]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
PR modula2/114929 for loop fails to iterate down to zero when using a cardinal type
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43 #include "function-abi.h"
44
45 #ifndef STACK_POP_CODE
46 #if STACK_GROWS_DOWNWARD
47 #define STACK_POP_CODE POST_INC
48 #else
49 #define STACK_POP_CODE POST_DEC
50 #endif
51 #endif
52
53 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
54 static void validate_replace_src_1 (rtx *, void *);
55 static rtx_insn *split_insn (rtx_insn *);
56
57 struct target_recog default_target_recog;
58 #if SWITCHABLE_TARGET
59 struct target_recog *this_target_recog = &default_target_recog;
60 #endif
61
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in reginfo.c and final.c and reload.c.
67
68 init_recog and init_recog_no_volatile are responsible for setting this. */
69
70 int volatile_ok;
71
72 struct recog_data_d recog_data;
73
74 /* Contains a vector of operand_alternative structures, such that
75 operand OP of alternative A is at index A * n_operands + OP.
76 Set up by preprocess_constraints. */
77 const operand_alternative *recog_op_alt;
78
79 /* Used to provide recog_op_alt for asms. */
80 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
81 * MAX_RECOG_ALTERNATIVES];
82
83 /* On return from `constrain_operands', indicate which alternative
84 was satisfied. */
85
86 int which_alternative;
87
88 /* Nonzero after end of reload pass.
89 Set to 1 or 0 by toplev.c.
90 Controls the significance of (SUBREG (MEM)). */
91
92 int reload_completed;
93
94 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
95 int epilogue_completed;
96
97 /* Initialize data used by the function `recog'.
98 This must be called once in the compilation of a function
99 before any insn recognition may be done in the function. */
100
101 void
102 init_recog_no_volatile (void)
103 {
104 volatile_ok = 0;
105 }
106
107 void
108 init_recog (void)
109 {
110 volatile_ok = 1;
111 }
112
113 \f
114 /* Return true if labels in asm operands BODY are LABEL_REFs. */
115
116 static bool
117 asm_labels_ok (rtx body)
118 {
119 rtx asmop;
120 int i;
121
122 asmop = extract_asm_operands (body);
123 if (asmop == NULL_RTX)
124 return true;
125
126 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
127 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
128 return false;
129
130 return true;
131 }
132
133 /* Check that X is an insn-body for an `asm' with operands
134 and that the operands mentioned in it are legitimate. */
135
136 int
137 check_asm_operands (rtx x)
138 {
139 int noperands;
140 rtx *operands;
141 const char **constraints;
142 int i;
143
144 if (!asm_labels_ok (x))
145 return 0;
146
147 /* Post-reload, be more strict with things. */
148 if (reload_completed)
149 {
150 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
151 rtx_insn *insn = make_insn_raw (x);
152 extract_insn (insn);
153 constrain_operands (1, get_enabled_alternatives (insn));
154 return which_alternative >= 0;
155 }
156
157 noperands = asm_noperands (x);
158 if (noperands < 0)
159 return 0;
160 if (noperands == 0)
161 return 1;
162
163 operands = XALLOCAVEC (rtx, noperands);
164 constraints = XALLOCAVEC (const char *, noperands);
165
166 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
167
168 for (i = 0; i < noperands; i++)
169 {
170 const char *c = constraints[i];
171 if (c[0] == '%')
172 c++;
173 if (! asm_operand_ok (operands[i], c, constraints))
174 return 0;
175 }
176
177 return 1;
178 }
179 \f
180 /* Static data for the next two routines. */
181
182 struct change_t
183 {
184 rtx object;
185 int old_code;
186 bool unshare;
187 rtx *loc;
188 rtx old;
189 };
190
191 static change_t *changes;
192 static int changes_allocated;
193
194 static int num_changes = 0;
195
196 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
197 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
198 the change is simply made.
199
200 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
201 will be called with the address and mode as parameters. If OBJECT is
202 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
203 the change in place.
204
205 IN_GROUP is nonzero if this is part of a group of changes that must be
206 performed as a group. In that case, the changes will be stored. The
207 function `apply_change_group' will validate and apply the changes.
208
209 If IN_GROUP is zero, this is a single change. Try to recognize the insn
210 or validate the memory reference with the change applied. If the result
211 is not valid for the machine, suppress the change and return zero.
212 Otherwise, perform the change and return 1. */
213
214 static bool
215 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
216 {
217 rtx old = *loc;
218
219 if (old == new_rtx || rtx_equal_p (old, new_rtx))
220 return 1;
221
222 gcc_assert (in_group != 0 || num_changes == 0);
223
224 *loc = new_rtx;
225
226 /* Save the information describing this change. */
227 if (num_changes >= changes_allocated)
228 {
229 if (changes_allocated == 0)
230 /* This value allows for repeated substitutions inside complex
231 indexed addresses, or changes in up to 5 insns. */
232 changes_allocated = MAX_RECOG_OPERANDS * 5;
233 else
234 changes_allocated *= 2;
235
236 changes = XRESIZEVEC (change_t, changes, changes_allocated);
237 }
238
239 changes[num_changes].object = object;
240 changes[num_changes].loc = loc;
241 changes[num_changes].old = old;
242 changes[num_changes].unshare = unshare;
243
244 if (object && !MEM_P (object))
245 {
246 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 case invalid. */
248 changes[num_changes].old_code = INSN_CODE (object);
249 INSN_CODE (object) = -1;
250 }
251
252 num_changes++;
253
254 /* If we are making a group of changes, return 1. Otherwise, validate the
255 change group we made. */
256
257 if (in_group)
258 return 1;
259 else
260 return apply_change_group ();
261 }
262
263 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
264 UNSHARE to false. */
265
266 bool
267 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
268 {
269 return validate_change_1 (object, loc, new_rtx, in_group, false);
270 }
271
272 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
273 UNSHARE to true. */
274
275 bool
276 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
277 {
278 return validate_change_1 (object, loc, new_rtx, in_group, true);
279 }
280
281
282 /* Keep X canonicalized if some changes have made it non-canonical; only
283 modifies the operands of X, not (for example) its code. Simplifications
284 are not the job of this routine.
285
286 Return true if anything was changed. */
287 bool
288 canonicalize_change_group (rtx_insn *insn, rtx x)
289 {
290 if (COMMUTATIVE_P (x)
291 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
292 {
293 /* Oops, the caller has made X no longer canonical.
294 Let's redo the changes in the correct order. */
295 rtx tem = XEXP (x, 0);
296 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
297 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
298 return true;
299 }
300 else
301 return false;
302 }
303
304
305 /* This subroutine of apply_change_group verifies whether the changes to INSN
306 were valid; i.e. whether INSN can still be recognized.
307
308 If IN_GROUP is true clobbers which have to be added in order to
309 match the instructions will be added to the current change group.
310 Otherwise the changes will take effect immediately. */
311
312 int
313 insn_invalid_p (rtx_insn *insn, bool in_group)
314 {
315 rtx pat = PATTERN (insn);
316 int num_clobbers = 0;
317 /* If we are before reload and the pattern is a SET, see if we can add
318 clobbers. */
319 int icode = recog (pat, insn,
320 (GET_CODE (pat) == SET
321 && ! reload_completed
322 && ! reload_in_progress)
323 ? &num_clobbers : 0);
324 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
325
326
327 /* If this is an asm and the operand aren't legal, then fail. Likewise if
328 this is not an asm and the insn wasn't recognized. */
329 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
330 || (!is_asm && icode < 0))
331 return 1;
332
333 /* If we have to add CLOBBERs, fail if we have to add ones that reference
334 hard registers since our callers can't know if they are live or not.
335 Otherwise, add them. */
336 if (num_clobbers > 0)
337 {
338 rtx newpat;
339
340 if (added_clobbers_hard_reg_p (icode))
341 return 1;
342
343 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
344 XVECEXP (newpat, 0, 0) = pat;
345 add_clobbers (newpat, icode);
346 if (in_group)
347 validate_change (insn, &PATTERN (insn), newpat, 1);
348 else
349 PATTERN (insn) = pat = newpat;
350 }
351
352 /* After reload, verify that all constraints are satisfied. */
353 if (reload_completed)
354 {
355 extract_insn (insn);
356
357 if (! constrain_operands (1, get_preferred_alternatives (insn)))
358 return 1;
359 }
360
361 INSN_CODE (insn) = icode;
362 return 0;
363 }
364
365 /* Return number of changes made and not validated yet. */
366 int
367 num_changes_pending (void)
368 {
369 return num_changes;
370 }
371
372 /* Tentatively apply the changes numbered NUM and up.
373 Return 1 if all changes are valid, zero otherwise. */
374
375 int
376 verify_changes (int num)
377 {
378 int i;
379 rtx last_validated = NULL_RTX;
380
381 /* The changes have been applied and all INSN_CODEs have been reset to force
382 rerecognition.
383
384 The changes are valid if we aren't given an object, or if we are
385 given a MEM and it still is a valid address, or if this is in insn
386 and it is recognized. In the latter case, if reload has completed,
387 we also require that the operands meet the constraints for
388 the insn. */
389
390 for (i = num; i < num_changes; i++)
391 {
392 rtx object = changes[i].object;
393
394 /* If there is no object to test or if it is the same as the one we
395 already tested, ignore it. */
396 if (object == 0 || object == last_validated)
397 continue;
398
399 if (MEM_P (object))
400 {
401 if (! memory_address_addr_space_p (GET_MODE (object),
402 XEXP (object, 0),
403 MEM_ADDR_SPACE (object)))
404 break;
405 }
406 else if (/* changes[i].old might be zero, e.g. when putting a
407 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 changes[i].old
409 && REG_P (changes[i].old)
410 && asm_noperands (PATTERN (object)) > 0
411 && REG_EXPR (changes[i].old) != NULL_TREE
412 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
413 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
414 && DECL_REGISTER (REG_EXPR (changes[i].old)))
415 {
416 /* Don't allow changes of hard register operands to inline
417 assemblies if they have been defined as register asm ("x"). */
418 break;
419 }
420 else if (DEBUG_INSN_P (object))
421 continue;
422 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
423 {
424 rtx pat = PATTERN (object);
425
426 /* Perhaps we couldn't recognize the insn because there were
427 extra CLOBBERs at the end. If so, try to re-recognize
428 without the last CLOBBER (later iterations will cause each of
429 them to be eliminated, in turn). But don't do this if we
430 have an ASM_OPERAND. */
431 if (GET_CODE (pat) == PARALLEL
432 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
433 && asm_noperands (PATTERN (object)) < 0)
434 {
435 rtx newpat;
436
437 if (XVECLEN (pat, 0) == 2)
438 newpat = XVECEXP (pat, 0, 0);
439 else
440 {
441 int j;
442
443 newpat
444 = gen_rtx_PARALLEL (VOIDmode,
445 rtvec_alloc (XVECLEN (pat, 0) - 1));
446 for (j = 0; j < XVECLEN (newpat, 0); j++)
447 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
448 }
449
450 /* Add a new change to this group to replace the pattern
451 with this new pattern. Then consider this change
452 as having succeeded. The change we added will
453 cause the entire call to fail if things remain invalid.
454
455 Note that this can lose if a later change than the one
456 we are processing specified &XVECEXP (PATTERN (object), 0, X)
457 but this shouldn't occur. */
458
459 validate_change (object, &PATTERN (object), newpat, 1);
460 continue;
461 }
462 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
463 || GET_CODE (pat) == VAR_LOCATION)
464 /* If this insn is a CLOBBER or USE, it is always valid, but is
465 never recognized. */
466 continue;
467 else
468 break;
469 }
470 last_validated = object;
471 }
472
473 return (i == num_changes);
474 }
475
476 /* A group of changes has previously been issued with validate_change
477 and verified with verify_changes. Call df_insn_rescan for each of
478 the insn changed and clear num_changes. */
479
480 void
481 confirm_change_group (void)
482 {
483 int i;
484 rtx last_object = NULL;
485
486 for (i = 0; i < num_changes; i++)
487 {
488 rtx object = changes[i].object;
489
490 if (changes[i].unshare)
491 *changes[i].loc = copy_rtx (*changes[i].loc);
492
493 /* Avoid unnecessary rescanning when multiple changes to same instruction
494 are made. */
495 if (object)
496 {
497 if (object != last_object && last_object && INSN_P (last_object))
498 df_insn_rescan (as_a <rtx_insn *> (last_object));
499 last_object = object;
500 }
501 }
502
503 if (last_object && INSN_P (last_object))
504 df_insn_rescan (as_a <rtx_insn *> (last_object));
505 num_changes = 0;
506 }
507
508 /* Apply a group of changes previously issued with `validate_change'.
509 If all changes are valid, call confirm_change_group and return 1,
510 otherwise, call cancel_changes and return 0. */
511
512 int
513 apply_change_group (void)
514 {
515 if (verify_changes (0))
516 {
517 confirm_change_group ();
518 return 1;
519 }
520 else
521 {
522 cancel_changes (0);
523 return 0;
524 }
525 }
526
527
528 /* Return the number of changes so far in the current group. */
529
530 int
531 num_validated_changes (void)
532 {
533 return num_changes;
534 }
535
536 /* Retract the changes numbered NUM and up. */
537
538 void
539 cancel_changes (int num)
540 {
541 int i;
542
543 /* Back out all the changes. Do this in the opposite order in which
544 they were made. */
545 for (i = num_changes - 1; i >= num; i--)
546 {
547 *changes[i].loc = changes[i].old;
548 if (changes[i].object && !MEM_P (changes[i].object))
549 INSN_CODE (changes[i].object) = changes[i].old_code;
550 }
551 num_changes = num;
552 }
553
554 /* Reduce conditional compilation elsewhere. */
555 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
556 rtx. */
557
558 static void
559 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
560 machine_mode op0_mode)
561 {
562 rtx x = *loc;
563 enum rtx_code code = GET_CODE (x);
564 rtx new_rtx = NULL_RTX;
565 scalar_int_mode is_mode;
566
567 if (SWAPPABLE_OPERANDS_P (x)
568 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
569 {
570 validate_unshare_change (object, loc,
571 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
572 : swap_condition (code),
573 GET_MODE (x), XEXP (x, 1),
574 XEXP (x, 0)), 1);
575 x = *loc;
576 code = GET_CODE (x);
577 }
578
579 /* Canonicalize arithmetics with all constant operands. */
580 switch (GET_RTX_CLASS (code))
581 {
582 case RTX_UNARY:
583 if (CONSTANT_P (XEXP (x, 0)))
584 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
585 op0_mode);
586 break;
587 case RTX_COMM_ARITH:
588 case RTX_BIN_ARITH:
589 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
590 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
591 XEXP (x, 1));
592 break;
593 case RTX_COMPARE:
594 case RTX_COMM_COMPARE:
595 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
596 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
597 XEXP (x, 0), XEXP (x, 1));
598 break;
599 default:
600 break;
601 }
602 if (new_rtx)
603 {
604 validate_change (object, loc, new_rtx, 1);
605 return;
606 }
607
608 switch (code)
609 {
610 case PLUS:
611 /* If we have a PLUS whose second operand is now a CONST_INT, use
612 simplify_gen_binary to try to simplify it.
