882 fprintf (f, ", nonconst if:");
883 e->nonconst_predicate.dump (f, s->conds, 0);
884 }
885 fprintf (f, "\n");
886 }
887 if (s->loop_iterations)
888 {
889 fprintf (f, " loop iterations:");
890 s->loop_iterations->dump (f, s->conds);
891 }
892 if (s->loop_stride)
893 {
894 fprintf (f, " loop stride:");
895 s->loop_stride->dump (f, s->conds);
896 }
897 if (s->array_index)
898 {
899 fprintf (f, " array index:");
900 s->array_index->dump (f, s->conds);
901 }
902 fprintf (f, " calls:\n");
903 dump_ipa_call_summary (f, 4, node, s);
904 fprintf (f, "\n");
905 }
906 else
907 fprintf (f, "IPA summary for %s is missing.\n", node->dump_name ());
908 }
909 }
910
911 DEBUG_FUNCTION void
912 ipa_debug_fn_summary (struct cgraph_node *node)
913 {
914 ipa_dump_fn_summary (stderr, node);
915 }
916
917 void
918 ipa_dump_fn_summaries (FILE *f)
919 {
920 struct cgraph_node *node;
921
922 FOR_EACH_DEFINED_FUNCTION (node)
923 if (!node->global.inlined_to)
924 ipa_dump_fn_summary (f, node);
925 }
926
927 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
928 boolean variable pointed to by DATA. */
929
930 static bool
931 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
932 void *data)
933 {
934 bool *b = (bool *) data;
935 *b = true;
936 return true;
937 }
938
939 /* If OP refers to value of function parameter, return the corresponding
940 parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
941 PARM_DECL) will be stored to *SIZE_P in that case too. */
942
943 static tree
944 unmodified_parm_1 (ipa_func_body_info *fbi, gimple *stmt, tree op,
945 HOST_WIDE_INT *size_p)
946 {
947 /* SSA_NAME referring to parm default def? */
948 if (TREE_CODE (op) == SSA_NAME
949 && SSA_NAME_IS_DEFAULT_DEF (op)
950 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
951 {
952 if (size_p)
953 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
954 return SSA_NAME_VAR (op);
955 }
956 /* Non-SSA parm reference? */
957 if (TREE_CODE (op) == PARM_DECL)
958 {
959 bool modified = false;
960
961 ao_ref refd;
962 ao_ref_init (&refd, op);
963 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
964 mark_modified, &modified, NULL, NULL,
965 fbi->aa_walk_budget + 1);
966 if (walked < 0)
967 {
968 fbi->aa_walk_budget = 0;
969 return NULL_TREE;
970 }
971 if (!modified)
972 {
973 if (size_p)
974 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
975 return op;
976 }
977 }
978 return NULL_TREE;
979 }
980
981 /* If OP refers to value of function parameter, return the corresponding
982 parameter. Also traverse chains of SSA register assignments. If non-NULL,
983 the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
984 stored to *SIZE_P in that case too. */
985
986 static tree
987 unmodified_parm (ipa_func_body_info *fbi, gimple *stmt, tree op,
988 HOST_WIDE_INT *size_p)
989 {
990 tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
991 if (res)
992 return res;
993
994 if (TREE_CODE (op) == SSA_NAME
995 && !SSA_NAME_IS_DEFAULT_DEF (op)
996 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
997 return unmodified_parm (fbi, SSA_NAME_DEF_STMT (op),
998 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
999 size_p);
1000 return NULL_TREE;
1001 }
1002
1003 /* If OP refers to a value of a function parameter or value loaded from an
1004 aggregate passed to a parameter (either by value or reference), return TRUE
1005 and store the number of the parameter to *INDEX_P, the access size into
1006 *SIZE_P, and information whether and how it has been loaded from an
1007 aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
1008 statement in which OP is used or loaded. */
1009
1010 static bool
1011 unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
1012 gimple *stmt, tree op, int *index_p,
1013 HOST_WIDE_INT *size_p,
1014 struct agg_position_info *aggpos)
1015 {
1016 tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
1017
1018 gcc_checking_assert (aggpos);
1019 if (res)
1020 {
1021 *index_p = ipa_get_param_decl_index (fbi->info, res);
1022 if (*index_p < 0)
1023 return false;
1024 aggpos->agg_contents = false;
1025 aggpos->by_ref = false;
1026 return true;
1027 }
1028
1029 if (TREE_CODE (op) == SSA_NAME)
1030 {
1031 if (SSA_NAME_IS_DEFAULT_DEF (op)
1032 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1033 return false;
1034 stmt = SSA_NAME_DEF_STMT (op);
1035 op = gimple_assign_rhs1 (stmt);
1036 if (!REFERENCE_CLASS_P (op))
1037 return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
1038 aggpos);
1039 }
1040
1041 aggpos->agg_contents = true;
1042 return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
1043 stmt, op, index_p, &aggpos->offset,
1044 size_p, &aggpos->by_ref);
1045 }
1046
1047 /* See if statement might disappear after inlining.
1048 0 - means not eliminated
1049 1 - half of statements goes away
1050 2 - for sure it is eliminated.
1051 We are not terribly sophisticated, basically looking for simple abstraction
1052 penalty wrappers. */
1053
1054 static int
1055 eliminated_by_inlining_prob (ipa_func_body_info *fbi, gimple *stmt)
1056 {
1057 enum gimple_code code = gimple_code (stmt);
1058 enum tree_code rhs_code;
1059
1060 if (!optimize)
1061 return 0;
1062
1063 switch (code)
1064 {
1065 case GIMPLE_RETURN:
1066 return 2;
1067 case GIMPLE_ASSIGN:
1068 if (gimple_num_ops (stmt) != 2)
1069 return 0;
1070
1071 rhs_code = gimple_assign_rhs_code (stmt);
1072
1073 /* Casts of parameters, loads from parameters passed by reference
1074 and stores to return value or parameters are often free after
1075 inlining dua to SRA and further combining.
1076 Assume that half of statements goes away. */
1077 if (CONVERT_EXPR_CODE_P (rhs_code)
1078 || rhs_code == VIEW_CONVERT_EXPR
1079 || rhs_code == ADDR_EXPR
1080 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1081 {
1082 tree rhs = gimple_assign_rhs1 (stmt);
1083 tree lhs = gimple_assign_lhs (stmt);
1084 tree inner_rhs = get_base_address (rhs);
1085 tree inner_lhs = get_base_address (lhs);
1086 bool rhs_free = false;
1087 bool lhs_free = false;
1088
1089 if (!inner_rhs)
1090 inner_rhs = rhs;
1091 if (!inner_lhs)
1092 inner_lhs = lhs;
1093
1094 /* Reads of parameter are expected to be free. */
1095 if (unmodified_parm (fbi, stmt, inner_rhs, NULL))
1096 rhs_free = true;
1097 /* Match expressions of form &this->field. Those will most likely
1098 combine with something upstream after inlining. */
1099 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1100 {
1101 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1102 if (TREE_CODE (op) == PARM_DECL)
1103 rhs_free = true;
1104 else if (TREE_CODE (op) == MEM_REF
1105 && unmodified_parm (fbi, stmt, TREE_OPERAND (op, 0),
1106 NULL))
1107 rhs_free = true;
1108 }
1109
1110 /* When parameter is not SSA register because its address is taken
1111 and it is just copied into one, the statement will be completely
1112 free after inlining (we will copy propagate backward). */
1113 if (rhs_free && is_gimple_reg (lhs))
1114 return 2;
1115
1116 /* Reads of parameters passed by reference
1117 expected to be free (i.e. optimized out after inlining). */
1118 if (TREE_CODE (inner_rhs) == MEM_REF
1119 && unmodified_parm (fbi, stmt, TREE_OPERAND (inner_rhs, 0), NULL))
1120 rhs_free = true;
1121
1122 /* Copying parameter passed by reference into gimple register is
1123 probably also going to copy propagate, but we can't be quite
1124 sure. */
1125 if (rhs_free && is_gimple_reg (lhs))
1126 lhs_free = true;
1127
1128 /* Writes to parameters, parameters passed by value and return value
1129 (either dirrectly or passed via invisible reference) are free.
1130
1131 TODO: We ought to handle testcase like
1132 struct a {int a,b;};
1133 struct a
1134 retrurnsturct (void)
1135 {
1136 struct a a ={1,2};
1137 return a;
1138 }
1139
1140 This translate into:
1141
1142 retrurnsturct ()
1143 {
1144 int a$b;
1145 int a$a;
1146 struct a a;
1147 struct a D.2739;
1148
1149 <bb 2>:
1150 D.2739.a = 1;
1151 D.2739.b = 2;
1152 return D.2739;
1153
1154 }
1155 For that we either need to copy ipa-split logic detecting writes
1156 to return value. */
1157 if (TREE_CODE (inner_lhs) == PARM_DECL
1158 || TREE_CODE (inner_lhs) == RESULT_DECL
1159 || (TREE_CODE (inner_lhs) == MEM_REF
1160 && (unmodified_parm (fbi, stmt, TREE_OPERAND (inner_lhs, 0),
1161 NULL)
1162 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1163 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1164 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1165 (inner_lhs,
1166 0))) == RESULT_DECL))))
1167 lhs_free = true;
1168 if (lhs_free
1169 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1170 rhs_free = true;
1171 if (lhs_free && rhs_free)
1172 return 1;
1173 }
1174 return 0;
1175 default:
1176 return 0;
1177 }
1178 }
1179
1180
1181 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1182 predicates to the CFG edges. */
1183
1184 static void
1185 set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1186 struct ipa_fn_summary *summary,
1187 basic_block bb)
1188 {
1189 gimple *last;
1190 tree op;
1191 int index;
1192 HOST_WIDE_INT size;
1193 struct agg_position_info aggpos;
1194 enum tree_code code, inverted_code;
1195 edge e;
1196 edge_iterator ei;
1197 gimple *set_stmt;
1198 tree op2;
1199
1200 last = last_stmt (bb);
1201 if (!last || gimple_code (last) != GIMPLE_COND)
1202 return;
1203 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1204 return;
1205 op = gimple_cond_lhs (last);
1206 /* TODO: handle conditionals like
1207 var = op0 < 4;
1208 if (var != 0). */
1209 if (unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1210 {
1211 code = gimple_cond_code (last);
1212 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1213
1214 FOR_EACH_EDGE (e, ei, bb->succs)
1215 {
1216 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1217 ? code : inverted_code);
1218 /* invert_tree_comparison will return ERROR_MARK on FP
1219 comparsions that are not EQ/NE instead of returning proper
1220 unordered one. Be sure it is not confused with NON_CONSTANT. */
1221 if (this_code != ERROR_MARK)
1222 {
1223 predicate p
1224 = add_condition (summary, index, size, &aggpos, this_code,
1225 unshare_expr_without_location
1226 (gimple_cond_rhs (last)));
1227 e->aux = edge_predicate_pool.allocate ();
1228 *(predicate *) e->aux = p;
1229 }
1230 }
1231 }
1232
1233 if (TREE_CODE (op) != SSA_NAME)
1234 return;
1235 /* Special case
1236 if (builtin_constant_p (op))
1237 constant_code
1238 else
1239 nonconstant_code.
1240 Here we can predicate nonconstant_code. We can't
1241 really handle constant_code since we have no predicate
1242 for this and also the constant code is not known to be
1243 optimized away when inliner doen't see operand is constant.
