]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtl.h
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
42
43 /* Register Transfer Language EXPRESSIONS CODES */
44
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
47
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90 };
91
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 \f
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
126 {
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143 };
144
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
149 {
150 mem_attrs ();
151
152 /* The expression that the MEM accesses, or null if not known.
153 This expression might be larger than the memory reference itself.
154 (In other words, the MEM might access only part of the object.) */
155 tree expr;
156
157 /* The offset of the memory reference from the start of EXPR.
158 Only valid if OFFSET_KNOWN_P. */
159 poly_int64 offset;
160
161 /* The size of the memory reference in bytes. Only valid if
162 SIZE_KNOWN_P. */
163 poly_int64 size;
164
165 /* The alias set of the memory reference. */
166 alias_set_type alias;
167
168 /* The alignment of the reference in bits. Always a multiple of
169 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
170 than the memory reference itself. */
171 unsigned int align;
172
173 /* The address space that the memory reference uses. */
174 unsigned char addrspace;
175
176 /* True if OFFSET is known. */
177 bool offset_known_p;
178
179 /* True if SIZE is known. */
180 bool size_known_p;
181 };
182
183 /* Structure used to describe the attributes of a REG in similar way as
184 mem_attrs does for MEM above. Note that the OFFSET field is calculated
185 in the same way as for mem_attrs, rather than in the same way as a
186 SUBREG_BYTE. For example, if a big-endian target stores a byte
187 object in the low part of a 4-byte register, the OFFSET field
188 will be -3 rather than 0. */
189
190 struct GTY((for_user)) reg_attrs {
191 tree decl; /* decl corresponding to REG. */
192 poly_int64 offset; /* Offset from start of DECL. */
193 };
194
195 /* Common union for an element of an rtx. */
196
197 union rtunion
198 {
199 int rt_int;
200 unsigned int rt_uint;
201 poly_uint16_pod rt_subreg;
202 const char *rt_str;
203 rtx rt_rtx;
204 rtvec rt_rtvec;
205 machine_mode rt_type;
206 addr_diff_vec_flags rt_addr_diff_vec_flags;
207 struct cselib_val *rt_cselib;
208 tree rt_tree;
209 basic_block rt_bb;
210 mem_attrs *rt_mem;
211 struct constant_descriptor_rtx *rt_constant;
212 struct dw_cfi_node *rt_cfi;
213 };
214
215 /* Describes the properties of a REG. */
216 struct GTY(()) reg_info {
217 /* The value of REGNO. */
218 unsigned int regno;
219
220 /* The value of REG_NREGS. */
221 unsigned int nregs : 8;
222 unsigned int unused : 24;
223
224 /* The value of REG_ATTRS. */
225 reg_attrs *attrs;
226 };
227
228 /* This structure remembers the position of a SYMBOL_REF within an
229 object_block structure. A SYMBOL_REF only provides this information
230 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
231 struct GTY(()) block_symbol {
232 /* The usual SYMBOL_REF fields. */
233 rtunion GTY ((skip)) fld[2];
234
235 /* The block that contains this object. */
236 struct object_block *block;
237
238 /* The offset of this object from the start of its block. It is negative
239 if the symbol has not yet been assigned an offset. */
240 HOST_WIDE_INT offset;
241 };
242
243 /* Describes a group of objects that are to be placed together in such
244 a way that their relative positions are known. */
245 struct GTY((for_user)) object_block {
246 /* The section in which these objects should be placed. */
247 section *sect;
248
249 /* The alignment of the first object, measured in bits. */
250 unsigned int alignment;
251
252 /* The total size of the objects, measured in bytes. */
253 HOST_WIDE_INT size;
254
255 /* The SYMBOL_REFs for each object. The vector is sorted in
256 order of increasing offset and the following conditions will
257 hold for each element X:
258
259 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 !SYMBOL_REF_ANCHOR_P (X)
261 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
263 vec<rtx, va_gc> *objects;
264
265 /* All the anchor SYMBOL_REFs used to address these objects, sorted
266 in order of increasing offset, and then increasing TLS model.
267 The following conditions will hold for each element X in this vector:
268
269 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 SYMBOL_REF_ANCHOR_P (X)
271 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
273 vec<rtx, va_gc> *anchors;
274 };
275
276 struct GTY((variable_size)) hwivec_def {
277 HOST_WIDE_INT elem[1];
278 };
279
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
281 #define CWI_GET_NUM_ELEM(RTX) \
282 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
284 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
285
286 struct GTY((variable_size)) const_poly_int_def {
287 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
288 };
289
290 /* RTL expression ("rtx"). */
291
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293 field for gengtype to recognize that inheritance is occurring,
294 so that all subclasses are redirected to the traversal hook for the
295 base class.
296 However, all of the fields are in the base class, and special-casing
297 is at work. Hence we use desc and tag of 0, generating a switch
298 statement of the form:
299 switch (0)
300 {
301 case 0: // all the work happens here
302 }
303 in order to work with the existing special-casing in gengtype. */
304
305 struct GTY((desc("0"), tag("0"),
306 chain_next ("RTX_NEXT (&%h)"),
307 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
308 /* The kind of expression this is. */
309 ENUM_BITFIELD(rtx_code) code: 16;
310
311 /* The kind of value the expression has. */
312 ENUM_BITFIELD(machine_mode) mode : 8;
313
314 /* 1 in a MEM if we should keep the alias set for this mem unchanged
315 when we access a component.
316 1 in a JUMP_INSN if it is a crossing jump.
317 1 in a CALL_INSN if it is a sibling call.
318 1 in a SET that is for a return.
319 In a CODE_LABEL, part of the two-bit alternate entry field.
320 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322 1 in a SUBREG generated by LRA for reload insns.
323 1 in a REG if this is a static chain register.
324 Dumped as "/j" in RTL dumps. */
325 unsigned int jump : 1;
326 /* In a CODE_LABEL, part of the two-bit alternate entry field.
327 1 in a MEM if it cannot trap.
328 1 in a CALL_INSN logically equivalent to
329 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
330 Dumped as "/c" in RTL dumps. */
331 unsigned int call : 1;
332 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
333 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
334 1 in a SYMBOL_REF if it addresses something in the per-function
335 constants pool.
336 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
337 1 in a NOTE, or EXPR_LIST for a const call.
338 1 in a JUMP_INSN of an annulling branch.
339 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
340 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
341 1 in a clobber temporarily created for LRA.
342 Dumped as "/u" in RTL dumps. */
343 unsigned int unchanging : 1;
344 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
345 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
346 if it has been deleted.
347 1 in a REG expression if corresponds to a variable declared by the user,
348 0 for an internally generated temporary.
349 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
350 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
351 non-local label.
352 In a SYMBOL_REF, this flag is used for machine-specific purposes.
353 In a PREFETCH, this flag indicates that it should be considered a
354 scheduling barrier.
355 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
356 Dumped as "/v" in RTL dumps. */
357 unsigned int volatil : 1;
358 /* 1 in a REG if the register is used only in exit code a loop.
359 1 in a SUBREG expression if was generated from a variable with a
360 promoted mode.
361 1 in a CODE_LABEL if the label is used for nonlocal gotos
362 and must not be deleted even if its count is zero.
363 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
364 together with the preceding insn. Valid only within sched.
365 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
366 from the target of a branch. Valid from reorg until end of compilation;
367 cleared before used.
368
369 The name of the field is historical. It used to be used in MEMs
370 to record whether the MEM accessed part of a structure.
371 Dumped as "/s" in RTL dumps. */
372 unsigned int in_struct : 1;
373 /* At the end of RTL generation, 1 if this rtx is used. This is used for
374 copying shared structure. See `unshare_all_rtl'.
375 In a REG, this is not needed for that purpose, and used instead
376 in `leaf_renumber_regs_insn'.
377 1 in a SYMBOL_REF, means that emit_library_call
378 has used it as the function.
379 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
380 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
381 unsigned int used : 1;
382 /* 1 in an INSN or a SET if this rtx is related to the call frame,
383 either changing how we compute the frame address or saving and
384 restoring registers in the prologue and epilogue.
385 1 in a REG or MEM if it is a pointer.
386 1 in a SYMBOL_REF if it addresses something in the per-function
387 constant string pool.
388 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
389 Dumped as "/f" in RTL dumps. */
390 unsigned frame_related : 1;
391 /* 1 in a REG or PARALLEL that is the current function's return value.
392 1 in a SYMBOL_REF for a weak symbol.
393 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
394 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
395 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
396 Dumped as "/i" in RTL dumps. */
397 unsigned return_val : 1;
398
399 union {
400 /* The final union field is aligned to 64 bits on LP64 hosts,
401 giving a 32-bit gap after the fields above. We optimize the
402 layout for that case and use the gap for extra code-specific
403 information. */
404
405 /* The ORIGINAL_REGNO of a REG. */
406 unsigned int original_regno;
407
408 /* The INSN_UID of an RTX_INSN-class code. */
409 int insn_uid;
410
411 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
412 unsigned int symbol_ref_flags;
413
414 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
415 enum var_init_status var_location_status;
416
417 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
418 HOST_WIDE_INTs in the hwivec_def. */
419 unsigned int num_elem;
420
421 /* Information about a CONST_VECTOR. */
422 struct
423 {
424 /* The value of CONST_VECTOR_NPATTERNS. */
425 unsigned int npatterns : 16;
426
427 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
428 unsigned int nelts_per_pattern : 8;
429
430 /* For future expansion. */
431 unsigned int unused : 8;
432 } const_vector;
433 } GTY ((skip)) u2;
434
435 /* The first element of the operands of this rtx.
436 The number of operands and their types are controlled
437 by the `code' field, according to rtl.def. */
438 union u {
439 rtunion fld[1];
440 HOST_WIDE_INT hwint[1];
441 struct reg_info reg;
442 struct block_symbol block_sym;
443 struct real_value rv;
444 struct fixed_value fv;
445 struct hwivec_def hwiv;
446 struct const_poly_int_def cpi;
447 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
448 };
449
450 /* A node for constructing singly-linked lists of rtx. */
451
452 class GTY(()) rtx_expr_list : public rtx_def
453 {
454 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
455
456 public:
457 /* Get next in list. */
458 rtx_expr_list *next () const;
459
460 /* Get at the underlying rtx. */
461 rtx element () const;
462 };
463
464 template <>
465 template <>
466 inline bool
467 is_a_helper <rtx_expr_list *>::test (rtx rt)
468 {
469 return rt->code == EXPR_LIST;
470 }
471
472 class GTY(()) rtx_insn_list : public rtx_def
473 {
474 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
475
476 This is an instance of:
477
478 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
479
480 i.e. a node for constructing singly-linked lists of rtx_insn *, where
481 the list is "external" to the insn (as opposed to the doubly-linked
482 list embedded within rtx_insn itself). */
483
484 public:
485 /* Get next in list. */
486 rtx_insn_list *next () const;
487
488 /* Get at the underlying instruction. */
489 rtx_insn *insn () const;
490
491 };
492
493 template <>
494 template <>
495 inline bool
496 is_a_helper <rtx_insn_list *>::test (rtx rt)
497 {
498 return rt->code == INSN_LIST;
499 }
500
501 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
502 typically (but not always) of rtx_insn *, used in the late passes. */
503
504 class GTY(()) rtx_sequence : public rtx_def
505 {
506 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
507
508 public:
509 /* Get number of elements in sequence. */
510 int len () const;
511
512 /* Get i-th element of the sequence. */
513 rtx element (int index) const;
514
515 /* Get i-th element of the sequence, with a checked cast to
516 rtx_insn *. */
517 rtx_insn *insn (int index) const;
518 };
519
520 template <>
521 template <>
522 inline bool
523 is_a_helper <rtx_sequence *>::test (rtx rt)
524 {
525 return rt->code == SEQUENCE;
526 }
527
528 template <>
529 template <>
530 inline bool
531 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
532 {
533 return rt->code == SEQUENCE;
534 }
535
536 class GTY(()) rtx_insn : public rtx_def
537 {
538 public:
539 /* No extra fields, but adds the invariant:
540
541 (INSN_P (X)
542 || NOTE_P (X)
543 || JUMP_TABLE_DATA_P (X)
544 || BARRIER_P (X)
545 || LABEL_P (X))
546
547 i.e. that we must be able to use the following:
548 INSN_UID ()
549 NEXT_INSN ()
550 PREV_INSN ()
551 i.e. we have an rtx that has an INSN_UID field and can be part of
552 a linked list of insns.
553 */
554
555 /* Returns true if this insn has been deleted. */
556
557 bool deleted () const { return volatil; }
558
559 /* Mark this insn as deleted. */
560
561 void set_deleted () { volatil = true; }
562
563 /* Mark this insn as not deleted. */
564
565 void set_undeleted () { volatil = false; }
566 };
567
568 /* Subclasses of rtx_insn. */
569
570 class GTY(()) rtx_debug_insn : public rtx_insn
571 {
572 /* No extra fields, but adds the invariant:
573 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
574 i.e. an annotation for tracking variable assignments.
575
576 This is an instance of:
577 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
578 from rtl.def. */
579 };
580
581 class GTY(()) rtx_nonjump_insn : public rtx_insn
582 {
583 /* No extra fields, but adds the invariant:
584 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
585 i.e an instruction that cannot jump.
586
587 This is an instance of:
588 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
589 from rtl.def. */
590 };
591
592 class GTY(()) rtx_jump_insn : public rtx_insn
593 {
594 public:
595 /* No extra fields, but adds the invariant:
596 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
597 i.e. an instruction that can possibly jump.
598
599 This is an instance of:
600 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
601 from rtl.def. */
602
603 /* Returns jump target of this instruction. The returned value is not
604 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
605 expression. Also, when the code label is marked "deleted", it is
606 replaced by a NOTE. In some cases the value is NULL_RTX. */
607
608 inline rtx jump_label () const;
609
610 /* Returns jump target cast to rtx_code_label *. */
611
612 inline rtx_code_label *jump_target () const;
613
614 /* Set jump target. */
615
616 inline void set_jump_target (rtx_code_label *);
617 };
618
619 class GTY(()) rtx_call_insn : public rtx_insn
620 {
621 /* No extra fields, but adds the invariant:
622 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
623 i.e. an instruction that can possibly call a subroutine
624 but which will not change which instruction comes next
625 in the current function.
626
627 This is an instance of:
628 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
629 from rtl.def. */
630 };
631
632 class GTY(()) rtx_jump_table_data : public rtx_insn
633 {
634 /* No extra fields, but adds the invariant:
635 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
636 i.e. a data for a jump table, considered an instruction for
637 historical reasons.
638
639 This is an instance of:
640 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
641 from rtl.def. */
642
643 public:
644
645 /* This can be either:
646
647 (a) a table of absolute jumps, in which case PATTERN (this) is an
648 ADDR_VEC with arg 0 a vector of labels, or
649
650 (b) a table of relative jumps (e.g. for -fPIC), in which case
651 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
652 arg 1 the vector of labels.
653
654 This method gets the underlying vec. */
655
656 inline rtvec get_labels () const;
657 inline scalar_int_mode get_data_mode () const;
658 };
659
660 class GTY(()) rtx_barrier : public rtx_insn
661 {
662 /* No extra fields, but adds the invariant:
663 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
664 i.e. a marker that indicates that control will not flow through.
665
666 This is an instance of:
667 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
668 from rtl.def. */
669 };
670
671 class GTY(()) rtx_code_label : public rtx_insn
672 {
673 /* No extra fields, but adds the invariant:
674 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
675 i.e. a label in the assembler.