613 ??? We may want later to remove this, once simplification is
614 separated from this function. */
615 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
616 validate_change (object, loc,
617 simplify_gen_binary
618 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
619 break;
620 case MINUS:
621 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
622 validate_change (object, loc,
623 simplify_gen_binary
624 (PLUS, GET_MODE (x), XEXP (x, 0),
625 simplify_gen_unary (NEG,
626 GET_MODE (x), XEXP (x, 1),
627 GET_MODE (x))), 1);
628 break;
629 case ZERO_EXTEND:
630 case SIGN_EXTEND:
631 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
632 {
633 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
634 op0_mode);
635 /* If any of the above failed, substitute in something that
636 we know won't be recognized. */
637 if (!new_rtx)
638 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
639 validate_change (object, loc, new_rtx, 1);
640 }
641 break;
642 case SUBREG:
643 /* All subregs possible to simplify should be simplified. */
644 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
645 SUBREG_BYTE (x));
646
647 /* Subregs of VOIDmode operands are incorrect. */
648 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
649 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
650 if (new_rtx)
651 validate_change (object, loc, new_rtx, 1);
652 break;
653 case ZERO_EXTRACT:
654 case SIGN_EXTRACT:
655 /* If we are replacing a register with memory, try to change the memory
656 to be the mode required for memory in extract operations (this isn't
657 likely to be an insertion operation; if it was, nothing bad will
658 happen, we might just fail in some cases). */
659
660 if (MEM_P (XEXP (x, 0))
661 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
662 && CONST_INT_P (XEXP (x, 1))
663 && CONST_INT_P (XEXP (x, 2))
664 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
665 MEM_ADDR_SPACE (XEXP (x, 0)))
666 && !MEM_VOLATILE_P (XEXP (x, 0)))
667 {
668 int pos = INTVAL (XEXP (x, 2));
669 machine_mode new_mode = is_mode;
670 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
671 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
672 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
673 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
674 scalar_int_mode wanted_mode = (new_mode == VOIDmode
675 ? word_mode
676 : as_a <scalar_int_mode> (new_mode));
677
678 /* If we have a narrower mode, we can do something. */
679 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
680 {
681 int offset = pos / BITS_PER_UNIT;
682 rtx newmem;
683
684 /* If the bytes and bits are counted differently, we
685 must adjust the offset. */
686 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
687 offset =
688 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
689 offset);
690
691 gcc_assert (GET_MODE_PRECISION (wanted_mode)
692 == GET_MODE_BITSIZE (wanted_mode));
693 pos %= GET_MODE_BITSIZE (wanted_mode);
694
695 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
696
697 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
698 validate_change (object, &XEXP (x, 0), newmem, 1);
699 }
700 }
701
702 break;
703
704 default:
705 break;
706 }
707 }
708
709 /* Replace every occurrence of FROM in X with TO. Mark each change with
710 validate_change passing OBJECT. */
711
712 static void
713 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
714 bool simplify)
715 {
716 int i, j;
717 const char *fmt;
718 rtx x = *loc;
719 enum rtx_code code;
720 machine_mode op0_mode = VOIDmode;
721 int prev_changes = num_changes;
722
723 if (!x)
724 return;
725
726 code = GET_CODE (x);
727 fmt = GET_RTX_FORMAT (code);
728 if (fmt[0] == 'e')
729 op0_mode = GET_MODE (XEXP (x, 0));
730
731 /* X matches FROM if it is the same rtx or they are both referring to the
732 same register in the same mode. Avoid calling rtx_equal_p unless the
733 operands look similar. */
734
735 if (x == from
736 || (REG_P (x) && REG_P (from)
737 && GET_MODE (x) == GET_MODE (from)
738 && REGNO (x) == REGNO (from))
739 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
740 && rtx_equal_p (x, from)))
741 {
742 validate_unshare_change (object, loc, to, 1);
743 return;
744 }
745
746 /* Call ourself recursively to perform the replacements.
747 We must not replace inside already replaced expression, otherwise we
748 get infinite recursion for replacements like (reg X)->(subreg (reg X))
749 so we must special case shared ASM_OPERANDS. */
750
751 if (GET_CODE (x) == PARALLEL)
752 {
753 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
754 {
755 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
756 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
757 {
758 /* Verify that operands are really shared. */
759 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
760 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
761 (x, 0, j))));
762 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
763 from, to, object, simplify);
764 }
765 else
766 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
767 simplify);
768 }
769 }
770 else
771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
772 {
773 if (fmt[i] == 'e')
774 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
775 else if (fmt[i] == 'E')
776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
777 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
778 simplify);
779 }
780
781 /* If we didn't substitute, there is nothing more to do. */
782 if (num_changes == prev_changes)
783 return;
784
785 /* ??? The regmove is no more, so is this aberration still necessary? */
786 /* Allow substituted expression to have different mode. This is used by
787 regmove to change mode of pseudo register. */
788 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
789 op0_mode = GET_MODE (XEXP (x, 0));
790
791 /* Do changes needed to keep rtx consistent. Don't do any other
792 simplifications, as it is not our job. */
793 if (simplify)
794 simplify_while_replacing (loc, to, object, op0_mode);
795 }
796
797 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
798 with TO. After all changes have been made, validate by seeing
799 if INSN is still valid. */
800
801 int
802 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
803 {
804 validate_replace_rtx_1 (loc, from, to, insn, true);
805 return apply_change_group ();
806 }
807
808 /* Try replacing every occurrence of FROM in INSN with TO. After all
809 changes have been made, validate by seeing if INSN is still valid. */
810
811 int
812 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
813 {
814 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
815 return apply_change_group ();
816 }
817
818 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
819 is a part of INSN. After all changes have been made, validate by seeing if
820 INSN is still valid.
821 validate_replace_rtx (from, to, insn) is equivalent to
822 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
823
824 int
825 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
826 {
827 validate_replace_rtx_1 (where, from, to, insn, true);
828 return apply_change_group ();
829 }
830
831 /* Same as above, but do not simplify rtx afterwards. */
832 int
833 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
834 rtx_insn *insn)
835 {
836 validate_replace_rtx_1 (where, from, to, insn, false);
837 return apply_change_group ();
838
839 }
840
841 /* Try replacing every occurrence of FROM in INSN with TO. This also
842 will replace in REG_EQUAL and REG_EQUIV notes. */
843
844 void
845 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
846 {
847 rtx note;
848 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
849 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
850 if (REG_NOTE_KIND (note) == REG_EQUAL
851 || REG_NOTE_KIND (note) == REG_EQUIV)
852 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
853 }
854
855 /* Function called by note_uses to replace used subexpressions. */
856 struct validate_replace_src_data
857 {
858 rtx from; /* Old RTX */
859 rtx to; /* New RTX */
860 rtx_insn *insn; /* Insn in which substitution is occurring. */
861 };
862
863 static void
864 validate_replace_src_1 (rtx *x, void *data)
865 {
866 struct validate_replace_src_data *d
867 = (struct validate_replace_src_data *) data;
868
869 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
870 }
871
872 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
873 SET_DESTs. */
874
875 void
876 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
877 {
878 struct validate_replace_src_data d;
879
880 d.from = from;
881 d.to = to;
882 d.insn = insn;
883 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
884 }
885
886 /* Try simplify INSN.
887 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
888 pattern and return true if something was simplified. */
889
890 bool
891 validate_simplify_insn (rtx_insn *insn)
892 {
893 int i;
894 rtx pat = NULL;
895 rtx newpat = NULL;
896
897 pat = PATTERN (insn);
898
899 if (GET_CODE (pat) == SET)
900 {
901 newpat = simplify_rtx (SET_SRC (pat));
902 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
903 validate_change (insn, &SET_SRC (pat), newpat, 1);
904 newpat = simplify_rtx (SET_DEST (pat));
905 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
906 validate_change (insn, &SET_DEST (pat), newpat, 1);
907 }
908 else if (GET_CODE (pat) == PARALLEL)
909 for (i = 0; i < XVECLEN (pat, 0); i++)
910 {
911 rtx s = XVECEXP (pat, 0, i);
912
913 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
914 {
915 newpat = simplify_rtx (SET_SRC (s));
916 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
917 validate_change (insn, &SET_SRC (s), newpat, 1);
918 newpat = simplify_rtx (SET_DEST (s));
919 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
920 validate_change (insn, &SET_DEST (s), newpat, 1);
921 }
922 }
923 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
924 }
925 \f
926 /* Return 1 if OP is a valid general operand for machine mode MODE.
927 This is either a register reference, a memory reference,
928 or a constant. In the case of a memory reference, the address
929 is checked for general validity for the target machine.
930
931 Register and memory references must have mode MODE in order to be valid,
932 but some constants have no machine mode and are valid for any mode.
933
934 If MODE is VOIDmode, OP is checked for validity for whatever mode
935 it has.
936
937 The main use of this function is as a predicate in match_operand
938 expressions in the machine description. */
939
940 int
941 general_operand (rtx op, machine_mode mode)
942 {
943 enum rtx_code code = GET_CODE (op);
944
945 if (mode == VOIDmode)
946 mode = GET_MODE (op);
947
948 /* Don't accept CONST_INT or anything similar
949 if the caller wants something floating. */
950 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
951 && GET_MODE_CLASS (mode) != MODE_INT
952 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
953 return 0;
954
955 if (CONST_INT_P (op)
956 && mode != VOIDmode
957 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
958 return 0;
959
960 if (CONSTANT_P (op))
961 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
962 || mode == VOIDmode)
963 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
964 && targetm.legitimate_constant_p (mode == VOIDmode
965 ? GET_MODE (op)
966 : mode, op));
967
968 /* Except for certain constants with VOIDmode, already checked for,
969 OP's mode must match MODE if MODE specifies a mode. */
970
971 if (GET_MODE (op) != mode)
972 return 0;
973
974 if (code == SUBREG)
975 {
976 rtx sub = SUBREG_REG (op);
977
978 #ifdef INSN_SCHEDULING
979 /* On machines that have insn scheduling, we want all memory
980 reference to be explicit, so outlaw paradoxical SUBREGs.
981 However, we must allow them after reload so that they can
982 get cleaned up by cleanup_subreg_operands. */
983 if (!reload_completed && MEM_P (sub)
984 && paradoxical_subreg_p (op))
985 return 0;
986 #endif
987 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
988 may result in incorrect reference. We should simplify all valid
989 subregs of MEM anyway. But allow this after reload because we
990 might be called from cleanup_subreg_operands.
991
992 ??? This is a kludge. */
993 if (!reload_completed
994 && maybe_ne (SUBREG_BYTE (op), 0)
995 && MEM_P (sub))
996 return 0;
997
998 if (REG_P (sub)
999 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1000 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1001 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1002 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1003 /* LRA can generate some invalid SUBREGS just for matched
1004 operand reload presentation. LRA needs to treat them as
1005 valid. */
1006 && ! LRA_SUBREG_P (op))
1007 return 0;
1008
1009 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1010 create such rtl, and we must reject it. */
1011 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1012 /* LRA can use subreg to store a floating point value in an
1013 integer mode. Although the floating point and the
1014 integer modes need the same number of hard registers, the
1015 size of floating point mode can be less than the integer
1016 mode. */
1017 && ! lra_in_progress
1018 && paradoxical_subreg_p (op))
1019 return 0;
1020
1021 op = sub;
1022 code = GET_CODE (op);
1023 }
1024
1025 if (code == REG)
1026 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1027 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1028
1029 if (code == MEM)
1030 {
1031 rtx y = XEXP (op, 0);
1032
1033 if (! volatile_ok && MEM_VOLATILE_P (op))
1034 return 0;
1035
1036 /* Use the mem's mode, since it will be reloaded thus. LRA can
1037 generate move insn with invalid addresses which is made valid
1038 and efficiently calculated by LRA through further numerous
1039 transformations. */
1040 if (lra_in_progress
1041 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1042 return 1;
1043 }
1044
1045 return 0;
1046 }
1047 \f
1048 /* Return 1 if OP is a valid memory address for a memory reference
1049 of mode MODE.
1050
1051 The main use of this function is as a predicate in match_operand
1052 expressions in the machine description. */
1053
1054 int
1055 address_operand (rtx op, machine_mode mode)
1056 {
1057 /* Wrong mode for an address expr. */
1058 if (GET_MODE (op) != VOIDmode
1059 && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1060 return false;
1061
1062 return memory_address_p (mode, op);
1063 }
1064
1065 /* Return 1 if OP is a register reference of mode MODE.
1066 If MODE is VOIDmode, accept a register in any mode.
1067
1068 The main use of this function is as a predicate in match_operand
1069 expressions in the machine description. */
1070
1071 int
1072 register_operand (rtx op, machine_mode mode)
1073 {
1074 if (GET_CODE (op) == SUBREG)
1075 {
1076 rtx sub = SUBREG_REG (op);
1077
1078 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1079 because it is guaranteed to be reloaded into one.
1080 Just make sure the MEM is valid in itself.
1081 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1082 but currently it does result from (SUBREG (REG)...) where the
1083 reg went on the stack.) */
1084 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1085 return 0;
1086 }
1087 else if (!REG_P (op))
1088 return 0;
1089 return general_operand (op, mode);
1090 }
1091
1092 /* Return 1 for a register in Pmode; ignore the tested mode. */
1093
1094 int
1095 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1096 {
1097 return register_operand (op, Pmode);
1098 }
1099
1100 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1101 or a hard register. */
1102
1103 int
1104 scratch_operand (rtx op, machine_mode mode)
1105 {
1106 if (GET_MODE (op) != mode && mode != VOIDmode)
1107 return 0;
1108
1109 return (GET_CODE (op) == SCRATCH
1110 || (REG_P (op)
1111 && (lra_in_progress
1112 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1113 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1114 }
1115
1116 /* Return 1 if OP is a valid immediate operand for mode MODE.