1244 Other optimizers might think otherwise. */
1245 if (gimple_cond_code (last) != NE_EXPR
1246 || !integer_zerop (gimple_cond_rhs (last)))
1247 return;
1248 set_stmt = SSA_NAME_DEF_STMT (op);
1249 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1250 || gimple_call_num_args (set_stmt) != 1)
1251 return;
1252 op2 = gimple_call_arg (set_stmt, 0);
1253 if (!unmodified_parm_or_parm_agg_item (fbi, set_stmt, op2, &index, &size,
1254 &aggpos))
1255 return;
1256 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1257 {
1258 predicate p = add_condition (summary, index, size, &aggpos,
1259 predicate::is_not_constant, NULL_TREE);
1260 e->aux = edge_predicate_pool.allocate ();
1261 *(predicate *) e->aux = p;
1262 }
1263 }
1264
1265
1266 /* If BB ends by a switch we can turn into predicates, attach corresponding
1267 predicates to the CFG edges. */
1268
1269 static void
1270 set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1271 struct ipa_fn_summary *summary,
1272 basic_block bb)
1273 {
1274 gimple *lastg;
1275 tree op;
1276 int index;
1277 HOST_WIDE_INT size;
1278 struct agg_position_info aggpos;
1279 edge e;
1280 edge_iterator ei;
1281 size_t n;
1282 size_t case_idx;
1283
1284 lastg = last_stmt (bb);
1285 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1286 return;
1287 gswitch *last = as_a <gswitch *> (lastg);
1288 op = gimple_switch_index (last);
1289 if (!unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1290 return;
1291
1292 FOR_EACH_EDGE (e, ei, bb->succs)
1293 {
1294 e->aux = edge_predicate_pool.allocate ();
1295 *(predicate *) e->aux = false;
1296 }
1297 n = gimple_switch_num_labels (last);
1298 for (case_idx = 0; case_idx < n; ++case_idx)
1299 {
1300 tree cl = gimple_switch_label (last, case_idx);
1301 tree min, max;
1302 predicate p;
1303
1304 e = gimple_switch_edge (cfun, last, case_idx);
1305 min = CASE_LOW (cl);
1306 max = CASE_HIGH (cl);
1307
1308 /* For default we might want to construct predicate that none
1309 of cases is met, but it is bit hard to do not having negations
1310 of conditionals handy. */
1311 if (!min && !max)
1312 p = true;
1313 else if (!max)
1314 p = add_condition (summary, index, size, &aggpos, EQ_EXPR,
1315 unshare_expr_without_location (min));
1316 else
1317 {
1318 predicate p1, p2;
1319 p1 = add_condition (summary, index, size, &aggpos, GE_EXPR,
1320 unshare_expr_without_location (min));
1321 p2 = add_condition (summary, index, size, &aggpos, LE_EXPR,
1322 unshare_expr_without_location (max));
1323 p = p1 & p2;
1324 }
1325 *(struct predicate *) e->aux
1326 = p.or_with (summary->conds, *(struct predicate *) e->aux);
1327 }
1328 }
1329
1330
1331 /* For each BB in NODE attach to its AUX pointer predicate under
1332 which it is executable. */
1333
1334 static void
1335 compute_bb_predicates (struct ipa_func_body_info *fbi,
1336 struct cgraph_node *node,
1337 struct ipa_fn_summary *summary)
1338 {
1339 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1340 bool done = false;
1341 basic_block bb;
1342
1343 FOR_EACH_BB_FN (bb, my_function)
1344 {
1345 set_cond_stmt_execution_predicate (fbi, summary, bb);
1346 set_switch_stmt_execution_predicate (fbi, summary, bb);
1347 }
1348
1349 /* Entry block is always executable. */
1350 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1351 = edge_predicate_pool.allocate ();
1352 *(predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux = true;
1353
1354 /* A simple dataflow propagation of predicates forward in the CFG.
1355 TODO: work in reverse postorder. */
1356 while (!done)
1357 {
1358 done = true;
1359 FOR_EACH_BB_FN (bb, my_function)
1360 {
1361 predicate p = false;
1362 edge e;
1363 edge_iterator ei;
1364 FOR_EACH_EDGE (e, ei, bb->preds)
1365 {
1366 if (e->src->aux)
1367 {
1368 predicate this_bb_predicate
1369 = *(predicate *) e->src->aux;
1370 if (e->aux)
1371 this_bb_predicate &= (*(struct predicate *) e->aux);
1372 p = p.or_with (summary->conds, this_bb_predicate);
1373 if (p == true)
1374 break;
1375 }
1376 }
1377 if (p == false)
1378 gcc_checking_assert (!bb->aux);
1379 else
1380 {
1381 if (!bb->aux)
1382 {
1383 done = false;
1384 bb->aux = edge_predicate_pool.allocate ();
1385 *((predicate *) bb->aux) = p;
1386 }
1387 else if (p != *(predicate *) bb->aux)
1388 {
1389 /* This OR operation is needed to ensure monotonous data flow
1390 in the case we hit the limit on number of clauses and the
1391 and/or operations above give approximate answers. */
1392 p = p.or_with (summary->conds, *(predicate *)bb->aux);
1393 if (p != *(predicate *) bb->aux)
1394 {
1395 done = false;
1396 *((predicate *) bb->aux) = p;
1397 }
1398 }
1399 }
1400 }
1401 }
1402 }
1403
1404
1405 /* Return predicate specifying when the STMT might have result that is not
1406 a compile time constant. */
1407
1408 static predicate
1409 will_be_nonconstant_expr_predicate (ipa_func_body_info *fbi,
1410 struct ipa_fn_summary *summary,
1411 tree expr,
1412 vec<predicate> nonconstant_names)
1413 {
1414 tree parm;
1415 int index;
1416 HOST_WIDE_INT size;
1417
1418 while (UNARY_CLASS_P (expr))
1419 expr = TREE_OPERAND (expr, 0);
1420
1421 parm = unmodified_parm (fbi, NULL, expr, &size);
1422 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
1423 return add_condition (summary, index, size, NULL, predicate::changed,
1424 NULL_TREE);
1425 if (is_gimple_min_invariant (expr))
1426 return false;
1427 if (TREE_CODE (expr) == SSA_NAME)
1428 return nonconstant_names[SSA_NAME_VERSION (expr)];
1429 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1430 {
1431 predicate p1
1432 = will_be_nonconstant_expr_predicate (fbi, summary,
1433 TREE_OPERAND (expr, 0),
1434 nonconstant_names);
1435 if (p1 == true)
1436 return p1;
1437
1438 predicate p2
1439 = will_be_nonconstant_expr_predicate (fbi, summary,
1440 TREE_OPERAND (expr, 1),
1441 nonconstant_names);
1442 return p1.or_with (summary->conds, p2);
1443 }
1444 else if (TREE_CODE (expr) == COND_EXPR)
1445 {
1446 predicate p1
1447 = will_be_nonconstant_expr_predicate (fbi, summary,
1448 TREE_OPERAND (expr, 0),
1449 nonconstant_names);
1450 if (p1 == true)
1451 return p1;
1452
1453 predicate p2
1454 = will_be_nonconstant_expr_predicate (fbi, summary,
1455 TREE_OPERAND (expr, 1),
1456 nonconstant_names);
1457 if (p2 == true)
1458 return p2;
1459 p1 = p1.or_with (summary->conds, p2);
1460 p2 = will_be_nonconstant_expr_predicate (fbi, summary,
1461 TREE_OPERAND (expr, 2),
1462 nonconstant_names);
1463 return p2.or_with (summary->conds, p1);
1464 }
1465 else if (TREE_CODE (expr) == CALL_EXPR)
1466 return true;
1467 else
1468 {
1469 debug_tree (expr);
1470 gcc_unreachable ();
1471 }
1472 return false;
1473 }
1474
1475
1476 /* Return predicate specifying when the STMT might have result that is not
1477 a compile time constant. */
1478
1479 static predicate
1480 will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
1481 struct ipa_fn_summary *summary,
1482 gimple *stmt,
1483 vec<predicate> nonconstant_names)
1484 {
1485 predicate p = true;
1486 ssa_op_iter iter;
1487 tree use;
1488 predicate op_non_const;
1489 bool is_load;
1490 int base_index;
1491 HOST_WIDE_INT size;
1492 struct agg_position_info aggpos;
1493
1494 /* What statments might be optimized away
1495 when their arguments are constant. */
1496 if (gimple_code (stmt) != GIMPLE_ASSIGN
1497 && gimple_code (stmt) != GIMPLE_COND
1498 && gimple_code (stmt) != GIMPLE_SWITCH
1499 && (gimple_code (stmt) != GIMPLE_CALL
1500 || !(gimple_call_flags (stmt) & ECF_CONST)))
1501 return p;
1502
1503 /* Stores will stay anyway. */
1504 if (gimple_store_p (stmt))
1505 return p;
1506
1507 is_load = gimple_assign_load_p (stmt);
1508
1509 /* Loads can be optimized when the value is known. */
1510 if (is_load)
1511 {
1512 tree op;
1513 gcc_assert (gimple_assign_single_p (stmt));
1514 op = gimple_assign_rhs1 (stmt);
1515 if (!unmodified_parm_or_parm_agg_item (fbi, stmt, op, &base_index, &size,
1516 &aggpos))
1517 return p;
1518 }
1519 else
1520 base_index = -1;
1521
1522 /* See if we understand all operands before we start
1523 adding conditionals. */
1524 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1525 {
1526 tree parm = unmodified_parm (fbi, stmt, use, NULL);
1527 /* For arguments we can build a condition. */
1528 if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
1529 continue;
1530 if (TREE_CODE (use) != SSA_NAME)
1531 return p;
1532 /* If we know when operand is constant,
1533 we still can say something useful. */
1534 if (nonconstant_names[SSA_NAME_VERSION (use)] != true)
1535 continue;
1536 return p;
1537 }
1538
1539 if (is_load)
1540 op_non_const =
1541 add_condition (summary, base_index, size, &aggpos, predicate::changed,
1542 NULL);
1543 else
1544 op_non_const = false;
1545 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1546 {
1547 HOST_WIDE_INT size;
1548 tree parm = unmodified_parm (fbi, stmt, use, &size);
1549 int index;
1550
1551 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
1552 {
1553 if (index != base_index)
1554 p = add_condition (summary, index, size, NULL, predicate::changed,
1555 NULL_TREE);
1556 else
1557 continue;
1558 }
1559 else
1560 p = nonconstant_names[SSA_NAME_VERSION (use)];
1561 op_non_const = p.or_with (summary->conds, op_non_const);
1562 }
1563 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
1564 && gimple_op (stmt, 0)
1565 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
1566 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
1567 = op_non_const;
1568 return op_non_const;
1569 }
1570
1571 struct record_modified_bb_info
1572 {
1573 tree op;
1574 bitmap bb_set;
1575 gimple *stmt;
1576 };
1577
1578 /* Value is initialized in INIT_BB and used in USE_BB. We want to copute
1579 probability how often it changes between USE_BB.
1580 INIT_BB->count/USE_BB->count is an estimate, but if INIT_BB
1581 is in different loop nest, we can do better.
1582 This is all just estimate. In theory we look for minimal cut separating
1583 INIT_BB and USE_BB, but we only want to anticipate loop invariant motion
1584 anyway. */
1585
1586 static basic_block
1587 get_minimal_bb (basic_block init_bb, basic_block use_bb)
1588 {
1589 struct loop *l = find_common_loop (init_bb->loop_father, use_bb->loop_father);
1590 if (l && l->header->count < init_bb->count)
1591 return l->header;
1592 return init_bb;
1593 }
1594
1595 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
1596 set except for info->stmt. */
1597
1598 static bool
1599 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
1600 {
1601 struct record_modified_bb_info *info =
1602 (struct record_modified_bb_info *) data;
1603 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
1604 return false;
1605 if (gimple_clobber_p (SSA_NAME_DEF_STMT (vdef)))
1606 return false;
1607 bitmap_set_bit (info->bb_set,
1608 SSA_NAME_IS_DEFAULT_DEF (vdef)
1609 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
1610 : get_minimal_bb
1611 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
1612 gimple_bb (info->stmt))->index);
1613 if (dump_file)
1614 {
1615 fprintf (dump_file, " Param ");
1616 print_generic_expr (dump_file, info->op, TDF_SLIM);
1617 fprintf (dump_file, " changed at bb %i, minimal: %i stmt: ",
1618 gimple_bb (SSA_NAME_DEF_STMT (vdef))->index,
1619 get_minimal_bb
1620 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
1621 gimple_bb (info->stmt))->index);
1622 print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (vdef), 0);
1623 }
1624 return false;
1625 }
1626
1627 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
1628 will change since last invocation of STMT.