676
677 This is an instance of:
678 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
679 from rtl.def. */
680 };
681
682 class GTY(()) rtx_note : public rtx_insn
683 {
684 /* No extra fields, but adds the invariant:
685 NOTE_P(X) aka (GET_CODE (X) == NOTE)
686 i.e. a note about the corresponding source code.
687
688 This is an instance of:
689 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
690 from rtl.def. */
691 };
692
693 /* The size in bytes of an rtx header (code, mode and flags). */
694 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
695
696 /* The size in bytes of an rtx with code CODE. */
697 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
698
699 #define NULL_RTX (rtx) 0
700
701 /* The "next" and "previous" RTX, relative to this one. */
702
703 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
704 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
705
706 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
707 */
708 #define RTX_PREV(X) ((INSN_P (X) \
709 || NOTE_P (X) \
710 || JUMP_TABLE_DATA_P (X) \
711 || BARRIER_P (X) \
712 || LABEL_P (X)) \
713 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
714 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
715 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
716
717 /* Define macros to access the `code' field of the rtx. */
718
719 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
720 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
721
722 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
723 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
724
725 /* RTL vector. These appear inside RTX's when there is a need
726 for a variable number of things. The principle use is inside
727 PARALLEL expressions. */
728
729 struct GTY(()) rtvec_def {
730 int num_elem; /* number of elements */
731 rtx GTY ((length ("%h.num_elem"))) elem[1];
732 };
733
734 #define NULL_RTVEC (rtvec) 0
735
736 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
737 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
738
739 /* Predicate yielding nonzero iff X is an rtx for a register. */
740 #define REG_P(X) (GET_CODE (X) == REG)
741
742 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
743 #define MEM_P(X) (GET_CODE (X) == MEM)
744
745 #if TARGET_SUPPORTS_WIDE_INT
746
747 /* Match CONST_*s that can represent compile-time constant integers. */
748 #define CASE_CONST_SCALAR_INT \
749 case CONST_INT: \
750 case CONST_WIDE_INT
751
752 /* Match CONST_*s for which pointer equality corresponds to value
753 equality. */
754 #define CASE_CONST_UNIQUE \
755 case CONST_INT: \
756 case CONST_WIDE_INT: \
757 case CONST_POLY_INT: \
758 case CONST_DOUBLE: \
759 case CONST_FIXED
760
761 /* Match all CONST_* rtxes. */
762 #define CASE_CONST_ANY \
763 case CONST_INT: \
764 case CONST_WIDE_INT: \
765 case CONST_POLY_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED: \
768 case CONST_VECTOR
769
770 #else
771
772 /* Match CONST_*s that can represent compile-time constant integers. */
773 #define CASE_CONST_SCALAR_INT \
774 case CONST_INT: \
775 case CONST_DOUBLE
776
777 /* Match CONST_*s for which pointer equality corresponds to value
778 equality. */
779 #define CASE_CONST_UNIQUE \
780 case CONST_INT: \
781 case CONST_DOUBLE: \
782 case CONST_FIXED
783
784 /* Match all CONST_* rtxes. */
785 #define CASE_CONST_ANY \
786 case CONST_INT: \
787 case CONST_DOUBLE: \
788 case CONST_FIXED: \
789 case CONST_VECTOR
790 #endif
791
792 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
793 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
794
795 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
796 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
797
798 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
799 integer. */
800 #define CONST_POLY_INT_P(X) \
801 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
802
803 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
804 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
805
806 /* Predicate yielding true iff X is an rtx for a double-int
807 or floating point constant. */
808 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
809
810 /* Predicate yielding true iff X is an rtx for a double-int. */
811 #define CONST_DOUBLE_AS_INT_P(X) \
812 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
813
814 /* Predicate yielding true iff X is an rtx for a integer const. */
815 #if TARGET_SUPPORTS_WIDE_INT
816 #define CONST_SCALAR_INT_P(X) \
817 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
818 #else
819 #define CONST_SCALAR_INT_P(X) \
820 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
821 #endif
822
823 /* Predicate yielding true iff X is an rtx for a double-int. */
824 #define CONST_DOUBLE_AS_FLOAT_P(X) \
825 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
826
827 /* Predicate yielding nonzero iff X is a label insn. */
828 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
829
830 /* Predicate yielding nonzero iff X is a jump insn. */
831 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
832
833 /* Predicate yielding nonzero iff X is a call insn. */
834 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
835
836 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
837 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
838
839 /* Predicate yielding nonzero iff X is a debug note/insn. */
840 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
841
842 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
843 #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
844
845 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
846 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
847 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
848 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
849 /* Nonzero if DEBUG_INSN_P may possibly hold. */
850 #define MAY_HAVE_DEBUG_INSNS \
851 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
852
853 /* Predicate yielding nonzero iff X is a real insn. */
854 #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
855
856 /* Predicate yielding nonzero iff X is a note insn. */
857 #define NOTE_P(X) (GET_CODE (X) == NOTE)
858
859 /* Predicate yielding nonzero iff X is a barrier insn. */
860 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
861
862 /* Predicate yielding nonzero iff X is a data for a jump table. */
863 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
864
865 /* Predicate yielding nonzero iff RTX is a subreg. */
866 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
867
868 /* Predicate yielding true iff RTX is a symbol ref. */
869 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
870
871 template <>
872 template <>
873 inline bool
874 is_a_helper <rtx_insn *>::test (rtx rt)
875 {
876 return (INSN_P (rt)
877 || NOTE_P (rt)
878 || JUMP_TABLE_DATA_P (rt)
879 || BARRIER_P (rt)
880 || LABEL_P (rt));
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <const rtx_insn *>::test (const_rtx rt)
887 {
888 return (INSN_P (rt)
889 || NOTE_P (rt)
890 || JUMP_TABLE_DATA_P (rt)
891 || BARRIER_P (rt)
892 || LABEL_P (rt));
893 }
894
895 template <>
896 template <>
897 inline bool
898 is_a_helper <rtx_debug_insn *>::test (rtx rt)
899 {
900 return DEBUG_INSN_P (rt);
901 }
902
903 template <>
904 template <>
905 inline bool
906 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
907 {
908 return NONJUMP_INSN_P (rt);
909 }
910
911 template <>
912 template <>
913 inline bool
914 is_a_helper <rtx_jump_insn *>::test (rtx rt)
915 {
916 return JUMP_P (rt);
917 }
918
919 template <>
920 template <>
921 inline bool
922 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
923 {
924 return JUMP_P (insn);
925 }
926
927 template <>
928 template <>
929 inline bool
930 is_a_helper <rtx_call_insn *>::test (rtx rt)
931 {
932 return CALL_P (rt);
933 }
934
935 template <>
936 template <>
937 inline bool
938 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
939 {
940 return CALL_P (insn);
941 }
942
943 template <>
944 template <>
945 inline bool
946 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
947 {
948 return JUMP_TABLE_DATA_P (rt);
949 }
950
951 template <>
952 template <>
953 inline bool
954 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
955 {
956 return JUMP_TABLE_DATA_P (insn);
957 }
958
959 template <>
960 template <>
961 inline bool
962 is_a_helper <rtx_barrier *>::test (rtx rt)
963 {
964 return BARRIER_P (rt);
965 }
966
967 template <>
968 template <>
969 inline bool
970 is_a_helper <rtx_code_label *>::test (rtx rt)
971 {
972 return LABEL_P (rt);
973 }
974
975 template <>
976 template <>
977 inline bool
978 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
979 {
980 return LABEL_P (insn);
981 }
982
983 template <>
984 template <>
985 inline bool
986 is_a_helper <rtx_note *>::test (rtx rt)
987 {
988 return NOTE_P (rt);
989 }
990
991 template <>
992 template <>
993 inline bool
994 is_a_helper <rtx_note *>::test (rtx_insn *insn)
995 {
996 return NOTE_P (insn);
997 }
998
999 /* Predicate yielding nonzero iff X is a return or simple_return. */
1000 #define ANY_RETURN_P(X) \
1001 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1002
1003 /* 1 if X is a unary operator. */
1004
1005 #define UNARY_P(X) \
1006 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1007
1008 /* 1 if X is a binary operator. */
1009
1010 #define BINARY_P(X) \
1011 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1012
1013 /* 1 if X is an arithmetic operator. */
1014
1015 #define ARITHMETIC_P(X) \
1016 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1017 == RTX_ARITHMETIC_RESULT)
1018
1019 /* 1 if X is an arithmetic operator. */
1020
1021 #define COMMUTATIVE_ARITH_P(X) \
1022 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1023
1024 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1025 These two are sometimes selected together because it is possible to
1026 swap the two operands. */
1027
1028 #define SWAPPABLE_OPERANDS_P(X) \
1029 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1030 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1031 | (1 << RTX_COMPARE)))
1032
1033 /* 1 if X is a non-commutative operator. */
1034
1035 #define NON_COMMUTATIVE_P(X) \
1036 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1037 == RTX_NON_COMMUTATIVE_RESULT)
1038
1039 /* 1 if X is a commutative operator on integers. */
1040
1041 #define COMMUTATIVE_P(X) \
1042 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1043 == RTX_COMMUTATIVE_RESULT)
1044
1045 /* 1 if X is a relational operator. */
1046
1047 #define COMPARISON_P(X) \
1048 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1049
1050 /* 1 if X is a constant value that is an integer. */
1051
1052 #define CONSTANT_P(X) \
1053 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1054
1055 /* 1 if X is a LABEL_REF. */
1056 #define LABEL_REF_P(X) \
1057 (GET_CODE (X) == LABEL_REF)
1058
1059 /* 1 if X can be used to represent an object. */
1060 #define OBJECT_P(X) \
1061 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1062
1063 /* General accessor macros for accessing the fields of an rtx. */
1064
1065 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1066 /* The bit with a star outside the statement expr and an & inside is
1067 so that N can be evaluated only once. */
1068 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1069 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1070 const enum rtx_code _code = GET_CODE (_rtx); \
1071 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1072 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1073 __FUNCTION__); \
1074 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1075 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1076 __FUNCTION__); \
1077 &_rtx->u.fld[_n]; }))
1078
1079 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1080 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1081 const enum rtx_code _code = GET_CODE (_rtx); \
1082 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1083 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1084 __FUNCTION__); \
1085 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1086 && GET_RTX_FORMAT (_code)[_n] != C2) \
1087 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1088 __FUNCTION__); \
1089 &_rtx->u.fld[_n]; }))
1090
1091 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1092 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1093 if (GET_CODE (_rtx) != (C)) \
1094 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1095 __FUNCTION__); \
1096 &_rtx->u.fld[_n]; }))
1097
1098 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1099 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1100 const enum rtx_code _code = GET_CODE (_rtx); \
1101 if (_code != (C1) && _code != (C2)) \
1102 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1103 __FUNCTION__); \
1104 &_rtx->u.fld[_n]; }))
1105
1106 #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1107 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1108 const enum rtx_code _code = GET_CODE (_rtx); \
1109 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1110 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1111 __LINE__, __FUNCTION__); \
1112 &_rtx->u.fld[_n]; }))
1113
1114 #define RTVEC_ELT(RTVEC, I) __extension__ \
1115 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1116 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1117 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1118 __FUNCTION__); \
1119 &_rtvec->elem[_i]; }))
1120
1121 #define XWINT(RTX, N) __extension__ \
1122 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1123 const enum rtx_code _code = GET_CODE (_rtx); \
1124 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1125 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1126 __FUNCTION__); \
1127 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1128 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1129 __FUNCTION__); \
1130 &_rtx->u.hwint[_n]; }))
1131
1132 #define CWI_ELT(RTX, I) __extension__ \
1133 (*({ __typeof (RTX) const _cwi = (RTX); \
1134 int _max = CWI_GET_NUM_ELEM (_cwi); \
1135 const int _i = (I); \
1136 if (_i < 0 || _i >= _max) \
1137 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1138 __FUNCTION__); \
1139 &_cwi->u.hwiv.elem[_i]; }))
1140
1141 #define XCWINT(RTX, N, C) __extension__ \
1142 (*({ __typeof (RTX) const _rtx = (RTX); \
1143 if (GET_CODE (_rtx) != (C)) \
1144 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1145 __FUNCTION__); \
1146 &_rtx->u.hwint[N]; }))
1147
1148 #define XCMWINT(RTX, N, C, M) __extension__ \
1149 (*({ __typeof (RTX) const _rtx = (RTX); \
1150 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1151 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1152 __LINE__, __FUNCTION__); \
1153 &_rtx->u.hwint[N]; }))
1154
1155 #define XCNMPRV(RTX, C, M) __extension__ \
1156 ({ __typeof (RTX) const _rtx = (RTX); \
1157 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1158 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1159 __LINE__, __FUNCTION__); \
1160 &_rtx->u.rv; })
1161
1162 #define XCNMPFV(RTX, C, M) __extension__ \
1163 ({ __typeof (RTX) const _rtx = (RTX); \
1164 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1165 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1166 __LINE__, __FUNCTION__); \
1167 &_rtx->u.fv; })
1168
1169 #define REG_CHECK(RTX) __extension__ \
1170 ({ __typeof (RTX) const _rtx = (RTX); \
1171 if (GET_CODE (_rtx) != REG) \
1172 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1173 __FUNCTION__); \
1174 &_rtx->u.reg; })
1175
1176 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1177 ({ __typeof (RTX) const _symbol = (RTX); \
1178 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1179 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1180 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1181 __FUNCTION__); \
1182 &_symbol->u.block_sym; })
1183
1184 #define HWIVEC_CHECK(RTX,C) __extension__ \
1185 ({ __typeof (RTX) const _symbol = (RTX); \
1186 RTL_CHECKC1 (_symbol, 0, C); \
1187 &_symbol->u.hwiv; })
1188
1189 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1190 const char *)
1191 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1192 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1193 const char *)
1194 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1195 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1196 int, const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1199 int, const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1202 const char *, int, const char *)
1203 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1204 extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1205 enum rtx_code, const char *, int,
1206 const char *)
1207 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1208 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1209 bool, const char *, int, const char *)
1210 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1211 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1212 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1213 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1214 const char *)
1215 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1216 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1217 const char *)
1218 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1219
1220 #else /* not ENABLE_RTL_CHECKING */
1221
1222 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1223 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1224 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1225 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1226 #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1227 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1228 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1229 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1230 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1231 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1232 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1233 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1234 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1235 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1236 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1237 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1238
1239 #endif
1240
1241 /* General accessor macros for accessing the flags of an rtx. */
1242
1243 /* Access an individual rtx flag, with no checking of any kind. */
1244 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1245
1246 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1247 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1248 ({ __typeof (RTX) const _rtx = (RTX); \
1249 if (GET_CODE (_rtx) != C1) \
1250 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1251 __FUNCTION__); \
1252 _rtx; })
1253
1254 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1255 ({ __typeof (RTX) const _rtx = (RTX); \
1256 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1257 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1258 __FUNCTION__); \
1259 _rtx; })
1260
1261 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1262 ({ __typeof (RTX) const _rtx = (RTX); \
1263 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1264 && GET_CODE (_rtx) != C3) \
1265 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1266 __FUNCTION__); \
1267 _rtx; })
1268
1269 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1270 ({ __typeof (RTX) const _rtx = (RTX); \
1271 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1272 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1273 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1274 __FUNCTION__); \
1275 _rtx; })
1276
1277 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1278 ({ __typeof (RTX) const _rtx = (RTX); \
1279 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1280 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1281 && GET_CODE (_rtx) != C5) \
1282 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1283 __FUNCTION__); \
1284 _rtx; })
1285
1286 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1287 __extension__ \
1288 ({ __typeof (RTX) const _rtx = (RTX); \
1289 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1290 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1291 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1292 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1293 __FUNCTION__); \
1294 _rtx; })
1295
1296 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1297 __extension__ \
1298 ({ __typeof (RTX) const _rtx = (RTX); \
1299 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1300 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1301 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1302 && GET_CODE (_rtx) != C7) \
1303 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1304 __FUNCTION__); \
1305 _rtx; })
1306
1307 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1308 __extension__ \
1309 ({ __typeof (RTX) const _rtx = (RTX); \
1310 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1311 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1312 __FUNCTION__); \
1313 _rtx; })
1314
1315 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1316 int, const char *)
1317 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1318 ;
1319
1320 #else /* not ENABLE_RTL_FLAG_CHECKING */
1321
1322 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1323 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1324 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1325 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1326 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1327 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1328 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1329 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1330 #endif
1331
1332 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1333 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1334 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1335 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1336 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1337 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1338 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1339 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1340 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1341 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1342
1343 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1344 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1345
1346 /* These are like XINT, etc. except that they expect a '0' field instead
1347 of the normal type code. */
1348
1349 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1350 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1351 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1352 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1353 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1354 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1355 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1356 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1357 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1358 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1359 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1360 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1361
1362 /* Access a '0' field with any type. */
1363 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1364
1365 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1366 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1367 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1368 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1369 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1370 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1371 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1372 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1373 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1374 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1375 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1376
1377 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1378 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1379
1380 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1381 #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1382 \f
1383
1384 /* Methods of rtx_expr_list. */
1385
1386 inline rtx_expr_list *rtx_expr_list::next () const
1387 {
1388 rtx tmp = XEXP (this, 1);
1389 return safe_as_a <rtx_expr_list *> (tmp);
1390 }
1391
1392 inline rtx rtx_expr_list::element () const
1393 {
1394 return XEXP (this, 0);
1395 }
1396
1397 /* Methods of rtx_insn_list. */
1398
1399 inline rtx_insn_list *rtx_insn_list::next () const
1400 {
1401 rtx tmp = XEXP (this, 1);
1402 return safe_as_a <rtx_insn_list *> (tmp);
1403 }
1404
1405 inline rtx_insn *rtx_insn_list::insn () const
1406 {
1407 rtx tmp = XEXP (this, 0);
1408 return safe_as_a <rtx_insn *> (tmp);
1409 }
1410
1411 /* Methods of rtx_sequence. */
1412
1413 inline int rtx_sequence::len () const
1414 {
1415 return XVECLEN (this, 0);
1416 }
1417
1418 inline rtx rtx_sequence::element (int index) const
1419 {
1420 return XVECEXP (this, 0, index);
1421 }
1422
1423 inline rtx_insn *rtx_sequence::insn (int index) const
1424 {
1425 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1426 }
1427
1428 /* ACCESS MACROS for particular fields of insns. */
1429
1430 /* Holds a unique number for each insn.