1117
1118 The main use of this function is as a predicate in match_operand
1119 expressions in the machine description. */
1120
1121 int
1122 immediate_operand (rtx op, machine_mode mode)
1123 {
1124 /* Don't accept CONST_INT or anything similar
1125 if the caller wants something floating. */
1126 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1127 && GET_MODE_CLASS (mode) != MODE_INT
1128 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1129 return 0;
1130
1131 if (CONST_INT_P (op)
1132 && mode != VOIDmode
1133 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1134 return 0;
1135
1136 return (CONSTANT_P (op)
1137 && (GET_MODE (op) == mode || mode == VOIDmode
1138 || GET_MODE (op) == VOIDmode)
1139 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1140 && targetm.legitimate_constant_p (mode == VOIDmode
1141 ? GET_MODE (op)
1142 : mode, op));
1143 }
1144
1145 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1146
1147 int
1148 const_int_operand (rtx op, machine_mode mode)
1149 {
1150 if (!CONST_INT_P (op))
1151 return 0;
1152
1153 if (mode != VOIDmode
1154 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1155 return 0;
1156
1157 return 1;
1158 }
1159
1160 #if TARGET_SUPPORTS_WIDE_INT
1161 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1162 of mode MODE. */
1163 int
1164 const_scalar_int_operand (rtx op, machine_mode mode)
1165 {
1166 if (!CONST_SCALAR_INT_P (op))
1167 return 0;
1168
1169 if (CONST_INT_P (op))
1170 return const_int_operand (op, mode);
1171
1172 if (mode != VOIDmode)
1173 {
1174 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1175 int prec = GET_MODE_PRECISION (int_mode);
1176 int bitsize = GET_MODE_BITSIZE (int_mode);
1177
1178 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1179 return 0;
1180
1181 if (prec == bitsize)
1182 return 1;
1183 else
1184 {
1185 /* Multiword partial int. */
1186 HOST_WIDE_INT x
1187 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1188 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1189 }
1190 }
1191 return 1;
1192 }
1193
1194 /* Returns 1 if OP is an operand that is a constant integer or constant
1195 floating-point number of MODE. */
1196
1197 int
1198 const_double_operand (rtx op, machine_mode mode)
1199 {
1200 return (GET_CODE (op) == CONST_DOUBLE)
1201 && (GET_MODE (op) == mode || mode == VOIDmode);
1202 }
1203 #else
1204 /* Returns 1 if OP is an operand that is a constant integer or constant
1205 floating-point number of MODE. */
1206
1207 int
1208 const_double_operand (rtx op, machine_mode mode)
1209 {
1210 /* Don't accept CONST_INT or anything similar
1211 if the caller wants something floating. */
1212 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1213 && GET_MODE_CLASS (mode) != MODE_INT
1214 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1215 return 0;
1216
1217 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1218 && (mode == VOIDmode || GET_MODE (op) == mode
1219 || GET_MODE (op) == VOIDmode));
1220 }
1221 #endif
1222 /* Return 1 if OP is a general operand that is not an immediate
1223 operand of mode MODE. */
1224
1225 int
1226 nonimmediate_operand (rtx op, machine_mode mode)
1227 {
1228 return (general_operand (op, mode) && ! CONSTANT_P (op));
1229 }
1230
1231 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1232
1233 int
1234 nonmemory_operand (rtx op, machine_mode mode)
1235 {
1236 if (CONSTANT_P (op))
1237 return immediate_operand (op, mode);
1238 return register_operand (op, mode);
1239 }
1240
1241 /* Return 1 if OP is a valid operand that stands for pushing a
1242 value of mode MODE onto the stack.
1243
1244 The main use of this function is as a predicate in match_operand
1245 expressions in the machine description. */
1246
1247 int
1248 push_operand (rtx op, machine_mode mode)
1249 {
1250 if (!MEM_P (op))
1251 return 0;
1252
1253 if (mode != VOIDmode && GET_MODE (op) != mode)
1254 return 0;
1255
1256 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1257
1258 #ifdef PUSH_ROUNDING
1259 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1260 #endif
1261
1262 op = XEXP (op, 0);
1263
1264 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1265 {
1266 if (GET_CODE (op) != STACK_PUSH_CODE)
1267 return 0;
1268 }
1269 else
1270 {
1271 poly_int64 offset;
1272 if (GET_CODE (op) != PRE_MODIFY
1273 || GET_CODE (XEXP (op, 1)) != PLUS
1274 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1275 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1276 || (STACK_GROWS_DOWNWARD
1277 ? maybe_ne (offset, -rounded_size)
1278 : maybe_ne (offset, rounded_size)))
1279 return 0;
1280 }
1281
1282 return XEXP (op, 0) == stack_pointer_rtx;
1283 }
1284
1285 /* Return 1 if OP is a valid operand that stands for popping a
1286 value of mode MODE off the stack.
1287
1288 The main use of this function is as a predicate in match_operand
1289 expressions in the machine description. */
1290
1291 int
1292 pop_operand (rtx op, machine_mode mode)
1293 {
1294 if (!MEM_P (op))
1295 return 0;
1296
1297 if (mode != VOIDmode && GET_MODE (op) != mode)
1298 return 0;
1299
1300 op = XEXP (op, 0);
1301
1302 if (GET_CODE (op) != STACK_POP_CODE)
1303 return 0;
1304
1305 return XEXP (op, 0) == stack_pointer_rtx;
1306 }
1307
1308 /* Return 1 if ADDR is a valid memory address
1309 for mode MODE in address space AS. */
1310
1311 int
1312 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1313 rtx addr, addr_space_t as)
1314 {
1315 #ifdef GO_IF_LEGITIMATE_ADDRESS
1316 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1317 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1318 return 0;
1319
1320 win:
1321 return 1;
1322 #else
1323 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1324 #endif
1325 }
1326
1327 /* Return 1 if OP is a valid memory reference with mode MODE,
1328 including a valid address.
1329
1330 The main use of this function is as a predicate in match_operand
1331 expressions in the machine description. */
1332
1333 int
1334 memory_operand (rtx op, machine_mode mode)
1335 {
1336 rtx inner;
1337
1338 if (! reload_completed)
1339 /* Note that no SUBREG is a memory operand before end of reload pass,
1340 because (SUBREG (MEM...)) forces reloading into a register. */
1341 return MEM_P (op) && general_operand (op, mode);
1342
1343 if (mode != VOIDmode && GET_MODE (op) != mode)
1344 return 0;
1345
1346 inner = op;
1347 if (GET_CODE (inner) == SUBREG)
1348 inner = SUBREG_REG (inner);
1349
1350 return (MEM_P (inner) && general_operand (op, mode));
1351 }
1352
1353 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1354 that is, a memory reference whose address is a general_operand. */
1355
1356 int
1357 indirect_operand (rtx op, machine_mode mode)
1358 {
1359 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1360 if (! reload_completed
1361 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1362 {
1363 if (mode != VOIDmode && GET_MODE (op) != mode)
1364 return 0;
1365
1366 /* The only way that we can have a general_operand as the resulting
1367 address is if OFFSET is zero and the address already is an operand
1368 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1369 operand. */
1370 poly_int64 offset;
1371 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1372 return (known_eq (offset + SUBREG_BYTE (op), 0)
1373 && general_operand (addr, Pmode));
1374 }
1375
1376 return (MEM_P (op)
1377 && memory_operand (op, mode)
1378 && general_operand (XEXP (op, 0), Pmode));
1379 }
1380
1381 /* Return 1 if this is an ordered comparison operator (not including
1382 ORDERED and UNORDERED). */
1383
1384 int
1385 ordered_comparison_operator (rtx op, machine_mode mode)
1386 {
1387 if (mode != VOIDmode && GET_MODE (op) != mode)
1388 return false;
1389 switch (GET_CODE (op))
1390 {
1391 case EQ:
1392 case NE:
1393 case LT:
1394 case LTU:
1395 case LE:
1396 case LEU:
1397 case GT:
1398 case GTU:
1399 case GE:
1400 case GEU:
1401 return true;
1402 default:
1403 return false;
1404 }
1405 }
1406
1407 /* Return 1 if this is a comparison operator. This allows the use of
1408 MATCH_OPERATOR to recognize all the branch insns. */
1409
1410 int
1411 comparison_operator (rtx op, machine_mode mode)
1412 {
1413 return ((mode == VOIDmode || GET_MODE (op) == mode)
1414 && COMPARISON_P (op));
1415 }
1416 \f
1417 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1418
1419 rtx
1420 extract_asm_operands (rtx body)
1421 {
1422 rtx tmp;
1423 switch (GET_CODE (body))
1424 {
1425 case ASM_OPERANDS:
1426 return body;
1427
1428 case SET:
1429 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1430 tmp = SET_SRC (body);
1431 if (GET_CODE (tmp) == ASM_OPERANDS)
1432 return tmp;
1433 break;
1434
1435 case PARALLEL:
1436 tmp = XVECEXP (body, 0, 0);
1437 if (GET_CODE (tmp) == ASM_OPERANDS)
1438 return tmp;
1439 if (GET_CODE (tmp) == SET)
1440 {
1441 tmp = SET_SRC (tmp);
1442 if (GET_CODE (tmp) == ASM_OPERANDS)
1443 return tmp;
1444 }
1445 break;
1446
1447 default:
1448 break;
1449 }
1450 return NULL;
1451 }
1452
1453 /* If BODY is an insn body that uses ASM_OPERANDS,
1454 return the number of operands (both input and output) in the insn.
1455 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1456 return 0.
1457 Otherwise return -1. */
1458
1459 int
1460 asm_noperands (const_rtx body)
1461 {
1462 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1463 int i, n_sets = 0;
1464
1465 if (asm_op == NULL)
1466 {
1467 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1468 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1469 {
1470 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1471 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1472 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1473 return -1;
1474 return 0;
1475 }
1476 return -1;
1477 }
1478
1479 if (GET_CODE (body) == SET)
1480 n_sets = 1;
1481 else if (GET_CODE (body) == PARALLEL)
1482 {
1483 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1484 {
1485 /* Multiple output operands, or 1 output plus some clobbers:
1486 body is
1487 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1488 /* Count backwards through CLOBBERs to determine number of SETs. */
1489 for (i = XVECLEN (body, 0); i > 0; i--)
1490 {
1491 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1492 break;
1493 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1494 return -1;
1495 }
1496
1497 /* N_SETS is now number of output operands. */
1498 n_sets = i;
1499
1500 /* Verify that all the SETs we have
1501 came from a single original asm_operands insn
1502 (so that invalid combinations are blocked). */
1503 for (i = 0; i < n_sets; i++)
1504 {
1505 rtx elt = XVECEXP (body, 0, i);
1506 if (GET_CODE (elt) != SET)
1507 return -1;
1508 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1509 return -1;
1510 /* If these ASM_OPERANDS rtx's came from different original insns
1511 then they aren't allowed together. */
1512 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1513 != ASM_OPERANDS_INPUT_VEC (asm_op))
1514 return -1;
1515 }
1516 }
1517 else
1518 {
1519 /* 0 outputs, but some clobbers:
1520 body is [(asm_operands ...) (clobber (reg ...))...]. */
1521 /* Make sure all the other parallel things really are clobbers. */
1522 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1523 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1524 return -1;
1525 }
1526 }
1527
1528 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1529 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1530 }
1531
1532 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1533 copy its operands (both input and output) into the vector OPERANDS,
1534 the locations of the operands within the insn into the vector OPERAND_LOCS,
1535 and the constraints for the operands into CONSTRAINTS.
1536 Write the modes of the operands into MODES.
1537 Write the location info into LOC.
1538 Return the assembler-template.
1539 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1540 return the basic assembly string.
1541
1542 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1543 we don't store that info. */
1544
1545 const char *
1546 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1547 const char **constraints, machine_mode *modes,
1548 location_t *loc)
1549 {
1550 int nbase = 0, n, i;
1551 rtx asmop;
1552
1553 switch (GET_CODE (body))
1554 {
1555 case ASM_OPERANDS:
1556 /* Zero output asm: BODY is (asm_operands ...). */
1557 asmop = body;
1558 break;
1559
1560 case SET:
1561 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1562 asmop = SET_SRC (body);
1563
1564 /* The output is in the SET.
1565 Its constraint is in the ASM_OPERANDS itself. */
1566 if (operands)
1567 operands[0] = SET_DEST (body);
1568 if (operand_locs)
1569 operand_locs[0] = &SET_DEST (body);
1570 if (constraints)
1571 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1572 if (modes)
1573 modes[0] = GET_MODE (SET_DEST (body));
1574 nbase = 1;
1575 break;
1576
1577 case PARALLEL:
1578 {
1579 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1580
1581 asmop = XVECEXP (body, 0, 0);
1582 if (GET_CODE (asmop) == SET)
1583 {
1584 asmop = SET_SRC (asmop);
1585
1586 /* At least one output, plus some CLOBBERs. The outputs are in
1587 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1588 for (i = 0; i < nparallel; i++)
1589 {
1590 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1591 break; /* Past last SET */
1592 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1593 if (operands)
1594 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1595 if (operand_locs)
1596 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1597 if (constraints)
1598 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1599 if (modes)
1600 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1601 }
1602 nbase = i;
1603 }
1604 else if (GET_CODE (asmop) == ASM_INPUT)
1605 {
1606 if (loc)
1607 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1608 return XSTR (asmop, 0);
1609 }
1610 break;
1611 }
1612
1613 default:
1614 gcc_unreachable ();
1615 }
1616
1617 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1618 for (i = 0; i < n; i++)
1619 {
1620 if (operand_locs)
1621 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1622 if (operands)
1623 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1624 if (constraints)
1625 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1626 if (modes)
1627 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1628 }
1629 nbase += n;
1630
1631 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1632 for (i = 0; i < n; i++)
1633 {
1634 if (operand_locs)
1635 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1636 if (operands)
1637 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1638 if (constraints)
1639 constraints[nbase + i] = "";
1640 if (modes)
1641 modes[nbase + i] = Pmode;
1642 }
1643
1644 if (loc)
1645 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1646
1647 return ASM_OPERANDS_TEMPLATE (asmop);
1648 }
1649
1650 /* Parse inline assembly string STRING and determine which operands are
1651 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1652 to true if operand I is referenced.