1629
1630 Value 0 is reserved for compile time invariants.
1631 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
1632 ought to be REG_BR_PROB_BASE / estimated_iters. */
1633
1634 static int
1635 param_change_prob (ipa_func_body_info *fbi, gimple *stmt, int i)
1636 {
1637 tree op = gimple_call_arg (stmt, i);
1638 basic_block bb = gimple_bb (stmt);
1639
1640 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1641 op = TREE_OPERAND (op, 0);
1642
1643 tree base = get_base_address (op);
1644
1645 /* Global invariants never change. */
1646 if (is_gimple_min_invariant (base))
1647 return 0;
1648
1649 /* We would have to do non-trivial analysis to really work out what
1650 is the probability of value to change (i.e. when init statement
1651 is in a sibling loop of the call).
1652
1653 We do an conservative estimate: when call is executed N times more often
1654 than the statement defining value, we take the frequency 1/N. */
1655 if (TREE_CODE (base) == SSA_NAME)
1656 {
1657 profile_count init_count;
1658
1659 if (!bb->count.nonzero_p ())
1660 return REG_BR_PROB_BASE;
1661
1662 if (SSA_NAME_IS_DEFAULT_DEF (base))
1663 init_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1664 else
1665 init_count = get_minimal_bb
1666 (gimple_bb (SSA_NAME_DEF_STMT (base)),
1667 gimple_bb (stmt))->count;
1668
1669 if (init_count < bb->count)
1670 return MAX ((init_count.to_sreal_scale (bb->count)
1671 * REG_BR_PROB_BASE).to_int (), 1);
1672 return REG_BR_PROB_BASE;
1673 }
1674 else
1675 {
1676 ao_ref refd;
1677 profile_count max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
1678 struct record_modified_bb_info info;
1679 tree init = ctor_for_folding (base);
1680
1681 if (init != error_mark_node)
1682 return 0;
1683 if (!bb->count.nonzero_p ())
1684 return REG_BR_PROB_BASE;
1685 if (dump_file)
1686 {
1687 fprintf (dump_file, " Analyzing param change probablity of ");
1688 print_generic_expr (dump_file, op, TDF_SLIM);
1689 fprintf (dump_file, "\n");
1690 }
1691 ao_ref_init (&refd, op);
1692 info.op = op;
1693 info.stmt = stmt;
1694 info.bb_set = BITMAP_ALLOC (NULL);
1695 int walked
1696 = walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
1697 NULL, NULL, fbi->aa_walk_budget);
1698 if (walked < 0 || bitmap_bit_p (info.bb_set, bb->index))
1699 {
1700 if (dump_file)
1701 {
1702 if (walked < 0)
1703 fprintf (dump_file, " Ran out of AA walking budget.\n");
1704 else
1705 fprintf (dump_file, " Set in same BB as used.\n");
1706 }
1707 BITMAP_FREE (info.bb_set);
1708 return REG_BR_PROB_BASE;
1709 }
1710
1711 bitmap_iterator bi;
1712 unsigned index;
1713 /* Lookup the most frequent update of the value and believe that
1714 it dominates all the other; precise analysis here is difficult. */
1715 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
1716 max = max.max (BASIC_BLOCK_FOR_FN (cfun, index)->count);
1717 if (dump_file)
1718 {
1719 fprintf (dump_file, " Set with count ");
1720 max.dump (dump_file);
1721 fprintf (dump_file, " and used with count ");
1722 bb->count.dump (dump_file);
1723 fprintf (dump_file, " freq %f\n",
1724 max.to_sreal_scale (bb->count).to_double ());
1725 }
1726
1727 BITMAP_FREE (info.bb_set);
1728 if (max < bb->count)
1729 return MAX ((max.to_sreal_scale (bb->count)
1730 * REG_BR_PROB_BASE).to_int (), 1);
1731 return REG_BR_PROB_BASE;
1732 }
1733 }
1734
1735 /* Find whether a basic block BB is the final block of a (half) diamond CFG
1736 sub-graph and if the predicate the condition depends on is known. If so,
1737 return true and store the pointer the predicate in *P. */
1738
1739 static bool
1740 phi_result_unknown_predicate (ipa_func_body_info *fbi,
1741 ipa_fn_summary *summary, basic_block bb,
1742 predicate *p,
1743 vec<predicate> nonconstant_names)
1744 {
1745 edge e;
1746 edge_iterator ei;
1747 basic_block first_bb = NULL;
1748 gimple *stmt;
1749
1750 if (single_pred_p (bb))
1751 {
1752 *p = false;
1753 return true;
1754 }
1755
1756 FOR_EACH_EDGE (e, ei, bb->preds)
1757 {
1758 if (single_succ_p (e->src))
1759 {
1760 if (!single_pred_p (e->src))
1761 return false;
1762 if (!first_bb)
1763 first_bb = single_pred (e->src);
1764 else if (single_pred (e->src) != first_bb)
1765 return false;
1766 }
1767 else
1768 {
1769 if (!first_bb)
1770 first_bb = e->src;
1771 else if (e->src != first_bb)
1772 return false;
1773 }
1774 }
1775
1776 if (!first_bb)
1777 return false;
1778
1779 stmt = last_stmt (first_bb);
1780 if (!stmt
1781 || gimple_code (stmt) != GIMPLE_COND
1782 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
1783 return false;
1784
1785 *p = will_be_nonconstant_expr_predicate (fbi, summary,
1786 gimple_cond_lhs (stmt),
1787 nonconstant_names);
1788 if (*p == true)
1789 return false;
1790 else
1791 return true;
1792 }
1793
1794 /* Given a PHI statement in a function described by inline properties SUMMARY
1795 and *P being the predicate describing whether the selected PHI argument is
1796 known, store a predicate for the result of the PHI statement into
1797 NONCONSTANT_NAMES, if possible. */
1798
1799 static void
1800 predicate_for_phi_result (struct ipa_fn_summary *summary, gphi *phi,
1801 predicate *p,
1802 vec<predicate> nonconstant_names)
1803 {
1804 unsigned i;
1805
1806 for (i = 0; i < gimple_phi_num_args (phi); i++)
1807 {
1808 tree arg = gimple_phi_arg (phi, i)->def;
1809 if (!is_gimple_min_invariant (arg))
1810 {
1811 gcc_assert (TREE_CODE (arg) == SSA_NAME);
1812 *p = p->or_with (summary->conds,
1813 nonconstant_names[SSA_NAME_VERSION (arg)]);
1814 if (*p == true)
1815 return;
1816 }
1817 }
1818
1819 if (dump_file && (dump_flags & TDF_DETAILS))
1820 {
1821 fprintf (dump_file, "\t\tphi predicate: ");
1822 p->dump (dump_file, summary->conds);
1823 }
1824 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
1825 }
1826
1827 /* Return predicate specifying when array index in access OP becomes non-constant. */
1828
1829 static predicate
1830 array_index_predicate (ipa_fn_summary *info,
1831 vec< predicate> nonconstant_names, tree op)
1832 {
1833 predicate p = false;
1834 while (handled_component_p (op))
1835 {
1836 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
1837 {
1838 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
1839 p = p.or_with (info->conds,
1840 nonconstant_names[SSA_NAME_VERSION
1841 (TREE_OPERAND (op, 1))]);
1842 }
1843 op = TREE_OPERAND (op, 0);
1844 }
1845 return p;
1846 }
1847
1848 /* For a typical usage of __builtin_expect (a<b, 1), we
1849 may introduce an extra relation stmt:
1850 With the builtin, we have
1851 t1 = a <= b;
1852 t2 = (long int) t1;
1853 t3 = __builtin_expect (t2, 1);
1854 if (t3 != 0)
1855 goto ...
1856 Without the builtin, we have
1857 if (a<=b)
1858 goto...
1859 This affects the size/time estimation and may have
1860 an impact on the earlier inlining.
1861 Here find this pattern and fix it up later. */
1862
1863 static gimple *
1864 find_foldable_builtin_expect (basic_block bb)
1865 {
1866 gimple_stmt_iterator bsi;
1867
1868 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1869 {
1870 gimple *stmt = gsi_stmt (bsi);
1871 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
1872 || gimple_call_builtin_p (stmt, BUILT_IN_EXPECT_WITH_PROBABILITY)
1873 || gimple_call_internal_p (stmt, IFN_BUILTIN_EXPECT))
1874 {
1875 tree var = gimple_call_lhs (stmt);
1876 tree arg = gimple_call_arg (stmt, 0);
1877 use_operand_p use_p;
1878 gimple *use_stmt;
1879 bool match = false;
1880 bool done = false;
1881
1882 if (!var || !arg)
1883 continue;
1884 gcc_assert (TREE_CODE (var) == SSA_NAME);
1885
1886 while (TREE_CODE (arg) == SSA_NAME)
1887 {
1888 gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
1889 if (!is_gimple_assign (stmt_tmp))
1890 break;
1891 switch (gimple_assign_rhs_code (stmt_tmp))
1892 {
1893 case LT_EXPR:
1894 case LE_EXPR:
1895 case GT_EXPR:
1896 case GE_EXPR:
1897 case EQ_EXPR:
1898 case NE_EXPR:
1899 match = true;
1900 done = true;
1901 break;
1902 CASE_CONVERT:
1903 break;
1904 default:
1905 done = true;
1906 break;
1907 }
1908 if (done)
1909 break;
1910 arg = gimple_assign_rhs1 (stmt_tmp);
1911 }
1912
1913 if (match && single_imm_use (var, &use_p, &use_stmt)
1914 && gimple_code (use_stmt) == GIMPLE_COND)
1915 return use_stmt;
1916 }
1917 }
1918 return NULL;
1919 }
1920
1921 /* Return true when the basic blocks contains only clobbers followed by RESX.
1922 Such BBs are kept around to make removal of dead stores possible with
1923 presence of EH and will be optimized out by optimize_clobbers later in the
1924 game.
1925
1926 NEED_EH is used to recurse in case the clobber has non-EH predecestors
1927 that can be clobber only, too.. When it is false, the RESX is not necessary
1928 on the end of basic block. */
1929
1930 static bool
1931 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
1932 {
1933 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1934 edge_iterator ei;
1935 edge e;
1936
1937 if (need_eh)
1938 {
1939 if (gsi_end_p (gsi))
1940 return false;
1941 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
1942 return false;
1943 gsi_prev (&gsi);
1944 }
1945 else if (!single_succ_p (bb))
1946 return false;
1947
1948 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
1949 {
1950 gimple *stmt = gsi_stmt (gsi);
1951 if (is_gimple_debug (stmt))
1952 continue;
1953 if (gimple_clobber_p (stmt))
1954 continue;
1955 if (gimple_code (stmt) == GIMPLE_LABEL)
1956 break;
1957 return false;
1958 }
1959
1960 /* See if all predecestors are either throws or clobber only BBs. */
1961 FOR_EACH_EDGE (e, ei, bb->preds)
1962 if (!(e->flags & EDGE_EH)
1963 && !clobber_only_eh_bb_p (e->src, false))
1964 return false;
1965
1966 return true;
1967 }
1968
1969 /* Return true if STMT compute a floating point expression that may be affected
1970 by -ffast-math and similar flags. */
1971
1972 static bool
1973 fp_expression_p (gimple *stmt)
1974 {
1975 ssa_op_iter i;
1976 tree op;
1977
1978 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
1979 if (FLOAT_TYPE_P (TREE_TYPE (op)))
1980 return true;
1981 return false;
1982 }
1983
1984 /* Analyze function body for NODE.