1431 These are not necessarily sequentially increasing. */
1432 inline int INSN_UID (const_rtx insn)
1433 {
1434 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1435 (insn))->u2.insn_uid;
1436 }
1437 inline int& INSN_UID (rtx insn)
1438 {
1439 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1440 (insn))->u2.insn_uid;
1441 }
1442
1443 /* Chain insns together in sequence. */
1444
1445 /* For now these are split in two: an rvalue form:
1446 PREV_INSN/NEXT_INSN
1447 and an lvalue form:
1448 SET_NEXT_INSN/SET_PREV_INSN. */
1449
1450 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1451 {
1452 rtx prev = XEXP (insn, 0);
1453 return safe_as_a <rtx_insn *> (prev);
1454 }
1455
1456 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1457 {
1458 return XEXP (insn, 0);
1459 }
1460
1461 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1462 {
1463 rtx next = XEXP (insn, 1);
1464 return safe_as_a <rtx_insn *> (next);
1465 }
1466
1467 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1468 {
1469 return XEXP (insn, 1);
1470 }
1471
1472 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1473 {
1474 return XBBDEF (insn, 2);
1475 }
1476
1477 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1478 {
1479 return XBBDEF (insn, 2);
1480 }
1481
1482 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1483 {
1484 BLOCK_FOR_INSN (insn) = bb;
1485 }
1486
1487 /* The body of an insn. */
1488 inline rtx PATTERN (const_rtx insn)
1489 {
1490 return XEXP (insn, 3);
1491 }
1492
1493 inline rtx& PATTERN (rtx insn)
1494 {
1495 return XEXP (insn, 3);
1496 }
1497
1498 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1499 {
1500 return XUINT (insn, 4);
1501 }
1502
1503 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1504 {
1505 return XUINT (insn, 4);
1506 }
1507
1508 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1509 {
1510 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1511 }
1512
1513 /* LOCATION of an RTX if relevant. */
1514 #define RTL_LOCATION(X) (INSN_P (X) ? \
1515 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1516 : UNKNOWN_LOCATION)
1517
1518 /* Code number of instruction, from when it was recognized.
1519 -1 means this instruction has not been recognized yet. */
1520 #define INSN_CODE(INSN) XINT (INSN, 5)
1521
1522 inline rtvec rtx_jump_table_data::get_labels () const
1523 {
1524 rtx pat = PATTERN (this);
1525 if (GET_CODE (pat) == ADDR_VEC)
1526 return XVEC (pat, 0);
1527 else
1528 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1529 }
1530
1531 /* Return the mode of the data in the table, which is always a scalar
1532 integer. */
1533
1534 inline scalar_int_mode
1535 rtx_jump_table_data::get_data_mode () const
1536 {
1537 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1538 }
1539
1540 /* If LABEL is followed by a jump table, return the table, otherwise
1541 return null. */
1542
1543 inline rtx_jump_table_data *
1544 jump_table_for_label (const rtx_code_label *label)
1545 {
1546 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1547 }
1548
1549 #define RTX_FRAME_RELATED_P(RTX) \
1550 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1551 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1552
1553 /* 1 if JUMP RTX is a crossing jump. */
1554 #define CROSSING_JUMP_P(RTX) \
1555 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1556
1557 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1558 TREE_READONLY. */
1559 #define RTL_CONST_CALL_P(RTX) \
1560 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1561
1562 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1563 DECL_PURE_P. */
1564 #define RTL_PURE_CALL_P(RTX) \
1565 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1566
1567 /* 1 if RTX is a call to a const or pure function. */
1568 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1569 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1570
1571 /* 1 if RTX is a call to a looping const or pure function. Built from
1572 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1573 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1574 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1575
1576 /* 1 if RTX is a call_insn for a sibling call. */
1577 #define SIBLING_CALL_P(RTX) \
1578 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1579
1580 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1581 #define INSN_ANNULLED_BRANCH_P(RTX) \
1582 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1583
1584 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1585 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1586 executed if the branch is taken. For annulled branches with this bit
1587 clear, the insn should be executed only if the branch is not taken. */
1588 #define INSN_FROM_TARGET_P(RTX) \
1589 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1590 CALL_INSN)->in_struct)
1591
1592 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1593 See the comments for ADDR_DIFF_VEC in rtl.def. */
1594 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1595
1596 /* In a VALUE, the value cselib has assigned to RTX.
1597 This is a "struct cselib_val", see cselib.h. */
1598 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1599
1600 /* Holds a list of notes on what this insn does to various REGs.
1601 It is a chain of EXPR_LIST rtx's, where the second operand is the
1602 chain pointer and the first operand is the REG being described.
1603 The mode field of the EXPR_LIST contains not a real machine mode
1604 but a value from enum reg_note. */
1605 #define REG_NOTES(INSN) XEXP(INSN, 6)
1606
1607 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1608 question. */
1609 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1610
1611 enum reg_note
1612 {
1613 #define DEF_REG_NOTE(NAME) NAME,
1614 #include "reg-notes.def"
1615 #undef DEF_REG_NOTE
1616 REG_NOTE_MAX
1617 };
1618
1619 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1620 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1621 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1622 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1623
1624 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1625
1626 extern const char * const reg_note_name[];
1627 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1628
1629 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1630 USE and CLOBBER expressions.
1631 USE expressions list the registers filled with arguments that
1632 are passed to the function.
1633 CLOBBER expressions document the registers explicitly clobbered
1634 by this CALL_INSN.
1635 Pseudo registers cannot be mentioned in this list. */
1636 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1637
1638 /* The label-number of a code-label. The assembler label
1639 is made from `L' and the label-number printed in decimal.
1640 Label numbers are unique in a compilation. */
1641 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1642
1643 /* In a NOTE that is a line number, this is a string for the file name that the
1644 line is in. We use the same field to record block numbers temporarily in
1645 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1646 between ints and pointers if we use a different macro for the block number.)
1647 */
1648
1649 /* Opaque data. */
1650 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1651 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1652 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1653 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1654 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1655 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1656 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1657 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1658 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1659 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1660
1661 /* In a NOTE that is a line number, this is the line number.
1662 Other kinds of NOTEs are identified by negative numbers here. */
1663 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1664
1665 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1666 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1667 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1668
1669 /* Nonzero if INSN is a debug nonbind marker note,
1670 for which NOTE_MARKER_LOCATION can be used. */
1671 #define NOTE_MARKER_P(INSN) \
1672 (NOTE_P (INSN) && \
1673 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1674 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1675
1676 /* Variable declaration and the location of a variable. */
1677 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1678 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1679
1680 /* Initialization status of the variable in the location. Status
1681 can be unknown, uninitialized or initialized. See enumeration
1682 type below. */
1683 #define PAT_VAR_LOCATION_STATUS(PAT) \
1684 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1685 ->u2.var_location_status)
1686
1687 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1688 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1689 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1690 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1691 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1692 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1693 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1694
1695 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1696 location/value tracking annotation. */
1697 #define DEBUG_BIND_INSN_P(INSN) \
1698 (DEBUG_INSN_P (INSN) \
1699 && (GET_CODE (PATTERN (INSN)) \
1700 == VAR_LOCATION))
1701 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1702 source location marker. */
1703 #define DEBUG_MARKER_INSN_P(INSN) \
1704 (DEBUG_INSN_P (INSN) \
1705 && (GET_CODE (PATTERN (INSN)) \
1706 != VAR_LOCATION))
1707 /* Evaluate to the marker kind. */
1708 #define INSN_DEBUG_MARKER_KIND(INSN) \
1709 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1710 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1711 ? NOTE_INSN_BEGIN_STMT \
1712 : GET_MODE (PATTERN (INSN)) == BLKmode \
1713 ? NOTE_INSN_INLINE_ENTRY \
1714 : (enum insn_note)-1) \
1715 : (enum insn_note)-1)
1716 /* Create patterns for debug markers. These and the above abstract
1717 the representation, so that it's easier to get rid of the abuse of
1718 the mode to hold the marker kind. Other marker types are
1719 envisioned, so a single bit flag won't do; maybe separate RTL codes
1720 wouldn't be a problem. */
1721 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1722 gen_rtx_DEBUG_MARKER (VOIDmode)
1723 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1724 gen_rtx_DEBUG_MARKER (BLKmode)
1725
1726 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1727 #define INSN_VAR_LOCATION(INSN) \
1728 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1729 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1730 #define INSN_VAR_LOCATION_PTR(INSN) \
1731 (&PATTERN (INSN))
1732
1733 /* Accessors for a tree-expanded var location debug insn. */
1734 #define INSN_VAR_LOCATION_DECL(INSN) \
1735 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1736 #define INSN_VAR_LOCATION_LOC(INSN) \
1737 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1738 #define INSN_VAR_LOCATION_STATUS(INSN) \
1739 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1740
1741 /* Expand to the RTL that denotes an unknown variable location in a
1742 DEBUG_INSN. */
1743 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1744
1745 /* Determine whether X is such an unknown location. */
1746 #define VAR_LOC_UNKNOWN_P(X) \
1747 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1748
1749 /* 1 if RTX is emitted after a call, but it should take effect before
1750 the call returns. */
1751 #define NOTE_DURING_CALL_P(RTX) \
1752 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1753
1754 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1755 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1756
1757 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1758 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1759
1760 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1761 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1762
1763 /* Codes that appear in the NOTE_KIND field for kinds of notes
1764 that are not line numbers. These codes are all negative.
1765
1766 Notice that we do not try to use zero here for any of
1767 the special note codes because sometimes the source line
1768 actually can be zero! This happens (for example) when we
1769 are generating code for the per-translation-unit constructor
1770 and destructor routines for some C++ translation unit. */
1771
1772 enum insn_note
1773 {
1774 #define DEF_INSN_NOTE(NAME) NAME,
1775 #include "insn-notes.def"
1776 #undef DEF_INSN_NOTE
1777
1778 NOTE_INSN_MAX
1779 };
1780
1781 /* Names for NOTE insn's other than line numbers. */
1782
1783 extern const char * const note_insn_name[NOTE_INSN_MAX];
1784 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1785 (note_insn_name[(NOTE_CODE)])
1786
1787 /* The name of a label, in case it corresponds to an explicit label
1788 in the input source code. */
1789 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1790
1791 /* In jump.c, each label contains a count of the number
1792 of LABEL_REFs that point at it, so unused labels can be deleted. */
1793 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1794
1795 /* Labels carry a two-bit field composed of the ->jump and ->call
1796 bits. This field indicates whether the label is an alternate
1797 entry point, and if so, what kind. */
1798 enum label_kind
1799 {
1800 LABEL_NORMAL = 0, /* ordinary label */
1801 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1802 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1803 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1804 };
1805
1806 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1807
1808 /* Retrieve the kind of LABEL. */
1809 #define LABEL_KIND(LABEL) __extension__ \
1810 ({ __typeof (LABEL) const _label = (LABEL); \
1811 if (! LABEL_P (_label)) \
1812 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1813 __FUNCTION__); \
1814 (enum label_kind) ((_label->jump << 1) | _label->call); })
1815
1816 /* Set the kind of LABEL. */
1817 #define SET_LABEL_KIND(LABEL, KIND) do { \
1818 __typeof (LABEL) const _label = (LABEL); \
1819 const unsigned int _kind = (KIND); \
1820 if (! LABEL_P (_label)) \
1821 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1822 __FUNCTION__); \
1823 _label->jump = ((_kind >> 1) & 1); \
1824 _label->call = (_kind & 1); \
1825 } while (0)
1826
1827 #else
1828
1829 /* Retrieve the kind of LABEL. */
1830 #define LABEL_KIND(LABEL) \
1831 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1832
1833 /* Set the kind of LABEL. */
1834 #define SET_LABEL_KIND(LABEL, KIND) do { \
1835 rtx const _label = (LABEL); \
1836 const unsigned int _kind = (KIND); \
1837 _label->jump = ((_kind >> 1) & 1); \
1838 _label->call = (_kind & 1); \
1839 } while (0)
1840
1841 #endif /* rtl flag checking */
1842
1843 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1844
1845 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1846 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1847 be decremented and possibly the label can be deleted. */
1848 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1849
1850 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1851 {
1852 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1853 }
1854
1855 /* Methods of rtx_jump_insn. */
1856
1857 inline rtx rtx_jump_insn::jump_label () const
1858 {
1859 return JUMP_LABEL (this);
1860 }
1861
1862 inline rtx_code_label *rtx_jump_insn::jump_target () const
1863 {
1864 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1865 }
1866
1867 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1868 {
1869 JUMP_LABEL (this) = target;
1870 }
1871
1872 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1873 goes through all the LABEL_REFs that jump to that label. The chain
1874 eventually winds up at the CODE_LABEL: it is circular. */
1875 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1876
1877 /* Get the label that a LABEL_REF references. */
1878 static inline rtx_insn *
1879 label_ref_label (const_rtx ref)
1880 {
1881 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1882 }
1883
1884 /* Set the label that LABEL_REF ref refers to. */
1885
1886 static inline void
1887 set_label_ref_label (rtx ref, rtx_insn *label)
1888 {
1889 XCEXP (ref, 0, LABEL_REF) = label;
1890 }
1891 \f
1892 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1893 be used on RHS. Use SET_REGNO to change the value. */
1894 #define REGNO(RTX) (rhs_regno(RTX))
1895 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1896
1897 /* Return the number of consecutive registers in a REG. This is always
1898 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1899 hard registers. */
1900 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1901
1902 /* ORIGINAL_REGNO holds the number the register originally had; for a
1903 pseudo register turned into a hard reg this will hold the old pseudo
1904 register number. */
1905 #define ORIGINAL_REGNO(RTX) \
1906 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1907
1908 /* Force the REGNO macro to only be used on the lhs. */
1909 static inline unsigned int
1910 rhs_regno (const_rtx x)
1911 {
1912 return REG_CHECK (x)->regno;
1913 }
1914
1915 /* Return the final register in REG X plus one. */
1916 static inline unsigned int
1917 END_REGNO (const_rtx x)
1918 {
1919 return REGNO (x) + REG_NREGS (x);
1920 }
1921
1922 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1923 bypassing the df machinery. */
1924 static inline void
1925 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1926 {
1927 reg_info *reg = REG_CHECK (x);
1928 reg->regno = regno;
1929 reg->nregs = nregs;
1930 }
1931
1932 /* 1 if RTX is a reg or parallel that is the current function's return
1933 value. */
1934 #define REG_FUNCTION_VALUE_P(RTX) \
1935 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1936
1937 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1938 #define REG_USERVAR_P(RTX) \
1939 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1940
1941 /* 1 if RTX is a reg that holds a pointer value. */
1942 #define REG_POINTER(RTX) \
1943 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1944
1945 /* 1 if RTX is a mem that holds a pointer value. */
1946 #define MEM_POINTER(RTX) \
1947 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1948
1949 /* 1 if the given register REG corresponds to a hard register. */
1950 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1951
1952 /* 1 if the given register number REG_NO corresponds to a hard register. */
1953 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1954
1955 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1956 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1957 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1958
1959 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1960 elements actually needed to represent the constant.