1653
1654 This is intended to distinguish barrier-like asms such as:
1655
1656 asm ("" : "=m" (...));
1657
1658 from real references such as:
1659
1660 asm ("sw\t$0, %0" : "=m" (...)); */
1661
1662 void
1663 get_referenced_operands (const char *string, bool *used,
1664 unsigned int noperands)
1665 {
1666 memset (used, 0, sizeof (bool) * noperands);
1667 const char *p = string;
1668 while (*p)
1669 switch (*p)
1670 {
1671 case '%':
1672 p += 1;
1673 /* A letter followed by a digit indicates an operand number. */
1674 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1675 p += 1;
1676 if (ISDIGIT (*p))
1677 {
1678 char *endptr;
1679 unsigned long opnum = strtoul (p, &endptr, 10);
1680 if (endptr != p && opnum < noperands)
1681 used[opnum] = true;
1682 p = endptr;
1683 }
1684 else
1685 p += 1;
1686 break;
1687
1688 default:
1689 p++;
1690 break;
1691 }
1692 }
1693
1694 /* Check if an asm_operand matches its constraints.
1695 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1696
1697 int
1698 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1699 {
1700 int result = 0;
1701 bool incdec_ok = false;
1702
1703 /* Use constrain_operands after reload. */
1704 gcc_assert (!reload_completed);
1705
1706 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1707 many alternatives as required to match the other operands. */
1708 if (*constraint == '\0')
1709 result = 1;
1710
1711 while (*constraint)
1712 {
1713 enum constraint_num cn;
1714 char c = *constraint;
1715 int len;
1716 switch (c)
1717 {
1718 case ',':
1719 constraint++;
1720 continue;
1721
1722 case '0': case '1': case '2': case '3': case '4':
1723 case '5': case '6': case '7': case '8': case '9':
1724 /* If caller provided constraints pointer, look up
1725 the matching constraint. Otherwise, our caller should have
1726 given us the proper matching constraint, but we can't
1727 actually fail the check if they didn't. Indicate that
1728 results are inconclusive. */
1729 if (constraints)
1730 {
1731 char *end;
1732 unsigned long match;
1733
1734 match = strtoul (constraint, &end, 10);
1735 if (!result)
1736 result = asm_operand_ok (op, constraints[match], NULL);
1737 constraint = (const char *) end;
1738 }
1739 else
1740 {
1741 do
1742 constraint++;
1743 while (ISDIGIT (*constraint));
1744 if (! result)
1745 result = -1;
1746 }
1747 continue;
1748
1749 /* The rest of the compiler assumes that reloading the address
1750 of a MEM into a register will make it fit an 'o' constraint.
1751 That is, if it sees a MEM operand for an 'o' constraint,
1752 it assumes that (mem (base-reg)) will fit.
1753
1754 That assumption fails on targets that don't have offsettable
1755 addresses at all. We therefore need to treat 'o' asm
1756 constraints as a special case and only accept operands that
1757 are already offsettable, thus proving that at least one
1758 offsettable address exists. */
1759 case 'o': /* offsettable */
1760 if (offsettable_nonstrict_memref_p (op))
1761 result = 1;
1762 break;
1763
1764 case 'g':
1765 if (general_operand (op, VOIDmode))
1766 result = 1;
1767 break;
1768
1769 case '<':
1770 case '>':
1771 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1772 to exist, excepting those that expand_call created. Further,
1773 on some machines which do not have generalized auto inc/dec,
1774 an inc/dec is not a memory_operand.
1775
1776 Match any memory and hope things are resolved after reload. */
1777 incdec_ok = true;
1778 /* FALLTHRU */
1779 default:
1780 cn = lookup_constraint (constraint);
1781 switch (get_constraint_type (cn))
1782 {
1783 case CT_REGISTER:
1784 if (!result
1785 && reg_class_for_constraint (cn) != NO_REGS
1786 && GET_MODE (op) != BLKmode
1787 && register_operand (op, VOIDmode))
1788 result = 1;
1789 break;
1790
1791 case CT_CONST_INT:
1792 if (!result
1793 && CONST_INT_P (op)
1794 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1795 result = 1;
1796 break;
1797
1798 case CT_MEMORY:
1799 case CT_SPECIAL_MEMORY:
1800 /* Every memory operand can be reloaded to fit. */
1801 result = result || memory_operand (op, VOIDmode);
1802 break;
1803
1804 case CT_ADDRESS:
1805 /* Every address operand can be reloaded to fit. */
1806 result = result || address_operand (op, VOIDmode);
1807 break;
1808
1809 case CT_FIXED_FORM:
1810 result = result || constraint_satisfied_p (op, cn);
1811 break;
1812 }
1813 break;
1814 }
1815 len = CONSTRAINT_LEN (c, constraint);
1816 do
1817 constraint++;
1818 while (--len && *constraint && *constraint != ',');
1819 if (len)
1820 return 0;
1821 }
1822
1823 /* For operands without < or > constraints reject side-effects. */
1824 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1825 switch (GET_CODE (XEXP (op, 0)))
1826 {
1827 case PRE_INC:
1828 case POST_INC:
1829 case PRE_DEC:
1830 case POST_DEC:
1831 case PRE_MODIFY:
1832 case POST_MODIFY:
1833 return 0;
1834 default:
1835 break;
1836 }
1837
1838 return result;
1839 }
1840 \f
1841 /* Given an rtx *P, if it is a sum containing an integer constant term,
1842 return the location (type rtx *) of the pointer to that constant term.
1843 Otherwise, return a null pointer. */
1844
1845 rtx *
1846 find_constant_term_loc (rtx *p)
1847 {
1848 rtx *tem;
1849 enum rtx_code code = GET_CODE (*p);
1850
1851 /* If *P IS such a constant term, P is its location. */
1852
1853 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1854 || code == CONST)
1855 return p;
1856
1857 /* Otherwise, if not a sum, it has no constant term. */
1858
1859 if (GET_CODE (*p) != PLUS)
1860 return 0;
1861
1862 /* If one of the summands is constant, return its location. */
1863
1864 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1865 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1866 return p;
1867
1868 /* Otherwise, check each summand for containing a constant term. */
1869
1870 if (XEXP (*p, 0) != 0)
1871 {
1872 tem = find_constant_term_loc (&XEXP (*p, 0));
1873 if (tem != 0)
1874 return tem;
1875 }
1876
1877 if (XEXP (*p, 1) != 0)
1878 {
1879 tem = find_constant_term_loc (&XEXP (*p, 1));
1880 if (tem != 0)
1881 return tem;
1882 }
1883
1884 return 0;
1885 }
1886 \f
1887 /* Return 1 if OP is a memory reference
1888 whose address contains no side effects
1889 and remains valid after the addition
1890 of a positive integer less than the
1891 size of the object being referenced.
1892
1893 We assume that the original address is valid and do not check it.
1894
1895 This uses strict_memory_address_p as a subroutine, so
1896 don't use it before reload. */
1897
1898 int
1899 offsettable_memref_p (rtx op)
1900 {
1901 return ((MEM_P (op))
1902 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1903 MEM_ADDR_SPACE (op)));
1904 }
1905
1906 /* Similar, but don't require a strictly valid mem ref:
1907 consider pseudo-regs valid as index or base regs. */
1908
1909 int
1910 offsettable_nonstrict_memref_p (rtx op)
1911 {
1912 return ((MEM_P (op))
1913 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1914 MEM_ADDR_SPACE (op)));
1915 }
1916
1917 /* Return 1 if Y is a memory address which contains no side effects
1918 and would remain valid for address space AS after the addition of
1919 a positive integer less than the size of that mode.
1920
1921 We assume that the original address is valid and do not check it.
1922 We do check that it is valid for narrower modes.
1923
1924 If STRICTP is nonzero, we require a strictly valid address,
1925 for the sake of use in reload.c. */
1926
1927 int
1928 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1929 addr_space_t as)
1930 {
1931 enum rtx_code ycode = GET_CODE (y);
1932 rtx z;
1933 rtx y1 = y;
1934 rtx *y2;
1935 int (*addressp) (machine_mode, rtx, addr_space_t) =
1936 (strictp ? strict_memory_address_addr_space_p
1937 : memory_address_addr_space_p);
1938 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1939
1940 if (CONSTANT_ADDRESS_P (y))
1941 return 1;
1942
1943 /* Adjusting an offsettable address involves changing to a narrower mode.
1944 Make sure that's OK. */
1945
1946 if (mode_dependent_address_p (y, as))
1947 return 0;
1948
1949 machine_mode address_mode = GET_MODE (y);
1950 if (address_mode == VOIDmode)
1951 address_mode = targetm.addr_space.address_mode (as);
1952 #ifdef POINTERS_EXTEND_UNSIGNED
1953 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1954 #endif
1955
1956 /* ??? How much offset does an offsettable BLKmode reference need?
1957 Clearly that depends on the situation in which it's being used.
1958 However, the current situation in which we test 0xffffffff is
1959 less than ideal. Caveat user. */
1960 if (known_eq (mode_sz, 0))
1961 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1962
1963 /* If the expression contains a constant term,
1964 see if it remains valid when max possible offset is added. */
1965
1966 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1967 {
1968 int good;
1969
1970 y1 = *y2;
1971 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1972 /* Use QImode because an odd displacement may be automatically invalid
1973 for any wider mode. But it should be valid for a single byte. */
1974 good = (*addressp) (QImode, y, as);
1975
1976 /* In any case, restore old contents of memory. */
1977 *y2 = y1;
1978 return good;
1979 }
1980
1981 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1982 return 0;
1983
1984 /* The offset added here is chosen as the maximum offset that
1985 any instruction could need to add when operating on something
1986 of the specified mode. We assume that if Y and Y+c are
1987 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1988 go inside a LO_SUM here, so we do so as well. */
1989 if (GET_CODE (y) == LO_SUM
1990 && mode != BLKmode
1991 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
1992 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
1993 plus_constant (address_mode, XEXP (y, 1),
1994 mode_sz - 1));
1995 #ifdef POINTERS_EXTEND_UNSIGNED
1996 /* Likewise for a ZERO_EXTEND from pointer_mode. */
1997 else if (POINTERS_EXTEND_UNSIGNED > 0
1998 && GET_CODE (y) == ZERO_EXTEND
1999 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2000 z = gen_rtx_ZERO_EXTEND (address_mode,
2001 plus_constant (pointer_mode, XEXP (y, 0),
2002 mode_sz - 1));
2003 #endif
2004 else
2005 z = plus_constant (address_mode, y, mode_sz - 1);
2006
2007 /* Use QImode because an odd displacement may be automatically invalid
2008 for any wider mode. But it should be valid for a single byte. */
2009 return (*addressp) (QImode, z, as);
2010 }
2011
2012 /* Return 1 if ADDR is an address-expression whose effect depends
2013 on the mode of the memory reference it is used in.
2014
2015 ADDRSPACE is the address space associated with the address.
2016
2017 Autoincrement addressing is a typical example of mode-dependence
2018 because the amount of the increment depends on the mode. */
2019
2020 bool
2021 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2022 {
2023 /* Auto-increment addressing with anything other than post_modify
2024 or pre_modify always introduces a mode dependency. Catch such
2025 cases now instead of deferring to the target. */
2026 if (GET_CODE (addr) == PRE_INC
2027 || GET_CODE (addr) == POST_INC
2028 || GET_CODE (addr) == PRE_DEC
2029 || GET_CODE (addr) == POST_DEC)
2030 return true;
2031
2032 return targetm.mode_dependent_address_p (addr, addrspace);
2033 }
2034 \f
2035 /* Return true if boolean attribute ATTR is supported. */
2036
2037 static bool
2038 have_bool_attr (bool_attr attr)
2039 {
2040 switch (attr)
2041 {
2042 case BA_ENABLED:
2043 return HAVE_ATTR_enabled;
2044 case BA_PREFERRED_FOR_SIZE:
2045 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2046 case BA_PREFERRED_FOR_SPEED:
2047 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2048 }
2049 gcc_unreachable ();
2050 }
2051
2052 /* Return the value of ATTR for instruction INSN. */
2053
2054 static bool
2055 get_bool_attr (rtx_insn *insn, bool_attr attr)
2056 {
2057 switch (attr)
2058 {
2059 case BA_ENABLED:
2060 return get_attr_enabled (insn);
2061 case BA_PREFERRED_FOR_SIZE:
2062 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2063 case BA_PREFERRED_FOR_SPEED:
2064 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2065 }
2066 gcc_unreachable ();
2067 }
2068
2069 /* Like get_bool_attr_mask, but don't use the cache. */
2070
2071 static alternative_mask
2072 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2073 {
2074 /* Temporarily install enough information for get_attr_<foo> to assume
2075 that the insn operands are already cached. As above, the attribute
2076 mustn't depend on the values of operands, so we don't provide their
2077 real values here. */
2078 rtx_insn *old_insn = recog_data.insn;
2079 int old_alternative = which_alternative;
2080
2081 recog_data.insn = insn;
2082 alternative_mask mask = ALL_ALTERNATIVES;
2083 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2084 for (int i = 0; i < n_alternatives; i++)
2085 {
2086 which_alternative = i;
2087 if (!get_bool_attr (insn, attr))
2088 mask &= ~ALTERNATIVE_BIT (i);
2089 }
2090
2091 recog_data.insn = old_insn;
2092 which_alternative = old_alternative;
2093 return mask;
2094 }
2095
2096 /* Return the mask of operand alternatives that are allowed for INSN
2097 by boolean attribute ATTR. This mask depends only on INSN and on
2098 the current target; it does not depend on things like the values of
2099 operands. */
2100
2101 static alternative_mask
2102 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2103 {
2104 /* Quick exit for asms and for targets that don't use these attributes. */
2105 int code = INSN_CODE (insn);
2106 if (code < 0 || !have_bool_attr (attr))
2107 return ALL_ALTERNATIVES;
2108
2109 /* Calling get_attr_<foo> can be expensive, so cache the mask
2110 for speed. */
2111 if (!this_target_recog->x_bool_attr_masks[code][attr])
2112 this_target_recog->x_bool_attr_masks[code][attr]
2113 = get_bool_attr_mask_uncached (insn, attr);
2114 return this_target_recog->x_bool_attr_masks[code][attr];
2115 }
2116
2117 /* Return the set of alternatives of INSN that are allowed by the current
2118 target. */
2119
2120 alternative_mask
2121 get_enabled_alternatives (rtx_insn *insn)
2122 {
2123 return get_bool_attr_mask (insn, BA_ENABLED);
2124 }
2125
2126 /* Return the set of alternatives of INSN that are allowed by the current
2127 target and are preferred for the current size/speed optimization
2128 choice. */
2129
2130 alternative_mask
2131 get_preferred_alternatives (rtx_insn *insn)
2132 {
2133 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2134 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2135 else
2136 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2137 }
2138
2139 /* Return the set of alternatives of INSN that are allowed by the current
2140 target and are preferred for the size/speed optimization choice
2141 associated with BB. Passing a separate BB is useful if INSN has not
2142 been emitted yet or if we are considering moving it to a different
2143 block. */
2144
2145 alternative_mask
2146 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2147 {
2148 if (optimize_bb_for_speed_p (bb))
2149 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2150 else
2151 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2152 }
2153
2154 /* Assert that the cached boolean attributes for INSN are still accurate.