1985 EARLY indicates run from early optimization pipeline. */
1986
1987 static void
1988 analyze_function_body (struct cgraph_node *node, bool early)
1989 {
1990 sreal time = PARAM_VALUE (PARAM_UNINLINED_FUNCTION_TIME);
1991 /* Estimate static overhead for function prologue/epilogue and alignment. */
1992 int size = PARAM_VALUE (PARAM_UNINLINED_FUNCTION_INSNS);
1993 /* Benefits are scaled by probability of elimination that is in range
1994 <0,2>. */
1995 basic_block bb;
1996 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1997 sreal freq;
1998 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
1999 predicate bb_predicate;
2000 struct ipa_func_body_info fbi;
2001 vec<predicate> nonconstant_names = vNULL;
2002 int nblocks, n;
2003 int *order;
2004 predicate array_index = true;
2005 gimple *fix_builtin_expect_stmt;
2006
2007 gcc_assert (my_function && my_function->cfg);
2008 gcc_assert (cfun == my_function);
2009
2010 memset(&fbi, 0, sizeof(fbi));
2011 vec_free (info->conds);
2012 info->conds = NULL;
2013 vec_free (info->size_time_table);
2014 info->size_time_table = NULL;
2015
2016 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
2017 so we can produce proper inline hints.
2018
2019 When optimizing and analyzing for early inliner, initialize node params
2020 so we can produce correct BB predicates. */
2021
2022 if (opt_for_fn (node->decl, optimize))
2023 {
2024 calculate_dominance_info (CDI_DOMINATORS);
2025 if (!early)
2026 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2027 else
2028 {
2029 ipa_check_create_node_params ();
2030 ipa_initialize_node_params (node);
2031 }
2032
2033 if (ipa_node_params_sum)
2034 {
2035 fbi.node = node;
2036 fbi.info = IPA_NODE_REF (node);
2037 fbi.bb_infos = vNULL;
2038 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2039 fbi.param_count = count_formal_params (node->decl);
2040 fbi.aa_walk_budget = PARAM_VALUE (PARAM_IPA_MAX_AA_STEPS);
2041
2042 nonconstant_names.safe_grow_cleared
2043 (SSANAMES (my_function)->length ());
2044 }
2045 }
2046
2047 if (dump_file)
2048 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2049 node->name ());
2050
2051 /* When we run into maximal number of entries, we assign everything to the
2052 constant truth case. Be sure to have it in list. */
2053 bb_predicate = true;
2054 info->account_size_time (0, 0, bb_predicate, bb_predicate);
2055
2056 bb_predicate = predicate::not_inlined ();
2057 info->account_size_time (PARAM_VALUE (PARAM_UNINLINED_FUNCTION_INSNS)
2058 * ipa_fn_summary::size_scale,
2059 PARAM_VALUE (PARAM_UNINLINED_FUNCTION_TIME),
2060 bb_predicate,
2061 bb_predicate);
2062
2063 if (fbi.info)
2064 compute_bb_predicates (&fbi, node, info);
2065 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2066 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2067 for (n = 0; n < nblocks; n++)
2068 {
2069 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2070 freq = bb->count.to_sreal_scale (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
2071 if (clobber_only_eh_bb_p (bb))
2072 {
2073 if (dump_file && (dump_flags & TDF_DETAILS))
2074 fprintf (dump_file, "\n Ignoring BB %i;"
2075 " it will be optimized away by cleanup_clobbers\n",
2076 bb->index);
2077 continue;
2078 }
2079
2080 /* TODO: Obviously predicates can be propagated down across CFG. */
2081 if (fbi.info)
2082 {
2083 if (bb->aux)
2084 bb_predicate = *(predicate *) bb->aux;
2085 else
2086 bb_predicate = false;
2087 }
2088 else
2089 bb_predicate = true;
2090
2091 if (dump_file && (dump_flags & TDF_DETAILS))
2092 {
2093 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2094 bb_predicate.dump (dump_file, info->conds);
2095 }
2096
2097 if (fbi.info && nonconstant_names.exists ())
2098 {
2099 predicate phi_predicate;
2100 bool first_phi = true;
2101
2102 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2103 gsi_next (&bsi))
2104 {
2105 if (first_phi
2106 && !phi_result_unknown_predicate (&fbi, info, bb,
2107 &phi_predicate,
2108 nonconstant_names))
2109 break;
2110 first_phi = false;
2111 if (dump_file && (dump_flags & TDF_DETAILS))
2112 {
2113 fprintf (dump_file, " ");
2114 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0);
2115 }
2116 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2117 nonconstant_names);
2118 }
2119 }
2120
2121 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2122
2123 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2124 gsi_next (&bsi))
2125 {
2126 gimple *stmt = gsi_stmt (bsi);
2127 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2128 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2129 int prob;
2130 predicate will_be_nonconstant;
2131
2132 /* This relation stmt should be folded after we remove
2133 buildin_expect call. Adjust the cost here. */
2134 if (stmt == fix_builtin_expect_stmt)
2135 {
2136 this_size--;
2137 this_time--;
2138 }
2139
2140 if (dump_file && (dump_flags & TDF_DETAILS))
2141 {
2142 fprintf (dump_file, " ");
2143 print_gimple_stmt (dump_file, stmt, 0);
2144 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2145 freq.to_double (), this_size,
2146 this_time);
2147 }
2148
2149 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2150 {
2151 predicate this_array_index;
2152 this_array_index =
2153 array_index_predicate (info, nonconstant_names,
2154 gimple_assign_rhs1 (stmt));
2155 if (this_array_index != false)
2156 array_index &= this_array_index;
2157 }
2158 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2159 {
2160 predicate this_array_index;
2161 this_array_index =
2162 array_index_predicate (info, nonconstant_names,
2163 gimple_get_lhs (stmt));
2164 if (this_array_index != false)
2165 array_index &= this_array_index;
2166 }
2167
2168
2169 if (is_gimple_call (stmt)
2170 && !gimple_call_internal_p (stmt))
2171 {
2172 struct cgraph_edge *edge = node->get_edge (stmt);
2173 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2174
2175 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2176 resolved as constant. We however don't want to optimize
2177 out the cgraph edges. */
2178 if (nonconstant_names.exists ()
2179 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2180 && gimple_call_lhs (stmt)
2181 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2182 {
2183 predicate false_p = false;
2184 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2185 = false_p;
2186 }
2187 if (ipa_node_params_sum)
2188 {
2189 int count = gimple_call_num_args (stmt);
2190 int i;
2191
2192 if (count)
2193 es->param.safe_grow_cleared (count);
2194 for (i = 0; i < count; i++)
2195 {
2196 int prob = param_change_prob (&fbi, stmt, i);
2197 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2198 es->param[i].change_prob = prob;
2199 }
2200 }
2201
2202 es->call_stmt_size = this_size;
2203 es->call_stmt_time = this_time;
2204 es->loop_depth = bb_loop_depth (bb);
2205 edge_set_predicate (edge, &bb_predicate);
2206 if (edge->speculative)
2207 {
2208 cgraph_edge *direct, *indirect;
2209 ipa_ref *ref;
2210 edge->speculative_call_info (direct, indirect, ref);
2211 gcc_assert (direct == edge);
2212 ipa_call_summary *es2
2213 = ipa_call_summaries->get_create (indirect);
2214 ipa_call_summaries->duplicate (edge, indirect,
2215 es, es2);
2216 }
2217 }
2218
2219 /* TODO: When conditional jump or swithc is known to be constant, but
2220 we did not translate it into the predicates, we really can account
2221 just maximum of the possible paths. */
2222 if (fbi.info)
2223 will_be_nonconstant
2224 = will_be_nonconstant_predicate (&fbi, info,
2225 stmt, nonconstant_names);
2226 else
2227 will_be_nonconstant = true;
2228 if (this_time || this_size)
2229 {
2230 sreal final_time = (sreal)this_time * freq;
2231
2232 prob = eliminated_by_inlining_prob (&fbi, stmt);
2233 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2234 fprintf (dump_file,
2235 "\t\t50%% will be eliminated by inlining\n");
2236 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2237 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2238
2239 struct predicate p = bb_predicate & will_be_nonconstant;
2240
2241 /* We can ignore statement when we proved it is never going
2242 to happen, but we cannot do that for call statements
2243 because edges are accounted specially. */
2244
2245 if (*(is_gimple_call (stmt) ? &bb_predicate : &p) != false)
2246 {
2247 time += final_time;
2248 size += this_size;
2249 }
2250
2251 /* We account everything but the calls. Calls have their own
2252 size/time info attached to cgraph edges. This is necessary
2253 in order to make the cost disappear after inlining. */
2254 if (!is_gimple_call (stmt))
2255 {
2256 if (prob)
2257 {
2258 predicate ip = bb_predicate & predicate::not_inlined ();
2259 info->account_size_time (this_size * prob,
2260 (final_time * prob) / 2, ip,
2261 p);
2262 }
2263 if (prob != 2)
2264 info->account_size_time (this_size * (2 - prob),
2265 (final_time * (2 - prob) / 2),
2266 bb_predicate,
2267 p);
2268 }
2269
2270 if (!info->fp_expressions && fp_expression_p (stmt))
2271 {
2272 info->fp_expressions = true;
2273 if (dump_file)
2274 fprintf (dump_file, " fp_expression set\n");
2275 }
2276
2277 gcc_assert (time >= 0);
2278 gcc_assert (size >= 0);
2279 }
2280 }
2281 }
2282 set_hint_predicate (&ipa_fn_summaries->get_create (node)->array_index,
2283 array_index);
2284 free (order);
2285
2286 if (nonconstant_names.exists () && !early)
2287 {
2288 struct loop *loop;
2289 predicate loop_iterations = true;
2290 predicate loop_stride = true;
2291
2292 if (dump_file && (dump_flags & TDF_DETAILS))
2293 flow_loops_dump (dump_file, NULL, 0);
2294 scev_initialize ();
2295 FOR_EACH_LOOP (loop, 0)
2296 {
2297 vec<edge> exits;
2298 edge ex;
2299 unsigned int j;
2300 struct tree_niter_desc niter_desc;
2301 bb_predicate = *(predicate *) loop->header->aux;
2302
2303 exits = get_loop_exit_edges (loop);
2304 FOR_EACH_VEC_ELT (exits, j, ex)
2305 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2306 && !is_gimple_min_invariant (niter_desc.niter))
2307 {
2308 predicate will_be_nonconstant
2309 = will_be_nonconstant_expr_predicate (&fbi, info,
2310 niter_desc.niter,
2311 nonconstant_names);
2312 if (will_be_nonconstant != true)
2313 will_be_nonconstant = bb_predicate & will_be_nonconstant;
2314 if (will_be_nonconstant != true
2315 && will_be_nonconstant != false)
2316 /* This is slightly inprecise. We may want to represent each
2317 loop with independent predicate. */
2318 loop_iterations &= will_be_nonconstant;
2319 }
2320 exits.release ();
2321 }
2322
2323 /* To avoid quadratic behavior we analyze stride predicates only
2324 with respect to the containing loop. Thus we simply iterate
2325 over all defs in the outermost loop body. */
2326 for (loop = loops_for_fn (cfun)->tree_root->inner;
2327 loop != NULL; loop = loop->next)
2328 {
2329 basic_block *body = get_loop_body (loop);
2330 for (unsigned i = 0; i < loop->num_nodes; i++)
2331 {
2332 gimple_stmt_iterator gsi;
2333 bb_predicate = *(predicate *) body[i]->aux;
2334 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2335 gsi_next (&gsi))
2336 {
2337 gimple *stmt = gsi_stmt (gsi);
2338
2339 if (!is_gimple_assign (stmt))
2340 continue;
2341
2342 tree def = gimple_assign_lhs (stmt);
2343 if (TREE_CODE (def) != SSA_NAME)
2344 continue;
2345
2346 affine_iv iv;
2347 if (!simple_iv (loop_containing_stmt (stmt),
2348 loop_containing_stmt (stmt),
2349 def, &iv, true)
2350 || is_gimple_min_invariant (iv.step))
2351 continue;
2352
2353 predicate will_be_nonconstant
2354 = will_be_nonconstant_expr_predicate (&fbi, info, iv.step,
2355 nonconstant_names);
2356 if (will_be_nonconstant != true)
2357 will_be_nonconstant = bb_predicate & will_be_nonconstant;
2358 if (will_be_nonconstant != true
2359 && will_be_nonconstant != false)
2360 /* This is slightly inprecise. We may want to represent
2361 each loop with independent predicate. */
2362 loop_stride = loop_stride & will_be_nonconstant;
2363 }
2364 }
2365 free (body);
2366 }
2367 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2368 set_hint_predicate (&s->loop_iterations, loop_iterations);
2369 set_hint_predicate (&s->loop_stride, loop_stride);
2370 scev_finalize ();
2371 }
2372 FOR_ALL_BB_FN (bb, my_function)
2373 {
2374 edge e;
2375 edge_iterator ei;
2376
2377 if (bb->aux)
2378 edge_predicate_pool.remove ((predicate *)bb->aux);
2379 bb->aux = NULL;
2380 FOR_EACH_EDGE (e, ei, bb->succs)
2381 {
2382 if (e->aux)
2383 edge_predicate_pool.remove ((predicate *) e->aux);
2384 e->aux = NULL;
2385 }
2386 }
2387 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2388 s->time = time;
2389 s->self_size = size;
2390 nonconstant_names.release ();
2391 ipa_release_body_info (&fbi);
2392 if (opt_for_fn (node->decl, optimize))
2393 {
2394 if (!early)
2395 loop_optimizer_finalize ();
2396 else if (!ipa_edge_args_sum)
2397 ipa_free_all_node_params ();
2398 free_dominance_info (CDI_DOMINATORS);
2399 }
2400 if (dump_file)
2401 {
2402 fprintf (dump_file, "\n");
2403 ipa_dump_fn_summary (dump_file, node);
2404 }
2405 }
2406
2407
2408 /* Compute function summary.