1961 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1962 significant HOST_WIDE_INT. */
1963 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1964 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1965 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1966
1967 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1968 individual coefficients, in the form of a trailing_wide_ints structure. */
1969 #define CONST_POLY_INT_COEFFS(RTX) \
1970 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1971 CONST_POLY_INT)->u.cpi.coeffs)
1972
1973 /* For a CONST_DOUBLE:
1974 #if TARGET_SUPPORTS_WIDE_INT == 0
1975 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1976 low-order word and ..._HIGH the high-order.
1977 #endif
1978 For a float, there is a REAL_VALUE_TYPE structure, and
1979 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1980 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1981 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1982 #define CONST_DOUBLE_REAL_VALUE(r) \
1983 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1984
1985 #define CONST_FIXED_VALUE(r) \
1986 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1987 #define CONST_FIXED_VALUE_HIGH(r) \
1988 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1989 #define CONST_FIXED_VALUE_LOW(r) \
1990 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1991
1992 /* For a CONST_VECTOR, return element #n. */
1993 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1994
1995 /* See rtl.texi for a description of these macros. */
1996 #define CONST_VECTOR_NPATTERNS(RTX) \
1997 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
1998 ->u2.const_vector.npatterns)
1999
2000 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2001 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2002 ->u2.const_vector.nelts_per_pattern)
2003
2004 #define CONST_VECTOR_DUPLICATE_P(RTX) \
2005 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2006
2007 #define CONST_VECTOR_STEPPED_P(RTX) \
2008 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2009
2010 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2011
2012 /* Return the number of elements encoded directly in a CONST_VECTOR. */
2013
2014 inline unsigned int
2015 const_vector_encoded_nelts (const_rtx x)
2016 {
2017 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2018 }
2019
2020 /* For a CONST_VECTOR, return the number of elements in a vector. */
2021 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2022
2023 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2024 SUBREG_BYTE extracts the byte-number. */
2025
2026 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2027 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2028
2029 /* in rtlanal.c */
2030 /* Return the right cost to give to an operation
2031 to make the cost of the corresponding register-to-register instruction
2032 N times that of a fast register-to-register instruction. */
2033 #define COSTS_N_INSNS(N) ((N) * 4)
2034
2035 /* Maximum cost of an rtl expression. This value has the special meaning
2036 not to use an rtx with this cost under any circumstances. */
2037 #define MAX_COST INT_MAX
2038
2039 /* Return true if CODE always has VOIDmode. */
2040
2041 static inline bool
2042 always_void_p (enum rtx_code code)
2043 {
2044 return code == SET;
2045 }
2046
2047 /* A structure to hold all available cost information about an rtl
2048 expression. */
2049 struct full_rtx_costs
2050 {
2051 int speed;
2052 int size;
2053 };
2054
2055 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2056 static inline void
2057 init_costs_to_max (struct full_rtx_costs *c)
2058 {
2059 c->speed = MAX_COST;
2060 c->size = MAX_COST;
2061 }
2062
2063 /* Initialize a full_rtx_costs structure C to zero cost. */
2064 static inline void
2065 init_costs_to_zero (struct full_rtx_costs *c)
2066 {
2067 c->speed = 0;
2068 c->size = 0;
2069 }
2070
2071 /* Compare two full_rtx_costs structures A and B, returning true
2072 if A < B when optimizing for speed. */
2073 static inline bool
2074 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2075 bool speed)
2076 {
2077 if (speed)
2078 return (a->speed < b->speed
2079 || (a->speed == b->speed && a->size < b->size));
2080 else
2081 return (a->size < b->size
2082 || (a->size == b->size && a->speed < b->speed));
2083 }
2084
2085 /* Increase both members of the full_rtx_costs structure C by the
2086 cost of N insns. */
2087 static inline void
2088 costs_add_n_insns (struct full_rtx_costs *c, int n)
2089 {
2090 c->speed += COSTS_N_INSNS (n);
2091 c->size += COSTS_N_INSNS (n);
2092 }
2093
2094 /* Describes the shape of a subreg:
2095
2096 inner_mode == the mode of the SUBREG_REG
2097 offset == the SUBREG_BYTE
2098 outer_mode == the mode of the SUBREG itself. */
2099 struct subreg_shape {
2100 subreg_shape (machine_mode, poly_uint16, machine_mode);
2101 bool operator == (const subreg_shape &) const;
2102 bool operator != (const subreg_shape &) const;
2103 unsigned HOST_WIDE_INT unique_id () const;
2104
2105 machine_mode inner_mode;
2106 poly_uint16 offset;
2107 machine_mode outer_mode;
2108 };
2109
2110 inline
2111 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2112 poly_uint16 offset_in,
2113 machine_mode outer_mode_in)
2114 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2115 {}
2116
2117 inline bool
2118 subreg_shape::operator == (const subreg_shape &other) const
2119 {
2120 return (inner_mode == other.inner_mode
2121 && known_eq (offset, other.offset)
2122 && outer_mode == other.outer_mode);
2123 }
2124
2125 inline bool
2126 subreg_shape::operator != (const subreg_shape &other) const
2127 {
2128 return !operator == (other);
2129 }
2130
2131 /* Return an integer that uniquely identifies this shape. Structures
2132 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2133 current mode is anywhere near being 65536 bytes in size, so the
2134 id comfortably fits in an int. */
2135
2136 inline unsigned HOST_WIDE_INT
2137 subreg_shape::unique_id () const
2138 {
2139 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2140 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2141 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2142 int res = (int) inner_mode + ((int) outer_mode << 8);
2143 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2144 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2145 return res;
2146 }
2147
2148 /* Return the shape of a SUBREG rtx. */
2149
2150 static inline subreg_shape
2151 shape_of_subreg (const_rtx x)
2152 {
2153 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2154 SUBREG_BYTE (x), GET_MODE (x));
2155 }
2156
2157 /* Information about an address. This structure is supposed to be able
2158 to represent all supported target addresses. Please extend it if it
2159 is not yet general enough. */
2160 struct address_info {
2161 /* The mode of the value being addressed, or VOIDmode if this is
2162 a load-address operation with no known address mode. */
2163 machine_mode mode;
2164
2165 /* The address space. */
2166 addr_space_t as;
2167
2168 /* True if this is an RTX_AUTOINC address. */
2169 bool autoinc_p;
2170
2171 /* A pointer to the top-level address. */
2172 rtx *outer;
2173
2174 /* A pointer to the inner address, after all address mutations
2175 have been stripped from the top-level address. It can be one
2176 of the following:
2177
2178 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2179
2180 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2181 points to the step value, depending on whether the step is variable
2182 or constant respectively. SEGMENT is null.
2183
2184 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2185 with null fields evaluating to 0. */
2186 rtx *inner;
2187
2188 /* Components that make up *INNER. Each one may be null or nonnull.
2189 When nonnull, their meanings are as follows:
2190
2191 - *SEGMENT is the "segment" of memory to which the address refers.
2192 This value is entirely target-specific and is only called a "segment"
2193 because that's its most typical use. It contains exactly one UNSPEC,
2194 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2195 reloading.
2196
2197 - *BASE is a variable expression representing a base address.
2198 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2199
2200 - *INDEX is a variable expression representing an index value.
2201 It may be a scaled expression, such as a MULT. It has exactly
2202 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2203
2204 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2205 unmutated RTX_CONST_OBJ. */
2206 rtx *segment;
2207 rtx *base;
2208 rtx *index;
2209 rtx *disp;
2210
2211 rtx *segment_term;
2212 rtx *base_term;
2213 rtx *index_term;
2214 rtx *disp_term;
2215
2216 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2217 of BASE_TERM, otherwise it is null. */
2218 rtx *base_term2;
2219
2220 /* ADDRESS if this structure describes an address operand, MEM if
2221 it describes a MEM address. */
2222 enum rtx_code addr_outer_code;
2223
2224 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2225 enum rtx_code base_outer_code;
2226 };
2227
2228 /* This is used to bundle an rtx and a mode together so that the pair
2229 can be used with the wi:: routines. If we ever put modes into rtx
2230 integer constants, this should go away and then just pass an rtx in. */
2231 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2232
2233 namespace wi
2234 {
2235 template <>
2236 struct int_traits <rtx_mode_t>
2237 {
2238 static const enum precision_type precision_type = VAR_PRECISION;
2239 static const bool host_dependent_precision = false;
2240 /* This ought to be true, except for the special case that BImode
2241 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2242 static const bool is_sign_extended = false;
2243 static unsigned int get_precision (const rtx_mode_t &);
2244 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2245 const rtx_mode_t &);
2246 };
2247 }
2248
2249 inline unsigned int
2250 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2251 {
2252 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2253 }
2254
2255 inline wi::storage_ref
2256 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2257 unsigned int precision,
2258 const rtx_mode_t &x)
2259 {
2260 gcc_checking_assert (precision == get_precision (x));
2261 switch (GET_CODE (x.first))
2262 {
2263 case CONST_INT:
2264 if (precision < HOST_BITS_PER_WIDE_INT)
2265 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2266 targets is 1 rather than -1. */
2267 gcc_checking_assert (INTVAL (x.first)
2268 == sext_hwi (INTVAL (x.first), precision)
2269 || (x.second == BImode && INTVAL (x.first) == 1));
2270
2271 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2272
2273 case CONST_WIDE_INT:
2274 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2275 CONST_WIDE_INT_NUNITS (x.first), precision);
2276
2277 #if TARGET_SUPPORTS_WIDE_INT == 0
2278 case CONST_DOUBLE:
2279 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2280 #endif
2281
2282 default:
2283 gcc_unreachable ();
2284 }
2285 }
2286
2287 namespace wi
2288 {
2289 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2290 wide_int min_value (machine_mode, signop);
2291 wide_int max_value (machine_mode, signop);
2292 }
2293
2294 inline wi::hwi_with_prec
2295 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2296 {
2297 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2298 }
2299
2300 /* Produce the smallest number that is represented in MODE. The precision
2301 is taken from MODE and the sign from SGN. */
2302 inline wide_int
2303 wi::min_value (machine_mode mode, signop sgn)
2304 {
2305 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2306 }
2307
2308 /* Produce the largest number that is represented in MODE. The precision
2309 is taken from MODE and the sign from SGN. */
2310 inline wide_int
2311 wi::max_value (machine_mode mode, signop sgn)
2312 {
2313 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2314 }
2315
2316 namespace wi
2317 {
2318 typedef poly_int<NUM_POLY_INT_COEFFS,
2319 generic_wide_int <wide_int_ref_storage <false, false> > >
2320 rtx_to_poly_wide_ref;
2321 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2322 }
2323
2324 /* Return the value of a CONST_POLY_INT in its native precision. */
2325
2326 inline wi::rtx_to_poly_wide_ref
2327 const_poly_int_value (const_rtx x)
2328 {
2329 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2330 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2331 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2332 return res;
2333 }
2334
2335 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2336 can then be extracted using wi::to_poly_wide. */
2337
2338 inline bool
2339 poly_int_rtx_p (const_rtx x)
2340 {
2341 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2342 }
2343
2344 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2345 MODE is the mode of X. */
2346
2347 inline wi::rtx_to_poly_wide_ref
2348 wi::to_poly_wide (const_rtx x, machine_mode mode)
2349 {
2350 if (CONST_POLY_INT_P (x))
2351 return const_poly_int_value (x);
2352 return rtx_mode_t (const_cast<rtx> (x), mode);
2353 }
2354
2355 /* Return the value of X as a poly_int64. */
2356
2357 inline poly_int64
2358 rtx_to_poly_int64 (const_rtx x)
2359 {
2360 if (CONST_POLY_INT_P (x))
2361 {
2362 poly_int64 res;
2363 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2364 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2365 return res;
2366 }
2367 return INTVAL (x);
2368 }
2369
2370 /* Return true if arbitrary value X is an integer constant that can
2371 be represented as a poly_int64. Store the value in *RES if so,
2372 otherwise leave it unmodified. */
2373
2374 inline bool
2375 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2376 {
2377 if (CONST_INT_P (x))
2378 {
2379 *res = INTVAL (x);
2380 return true;
2381 }
2382 if (CONST_POLY_INT_P (x))
2383 {
2384 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2385 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2386 return false;
2387 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2388 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2389 return true;
2390 }
2391 return false;
2392 }
2393
2394 extern void init_rtlanal (void);
2395 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2396 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2397 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2398 struct full_rtx_costs *);
2399 extern poly_uint64 subreg_lsb (const_rtx);
2400 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2401 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2402 poly_uint64);
2403 extern bool read_modify_subreg_p (const_rtx);
2404
2405 /* Return the subreg byte offset for a subreg whose outer mode is
2406 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2407 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2408 the inner value. This is the inverse of subreg_lsb_1 (which converts
2409 byte offsets to bit shifts). */
2410
2411 inline poly_uint64
2412 subreg_offset_from_lsb (machine_mode outer_mode,
2413 machine_mode inner_mode,
2414 poly_uint64 lsb_shift)
2415 {
2416 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2417 GET_MODE_SIZE (inner_mode), lsb_shift);
2418 }
2419
2420 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2421 poly_uint64, machine_mode);
2422 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2423 poly_uint64, machine_mode);
2424 extern unsigned int subreg_regno (const_rtx);
2425 extern int simplify_subreg_regno (unsigned int, machine_mode,
2426 poly_uint64, machine_mode);
2427 extern unsigned int subreg_nregs (const_rtx);
2428 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2429 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2430 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2431 extern bool constant_pool_constant_p (rtx);
2432 extern bool truncated_to_mode (machine_mode, const_rtx);
2433 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2434 extern void split_double (rtx, rtx *, rtx *);
2435 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2436 extern void decompose_address (struct address_info *, rtx *,
2437 machine_mode, addr_space_t, enum rtx_code);
2438 extern void decompose_lea_address (struct address_info *, rtx *);
2439 extern void decompose_mem_address (struct address_info *, rtx);
2440 extern void update_address (struct address_info *);
2441 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2442 extern enum rtx_code get_index_code (const struct address_info *);
2443
2444 /* 1 if RTX is a subreg containing a reg that is already known to be
2445 sign- or zero-extended from the mode of the subreg to the mode of
2446 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2447 extension.
