]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-build.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / ira-build.c
1 /* Building internal representation for IRA.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "memmodel.h"
32 #include "ira.h"
33 #include "ira-int.h"
34 #include "params.h"
35 #include "sparseset.h"
36 #include "cfgloop.h"
37
38 static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx_insn *,
39 ira_loop_tree_node_t);
40
41 /* The root of the loop tree corresponding to the all function. */
42 ira_loop_tree_node_t ira_loop_tree_root;
43
44 /* Height of the loop tree. */
45 int ira_loop_tree_height;
46
47 /* All nodes representing basic blocks are referred through the
48 following array. We cannot use basic block member `aux' for this
49 because it is used for insertion of insns on edges. */
50 ira_loop_tree_node_t ira_bb_nodes;
51
52 /* All nodes representing loops are referred through the following
53 array. */
54 ira_loop_tree_node_t ira_loop_nodes;
55
56 /* And size of the ira_loop_nodes array. */
57 unsigned int ira_loop_nodes_count;
58
59 /* Map regno -> allocnos with given regno (see comments for
60 allocno member `next_regno_allocno'). */
61 ira_allocno_t *ira_regno_allocno_map;
62
63 /* Array of references to all allocnos. The order number of the
64 allocno corresponds to the index in the array. Removed allocnos
65 have NULL element value. */
66 ira_allocno_t *ira_allocnos;
67
68 /* Sizes of the previous array. */
69 int ira_allocnos_num;
70
71 /* Count of conflict record structures we've created, used when creating
72 a new conflict id. */
73 int ira_objects_num;
74
75 /* Map a conflict id to its conflict record. */
76 ira_object_t *ira_object_id_map;
77
78 /* Array of references to all allocno preferences. The order number
79 of the preference corresponds to the index in the array. */
80 ira_pref_t *ira_prefs;
81
82 /* Size of the previous array. */
83 int ira_prefs_num;
84
85 /* Array of references to all copies. The order number of the copy
86 corresponds to the index in the array. Removed copies have NULL
87 element value. */
88 ira_copy_t *ira_copies;
89
90 /* Size of the previous array. */
91 int ira_copies_num;
92
93 \f
94
95 /* LAST_BASIC_BLOCK before generating additional insns because of live
96 range splitting. Emitting insns on a critical edge creates a new
97 basic block. */
98 static int last_basic_block_before_change;
99
100 /* Initialize some members in loop tree node NODE. Use LOOP_NUM for
101 the member loop_num. */
102 static void
103 init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
104 {
105 int max_regno = max_reg_num ();
106
107 node->regno_allocno_map
108 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
109 memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
110 memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
111 node->all_allocnos = ira_allocate_bitmap ();
112 node->modified_regnos = ira_allocate_bitmap ();
113 node->border_allocnos = ira_allocate_bitmap ();
114 node->local_copies = ira_allocate_bitmap ();
115 node->loop_num = loop_num;
116 node->children = NULL;
117 node->subloops = NULL;
118 }
119
120
121 /* The following function allocates the loop tree nodes. If
122 CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
123 the root which corresponds the all function) will be not allocated
124 but nodes will still be allocated for basic blocks. */
125 static void
126 create_loop_tree_nodes (void)
127 {
128 unsigned int i, j;
129 bool skip_p;
130 edge_iterator ei;
131 edge e;
132 vec<edge> edges;
133 loop_p loop;
134
135 ira_bb_nodes
136 = ((struct ira_loop_tree_node *)
137 ira_allocate (sizeof (struct ira_loop_tree_node)
138 * last_basic_block_for_fn (cfun)));
139 last_basic_block_before_change = last_basic_block_for_fn (cfun);
140 for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++)
141 {
142 ira_bb_nodes[i].regno_allocno_map = NULL;
143 memset (ira_bb_nodes[i].reg_pressure, 0,
144 sizeof (ira_bb_nodes[i].reg_pressure));
145 ira_bb_nodes[i].all_allocnos = NULL;
146 ira_bb_nodes[i].modified_regnos = NULL;
147 ira_bb_nodes[i].border_allocnos = NULL;
148 ira_bb_nodes[i].local_copies = NULL;
149 }
150 if (current_loops == NULL)
151 {
152 ira_loop_nodes_count = 1;
153 ira_loop_nodes = ((struct ira_loop_tree_node *)
154 ira_allocate (sizeof (struct ira_loop_tree_node)));
155 init_loop_tree_node (ira_loop_nodes, 0);
156 return;
157 }
158 ira_loop_nodes_count = number_of_loops (cfun);
159 ira_loop_nodes = ((struct ira_loop_tree_node *)
160 ira_allocate (sizeof (struct ira_loop_tree_node)
161 * ira_loop_nodes_count));
162 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
163 {
164 if (loop_outer (loop) != NULL)
165 {
166 ira_loop_nodes[i].regno_allocno_map = NULL;
167 skip_p = false;
168 FOR_EACH_EDGE (e, ei, loop->header->preds)
169 if (e->src != loop->latch
170 && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
171 {
172 skip_p = true;
173 break;
174 }
175 if (skip_p)
176 continue;
177 edges = get_loop_exit_edges (loop);
178 FOR_EACH_VEC_ELT (edges, j, e)
179 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
180 {
181 skip_p = true;
182 break;
183 }
184 edges.release ();
185 if (skip_p)
186 continue;
187 }
188 init_loop_tree_node (&ira_loop_nodes[i], loop->num);
189 }
190 }
191
192 /* The function returns TRUE if there are more one allocation
193 region. */
194 static bool
195 more_one_region_p (void)
196 {
197 unsigned int i;
198 loop_p loop;
199
200 if (current_loops != NULL)
201 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
202 if (ira_loop_nodes[i].regno_allocno_map != NULL
203 && ira_loop_tree_root != &ira_loop_nodes[i])
204 return true;
205 return false;
206 }
207
208 /* Free the loop tree node of a loop. */
209 static void
210 finish_loop_tree_node (ira_loop_tree_node_t loop)
211 {
212 if (loop->regno_allocno_map != NULL)
213 {
214 ira_assert (loop->bb == NULL);
215 ira_free_bitmap (loop->local_copies);
216 ira_free_bitmap (loop->border_allocnos);
217 ira_free_bitmap (loop->modified_regnos);
218 ira_free_bitmap (loop->all_allocnos);
219 ira_free (loop->regno_allocno_map);
220 loop->regno_allocno_map = NULL;
221 }
222 }
223
224 /* Free the loop tree nodes. */
225 static void
226 finish_loop_tree_nodes (void)
227 {
228 unsigned int i;
229
230 for (i = 0; i < ira_loop_nodes_count; i++)
231 finish_loop_tree_node (&ira_loop_nodes[i]);
232 ira_free (ira_loop_nodes);
233 for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
234 {
235 if (ira_bb_nodes[i].local_copies != NULL)
236 ira_free_bitmap (ira_bb_nodes[i].local_copies);
237 if (ira_bb_nodes[i].border_allocnos != NULL)
238 ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
239 if (ira_bb_nodes[i].modified_regnos != NULL)
240 ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
241 if (ira_bb_nodes[i].all_allocnos != NULL)
242 ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
243 if (ira_bb_nodes[i].regno_allocno_map != NULL)
244 ira_free (ira_bb_nodes[i].regno_allocno_map);
245 }
246 ira_free (ira_bb_nodes);
247 }
248
249 \f
250
251 /* The following recursive function adds LOOP to the loop tree
252 hierarchy. LOOP is added only once. If LOOP is NULL we adding
253 loop designating the whole function when CFG loops are not
254 built. */
255 static void
256 add_loop_to_tree (struct loop *loop)
257 {
258 int loop_num;
259 struct loop *parent;
260 ira_loop_tree_node_t loop_node, parent_node;
261
262 /* We cannot use loop node access macros here because of potential
263 checking and because the nodes are not initialized enough
264 yet. */
265 if (loop != NULL && loop_outer (loop) != NULL)
266 add_loop_to_tree (loop_outer (loop));
267 loop_num = loop != NULL ? loop->num : 0;
268 if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
269 && ira_loop_nodes[loop_num].children == NULL)
270 {
271 /* We have not added loop node to the tree yet. */
272 loop_node = &ira_loop_nodes[loop_num];
273 loop_node->loop = loop;
274 loop_node->bb = NULL;
275 if (loop == NULL)
276 parent = NULL;
277 else
278 {
279 for (parent = loop_outer (loop);
280 parent != NULL;
281 parent = loop_outer (parent))
282 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
283 break;
284 }
285 if (parent == NULL)
286 {
287 loop_node->next = NULL;
288 loop_node->subloop_next = NULL;
289 loop_node->parent = NULL;
290 }
291 else
292 {
293 parent_node = &ira_loop_nodes[parent->num];
294 loop_node->next = parent_node->children;
295 parent_node->children = loop_node;
296 loop_node->subloop_next = parent_node->subloops;
297 parent_node->subloops = loop_node;
298 loop_node->parent = parent_node;
299 }
300 }
301 }
302
303 /* The following recursive function sets up levels of nodes of the
304 tree given its root LOOP_NODE. The enumeration starts with LEVEL.
305 The function returns maximal value of level in the tree + 1. */
306 static int
307 setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
308 {
309 int height, max_height;
310 ira_loop_tree_node_t subloop_node;
311
312 ira_assert (loop_node->bb == NULL);
313 loop_node->level = level;
314 max_height = level + 1;
315 for (subloop_node = loop_node->subloops;
316 subloop_node != NULL;
317 subloop_node = subloop_node->subloop_next)
318 {
319 ira_assert (subloop_node->bb == NULL);
320 height = setup_loop_tree_level (subloop_node, level + 1);
321 if (height > max_height)
322 max_height = height;
323 }
324 return max_height;
325 }
326
327 /* Create the loop tree. The algorithm is designed to provide correct
328 order of loops (they are ordered by their last loop BB) and basic
329 blocks in the chain formed by member next. */
330 static void
331 form_loop_tree (void)
332 {
333 basic_block bb;
334 struct loop *parent;
335 ira_loop_tree_node_t bb_node, loop_node;
336
337 /* We cannot use loop/bb node access macros because of potential
338 checking and because the nodes are not initialized enough
339 yet. */
340 FOR_EACH_BB_FN (bb, cfun)
341 {
342 bb_node = &ira_bb_nodes[bb->index];
343 bb_node->bb = bb;
344 bb_node->loop = NULL;
345 bb_node->subloops = NULL;
346 bb_node->children = NULL;
347 bb_node->subloop_next = NULL;
348 bb_node->next = NULL;
349 if (current_loops == NULL)
350 parent = NULL;
351 else
352 {
353 for (parent = bb->loop_father;
354 parent != NULL;
355 parent = loop_outer (parent))
356 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
357 break;
358 }
359 add_loop_to_tree (parent);
360 loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
361 bb_node->next = loop_node->children;
362 bb_node->parent = loop_node;
363 loop_node->children = bb_node;
364 }
365 ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
366 ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
367 ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
368 }
369
370 \f
371
372 /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
373 tree nodes. */
374 static void
375 rebuild_regno_allocno_maps (void)
376 {
377 unsigned int l;
378 int max_regno, regno;
379 ira_allocno_t a;
380 ira_loop_tree_node_t loop_tree_node;
381 loop_p loop;
382 ira_allocno_iterator ai;
383
384 ira_assert (current_loops != NULL);
385 max_regno = max_reg_num ();
386 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop)
387 if (ira_loop_nodes[l].regno_allocno_map != NULL)
388 {
389 ira_free (ira_loop_nodes[l].regno_allocno_map);
390 ira_loop_nodes[l].regno_allocno_map
391 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
392 * max_regno);
393 memset (ira_loop_nodes[l].regno_allocno_map, 0,
394 sizeof (ira_allocno_t) * max_regno);
395 }
396 ira_free (ira_regno_allocno_map);
397 ira_regno_allocno_map
398 = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
399 memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
400 FOR_EACH_ALLOCNO (a, ai)
401 {
402 if (ALLOCNO_CAP_MEMBER (a) != NULL)
403 /* Caps are not in the regno allocno maps. */
404 continue;
405 regno = ALLOCNO_REGNO (a);
406 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
407 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
408 ira_regno_allocno_map[regno] = a;
409 if (loop_tree_node->regno_allocno_map[regno] == NULL)
410 /* Remember that we can create temporary allocnos to break
411 cycles in register shuffle. */
412 loop_tree_node->regno_allocno_map[regno] = a;
413 }
414 }
415 \f
416
417 /* Pools for allocnos, allocno live ranges and objects. */
418 static object_allocator<live_range> live_range_pool ("live ranges");
419 static object_allocator<ira_allocno> allocno_pool ("allocnos");
420 static object_allocator<ira_object> object_pool ("objects");
421
422 /* Vec containing references to all created allocnos. It is a
423 container of array allocnos. */
424 static vec<ira_allocno_t> allocno_vec;
425
426 /* Vec containing references to all created ira_objects. It is a
427 container of ira_object_id_map. */
428 static vec<ira_object_t> ira_object_id_map_vec;
429
430 /* Initialize data concerning allocnos. */
431 static void
432 initiate_allocnos (void)
433 {
434 allocno_vec.create (max_reg_num () * 2);
435 ira_allocnos = NULL;
436 ira_allocnos_num = 0;
437 ira_objects_num = 0;
438 ira_object_id_map_vec.create (max_reg_num () * 2);