2409 EARLY is true when we compute parameters during early opts. */
2410
2411 void
2412 compute_fn_summary (struct cgraph_node *node, bool early)
2413 {
2414 HOST_WIDE_INT self_stack_size;
2415 struct cgraph_edge *e;
2416 struct ipa_fn_summary *info;
2417
2418 gcc_assert (!node->global.inlined_to);
2419
2420 if (!ipa_fn_summaries)
2421 ipa_fn_summary_alloc ();
2422
2423 /* Create a new ipa_fn_summary. */
2424 ((ipa_fn_summary_t *)ipa_fn_summaries)->remove_callees (node);
2425 ipa_fn_summaries->remove (node);
2426 info = ipa_fn_summaries->get_create (node);
2427
2428 /* Estimate the stack size for the function if we're optimizing. */
2429 self_stack_size = optimize && !node->thunk.thunk_p
2430 ? estimated_stack_frame_size (node) : 0;
2431 info->estimated_self_stack_size = self_stack_size;
2432 info->estimated_stack_size = self_stack_size;
2433 info->stack_frame_offset = 0;
2434
2435 if (node->thunk.thunk_p)
2436 {
2437 ipa_call_summary *es = ipa_call_summaries->get_create (node->callees);
2438 predicate t = true;
2439
2440 node->local.can_change_signature = false;
2441 es->call_stmt_size = eni_size_weights.call_cost;
2442 es->call_stmt_time = eni_time_weights.call_cost;
2443 info->account_size_time (ipa_fn_summary::size_scale
2444 * PARAM_VALUE
2445 (PARAM_UNINLINED_FUNCTION_THUNK_INSNS),
2446 PARAM_VALUE
2447 (PARAM_UNINLINED_FUNCTION_THUNK_TIME), t, t);
2448 t = predicate::not_inlined ();
2449 info->account_size_time (2 * ipa_fn_summary::size_scale, 0, t, t);
2450 ipa_update_overall_fn_summary (node);
2451 info->self_size = info->size;
2452 if (stdarg_p (TREE_TYPE (node->decl)))
2453 {
2454 info->inlinable = false;
2455 node->callees->inline_failed = CIF_VARIADIC_THUNK;
2456 }
2457 else
2458 info->inlinable = true;
2459 }
2460 else
2461 {
2462 /* Even is_gimple_min_invariant rely on current_function_decl. */
2463 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
2464
2465 /* Can this function be inlined at all? */
2466 if (!opt_for_fn (node->decl, optimize)
2467 && !lookup_attribute ("always_inline",
2468 DECL_ATTRIBUTES (node->decl)))
2469 info->inlinable = false;
2470 else
2471 info->inlinable = tree_inlinable_function_p (node->decl);
2472
2473 /* Type attributes can use parameter indices to describe them. */
2474 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl))
2475 /* Likewise for #pragma omp declare simd functions or functions
2476 with simd attribute. */
2477 || lookup_attribute ("omp declare simd",
2478 DECL_ATTRIBUTES (node->decl)))
2479 node->local.can_change_signature = false;
2480 else
2481 {
2482 /* Otherwise, inlinable functions always can change signature. */
2483 if (info->inlinable)
2484 node->local.can_change_signature = true;
2485 else
2486 {
2487 /* Functions calling builtin_apply cannot change signature. */
2488 for (e = node->callees; e; e = e->next_callee)
2489 {
2490 tree cdecl = e->callee->decl;
2491 if (fndecl_built_in_p (cdecl, BUILT_IN_APPLY_ARGS)
2492 || fndecl_built_in_p (cdecl, BUILT_IN_VA_START))
2493 break;
2494 }
2495 node->local.can_change_signature = !e;
2496 }
2497 }
2498 analyze_function_body (node, early);
2499 pop_cfun ();
2500 }
2501 for (e = node->callees; e; e = e->next_callee)
2502 if (e->callee->comdat_local_p ())
2503 break;
2504 node->calls_comdat_local = (e != NULL);
2505
2506 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2507 info->size = info->self_size;
2508 info->stack_frame_offset = 0;
2509 info->estimated_stack_size = info->estimated_self_stack_size;
2510
2511 /* Code above should compute exactly the same result as
2512 ipa_update_overall_fn_summary but because computation happens in
2513 different order the roundoff errors result in slight changes. */
2514 ipa_update_overall_fn_summary (node);
2515 /* In LTO mode we may have speculative edges set. */
2516 gcc_assert (in_lto_p || info->size == info->self_size);
2517 }
2518
2519
2520 /* Compute parameters of functions used by inliner using
2521 current_function_decl. */
2522
2523 static unsigned int
2524 compute_fn_summary_for_current (void)
2525 {
2526 compute_fn_summary (cgraph_node::get (current_function_decl), true);
2527 return 0;
2528 }
2529
2530 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
2531 KNOWN_CONTEXTS and KNOWN_AGGS. */
2532
2533 static bool
2534 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2535 int *size, int *time,
2536 vec<tree> known_vals,
2537 vec<ipa_polymorphic_call_context> known_contexts,
2538 vec<ipa_agg_jump_function_p> known_aggs)
2539 {
2540 tree target;
2541 struct cgraph_node *callee;
2542 struct ipa_fn_summary *isummary;
2543 enum availability avail;
2544 bool speculative;
2545
2546 if (!known_vals.exists () && !known_contexts.exists ())
2547 return false;
2548 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
2549 return false;
2550
2551 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
2552 known_aggs, &speculative);
2553 if (!target || speculative)
2554 return false;
2555
2556 /* Account for difference in cost between indirect and direct calls. */
2557 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2558 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
2559 gcc_checking_assert (*time >= 0);
2560 gcc_checking_assert (*size >= 0);
2561
2562 callee = cgraph_node::get (target);
2563 if (!callee || !callee->definition)
2564 return false;
2565 callee = callee->function_symbol (&avail);
2566 if (avail < AVAIL_AVAILABLE)
2567 return false;
2568 isummary = ipa_fn_summaries->get (callee);
2569 if (isummary == NULL)
2570 return false;
2571
2572 return isummary->inlinable;
2573 }
2574
2575 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
2576 handle edge E with probability PROB.
2577 Set HINTS if edge may be devirtualized.
2578 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
2579 site. */
2580
2581 static inline void
2582 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
2583 sreal *time,
2584 int prob,
2585 vec<tree> known_vals,
2586 vec<ipa_polymorphic_call_context> known_contexts,
2587 vec<ipa_agg_jump_function_p> known_aggs,
2588 ipa_hints *hints)
2589 {
2590 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2591 int call_size = es->call_stmt_size;
2592 int call_time = es->call_stmt_time;
2593 int cur_size;
2594 if (!e->callee
2595 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
2596 known_vals, known_contexts, known_aggs)
2597 && hints && e->maybe_hot_p ())
2598 *hints |= INLINE_HINT_indirect_call;
2599 cur_size = call_size * ipa_fn_summary::size_scale;
2600 *size += cur_size;
2601 if (min_size)
2602 *min_size += cur_size;
2603 if (prob == REG_BR_PROB_BASE)
2604 *time += ((sreal)call_time) * e->sreal_frequency ();
2605 else
2606 *time += ((sreal)call_time * prob) * e->sreal_frequency ();
2607 }
2608
2609
2610
2611 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
2612 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
2613 describe context of the call site. */
2614
2615 static void
2616 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
2617 int *min_size, sreal *time,
2618 ipa_hints *hints,
2619 clause_t possible_truths,
2620 vec<tree> known_vals,
2621 vec<ipa_polymorphic_call_context> known_contexts,
2622 vec<ipa_agg_jump_function_p> known_aggs)
2623 {
2624 struct cgraph_edge *e;
2625 for (e = node->callees; e; e = e->next_callee)
2626 {
2627 struct ipa_call_summary *es = ipa_call_summaries->get_create (e);
2628
2629 /* Do not care about zero sized builtins. */
2630 if (e->inline_failed && !es->call_stmt_size)
2631 {
2632 gcc_checking_assert (!es->call_stmt_time);
2633 continue;
2634 }
2635 if (!es->predicate
2636 || es->predicate->evaluate (possible_truths))
2637 {
2638 if (e->inline_failed)
2639 {
2640 /* Predicates of calls shall not use NOT_CHANGED codes,
2641 sowe do not need to compute probabilities. */
2642 estimate_edge_size_and_time (e, size,
2643 es->predicate ? NULL : min_size,
2644 time, REG_BR_PROB_BASE,
2645 known_vals, known_contexts,
2646 known_aggs, hints);
2647 }
2648 else
2649 estimate_calls_size_and_time (e->callee, size, min_size, time,
2650 hints,
2651 possible_truths,
2652 known_vals, known_contexts,
2653 known_aggs);
2654 }
2655 }
2656 for (e = node->indirect_calls; e; e = e->next_callee)
2657 {
2658 struct ipa_call_summary *es = ipa_call_summaries->get_create (e);
2659 if (!es->predicate
2660 || es->predicate->evaluate (possible_truths))
2661 estimate_edge_size_and_time (e, size,
2662 es->predicate ? NULL : min_size,
2663 time, REG_BR_PROB_BASE,
2664 known_vals, known_contexts, known_aggs,
2665 hints);
2666 }
2667 }
2668
2669
2670 /* Estimate size and time needed to execute NODE assuming
2671 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
2672 information about NODE's arguments. If non-NULL use also probability
2673 information present in INLINE_PARAM_SUMMARY vector.