2448
2449 When used as a LHS, is means that this extension must be done
2450 when assigning to SUBREG_REG. */
2451
2452 #define SUBREG_PROMOTED_VAR_P(RTX) \
2453 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2454
2455 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2456 this gives the necessary extensions:
2457 0 - signed (SPR_SIGNED)
2458 1 - normal unsigned (SPR_UNSIGNED)
2459 2 - value is both sign and unsign extended for mode
2460 (SPR_SIGNED_AND_UNSIGNED).
2461 -1 - pointer unsigned, which most often can be handled like unsigned
2462 extension, except for generating instructions where we need to
2463 emit special code (ptr_extend insns) on some architectures
2464 (SPR_POINTER). */
2465
2466 const int SRP_POINTER = -1;
2467 const int SRP_SIGNED = 0;
2468 const int SRP_UNSIGNED = 1;
2469 const int SRP_SIGNED_AND_UNSIGNED = 2;
2470
2471 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2472 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2473 do { \
2474 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2475 (RTX), SUBREG); \
2476 switch (VAL) \
2477 { \
2478 case SRP_POINTER: \
2479 _rtx->volatil = 0; \
2480 _rtx->unchanging = 0; \
2481 break; \
2482 case SRP_SIGNED: \
2483 _rtx->volatil = 0; \
2484 _rtx->unchanging = 1; \
2485 break; \
2486 case SRP_UNSIGNED: \
2487 _rtx->volatil = 1; \
2488 _rtx->unchanging = 0; \
2489 break; \
2490 case SRP_SIGNED_AND_UNSIGNED: \
2491 _rtx->volatil = 1; \
2492 _rtx->unchanging = 1; \
2493 break; \
2494 } \
2495 } while (0)
2496
2497 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2498 including SRP_SIGNED_AND_UNSIGNED if promoted for
2499 both signed and unsigned. */
2500 #define SUBREG_PROMOTED_GET(RTX) \
2501 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2502 + (RTX)->unchanging - 1)
2503
2504 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2505 #define SUBREG_PROMOTED_SIGN(RTX) \
2506 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2507 : (RTX)->unchanging - 1)
2508
2509 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2510 for SIGNED type. */
2511 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2512 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2513
2514 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2515 for UNSIGNED type. */
2516 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2517 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2518
2519 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2520 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2521 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2522 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2523 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2524
2525 /* True if the REG is the static chain register for some CALL_INSN. */
2526 #define STATIC_CHAIN_REG_P(RTX) \
2527 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2528
2529 /* True if the subreg was generated by LRA for reload insns. Such
2530 subregs are valid only during LRA. */
2531 #define LRA_SUBREG_P(RTX) \
2532 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2533
2534 /* Access various components of an ASM_OPERANDS rtx. */
2535
2536 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2537 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2538 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2539 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2540 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2541 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2542 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2543 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2544 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2545 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2546 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2547 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2548 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2549 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2550 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2551 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2552 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2553 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2554
2555 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2556 #define MEM_READONLY_P(RTX) \
2557 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2558
2559 /* 1 if RTX is a mem and we should keep the alias set for this mem
2560 unchanged when we access a component. Set to 1, or example, when we
2561 are already in a non-addressable component of an aggregate. */
2562 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2563 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2564
2565 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2566 #define MEM_VOLATILE_P(RTX) \
2567 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2568 ASM_INPUT)->volatil)
2569
2570 /* 1 if RTX is a mem that cannot trap. */
2571 #define MEM_NOTRAP_P(RTX) \
2572 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2573
2574 /* The memory attribute block. We provide access macros for each value
2575 in the block and provide defaults if none specified. */
2576 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2577
2578 /* The register attribute block. We provide access macros for each value
2579 in the block and provide defaults if none specified. */
2580 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2581
2582 #ifndef GENERATOR_FILE
2583 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2584 set, and may alias anything. Otherwise, the MEM can only alias
2585 MEMs in a conflicting alias set. This value is set in a
2586 language-dependent manner in the front-end, and should not be
2587 altered in the back-end. These set numbers are tested with
2588 alias_sets_conflict_p. */
2589 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2590
2591 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2592 refer to part of a DECL. It may also be a COMPONENT_REF. */
2593 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2594
2595 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2596 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2597
2598 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2599 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2600
2601 /* For a MEM rtx, the address space. */
2602 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2603
2604 /* For a MEM rtx, true if its MEM_SIZE is known. */
2605 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2606
2607 /* For a MEM rtx, the size in bytes of the MEM. */
2608 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2609
2610 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2611 mode as a default when STRICT_ALIGNMENT, but not if not. */
2612 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2613 #else
2614 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2615 #endif
2616
2617 /* For a REG rtx, the decl it is known to refer to, if it is known to
2618 refer to part of a DECL. */
2619 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2620
2621 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2622 HOST_WIDE_INT. */
2623 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2624
2625 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2626 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2627 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2628 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2629 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2630 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2631 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2632 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2633
2634 /* 1 if RTX is a label_ref for a nonlocal label. */
2635 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2636 REG_LABEL_TARGET note. */
2637 #define LABEL_REF_NONLOCAL_P(RTX) \
2638 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2639
2640 /* 1 if RTX is a code_label that should always be considered to be needed. */
2641 #define LABEL_PRESERVE_P(RTX) \
2642 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2643
2644 /* During sched, 1 if RTX is an insn that must be scheduled together
2645 with the preceding insn. */
2646 #define SCHED_GROUP_P(RTX) \
2647 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2648 JUMP_INSN, CALL_INSN)->in_struct)
2649
2650 /* For a SET rtx, SET_DEST is the place that is set
2651 and SET_SRC is the value it is set to. */
2652 #define SET_DEST(RTX) XC3EXP (RTX, 0, SET, CLOBBER, CLOBBER_HIGH)
2653 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2654 #define SET_IS_RETURN_P(RTX) \
2655 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2656
2657 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2658 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2659 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2660
2661 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2662 conditionally executing the code on, COND_EXEC_CODE is the code
2663 to execute if the condition is true. */
2664 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2665 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2666
2667 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2668 constants pool. */
2669 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2670 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2671
2672 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2673 tree constant pool. This information is private to varasm.c. */
2674 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2675 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2676 (RTX), SYMBOL_REF)->frame_related)
2677
2678 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2679 #define SYMBOL_REF_FLAG(RTX) \
2680 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2681
2682 /* 1 if RTX is a symbol_ref that has been the library function in
2683 emit_library_call. */
2684 #define SYMBOL_REF_USED(RTX) \
2685 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2686
2687 /* 1 if RTX is a symbol_ref for a weak symbol. */
2688 #define SYMBOL_REF_WEAK(RTX) \
2689 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2690
2691 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2692 SYMBOL_REF_CONSTANT. */
2693 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2694
2695 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2696 pool symbol. */
2697 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2698 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2699
2700 /* The tree (decl or constant) associated with the symbol, or null. */
2701 #define SYMBOL_REF_DECL(RTX) \
2702 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2703
2704 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2705 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2706 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2707
2708 /* The rtx constant pool entry for a symbol, or null. */
2709 #define SYMBOL_REF_CONSTANT(RTX) \
2710 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2711
2712 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2713 information derivable from the tree decl associated with this symbol.
2714 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2715 decl. In some cases this is a bug. But beyond that, it's nice to cache
2716 this information to avoid recomputing it. Finally, this allows space for
2717 the target to store more than one bit of information, as with
2718 SYMBOL_REF_FLAG. */
2719 #define SYMBOL_REF_FLAGS(RTX) \
2720 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2721 ->u2.symbol_ref_flags)
2722
2723 /* These flags are common enough to be defined for all targets. They
2724 are computed by the default version of targetm.encode_section_info. */
2725
2726 /* Set if this symbol is a function. */
2727 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2728 #define SYMBOL_REF_FUNCTION_P(RTX) \
2729 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2730 /* Set if targetm.binds_local_p is true. */
2731 #define SYMBOL_FLAG_LOCAL (1 << 1)
2732 #define SYMBOL_REF_LOCAL_P(RTX) \
2733 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2734 /* Set if targetm.in_small_data_p is true. */
2735 #define SYMBOL_FLAG_SMALL (1 << 2)
2736 #define SYMBOL_REF_SMALL_P(RTX) \
2737 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2738 /* The three-bit field at [5:3] is true for TLS variables; use
2739 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2740 #define SYMBOL_FLAG_TLS_SHIFT 3
2741 #define SYMBOL_REF_TLS_MODEL(RTX) \
2742 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2743 /* Set if this symbol is not defined in this translation unit. */
2744 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2745 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2746 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2747 /* Set if this symbol has a block_symbol structure associated with it. */
2748 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2749 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2750 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2751 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2752 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2753 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2754 #define SYMBOL_REF_ANCHOR_P(RTX) \
2755 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2756
2757 /* Subsequent bits are available for the target to use. */
2758 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2759 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2760
2761 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2762 structure to which the symbol belongs, or NULL if it has not been
2763 assigned a block. */
2764 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2765
2766 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2767 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2768 RTX has not yet been assigned to a block, or it has not been given an
2769 offset within that block. */
2770 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2771
2772 /* True if RTX is flagged to be a scheduling barrier. */
2773 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2774 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2775
2776 /* Indicate whether the machine has any sort of auto increment addressing.
2777 If not, we can avoid checking for REG_INC notes. */
2778
2779 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2780 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2781 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2782 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2783 #define AUTO_INC_DEC 1
2784 #else
2785 #define AUTO_INC_DEC 0
2786 #endif
2787
2788 /* Define a macro to look for REG_INC notes,
2789 but save time on machines where they never exist. */
2790
2791 #if AUTO_INC_DEC
2792 #define FIND_REG_INC_NOTE(INSN, REG) \
2793 ((REG) != NULL_RTX && REG_P ((REG)) \
2794 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2795 : find_reg_note ((INSN), REG_INC, (REG)))
2796 #else
2797 #define FIND_REG_INC_NOTE(INSN, REG) 0
2798 #endif
2799
2800 #ifndef HAVE_PRE_INCREMENT
2801 #define HAVE_PRE_INCREMENT 0
2802 #endif
2803
2804 #ifndef HAVE_PRE_DECREMENT
2805 #define HAVE_PRE_DECREMENT 0
2806 #endif
2807
2808 #ifndef HAVE_POST_INCREMENT
2809 #define HAVE_POST_INCREMENT 0
2810 #endif
2811
2812 #ifndef HAVE_POST_DECREMENT
2813 #define HAVE_POST_DECREMENT 0
2814 #endif
2815
2816 #ifndef HAVE_POST_MODIFY_DISP
2817 #define HAVE_POST_MODIFY_DISP 0
2818 #endif
2819
2820 #ifndef HAVE_POST_MODIFY_REG
2821 #define HAVE_POST_MODIFY_REG 0
2822 #endif
2823
2824 #ifndef HAVE_PRE_MODIFY_DISP
2825 #define HAVE_PRE_MODIFY_DISP 0
2826 #endif
2827
2828 #ifndef HAVE_PRE_MODIFY_REG
2829 #define HAVE_PRE_MODIFY_REG 0
2830 #endif
2831
2832
2833 /* Some architectures do not have complete pre/post increment/decrement
2834 instruction sets, or only move some modes efficiently. These macros
2835 allow us to tune autoincrement generation. */
2836
2837 #ifndef USE_LOAD_POST_INCREMENT
2838 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2839 #endif
2840
2841 #ifndef USE_LOAD_POST_DECREMENT
2842 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2843 #endif
2844
2845 #ifndef USE_LOAD_PRE_INCREMENT
2846 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2847 #endif
2848
2849 #ifndef USE_LOAD_PRE_DECREMENT
2850 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2851 #endif
2852
2853 #ifndef USE_STORE_POST_INCREMENT
2854 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2855 #endif
2856
2857 #ifndef USE_STORE_POST_DECREMENT
2858 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2859 #endif
2860
2861 #ifndef USE_STORE_PRE_INCREMENT
2862 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2863 #endif
2864
2865 #ifndef USE_STORE_PRE_DECREMENT
2866 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2867 #endif
2868 \f
2869 /* Nonzero when we are generating CONCATs. */
2870 extern int generating_concat_p;
2871
2872 /* Nonzero when we are expanding trees to RTL. */
2873 extern int currently_expanding_to_rtl;
2874
2875 /* Generally useful functions. */
2876
2877 #ifndef GENERATOR_FILE
2878 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2879 rather than size. */
2880
2881 static inline int
2882 set_rtx_cost (rtx x, bool speed_p)
2883 {
2884 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2885 }
2886
2887 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2888
2889 static inline void
2890 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2891 {
2892 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2893 }
2894
2895 /* Return the cost of moving X into a register, relative to the cost
2896 of a register move. SPEED_P is true if optimizing for speed rather
2897 than size. */
2898
2899 static inline int
2900 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2901 {
2902 return rtx_cost (x, mode, SET, 1, speed_p);
2903 }
2904
2905 /* Like set_src_cost, but return both the speed and size costs in C. */
2906
2907 static inline void
2908 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2909 {
2910 get_full_rtx_cost (x, mode, SET, 1, c);
2911 }
2912 #endif
2913
2914 /* A convenience macro to validate the arguments of a zero_extract
2915 expression. It determines whether SIZE lies inclusively within
2916 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2917 and the sum lies inclusively within [1, RANGE]. RANGE must be
2918 >= 1, but SIZE and POS may be negative. */
2919 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2920 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2921 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2922 - (unsigned HOST_WIDE_INT)(POS)))
2923
2924 /* In explow.c */
2925 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2926 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2927 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2928 extern HOST_WIDE_INT get_stack_check_protect (void);
2929
2930 /* In rtl.c */
2931 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2932 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2933 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2934 #define const_wide_int_alloc(NWORDS) \
2935 rtx_alloc_v (CONST_WIDE_INT, \
2936 (sizeof (struct hwivec_def) \
2937 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2938
2939 extern rtvec rtvec_alloc (int);
2940 extern rtvec shallow_copy_rtvec (rtvec);
2941 extern bool shared_const_p (const_rtx);
2942 extern rtx copy_rtx (rtx);
2943 extern enum rtx_code classify_insn (rtx);
2944 extern void dump_rtx_statistics (void);
2945
2946 /* In emit-rtl.c */
2947 extern rtx copy_rtx_if_shared (rtx);
2948
2949 /* In rtl.c */
2950 extern unsigned int rtx_size (const_rtx);
2951 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2952 extern int rtx_equal_p (const_rtx, const_rtx);
2953 extern bool rtvec_all_equal_p (const_rtvec);
2954
2955 /* Return true if X is a vector constant with a duplicated element value. */
2956
2957 inline bool
2958 const_vec_duplicate_p (const_rtx x)
2959 {
2960 return (GET_CODE (x) == CONST_VECTOR
2961 && CONST_VECTOR_NPATTERNS (x) == 1
2962 && CONST_VECTOR_DUPLICATE_P (x));
2963 }
2964
2965 /* Return true if X is a vector constant with a duplicated element value.