2155 The backend is required to define these attributes in a way that only
2156 depends on the current target (rather than operands, compiler phase,
2157 etc.). */
2158
2159 bool
2160 check_bool_attrs (rtx_insn *insn)
2161 {
2162 int code = INSN_CODE (insn);
2163 if (code >= 0)
2164 for (int i = 0; i <= BA_LAST; ++i)
2165 {
2166 enum bool_attr attr = (enum bool_attr) i;
2167 if (this_target_recog->x_bool_attr_masks[code][attr])
2168 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2169 == get_bool_attr_mask_uncached (insn, attr));
2170 }
2171 return true;
2172 }
2173
2174 /* Like extract_insn, but save insn extracted and don't extract again, when
2175 called again for the same insn expecting that recog_data still contain the
2176 valid information. This is used primary by gen_attr infrastructure that
2177 often does extract insn again and again. */
2178 void
2179 extract_insn_cached (rtx_insn *insn)
2180 {
2181 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2182 return;
2183 extract_insn (insn);
2184 recog_data.insn = insn;
2185 }
2186
2187 /* Do uncached extract_insn, constrain_operands and complain about failures.
2188 This should be used when extracting a pre-existing constrained instruction
2189 if the caller wants to know which alternative was chosen. */
2190 void
2191 extract_constrain_insn (rtx_insn *insn)
2192 {
2193 extract_insn (insn);
2194 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2195 fatal_insn_not_found (insn);
2196 }
2197
2198 /* Do cached extract_insn, constrain_operands and complain about failures.
2199 Used by insn_attrtab. */
2200 void
2201 extract_constrain_insn_cached (rtx_insn *insn)
2202 {
2203 extract_insn_cached (insn);
2204 if (which_alternative == -1
2205 && !constrain_operands (reload_completed,
2206 get_enabled_alternatives (insn)))
2207 fatal_insn_not_found (insn);
2208 }
2209
2210 /* Do cached constrain_operands on INSN and complain about failures. */
2211 int
2212 constrain_operands_cached (rtx_insn *insn, int strict)
2213 {
2214 if (which_alternative == -1)
2215 return constrain_operands (strict, get_enabled_alternatives (insn));
2216 else
2217 return 1;
2218 }
2219 \f
2220 /* Analyze INSN and fill in recog_data. */
2221
2222 void
2223 extract_insn (rtx_insn *insn)
2224 {
2225 int i;
2226 int icode;
2227 int noperands;
2228 rtx body = PATTERN (insn);
2229
2230 recog_data.n_operands = 0;
2231 recog_data.n_alternatives = 0;
2232 recog_data.n_dups = 0;
2233 recog_data.is_asm = false;
2234
2235 switch (GET_CODE (body))
2236 {
2237 case USE:
2238 case CLOBBER:
2239 case ASM_INPUT:
2240 case ADDR_VEC:
2241 case ADDR_DIFF_VEC:
2242 case VAR_LOCATION:
2243 case DEBUG_MARKER:
2244 return;
2245
2246 case SET:
2247 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2248 goto asm_insn;
2249 else
2250 goto normal_insn;
2251 case PARALLEL:
2252 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2253 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2254 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2255 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2256 goto asm_insn;
2257 else
2258 goto normal_insn;
2259 case ASM_OPERANDS:
2260 asm_insn:
2261 recog_data.n_operands = noperands = asm_noperands (body);
2262 if (noperands >= 0)
2263 {
2264 /* This insn is an `asm' with operands. */
2265
2266 /* expand_asm_operands makes sure there aren't too many operands. */
2267 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2268
2269 /* Now get the operand values and constraints out of the insn. */
2270 decode_asm_operands (body, recog_data.operand,
2271 recog_data.operand_loc,
2272 recog_data.constraints,
2273 recog_data.operand_mode, NULL);
2274 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2275 if (noperands > 0)
2276 {
2277 const char *p = recog_data.constraints[0];
2278 recog_data.n_alternatives = 1;
2279 while (*p)
2280 recog_data.n_alternatives += (*p++ == ',');
2281 }
2282 recog_data.is_asm = true;
2283 break;
2284 }
2285 fatal_insn_not_found (insn);
2286
2287 default:
2288 normal_insn:
2289 /* Ordinary insn: recognize it, get the operands via insn_extract
2290 and get the constraints. */
2291
2292 icode = recog_memoized (insn);
2293 if (icode < 0)
2294 fatal_insn_not_found (insn);
2295
2296 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2297 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2298 recog_data.n_dups = insn_data[icode].n_dups;
2299
2300 insn_extract (insn);
2301
2302 for (i = 0; i < noperands; i++)
2303 {
2304 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2305 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2306 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2307 /* VOIDmode match_operands gets mode from their real operand. */
2308 if (recog_data.operand_mode[i] == VOIDmode)
2309 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2310 }
2311 }
2312 for (i = 0; i < noperands; i++)
2313 recog_data.operand_type[i]
2314 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2315 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2316 : OP_IN);
2317
2318 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2319
2320 recog_data.insn = NULL;
2321 which_alternative = -1;
2322 }
2323
2324 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2325 operands, N_ALTERNATIVES alternatives and constraint strings
2326 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2327 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2328 if the insn is an asm statement and preprocessing should take the
2329 asm operands into account, e.g. to determine whether they could be
2330 addresses in constraints that require addresses; it should then
2331 point to an array of pointers to each operand. */
2332
2333 void
2334 preprocess_constraints (int n_operands, int n_alternatives,
2335 const char **constraints,
2336 operand_alternative *op_alt_base,
2337 rtx **oploc)
2338 {
2339 for (int i = 0; i < n_operands; i++)
2340 {
2341 int j;
2342 struct operand_alternative *op_alt;
2343 const char *p = constraints[i];
2344
2345 op_alt = op_alt_base;
2346
2347 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2348 {
2349 op_alt[i].cl = NO_REGS;
2350 op_alt[i].constraint = p;
2351 op_alt[i].matches = -1;
2352 op_alt[i].matched = -1;
2353
2354 if (*p == '\0' || *p == ',')
2355 {
2356 op_alt[i].anything_ok = 1;
2357 continue;
2358 }
2359
2360 for (;;)
2361 {
2362 char c = *p;
2363 if (c == '#')
2364 do
2365 c = *++p;
2366 while (c != ',' && c != '\0');
2367 if (c == ',' || c == '\0')
2368 {
2369 p++;
2370 break;
2371 }
2372
2373 switch (c)
2374 {
2375 case '?':
2376 op_alt[i].reject += 6;
2377 break;
2378 case '!':
2379 op_alt[i].reject += 600;
2380 break;
2381 case '&':
2382 op_alt[i].earlyclobber = 1;
2383 break;
2384
2385 case '0': case '1': case '2': case '3': case '4':
2386 case '5': case '6': case '7': case '8': case '9':
2387 {
2388 char *end;
2389 op_alt[i].matches = strtoul (p, &end, 10);
2390 op_alt[op_alt[i].matches].matched = i;
2391 p = end;
2392 }
2393 continue;
2394
2395 case 'X':
2396 op_alt[i].anything_ok = 1;
2397 break;
2398
2399 case 'g':
2400 op_alt[i].cl =
2401 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2402 break;
2403
2404 default:
2405 enum constraint_num cn = lookup_constraint (p);
2406 enum reg_class cl;
2407 switch (get_constraint_type (cn))
2408 {
2409 case CT_REGISTER:
2410 cl = reg_class_for_constraint (cn);
2411 if (cl != NO_REGS)
2412 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2413 break;
2414
2415 case CT_CONST_INT:
2416 break;
2417
2418 case CT_MEMORY:
2419 case CT_SPECIAL_MEMORY:
2420 op_alt[i].memory_ok = 1;
2421 break;
2422
2423 case CT_ADDRESS:
2424 if (oploc && !address_operand (*oploc[i], VOIDmode))
2425 break;
2426
2427 op_alt[i].is_address = 1;
2428 op_alt[i].cl
2429 = (reg_class_subunion
2430 [(int) op_alt[i].cl]
2431 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2432 ADDRESS, SCRATCH)]);
2433 break;
2434
2435 case CT_FIXED_FORM:
2436 break;
2437 }
2438 break;
2439 }
2440 p += CONSTRAINT_LEN (c, p);
2441 }
2442 }
2443 }
2444 }
2445
2446 /* Return an array of operand_alternative instructions for
2447 instruction ICODE. */
2448
2449 const operand_alternative *
2450 preprocess_insn_constraints (unsigned int icode)
2451 {
2452 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2453 if (this_target_recog->x_op_alt[icode])
2454 return this_target_recog->x_op_alt[icode];
2455
2456 int n_operands = insn_data[icode].n_operands;
2457 if (n_operands == 0)
2458 return 0;
2459 /* Always provide at least one alternative so that which_op_alt ()
2460 works correctly. If the instruction has 0 alternatives (i.e. all
2461 constraint strings are empty) then each operand in this alternative
2462 will have anything_ok set. */
2463 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2464 int n_entries = n_operands * n_alternatives;
2465
2466 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2467 const char **constraints = XALLOCAVEC (const char *, n_operands);
2468
2469 for (int i = 0; i < n_operands; ++i)
2470 constraints[i] = insn_data[icode].operand[i].constraint;
2471 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2472 NULL);
2473
2474 this_target_recog->x_op_alt[icode] = op_alt;
2475 return op_alt;
2476 }
2477
2478 /* After calling extract_insn, you can use this function to extract some
2479 information from the constraint strings into a more usable form.
2480 The collected data is stored in recog_op_alt. */
2481
2482 void
2483 preprocess_constraints (rtx_insn *insn)
2484 {
2485 int icode = INSN_CODE (insn);
2486 if (icode >= 0)
2487 recog_op_alt = preprocess_insn_constraints (icode);
2488 else
2489 {
2490 int n_operands = recog_data.n_operands;
2491 int n_alternatives = recog_data.n_alternatives;
2492 int n_entries = n_operands * n_alternatives;
2493 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2494 preprocess_constraints (n_operands, n_alternatives,
2495 recog_data.constraints, asm_op_alt,
2496 NULL);
2497 recog_op_alt = asm_op_alt;
2498 }
2499 }
2500
2501 /* Check the operands of an insn against the insn's operand constraints
2502 and return 1 if they match any of the alternatives in ALTERNATIVES.
2503
2504 The information about the insn's operands, constraints, operand modes
2505 etc. is obtained from the global variables set up by extract_insn.
2506
2507 WHICH_ALTERNATIVE is set to a number which indicates which
2508 alternative of constraints was matched: 0 for the first alternative,
2509 1 for the next, etc.
2510
2511 In addition, when two operands are required to match
2512 and it happens that the output operand is (reg) while the
2513 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2514 make the output operand look like the input.
2515 This is because the output operand is the one the template will print.
2516
2517 This is used in final, just before printing the assembler code and by
2518 the routines that determine an insn's attribute.
2519
2520 If STRICT is a positive nonzero value, it means that we have been
2521 called after reload has been completed. In that case, we must
2522 do all checks strictly. If it is zero, it means that we have been called
2523 before reload has completed. In that case, we first try to see if we can
2524 find an alternative that matches strictly. If not, we try again, this
2525 time assuming that reload will fix up the insn. This provides a "best
2526 guess" for the alternative and is used to compute attributes of insns prior
2527 to reload. A negative value of STRICT is used for this internal call. */
2528
2529 struct funny_match
2530 {
2531 int this_op, other;
2532 };
2533
2534 int
2535 constrain_operands (int strict, alternative_mask alternatives)
2536 {
2537 const char *constraints[MAX_RECOG_OPERANDS];
2538 int matching_operands[MAX_RECOG_OPERANDS];
2539 int earlyclobber[MAX_RECOG_OPERANDS];
2540 int c;
2541
2542 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2543 int funny_match_index;
2544
2545 which_alternative = 0;
2546 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2547 return 1;
2548
2549 for (c = 0; c < recog_data.n_operands; c++)
2550 {
2551 constraints[c] = recog_data.constraints[c];
2552 matching_operands[c] = -1;
2553 }
2554
2555 do
2556 {
2557 int seen_earlyclobber_at = -1;
2558 int opno;
2559 int lose = 0;
2560 funny_match_index = 0;
2561
2562 if (!TEST_BIT (alternatives, which_alternative))
2563 {
2564 int i;
2565
2566 for (i = 0; i < recog_data.n_operands; i++)
2567 constraints[i] = skip_alternative (constraints[i]);
2568
2569 which_alternative++;
2570 continue;
2571 }
2572
2573 for (opno = 0; opno < recog_data.n_operands; opno++)
2574 {
2575 rtx op = recog_data.operand[opno];
2576 machine_mode mode = GET_MODE (op);
2577 const char *p = constraints[opno];
2578 int offset = 0;
2579 int win = 0;
2580 int val;
2581 int len;
2582
2583 earlyclobber[opno] = 0;
2584
2585 /* A unary operator may be accepted by the predicate, but it
2586 is irrelevant for matching constraints. */
2587 if (UNARY_P (op))
2588 op = XEXP (op, 0);
2589
2590 if (GET_CODE (op) == SUBREG)
2591 {
2592 if (REG_P (SUBREG_REG (op))
2593 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2594 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2595 GET_MODE (SUBREG_REG (op)),
2596 SUBREG_BYTE (op),
2597 GET_MODE (op));
2598 op = SUBREG_REG (op);
2599 }
2600
2601 /* An empty constraint or empty alternative
2602 allows anything which matched the pattern. */
2603 if (*p == 0 || *p == ',')
2604 win = 1;
2605
2606 do
2607 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2608 {
2609 case '\0':
2610 len = 0;
2611 break;
2612 case ',':
2613 c = '\0';
2614 break;
2615
2616 case '#':
2617 /* Ignore rest of this alternative as far as
2618 constraint checking is concerned. */
2619 do
2620 p++;
2621 while (*p && *p != ',');
2622 len = 0;
2623 break;
2624
2625 case '&':
2626 earlyclobber[opno] = 1;
2627 if (seen_earlyclobber_at < 0)
2628 seen_earlyclobber_at = opno;
2629 break;
2630
2631 case '0': case '1': case '2': case '3': case '4':
2632 case '5': case '6': case '7': case '8': case '9':
2633 {
2634 /* This operand must be the same as a previous one.