2674 Additionally detemine hints determined by the context. Finally compute
2675 minimal size needed for the call that is independent on the call context and
2676 can be used for fast estimates. Return the values in RET_SIZE,
2677 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
2678
2679 void
2680 estimate_node_size_and_time (struct cgraph_node *node,
2681 clause_t possible_truths,
2682 clause_t nonspec_possible_truths,
2683 vec<tree> known_vals,
2684 vec<ipa_polymorphic_call_context> known_contexts,
2685 vec<ipa_agg_jump_function_p> known_aggs,
2686 int *ret_size, int *ret_min_size,
2687 sreal *ret_time,
2688 sreal *ret_nonspecialized_time,
2689 ipa_hints *ret_hints,
2690 vec<inline_param_summary>
2691 inline_param_summary)
2692 {
2693 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
2694 size_time_entry *e;
2695 int size = 0;
2696 sreal time = 0;
2697 int min_size = 0;
2698 ipa_hints hints = 0;
2699 int i;
2700
2701 if (dump_file && (dump_flags & TDF_DETAILS))
2702 {
2703 bool found = false;
2704 fprintf (dump_file, " Estimating body: %s/%i\n"
2705 " Known to be false: ", node->name (),
2706 node->order);
2707
2708 for (i = predicate::not_inlined_condition;
2709 i < (predicate::first_dynamic_condition
2710 + (int) vec_safe_length (info->conds)); i++)
2711 if (!(possible_truths & (1 << i)))
2712 {
2713 if (found)
2714 fprintf (dump_file, ", ");
2715 found = true;
2716 dump_condition (dump_file, info->conds, i);
2717 }
2718 }
2719
2720 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
2721 known_vals, known_contexts, known_aggs);
2722 sreal nonspecialized_time = time;
2723
2724 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
2725 {
2726 bool exec = e->exec_predicate.evaluate (nonspec_possible_truths);
2727
2728 /* Because predicates are conservative, it can happen that nonconst is 1
2729 but exec is 0. */
2730 if (exec)
2731 {
2732 bool nonconst = e->nonconst_predicate.evaluate (possible_truths);
2733
2734 gcc_checking_assert (e->time >= 0);
2735 gcc_checking_assert (time >= 0);
2736
2737 /* We compute specialized size only because size of nonspecialized
2738 copy is context independent.
2739
2740 The difference between nonspecialized execution and specialized is
2741 that nonspecialized is not going to have optimized out computations
2742 known to be constant in a specialized setting. */
2743 if (nonconst)
2744 size += e->size;
2745 nonspecialized_time += e->time;
2746 if (!nonconst)
2747 ;
2748 else if (!inline_param_summary.exists ())
2749 {
2750 if (nonconst)
2751 time += e->time;
2752 }
2753 else
2754 {
2755 int prob = e->nonconst_predicate.probability
2756 (info->conds, possible_truths,
2757 inline_param_summary);
2758 gcc_checking_assert (prob >= 0);
2759 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
2760 time += e->time * prob / REG_BR_PROB_BASE;
2761 }
2762 gcc_checking_assert (time >= 0);
2763 }
2764 }
2765 gcc_checking_assert ((*info->size_time_table)[0].exec_predicate == true);
2766 gcc_checking_assert ((*info->size_time_table)[0].nonconst_predicate == true);
2767 min_size = (*info->size_time_table)[0].size;
2768 gcc_checking_assert (size >= 0);
2769 gcc_checking_assert (time >= 0);
2770 /* nonspecialized_time should be always bigger than specialized time.
2771 Roundoff issues however may get into the way. */
2772 gcc_checking_assert ((nonspecialized_time - time * 99 / 100) >= -1);
2773
2774 /* Roundoff issues may make specialized time bigger than nonspecialized
2775 time. We do not really want that to happen because some heurstics
2776 may get confused by seeing negative speedups. */
2777 if (time > nonspecialized_time)
2778 time = nonspecialized_time;
2779
2780 if (info->loop_iterations
2781 && !info->loop_iterations->evaluate (possible_truths))
2782 hints |= INLINE_HINT_loop_iterations;
2783 if (info->loop_stride
2784 && !info->loop_stride->evaluate (possible_truths))
2785 hints |= INLINE_HINT_loop_stride;
2786 if (info->array_index
2787 && !info->array_index->evaluate (possible_truths))
2788 hints |= INLINE_HINT_array_index;
2789 if (info->scc_no)
2790 hints |= INLINE_HINT_in_scc;
2791 if (DECL_DECLARED_INLINE_P (node->decl))
2792 hints |= INLINE_HINT_declared_inline;
2793
2794 size = RDIV (size, ipa_fn_summary::size_scale);
2795 min_size = RDIV (min_size, ipa_fn_summary::size_scale);
2796
2797 if (dump_file && (dump_flags & TDF_DETAILS))
2798 fprintf (dump_file, "\n size:%i time:%f nonspec time:%f\n", (int) size,
2799 time.to_double (), nonspecialized_time.to_double ());
2800 if (ret_time)
2801 *ret_time = time;
2802 if (ret_nonspecialized_time)
2803 *ret_nonspecialized_time = nonspecialized_time;
2804 if (ret_size)
2805 *ret_size = size;
2806 if (ret_min_size)
2807 *ret_min_size = min_size;
2808 if (ret_hints)
2809 *ret_hints = hints;
2810 return;
2811 }
2812
2813
2814 /* Estimate size and time needed to execute callee of EDGE assuming that
2815 parameters known to be constant at caller of EDGE are propagated.
2816 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
2817 and types for parameters. */
2818
2819 void
2820 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
2821 vec<tree> known_vals,
2822 vec<ipa_polymorphic_call_context>
2823 known_contexts,
2824 vec<ipa_agg_jump_function_p> known_aggs,
2825 int *ret_size, sreal *ret_time,
2826 sreal *ret_nonspec_time,
2827 ipa_hints *hints)
2828 {
2829 clause_t clause, nonspec_clause;
2830
2831 evaluate_conditions_for_known_args (node, false, known_vals, known_aggs,
2832 &clause, &nonspec_clause);
2833 estimate_node_size_and_time (node, clause, nonspec_clause,
2834 known_vals, known_contexts,
2835 known_aggs, ret_size, NULL, ret_time,
2836 ret_nonspec_time, hints, vNULL);
2837 }
2838
2839
2840 /* Update summary information of inline clones after inlining.
2841 Compute peak stack usage. */
2842
2843 static void
2844 inline_update_callee_summaries (struct cgraph_node *node, int depth)
2845 {
2846 struct cgraph_edge *e;
2847 ipa_fn_summary *callee_info = ipa_fn_summaries->get (node);
2848 ipa_fn_summary *caller_info = ipa_fn_summaries->get (node->callers->caller);
2849 HOST_WIDE_INT peak;
2850
2851 callee_info->stack_frame_offset
2852 = caller_info->stack_frame_offset
2853 + caller_info->estimated_self_stack_size;
2854 peak = callee_info->stack_frame_offset
2855 + callee_info->estimated_self_stack_size;
2856
2857 ipa_fn_summary *s = ipa_fn_summaries->get (node->global.inlined_to);
2858 if (s->estimated_stack_size < peak)
2859 s->estimated_stack_size = peak;
2860 ipa_propagate_frequency (node);
2861 for (e = node->callees; e; e = e->next_callee)
2862 {
2863 if (!e->inline_failed)
2864 inline_update_callee_summaries (e->callee, depth);
2865 ipa_call_summaries->get (e)->loop_depth += depth;
2866 }
2867 for (e = node->indirect_calls; e; e = e->next_callee)
2868 ipa_call_summaries->get (e)->loop_depth += depth;
2869 }
2870
2871 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
2872 When functoin A is inlined in B and A calls C with parameter that
2873 changes with probability PROB1 and C is known to be passthroug
2874 of argument if B that change with probability PROB2, the probability
2875 of change is now PROB1*PROB2. */
2876
2877 static void
2878 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
2879 struct cgraph_edge *edge)
2880 {
2881 if (ipa_node_params_sum)
2882 {
2883 int i;
2884 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
2885 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
2886 struct ipa_call_summary *inlined_es
2887 = ipa_call_summaries->get (inlined_edge);
2888
2889 if (es->param.length () == 0)
2890 return;
2891
2892 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
2893 {
2894 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
2895 if (jfunc->type == IPA_JF_PASS_THROUGH
2896 || jfunc->type == IPA_JF_ANCESTOR)
2897 {
2898 int id = jfunc->type == IPA_JF_PASS_THROUGH
2899 ? ipa_get_jf_pass_through_formal_id (jfunc)
2900 : ipa_get_jf_ancestor_formal_id (jfunc);
2901 if (id < (int) inlined_es->param.length ())
2902 {
2903 int prob1 = es->param[i].change_prob;
2904 int prob2 = inlined_es->param[id].change_prob;
2905 int prob = combine_probabilities (prob1, prob2);
2906
2907 if (prob1 && prob2 && !prob)
2908 prob = 1;
2909
2910 es->param[i].change_prob = prob;
2911 }
2912 }
2913 }
2914 }
2915 }
2916
2917 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
2918
2919 Remap predicates of callees of NODE. Rest of arguments match
2920 remap_predicate.