439 ira_object_id_map = NULL;
440 ira_regno_allocno_map
441 = (ira_allocno_t *) ira_allocate (max_reg_num ()
442 * sizeof (ira_allocno_t));
443 memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
444 }
445
446 /* Create and return an object corresponding to a new allocno A. */
447 static ira_object_t
448 ira_create_object (ira_allocno_t a, int subword)
449 {
450 enum reg_class aclass = ALLOCNO_CLASS (a);
451 ira_object_t obj = object_pool.allocate ();
452
453 OBJECT_ALLOCNO (obj) = a;
454 OBJECT_SUBWORD (obj) = subword;
455 OBJECT_CONFLICT_ID (obj) = ira_objects_num;
456 OBJECT_CONFLICT_VEC_P (obj) = false;
457 OBJECT_CONFLICT_ARRAY (obj) = NULL;
458 OBJECT_NUM_CONFLICTS (obj) = 0;
459 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
460 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
461 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
462 reg_class_contents[aclass]);
463 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
464 reg_class_contents[aclass]);
465 OBJECT_MIN (obj) = INT_MAX;
466 OBJECT_MAX (obj) = -1;
467 OBJECT_LIVE_RANGES (obj) = NULL;
468
469 ira_object_id_map_vec.safe_push (obj);
470 ira_object_id_map
471 = ira_object_id_map_vec.address ();
472 ira_objects_num = ira_object_id_map_vec.length ();
473
474 return obj;
475 }
476
477 /* Create and return the allocno corresponding to REGNO in
478 LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
479 same regno if CAP_P is FALSE. */
480 ira_allocno_t
481 ira_create_allocno (int regno, bool cap_p,
482 ira_loop_tree_node_t loop_tree_node)
483 {
484 ira_allocno_t a;
485
486 a = allocno_pool.allocate ();
487 ALLOCNO_REGNO (a) = regno;
488 ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
489 if (! cap_p)
490 {
491 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
492 ira_regno_allocno_map[regno] = a;
493 if (loop_tree_node->regno_allocno_map[regno] == NULL)
494 /* Remember that we can create temporary allocnos to break
495 cycles in register shuffle on region borders (see
496 ira-emit.c). */
497 loop_tree_node->regno_allocno_map[regno] = a;
498 }
499 ALLOCNO_CAP (a) = NULL;
500 ALLOCNO_CAP_MEMBER (a) = NULL;
501 ALLOCNO_NUM (a) = ira_allocnos_num;
502 bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
503 ALLOCNO_NREFS (a) = 0;
504 ALLOCNO_FREQ (a) = 0;
505 ALLOCNO_HARD_REGNO (a) = -1;
506 ALLOCNO_CALL_FREQ (a) = 0;
507 ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
508 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0;
509 CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
510 #ifdef STACK_REGS
511 ALLOCNO_NO_STACK_REG_P (a) = false;
512 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
513 #endif
514 ALLOCNO_DONT_REASSIGN_P (a) = false;
515 ALLOCNO_BAD_SPILL_P (a) = false;
516 ALLOCNO_ASSIGNED_P (a) = false;
517 ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
518 ALLOCNO_WMODE (a) = ALLOCNO_MODE (a);
519 ALLOCNO_PREFS (a) = NULL;
520 ALLOCNO_COPIES (a) = NULL;
521 ALLOCNO_HARD_REG_COSTS (a) = NULL;
522 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
523 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
524 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
525 ALLOCNO_CLASS (a) = NO_REGS;
526 ALLOCNO_UPDATED_CLASS_COST (a) = 0;
527 ALLOCNO_CLASS_COST (a) = 0;
528 ALLOCNO_MEMORY_COST (a) = 0;
529 ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
530 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
531 ALLOCNO_NUM_OBJECTS (a) = 0;
532
533 ALLOCNO_ADD_DATA (a) = NULL;
534 allocno_vec.safe_push (a);
535 ira_allocnos = allocno_vec.address ();
536 ira_allocnos_num = allocno_vec.length ();
537
538 return a;
539 }
540
541 /* Set up register class for A and update its conflict hard
542 registers. */
543 void
544 ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
545 {
546 ira_allocno_object_iterator oi;
547 ira_object_t obj;
548
549 ALLOCNO_CLASS (a) = aclass;
550 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
551 {
552 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
553 reg_class_contents[aclass]);
554 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
555 reg_class_contents[aclass]);
556 }
557 }
558
559 /* Determine the number of objects we should associate with allocno A
560 and allocate them. */
561 void
562 ira_create_allocno_objects (ira_allocno_t a)
563 {
564 machine_mode mode = ALLOCNO_MODE (a);
565 enum reg_class aclass = ALLOCNO_CLASS (a);
566 int n = ira_reg_class_max_nregs[aclass][mode];
567 int i;
568
569 if (n != 2 || maybe_ne (GET_MODE_SIZE (mode), n * UNITS_PER_WORD))
570 n = 1;
571
572 ALLOCNO_NUM_OBJECTS (a) = n;
573 for (i = 0; i < n; i++)
574 ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
575 }
576
577 /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
578 ALLOCNO_OBJECT structures. This must be called after the allocno
579 classes are known. */
580 static void
581 create_allocno_objects (void)
582 {
583 ira_allocno_t a;
584 ira_allocno_iterator ai;
585
586 FOR_EACH_ALLOCNO (a, ai)
587 ira_create_allocno_objects (a);
588 }
589
590 /* Merge hard register conflict information for all objects associated with
591 allocno TO into the corresponding objects associated with FROM.
592 If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
593 static void
594 merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
595 bool total_only)
596 {
597 int i;
598 gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
599 for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
600 {
601 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
602 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
603
604 if (!total_only)
605 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
606 OBJECT_CONFLICT_HARD_REGS (from_obj));
607 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
608 OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
609 }
610 #ifdef STACK_REGS
611 if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
612 ALLOCNO_NO_STACK_REG_P (to) = true;
613 if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
614 ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
615 #endif
616 }
617
618 /* Update hard register conflict information for all objects associated with
619 A to include the regs in SET. */
620 void
621 ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
622 {
623 ira_allocno_object_iterator i;
624 ira_object_t obj;
625
626 FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
627 {
628 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
629 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
630 }
631 }
632
633 /* Return TRUE if a conflict vector with NUM elements is more
634 profitable than a conflict bit vector for OBJ. */
635 bool
636 ira_conflict_vector_profitable_p (ira_object_t obj, int num)
637 {
638 int nw;
639 int max = OBJECT_MAX (obj);
640 int min = OBJECT_MIN (obj);
641
642 if (max < min)
643 /* We prefer a bit vector in such case because it does not result
644 in allocation. */
645 return false;
646
647 nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
648 return (2 * sizeof (ira_object_t) * (num + 1)
649 < 3 * nw * sizeof (IRA_INT_TYPE));
650 }
651
652 /* Allocates and initialize the conflict vector of OBJ for NUM
653 conflicting objects. */
654 void
655 ira_allocate_conflict_vec (ira_object_t obj, int num)
656 {
657 int size;
658 ira_object_t *vec;
659
660 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
661 num++; /* for NULL end marker */
662 size = sizeof (ira_object_t) * num;
663 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
664 vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
665 vec[0] = NULL;
666 OBJECT_NUM_CONFLICTS (obj) = 0;
667 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
668 OBJECT_CONFLICT_VEC_P (obj) = true;
669 }
670
671 /* Allocate and initialize the conflict bit vector of OBJ. */
672 static void
673 allocate_conflict_bit_vec (ira_object_t obj)
674 {
675 unsigned int size;
676
677 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
678 size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
679 / IRA_INT_BITS * sizeof (IRA_INT_TYPE));
680 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
681 memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
682 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
683 OBJECT_CONFLICT_VEC_P (obj) = false;
684 }
685
686 /* Allocate and initialize the conflict vector or conflict bit vector
687 of OBJ for NUM conflicting allocnos whatever is more profitable. */
688 void
689 ira_allocate_object_conflicts (ira_object_t obj, int num)
690 {
691 if (ira_conflict_vector_profitable_p (obj, num))
692 ira_allocate_conflict_vec (obj, num);
693 else
694 allocate_conflict_bit_vec (obj);
695 }
696
697 /* Add OBJ2 to the conflicts of OBJ1. */
698 static void
699 add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
700 {
701 int num;
702 unsigned int size;
703
704 if (OBJECT_CONFLICT_VEC_P (obj1))
705 {
706 ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
707 int curr_num = OBJECT_NUM_CONFLICTS (obj1);
708 num = curr_num + 2;
709 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
710 {
711 ira_object_t *newvec;
712 size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
713 newvec = (ira_object_t *) ira_allocate (size);
714 memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
715 ira_free (vec);
716 vec = newvec;
717 OBJECT_CONFLICT_ARRAY (obj1) = vec;
718 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
719 }
720 vec[num - 2] = obj2;
721 vec[num - 1] = NULL;
722 OBJECT_NUM_CONFLICTS (obj1)++;
723 }
724 else
725 {
726 int nw, added_head_nw, id;
727 IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
728
729 id = OBJECT_CONFLICT_ID (obj2);
730 if (OBJECT_MIN (obj1) > id)
731 {
732 /* Expand head of the bit vector. */
733 added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
734 nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
735 size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
736 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
737 {
738 memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
739 vec, nw * sizeof (IRA_INT_TYPE));
740 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
741 }
742 else
743 {
744 size
745 = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
746 vec = (IRA_INT_TYPE *) ira_allocate (size);
747 memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
748 OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
749 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
750 memset ((char *) vec
751 + (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
752 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
753 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
754 OBJECT_CONFLICT_ARRAY (obj1) = vec;
755 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
756 }
757 OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
758 }
759 else if (OBJECT_MAX (obj1) < id)
760 {
761 nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
762 size = nw * sizeof (IRA_INT_TYPE);
763 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
764 {
765 /* Expand tail of the bit vector. */
766 size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
767 vec = (IRA_INT_TYPE *) ira_allocate (size);
768 memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
769 memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
770 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
771 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
772 OBJECT_CONFLICT_ARRAY (obj1) = vec;
773 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
774 }
775 OBJECT_MAX (obj1) = id;
776 }
777 SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
778 }
779 }
780
781 /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
782 static void
783 ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
784 {
785 add_to_conflicts (obj1, obj2);
786 add_to_conflicts (obj2, obj1);
787 }
788
789 /* Clear all conflicts of OBJ. */
790 static void
791 clear_conflicts (ira_object_t obj)
792 {
793 if (OBJECT_CONFLICT_VEC_P (obj))
794 {
795 OBJECT_NUM_CONFLICTS (obj) = 0;
796 OBJECT_CONFLICT_VEC (obj)[0] = NULL;
797 }
798 else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
799 {
800 int nw;
801
802 nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
803 memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
804 }
805 }
806
807 /* The array used to find duplications in conflict vectors of
808 allocnos. */
809 static int *conflict_check;
810
811 /* The value used to mark allocation presence in conflict vector of
812 the current allocno. */
813 static int curr_conflict_check_tick;
814
815 /* Remove duplications in conflict vector of OBJ. */
816 static void
817 compress_conflict_vec (ira_object_t obj)
818 {
819 ira_object_t *vec, conflict_obj;
820 int i, j;
821
822 ira_assert (OBJECT_CONFLICT_VEC_P (obj));
823 vec = OBJECT_CONFLICT_VEC (obj);
824 curr_conflict_check_tick++;
825 for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
826 {
827 int id = OBJECT_CONFLICT_ID (conflict_obj);
828 if (conflict_check[id] != curr_conflict_check_tick)
829 {
830 conflict_check[id] = curr_conflict_check_tick;
831 vec[j++] = conflict_obj;
832 }
833 }