2635 This kind of constraint is used for instructions such
2636 as add when they take only two operands.
2637
2638 Note that the lower-numbered operand is passed first.
2639
2640 If we are not testing strictly, assume that this
2641 constraint will be satisfied. */
2642
2643 char *end;
2644 int match;
2645
2646 match = strtoul (p, &end, 10);
2647 p = end;
2648
2649 if (strict < 0)
2650 val = 1;
2651 else
2652 {
2653 rtx op1 = recog_data.operand[match];
2654 rtx op2 = recog_data.operand[opno];
2655
2656 /* A unary operator may be accepted by the predicate,
2657 but it is irrelevant for matching constraints. */
2658 if (UNARY_P (op1))
2659 op1 = XEXP (op1, 0);
2660 if (UNARY_P (op2))
2661 op2 = XEXP (op2, 0);
2662
2663 val = operands_match_p (op1, op2);
2664 }
2665
2666 matching_operands[opno] = match;
2667 matching_operands[match] = opno;
2668
2669 if (val != 0)
2670 win = 1;
2671
2672 /* If output is *x and input is *--x, arrange later
2673 to change the output to *--x as well, since the
2674 output op is the one that will be printed. */
2675 if (val == 2 && strict > 0)
2676 {
2677 funny_match[funny_match_index].this_op = opno;
2678 funny_match[funny_match_index++].other = match;
2679 }
2680 }
2681 len = 0;
2682 break;
2683
2684 case 'p':
2685 /* p is used for address_operands. When we are called by
2686 gen_reload, no one will have checked that the address is
2687 strictly valid, i.e., that all pseudos requiring hard regs
2688 have gotten them. We also want to make sure we have a
2689 valid mode. */
2690 if ((GET_MODE (op) == VOIDmode
2691 || SCALAR_INT_MODE_P (GET_MODE (op)))
2692 && (strict <= 0
2693 || (strict_memory_address_p
2694 (recog_data.operand_mode[opno], op))))
2695 win = 1;
2696 break;
2697
2698 /* No need to check general_operand again;
2699 it was done in insn-recog.c. Well, except that reload
2700 doesn't check the validity of its replacements, but
2701 that should only matter when there's a bug. */
2702 case 'g':
2703 /* Anything goes unless it is a REG and really has a hard reg
2704 but the hard reg is not in the class GENERAL_REGS. */
2705 if (REG_P (op))
2706 {
2707 if (strict < 0
2708 || GENERAL_REGS == ALL_REGS
2709 || (reload_in_progress
2710 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2711 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2712 win = 1;
2713 }
2714 else if (strict < 0 || general_operand (op, mode))
2715 win = 1;
2716 break;
2717
2718 default:
2719 {
2720 enum constraint_num cn = lookup_constraint (p);
2721 enum reg_class cl = reg_class_for_constraint (cn);
2722 if (cl != NO_REGS)
2723 {
2724 if (strict < 0
2725 || (strict == 0
2726 && REG_P (op)
2727 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2728 || (strict == 0 && GET_CODE (op) == SCRATCH)
2729 || (REG_P (op)
2730 && reg_fits_class_p (op, cl, offset, mode)))
2731 win = 1;
2732 }
2733
2734 else if (constraint_satisfied_p (op, cn))
2735 win = 1;
2736
2737 else if (insn_extra_memory_constraint (cn)
2738 /* Every memory operand can be reloaded to fit. */
2739 && ((strict < 0 && MEM_P (op))
2740 /* Before reload, accept what reload can turn
2741 into a mem. */
2742 || (strict < 0 && CONSTANT_P (op))
2743 /* Before reload, accept a pseudo or hard register,
2744 since LRA can turn it into a mem. */
2745 || (strict < 0 && targetm.lra_p () && REG_P (op))
2746 /* During reload, accept a pseudo */
2747 || (reload_in_progress && REG_P (op)
2748 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2749 win = 1;
2750 else if (insn_extra_address_constraint (cn)
2751 /* Every address operand can be reloaded to fit. */
2752 && strict < 0)
2753 win = 1;
2754 /* Cater to architectures like IA-64 that define extra memory
2755 constraints without using define_memory_constraint. */
2756 else if (reload_in_progress
2757 && REG_P (op)
2758 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2759 && reg_renumber[REGNO (op)] < 0
2760 && reg_equiv_mem (REGNO (op)) != 0
2761 && constraint_satisfied_p
2762 (reg_equiv_mem (REGNO (op)), cn))
2763 win = 1;
2764 break;
2765 }
2766 }
2767 while (p += len, c);
2768
2769 constraints[opno] = p;
2770 /* If this operand did not win somehow,
2771 this alternative loses. */
2772 if (! win)
2773 lose = 1;
2774 }
2775 /* This alternative won; the operands are ok.
2776 Change whichever operands this alternative says to change. */
2777 if (! lose)
2778 {
2779 int opno, eopno;
2780
2781 /* See if any earlyclobber operand conflicts with some other
2782 operand. */
2783
2784 if (strict > 0 && seen_earlyclobber_at >= 0)
2785 for (eopno = seen_earlyclobber_at;
2786 eopno < recog_data.n_operands;
2787 eopno++)
2788 /* Ignore earlyclobber operands now in memory,
2789 because we would often report failure when we have
2790 two memory operands, one of which was formerly a REG. */
2791 if (earlyclobber[eopno]
2792 && REG_P (recog_data.operand[eopno]))
2793 for (opno = 0; opno < recog_data.n_operands; opno++)
2794 if ((MEM_P (recog_data.operand[opno])
2795 || recog_data.operand_type[opno] != OP_OUT)
2796 && opno != eopno
2797 /* Ignore things like match_operator operands. */
2798 && *recog_data.constraints[opno] != 0
2799 && ! (matching_operands[opno] == eopno
2800 && operands_match_p (recog_data.operand[opno],
2801 recog_data.operand[eopno]))
2802 && ! safe_from_earlyclobber (recog_data.operand[opno],
2803 recog_data.operand[eopno]))
2804 lose = 1;
2805
2806 if (! lose)
2807 {
2808 while (--funny_match_index >= 0)
2809 {
2810 recog_data.operand[funny_match[funny_match_index].other]
2811 = recog_data.operand[funny_match[funny_match_index].this_op];
2812 }
2813
2814 /* For operands without < or > constraints reject side-effects. */
2815 if (AUTO_INC_DEC && recog_data.is_asm)
2816 {
2817 for (opno = 0; opno < recog_data.n_operands; opno++)
2818 if (MEM_P (recog_data.operand[opno]))
2819 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2820 {
2821 case PRE_INC:
2822 case POST_INC:
2823 case PRE_DEC:
2824 case POST_DEC:
2825 case PRE_MODIFY:
2826 case POST_MODIFY:
2827 if (strchr (recog_data.constraints[opno], '<') == NULL
2828 && strchr (recog_data.constraints[opno], '>')
2829 == NULL)
2830 return 0;
2831 break;
2832 default:
2833 break;
2834 }
2835 }
2836
2837 return 1;
2838 }
2839 }
2840
2841 which_alternative++;
2842 }
2843 while (which_alternative < recog_data.n_alternatives);
2844
2845 which_alternative = -1;
2846 /* If we are about to reject this, but we are not to test strictly,
2847 try a very loose test. Only return failure if it fails also. */
2848 if (strict == 0)
2849 return constrain_operands (-1, alternatives);
2850 else
2851 return 0;
2852 }
2853
2854 /* Return true iff OPERAND (assumed to be a REG rtx)
2855 is a hard reg in class CLASS when its regno is offset by OFFSET
2856 and changed to mode MODE.
2857 If REG occupies multiple hard regs, all of them must be in CLASS. */
2858
2859 bool
2860 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2861 machine_mode mode)
2862 {
2863 unsigned int regno = REGNO (operand);
2864
2865 if (cl == NO_REGS)
2866 return false;
2867
2868 /* Regno must not be a pseudo register. Offset may be negative. */
2869 return (HARD_REGISTER_NUM_P (regno)
2870 && HARD_REGISTER_NUM_P (regno + offset)
2871 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2872 regno + offset));
2873 }
2874 \f
2875 /* Split single instruction. Helper function for split_all_insns and
2876 split_all_insns_noflow. Return last insn in the sequence if successful,
2877 or NULL if unsuccessful. */
2878
2879 static rtx_insn *
2880 split_insn (rtx_insn *insn)
2881 {
2882 /* Split insns here to get max fine-grain parallelism. */
2883 rtx_insn *first = PREV_INSN (insn);
2884 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2885 rtx insn_set, last_set, note;
2886
2887 if (last == insn)
2888 return NULL;
2889
2890 /* If the original instruction was a single set that was known to be
2891 equivalent to a constant, see if we can say the same about the last
2892 instruction in the split sequence. The two instructions must set
2893 the same destination. */
2894 insn_set = single_set (insn);
2895 if (insn_set)
2896 {
2897 last_set = single_set (last);
2898 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2899 {
2900 note = find_reg_equal_equiv_note (insn);
2901 if (note && CONSTANT_P (XEXP (note, 0)))
2902 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2903 else if (CONSTANT_P (SET_SRC (insn_set)))
2904 set_unique_reg_note (last, REG_EQUAL,
2905 copy_rtx (SET_SRC (insn_set)));
2906 }
2907 }
2908
2909 /* try_split returns the NOTE that INSN became. */
2910 SET_INSN_DELETED (insn);
2911
2912 /* ??? Coddle to md files that generate subregs in post-reload
2913 splitters instead of computing the proper hard register. */
2914 if (reload_completed && first != last)
2915 {
2916 first = NEXT_INSN (first);
2917 for (;;)
2918 {
2919 if (INSN_P (first))
2920 cleanup_subreg_operands (first);
2921 if (first == last)
2922 break;
2923 first = NEXT_INSN (first);
2924 }
2925 }
2926
2927 return last;
2928 }
2929
2930 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2931
2932 void
2933 split_all_insns (void)
2934 {
2935 bool changed;
2936 bool need_cfg_cleanup = false;
2937 basic_block bb;
2938
2939 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2940 bitmap_clear (blocks);
2941 changed = false;
2942
2943 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2944 {
2945 rtx_insn *insn, *next;
2946 bool finish = false;
2947
2948 rtl_profile_for_bb (bb);
2949 for (insn = BB_HEAD (bb); !finish ; insn = next)
2950 {
2951 /* Can't use `next_real_insn' because that might go across
2952 CODE_LABELS and short-out basic blocks. */
2953 next = NEXT_INSN (insn);
2954 finish = (insn == BB_END (bb));
2955
2956 /* If INSN has a REG_EH_REGION note and we split INSN, the
2957 resulting split may not have/need REG_EH_REGION notes.
2958
2959 If that happens and INSN was the last reference to the
2960 given EH region, then the EH region will become unreachable.
2961 We cannot leave the unreachable blocks in the CFG as that
2962 will trigger a checking failure.
2963
2964 So track if INSN has a REG_EH_REGION note. If so and we
2965 split INSN, then trigger a CFG cleanup. */
2966 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2967 if (INSN_P (insn))
2968 {
2969 rtx set = single_set (insn);
2970
2971 /* Don't split no-op move insns. These should silently
2972 disappear later in final. Splitting such insns would
2973 break the code that handles LIBCALL blocks. */
2974 if (set && set_noop_p (set))
2975 {
2976 /* Nops get in the way while scheduling, so delete them
2977 now if register allocation has already been done. It
2978 is too risky to try to do this before register
2979 allocation, and there are unlikely to be very many
2980 nops then anyways. */
2981 if (reload_completed)
2982 delete_insn_and_edges (insn);
2983 if (note)
2984 need_cfg_cleanup = true;
2985 }
2986 else
2987 {
2988 if (split_insn (insn))
2989 {
2990 bitmap_set_bit (blocks, bb->index);
2991 changed = true;
2992 if (note)
2993 need_cfg_cleanup = true;
2994 }
2995 }
2996 }
2997 }
2998 }
2999
3000 default_rtl_profile ();
3001 if (changed)
3002 {
3003 find_many_sub_basic_blocks (blocks);
3004
3005 /* Splitting could drop an REG_EH_REGION if it potentially
3006 trapped in its original form, but does not in its split
3007 form. Consider a FLOAT_TRUNCATE which splits into a memory
3008 store/load pair and -fnon-call-exceptions. */
3009 if (need_cfg_cleanup)
3010 cleanup_cfg (0);
3011 }
3012
3013 checking_verify_flow_info ();
3014 }
3015
3016 /* Same as split_all_insns, but do not expect CFG to be available.
3017 Used by machine dependent reorg passes. */
3018
3019 unsigned int
3020 split_all_insns_noflow (void)
3021 {
3022 rtx_insn *next, *insn;
3023
3024 for (insn = get_insns (); insn; insn = next)
3025 {
3026 next = NEXT_INSN (insn);
3027 if (INSN_P (insn))
3028 {
3029 /* Don't split no-op move insns. These should silently
3030 disappear later in final. Splitting such insns would
3031 break the code that handles LIBCALL blocks. */
3032 rtx set = single_set (insn);
3033 if (set && set_noop_p (set))
3034 {
3035 /* Nops get in the way while scheduling, so delete them
3036 now if register allocation has already been done. It
3037 is too risky to try to do this before register
3038 allocation, and there are unlikely to be very many
3039 nops then anyways.
3040
3041 ??? Should we use delete_insn when the CFG isn't valid? */
3042 if (reload_completed)
3043 delete_insn_and_edges (insn);
3044 }
3045 else
3046 split_insn (insn);
3047 }
3048 }
3049 return 0;
3050 }
3051 \f
3052 struct peep2_insn_data
3053 {
3054 rtx_insn *insn;
3055 regset live_before;
3056 };
3057
3058 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3059 static int peep2_current;
3060
3061 static bool peep2_do_rebuild_jump_labels;
3062 static bool peep2_do_cleanup_cfg;
3063
3064 /* The number of instructions available to match a peep2. */
3065 int peep2_current_count;
3066
3067 /* A marker indicating the last insn of the block. The live_before regset
3068 for this element is correct, indicating DF_LIVE_OUT for the block. */
3069 #define PEEP2_EOB invalid_insn_rtx
3070
3071 /* Wrap N to fit into the peep2_insn_data buffer. */
3072
3073 static int
3074 peep2_buf_position (int n)
3075 {
3076 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3077 n -= MAX_INSNS_PER_PEEP2 + 1;
3078 return n;
3079 }
3080
3081 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3082 does not exist. Used by the recognizer to find the next insn to match
3083 in a multi-insn pattern. */
3084
3085 rtx_insn *
3086 peep2_next_insn (int n)
3087 {
3088 gcc_assert (n <= peep2_current_count);
3089
3090 n = peep2_buf_position (peep2_current + n);
3091
3092 return peep2_insn_data[n].insn;
3093 }
3094
3095 /* Return true if REGNO is dead before the Nth non-note insn
3096 after `current'. */
3097
3098 int
3099 peep2_regno_dead_p (int ofs, int regno)
3100 {
3101 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3102
3103 ofs = peep2_buf_position (peep2_current + ofs);
3104
3105 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3106
3107 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3108 }
3109
3110 /* Similarly for a REG. */
3111
3112 int
3113 peep2_reg_dead_p (int ofs, rtx reg)
3114 {
3115 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3116
3117 ofs = peep2_buf_position (peep2_current + ofs);
3118
3119 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3120
3121 unsigned int end_regno = END_REGNO (reg);
3122 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3123 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3124 return 0;
3125 return 1;
3126 }
3127
3128 /* Regno offset to be used in the register search. */
3129 static int search_ofs;
3130
3131 /* Try to find a hard register of mode MODE, matching the register class in
3132 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3133 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3134 in which case the only condition is that the register must be available
3135 before CURRENT_INSN.