2921
2922 Also update change probabilities. */
2923
2924 static void
2925 remap_edge_summaries (struct cgraph_edge *inlined_edge,
2926 struct cgraph_node *node,
2927 struct ipa_fn_summary *info,
2928 struct ipa_fn_summary *callee_info,
2929 vec<int> operand_map,
2930 vec<int> offset_map,
2931 clause_t possible_truths,
2932 predicate *toplev_predicate)
2933 {
2934 struct cgraph_edge *e, *next;
2935 for (e = node->callees; e; e = next)
2936 {
2937 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2938 predicate p;
2939 next = e->next_callee;
2940
2941 if (e->inline_failed)
2942 {
2943 remap_edge_change_prob (inlined_edge, e);
2944
2945 if (es->predicate)
2946 {
2947 p = es->predicate->remap_after_inlining
2948 (info, callee_info, operand_map,
2949 offset_map, possible_truths,
2950 *toplev_predicate);
2951 edge_set_predicate (e, &p);
2952 }
2953 else
2954 edge_set_predicate (e, toplev_predicate);
2955 }
2956 else
2957 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
2958 operand_map, offset_map, possible_truths,
2959 toplev_predicate);
2960 }
2961 for (e = node->indirect_calls; e; e = next)
2962 {
2963 struct ipa_call_summary *es = ipa_call_summaries->get (e);
2964 predicate p;
2965 next = e->next_callee;
2966
2967 remap_edge_change_prob (inlined_edge, e);
2968 if (es->predicate)
2969 {
2970 p = es->predicate->remap_after_inlining
2971 (info, callee_info, operand_map, offset_map,
2972 possible_truths, *toplev_predicate);
2973 edge_set_predicate (e, &p);
2974 }
2975 else
2976 edge_set_predicate (e, toplev_predicate);
2977 }
2978 }
2979
2980 /* Same as remap_predicate, but set result into hint *HINT. */
2981
2982 static void
2983 remap_hint_predicate (struct ipa_fn_summary *info,
2984 struct ipa_fn_summary *callee_info,
2985 predicate **hint,
2986 vec<int> operand_map,
2987 vec<int> offset_map,
2988 clause_t possible_truths,
2989 predicate *toplev_predicate)
2990 {
2991 predicate p;
2992
2993 if (!*hint)
2994 return;
2995 p = (*hint)->remap_after_inlining
2996 (info, callee_info,
2997 operand_map, offset_map,
2998 possible_truths, *toplev_predicate);
2999 if (p != false && p != true)
3000 {
3001 if (!*hint)
3002 set_hint_predicate (hint, p);
3003 else
3004 **hint &= p;
3005 }
3006 }
3007
3008 /* We inlined EDGE. Update summary of the function we inlined into. */
3009
3010 void
3011 ipa_merge_fn_summary_after_inlining (struct cgraph_edge *edge)
3012 {
3013 ipa_fn_summary *callee_info = ipa_fn_summaries->get (edge->callee);
3014 struct cgraph_node *to = (edge->caller->global.inlined_to
3015 ? edge->caller->global.inlined_to : edge->caller);
3016 struct ipa_fn_summary *info = ipa_fn_summaries->get (to);
3017 clause_t clause = 0; /* not_inline is known to be false. */
3018 size_time_entry *e;
3019 vec<int> operand_map = vNULL;
3020 vec<int> offset_map = vNULL;
3021 int i;
3022 predicate toplev_predicate;
3023 predicate true_p = true;
3024 struct ipa_call_summary *es = ipa_call_summaries->get (edge);
3025
3026 if (es->predicate)
3027 toplev_predicate = *es->predicate;
3028 else
3029 toplev_predicate = true;
3030
3031 info->fp_expressions |= callee_info->fp_expressions;
3032
3033 if (callee_info->conds)
3034 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL, NULL);
3035 if (ipa_node_params_sum && callee_info->conds)
3036 {
3037 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3038 int count = ipa_get_cs_argument_count (args);
3039 int i;
3040
3041 if (count)
3042 {
3043 operand_map.safe_grow_cleared (count);
3044 offset_map.safe_grow_cleared (count);
3045 }
3046 for (i = 0; i < count; i++)
3047 {
3048 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3049 int map = -1;
3050
3051 /* TODO: handle non-NOPs when merging. */
3052 if (jfunc->type == IPA_JF_PASS_THROUGH)
3053 {
3054 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3055 map = ipa_get_jf_pass_through_formal_id (jfunc);
3056 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3057 offset_map[i] = -1;
3058 }
3059 else if (jfunc->type == IPA_JF_ANCESTOR)
3060 {
3061 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3062 if (offset >= 0 && offset < INT_MAX)
3063 {
3064 map = ipa_get_jf_ancestor_formal_id (jfunc);
3065 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3066 offset = -1;
3067 offset_map[i] = offset;
3068 }
3069 }
3070 operand_map[i] = map;
3071 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3072 }
3073 }
3074 for (i = 0; vec_safe_iterate (callee_info->size_time_table, i, &e); i++)
3075 {
3076 predicate p;
3077 p = e->exec_predicate.remap_after_inlining
3078 (info, callee_info, operand_map,
3079 offset_map, clause,
3080 toplev_predicate);
3081 predicate nonconstp;
3082 nonconstp = e->nonconst_predicate.remap_after_inlining
3083 (info, callee_info, operand_map,
3084 offset_map, clause,
3085 toplev_predicate);
3086 if (p != false && nonconstp != false)
3087 {
3088 sreal add_time = ((sreal)e->time * edge->sreal_frequency ());
3089 int prob = e->nonconst_predicate.probability (callee_info->conds,
3090 clause, es->param);
3091 add_time = add_time * prob / REG_BR_PROB_BASE;
3092 if (prob != REG_BR_PROB_BASE
3093 && dump_file && (dump_flags & TDF_DETAILS))
3094 {
3095 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3096 (double) prob / REG_BR_PROB_BASE);
3097 }
3098 info->account_size_time (e->size, add_time, p, nonconstp);
3099 }
3100 }
3101 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3102 offset_map, clause, &toplev_predicate);
3103 remap_hint_predicate (info, callee_info,
3104 &callee_info->loop_iterations,
3105 operand_map, offset_map, clause, &toplev_predicate);
3106 remap_hint_predicate (info, callee_info,
3107 &callee_info->loop_stride,
3108 operand_map, offset_map, clause, &toplev_predicate);
3109 remap_hint_predicate (info, callee_info,
3110 &callee_info->array_index,
3111 operand_map, offset_map, clause, &toplev_predicate);
3112
3113 ipa_call_summary *s = ipa_call_summaries->get (edge);
3114 inline_update_callee_summaries (edge->callee, s->loop_depth);
3115
3116 /* We do not maintain predicates of inlined edges, free it. */
3117 edge_set_predicate (edge, &true_p);
3118 /* Similarly remove param summaries. */
3119 es->param.release ();
3120 operand_map.release ();
3121 offset_map.release ();
3122 }
3123
3124 /* For performance reasons ipa_merge_fn_summary_after_inlining is not updating overall size
3125 and time. Recompute it. */
3126
3127 void
3128 ipa_update_overall_fn_summary (struct cgraph_node *node)
3129 {
3130 struct ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
3131 size_time_entry *e;
3132 int i;
3133
3134 info->size = 0;
3135 info->time = 0;
3136 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
3137 {
3138 info->size += e->size;
3139 info->time += e->time;
3140 }
3141 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3142 &info->time, NULL,
3143 ~(clause_t) (1 << predicate::false_condition),
3144 vNULL, vNULL, vNULL);
3145 info->size = (info->size + ipa_fn_summary::size_scale / 2) / ipa_fn_summary::size_scale;
3146 }
3147
3148
3149 /* This function performs intraprocedural analysis in NODE that is required to
3150 inline indirect calls. */
3151
3152 static void
3153 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3154 {
3155 ipa_analyze_node (node);
3156 if (dump_file && (dump_flags & TDF_DETAILS))
3157 {
3158 ipa_print_node_params (dump_file, node);
3159 ipa_print_node_jump_functions (dump_file, node);
3160 }
3161 }
3162
3163
3164 /* Note function body size. */
3165
3166 void
3167 inline_analyze_function (struct cgraph_node *node)
3168 {
3169 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3170
3171 if (dump_file)
3172 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3173 node->name (), node->order);
3174 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
3175 inline_indirect_intraprocedural_analysis (node);
3176 compute_fn_summary (node, false);
3177 if (!optimize)
3178 {
3179 struct cgraph_edge *e;
3180 for (e = node->callees; e; e = e->next_callee)
3181 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3182 for (e = node->indirect_calls; e; e = e->next_callee)
3183 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
3184 }
3185
3186 pop_cfun ();
3187 }
3188
3189
3190 /* Called when new function is inserted to callgraph late. */
3191
3192 void
3193 ipa_fn_summary_t::insert (struct cgraph_node *node, ipa_fn_summary *)
3194 {
3195 inline_analyze_function (node);
3196 }
3197
3198 /* Note function body size. */
3199
3200 static void
3201 ipa_fn_summary_generate (void)
3202 {
3203 struct cgraph_node *node;
3204
3205 FOR_EACH_DEFINED_FUNCTION (node)
3206 if (DECL_STRUCT_FUNCTION (node->decl))
3207 node->local.versionable = tree_versionable_function_p (node->decl);
3208
3209 ipa_fn_summary_alloc ();
3210
3211 ipa_fn_summaries->enable_insertion_hook ();
3212
3213 ipa_register_cgraph_hooks ();
3214
3215 FOR_EACH_DEFINED_FUNCTION (node)
3216 if (!node->alias
3217 && (flag_generate_lto || flag_generate_offload|| flag_wpa
3218 || opt_for_fn (node->decl, optimize)))
3219 inline_analyze_function (node);
3220 }
3221
3222
3223 /* Write inline summary for edge E to OB. */
3224
3225 static void
3226 read_ipa_call_summary (struct lto_input_block *ib, struct cgraph_edge *e,
3227 bool prevails)
3228 {
3229 struct ipa_call_summary *es = prevails
3230 ? ipa_call_summaries->get_create (e) : NULL;
3231 predicate p;
3232 int length, i;
3233
3234 int size = streamer_read_uhwi (ib);
3235 int time = streamer_read_uhwi (ib);
3236 int depth = streamer_read_uhwi (ib);
3237
3238 if (es)
3239 {
3240 es->call_stmt_size = size;
3241 es->call_stmt_time = time;
3242 es->loop_depth = depth;
3243 }
3244
3245 bitpack_d bp = streamer_read_bitpack (ib);
3246 if (es)
3247 es->is_return_callee_uncaptured = bp_unpack_value (&bp, 1);
3248 else
3249 bp_unpack_value (&bp, 1);
3250
3251 p.stream_in (ib);
3252 if (es)
3253 edge_set_predicate (e, &p);
3254 length = streamer_read_uhwi (ib);
3255 if (length && es && e->possibly_call_in_translation_unit_p ())
3256 {
3257 es->param.safe_grow_cleared (length);
3258 for (i = 0; i < length; i++)
3259 es->param[i].change_prob = streamer_read_uhwi (ib);
3260 }
3261 else
3262 {
3263 for (i = 0; i < length; i++)
3264 streamer_read_uhwi (ib);
3265 }
3266 }
3267
3268
3269 /* Stream in inline summaries from the section. */
3270
3271 static void
3272 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
3273 size_t len)
3274 {
3275 const struct lto_function_header *header =
3276 (const struct lto_function_header *) data;
3277 const int cfg_offset = sizeof (struct lto_function_header);
3278 const int main_offset = cfg_offset + header->cfg_size;
3279 const int string_offset = main_offset + header->main_size;
3280 struct data_in *data_in;
3281 unsigned int i, count2, j;
3282 unsigned int f_count;
3283
3284 lto_input_block ib ((const char *) data + main_offset, header->main_size,
3285 file_data->mode_table);
3286
3287 data_in =
3288 lto_data_in_create (file_data, (const char *) data + string_offset,
3289 header->string_size, vNULL);
3290 f_count = streamer_read_uhwi (&ib);
3291 for (i = 0; i < f_count; i++)
3292 {
3293 unsigned int index;
3294 struct cgraph_node *node;
3295 struct ipa_fn_summary *info;
3296 lto_symtab_encoder_t encoder;
3297 struct bitpack_d bp;
3298 struct cgraph_edge *e;
3299 predicate p;
3300
3301 index = streamer_read_uhwi (&ib);
3302 encoder = file_data->symtab_node_encoder;
3303 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
3304 index));
3305 info = node->prevailing_p () ? ipa_fn_summaries->get_create (node) : NULL;
3306
3307 int stack_size = streamer_read_uhwi (&ib);
3308 int size = streamer_read_uhwi (&ib);
3309 sreal time = sreal::stream_in (&ib);
3310
3311 if (info)
3312 {
3313 info->estimated_stack_size
3314 = info->estimated_self_stack_size = stack_size;
3315 info->size = info->self_size = size;
3316 info->time = time;
3317 }
3318
3319 bp = streamer_read_bitpack (&ib);
3320 if (info)
3321 {
3322 info->inlinable = bp_unpack_value (&bp, 1);
3323 info->fp_expressions = bp_unpack_value (&bp, 1);
3324 }
3325 else
3326 {
3327 bp_unpack_value (&bp, 1);
3328 bp_unpack_value (&bp, 1);
3329 }
3330
3331 count2 = streamer_read_uhwi (&ib);
3332 gcc_assert (!info || !info->conds);
3333 for (j = 0; j < count2; j++)
3334 {
3335 struct condition c;
3336 c.operand_num = streamer_read_uhwi (&ib);
3337 c.size = streamer_read_uhwi (&ib);
3338 c.code = (enum tree_code) streamer_read_uhwi (&ib);
3339 c.val = stream_read_tree (&ib, data_in);
3340 bp = streamer_read_bitpack (&ib);
3341 c.agg_contents = bp_unpack_value (&bp, 1);
3342 c.by_ref = bp_unpack_value (&bp, 1);
3343 if (c.agg_contents)
3344 c.offset = streamer_read_uhwi (&ib);
3345 if (info)
3346 vec_safe_push (info->conds, c);
3347 }
3348 count2 = streamer_read_uhwi (&ib);
3349 gcc_assert (!info || !info->size_time_table);
3350 for (j = 0; j < count2; j++)
3351 {
3352 struct size_time_entry e;
3353
3354 e.size = streamer_read_uhwi (&ib);
3355 e.time = sreal::stream_in (&ib);
3356 e.exec_predicate.stream_in (&ib);
3357 e.nonconst_predicate.stream_in (&ib);
3358
3359 if (info)
3360 vec_safe_push (info->size_time_table, e);
3361 }
3362
3363 p.stream_in (&ib);
3364 if (info)
3365 set_hint_predicate (&info->loop_iterations, p);
3366 p.stream_in (&ib);
3367 if (info)
3368 set_hint_predicate (&info->loop_stride, p);
3369 p.stream_in (&ib);
3370 if (info)
3371 set_hint_predicate (&info->array_index, p);
3372 for (e = node->callees; e; e = e->next_callee)
3373 read_ipa_call_summary (&ib, e, info != NULL);
3374 for (e = node->indirect_calls; e; e = e->next_callee)
3375 read_ipa_call_summary (&ib, e, info != NULL);
3376 }
3377
3378 lto_free_section_data (file_data, LTO_section_ipa_fn_summary, NULL, data,
3379 len);
3380 lto_data_in_delete (data_in);
3381 }
3382
3383
3384 /* Read inline summary. Jump functions are shared among ipa-cp
3385 and inliner, so when ipa-cp is active, we don't need to write them
3386 twice. */
3387
3388 static void
3389 ipa_fn_summary_read (void)
3390 {
3391 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3392 struct lto_file_decl_data *file_data;
3393 unsigned int j = 0;
3394
3395 ipa_fn_summary_alloc ();
3396
3397 while ((file_data = file_data_vec[j++]))
3398 {
3399 size_t len;
3400 const char *data = lto_get_section_data (file_data,
3401 LTO_section_ipa_fn_summary,
3402 NULL, &len);
3403 if (data)
3404 inline_read_section (file_data, data, len);
3405 else
3406 /* Fatal error here. We do not want to support compiling ltrans units
3407 with different version of compiler or different flags than the WPA
3408 unit, so this should never happen. */
3409 fatal_error (input_location,
3410 "ipa inline summary is missing in input file");
3411 }
3412 ipa_register_cgraph_hooks ();
3413 if (!flag_ipa_cp)
3414 ipa_prop_read_jump_functions ();
3415
3416 gcc_assert (ipa_fn_summaries);
3417 ipa_fn_summaries->enable_insertion_hook ();
3418 }
3419
3420
3421 /* Write inline summary for edge E to OB. */
3422
3423 static void
3424 write_ipa_call_summary (struct output_block *ob, struct cgraph_edge *e)
3425 {
3426 struct ipa_call_summary *es = ipa_call_summaries->get (e);
3427 int i;
3428
3429 streamer_write_uhwi (ob, es->call_stmt_size);
3430 streamer_write_uhwi (ob, es->call_stmt_time);
3431 streamer_write_uhwi (ob, es->loop_depth);
3432
3433 bitpack_d bp = bitpack_create (ob->main_stream);
3434 bp_pack_value (&bp, es->is_return_callee_uncaptured, 1);
3435 streamer_write_bitpack (&bp);
3436
3437 if (es->predicate)
3438 es->predicate->stream_out (ob);
3439 else
3440 streamer_write_uhwi (ob, 0);
3441 streamer_write_uhwi (ob, es->param.length ());
3442 for (i = 0; i < (int) es->param.length (); i++)
3443 streamer_write_uhwi (ob, es->param[i].change_prob);
3444 }
3445
3446
3447 /* Write inline summary for node in SET.