834 OBJECT_NUM_CONFLICTS (obj) = j;
835 vec[j] = NULL;
836 }
837
838 /* Remove duplications in conflict vectors of all allocnos. */
839 static void
840 compress_conflict_vecs (void)
841 {
842 ira_object_t obj;
843 ira_object_iterator oi;
844
845 conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
846 memset (conflict_check, 0, sizeof (int) * ira_objects_num);
847 curr_conflict_check_tick = 0;
848 FOR_EACH_OBJECT (obj, oi)
849 {
850 if (OBJECT_CONFLICT_VEC_P (obj))
851 compress_conflict_vec (obj);
852 }
853 ira_free (conflict_check);
854 }
855
856 /* This recursive function outputs allocno A and if it is a cap the
857 function outputs its members. */
858 void
859 ira_print_expanded_allocno (ira_allocno_t a)
860 {
861 basic_block bb;
862
863 fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
864 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
865 fprintf (ira_dump_file, ",b%d", bb->index);
866 else
867 fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
868 if (ALLOCNO_CAP_MEMBER (a) != NULL)
869 {
870 fprintf (ira_dump_file, ":");
871 ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
872 }
873 fprintf (ira_dump_file, ")");
874 }
875
876 /* Create and return the cap representing allocno A in the
877 parent loop. */
878 static ira_allocno_t
879 create_cap_allocno (ira_allocno_t a)
880 {
881 ira_allocno_t cap;
882 ira_loop_tree_node_t parent;
883 enum reg_class aclass;
884
885 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
886 cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
887 ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
888 ALLOCNO_WMODE (cap) = ALLOCNO_WMODE (a);
889 aclass = ALLOCNO_CLASS (a);
890 ira_set_allocno_class (cap, aclass);
891 ira_create_allocno_objects (cap);
892 ALLOCNO_CAP_MEMBER (cap) = a;
893 ALLOCNO_CAP (a) = cap;
894 ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
895 ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
896 ira_allocate_and_copy_costs
897 (&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
898 ira_allocate_and_copy_costs
899 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
900 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
901 ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
902 ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
903 ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
904 ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
905
906 merge_hard_reg_conflicts (a, cap, false);
907
908 ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
909 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
910 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap),
911 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
912 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
913 {
914 fprintf (ira_dump_file, " Creating cap ");
915 ira_print_expanded_allocno (cap);
916 fprintf (ira_dump_file, "\n");
917 }
918 return cap;
919 }
920
921 /* Create and return a live range for OBJECT with given attributes. */
922 live_range_t
923 ira_create_live_range (ira_object_t obj, int start, int finish,
924 live_range_t next)
925 {
926 live_range_t p;
927
928 p = live_range_pool.allocate ();
929 p->object = obj;
930 p->start = start;
931 p->finish = finish;
932 p->next = next;
933 return p;
934 }
935
936 /* Create a new live range for OBJECT and queue it at the head of its
937 live range list. */
938 void
939 ira_add_live_range_to_object (ira_object_t object, int start, int finish)
940 {
941 live_range_t p;
942 p = ira_create_live_range (object, start, finish,
943 OBJECT_LIVE_RANGES (object));
944 OBJECT_LIVE_RANGES (object) = p;
945 }
946
947 /* Copy allocno live range R and return the result. */
948 static live_range_t
949 copy_live_range (live_range_t r)
950 {
951 live_range_t p;
952
953 p = live_range_pool.allocate ();
954 *p = *r;
955 return p;
956 }
957
958 /* Copy allocno live range list given by its head R and return the
959 result. */
960 live_range_t
961 ira_copy_live_range_list (live_range_t r)
962 {
963 live_range_t p, first, last;
964
965 if (r == NULL)
966 return NULL;
967 for (first = last = NULL; r != NULL; r = r->next)
968 {
969 p = copy_live_range (r);
970 if (first == NULL)
971 first = p;
972 else
973 last->next = p;
974 last = p;
975 }
976 return first;
977 }
978
979 /* Merge ranges R1 and R2 and returns the result. The function
980 maintains the order of ranges and tries to minimize number of the
981 result ranges. */
982 live_range_t
983 ira_merge_live_ranges (live_range_t r1, live_range_t r2)
984 {
985 live_range_t first, last;
986
987 if (r1 == NULL)
988 return r2;
989 if (r2 == NULL)
990 return r1;
991 for (first = last = NULL; r1 != NULL && r2 != NULL;)
992 {
993 if (r1->start < r2->start)
994 std::swap (r1, r2);
995 if (r1->start <= r2->finish + 1)
996 {
997 /* Intersected ranges: merge r1 and r2 into r1. */
998 r1->start = r2->start;
999 if (r1->finish < r2->finish)
1000 r1->finish = r2->finish;
1001 live_range_t temp = r2;
1002 r2 = r2->next;
1003 ira_finish_live_range (temp);
1004 if (r2 == NULL)
1005 {
1006 /* To try to merge with subsequent ranges in r1. */
1007 r2 = r1->next;
1008 r1->next = NULL;
1009 }
1010 }
1011 else
1012 {
1013 /* Add r1 to the result. */
1014 if (first == NULL)
1015 first = last = r1;
1016 else
1017 {
1018 last->next = r1;
1019 last = r1;
1020 }
1021 r1 = r1->next;
1022 if (r1 == NULL)
1023 {
1024 /* To try to merge with subsequent ranges in r2. */
1025 r1 = r2->next;
1026 r2->next = NULL;
1027 }
1028 }
1029 }
1030 if (r1 != NULL)
1031 {
1032 if (first == NULL)
1033 first = r1;
1034 else
1035 last->next = r1;
1036 ira_assert (r1->next == NULL);
1037 }
1038 else if (r2 != NULL)
1039 {
1040 if (first == NULL)
1041 first = r2;
1042 else
1043 last->next = r2;
1044 ira_assert (r2->next == NULL);
1045 }
1046 else
1047 {
1048 ira_assert (last->next == NULL);
1049 }
1050 return first;
1051 }
1052
1053 /* Return TRUE if live ranges R1 and R2 intersect. */
1054 bool
1055 ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
1056 {
1057 /* Remember the live ranges are always kept ordered. */
1058 while (r1 != NULL && r2 != NULL)
1059 {
1060 if (r1->start > r2->finish)
1061 r1 = r1->next;
1062 else if (r2->start > r1->finish)
1063 r2 = r2->next;
1064 else
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 /* Free allocno live range R. */
1071 void
1072 ira_finish_live_range (live_range_t r)
1073 {
1074 live_range_pool.remove (r);
1075 }
1076
1077 /* Free list of allocno live ranges starting with R. */
1078 void
1079 ira_finish_live_range_list (live_range_t r)
1080 {
1081 live_range_t next_r;
1082
1083 for (; r != NULL; r = next_r)
1084 {
1085 next_r = r->next;
1086 ira_finish_live_range (r);
1087 }
1088 }
1089
1090 /* Free updated register costs of allocno A. */
1091 void
1092 ira_free_allocno_updated_costs (ira_allocno_t a)
1093 {
1094 enum reg_class aclass;
1095
1096 aclass = ALLOCNO_CLASS (a);
1097 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1098 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1099 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1100 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1101 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1102 aclass);
1103 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1104 }
1105
1106 /* Free and nullify all cost vectors allocated earlier for allocno
1107 A. */
1108 static void
1109 ira_free_allocno_costs (ira_allocno_t a)
1110 {
1111 enum reg_class aclass = ALLOCNO_CLASS (a);
1112 ira_object_t obj;
1113 ira_allocno_object_iterator oi;
1114
1115 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
1116 {
1117 ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
1118 ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
1119 if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
1120 ira_free (OBJECT_CONFLICT_ARRAY (obj));
1121 object_pool.remove (obj);
1122 }
1123
1124 ira_allocnos[ALLOCNO_NUM (a)] = NULL;
1125 if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1126 ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
1127 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
1128 ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
1129 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1130 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1131 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1132 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1133 aclass);
1134 ALLOCNO_HARD_REG_COSTS (a) = NULL;
1135 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
1136 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1137 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1138 }
1139
1140 /* Free the memory allocated for allocno A. */
1141 static void
1142 finish_allocno (ira_allocno_t a)
1143 {
1144 ira_free_allocno_costs (a);
1145 allocno_pool.remove (a);
1146 }
1147
1148 /* Free the memory allocated for all allocnos. */
1149 static void
1150 finish_allocnos (void)
1151 {
1152 ira_allocno_t a;
1153 ira_allocno_iterator ai;
1154
1155 FOR_EACH_ALLOCNO (a, ai)
1156 finish_allocno (a);
1157 ira_free (ira_regno_allocno_map);
1158 ira_object_id_map_vec.release ();
1159 allocno_vec.release ();
1160 allocno_pool.release ();
1161 object_pool.release ();
1162 live_range_pool.release ();
1163 }
1164
1165 \f
1166
1167 /* Pools for allocno preferences. */
1168 static object_allocator <ira_allocno_pref> pref_pool ("prefs");
1169
1170 /* Vec containing references to all created preferences. It is a
1171 container of array ira_prefs. */
1172 static vec<ira_pref_t> pref_vec;
1173
1174 /* The function initializes data concerning allocno prefs. */
1175 static void
1176 initiate_prefs (void)
1177 {
1178 pref_vec.create (get_max_uid ());
1179 ira_prefs = NULL;
1180 ira_prefs_num = 0;
1181 }
1182
1183 /* Return pref for A and HARD_REGNO if any. */
1184 static ira_pref_t
1185 find_allocno_pref (ira_allocno_t a, int hard_regno)
1186 {
1187 ira_pref_t pref;
1188
1189 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1190 if (pref->allocno == a && pref->hard_regno == hard_regno)
1191 return pref;
1192 return NULL;
1193 }
1194
1195 /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
1196 ira_pref_t
1197 ira_create_pref (ira_allocno_t a, int hard_regno, int freq)
1198 {
1199 ira_pref_t pref;
1200
1201 pref = pref_pool.allocate ();
1202 pref->num = ira_prefs_num;
1203 pref->allocno = a;
1204 pref->hard_regno = hard_regno;
1205 pref->freq = freq;
1206 pref_vec.safe_push (pref);
1207 ira_prefs = pref_vec.address ();
1208 ira_prefs_num = pref_vec.length ();
1209 return pref;
1210 }
1211
1212 /* Attach a pref PREF to the corresponding allocno. */
1213 static void
1214 add_allocno_pref_to_list (ira_pref_t pref)
1215 {
1216 ira_allocno_t a = pref->allocno;
1217
1218 pref->next_pref = ALLOCNO_PREFS (a);
1219 ALLOCNO_PREFS (a) = pref;
1220 }
1221
1222 /* Create (or update frequency if the pref already exists) the pref of
1223 allocnos A preferring HARD_REGNO with frequency FREQ. */
1224 void
1225 ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq)
1226 {
1227 ira_pref_t pref;
1228
1229 if (freq <= 0)
1230 return;
1231 if ((pref = find_allocno_pref (a, hard_regno)) != NULL)
1232 {
1233 pref->freq += freq;
1234 return;
1235 }
1236 pref = ira_create_pref (a, hard_regno, freq);
1237 ira_assert (a != NULL);
1238 add_allocno_pref_to_list (pref);
1239 }
1240
1241 /* Print info about PREF into file F. */
1242 static void
1243 print_pref (FILE *f, ira_pref_t pref)
1244 {
1245 fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num,
1246 ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno),
1247 pref->hard_regno, pref->freq);
1248 }
1249
1250 /* Print info about PREF into stderr. */
1251 void
1252 ira_debug_pref (ira_pref_t pref)
1253 {
1254 print_pref (stderr, pref);
1255 }
1256
1257 /* Print info about all prefs into file F. */
1258 static void
1259 print_prefs (FILE *f)
1260 {
1261 ira_pref_t pref;
1262 ira_pref_iterator pi;
1263
1264 FOR_EACH_PREF (pref, pi)
1265 print_pref (f, pref);
1266 }
1267
1268 /* Print info about all prefs into stderr. */
1269 void
1270 ira_debug_prefs (void)
1271 {
1272 print_prefs (stderr);
1273 }
1274
1275 /* Print info about prefs involving allocno A into file F. */
1276 static void
1277 print_allocno_prefs (FILE *f, ira_allocno_t a)
1278 {
1279 ira_pref_t pref;
1280
1281 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1282 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1283 fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq);
1284 fprintf (f, "\n");
1285 }
1286
1287 /* Print info about prefs involving allocno A into stderr. */
1288 void
1289 ira_debug_allocno_prefs (ira_allocno_t a)
1290 {
1291 print_allocno_prefs (stderr, a);
1292 }
1293
1294 /* The function frees memory allocated for PREF. */
1295 static void
1296 finish_pref (ira_pref_t pref)
1297 {
1298 ira_prefs[pref->num] = NULL;
1299 pref_pool.remove (pref);
1300 }
1301
1302 /* Remove PREF from the list of allocno prefs and free memory for
1303 it. */
1304 void
1305 ira_remove_pref (ira_pref_t pref)
1306 {
1307 ira_pref_t cpref, prev;
1308
1309 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1310 fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n",