3136 Registers that already have bits set in REG_SET will not be considered.
3137
3138 If an appropriate register is available, it will be returned and the
3139 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3140 returned. */
3141
3142 rtx
3143 peep2_find_free_register (int from, int to, const char *class_str,
3144 machine_mode mode, HARD_REG_SET *reg_set)
3145 {
3146 enum reg_class cl;
3147 HARD_REG_SET live;
3148 df_ref def;
3149 int i;
3150
3151 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3152 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3153
3154 from = peep2_buf_position (peep2_current + from);
3155 to = peep2_buf_position (peep2_current + to);
3156
3157 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3158 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3159
3160 while (from != to)
3161 {
3162 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3163
3164 /* Don't use registers set or clobbered by the insn. */
3165 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3166 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3167
3168 from = peep2_buf_position (from + 1);
3169 }
3170
3171 cl = reg_class_for_constraint (lookup_constraint (class_str));
3172
3173 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3174 {
3175 int raw_regno, regno, success, j;
3176
3177 /* Distribute the free registers as much as possible. */
3178 raw_regno = search_ofs + i;
3179 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3180 raw_regno -= FIRST_PSEUDO_REGISTER;
3181 #ifdef REG_ALLOC_ORDER
3182 regno = reg_alloc_order[raw_regno];
3183 #else
3184 regno = raw_regno;
3185 #endif
3186
3187 /* Can it support the mode we need? */
3188 if (!targetm.hard_regno_mode_ok (regno, mode))
3189 continue;
3190
3191 success = 1;
3192 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3193 {
3194 /* Don't allocate fixed registers. */
3195 if (fixed_regs[regno + j])
3196 {
3197 success = 0;
3198 break;
3199 }
3200 /* Don't allocate global registers. */
3201 if (global_regs[regno + j])
3202 {
3203 success = 0;
3204 break;
3205 }
3206 /* Make sure the register is of the right class. */
3207 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3208 {
3209 success = 0;
3210 break;
3211 }
3212 /* And that we don't create an extra save/restore. */
3213 if (! crtl->abi->clobbers_full_reg_p (regno + j)
3214 && ! df_regs_ever_live_p (regno + j))
3215 {
3216 success = 0;
3217 break;
3218 }
3219
3220 if (! targetm.hard_regno_scratch_ok (regno + j))
3221 {
3222 success = 0;
3223 break;
3224 }
3225
3226 /* And we don't clobber traceback for noreturn functions. */
3227 if ((regno + j == FRAME_POINTER_REGNUM
3228 || regno + j == HARD_FRAME_POINTER_REGNUM)
3229 && (! reload_completed || frame_pointer_needed))
3230 {
3231 success = 0;
3232 break;
3233 }
3234
3235 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3236 || TEST_HARD_REG_BIT (live, regno + j))
3237 {
3238 success = 0;
3239 break;
3240 }
3241 }
3242
3243 if (success)
3244 {
3245 add_to_hard_reg_set (reg_set, mode, regno);
3246
3247 /* Start the next search with the next register. */
3248 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3249 raw_regno = 0;
3250 search_ofs = raw_regno;
3251
3252 return gen_rtx_REG (mode, regno);
3253 }
3254 }
3255
3256 search_ofs = 0;
3257 return NULL_RTX;
3258 }
3259
3260 /* Forget all currently tracked instructions, only remember current
3261 LIVE regset. */
3262
3263 static void
3264 peep2_reinit_state (regset live)
3265 {
3266 int i;
3267
3268 /* Indicate that all slots except the last holds invalid data. */
3269 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3270 peep2_insn_data[i].insn = NULL;
3271 peep2_current_count = 0;
3272
3273 /* Indicate that the last slot contains live_after data. */
3274 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3275 peep2_current = MAX_INSNS_PER_PEEP2;
3276
3277 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3278 }
3279
3280 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3281 starting at INSN. Perform the replacement, removing the old insns and
3282 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3283 if the replacement is rejected. */
3284
3285 static rtx_insn *
3286 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3287 {
3288 int i;
3289 rtx_insn *last, *before_try, *x;
3290 rtx eh_note, as_note;
3291 rtx_insn *old_insn;
3292 rtx_insn *new_insn;
3293 bool was_call = false;
3294
3295 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3296 match more than one insn, or to be split into more than one insn. */
3297 old_insn = peep2_insn_data[peep2_current].insn;
3298 if (RTX_FRAME_RELATED_P (old_insn))
3299 {
3300 bool any_note = false;
3301 rtx note;
3302
3303 if (match_len != 0)
3304 return NULL;
3305
3306 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3307 may be in the stream for the purpose of register allocation. */
3308 if (active_insn_p (attempt))
3309 new_insn = attempt;
3310 else
3311 new_insn = next_active_insn (attempt);
3312 if (next_active_insn (new_insn))
3313 return NULL;
3314
3315 /* We have a 1-1 replacement. Copy over any frame-related info. */
3316 RTX_FRAME_RELATED_P (new_insn) = 1;
3317
3318 /* Allow the backend to fill in a note during the split. */
3319 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3320 switch (REG_NOTE_KIND (note))
3321 {
3322 case REG_FRAME_RELATED_EXPR:
3323 case REG_CFA_DEF_CFA:
3324 case REG_CFA_ADJUST_CFA:
3325 case REG_CFA_OFFSET:
3326 case REG_CFA_REGISTER:
3327 case REG_CFA_EXPRESSION:
3328 case REG_CFA_RESTORE:
3329 case REG_CFA_SET_VDRAP:
3330 any_note = true;
3331 break;
3332 default:
3333 break;
3334 }
3335
3336 /* If the backend didn't supply a note, copy one over. */
3337 if (!any_note)
3338 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3339 switch (REG_NOTE_KIND (note))
3340 {
3341 case REG_FRAME_RELATED_EXPR:
3342 case REG_CFA_DEF_CFA:
3343 case REG_CFA_ADJUST_CFA:
3344 case REG_CFA_OFFSET:
3345 case REG_CFA_REGISTER:
3346 case REG_CFA_EXPRESSION:
3347 case REG_CFA_RESTORE:
3348 case REG_CFA_SET_VDRAP:
3349 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3350 any_note = true;
3351 break;
3352 default:
3353 break;
3354 }
3355
3356 /* If there still isn't a note, make sure the unwind info sees the
3357 same expression as before the split. */
3358 if (!any_note)
3359 {
3360 rtx old_set, new_set;
3361
3362 /* The old insn had better have been simple, or annotated. */
3363 old_set = single_set (old_insn);
3364 gcc_assert (old_set != NULL);
3365
3366 new_set = single_set (new_insn);
3367 if (!new_set || !rtx_equal_p (new_set, old_set))
3368 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3369 }
3370
3371 /* Copy prologue/epilogue status. This is required in order to keep
3372 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3373 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3374 }
3375
3376 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3377 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3378 cfg-related call notes. */
3379 for (i = 0; i <= match_len; ++i)
3380 {
3381 int j;
3382 rtx note;
3383
3384 j = peep2_buf_position (peep2_current + i);
3385 old_insn = peep2_insn_data[j].insn;
3386 if (!CALL_P (old_insn))
3387 continue;
3388 was_call = true;
3389
3390 new_insn = attempt;
3391 while (new_insn != NULL_RTX)
3392 {
3393 if (CALL_P (new_insn))
3394 break;
3395 new_insn = NEXT_INSN (new_insn);
3396 }
3397
3398 gcc_assert (new_insn != NULL_RTX);
3399
3400 CALL_INSN_FUNCTION_USAGE (new_insn)
3401 = CALL_INSN_FUNCTION_USAGE (old_insn);
3402 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3403
3404 for (note = REG_NOTES (old_insn);
3405 note;
3406 note = XEXP (note, 1))
3407 switch (REG_NOTE_KIND (note))
3408 {
3409 case REG_NORETURN:
3410 case REG_SETJMP:
3411 case REG_TM:
3412 case REG_CALL_NOCF_CHECK:
3413 add_reg_note (new_insn, REG_NOTE_KIND (note),
3414 XEXP (note, 0));
3415 break;
3416 default:
3417 /* Discard all other reg notes. */
3418 break;
3419 }
3420
3421 /* Croak if there is another call in the sequence. */
3422 while (++i <= match_len)
3423 {
3424 j = peep2_buf_position (peep2_current + i);
3425 old_insn = peep2_insn_data[j].insn;
3426 gcc_assert (!CALL_P (old_insn));
3427 }
3428 break;
3429 }
3430
3431 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3432 move those notes over to the new sequence. */
3433 as_note = NULL;
3434 for (i = match_len; i >= 0; --i)
3435 {
3436 int j = peep2_buf_position (peep2_current + i);
3437 old_insn = peep2_insn_data[j].insn;
3438
3439 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3440 if (as_note)
3441 break;
3442 }
3443
3444 i = peep2_buf_position (peep2_current + match_len);
3445 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3446
3447 /* Replace the old sequence with the new. */
3448 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3449 last = emit_insn_after_setloc (attempt,
3450 peep2_insn_data[i].insn,
3451 INSN_LOCATION (peepinsn));
3452 if (JUMP_P (peepinsn) && JUMP_P (last))
3453 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3454 before_try = PREV_INSN (insn);
3455 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3456
3457 /* Re-insert the EH_REGION notes. */
3458 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3459 {
3460 edge eh_edge;
3461 edge_iterator ei;
3462
3463 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3464 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3465 break;
3466
3467 if (eh_note)
3468 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3469
3470 if (eh_edge)
3471 for (x = last; x != before_try; x = PREV_INSN (x))
3472 if (x != BB_END (bb)
3473 && (can_throw_internal (x)
3474 || can_nonlocal_goto (x)))
3475 {
3476 edge nfte, nehe;
3477 int flags;
3478
3479 nfte = split_block (bb, x);
3480 flags = (eh_edge->flags
3481 & (EDGE_EH | EDGE_ABNORMAL));
3482 if (CALL_P (x))
3483 flags |= EDGE_ABNORMAL_CALL;
3484 nehe = make_edge (nfte->src, eh_edge->dest,
3485 flags);
3486
3487 nehe->probability = eh_edge->probability;
3488 nfte->probability = nehe->probability.invert ();
3489
3490 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3491 bb = nfte->src;
3492 eh_edge = nehe;
3493 }
3494
3495 /* Converting possibly trapping insn to non-trapping is
3496 possible. Zap dummy outgoing edges. */
3497 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3498 }
3499
3500 /* Re-insert the ARGS_SIZE notes. */
3501 if (as_note)
3502 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3503
3504 /* Scan the new insns for embedded side effects and add appropriate
3505 REG_INC notes. */
3506 if (AUTO_INC_DEC)
3507 for (x = last; x != before_try; x = PREV_INSN (x))
3508 if (NONDEBUG_INSN_P (x))
3509 add_auto_inc_notes (x, PATTERN (x));
3510
3511 /* If we generated a jump instruction, it won't have
3512 JUMP_LABEL set. Recompute after we're done. */
3513 for (x = last; x != before_try; x = PREV_INSN (x))
3514 if (JUMP_P (x))
3515 {
3516 peep2_do_rebuild_jump_labels = true;
3517 break;
3518 }
3519
3520 return last;
3521 }
3522
3523 /* After performing a replacement in basic block BB, fix up the life
3524 information in our buffer. LAST is the last of the insns that we
3525 emitted as a replacement. PREV is the insn before the start of
3526 the replacement. MATCH_LEN is the number of instructions that were
3527 matched, and which now need to be replaced in the buffer. */
3528
3529 static void
3530 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3531 rtx_insn *prev)
3532 {
3533 int i = peep2_buf_position (peep2_current + match_len + 1);
3534 rtx_insn *x;
3535 regset_head live;
3536
3537 INIT_REG_SET (&live);
3538 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3539
3540 gcc_assert (peep2_current_count >= match_len + 1);
3541 peep2_current_count -= match_len + 1;
3542
3543 x = last;
3544 do
3545 {
3546 if (INSN_P (x))
3547 {
3548 df_insn_rescan (x);
3549 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3550 {
3551 peep2_current_count++;
3552 if (--i < 0)
3553 i = MAX_INSNS_PER_PEEP2;
3554 peep2_insn_data[i].insn = x;
3555 df_simulate_one_insn_backwards (bb, x, &live);
3556 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3557 }
3558 }
3559 x = PREV_INSN (x);
3560 }
3561 while (x != prev);
3562 CLEAR_REG_SET (&live);
3563
3564 peep2_current = i;
3565 }
3566
3567 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3568 Return true if we added it, false otherwise. The caller will try to match
3569 peepholes against the buffer if we return false; otherwise it will try to
3570 add more instructions to the buffer. */
3571
3572 static bool
3573 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3574 {
3575 int pos;
3576
3577 /* Once we have filled the maximum number of insns the buffer can hold,
3578 allow the caller to match the insns against peepholes. We wait until
3579 the buffer is full in case the target has similar peepholes of different
3580 length; we always want to match the longest if possible. */
3581 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3582 return false;
3583
3584 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3585 any other pattern, lest it change the semantics of the frame info. */
3586 if (RTX_FRAME_RELATED_P (insn))
3587 {
3588 /* Let the buffer drain first. */
3589 if (peep2_current_count > 0)
3590 return false;
3591 /* Now the insn will be the only thing in the buffer. */
3592 }
3593
3594 pos = peep2_buf_position (peep2_current + peep2_current_count);
3595 peep2_insn_data[pos].insn = insn;
3596 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3597 peep2_current_count++;
3598