2966 Store the duplicated element in *ELT if so. */
2967
2968 template <typename T>
2969 inline bool
2970 const_vec_duplicate_p (T x, T *elt)
2971 {
2972 if (const_vec_duplicate_p (x))
2973 {
2974 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2975 return true;
2976 }
2977 return false;
2978 }
2979
2980 /* Return true if X is a vector with a duplicated element value, either
2981 constant or nonconstant. Store the duplicated element in *ELT if so. */
2982
2983 template <typename T>
2984 inline bool
2985 vec_duplicate_p (T x, T *elt)
2986 {
2987 if (GET_CODE (x) == VEC_DUPLICATE
2988 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
2989 {
2990 *elt = XEXP (x, 0);
2991 return true;
2992 }
2993 return const_vec_duplicate_p (x, elt);
2994 }
2995
2996 /* If X is a vector constant with a duplicated element value, return that
2997 element value, otherwise return X. */
2998
2999 template <typename T>
3000 inline T
3001 unwrap_const_vec_duplicate (T x)
3002 {
3003 if (const_vec_duplicate_p (x))
3004 x = CONST_VECTOR_ELT (x, 0);
3005 return x;
3006 }
3007
3008 /* In emit-rtl.c. */
3009 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3010 extern rtx const_vector_elt (const_rtx, unsigned int);
3011 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3012
3013 /* Return true if X is an integer constant vector that contains a linear
3014 series of the form:
3015
3016 { B, B + S, B + 2 * S, B + 3 * S, ... }
3017
3018 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3019
3020 inline bool
3021 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3022 {
3023 if (GET_CODE (x) == CONST_VECTOR
3024 && CONST_VECTOR_NPATTERNS (x) == 1
3025 && !CONST_VECTOR_DUPLICATE_P (x))
3026 return const_vec_series_p_1 (x, base_out, step_out);
3027 return false;
3028 }
3029
3030 /* Return true if X is a vector that contains a linear series of the
3031 form:
3032
3033 { B, B + S, B + 2 * S, B + 3 * S, ... }
3034
3035 where B and S are constant or nonconstant. Store B and S in
3036 *BASE_OUT and *STEP_OUT on sucess. */
3037
3038 inline bool
3039 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3040 {
3041 if (GET_CODE (x) == VEC_SERIES)
3042 {
3043 *base_out = XEXP (x, 0);
3044 *step_out = XEXP (x, 1);
3045 return true;
3046 }
3047 return const_vec_series_p (x, base_out, step_out);
3048 }
3049
3050 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3051
3052 inline scalar_int_mode
3053 subreg_unpromoted_mode (rtx x)
3054 {
3055 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3056 return as_a <scalar_int_mode> (GET_MODE (x));
3057 }
3058
3059 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3060
3061 inline scalar_int_mode
3062 subreg_promoted_mode (rtx x)
3063 {
3064 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3065 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3066 }
3067
3068 /* In emit-rtl.c */
3069 extern rtvec gen_rtvec_v (int, rtx *);
3070 extern rtvec gen_rtvec_v (int, rtx_insn **);
3071 extern rtx gen_reg_rtx (machine_mode);
3072 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3073 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3074 extern rtx gen_reg_rtx_and_attrs (rtx);
3075 extern rtx_code_label *gen_label_rtx (void);
3076 extern rtx gen_lowpart_common (machine_mode, rtx);
3077
3078 /* In cse.c */
3079 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3080
3081 /* In emit-rtl.c */
3082 extern rtx gen_highpart (machine_mode, rtx);
3083 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3084 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3085
3086 /* In emit-rtl.c */
3087 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3088 extern int subreg_lowpart_p (const_rtx);
3089 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3090
3091 /* Return true if a subreg of mode OUTERMODE would only access part of
3092 an inner register with mode INNERMODE. The other bits of the inner
3093 register would then be "don't care" on read. The behavior for writes
3094 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3095 chunk would be clobbered but other bits would be preserved. */
3096
3097 inline bool
3098 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3099 {
3100 /* Modes involved in a subreg must be ordered. In particular, we must
3101 always know at compile time whether the subreg is paradoxical. */
3102 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3103 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3104 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3105 return maybe_lt (outer_prec, inner_prec);
3106 }
3107
3108 /* Likewise return true if X is a subreg that is smaller than the inner
3109 register. Use read_modify_subreg_p to test whether writing to such
3110 a subreg preserves any part of the inner register. */
3111
3112 inline bool
3113 partial_subreg_p (const_rtx x)
3114 {
3115 if (GET_CODE (x) != SUBREG)
3116 return false;
3117 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3118 }
3119
3120 /* Return true if a subreg with the given outer and inner modes is
3121 paradoxical. */
3122
3123 inline bool
3124 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3125 {
3126 /* Modes involved in a subreg must be ordered. In particular, we must
3127 always know at compile time whether the subreg is paradoxical. */
3128 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3129 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3130 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3131 return maybe_gt (outer_prec, inner_prec);
3132 }
3133
3134 /* Return true if X is a paradoxical subreg, false otherwise. */
3135
3136 inline bool
3137 paradoxical_subreg_p (const_rtx x)
3138 {
3139 if (GET_CODE (x) != SUBREG)
3140 return false;
3141 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3142 }
3143
3144 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3145
3146 inline poly_uint64
3147 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3148 {
3149 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3150 GET_MODE_SIZE (innermode));
3151 }
3152
3153 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3154 return the smaller of the two modes if they are different sizes,
3155 otherwise return the outer mode. */
3156
3157 inline machine_mode
3158 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3159 {
3160 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3161 }
3162
3163 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3164 return the mode that is big enough to hold both the outer and inner
3165 values. Prefer the outer mode in the event of a tie. */
3166
3167 inline machine_mode
3168 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3169 {
3170 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3171 }
3172
3173 /* Likewise for subreg X. */
3174
3175 inline machine_mode
3176 wider_subreg_mode (const_rtx x)
3177 {
3178 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3179 }
3180
3181 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3182
3183 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3184
3185 inline poly_uint64
3186 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3187 {
3188 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3189 GET_MODE_SIZE (innermode));
3190 }
3191
3192 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3193 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3194 poly_uint64);
3195 extern poly_int64 subreg_memory_offset (const_rtx);
3196 extern rtx make_safe_from (rtx, rtx);
3197 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3198 addr_space_t, bool, bool);
3199 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3200 addr_space_t);
3201 #define convert_memory_address(to_mode,x) \
3202 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3203 extern const char *get_insn_name (int);
3204 extern rtx_insn *get_last_insn_anywhere (void);
3205 extern rtx_insn *get_first_nonnote_insn (void);
3206 extern rtx_insn *get_last_nonnote_insn (void);
3207 extern void start_sequence (void);
3208 extern void push_to_sequence (rtx_insn *);
3209 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3210 extern void end_sequence (void);
3211 #if TARGET_SUPPORTS_WIDE_INT == 0
3212 extern double_int rtx_to_double_int (const_rtx);
3213 #endif
3214 extern void cwi_output_hex (FILE *, const_rtx);
3215 #if TARGET_SUPPORTS_WIDE_INT == 0
3216 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3217 machine_mode);
3218 #endif
3219 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3220
3221 /* In varasm.c */
3222 extern rtx force_const_mem (machine_mode, rtx);
3223
3224 /* In varasm.c */
3225
3226 struct function;
3227 extern rtx get_pool_constant (const_rtx);
3228 extern rtx get_pool_constant_mark (rtx, bool *);
3229 extern fixed_size_mode get_pool_mode (const_rtx);
3230 extern rtx simplify_subtraction (rtx);
3231 extern void decide_function_section (tree);
3232
3233 /* In emit-rtl.c */
3234 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3235 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3236 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3237 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3238 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3239 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3240 location_t);
3241 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3242 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3243 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3244 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3245 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3246 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3247 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3248 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3249 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3250 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3251 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3252 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3253 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3254 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3255 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3256 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3257 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3258 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3259 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3260 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3261 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3262 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3263 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3264 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3265 extern rtx_insn *emit_insn (rtx);
3266 extern rtx_insn *emit_debug_insn (rtx);
3267 extern rtx_insn *emit_jump_insn (rtx);
3268 extern rtx_insn *emit_call_insn (rtx);
3269 extern rtx_code_label *emit_label (rtx);
3270 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3271 extern rtx_barrier *emit_barrier (void);
3272 extern rtx_note *emit_note (enum insn_note);
3273 extern rtx_note *emit_note_copy (rtx_note *);
3274 extern rtx_insn *gen_clobber (rtx);
3275 extern rtx_insn *emit_clobber (rtx);
3276 extern rtx_insn *gen_use (rtx);
3277 extern rtx_insn *emit_use (rtx);
3278 extern rtx_insn *make_insn_raw (rtx);
3279 extern void add_function_usage_to (rtx, rtx);
3280 extern rtx_call_insn *last_call_insn (void);
3281 extern rtx_insn *previous_insn (rtx_insn *);
3282 extern rtx_insn *next_insn (rtx_insn *);
3283 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3284 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3285 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3286 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3287 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3288 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3289 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3290 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3291 extern rtx_insn *prev_real_insn (rtx_insn *);
3292 extern rtx_insn *next_real_insn (rtx_insn *);
3293 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3294 extern rtx_insn *next_real_nondebug_insn (rtx);
3295 extern rtx_insn *prev_active_insn (rtx_insn *);
3296 extern rtx_insn *next_active_insn (rtx_insn *);
3297 extern int active_insn_p (const rtx_insn *);
3298 extern rtx_insn *next_cc0_user (rtx_insn *);
3299 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3300
3301 /* In emit-rtl.c */
3302 extern int insn_line (const rtx_insn *);
3303 extern const char * insn_file (const rtx_insn *);
3304 extern tree insn_scope (const rtx_insn *);
3305 extern expanded_location insn_location (const rtx_insn *);
3306 extern location_t prologue_location, epilogue_location;
3307
3308 /* In jump.c */
3309 extern enum rtx_code reverse_condition (enum rtx_code);
3310 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3311 extern enum rtx_code swap_condition (enum rtx_code);
3312 extern enum rtx_code unsigned_condition (enum rtx_code);
3313 extern enum rtx_code signed_condition (enum rtx_code);
3314 extern void mark_jump_label (rtx, rtx_insn *, int);
3315
3316 /* Return true if integer comparison operator CODE interprets its operands
3317 as unsigned. */
3318
3319 inline bool
3320 unsigned_condition_p (enum rtx_code code)
3321 {
3322 return unsigned_condition (code) == code;
3323 }
3324
3325 /* In jump.c */
3326 extern rtx_insn *delete_related_insns (rtx);
3327
3328 /* In recog.c */
3329 extern rtx *find_constant_term_loc (rtx *);
3330
3331 /* In emit-rtl.c */
3332 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3333
3334 /* In insn-recog.c (generated by genrecog). */
3335 extern rtx_insn *split_insns (rtx, rtx_insn *);
3336
3337 /* In simplify-rtx.c */
3338 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3339 rtx, machine_mode);
3340 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3341 machine_mode);
3342 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3343 rtx, rtx);
3344 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3345 rtx);
3346 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3347 machine_mode, rtx, rtx, rtx);
3348 extern rtx simplify_const_relational_operation (enum rtx_code,
3349 machine_mode, rtx, rtx);
3350 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3351 machine_mode, rtx, rtx);
3352 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3353 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3354 machine_mode);
3355 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3356 machine_mode, rtx, rtx, rtx);
3357 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3358 machine_mode, rtx, rtx);
3359 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3360 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3361 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3362 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3363 rtx (*fn) (rtx, const_rtx, void *), void *);
3364 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3365 extern rtx simplify_rtx (const_rtx);
3366 extern rtx avoid_constant_pool_reference (rtx);
3367 extern rtx delegitimize_mem_from_attrs (rtx);
3368 extern bool mode_signbit_p (machine_mode, const_rtx);
3369 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3370 extern bool val_signbit_known_set_p (machine_mode,
3371 unsigned HOST_WIDE_INT);
3372 extern bool val_signbit_known_clear_p (machine_mode,
3373 unsigned HOST_WIDE_INT);
3374
3375 /* In reginfo.c */
3376 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3377 bool);
3378 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3379
3380 /* In emit-rtl.c */
3381 extern rtx set_for_reg_notes (rtx);
3382 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3383 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3384 extern void set_insn_deleted (rtx_insn *);
3385
3386 /* Functions in rtlanal.c */
3387
3388 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3389 extern bool contains_symbol_ref_p (const_rtx);
3390 extern bool contains_symbolic_reference_p (const_rtx);
3391 extern bool contains_constant_pool_address_p (const_rtx);
3392
3393 /* Handle the cheap and common cases inline for performance. */
3394
3395 inline rtx single_set (const rtx_insn *insn)
3396 {
3397 if (!INSN_P (insn))
3398 return NULL_RTX;
3399
3400 if (GET_CODE (PATTERN (insn)) == SET)
3401 return PATTERN (insn);
3402
3403 /* Defer to the more expensive case. */
3404 return single_set_2 (insn, PATTERN (insn));
3405 }
3406
3407 extern scalar_int_mode get_address_mode (rtx mem);
3408 extern int rtx_addr_can_trap_p (const_rtx);
3409 extern bool nonzero_address_p (const_rtx);
3410 extern int rtx_unstable_p (const_rtx);
3411 extern bool rtx_varies_p (const_rtx, bool);
3412 extern bool rtx_addr_varies_p (const_rtx, bool);
3413 extern rtx get_call_rtx_from (rtx);
3414 extern HOST_WIDE_INT get_integer_term (const_rtx);
3415 extern rtx get_related_value (const_rtx);
3416 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3417 extern void split_const (rtx, rtx *, rtx *);
3418 extern rtx strip_offset (rtx, poly_int64_pod *);
3419 extern poly_int64 get_args_size (const_rtx);
3420 extern bool unsigned_reg_p (rtx);
3421 extern int reg_mentioned_p (const_rtx, const_rtx);
3422 extern int count_occurrences (const_rtx, const_rtx, int);
3423 extern int reg_referenced_p (const_rtx, const_rtx);
3424 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3425 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3426 extern int commutative_operand_precedence (rtx);
3427 extern bool swap_commutative_operands_p (rtx, rtx);
3428 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3429 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3430 extern int modified_in_p (const_rtx, const_rtx);
3431 extern int reg_set_p (const_rtx, const_rtx);
3432 extern int multiple_sets (const_rtx);
3433 extern int set_noop_p (const_rtx);
3434 extern int noop_move_p (const rtx_insn *);
3435 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3436 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3437 extern const_rtx set_of (const_rtx, const_rtx);
3438 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3439 extern void record_hard_reg_uses (rtx *, void *);
3440 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3441 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3442 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3443 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3444 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3445 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3446 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3447 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3448 extern rtx find_reg_equal_equiv_note (const_rtx);