1311 pref->num, pref->hard_regno, pref->freq);
1312 for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno);
1313 cpref != NULL;
1314 prev = cpref, cpref = cpref->next_pref)
1315 if (cpref == pref)
1316 break;
1317 ira_assert (cpref != NULL);
1318 if (prev == NULL)
1319 ALLOCNO_PREFS (pref->allocno) = pref->next_pref;
1320 else
1321 prev->next_pref = pref->next_pref;
1322 finish_pref (pref);
1323 }
1324
1325 /* Remove all prefs of allocno A. */
1326 void
1327 ira_remove_allocno_prefs (ira_allocno_t a)
1328 {
1329 ira_pref_t pref, next_pref;
1330
1331 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
1332 {
1333 next_pref = pref->next_pref;
1334 finish_pref (pref);
1335 }
1336 ALLOCNO_PREFS (a) = NULL;
1337 }
1338
1339 /* Free memory allocated for all prefs. */
1340 static void
1341 finish_prefs (void)
1342 {
1343 ira_pref_t pref;
1344 ira_pref_iterator pi;
1345
1346 FOR_EACH_PREF (pref, pi)
1347 finish_pref (pref);
1348 pref_vec.release ();
1349 pref_pool.release ();
1350 }
1351
1352 \f
1353
1354 /* Pools for copies. */
1355 static object_allocator<ira_allocno_copy> copy_pool ("copies");
1356
1357 /* Vec containing references to all created copies. It is a
1358 container of array ira_copies. */
1359 static vec<ira_copy_t> copy_vec;
1360
1361 /* The function initializes data concerning allocno copies. */
1362 static void
1363 initiate_copies (void)
1364 {
1365 copy_vec.create (get_max_uid ());
1366 ira_copies = NULL;
1367 ira_copies_num = 0;
1368 }
1369
1370 /* Return copy connecting A1 and A2 and originated from INSN of
1371 LOOP_TREE_NODE if any. */
1372 static ira_copy_t
1373 find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx_insn *insn,
1374 ira_loop_tree_node_t loop_tree_node)
1375 {
1376 ira_copy_t cp, next_cp;
1377 ira_allocno_t another_a;
1378
1379 for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
1380 {
1381 if (cp->first == a1)
1382 {
1383 next_cp = cp->next_first_allocno_copy;
1384 another_a = cp->second;
1385 }
1386 else if (cp->second == a1)
1387 {
1388 next_cp = cp->next_second_allocno_copy;
1389 another_a = cp->first;
1390 }
1391 else
1392 gcc_unreachable ();
1393 if (another_a == a2 && cp->insn == insn
1394 && cp->loop_tree_node == loop_tree_node)
1395 return cp;
1396 }
1397 return NULL;
1398 }
1399
1400 /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
1401 SECOND, FREQ, CONSTRAINT_P, and INSN. */
1402 ira_copy_t
1403 ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1404 bool constraint_p, rtx_insn *insn,
1405 ira_loop_tree_node_t loop_tree_node)
1406 {
1407 ira_copy_t cp;
1408
1409 cp = copy_pool.allocate ();
1410 cp->num = ira_copies_num;
1411 cp->first = first;
1412 cp->second = second;
1413 cp->freq = freq;
1414 cp->constraint_p = constraint_p;
1415 cp->insn = insn;
1416 cp->loop_tree_node = loop_tree_node;
1417 copy_vec.safe_push (cp);
1418 ira_copies = copy_vec.address ();
1419 ira_copies_num = copy_vec.length ();
1420 return cp;
1421 }
1422
1423 /* Attach a copy CP to allocnos involved into the copy. */
1424 static void
1425 add_allocno_copy_to_list (ira_copy_t cp)
1426 {
1427 ira_allocno_t first = cp->first, second = cp->second;
1428
1429 cp->prev_first_allocno_copy = NULL;
1430 cp->prev_second_allocno_copy = NULL;
1431 cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
1432 if (cp->next_first_allocno_copy != NULL)
1433 {
1434 if (cp->next_first_allocno_copy->first == first)
1435 cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
1436 else
1437 cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
1438 }
1439 cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
1440 if (cp->next_second_allocno_copy != NULL)
1441 {
1442 if (cp->next_second_allocno_copy->second == second)
1443 cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
1444 else
1445 cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
1446 }
1447 ALLOCNO_COPIES (first) = cp;
1448 ALLOCNO_COPIES (second) = cp;
1449 }
1450
1451 /* Make a copy CP a canonical copy where number of the
1452 first allocno is less than the second one. */
1453 static void
1454 swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
1455 {
1456 if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
1457 return;
1458
1459 std::swap (cp->first, cp->second);
1460 std::swap (cp->prev_first_allocno_copy, cp->prev_second_allocno_copy);
1461 std::swap (cp->next_first_allocno_copy, cp->next_second_allocno_copy);
1462 }
1463
1464 /* Create (or update frequency if the copy already exists) and return
1465 the copy of allocnos FIRST and SECOND with frequency FREQ
1466 corresponding to move insn INSN (if any) and originated from
1467 LOOP_TREE_NODE. */
1468 ira_copy_t
1469 ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1470 bool constraint_p, rtx_insn *insn,
1471 ira_loop_tree_node_t loop_tree_node)
1472 {
1473 ira_copy_t cp;
1474
1475 if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
1476 {
1477 cp->freq += freq;
1478 return cp;
1479 }
1480 cp = ira_create_copy (first, second, freq, constraint_p, insn,
1481 loop_tree_node);
1482 ira_assert (first != NULL && second != NULL);
1483 add_allocno_copy_to_list (cp);
1484 swap_allocno_copy_ends_if_necessary (cp);
1485 return cp;
1486 }
1487
1488 /* Print info about copy CP into file F. */
1489 static void
1490 print_copy (FILE *f, ira_copy_t cp)
1491 {
1492 fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
1493 ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
1494 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
1495 cp->insn != NULL
1496 ? "move" : cp->constraint_p ? "constraint" : "shuffle");
1497 }
1498
1499 DEBUG_FUNCTION void
1500 debug (ira_allocno_copy &ref)
1501 {
1502 print_copy (stderr, &ref);
1503 }
1504
1505 DEBUG_FUNCTION void
1506 debug (ira_allocno_copy *ptr)
1507 {
1508 if (ptr)
1509 debug (*ptr);
1510 else
1511 fprintf (stderr, "<nil>\n");
1512 }
1513
1514 /* Print info about copy CP into stderr. */
1515 void
1516 ira_debug_copy (ira_copy_t cp)
1517 {
1518 print_copy (stderr, cp);
1519 }
1520
1521 /* Print info about all copies into file F. */
1522 static void
1523 print_copies (FILE *f)
1524 {
1525 ira_copy_t cp;
1526 ira_copy_iterator ci;
1527
1528 FOR_EACH_COPY (cp, ci)
1529 print_copy (f, cp);
1530 }
1531
1532 /* Print info about all copies into stderr. */
1533 void
1534 ira_debug_copies (void)
1535 {
1536 print_copies (stderr);
1537 }
1538
1539 /* Print info about copies involving allocno A into file F. */
1540 static void
1541 print_allocno_copies (FILE *f, ira_allocno_t a)
1542 {
1543 ira_allocno_t another_a;
1544 ira_copy_t cp, next_cp;
1545
1546 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1547 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1548 {
1549 if (cp->first == a)
1550 {
1551 next_cp = cp->next_first_allocno_copy;
1552 another_a = cp->second;
1553 }
1554 else if (cp->second == a)
1555 {
1556 next_cp = cp->next_second_allocno_copy;
1557 another_a = cp->first;
1558 }
1559 else
1560 gcc_unreachable ();
1561 fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
1562 ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
1563 }
1564 fprintf (f, "\n");
1565 }
1566
1567 DEBUG_FUNCTION void
1568 debug (ira_allocno &ref)
1569 {
1570 print_allocno_copies (stderr, &ref);
1571 }
1572
1573 DEBUG_FUNCTION void
1574 debug (ira_allocno *ptr)
1575 {
1576 if (ptr)
1577 debug (*ptr);
1578 else
1579 fprintf (stderr, "<nil>\n");
1580 }
1581
1582
1583 /* Print info about copies involving allocno A into stderr. */
1584 void
1585 ira_debug_allocno_copies (ira_allocno_t a)
1586 {
1587 print_allocno_copies (stderr, a);
1588 }
1589
1590 /* The function frees memory allocated for copy CP. */
1591 static void
1592 finish_copy (ira_copy_t cp)
1593 {
1594 copy_pool.remove (cp);
1595 }
1596
1597
1598 /* Free memory allocated for all copies. */
1599 static void
1600 finish_copies (void)
1601 {
1602 ira_copy_t cp;
1603 ira_copy_iterator ci;
1604
1605 FOR_EACH_COPY (cp, ci)
1606 finish_copy (cp);
1607 copy_vec.release ();
1608 copy_pool.release ();
1609 }
1610
1611 \f
1612
1613 /* Pools for cost vectors. It is defined only for allocno classes. */
1614 static pool_allocator *cost_vector_pool[N_REG_CLASSES];
1615
1616 /* The function initiates work with hard register cost vectors. It
1617 creates allocation pool for each allocno class. */
1618 static void
1619 initiate_cost_vectors (void)
1620 {
1621 int i;
1622 enum reg_class aclass;
1623
1624 for (i = 0; i < ira_allocno_classes_num; i++)
1625 {
1626 aclass = ira_allocno_classes[i];
1627 cost_vector_pool[aclass] = new pool_allocator
1628 ("cost vectors", sizeof (int) * (ira_class_hard_regs_num[aclass]));
1629 }
1630 }
1631
1632 /* Allocate and return a cost vector VEC for ACLASS. */
1633 int *
1634 ira_allocate_cost_vector (reg_class_t aclass)
1635 {
1636 return (int*) cost_vector_pool[(int) aclass]->allocate ();
1637 }
1638
1639 /* Free a cost vector VEC for ACLASS. */
1640 void
1641 ira_free_cost_vector (int *vec, reg_class_t aclass)
1642 {
1643 ira_assert (vec != NULL);
1644 cost_vector_pool[(int) aclass]->remove (vec);
1645 }
1646
1647 /* Finish work with hard register cost vectors. Release allocation
1648 pool for each allocno class. */
1649 static void
1650 finish_cost_vectors (void)
1651 {
1652 int i;
1653 enum reg_class aclass;
1654
1655 for (i = 0; i < ira_allocno_classes_num; i++)
1656 {
1657 aclass = ira_allocno_classes[i];
1658 delete cost_vector_pool[aclass];
1659 }
1660 }
1661
1662 \f
1663
1664 /* Compute a post-ordering of the reverse control flow of the loop body
1665 designated by the children nodes of LOOP_NODE, whose body nodes in
1666 pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
1667 of the reverse loop body.
1668
1669 For the post-order of the reverse CFG, we visit the basic blocks in
1670 LOOP_PREORDER array in the reverse order of where they appear.
1671 This is important: We do not just want to compute a post-order of
1672 the reverse CFG, we want to make a best-guess for a visiting order that
1673 minimizes the number of chain elements per allocno live range. If the
1674 blocks would be visited in a different order, we would still compute a
1675 correct post-ordering but it would be less likely that two nodes
1676 connected by an edge in the CFG are neighbors in the topsort. */
1677
1678 static vec<ira_loop_tree_node_t>
1679 ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,
1680 vec<ira_loop_tree_node_t> loop_preorder)
1681 {
1682 vec<ira_loop_tree_node_t> topsort_nodes = vNULL;
1683 unsigned int n_loop_preorder;
1684
1685 n_loop_preorder = loop_preorder.length ();
1686 if (n_loop_preorder != 0)
1687 {
1688 ira_loop_tree_node_t subloop_node;
1689 unsigned int i;
1690 auto_vec<ira_loop_tree_node_t> dfs_stack;
1691
1692 /* This is a bit of strange abuse of the BB_VISITED flag: We use
1693 the flag to mark blocks we still have to visit to add them to
1694 our post-order. Define an alias to avoid confusion. */
1695 #define BB_TO_VISIT BB_VISITED
1696
1697 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1698 {
1699 gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT));
1700 subloop_node->bb->flags |= BB_TO_VISIT;
1701 }
1702
1703 topsort_nodes.create (n_loop_preorder);
1704 dfs_stack.create (n_loop_preorder);
1705
1706 FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node)
1707 {
1708 if (! (subloop_node->bb->flags & BB_TO_VISIT))
1709 continue;
1710
1711 subloop_node->bb->flags &= ~BB_TO_VISIT;
1712 dfs_stack.quick_push (subloop_node);
1713 while (! dfs_stack.is_empty ())
1714 {
1715 edge e;
1716 edge_iterator ei;
1717
1718 ira_loop_tree_node_t n = dfs_stack.last ();
1719 FOR_EACH_EDGE (e, ei, n->bb->preds)
1720 {
1721 ira_loop_tree_node_t pred_node;
1722 basic_block pred_bb = e->src;
1723
1724 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1725 continue;
1726
1727 pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index);
1728 if (pred_node != n
1729 && (pred_node->bb->flags & BB_TO_VISIT))
1730 {
1731 pred_node->bb->flags &= ~BB_TO_VISIT;
1732 dfs_stack.quick_push (pred_node);
1733 }
1734 }
1735 if (n == dfs_stack.last ())
1736 {
1737 dfs_stack.pop ();
1738 topsort_nodes.quick_push (n);
1739 }
1740 }
1741 }
1742
1743 #undef BB_TO_VISIT
1744 }
1745
1746 gcc_assert (topsort_nodes.length () == n_loop_preorder);
1747 return topsort_nodes;
1748 }
1749
1750 /* The current loop tree node and its regno allocno map. */
1751 ira_loop_tree_node_t ira_curr_loop_tree_node;
1752 ira_allocno_t *ira_curr_regno_allocno_map;
1753
1754 /* This recursive function traverses loop tree with root LOOP_NODE
1755 calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
1756 correspondingly in preorder and postorder. The function sets up
1757 IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
1758 basic block nodes of LOOP_NODE is also processed (before its
1759 subloop nodes).
1760
1761 If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
1762 the loop are passed in the *reverse* post-order of the *reverse*
1763 CFG. This is only used by ira_create_allocno_live_ranges, which
1764 wants to visit basic blocks in this order to minimize the number
1765 of elements per live range chain.