3448 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
3449 active, we don't need to write them twice. */
3450
3451 static void
3452 ipa_fn_summary_write (void)
3453 {
3454 struct output_block *ob = create_output_block (LTO_section_ipa_fn_summary);
3455 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
3456 unsigned int count = 0;
3457 int i;
3458
3459 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3460 {
3461 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
3462 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
3463 if (cnode && cnode->definition && !cnode->alias)
3464 count++;
3465 }
3466 streamer_write_uhwi (ob, count);
3467
3468 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3469 {
3470 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
3471 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
3472 if (cnode && cnode->definition && !cnode->alias)
3473 {
3474 struct ipa_fn_summary *info = ipa_fn_summaries->get (cnode);
3475 struct bitpack_d bp;
3476 struct cgraph_edge *edge;
3477 int i;
3478 size_time_entry *e;
3479 struct condition *c;
3480
3481 streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
3482 streamer_write_hwi (ob, info->estimated_self_stack_size);
3483 streamer_write_hwi (ob, info->self_size);
3484 info->time.stream_out (ob);
3485 bp = bitpack_create (ob->main_stream);
3486 bp_pack_value (&bp, info->inlinable, 1);
3487 bp_pack_value (&bp, false, 1);
3488 bp_pack_value (&bp, info->fp_expressions, 1);
3489 streamer_write_bitpack (&bp);
3490 streamer_write_uhwi (ob, vec_safe_length (info->conds));
3491 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
3492 {
3493 streamer_write_uhwi (ob, c->operand_num);
3494 streamer_write_uhwi (ob, c->size);
3495 streamer_write_uhwi (ob, c->code);
3496 stream_write_tree (ob, c->val, true);
3497 bp = bitpack_create (ob->main_stream);
3498 bp_pack_value (&bp, c->agg_contents, 1);
3499 bp_pack_value (&bp, c->by_ref, 1);
3500 streamer_write_bitpack (&bp);
3501 if (c->agg_contents)
3502 streamer_write_uhwi (ob, c->offset);
3503 }
3504 streamer_write_uhwi (ob, vec_safe_length (info->size_time_table));
3505 for (i = 0; vec_safe_iterate (info->size_time_table, i, &e); i++)
3506 {
3507 streamer_write_uhwi (ob, e->size);
3508 e->time.stream_out (ob);
3509 e->exec_predicate.stream_out (ob);
3510 e->nonconst_predicate.stream_out (ob);
3511 }
3512 if (info->loop_iterations)
3513 info->loop_iterations->stream_out (ob);
3514 else
3515 streamer_write_uhwi (ob, 0);
3516 if (info->loop_stride)
3517 info->loop_stride->stream_out (ob);
3518 else
3519 streamer_write_uhwi (ob, 0);
3520 if (info->array_index)
3521 info->array_index->stream_out (ob);
3522 else
3523 streamer_write_uhwi (ob, 0);
3524 for (edge = cnode->callees; edge; edge = edge->next_callee)
3525 write_ipa_call_summary (ob, edge);
3526 for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
3527 write_ipa_call_summary (ob, edge);
3528 }
3529 }
3530 streamer_write_char_stream (ob->main_stream, 0);
3531 produce_asm (ob, NULL);
3532 destroy_output_block (ob);
3533
3534 if (!flag_ipa_cp)
3535 ipa_prop_write_jump_functions ();
3536 }
3537
3538
3539 /* Release inline summary. */
3540
3541 void
3542 ipa_free_fn_summary (void)
3543 {
3544 struct cgraph_node *node;
3545 if (!ipa_call_summaries)
3546 return;
3547 FOR_EACH_DEFINED_FUNCTION (node)
3548 if (!node->alias)
3549 ipa_fn_summaries->remove (node);
3550 ipa_fn_summaries->release ();
3551 ipa_fn_summaries = NULL;
3552 ipa_call_summaries->release ();
3553 delete ipa_call_summaries;
3554 ipa_call_summaries = NULL;
3555 edge_predicate_pool.release ();
3556 }
3557
3558 namespace {
3559
3560 const pass_data pass_data_local_fn_summary =
3561 {
3562 GIMPLE_PASS, /* type */
3563 "local-fnsummary", /* name */
3564 OPTGROUP_INLINE, /* optinfo_flags */
3565 TV_INLINE_PARAMETERS, /* tv_id */
3566 0, /* properties_required */
3567 0, /* properties_provided */
3568 0, /* properties_destroyed */
3569 0, /* todo_flags_start */
3570 0, /* todo_flags_finish */
3571 };
3572
3573 class pass_local_fn_summary : public gimple_opt_pass
3574 {
3575 public:
3576 pass_local_fn_summary (gcc::context *ctxt)
3577 : gimple_opt_pass (pass_data_local_fn_summary, ctxt)
3578 {}
3579
3580 /* opt_pass methods: */
3581 opt_pass * clone () { return new pass_local_fn_summary (m_ctxt); }
3582 virtual unsigned int execute (function *)
3583 {
3584 return compute_fn_summary_for_current ();
3585 }
3586
3587 }; // class pass_local_fn_summary
3588
3589 } // anon namespace
3590
3591 gimple_opt_pass *
3592 make_pass_local_fn_summary (gcc::context *ctxt)
3593 {
3594 return new pass_local_fn_summary (ctxt);
3595 }
3596
3597
3598 /* Free inline summary. */
3599
3600 namespace {
3601
3602 const pass_data pass_data_ipa_free_fn_summary =
3603 {
3604 SIMPLE_IPA_PASS, /* type */
3605 "free-fnsummary", /* name */
3606 OPTGROUP_NONE, /* optinfo_flags */
3607 TV_IPA_FREE_INLINE_SUMMARY, /* tv_id */
3608 0, /* properties_required */
3609 0, /* properties_provided */
3610 0, /* properties_destroyed */
3611 0, /* todo_flags_start */
3612 0, /* todo_flags_finish */
3613 };
3614
3615 class pass_ipa_free_fn_summary : public simple_ipa_opt_pass
3616 {
3617 public:
3618 pass_ipa_free_fn_summary (gcc::context *ctxt)
3619 : simple_ipa_opt_pass (pass_data_ipa_free_fn_summary, ctxt),
3620 small_p (false)
3621 {}
3622
3623 /* opt_pass methods: */
3624 opt_pass *clone () { return new pass_ipa_free_fn_summary (m_ctxt); }
3625 void set_pass_param (unsigned int n, bool param)
3626 {
3627 gcc_assert (n == 0);
3628 small_p = param;
3629 }
3630 virtual bool gate (function *) { return small_p || !flag_wpa; }
3631 virtual unsigned int execute (function *)
3632 {
3633 ipa_free_fn_summary ();
3634 return 0;
3635 }
3636
3637 private:
3638 bool small_p;
3639 }; // class pass_ipa_free_fn_summary
3640
3641 } // anon namespace
3642
3643 simple_ipa_opt_pass *
3644 make_pass_ipa_free_fn_summary (gcc::context *ctxt)
3645 {
3646 return new pass_ipa_free_fn_summary (ctxt);
3647 }
3648
3649 namespace {
3650
3651 const pass_data pass_data_ipa_fn_summary =
3652 {
3653 IPA_PASS, /* type */
3654 "fnsummary", /* name */
3655 OPTGROUP_INLINE, /* optinfo_flags */
3656 TV_IPA_FNSUMMARY, /* tv_id */
3657 0, /* properties_required */
3658 0, /* properties_provided */
3659 0, /* properties_destroyed */
3660 0, /* todo_flags_start */
3661 ( TODO_dump_symtab ), /* todo_flags_finish */
3662 };
3663
3664 class pass_ipa_fn_summary : public ipa_opt_pass_d
3665 {
3666 public:
3667 pass_ipa_fn_summary (gcc::context *ctxt)
3668 : ipa_opt_pass_d (pass_data_ipa_fn_summary, ctxt,
3669 ipa_fn_summary_generate, /* generate_summary */
3670 ipa_fn_summary_write, /* write_summary */
3671 ipa_fn_summary_read, /* read_summary */
3672 NULL, /* write_optimization_summary */
3673 NULL, /* read_optimization_summary */
3674 NULL, /* stmt_fixup */
3675 0, /* function_transform_todo_flags_start */
3676 NULL, /* function_transform */
3677 NULL) /* variable_transform */
3678 {}
3679
3680 /* opt_pass methods: */
3681 virtual unsigned int execute (function *) { return 0; }
3682
3683 }; // class pass_ipa_fn_summary
3684
3685 } // anon namespace
3686
3687 ipa_opt_pass_d *
3688 make_pass_ipa_fn_summary (gcc::context *ctxt)
3689 {
3690 return new pass_ipa_fn_summary (ctxt);
3691 }
3692
3693 /* Reset all state within ipa-fnsummary.c so that we can rerun the compiler
3694 within the same process. For use by toplev::finalize. */
3695
3696 void
3697 ipa_fnsummary_c_finalize (void)
3698 {
3699 ipa_free_fn_summary ();
3700 }