3449 extern rtx find_constant_src (const rtx_insn *);
3450 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3451 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3452 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3453 extern void add_reg_note (rtx, enum reg_note, rtx);
3454 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3455 extern void add_args_size_note (rtx_insn *, poly_int64);
3456 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3457 extern rtx duplicate_reg_note (rtx);
3458 extern void remove_note (rtx_insn *, const_rtx);
3459 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3460 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3461 extern int side_effects_p (const_rtx);
3462 extern int volatile_refs_p (const_rtx);
3463 extern int volatile_insn_p (const_rtx);
3464 extern int may_trap_p_1 (const_rtx, unsigned);
3465 extern int may_trap_p (const_rtx);
3466 extern int may_trap_or_fault_p (const_rtx);
3467 extern bool can_throw_internal (const_rtx);
3468 extern bool can_throw_external (const_rtx);
3469 extern bool insn_could_throw_p (const_rtx);
3470 extern bool insn_nothrow_p (const_rtx);
3471 extern bool can_nonlocal_goto (const rtx_insn *);
3472 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3473 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3474 extern int inequality_comparisons_p (const_rtx);
3475 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3476 extern void replace_label (rtx *, rtx, rtx, bool);
3477 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3478 extern bool rtx_referenced_p (const_rtx, const_rtx);
3479 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3480 extern int computed_jump_p (const rtx_insn *);
3481 extern bool tls_referenced_p (const_rtx);
3482 extern bool contains_mem_rtx_p (rtx x);
3483 extern bool reg_is_clobbered_by_clobber_high (unsigned int, machine_mode,
3484 const_rtx);
3485
3486 /* Convenient wrapper for reg_is_clobbered_by_clobber_high. */
3487 inline bool
3488 reg_is_clobbered_by_clobber_high (const_rtx x, const_rtx clobber_high_op)
3489 {
3490 return reg_is_clobbered_by_clobber_high (REGNO (x), GET_MODE (x),
3491 clobber_high_op);
3492 }
3493
3494 /* Overload for refers_to_regno_p for checking a single register. */
3495 inline bool
3496 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3497 {
3498 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3499 }
3500
3501 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3502 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3503 NULL. The callback is passed the same opaque ARG passed to
3504 for_each_inc_dec. Return zero to continue looking for other
3505 autoinc operations or any other value to interrupt the traversal and
3506 return that value to the caller of for_each_inc_dec. */
3507 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3508 rtx srcoff, void *arg);
3509 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3510
3511 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3512 rtx *, rtx *);
3513 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3514 rtx_equal_p_callback_function);
3515
3516 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3517 machine_mode *);
3518 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3519 bool, hash_rtx_callback_function);
3520
3521 extern rtx regno_use_in (unsigned int, rtx);
3522 extern int auto_inc_p (const_rtx);
3523 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3524 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3525 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3526 extern int loc_mentioned_in_p (rtx *, const_rtx);
3527 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3528 extern bool keep_with_call_p (const rtx_insn *);
3529 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3530 extern int pattern_cost (rtx, bool);
3531 extern int insn_cost (rtx_insn *, bool);
3532 extern unsigned seq_cost (const rtx_insn *, bool);
3533
3534 /* Given an insn and condition, return a canonical description of
3535 the test being made. */
3536 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3537 int, int);
3538
3539 /* Given a JUMP_INSN, return a canonical description of the test
3540 being made. */
3541 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3542
3543 /* Information about a subreg of a hard register. */
3544 struct subreg_info
3545 {
3546 /* Offset of first hard register involved in the subreg. */
3547 int offset;
3548 /* Number of hard registers involved in the subreg. In the case of
3549 a paradoxical subreg, this is the number of registers that would
3550 be modified by writing to the subreg; some of them may be don't-care
3551 when reading from the subreg. */
3552 int nregs;
3553 /* Whether this subreg can be represented as a hard reg with the new
3554 mode (by adding OFFSET to the original hard register). */
3555 bool representable_p;
3556 };
3557
3558 extern void subreg_get_info (unsigned int, machine_mode,
3559 poly_uint64, machine_mode,
3560 struct subreg_info *);
3561
3562 /* lists.c */
3563
3564 extern void free_EXPR_LIST_list (rtx_expr_list **);
3565 extern void free_INSN_LIST_list (rtx_insn_list **);
3566 extern void free_EXPR_LIST_node (rtx);
3567 extern void free_INSN_LIST_node (rtx);
3568 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3569 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3570 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3571 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3572 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3573 extern rtx remove_list_elem (rtx, rtx *);
3574 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3575 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3576
3577
3578 /* reginfo.c */
3579
3580 /* Resize reg info. */
3581 extern bool resize_reg_info (void);
3582 /* Free up register info memory. */
3583 extern void free_reg_info (void);
3584 extern void init_subregs_of_mode (void);
3585 extern void finish_subregs_of_mode (void);
3586
3587 /* recog.c */
3588 extern rtx extract_asm_operands (rtx);
3589 extern int asm_noperands (const_rtx);
3590 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3591 machine_mode *, location_t *);
3592 extern void get_referenced_operands (const char *, bool *, unsigned int);
3593
3594 extern enum reg_class reg_preferred_class (int);
3595 extern enum reg_class reg_alternate_class (int);
3596 extern enum reg_class reg_allocno_class (int);
3597 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3598 enum reg_class);
3599
3600 extern void split_all_insns (void);
3601 extern unsigned int split_all_insns_noflow (void);
3602
3603 #define MAX_SAVED_CONST_INT 64
3604 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3605
3606 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3607 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3608 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3609 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3610 extern GTY(()) rtx const_true_rtx;
3611
3612 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3613
3614 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3615 same as VOIDmode. */
3616
3617 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3618
3619 /* Likewise, for the constants 1 and 2 and -1. */
3620
3621 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3622 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3623 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3624
3625 extern GTY(()) rtx pc_rtx;
3626 extern GTY(()) rtx cc0_rtx;
3627 extern GTY(()) rtx ret_rtx;
3628 extern GTY(()) rtx simple_return_rtx;
3629 extern GTY(()) rtx_insn *invalid_insn_rtx;
3630
3631 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3632 is used to represent the frame pointer. This is because the
3633 hard frame pointer and the automatic variables are separated by an amount
3634 that cannot be determined until after register allocation. We can assume
3635 that in this case ELIMINABLE_REGS will be defined, one action of which
3636 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3637 #ifndef HARD_FRAME_POINTER_REGNUM
3638 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3639 #endif
3640
3641 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3642 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3643 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3644 #endif
3645
3646 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3647 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3648 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3649 #endif
3650
3651 /* Index labels for global_rtl. */
3652 enum global_rtl_index
3653 {
3654 GR_STACK_POINTER,
3655 GR_FRAME_POINTER,
3656 /* For register elimination to work properly these hard_frame_pointer_rtx,
3657 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3658 the same register. */
3659 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3660 GR_ARG_POINTER = GR_FRAME_POINTER,
3661 #endif
3662 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3663 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3664 #else
3665 GR_HARD_FRAME_POINTER,
3666 #endif
3667 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3668 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3669 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3670 #else
3671 GR_ARG_POINTER,
3672 #endif
3673 #endif
3674 GR_VIRTUAL_INCOMING_ARGS,
3675 GR_VIRTUAL_STACK_ARGS,
3676 GR_VIRTUAL_STACK_DYNAMIC,
3677 GR_VIRTUAL_OUTGOING_ARGS,
3678 GR_VIRTUAL_CFA,
3679 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3680
3681 GR_MAX
3682 };
3683
3684 /* Target-dependent globals. */
3685 struct GTY(()) target_rtl {
3686 /* All references to the hard registers in global_rtl_index go through
3687 these unique rtl objects. On machines where the frame-pointer and
3688 arg-pointer are the same register, they use the same unique object.
3689
3690 After register allocation, other rtl objects which used to be pseudo-regs
3691 may be clobbered to refer to the frame-pointer register.
3692 But references that were originally to the frame-pointer can be
3693 distinguished from the others because they contain frame_pointer_rtx.
3694
3695 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3696 tricky: until register elimination has taken place hard_frame_pointer_rtx
3697 should be used if it is being set, and frame_pointer_rtx otherwise. After
3698 register elimination hard_frame_pointer_rtx should always be used.
3699 On machines where the two registers are same (most) then these are the
3700 same. */
3701 rtx x_global_rtl[GR_MAX];
3702
3703 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3704 rtx x_pic_offset_table_rtx;
3705
3706 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3707 This is used to implement __builtin_return_address for some machines;
3708 see for instance the MIPS port. */
3709 rtx x_return_address_pointer_rtx;
3710
3711 /* Commonly used RTL for hard registers. These objects are not
3712 necessarily unique, so we allocate them separately from global_rtl.
3713 They are initialized once per compilation unit, then copied into
3714 regno_reg_rtx at the beginning of each function. */
3715 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3716
3717 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3718 rtx x_top_of_stack[MAX_MACHINE_MODE];
3719
3720 /* Static hunks of RTL used by the aliasing code; these are treated
3721 as persistent to avoid unnecessary RTL allocations. */
3722 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3723
3724 /* The default memory attributes for each mode. */
3725 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3726
3727 /* Track if RTL has been initialized. */
3728 bool target_specific_initialized;
3729 };
3730
3731 extern GTY(()) struct target_rtl default_target_rtl;
3732 #if SWITCHABLE_TARGET
3733 extern struct target_rtl *this_target_rtl;
3734 #else
3735 #define this_target_rtl (&default_target_rtl)
3736 #endif
3737
3738 #define global_rtl \
3739 (this_target_rtl->x_global_rtl)
3740 #define pic_offset_table_rtx \
3741 (this_target_rtl->x_pic_offset_table_rtx)
3742 #define return_address_pointer_rtx \
3743 (this_target_rtl->x_return_address_pointer_rtx)
3744 #define top_of_stack \
3745 (this_target_rtl->x_top_of_stack)
3746 #define mode_mem_attrs \
3747 (this_target_rtl->x_mode_mem_attrs)
3748
3749 /* All references to certain hard regs, except those created
3750 by allocating pseudo regs into them (when that's possible),
3751 go through these unique rtx objects. */
3752 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3753 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3754 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3755 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3756
3757 #ifndef GENERATOR_FILE
3758 /* Return the attributes of a MEM rtx. */
3759 static inline const struct mem_attrs *
3760 get_mem_attrs (const_rtx x)
3761 {
3762 struct mem_attrs *attrs;
3763
3764 attrs = MEM_ATTRS (x);
3765 if (!attrs)
3766 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3767 return attrs;
3768 }
3769 #endif
3770
3771 /* Include the RTL generation functions. */
3772
3773 #ifndef GENERATOR_FILE
3774 #include "genrtl.h"
3775 #undef gen_rtx_ASM_INPUT
3776 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3777 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3778 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3779 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3780 #endif
3781
3782 /* There are some RTL codes that require special attention; the
3783 generation functions included above do the raw handling. If you
3784 add to this list, modify special_rtx in gengenrtl.c as well. */
3785
3786 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3787 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3788 extern rtx_insn *
3789 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3790 basic_block bb, rtx pattern, int location, int code,
3791 rtx reg_notes);
3792 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3793 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3794 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3795 extern rtx gen_raw_REG (machine_mode, unsigned int);
3796 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3797 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3798 extern rtx gen_rtx_MEM (machine_mode, rtx);
3799 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3800 enum var_init_status);
3801
3802 #ifdef GENERATOR_FILE
3803 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3804 #else
3805 static inline void
3806 PUT_MODE (rtx x, machine_mode mode)
3807 {
3808 if (REG_P (x))
3809 set_mode_and_regno (x, mode, REGNO (x));
3810 else
3811 PUT_MODE_RAW (x, mode);
3812 }
3813 #endif
3814
3815 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3816
3817 /* Virtual registers are used during RTL generation to refer to locations into
3818 the stack frame when the actual location isn't known until RTL generation
3819 is complete. The routine instantiate_virtual_regs replaces these with
3820 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3821 a constant. */
3822
3823 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3824
3825 /* This points to the first word of the incoming arguments passed on the stack,
3826 either by the caller or by the callee when pretending it was passed by the
3827 caller. */
3828
3829 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3830
3831 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3832
3833 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3834 variable on the stack. Otherwise, it points to the first variable on
3835 the stack. */
3836
3837 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3838
3839 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3840
3841 /* This points to the location of dynamically-allocated memory on the stack
3842 immediately after the stack pointer has been adjusted by the amount
3843 desired. */
3844
3845 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3846
3847 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3848
3849 /* This points to the location in the stack at which outgoing arguments should
3850 be written when the stack is pre-pushed (arguments pushed using push
3851 insns always use sp). */
3852
3853 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3854
3855 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3856
3857 /* This points to the Canonical Frame Address of the function. This
3858 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3859 but is calculated relative to the arg pointer for simplicity; the
3860 frame pointer nor stack pointer are necessarily fixed relative to
3861 the CFA until after reload. */
3862
3863 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3864
3865 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3866
3867 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3868
3869 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3870 when finalized. */
3871
3872 #define virtual_preferred_stack_boundary_rtx \
3873 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3874
3875 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3876 ((FIRST_VIRTUAL_REGISTER) + 5)
3877
3878 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3879
3880 /* Nonzero if REGNUM is a pointer into the stack frame. */
3881 #define REGNO_PTR_FRAME_P(REGNUM) \
3882 ((REGNUM) == STACK_POINTER_REGNUM \
3883 || (REGNUM) == FRAME_POINTER_REGNUM \
3884 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3885 || (REGNUM) == ARG_POINTER_REGNUM \
3886 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3887 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3888
3889 /* REGNUM never really appearing in the INSN stream. */
3890 #define INVALID_REGNUM (~(unsigned int) 0)
3891
3892 /* REGNUM for which no debug information can be generated. */
3893 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3894
3895 extern rtx output_constant_def (tree, int);
3896 extern rtx lookup_constant_def (tree);
3897
3898 /* Nonzero after end of reload pass.
3899 Set to 1 or 0 by reload1.c. */
3900
3901 extern int reload_completed;
3902
3903 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3904 extern int epilogue_completed;
3905
3906 /* Set to 1 while reload_as_needed is operating.
3907 Required by some machines to handle any generated moves differently. */
3908
3909 extern int reload_in_progress;
3910
3911 /* Set to 1 while in lra. */
3912 extern int lra_in_progress;
3913
3914 /* This macro indicates whether you may create a new
3915 pseudo-register. */
3916
3917 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3918
3919 #ifdef STACK_REGS
3920 /* Nonzero after end of regstack pass.