1766 Note that the loop tree nodes are still visited in the normal,
1767 forward post-order of the loop tree. */
1768
1769 void
1770 ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
1771 void (*preorder_func) (ira_loop_tree_node_t),
1772 void (*postorder_func) (ira_loop_tree_node_t))
1773 {
1774 ira_loop_tree_node_t subloop_node;
1775
1776 ira_assert (loop_node->bb == NULL);
1777 ira_curr_loop_tree_node = loop_node;
1778 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1779
1780 if (preorder_func != NULL)
1781 (*preorder_func) (loop_node);
1782
1783 if (bb_p)
1784 {
1785 auto_vec<ira_loop_tree_node_t> loop_preorder;
1786 unsigned int i;
1787
1788 /* Add all nodes to the set of nodes to visit. The IRA loop tree
1789 is set up such that nodes in the loop body appear in a pre-order
1790 of their place in the CFG. */
1791 for (subloop_node = loop_node->children;
1792 subloop_node != NULL;
1793 subloop_node = subloop_node->next)
1794 if (subloop_node->bb != NULL)
1795 loop_preorder.safe_push (subloop_node);
1796
1797 if (preorder_func != NULL)
1798 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1799 (*preorder_func) (subloop_node);
1800
1801 if (postorder_func != NULL)
1802 {
1803 vec<ira_loop_tree_node_t> loop_rev_postorder =
1804 ira_loop_tree_body_rev_postorder (loop_node, loop_preorder);
1805 FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node)
1806 (*postorder_func) (subloop_node);
1807 loop_rev_postorder.release ();
1808 }
1809 }
1810
1811 for (subloop_node = loop_node->subloops;
1812 subloop_node != NULL;
1813 subloop_node = subloop_node->subloop_next)
1814 {
1815 ira_assert (subloop_node->bb == NULL);
1816 ira_traverse_loop_tree (bb_p, subloop_node,
1817 preorder_func, postorder_func);
1818 }
1819
1820 ira_curr_loop_tree_node = loop_node;
1821 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1822
1823 if (postorder_func != NULL)
1824 (*postorder_func) (loop_node);
1825 }
1826
1827 \f
1828
1829 /* The basic block currently being processed. */
1830 static basic_block curr_bb;
1831
1832 /* This recursive function creates allocnos corresponding to
1833 pseudo-registers containing in X. True OUTPUT_P means that X is
1834 an lvalue. PARENT corresponds to the parent expression of X. */
1835 static void
1836 create_insn_allocnos (rtx x, rtx outer, bool output_p)
1837 {
1838 int i, j;
1839 const char *fmt;
1840 enum rtx_code code = GET_CODE (x);
1841
1842 if (code == REG)
1843 {
1844 int regno;
1845
1846 if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
1847 {
1848 ira_allocno_t a;
1849
1850 if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
1851 {
1852 a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
1853 if (outer != NULL && GET_CODE (outer) == SUBREG)
1854 {
1855 machine_mode wmode = GET_MODE (outer);
1856 if (partial_subreg_p (ALLOCNO_WMODE (a), wmode))
1857 ALLOCNO_WMODE (a) = wmode;
1858 }
1859 }
1860
1861 ALLOCNO_NREFS (a)++;
1862 ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
1863 if (output_p)
1864 bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
1865 }
1866 return;
1867 }
1868 else if (code == SET)
1869 {
1870 create_insn_allocnos (SET_DEST (x), NULL, true);
1871 create_insn_allocnos (SET_SRC (x), NULL, false);
1872 return;
1873 }
1874 else if (code == CLOBBER)
1875 {
1876 create_insn_allocnos (XEXP (x, 0), NULL, true);
1877 return;
1878 }
1879 else if (code == CLOBBER_HIGH)
1880 {
1881 gcc_assert (REG_P (XEXP (x, 0)) && HARD_REGISTER_P (XEXP (x, 0)));
1882 return;
1883 }
1884 else if (code == MEM)
1885 {
1886 create_insn_allocnos (XEXP (x, 0), NULL, false);
1887 return;
1888 }
1889 else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
1890 code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
1891 {
1892 create_insn_allocnos (XEXP (x, 0), NULL, true);
1893 create_insn_allocnos (XEXP (x, 0), NULL, false);
1894 return;
1895 }
1896
1897 fmt = GET_RTX_FORMAT (code);
1898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1899 {
1900 if (fmt[i] == 'e')
1901 create_insn_allocnos (XEXP (x, i), x, output_p);
1902 else if (fmt[i] == 'E')
1903 for (j = 0; j < XVECLEN (x, i); j++)
1904 create_insn_allocnos (XVECEXP (x, i, j), x, output_p);
1905 }
1906 }
1907
1908 /* Create allocnos corresponding to pseudo-registers living in the
1909 basic block represented by the corresponding loop tree node
1910 BB_NODE. */
1911 static void
1912 create_bb_allocnos (ira_loop_tree_node_t bb_node)
1913 {
1914 basic_block bb;
1915 rtx_insn *insn;
1916 unsigned int i;
1917 bitmap_iterator bi;
1918
1919 curr_bb = bb = bb_node->bb;
1920 ira_assert (bb != NULL);
1921 FOR_BB_INSNS_REVERSE (bb, insn)
1922 if (NONDEBUG_INSN_P (insn))
1923 create_insn_allocnos (PATTERN (insn), NULL, false);
1924 /* It might be a allocno living through from one subloop to
1925 another. */
1926 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi)
1927 if (ira_curr_regno_allocno_map[i] == NULL)
1928 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1929 }
1930
1931 /* Create allocnos corresponding to pseudo-registers living on edge E
1932 (a loop entry or exit). Also mark the allocnos as living on the
1933 loop border. */
1934 static void
1935 create_loop_allocnos (edge e)
1936 {
1937 unsigned int i;
1938 bitmap live_in_regs, border_allocnos;
1939 bitmap_iterator bi;
1940 ira_loop_tree_node_t parent;
1941
1942 live_in_regs = df_get_live_in (e->dest);
1943 border_allocnos = ira_curr_loop_tree_node->border_allocnos;
1944 EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src),
1945 FIRST_PSEUDO_REGISTER, i, bi)
1946 if (bitmap_bit_p (live_in_regs, i))
1947 {
1948 if (ira_curr_regno_allocno_map[i] == NULL)
1949 {
1950 /* The order of creations is important for right
1951 ira_regno_allocno_map. */
1952 if ((parent = ira_curr_loop_tree_node->parent) != NULL
1953 && parent->regno_allocno_map[i] == NULL)
1954 ira_create_allocno (i, false, parent);
1955 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1956 }
1957 bitmap_set_bit (border_allocnos,
1958 ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
1959 }
1960 }
1961
1962 /* Create allocnos corresponding to pseudo-registers living in loop
1963 represented by the corresponding loop tree node LOOP_NODE. This
1964 function is called by ira_traverse_loop_tree. */
1965 static void
1966 create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
1967 {
1968 if (loop_node->bb != NULL)
1969 create_bb_allocnos (loop_node);
1970 else if (loop_node != ira_loop_tree_root)
1971 {
1972 int i;
1973 edge_iterator ei;
1974 edge e;
1975 vec<edge> edges;
1976
1977 ira_assert (current_loops != NULL);
1978 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
1979 if (e->src != loop_node->loop->latch)
1980 create_loop_allocnos (e);
1981
1982 edges = get_loop_exit_edges (loop_node->loop);
1983 FOR_EACH_VEC_ELT (edges, i, e)
1984 create_loop_allocnos (e);
1985 edges.release ();
1986 }
1987 }
1988
1989 /* Propagate information about allocnos modified inside the loop given
1990 by its LOOP_TREE_NODE to its parent. */
1991 static void
1992 propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
1993 {
1994 if (loop_tree_node == ira_loop_tree_root)
1995 return;
1996 ira_assert (loop_tree_node->bb == NULL);
1997 bitmap_ior_into (loop_tree_node->parent->modified_regnos,
1998 loop_tree_node->modified_regnos);
1999 }
2000
2001 /* Propagate new info about allocno A (see comments about accumulated
2002 info in allocno definition) to the corresponding allocno on upper
2003 loop tree level. So allocnos on upper levels accumulate
2004 information about the corresponding allocnos in nested regions.
2005 The new info means allocno info finally calculated in this
2006 file. */
2007 static void
2008 propagate_allocno_info (void)
2009 {
2010 int i;
2011 ira_allocno_t a, parent_a;
2012 ira_loop_tree_node_t parent;
2013 enum reg_class aclass;
2014
2015 if (flag_ira_region != IRA_REGION_ALL
2016 && flag_ira_region != IRA_REGION_MIXED)
2017 return;
2018 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2019 for (a = ira_regno_allocno_map[i];
2020 a != NULL;
2021 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2022 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2023 && (parent_a = parent->regno_allocno_map[i]) != NULL
2024 /* There are no caps yet at this point. So use
2025 border_allocnos to find allocnos for the propagation. */
2026 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
2027 ALLOCNO_NUM (a)))
2028 {
2029 if (! ALLOCNO_BAD_SPILL_P (a))
2030 ALLOCNO_BAD_SPILL_P (parent_a) = false;
2031 ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
2032 ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
2033 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
2034 merge_hard_reg_conflicts (a, parent_a, true);
2035 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
2036 += ALLOCNO_CALLS_CROSSED_NUM (a);
2037 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
2038 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
2039 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
2040 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2041 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
2042 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
2043 aclass = ALLOCNO_CLASS (a);
2044 ira_assert (aclass == ALLOCNO_CLASS (parent_a));
2045 ira_allocate_and_accumulate_costs
2046 (&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
2047 ALLOCNO_HARD_REG_COSTS (a));
2048 ira_allocate_and_accumulate_costs
2049 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
2050 aclass,
2051 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
2052 ALLOCNO_CLASS_COST (parent_a)
2053 += ALLOCNO_CLASS_COST (a);
2054 ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
2055 }
2056 }
2057
2058 /* Create allocnos corresponding to pseudo-registers in the current
2059 function. Traverse the loop tree for this. */
2060 static void
2061 create_allocnos (void)
2062 {
2063 /* We need to process BB first to correctly link allocnos by member
2064 next_regno_allocno. */
2065 ira_traverse_loop_tree (true, ira_loop_tree_root,
2066 create_loop_tree_node_allocnos, NULL);
2067 if (optimize)
2068 ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
2069 propagate_modified_regnos);
2070 }
2071
2072 \f
2073
2074 /* The page contains function to remove some regions from a separate
2075 register allocation. We remove regions whose separate allocation
2076 will hardly improve the result. As a result we speed up regional
2077 register allocation. */
2078
2079 /* The function changes the object in range list given by R to OBJ. */
2080 static void
2081 change_object_in_range_list (live_range_t r, ira_object_t obj)
2082 {
2083 for (; r != NULL; r = r->next)
2084 r->object = obj;
2085 }
2086
2087 /* Move all live ranges associated with allocno FROM to allocno TO. */
2088 static void
2089 move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2090 {
2091 int i;
2092 int n = ALLOCNO_NUM_OBJECTS (from);
2093
2094 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2095
2096 for (i = 0; i < n; i++)
2097 {
2098 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2099 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2100 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2101
2102 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2103 {
2104 fprintf (ira_dump_file,
2105 " Moving ranges of a%dr%d to a%dr%d: ",
2106 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2107 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2108 ira_print_live_range_list (ira_dump_file, lr);
2109 }
2110 change_object_in_range_list (lr, to_obj);
2111 OBJECT_LIVE_RANGES (to_obj)
2112 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2113 OBJECT_LIVE_RANGES (from_obj) = NULL;
2114 }
2115 }
2116
2117 static void
2118 copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2119 {
2120 int i;
2121 int n = ALLOCNO_NUM_OBJECTS (from);
2122
2123 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2124
2125 for (i = 0; i < n; i++)
2126 {
2127 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2128 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2129 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2130
2131 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2132 {
2133 fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
2134 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2135 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2136 ira_print_live_range_list (ira_dump_file, lr);
2137 }
2138 lr = ira_copy_live_range_list (lr);
2139 change_object_in_range_list (lr, to_obj);
2140 OBJECT_LIVE_RANGES (to_obj)
2141 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2142 }
2143 }
2144
2145 /* Return TRUE if NODE represents a loop with low register
2146 pressure. */
2147 static bool
2148 low_pressure_loop_node_p (ira_loop_tree_node_t node)
2149 {
2150 int i;
2151 enum reg_class pclass;
2152
2153 if (node->bb != NULL)
2154 return false;
2155
2156 for (i = 0; i < ira_pressure_classes_num; i++)
2157 {
2158 pclass = ira_pressure_classes[i];
2159 if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass]
2160 && ira_class_hard_regs_num[pclass] > 1)
2161 return false;
2162 }
2163 return true;
2164 }
2165
2166 #ifdef STACK_REGS
2167 /* Return TRUE if LOOP has a complex enter or exit edge. We don't
2168 form a region from such loop if the target use stack register
2169 because reg-stack.c cannot deal with such edges. */
2170 static bool
2171 loop_with_complex_edge_p (struct loop *loop)
2172 {
2173 int i;
2174 edge_iterator ei;
2175 edge e;
2176 vec<edge> edges;
2177 bool res;
2178
2179 FOR_EACH_EDGE (e, ei, loop->header->preds)
2180 if (e->flags & EDGE_EH)
2181 return true;
2182 edges = get_loop_exit_edges (loop);
2183 res = false;
2184 FOR_EACH_VEC_ELT (edges, i, e)
2185 if (e->flags & EDGE_COMPLEX)
2186 {
2187 res = true;
2188 break;
2189 }
2190 edges.release ();
2191 return res;
2192 }
2193 #endif
2194
2195 /* Sort loops for marking them for removal. We put already marked
2196 loops first, then less frequent loops next, and then outer loops
2197 next. */
2198 static int
2199 loop_compare_func (const void *v1p, const void *v2p)
2200 {
2201 int diff;
2202 ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
2203 ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
2204
2205 ira_assert (l1->parent != NULL && l2->parent != NULL);
2206 if (l1->to_remove_p && ! l2->to_remove_p)
2207 return -1;
2208 if (! l1->to_remove_p && l2->to_remove_p)
2209 return 1;
2210 if ((diff = l1->loop->header->count.to_frequency (cfun)