3599 df_simulate_one_insn_forwards (bb, insn, live);
3600 return true;
3601 }
3602
3603 /* Perform the peephole2 optimization pass. */
3604
3605 static void
3606 peephole2_optimize (void)
3607 {
3608 rtx_insn *insn;
3609 bitmap live;
3610 int i;
3611 basic_block bb;
3612
3613 peep2_do_cleanup_cfg = false;
3614 peep2_do_rebuild_jump_labels = false;
3615
3616 df_set_flags (DF_LR_RUN_DCE);
3617 df_note_add_problem ();
3618 df_analyze ();
3619
3620 /* Initialize the regsets we're going to use. */
3621 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3622 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3623 search_ofs = 0;
3624 live = BITMAP_ALLOC (&reg_obstack);
3625
3626 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3627 {
3628 bool past_end = false;
3629 int pos;
3630
3631 rtl_profile_for_bb (bb);
3632
3633 /* Start up propagation. */
3634 bitmap_copy (live, DF_LR_IN (bb));
3635 df_simulate_initialize_forwards (bb, live);
3636 peep2_reinit_state (live);
3637
3638 insn = BB_HEAD (bb);
3639 for (;;)
3640 {
3641 rtx_insn *attempt, *head;
3642 int match_len;
3643
3644 if (!past_end && !NONDEBUG_INSN_P (insn))
3645 {
3646 next_insn:
3647 insn = NEXT_INSN (insn);
3648 if (insn == NEXT_INSN (BB_END (bb)))
3649 past_end = true;
3650 continue;
3651 }
3652 if (!past_end && peep2_fill_buffer (bb, insn, live))
3653 goto next_insn;
3654
3655 /* If we did not fill an empty buffer, it signals the end of the
3656 block. */
3657 if (peep2_current_count == 0)
3658 break;
3659
3660 /* The buffer filled to the current maximum, so try to match. */
3661
3662 pos = peep2_buf_position (peep2_current + peep2_current_count);
3663 peep2_insn_data[pos].insn = PEEP2_EOB;
3664 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3665
3666 /* Match the peephole. */
3667 head = peep2_insn_data[peep2_current].insn;
3668 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3669 if (attempt != NULL)
3670 {
3671 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3672 if (last)
3673 {
3674 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3675 continue;
3676 }
3677 }
3678
3679 /* No match: advance the buffer by one insn. */
3680 peep2_current = peep2_buf_position (peep2_current + 1);
3681 peep2_current_count--;
3682 }
3683 }
3684
3685 default_rtl_profile ();
3686 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3687 BITMAP_FREE (peep2_insn_data[i].live_before);
3688 BITMAP_FREE (live);
3689 if (peep2_do_rebuild_jump_labels)
3690 rebuild_jump_labels (get_insns ());
3691 if (peep2_do_cleanup_cfg)
3692 cleanup_cfg (CLEANUP_CFG_CHANGED);
3693 }
3694
3695 /* Common predicates for use with define_bypass. */
3696
3697 /* Helper function for store_data_bypass_p, handle just a single SET
3698 IN_SET. */
3699
3700 static bool
3701 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3702 {
3703 if (!MEM_P (SET_DEST (in_set)))
3704 return false;
3705
3706 rtx out_set = single_set (out_insn);
3707 if (out_set)
3708 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3709
3710 rtx out_pat = PATTERN (out_insn);
3711 if (GET_CODE (out_pat) != PARALLEL)
3712 return false;
3713
3714 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3715 {
3716 rtx out_exp = XVECEXP (out_pat, 0, i);
3717
3718 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE)
3719 continue;
3720
3721 gcc_assert (GET_CODE (out_exp) == SET);
3722
3723 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3724 return false;
3725 }
3726
3727 return true;
3728 }
3729
3730 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3731 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3732 must be either a single_set or a PARALLEL with SETs inside. */
3733
3734 int
3735 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3736 {
3737 rtx in_set = single_set (in_insn);
3738 if (in_set)
3739 return store_data_bypass_p_1 (out_insn, in_set);
3740
3741 rtx in_pat = PATTERN (in_insn);
3742 if (GET_CODE (in_pat) != PARALLEL)
3743 return false;
3744
3745 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3746 {
3747 rtx in_exp = XVECEXP (in_pat, 0, i);
3748
3749 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE)
3750 continue;
3751
3752 gcc_assert (GET_CODE (in_exp) == SET);
3753
3754 if (!store_data_bypass_p_1 (out_insn, in_exp))
3755 return false;
3756 }
3757
3758 return true;
3759 }
3760
3761 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3762 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3763 or multiple set; IN_INSN should be single_set for truth, but for convenience
3764 of insn categorization may be any JUMP or CALL insn. */
3765
3766 int
3767 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3768 {
3769 rtx out_set, in_set;
3770
3771 in_set = single_set (in_insn);
3772 if (! in_set)
3773 {
3774 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3775 return false;
3776 }
3777
3778 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3779 return false;
3780 in_set = SET_SRC (in_set);
3781
3782 out_set = single_set (out_insn);
3783 if (out_set)
3784 {
3785 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3786 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3787 return false;
3788 }
3789 else
3790 {
3791 rtx out_pat;
3792 int i;
3793
3794 out_pat = PATTERN (out_insn);
3795 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3796
3797 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3798 {
3799 rtx exp = XVECEXP (out_pat, 0, i);
3800
3801 if (GET_CODE (exp) == CLOBBER)
3802 continue;
3803
3804 gcc_assert (GET_CODE (exp) == SET);
3805
3806 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3807 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3808 return false;
3809 }
3810 }
3811
3812 return true;
3813 }
3814 \f
3815 static unsigned int
3816 rest_of_handle_peephole2 (void)
3817 {
3818 if (HAVE_peephole2)
3819 peephole2_optimize ();
3820
3821 return 0;
3822 }
3823
3824 namespace {
3825
3826 const pass_data pass_data_peephole2 =
3827 {
3828 RTL_PASS, /* type */
3829 "peephole2", /* name */
3830 OPTGROUP_NONE, /* optinfo_flags */
3831 TV_PEEPHOLE2, /* tv_id */
3832 0, /* properties_required */
3833 0, /* properties_provided */
3834 0, /* properties_destroyed */
3835 0, /* todo_flags_start */
3836 TODO_df_finish, /* todo_flags_finish */
3837 };
3838
3839 class pass_peephole2 : public rtl_opt_pass
3840 {
3841 public:
3842 pass_peephole2 (gcc::context *ctxt)
3843 : rtl_opt_pass (pass_data_peephole2, ctxt)
3844 {}
3845
3846 /* opt_pass methods: */
3847 /* The epiphany backend creates a second instance of this pass, so we need
3848 a clone method. */
3849 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3850 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3851 virtual unsigned int execute (function *)
3852 {
3853 return rest_of_handle_peephole2 ();
3854 }
3855
3856 }; // class pass_peephole2
3857
3858 } // anon namespace
3859
3860 rtl_opt_pass *
3861 make_pass_peephole2 (gcc::context *ctxt)
3862 {
3863 return new pass_peephole2 (ctxt);
3864 }
3865
3866 namespace {
3867
3868 const pass_data pass_data_split_all_insns =
3869 {
3870 RTL_PASS, /* type */
3871 "split1", /* name */
3872 OPTGROUP_NONE, /* optinfo_flags */
3873 TV_NONE, /* tv_id */
3874 0, /* properties_required */
3875 PROP_rtl_split_insns, /* properties_provided */
3876 0, /* properties_destroyed */
3877 0, /* todo_flags_start */
3878 0, /* todo_flags_finish */
3879 };
3880
3881 class pass_split_all_insns : public rtl_opt_pass
3882 {
3883 public:
3884 pass_split_all_insns (gcc::context *ctxt)
3885 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3886 {}
3887
3888 /* opt_pass methods: */
3889 /* The epiphany backend creates a second instance of this pass, so
3890 we need a clone method. */
3891 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3892 virtual unsigned int execute (function *)
3893 {
3894 split_all_insns ();
3895 return 0;
3896 }
3897
3898 }; // class pass_split_all_insns
3899
3900 } // anon namespace
3901
3902 rtl_opt_pass *
3903 make_pass_split_all_insns (gcc::context *ctxt)
3904 {
3905 return new pass_split_all_insns (ctxt);
3906 }
3907
3908 namespace {
3909
3910 const pass_data pass_data_split_after_reload =
3911 {
3912 RTL_PASS, /* type */
3913 "split2", /* name */
3914 OPTGROUP_NONE, /* optinfo_flags */
3915 TV_NONE, /* tv_id */
3916 0, /* properties_required */
3917 0, /* properties_provided */
3918 0, /* properties_destroyed */
3919 0, /* todo_flags_start */
3920 0, /* todo_flags_finish */
3921 };
3922
3923 class pass_split_after_reload : public rtl_opt_pass
3924 {
3925 public:
3926 pass_split_after_reload (gcc::context *ctxt)
3927 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3928 {}
3929
3930 /* opt_pass methods: */
3931 virtual bool gate (function *)
3932 {
3933 /* If optimizing, then go ahead and split insns now. */
3934 return optimize > 0;
3935 }
3936
3937 virtual unsigned int execute (function *)
3938 {
3939 split_all_insns ();
3940 return 0;
3941 }
3942
3943 }; // class pass_split_after_reload
3944
3945 } // anon namespace
3946
3947 rtl_opt_pass *
3948 make_pass_split_after_reload (gcc::context *ctxt)
3949 {
3950 return new pass_split_after_reload (ctxt);
3951 }
3952
3953 static bool
3954 enable_split_before_sched2 (void)
3955 {
3956 #ifdef INSN_SCHEDULING
3957 return optimize > 0 && flag_schedule_insns_after_reload;
3958 #else
3959 return false;
3960 #endif
3961 }
3962
3963 namespace {
3964
3965 const pass_data pass_data_split_before_sched2 =
3966 {
3967 RTL_PASS, /* type */
3968 "split3", /* name */
3969 OPTGROUP_NONE, /* optinfo_flags */
3970 TV_NONE, /* tv_id */
3971 0, /* properties_required */
3972 0, /* properties_provided */
3973 0, /* properties_destroyed */
3974 0, /* todo_flags_start */
3975 0, /* todo_flags_finish */
3976 };
3977
3978 class pass_split_before_sched2 : public rtl_opt_pass
3979 {
3980 public:
3981 pass_split_before_sched2 (gcc::context *ctxt)
3982 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
3983 {}
3984
3985 /* opt_pass methods: */
3986 virtual bool gate (function *)
3987 {
3988 return enable_split_before_sched2 ();
3989 }
3990
3991 virtual unsigned int execute (function *)
3992 {
3993 split_all_insns ();
3994 return 0;
3995 }
3996
3997 }; // class pass_split_before_sched2
3998
3999 } // anon namespace
4000
4001 rtl_opt_pass *
4002 make_pass_split_before_sched2 (gcc::context *ctxt)
4003 {
4004 return new pass_split_before_sched2 (ctxt);
4005 }
4006
4007 namespace {
4008
4009 const pass_data pass_data_split_before_regstack =
4010 {
4011 RTL_PASS, /* type */
4012 "split4", /* name */
4013 OPTGROUP_NONE, /* optinfo_flags */
4014 TV_NONE, /* tv_id */
4015 0, /* properties_required */
4016 0, /* properties_provided */
4017 0, /* properties_destroyed */
4018 0, /* todo_flags_start */
4019 0, /* todo_flags_finish */
4020 };
4021
4022 class pass_split_before_regstack : public rtl_opt_pass
4023 {
4024 public:
4025 pass_split_before_regstack (gcc::context *ctxt)
4026 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4027 {}
4028
4029 /* opt_pass methods: */
4030 virtual bool gate (function *);
4031 virtual unsigned int execute (function *)
4032 {
4033 split_all_insns ();
4034 return 0;
4035 }
4036
4037 }; // class pass_split_before_regstack
4038
4039 bool
4040 pass_split_before_regstack::gate (function *)
4041 {
4042 #if HAVE_ATTR_length && defined (STACK_REGS)
4043 /* If flow2 creates new instructions which need splitting
4044 and scheduling after reload is not done, they might not be
4045 split until final which doesn't allow splitting
4046 if HAVE_ATTR_length. */
4047 return !enable_split_before_sched2 ();
4048 #else
4049 return false;
4050 #endif
4051 }
4052
4053 } // anon namespace
4054
4055 rtl_opt_pass *
4056 make_pass_split_before_regstack (gcc::context *ctxt)
4057 {
4058 return new pass_split_before_regstack (ctxt);
4059 }
4060
4061 namespace {
4062
4063 const pass_data pass_data_split_for_shorten_branches =
4064 {
4065 RTL_PASS, /* type */
4066 "split5", /* name */
4067 OPTGROUP_NONE, /* optinfo_flags */
4068 TV_NONE, /* tv_id */
4069 0, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 0, /* todo_flags_finish */
4074 };
4075
4076 class pass_split_for_shorten_branches : public rtl_opt_pass
4077 {
4078 public:
4079 pass_split_for_shorten_branches (gcc::context *ctxt)
4080 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4081 {}
4082
4083 /* opt_pass methods: */
4084 virtual bool gate (function *)
4085 {
4086 /* The placement of the splitting that we do for shorten_branches
4087 depends on whether regstack is used by the target or not. */
4088 #if HAVE_ATTR_length && !defined (STACK_REGS)
4089 return true;
4090 #else
4091 return false;
4092 #endif
4093 }
4094
4095 virtual unsigned int execute (function *)
4096 {
4097 return split_all_insns_noflow ();
4098 }
4099
4100 }; // class pass_split_for_shorten_branches
4101
4102 } // anon namespace
4103
4104 rtl_opt_pass *
4105 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4106 {
4107 return new pass_split_for_shorten_branches (ctxt);
4108 }
4109
4110 /* (Re)initialize the target information after a change in target. */
4111
4112 void
4113 recog_init ()
4114 {
4115 /* The information is zero-initialized, so we don't need to do anything
4116 first time round. */
4117 if (!this_target_recog->x_initialized)
4118 {
4119 this_target_recog->x_initialized = true;
4120 return;
4121 }
4122 memset (this_target_recog->x_bool_attr_masks, 0,
4123 sizeof (this_target_recog->x_bool_attr_masks));
4124 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4125 if (this_target_recog->x_op_alt[i])
4126 {
4127 free (this_target_recog->x_op_alt[i]);
4128 this_target_recog->x_op_alt[i] = 0;
4129 }
4130 }