3921 Set to 1 or 0 by reg-stack.c. */
3922 extern int regstack_completed;
3923 #endif
3924
3925 /* If this is nonzero, we do not bother generating VOLATILE
3926 around volatile memory references, and we are willing to
3927 output indirect addresses. If cse is to follow, we reject
3928 indirect addresses so a useful potential cse is generated;
3929 if it is used only once, instruction combination will produce
3930 the same indirect address eventually. */
3931 extern int cse_not_expected;
3932
3933 /* Translates rtx code to tree code, for those codes needed by
3934 real_arithmetic. The function returns an int because the caller may not
3935 know what `enum tree_code' means. */
3936
3937 extern int rtx_to_tree_code (enum rtx_code);
3938
3939 /* In cse.c */
3940 extern int delete_trivially_dead_insns (rtx_insn *, int);
3941 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3942 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3943
3944 /* In dse.c */
3945 extern bool check_for_inc_dec (rtx_insn *insn);
3946
3947 /* In jump.c */
3948 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3949 extern bool jump_to_label_p (const rtx_insn *);
3950 extern int condjump_p (const rtx_insn *);
3951 extern int any_condjump_p (const rtx_insn *);
3952 extern int any_uncondjump_p (const rtx_insn *);
3953 extern rtx pc_set (const rtx_insn *);
3954 extern rtx condjump_label (const rtx_insn *);
3955 extern int simplejump_p (const rtx_insn *);
3956 extern int returnjump_p (const rtx_insn *);
3957 extern int eh_returnjump_p (rtx_insn *);
3958 extern int onlyjump_p (const rtx_insn *);
3959 extern int only_sets_cc0_p (const_rtx);
3960 extern int sets_cc0_p (const_rtx);
3961 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3962 extern int invert_jump (rtx_jump_insn *, rtx, int);
3963 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3964 extern int true_regnum (const_rtx);
3965 extern unsigned int reg_or_subregno (const_rtx);
3966 extern int redirect_jump_1 (rtx_insn *, rtx);
3967 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3968 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3969 extern void rebuild_jump_labels (rtx_insn *);
3970 extern void rebuild_jump_labels_chain (rtx_insn *);
3971 extern rtx reversed_comparison (const_rtx, machine_mode);
3972 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3973 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3974 const_rtx, const rtx_insn *);
3975 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3976 extern int condjump_in_parallel_p (const rtx_insn *);
3977
3978 /* In emit-rtl.c. */
3979 extern int max_reg_num (void);
3980 extern int max_label_num (void);
3981 extern int get_first_label_num (void);
3982 extern void maybe_set_first_label_num (rtx_code_label *);
3983 extern void delete_insns_since (rtx_insn *);
3984 extern void mark_reg_pointer (rtx, int);
3985 extern void mark_user_reg (rtx);
3986 extern void reset_used_flags (rtx);
3987 extern void set_used_flags (rtx);
3988 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3989 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3990 extern int get_max_insn_count (void);
3991 extern int in_sequence_p (void);
3992 extern void init_emit (void);
3993 extern void init_emit_regs (void);
3994 extern void init_derived_machine_modes (void);
3995 extern void init_emit_once (void);
3996 extern void push_topmost_sequence (void);
3997 extern void pop_topmost_sequence (void);
3998 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3999 extern unsigned int unshare_all_rtl (void);
4000 extern void unshare_all_rtl_again (rtx_insn *);
4001 extern void unshare_all_rtl_in_chain (rtx_insn *);
4002 extern void verify_rtl_sharing (void);
4003 extern void add_insn (rtx_insn *);
4004 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4005 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4006 extern void remove_insn (rtx_insn *);
4007 extern rtx_insn *emit (rtx, bool = true);
4008 extern void emit_insn_at_entry (rtx);
4009 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4010 extern rtx gen_const_mem (machine_mode, rtx);
4011 extern rtx gen_frame_mem (machine_mode, rtx);
4012 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4013 extern bool validate_subreg (machine_mode, machine_mode,
4014 const_rtx, poly_uint64);
4015
4016 /* In combine.c */
4017 extern unsigned int extended_count (const_rtx, machine_mode, int);
4018 extern rtx remove_death (unsigned int, rtx_insn *);
4019 extern void dump_combine_stats (FILE *);
4020 extern void dump_combine_total_stats (FILE *);
4021 extern rtx make_compound_operation (rtx, enum rtx_code);
4022
4023 /* In sched-rgn.c. */
4024 extern void schedule_insns (void);
4025
4026 /* In sched-ebb.c. */
4027 extern void schedule_ebbs (void);
4028
4029 /* In sel-sched-dump.c. */
4030 extern void sel_sched_fix_param (const char *param, const char *val);
4031
4032 /* In print-rtl.c */
4033 extern const char *print_rtx_head;
4034 extern void debug (const rtx_def &ref);
4035 extern void debug (const rtx_def *ptr);
4036 extern void debug_rtx (const_rtx);
4037 extern void debug_rtx_list (const rtx_insn *, int);
4038 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4039 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4040 extern void print_mem_expr (FILE *, const_tree);
4041 extern void print_rtl (FILE *, const_rtx);
4042 extern void print_simple_rtl (FILE *, const_rtx);
4043 extern int print_rtl_single (FILE *, const_rtx);
4044 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4045 extern void print_inline_rtx (FILE *, const_rtx, int);
4046
4047 /* In stmt.c */
4048 extern void expand_null_return (void);
4049 extern void expand_naked_return (void);
4050 extern void emit_jump (rtx);
4051
4052 /* Memory operation built-ins differ by return value. Mapping
4053 of the enum values is following:
4054 - RETURN_BEGIN - return destination, e.g. memcpy
4055 - RETURN_END - return destination + n, e.g. mempcpy
4056 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4057 null byte of the string, e.g. strcpy
4058 */
4059
4060 enum memop_ret
4061 {
4062 RETURN_BEGIN,
4063 RETURN_END,
4064 RETURN_END_MINUS_ONE
4065 };
4066
4067 /* In expr.c */
4068 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4069 unsigned int, memop_ret);
4070 extern poly_int64 find_args_size_adjust (rtx_insn *);
4071 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4072
4073 /* In expmed.c */
4074 extern void init_expmed (void);
4075 extern void expand_inc (rtx, rtx);
4076 extern void expand_dec (rtx, rtx);
4077
4078 /* In lower-subreg.c */
4079 extern void init_lower_subreg (void);
4080
4081 /* In gcse.c */
4082 extern bool can_copy_p (machine_mode);
4083 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4084 extern rtx_insn *prepare_copy_insn (rtx, rtx);
4085
4086 /* In cprop.c */
4087 extern rtx fis_get_condition (rtx_insn *);
4088
4089 /* In ira.c */
4090 extern HARD_REG_SET eliminable_regset;
4091 extern void mark_elimination (int, int);
4092
4093 /* In reginfo.c */
4094 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4095 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4096 extern void globalize_reg (tree, int);
4097 extern void init_reg_modes_target (void);
4098 extern void init_regs (void);
4099 extern void reinit_regs (void);
4100 extern void init_fake_stack_mems (void);
4101 extern void save_register_info (void);
4102 extern void init_reg_sets (void);
4103 extern void regclass (rtx, int);
4104 extern void reg_scan (rtx_insn *, unsigned int);
4105 extern void fix_register (const char *, int, int);
4106 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4107
4108 /* In reload1.c */
4109 extern int function_invariant_p (const_rtx);
4110
4111 /* In calls.c */
4112 enum libcall_type
4113 {
4114 LCT_NORMAL = 0,
4115 LCT_CONST = 1,
4116 LCT_PURE = 2,
4117 LCT_NORETURN = 3,
4118 LCT_THROW = 4,
4119 LCT_RETURNS_TWICE = 5
4120 };
4121
4122 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4123 machine_mode, int, rtx_mode_t *);
4124
4125 /* Output a library call and discard the returned value. FUN is the
4126 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4127 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4128 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4129 another LCT_ value for other types of library calls.
4130
4131 There are different overloads of this function for different numbers
4132 of arguments. In each case the argument value is followed by its mode. */
4133
4134 inline void
4135 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4136 {
4137 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4138 }
4139
4140 inline void
4141 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4142 rtx arg1, machine_mode arg1_mode)
4143 {
4144 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4145 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4146 }
4147
4148 inline void
4149 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4150 rtx arg1, machine_mode arg1_mode,
4151 rtx arg2, machine_mode arg2_mode)
4152 {
4153 rtx_mode_t args[] = {
4154 rtx_mode_t (arg1, arg1_mode),
4155 rtx_mode_t (arg2, arg2_mode)
4156 };
4157 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4158 }
4159
4160 inline void
4161 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4162 rtx arg1, machine_mode arg1_mode,
4163 rtx arg2, machine_mode arg2_mode,
4164 rtx arg3, machine_mode arg3_mode)
4165 {
4166 rtx_mode_t args[] = {
4167 rtx_mode_t (arg1, arg1_mode),
4168 rtx_mode_t (arg2, arg2_mode),
4169 rtx_mode_t (arg3, arg3_mode)
4170 };
4171 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4172 }
4173
4174 inline void
4175 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4176 rtx arg1, machine_mode arg1_mode,
4177 rtx arg2, machine_mode arg2_mode,
4178 rtx arg3, machine_mode arg3_mode,
4179 rtx arg4, machine_mode arg4_mode)
4180 {
4181 rtx_mode_t args[] = {
4182 rtx_mode_t (arg1, arg1_mode),
4183 rtx_mode_t (arg2, arg2_mode),
4184 rtx_mode_t (arg3, arg3_mode),
4185 rtx_mode_t (arg4, arg4_mode)
4186 };
4187 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4188 }
4189
4190 /* Like emit_library_call, but return the value produced by the call.
4191 Use VALUE to store the result if it is nonnull, otherwise pick a
4192 convenient location. */
4193
4194 inline rtx
4195 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4196 machine_mode outmode)
4197 {
4198 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4199 }
4200
4201 inline rtx
4202 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4203 machine_mode outmode,
4204 rtx arg1, machine_mode arg1_mode)
4205 {
4206 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4207 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4208 }
4209
4210 inline rtx
4211 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4212 machine_mode outmode,
4213 rtx arg1, machine_mode arg1_mode,
4214 rtx arg2, machine_mode arg2_mode)
4215 {
4216 rtx_mode_t args[] = {
4217 rtx_mode_t (arg1, arg1_mode),
4218 rtx_mode_t (arg2, arg2_mode)
4219 };
4220 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4221 }
4222
4223 inline rtx
4224 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4225 machine_mode outmode,
4226 rtx arg1, machine_mode arg1_mode,
4227 rtx arg2, machine_mode arg2_mode,
4228 rtx arg3, machine_mode arg3_mode)
4229 {
4230 rtx_mode_t args[] = {
4231 rtx_mode_t (arg1, arg1_mode),
4232 rtx_mode_t (arg2, arg2_mode),
4233 rtx_mode_t (arg3, arg3_mode)
4234 };
4235 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4236 }
4237
4238 inline rtx
4239 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4240 machine_mode outmode,
4241 rtx arg1, machine_mode arg1_mode,
4242 rtx arg2, machine_mode arg2_mode,
4243 rtx arg3, machine_mode arg3_mode,
4244 rtx arg4, machine_mode arg4_mode)
4245 {
4246 rtx_mode_t args[] = {
4247 rtx_mode_t (arg1, arg1_mode),
4248 rtx_mode_t (arg2, arg2_mode),
4249 rtx_mode_t (arg3, arg3_mode),
4250 rtx_mode_t (arg4, arg4_mode)
4251 };
4252 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4253 }
4254
4255 /* In varasm.c */
4256 extern void init_varasm_once (void);
4257
4258 extern rtx make_debug_expr_from_rtl (const_rtx);
4259
4260 /* In read-rtl.c */
4261 #ifdef GENERATOR_FILE
4262 extern bool read_rtx (const char *, vec<rtx> *);
4263 #endif
4264
4265 /* In alias.c */
4266 extern rtx canon_rtx (rtx);
4267 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4268 extern rtx get_addr (rtx);
4269 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4270 const_rtx, rtx);
4271 extern int read_dependence (const_rtx, const_rtx);
4272 extern int anti_dependence (const_rtx, const_rtx);
4273 extern int canon_anti_dependence (const_rtx, bool,
4274 const_rtx, machine_mode, rtx);
4275 extern int output_dependence (const_rtx, const_rtx);
4276 extern int canon_output_dependence (const_rtx, bool,
4277 const_rtx, machine_mode, rtx);
4278 extern int may_alias_p (const_rtx, const_rtx);
4279 extern void init_alias_target (void);
4280 extern void init_alias_analysis (void);
4281 extern void end_alias_analysis (void);
4282 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4283 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4284 extern bool may_be_sp_based_p (rtx);
4285 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4286 extern rtx gen_hard_reg_clobber_high (machine_mode, unsigned int);
4287 extern rtx get_reg_known_value (unsigned int);
4288 extern bool get_reg_known_equiv_p (unsigned int);
4289 extern rtx get_reg_base_value (unsigned int);
4290
4291 #ifdef STACK_REGS
4292 extern int stack_regs_mentioned (const_rtx insn);
4293 #endif
4294
4295 /* In toplev.c */
4296 extern GTY(()) rtx stack_limit_rtx;
4297
4298 /* In var-tracking.c */
4299 extern unsigned int variable_tracking_main (void);
4300 extern void delete_vta_debug_insns (bool);
4301
4302 /* In stor-layout.c. */
4303 extern void get_mode_bounds (scalar_int_mode, int,
4304 scalar_int_mode, rtx *, rtx *);
4305
4306 /* In loop-iv.c */
4307 extern rtx canon_condition (rtx);
4308 extern void simplify_using_condition (rtx, rtx *, bitmap);
4309
4310 /* In final.c */
4311 extern unsigned int compute_alignments (void);
4312 extern void update_alignments (vec<rtx> &);
4313 extern int asm_str_count (const char *templ);
4314 \f
4315 struct rtl_hooks
4316 {
4317 rtx (*gen_lowpart) (machine_mode, rtx);
4318 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4319 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4320 unsigned HOST_WIDE_INT *);
4321 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4322 unsigned int *);
4323 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4324
4325 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4326 };
4327
4328 /* Each pass can provide its own. */
4329 extern struct rtl_hooks rtl_hooks;
4330
4331 /* ... but then it has to restore these. */
4332 extern const struct rtl_hooks general_rtl_hooks;
4333
4334 /* Keep this for the nonce. */
4335 #define gen_lowpart rtl_hooks.gen_lowpart
4336
4337 extern void insn_locations_init (void);
4338 extern void insn_locations_finalize (void);
4339 extern void set_curr_insn_location (location_t);
4340 extern location_t curr_insn_location (void);
4341
4342 /* rtl-error.c */
4343 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4344 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4345 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4346 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4347
4348 #define fatal_insn(msgid, insn) \
4349 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4350 #define fatal_insn_not_found(insn) \
4351 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4352
4353 /* reginfo.c */
4354 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4355
4356 /* Information about the function that is propagated by the RTL backend.
4357 Available only for functions that has been already assembled. */
4358
4359 struct GTY(()) cgraph_rtl_info {
4360 unsigned int preferred_incoming_stack_boundary;
4361
4362 /* Call unsaved hard registers really used by the corresponding
4363 function (including ones used by functions called by the
4364 function). */
4365 HARD_REG_SET function_used_regs;
4366 /* Set if function_used_regs is valid. */
4367 unsigned function_used_regs_valid: 1;
4368 };
4369
4370 /* If loads from memories of mode MODE always sign or zero extend,
4371 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4372 otherwise. */
4373
4374 inline rtx_code
4375 load_extend_op (machine_mode mode)
4376 {
4377 scalar_int_mode int_mode;
4378 if (is_a <scalar_int_mode> (mode, &int_mode)
4379 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4380 return LOAD_EXTEND_OP (int_mode);
4381 return UNKNOWN;
4382 }
4383
4384 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4385 and return the base. Return X otherwise. */
4386
4387 inline rtx
4388 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4389 {
4390 if (GET_CODE (x) == PLUS)
4391 {
4392 poly_int64 suboffset;
4393 x = strip_offset (x, &suboffset);
4394 *offset = poly_uint64 (*offset) + suboffset;
4395 }
4396 return x;
4397 }
4398
4399 /* Return true if X is an operation that always operates on the full
4400 registers for WORD_REGISTER_OPERATIONS architectures. */
4401
4402 inline bool
4403 word_register_operation_p (const_rtx x)
4404 {
4405 switch (GET_CODE (x))
4406 {
4407 case CONST_INT:
4408 case ROTATE:
4409 case ROTATERT:
4410 case SIGN_EXTRACT:
4411 case ZERO_EXTRACT:
4412 return false;
4413
4414 default:
4415 return true;
4416 }
4417 }
4418
4419 /* gtype-desc.c. */
4420 extern void gt_ggc_mx (rtx &);
4421 extern void gt_pch_nx (rtx &);
4422 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4423
4424 #endif /* ! GCC_RTL_H */