2211 - l2->loop->header->count.to_frequency (cfun)) != 0)
2212 return diff;
2213 if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
2214 return diff;
2215 /* Make sorting stable. */
2216 return l1->loop_num - l2->loop_num;
2217 }
2218
2219 /* Mark loops which should be removed from regional allocation. We
2220 remove a loop with low register pressure inside another loop with
2221 register pressure. In this case a separate allocation of the loop
2222 hardly helps (for irregular register file architecture it could
2223 help by choosing a better hard register in the loop but we prefer
2224 faster allocation even in this case). We also remove cheap loops
2225 if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
2226 exit or enter edges are removed too because the allocation might
2227 require put pseudo moves on the EH edges (we could still do this
2228 for pseudos with caller saved hard registers in some cases but it
2229 is impossible to say here or during top-down allocation pass what
2230 hard register the pseudos get finally). */
2231 static void
2232 mark_loops_for_removal (void)
2233 {
2234 int i, n;
2235 ira_loop_tree_node_t *sorted_loops;
2236 loop_p loop;
2237
2238 ira_assert (current_loops != NULL);
2239 sorted_loops
2240 = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
2241 * number_of_loops (cfun));
2242 for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++)
2243 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2244 {
2245 if (ira_loop_nodes[i].parent == NULL)
2246 {
2247 /* Don't remove the root. */
2248 ira_loop_nodes[i].to_remove_p = false;
2249 continue;
2250 }
2251 sorted_loops[n++] = &ira_loop_nodes[i];
2252 ira_loop_nodes[i].to_remove_p
2253 = ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
2254 && low_pressure_loop_node_p (&ira_loop_nodes[i]))
2255 #ifdef STACK_REGS
2256 || loop_with_complex_edge_p (ira_loop_nodes[i].loop)
2257 #endif
2258 );
2259 }
2260 qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
2261 for (i = 0; i < n - IRA_MAX_LOOPS_NUM; i++)
2262 {
2263 sorted_loops[i]->to_remove_p = true;
2264 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2265 fprintf
2266 (ira_dump_file,
2267 " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
2268 sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
2269 sorted_loops[i]->loop->header->count.to_frequency (cfun),
2270 loop_depth (sorted_loops[i]->loop),
2271 low_pressure_loop_node_p (sorted_loops[i]->parent)
2272 && low_pressure_loop_node_p (sorted_loops[i])
2273 ? "low pressure" : "cheap loop");
2274 }
2275 ira_free (sorted_loops);
2276 }
2277
2278 /* Mark all loops but root for removing. */
2279 static void
2280 mark_all_loops_for_removal (void)
2281 {
2282 int i;
2283 loop_p loop;
2284
2285 ira_assert (current_loops != NULL);
2286 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
2287 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2288 {
2289 if (ira_loop_nodes[i].parent == NULL)
2290 {
2291 /* Don't remove the root. */
2292 ira_loop_nodes[i].to_remove_p = false;
2293 continue;
2294 }
2295 ira_loop_nodes[i].to_remove_p = true;
2296 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2297 fprintf
2298 (ira_dump_file,
2299 " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
2300 ira_loop_nodes[i].loop_num,
2301 ira_loop_nodes[i].loop->header->index,
2302 ira_loop_nodes[i].loop->header->count.to_frequency (cfun),
2303 loop_depth (ira_loop_nodes[i].loop));
2304 }
2305 }
2306
2307 /* Definition of vector of loop tree nodes. */
2308
2309 /* Vec containing references to all removed loop tree nodes. */
2310 static vec<ira_loop_tree_node_t> removed_loop_vec;
2311
2312 /* Vec containing references to all children of loop tree nodes. */
2313 static vec<ira_loop_tree_node_t> children_vec;
2314
2315 /* Remove subregions of NODE if their separate allocation will not
2316 improve the result. */
2317 static void
2318 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
2319 {
2320 unsigned int start;
2321 bool remove_p;
2322 ira_loop_tree_node_t subnode;
2323
2324 remove_p = node->to_remove_p;
2325 if (! remove_p)
2326 children_vec.safe_push (node);
2327 start = children_vec.length ();
2328 for (subnode = node->children; subnode != NULL; subnode = subnode->next)
2329 if (subnode->bb == NULL)
2330 remove_uneccesary_loop_nodes_from_loop_tree (subnode);
2331 else
2332 children_vec.safe_push (subnode);
2333 node->children = node->subloops = NULL;
2334 if (remove_p)
2335 {
2336 removed_loop_vec.safe_push (node);
2337 return;
2338 }
2339 while (children_vec.length () > start)
2340 {
2341 subnode = children_vec.pop ();
2342 subnode->parent = node;
2343 subnode->next = node->children;
2344 node->children = subnode;
2345 if (subnode->bb == NULL)
2346 {
2347 subnode->subloop_next = node->subloops;
2348 node->subloops = subnode;
2349 }
2350 }
2351 }
2352
2353 /* Return TRUE if NODE is inside PARENT. */
2354 static bool
2355 loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
2356 {
2357 for (node = node->parent; node != NULL; node = node->parent)
2358 if (node == parent)
2359 return true;
2360 return false;
2361 }
2362
2363 /* Sort allocnos according to their order in regno allocno list. */
2364 static int
2365 regno_allocno_order_compare_func (const void *v1p, const void *v2p)
2366 {
2367 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2368 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2369 ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
2370 ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
2371
2372 if (loop_is_inside_p (n1, n2))
2373 return -1;
2374 else if (loop_is_inside_p (n2, n1))
2375 return 1;
2376 /* If allocnos are equally good, sort by allocno numbers, so that
2377 the results of qsort leave nothing to chance. We put allocnos
2378 with higher number first in the list because it is the original
2379 order for allocnos from loops on the same levels. */
2380 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
2381 }
2382
2383 /* This array is used to sort allocnos to restore allocno order in
2384 the regno allocno list. */
2385 static ira_allocno_t *regno_allocnos;
2386
2387 /* Restore allocno order for REGNO in the regno allocno list. */
2388 static void
2389 ira_rebuild_regno_allocno_list (int regno)
2390 {
2391 int i, n;
2392 ira_allocno_t a;
2393
2394 for (n = 0, a = ira_regno_allocno_map[regno];
2395 a != NULL;
2396 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2397 regno_allocnos[n++] = a;
2398 ira_assert (n > 0);
2399 qsort (regno_allocnos, n, sizeof (ira_allocno_t),
2400 regno_allocno_order_compare_func);
2401 for (i = 1; i < n; i++)
2402 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
2403 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
2404 ira_regno_allocno_map[regno] = regno_allocnos[0];
2405 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2406 fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
2407 }
2408
2409 /* Propagate info from allocno FROM_A to allocno A. */
2410 static void
2411 propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
2412 {
2413 enum reg_class aclass;
2414
2415 merge_hard_reg_conflicts (from_a, a, false);
2416 ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
2417 ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
2418 ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
2419 ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
2420 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)
2421 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a);
2422 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
2423 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a));
2424
2425 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
2426 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
2427 if (! ALLOCNO_BAD_SPILL_P (from_a))
2428 ALLOCNO_BAD_SPILL_P (a) = false;
2429 aclass = ALLOCNO_CLASS (from_a);
2430 ira_assert (aclass == ALLOCNO_CLASS (a));
2431 ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2432 ALLOCNO_HARD_REG_COSTS (from_a));
2433 ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2434 aclass,
2435 ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
2436 ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
2437 ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
2438 }
2439
2440 /* Remove allocnos from loops removed from the allocation
2441 consideration. */
2442 static void
2443 remove_unnecessary_allocnos (void)
2444 {
2445 int regno;
2446 bool merged_p, rebuild_p;
2447 ira_allocno_t a, prev_a, next_a, parent_a;
2448 ira_loop_tree_node_t a_node, parent;
2449
2450 merged_p = false;
2451 regno_allocnos = NULL;
2452 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
2453 {
2454 rebuild_p = false;
2455 for (prev_a = NULL, a = ira_regno_allocno_map[regno];
2456 a != NULL;
2457 a = next_a)
2458 {
2459 next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
2460 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2461 if (! a_node->to_remove_p)
2462 prev_a = a;
2463 else
2464 {
2465 for (parent = a_node->parent;
2466 (parent_a = parent->regno_allocno_map[regno]) == NULL
2467 && parent->to_remove_p;
2468 parent = parent->parent)
2469 ;
2470 if (parent_a == NULL)
2471 {
2472 /* There are no allocnos with the same regno in
2473 upper region -- just move the allocno to the
2474 upper region. */
2475 prev_a = a;
2476 ALLOCNO_LOOP_TREE_NODE (a) = parent;
2477 parent->regno_allocno_map[regno] = a;
2478 bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
2479 rebuild_p = true;
2480 }
2481 else
2482 {
2483 /* Remove the allocno and update info of allocno in
2484 the upper region. */
2485 if (prev_a == NULL)
2486 ira_regno_allocno_map[regno] = next_a;
2487 else
2488 ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
2489 move_allocno_live_ranges (a, parent_a);
2490 merged_p = true;
2491 propagate_some_info_from_allocno (parent_a, a);
2492 /* Remove it from the corresponding regno allocno
2493 map to avoid info propagation of subsequent
2494 allocno into this already removed allocno. */
2495 a_node->regno_allocno_map[regno] = NULL;
2496 ira_remove_allocno_prefs (a);
2497 finish_allocno (a);
2498 }
2499 }
2500 }
2501 if (rebuild_p)
2502 /* We need to restore the order in regno allocno list. */
2503 {
2504 if (regno_allocnos == NULL)
2505 regno_allocnos
2506 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
2507 * ira_allocnos_num);
2508 ira_rebuild_regno_allocno_list (regno);
2509 }
2510 }
2511 if (merged_p)
2512 ira_rebuild_start_finish_chains ();
2513 if (regno_allocnos != NULL)
2514 ira_free (regno_allocnos);
2515 }
2516
2517 /* Remove allocnos from all loops but the root. */
2518 static void
2519 remove_low_level_allocnos (void)
2520 {
2521 int regno;
2522 bool merged_p, propagate_p;
2523 ira_allocno_t a, top_a;
2524 ira_loop_tree_node_t a_node, parent;
2525 ira_allocno_iterator ai;
2526
2527 merged_p = false;
2528 FOR_EACH_ALLOCNO (a, ai)
2529 {
2530 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2531 if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
2532 continue;
2533 regno = ALLOCNO_REGNO (a);
2534 if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
2535 {
2536 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
2537 ira_loop_tree_root->regno_allocno_map[regno] = a;
2538 continue;
2539 }
2540 propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
2541 /* Remove the allocno and update info of allocno in the upper
2542 region. */
2543 move_allocno_live_ranges (a, top_a);
2544 merged_p = true;
2545 if (propagate_p)
2546 propagate_some_info_from_allocno (top_a, a);
2547 }
2548 FOR_EACH_ALLOCNO (a, ai)
2549 {
2550 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2551 if (a_node == ira_loop_tree_root)
2552 continue;
2553 parent = a_node->parent;
2554 regno = ALLOCNO_REGNO (a);
2555 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2556 ira_assert (ALLOCNO_CAP (a) != NULL);
2557 else if (ALLOCNO_CAP (a) == NULL)
2558 ira_assert (parent->regno_allocno_map[regno] != NULL);
2559 }
2560 FOR_EACH_ALLOCNO (a, ai)
2561 {
2562 regno = ALLOCNO_REGNO (a);
2563 if (ira_loop_tree_root->regno_allocno_map[regno] == a)
2564 {
2565 ira_object_t obj;
2566 ira_allocno_object_iterator oi;
2567
2568 ira_regno_allocno_map[regno] = a;
2569 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
2570 ALLOCNO_CAP_MEMBER (a) = NULL;
2571 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2572 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
2573 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
2574 #ifdef STACK_REGS
2575 if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
2576 ALLOCNO_NO_STACK_REG_P (a) = true;
2577 #endif
2578 }
2579 else
2580 {
2581 ira_remove_allocno_prefs (a);
2582 finish_allocno (a);
2583 }
2584 }
2585 if (merged_p)
2586 ira_rebuild_start_finish_chains ();
2587 }
2588
2589 /* Remove loops from consideration. We remove all loops except for
2590 root if ALL_P or loops for which a separate allocation will not
2591 improve the result. We have to do this after allocno creation and
2592 their costs and allocno class evaluation because only after that
2593 the register pressure can be known and is calculated. */
2594 static void
2595 remove_unnecessary_regions (bool all_p)
2596 {
2597 if (current_loops == NULL)
2598 return;
2599 if (all_p)
2600 mark_all_loops_for_removal ();
2601 else
2602 mark_loops_for_removal ();
2603 children_vec.create (last_basic_block_for_fn (cfun)
2604 + number_of_loops (cfun));
2605 removed_loop_vec.create (last_basic_block_for_fn (cfun)
2606 + number_of_loops (cfun));
2607 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root);
2608 children_vec.release ();
2609 if (all_p)
2610 remove_low_level_allocnos ();
2611 else
2612 remove_unnecessary_allocnos ();
2613 while (removed_loop_vec.length () > 0)
2614 finish_loop_tree_node (removed_loop_vec.pop ());
2615 removed_loop_vec.release ();
2616 }
2617
2618 \f
2619
2620 /* At this point true value of allocno attribute bad_spill_p means
2621 that there is an insn where allocno occurs and where the allocno
2622 cannot be used as memory. The function updates the attribute, now
2623 it can be true only for allocnos which cannot be used as memory in
2624 an insn and in whose live ranges there is other allocno deaths.
2625 Spilling allocnos with true value will not improve the code because
2626 it will not make other allocnos colorable and additional reloads
2627 for the corresponding pseudo will be generated in reload pass for
2628 each insn it occurs.
2629
2630 This is a trick mentioned in one classic article of Chaitin etc
2631 which is frequently omitted in other implementations of RA based on
2632 graph coloring. */
2633 static void
2634 update_bad_spill_attribute (void)
2635 {
2636 int i;
2637 ira_allocno_t a;
2638 ira_allocno_iterator ai;
2639 ira_allocno_object_iterator aoi;
2640 ira_object_t obj;
2641 live_range_t r;
2642 enum reg_class aclass;
2643 bitmap_head dead_points[N_REG_CLASSES];
2644
2645 for (i = 0; i < ira_allocno_classes_num; i++)
2646 {
2647 aclass = ira_allocno_classes[i];
2648 bitmap_initialize (&dead_points[aclass], &reg_obstack);
2649 }
2650 FOR_EACH_ALLOCNO (a, ai)
2651 {
2652 aclass = ALLOCNO_CLASS (a);
2653 if (aclass == NO_REGS)
2654 continue;
2655 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2656 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2657 bitmap_set_bit (&dead_points[aclass], r->finish);
2658 }
2659 FOR_EACH_ALLOCNO (a, ai)
2660 {
2661 aclass = ALLOCNO_CLASS (a);
2662 if (aclass == NO_REGS)
2663 continue;
2664 if (! ALLOCNO_BAD_SPILL_P (a))
2665 continue;
2666 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2667 {
2668 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2669 {
2670 for (i = r->start + 1; i < r->finish; i++)
2671 if (bitmap_bit_p (&dead_points[aclass], i))
2672 break;
2673 if (i < r->finish)
2674 break;
2675 }
2676 if (r != NULL)
2677 {
2678 ALLOCNO_BAD_SPILL_P (a) = false;
2679 break;
2680 }
2681 }
2682 }
2683 for (i = 0; i < ira_allocno_classes_num; i++)
2684 {
2685 aclass = ira_allocno_classes[i];
2686 bitmap_clear (&dead_points[aclass]);
2687 }
2688 }
2689
2690 \f
2691
2692 /* Set up minimal and maximal live range points for allocnos. */
2693 static void
2694 setup_min_max_allocno_live_range_point (void)
2695 {
2696 int i;
2697 ira_allocno_t a, parent_a, cap;
2698 ira_allocno_iterator ai;
2699 #ifdef ENABLE_IRA_CHECKING
2700 ira_object_iterator oi;
2701 ira_object_t obj;
2702 #endif
2703 live_range_t r;
2704 ira_loop_tree_node_t parent;
2705
2706 FOR_EACH_ALLOCNO (a, ai)
2707 {
2708 int n = ALLOCNO_NUM_OBJECTS (a);
2709
2710 for (i = 0; i < n; i++)
2711 {
2712 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2713 r = OBJECT_LIVE_RANGES (obj);
2714 if (r == NULL)
2715 continue;
2716 OBJECT_MAX (obj) = r->finish;
2717 for (; r->next != NULL; r = r->next)
2718 ;
2719 OBJECT_MIN (obj) = r->start;
2720 }
2721 }
2722 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2723 for (a = ira_regno_allocno_map[i];
2724 a != NULL;
2725 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2726 {
2727 int j;
2728 int n = ALLOCNO_NUM_OBJECTS (a);
2729
2730 for (j = 0; j < n; j++)
2731 {
2732 ira_object_t obj = ALLOCNO_OBJECT (a, j);
2733 ira_object_t parent_obj;
2734
2735 if (OBJECT_MAX (obj) < 0)
2736 {
2737 /* The object is not used and hence does not live. */
2738 ira_assert (OBJECT_LIVE_RANGES (obj) == NULL);
2739 OBJECT_MAX (obj) = 0;
2740 OBJECT_MIN (obj) = 1;
2741 continue;
2742 }
2743 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2744 /* Accumulation of range info. */
2745 if (ALLOCNO_CAP (a) != NULL)
2746 {
2747 for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
2748 {
2749 ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
2750 if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
2751 OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
2752 if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
2753 OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
2754 }
2755 continue;
2756 }
2757 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
2758 continue;
2759 parent_a = parent->regno_allocno_map[i];
2760 parent_obj = ALLOCNO_OBJECT (parent_a, j);
2761 if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
2762 OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
2763 if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
2764 OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
2765 }
2766 }
2767 #ifdef ENABLE_IRA_CHECKING
2768 FOR_EACH_OBJECT (obj, oi)
2769 {
2770 if ((OBJECT_MIN (obj) >= 0 && OBJECT_MIN (obj) <= ira_max_point)
2771 && (OBJECT_MAX (obj) >= 0 && OBJECT_MAX (obj) <= ira_max_point))
2772 continue;
2773 gcc_unreachable ();
2774 }
2775 #endif
2776 }
2777
2778 /* Sort allocnos according to their live ranges. Allocnos with
2779 smaller allocno class are put first unless we use priority
2780 coloring. Allocnos with the same class are ordered according
2781 their start (min). Allocnos with the same start are ordered
2782 according their finish (max). */
2783 static int
2784 object_range_compare_func (const void *v1p, const void *v2p)
2785 {
2786 int diff;
2787 ira_object_t obj1 = *(const ira_object_t *) v1p;
2788 ira_object_t obj2 = *(const ira_object_t *) v2p;
2789 ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
2790 ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
2791
2792 if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
2793 return diff;
2794 if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
2795 return diff;
2796 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2797 }
2798
2799 /* Sort ira_object_id_map and set up conflict id of allocnos. */
2800 static void
2801 sort_conflict_id_map (void)
2802 {
2803 int i, num;
2804 ira_allocno_t a;
2805 ira_allocno_iterator ai;
2806
2807 num = 0;
2808 FOR_EACH_ALLOCNO (a, ai)
2809 {
2810 ira_allocno_object_iterator oi;
2811 ira_object_t obj;
2812
2813 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2814 ira_object_id_map[num++] = obj;
2815 }
2816 if (num > 1)
2817 qsort (ira_object_id_map, num, sizeof (ira_object_t),
2818 object_range_compare_func);
2819 for (i = 0; i < num; i++)
2820 {
2821 ira_object_t obj = ira_object_id_map[i];
2822
2823 gcc_assert (obj != NULL);
2824 OBJECT_CONFLICT_ID (obj) = i;
2825 }
2826 for (i = num; i < ira_objects_num; i++)
2827 ira_object_id_map[i] = NULL;
2828 }
2829
2830 /* Set up minimal and maximal conflict ids of allocnos with which
2831 given allocno can conflict. */
2832 static void
2833 setup_min_max_conflict_allocno_ids (void)
2834 {
2835 int aclass;
2836 int i, j, min, max, start, finish, first_not_finished, filled_area_start;
2837 int *live_range_min, *last_lived;
2838 int word0_min, word0_max;
2839 ira_allocno_t a;
2840 ira_allocno_iterator ai;
2841
2842 live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
2843 aclass = -1;
2844 first_not_finished = -1;
2845 for (i = 0; i < ira_objects_num; i++)
2846 {
2847 ira_object_t obj = ira_object_id_map[i];
2848
2849 if (obj == NULL)
2850 continue;
2851
2852 a = OBJECT_ALLOCNO (obj);
2853
2854 if (aclass < 0)
2855 {
2856 aclass = ALLOCNO_CLASS (a);
2857 min = i;
2858 first_not_finished = i;
2859 }
2860 else
2861 {
2862 start = OBJECT_MIN (obj);
2863 /* If we skip an allocno, the allocno with smaller ids will
2864 be also skipped because of the secondary sorting the
2865 range finishes (see function
2866 object_range_compare_func). */
2867 while (first_not_finished < i
2868 && start > OBJECT_MAX (ira_object_id_map
2869 [first_not_finished]))
2870 first_not_finished++;
2871 min = first_not_finished;
2872 }
2873 if (min == i)
2874 /* We could increase min further in this case but it is good
2875 enough. */
2876 min++;
2877 live_range_min[i] = OBJECT_MIN (obj);
2878 OBJECT_MIN (obj) = min;
2879 }
2880 last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
2881 aclass = -1;
2882 filled_area_start = -1;
2883 for (i = ira_objects_num - 1; i >= 0; i--)
2884 {
2885 ira_object_t obj = ira_object_id_map[i];
2886
2887 if (obj == NULL)
2888 continue;
2889
2890 a = OBJECT_ALLOCNO (obj);
2891 if (aclass < 0)
2892 {
2893 aclass = ALLOCNO_CLASS (a);
2894 for (j = 0; j < ira_max_point; j++)
2895 last_lived[j] = -1;
2896 filled_area_start = ira_max_point;
2897 }
2898 min = live_range_min[i];
2899 finish = OBJECT_MAX (obj);
2900 max = last_lived[finish];
2901 if (max < 0)
2902 /* We could decrease max further in this case but it is good
2903 enough. */
2904 max = OBJECT_CONFLICT_ID (obj) - 1;
2905 OBJECT_MAX (obj) = max;
2906 /* In filling, we can go further A range finish to recognize
2907 intersection quickly because if the finish of subsequently
2908 processed allocno (it has smaller conflict id) range is
2909 further A range finish than they are definitely intersected
2910 (the reason for this is the allocnos with bigger conflict id
2911 have their range starts not smaller than allocnos with
2912 smaller ids. */
2913 for (j = min; j < filled_area_start; j++)
2914 last_lived[j] = i;
2915 filled_area_start = min;
2916 }
2917 ira_free (last_lived);
2918 ira_free (live_range_min);
2919
2920 /* For allocnos with more than one object, we may later record extra conflicts in
2921 subobject 0 that we cannot really know about here.
2922 For now, simply widen the min/max range of these subobjects. */
2923
2924 word0_min = INT_MAX;
2925 word0_max = INT_MIN;
2926
2927 FOR_EACH_ALLOCNO (a, ai)
2928 {
2929 int n = ALLOCNO_NUM_OBJECTS (a);
2930 ira_object_t obj0;
2931
2932 if (n < 2)
2933 continue;
2934 obj0 = ALLOCNO_OBJECT (a, 0);
2935 if (OBJECT_CONFLICT_ID (obj0) < word0_min)
2936 word0_min = OBJECT_CONFLICT_ID (obj0);
2937 if (OBJECT_CONFLICT_ID (obj0) > word0_max)
2938 word0_max = OBJECT_CONFLICT_ID (obj0);
2939 }
2940 FOR_EACH_ALLOCNO (a, ai)
2941 {
2942 int n = ALLOCNO_NUM_OBJECTS (a);
2943 ira_object_t obj0;
2944
2945 if (n < 2)
2946 continue;
2947 obj0 = ALLOCNO_OBJECT (a, 0);
2948 if (OBJECT_MIN (obj0) > word0_min)
2949 OBJECT_MIN (obj0) = word0_min;
2950 if (OBJECT_MAX (obj0) < word0_max)
2951 OBJECT_MAX (obj0) = word0_max;
2952 }
2953 }
2954
2955 \f
2956
2957 static void
2958 create_caps (void)
2959 {
2960 ira_allocno_t a;
2961 ira_allocno_iterator ai;
2962 ira_loop_tree_node_t loop_tree_node;
2963
2964 FOR_EACH_ALLOCNO (a, ai)
2965 {
2966 if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
2967 continue;
2968 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2969 create_cap_allocno (a);
2970 else if (ALLOCNO_CAP (a) == NULL)
2971 {
2972 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2973 if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
2974 create_cap_allocno (a);
2975 }
2976 }
2977 }
2978
2979 \f
2980
2981 /* The page contains code transforming more one region internal
2982 representation (IR) to one region IR which is necessary for reload.
2983 This transformation is called IR flattening. We might just rebuild
2984 the IR for one region but we don't do it because it takes a lot of
2985 time. */
2986
2987 /* Map: regno -> allocnos which will finally represent the regno for
2988 IR with one region. */
2989 static ira_allocno_t *regno_top_level_allocno_map;
2990
2991 /* Find the allocno that corresponds to A at a level one higher up in the
2992 loop tree. Returns NULL if A is a cap, or if it has no parent. */
2993 ira_allocno_t
2994 ira_parent_allocno (ira_allocno_t a)
2995 {
2996 ira_loop_tree_node_t parent;
2997
2998 if (ALLOCNO_CAP (a) != NULL)
2999 return NULL;
3000
3001 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
3002 if (parent == NULL)
3003 return NULL;
3004
3005 return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
3006 }
3007
3008 /* Find the allocno that corresponds to A at a level one higher up in the
3009 loop tree. If ALLOCNO_CAP is set for A, return that. */
3010 ira_allocno_t
3011 ira_parent_or_cap_allocno (ira_allocno_t a)
3012 {
3013 if (ALLOCNO_CAP (a) != NULL)
3014 return ALLOCNO_CAP (a);
3015
3016 return ira_parent_allocno (a);
3017 }
3018
3019 /* Process all allocnos originated from pseudo REGNO and copy live
3020 ranges, hard reg conflicts, and allocno stack reg attributes from
3021 low level allocnos to final allocnos which are destinations of
3022 removed stores at a loop exit. Return true if we copied live
3023 ranges. */
3024 static bool
3025 copy_info_to_removed_store_destinations (int regno)
3026 {
3027 ira_allocno_t a;
3028 ira_allocno_t parent_a = NULL;
3029 ira_loop_tree_node_t parent;
3030 bool merged_p;
3031
3032 merged_p = false;
3033 for (a = ira_regno_allocno_map[regno];
3034 a != NULL;
3035 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3036 {
3037 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
3038 /* This allocno will be removed. */
3039 continue;
3040
3041 /* Caps will be removed. */
3042 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3043 for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
3044 parent != NULL;
3045 parent = parent->parent)
3046 if ((parent_a = parent->regno_allocno_map[regno]) == NULL
3047 || (parent_a
3048 == regno_top_level_allocno_map[REGNO
3049 (allocno_emit_reg (parent_a))]
3050 && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
3051 break;
3052 if (parent == NULL || parent_a == NULL)
3053 continue;
3054
3055 copy_allocno_live_ranges (a, parent_a);
3056 merge_hard_reg_conflicts (a, parent_a, true);
3057
3058 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
3059 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3060 += ALLOCNO_CALLS_CROSSED_NUM (a);
3061 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3062 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3063 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
3064 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
3065 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3066 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3067 merged_p = true;
3068 }
3069 return merged_p;
3070 }
3071
3072 /* Flatten the IR. In other words, this function transforms IR as if
3073 it were built with one region (without loops). We could make it
3074 much simpler by rebuilding IR with one region, but unfortunately it
3075 takes a lot of time. MAX_REGNO_BEFORE_EMIT and
3076 IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
3077 IRA_MAX_POINT before emitting insns on the loop borders. */
3078 void
3079 ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
3080 {
3081 int i, j;
3082 bool keep_p;
3083 int hard_regs_num;
3084 bool new_pseudos_p, merged_p, mem_dest_p;
3085 unsigned int n;
3086 enum reg_class aclass;
3087 ira_allocno_t a, parent_a, first, second, node_first, node_second;
3088 ira_copy_t cp;
3089 ira_loop_tree_node_t node;
3090 live_range_t r;
3091 ira_allocno_iterator ai;
3092 ira_copy_iterator ci;
3093
3094 regno_top_level_allocno_map
3095 = (ira_allocno_t *) ira_allocate (max_reg_num ()
3096 * sizeof (ira_allocno_t));
3097 memset (regno_top_level_allocno_map, 0,
3098 max_reg_num () * sizeof (ira_allocno_t));
3099 new_pseudos_p = merged_p = false;
3100 FOR_EACH_ALLOCNO (a, ai)
3101 {
3102 ira_allocno_object_iterator oi;
3103 ira_object_t obj;
3104
3105 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3106 /* Caps are not in the regno allocno maps and they are never
3107 will be transformed into allocnos existing after IR
3108 flattening. */
3109 continue;
3110 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3111 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
3112 OBJECT_CONFLICT_HARD_REGS (obj));
3113 #ifdef STACK_REGS
3114 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
3115 #endif
3116 }
3117 /* Fix final allocno attributes. */
3118 for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
3119 {
3120 mem_dest_p = false;
3121 for (a = ira_regno_allocno_map[i];
3122 a != NULL;
3123 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3124 {
3125 ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
3126
3127 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3128 if (data->somewhere_renamed_p)
3129 new_pseudos_p = true;
3130 parent_a = ira_parent_allocno (a);
3131 if (parent_a == NULL)
3132 {
3133 ALLOCNO_COPIES (a) = NULL;
3134 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3135 continue;
3136 }
3137 ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
3138
3139 if (data->mem_optimized_dest != NULL)
3140 mem_dest_p = true;
3141 parent_data = ALLOCNO_EMIT_DATA (parent_a);
3142 if (REGNO (data->reg) == REGNO (parent_data->reg))
3143 {
3144 merge_hard_reg_conflicts (a, parent_a, true);
3145 move_allocno_live_ranges (a, parent_a);
3146 merged_p = true;
3147 parent_data->mem_optimized_dest_p
3148 = (parent_data->mem_optimized_dest_p
3149 || data->mem_optimized_dest_p);
3150 continue;
3151 }
3152 new_pseudos_p = true;
3153 for (;;)
3154 {
3155 ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
3156 ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
3157 ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
3158 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3159 -= ALLOCNO_CALLS_CROSSED_NUM (a);
3160 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3161 -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3162 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3163 -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3164 ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
3165 && ALLOCNO_NREFS (parent_a) >= 0
3166 && ALLOCNO_FREQ (parent_a) >= 0);
3167 aclass = ALLOCNO_CLASS (parent_a);
3168 hard_regs_num = ira_class_hard_regs_num[aclass];
3169 if (ALLOCNO_HARD_REG_COSTS (a) != NULL
3170 && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
3171 for (j = 0; j < hard_regs_num; j++)
3172 ALLOCNO_HARD_REG_COSTS (parent_a)[j]
3173 -= ALLOCNO_HARD_REG_COSTS (a)[j];
3174 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
3175 && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
3176 for (j = 0; j < hard_regs_num; j++)
3177 ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
3178 -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
3179 ALLOCNO_CLASS_COST (parent_a)
3180 -= ALLOCNO_CLASS_COST (a);
3181 ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
3182 parent_a = ira_parent_allocno (parent_a);
3183 if (parent_a == NULL)
3184 break;
3185 }
3186 ALLOCNO_COPIES (a) = NULL;
3187 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3188 }
3189 if (mem_dest_p && copy_info_to_removed_store_destinations (i))
3190 merged_p = true;
3191 }
3192 ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
3193 if (merged_p || ira_max_point_before_emit != ira_max_point)
3194 ira_rebuild_start_finish_chains ();
3195 if (new_pseudos_p)
3196 {
3197 sparseset objects_live;
3198
3199 /* Rebuild conflicts. */
3200 FOR_EACH_ALLOCNO (a, ai)
3201 {
3202 ira_allocno_object_iterator oi;
3203 ira_object_t obj;
3204
3205 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3206 || ALLOCNO_CAP_MEMBER (a) != NULL)
3207 continue;
3208 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3209 {
3210 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3211 ira_assert (r->object == obj);
3212 clear_conflicts (obj);
3213 }
3214 }
3215 objects_live = sparseset_alloc (ira_objects_num);
3216 for (i = 0; i < ira_max_point; i++)
3217 {
3218 for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
3219 {
3220 ira_object_t obj = r->object;
3221
3222 a = OBJECT_ALLOCNO (obj);
3223 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3224 || ALLOCNO_CAP_MEMBER (a) != NULL)
3225 continue;
3226
3227 aclass = ALLOCNO_CLASS (a);
3228 EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
3229 {
3230 ira_object_t live_obj = ira_object_id_map[n];
3231 ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
3232 enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
3233
3234 if (ira_reg_classes_intersect_p[aclass][live_aclass]
3235 /* Don't set up conflict for the allocno with itself. */
3236 && live_a != a)
3237 ira_add_conflict (obj, live_obj);
3238 }
3239 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
3240 }
3241
3242 for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
3243 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
3244 }
3245 sparseset_free (objects_live);
3246 compress_conflict_vecs ();
3247 }
3248 /* Mark some copies for removing and change allocnos in the rest
3249 copies. */
3250 FOR_EACH_COPY (cp, ci)
3251 {
3252 if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
3253 || ALLOCNO_CAP_MEMBER (cp->second) != NULL)
3254 {
3255 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3256 fprintf
3257 (ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
3258 cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
3259 ALLOCNO_NUM (cp->first),
3260 REGNO (allocno_emit_reg (cp->first)),
3261 ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
3262 ALLOCNO_NUM (cp->second),
3263 REGNO (allocno_emit_reg (cp->second)));
3264 cp->loop_tree_node = NULL;
3265 continue;
3266 }
3267 first
3268 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
3269 second
3270 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
3271 node = cp->loop_tree_node;
3272 if (node == NULL)
3273 keep_p = true; /* It copy generated in ira-emit.c. */
3274 else
3275 {
3276 /* Check that the copy was not propagated from level on
3277 which we will have different pseudos. */
3278 node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
3279 node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
3280 keep_p = ((REGNO (allocno_emit_reg (first))
3281 == REGNO (allocno_emit_reg (node_first)))
3282 && (REGNO (allocno_emit_reg (second))
3283 == REGNO (allocno_emit_reg (node_second))));
3284 }
3285 if (keep_p)
3286 {
3287 cp->loop_tree_node = ira_loop_tree_root;
3288 cp->first = first;
3289 cp->second = second;
3290 }
3291 else
3292 {
3293 cp->loop_tree_node = NULL;
3294 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3295 fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
3296 cp->num, ALLOCNO_NUM (cp->first),
3297 REGNO (allocno_emit_reg (cp->first)),
3298 ALLOCNO_NUM (cp->second),
3299 REGNO (allocno_emit_reg (cp->second)));
3300 }
3301 }
3302 /* Remove unnecessary allocnos on lower levels of the loop tree. */
3303 FOR_EACH_ALLOCNO (a, ai)
3304 {
3305 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3306 || ALLOCNO_CAP_MEMBER (a) != NULL)
3307 {
3308 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3309 fprintf (ira_dump_file, " Remove a%dr%d\n",
3310 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
3311 ira_remove_allocno_prefs (a);
3312 finish_allocno (a);
3313 continue;
3314 }
3315 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
3316 ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
3317 ALLOCNO_CAP (a) = NULL;
3318 /* Restore updated costs for assignments from reload. */
3319 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
3320 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
3321 if (! ALLOCNO_ASSIGNED_P (a))
3322 ira_free_allocno_updated_costs (a);
3323 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3324 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3325 }
3326 /* Remove unnecessary copies. */
3327 FOR_EACH_COPY (cp, ci)
3328 {
3329 if (cp->loop_tree_node == NULL)
3330 {
3331 ira_copies[cp->num] = NULL;
3332 finish_copy (cp);
3333 continue;
3334 }
3335 ira_assert
3336 (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
3337 && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
3338 add_allocno_copy_to_list (cp);
3339 swap_allocno_copy_ends_if_necessary (cp);
3340 }
3341 rebuild_regno_allocno_maps ();
3342 if (ira_max_point != ira_max_point_before_emit)
3343 ira_compress_allocno_live_ranges ();
3344 ira_free (regno_top_level_allocno_map);
3345 }
3346
3347 \f
3348
3349 #ifdef ENABLE_IRA_CHECKING
3350 /* Check creation of all allocnos. Allocnos on lower levels should
3351 have allocnos or caps on all upper levels. */
3352 static void
3353 check_allocno_creation (void)
3354 {
3355 ira_allocno_t a;
3356 ira_allocno_iterator ai;
3357 ira_loop_tree_node_t loop_tree_node;
3358
3359 FOR_EACH_ALLOCNO (a, ai)
3360 {
3361 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
3362 ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
3363 ALLOCNO_NUM (a)));
3364 if (loop_tree_node == ira_loop_tree_root)
3365 continue;
3366 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3367 ira_assert (ALLOCNO_CAP (a) != NULL);
3368 else if (ALLOCNO_CAP (a) == NULL)
3369 ira_assert (loop_tree_node->parent
3370 ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
3371 && bitmap_bit_p (loop_tree_node->border_allocnos,
3372 ALLOCNO_NUM (a)));
3373 }
3374 }
3375 #endif
3376
3377 /* Identify allocnos which prefer a register class with a single hard register.
3378 Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
3379 less likely to use the preferred singleton register. */
3380 static void
3381 update_conflict_hard_reg_costs (void)
3382 {
3383 ira_allocno_t a;
3384 ira_allocno_iterator ai;
3385 int i, index, min;
3386
3387 FOR_EACH_ALLOCNO (a, ai)
3388 {
3389 reg_class_t aclass = ALLOCNO_CLASS (a);
3390 reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
3391 int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)];
3392 if (singleton < 0)
3393 continue;
3394 index = ira_class_hard_reg_index[(int) aclass][singleton];
3395 if (index < 0)
3396 continue;
3397 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
3398 || ALLOCNO_HARD_REG_COSTS (a) == NULL)
3399 continue;
3400 min = INT_MAX;
3401 for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
3402 if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
3403 && min > ALLOCNO_HARD_REG_COSTS (a)[i])
3404 min = ALLOCNO_HARD_REG_COSTS (a)[i];
3405 if (min == INT_MAX)
3406 continue;
3407 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
3408 aclass, 0);
3409 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
3410 -= min - ALLOCNO_CLASS_COST (a);
3411 }
3412 }
3413
3414 /* Create a internal representation (IR) for IRA (allocnos, copies,
3415 loop tree nodes). The function returns TRUE if we generate loop
3416 structure (besides nodes representing all function and the basic
3417 blocks) for regional allocation. A true return means that we
3418 really need to flatten IR before the reload. */
3419 bool
3420 ira_build (void)
3421 {
3422 bool loops_p;
3423
3424 df_analyze ();
3425 initiate_cost_vectors ();
3426 initiate_allocnos ();
3427 initiate_prefs ();
3428 initiate_copies ();
3429 create_loop_tree_nodes ();
3430 form_loop_tree ();
3431 create_allocnos ();
3432 ira_costs ();
3433 create_allocno_objects ();
3434 ira_create_allocno_live_ranges ();
3435 remove_unnecessary_regions (false);
3436 ira_compress_allocno_live_ranges ();
3437 update_bad_spill_attribute ();
3438 loops_p = more_one_region_p ();
3439 if (loops_p)
3440 {
3441 propagate_allocno_info ();
3442 create_caps ();
3443 }
3444 ira_tune_allocno_costs ();
3445 #ifdef ENABLE_IRA_CHECKING
3446 check_allocno_creation ();
3447 #endif
3448 setup_min_max_allocno_live_range_point ();
3449 sort_conflict_id_map ();
3450 setup_min_max_conflict_allocno_ids ();
3451 ira_build_conflicts ();
3452 update_conflict_hard_reg_costs ();
3453 if (! ira_conflicts_p)
3454 {
3455 ira_allocno_t a;
3456 ira_allocno_iterator ai;
3457
3458 /* Remove all regions but root one. */
3459 if (loops_p)
3460 {
3461 remove_unnecessary_regions (true);
3462 loops_p = false;
3463 }
3464 /* We don't save hard registers around calls for fast allocation
3465 -- add caller clobbered registers as conflicting ones to
3466 allocno crossing calls. */
3467 FOR_EACH_ALLOCNO (a, ai)
3468 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
3469 ior_hard_reg_conflicts (a, &call_used_reg_set);
3470 }
3471 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3472 print_copies (ira_dump_file);
3473 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3474 print_prefs (ira_dump_file);
3475 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3476 {
3477 int n, nr, nr_big;
3478 ira_allocno_t a;
3479 live_range_t r;
3480 ira_allocno_iterator ai;
3481
3482 n = 0;
3483 nr = 0;
3484 nr_big = 0;
3485 FOR_EACH_ALLOCNO (a, ai)
3486 {
3487 int j, nobj = ALLOCNO_NUM_OBJECTS (a);
3488
3489 if (nobj > 1)
3490 nr_big++;
3491 for (j = 0; j < nobj; j++)
3492 {
3493 ira_object_t obj = ALLOCNO_OBJECT (a, j);
3494 n += OBJECT_NUM_CONFLICTS (obj);
3495 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3496 nr++;
3497 }
3498 }
3499 fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
3500 current_loops == NULL ? 1 : number_of_loops (cfun),
3501 n_basic_blocks_for_fn (cfun), ira_max_point);
3502 fprintf (ira_dump_file,
3503 " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
3504 ira_allocnos_num, nr_big, ira_copies_num, n, nr);
3505 }
3506 return loops_p;
3507 }
3508
3509 /* Release the data created by function ira_build. */
3510 void
3511 ira_destroy (void)
3512 {
3513 finish_loop_tree_nodes ();
3514 finish_prefs ();
3515 finish_copies ();
3516 finish_allocnos ();
3517 finish_cost_vectors ();
3518 ira_finish_allocno_live_ranges ();
3519 }