]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sched-deps.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
41
42 #ifdef INSN_SCHEDULING
43
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
46
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
50
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
54 {
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
57
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
60
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
63
64 gcc_assert (ds & DEP_ANTI);
65
66 return REG_DEP_ANTI;
67 }
68
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
72 {
73 switch (dk)
74 {
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
77
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
80
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
83
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
87 }
88 }
89
90 /* Functions to operate with dependence information container - dep_t. */
91
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
95 {
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
104 }
105
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
111 {
112 ds_t ds;
113
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
118
119 init_dep_1 (dep, pro, con, kind, ds);
120 }
121
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
125 {
126 memcpy (to, from, sizeof (*to));
127 }
128
129 static void dump_ds (FILE *, ds_t);
130
131 /* Define flags for dump_dep (). */
132
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
135
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
138
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
141
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
144
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
148
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
156 {
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
159
160 fprintf (dump, "<");
161
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
164
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
167
168 if (flags & DUMP_DEP_TYPE)
169 {
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
172
173 switch (type)
174 {
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
178
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
182
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
186
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
190
191 default:
192 gcc_unreachable ();
193 break;
194 }
195
196 fprintf (dump, "%c; ", t);
197 }
198
199 if (flags & DUMP_DEP_STATUS)
200 {
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
203 }
204
205 fprintf (dump, ">");
206 }
207
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
210
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
214 {
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
217 }
218
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
221
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
224 {
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
227 }
228
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
231
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
236 {
237 dep_link_t next = *prev_nextp;
238
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
241
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
245
246 /* Fix next node. */
247 if (next != NULL)
248 {
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
250
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
252 }
253
254 /* Fix prev node. */
255 *prev_nextp = l;
256 }
257
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
261 {
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
263
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
267 }
268
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
272 {
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
275
276 *prev_nextp = next;
277
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
280
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
283 }
284
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
288 {
289 detach_dep_link (link);
290
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
294 }
295
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
299 {
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
302 }
303
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
307 {
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
309 }
310
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
313
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
316
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
320 {
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
324
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
328
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
332
333 ++dn_pool_diff;
334
335 return n;
336 }
337
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
341 {
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
344
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
346
347 --dn_pool_diff;
348
349 dn_pool->remove (n);
350 }
351
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
354
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
357
358 /* Functions to operate with dependences lists - deps_list_t. */
359
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
363 {
364 return DEPS_LIST_N_LINKS (l) == 0;
365 }
366
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
370 {
371 deps_list_t l = dl_pool->allocate ();
372
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
375
376 ++dl_pool_diff;
377 return l;
378 }
379
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
383 {
384 gcc_assert (deps_list_empty_p (l));
385
386 --dl_pool_diff;
387
388 dl_pool->remove (l);
389 }
390
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
396 {
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
398 }
399
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
403 {
404 do
405 {
406 dep_link_t link = DEPS_LIST_FIRST (l);
407
408 if (link == NULL)
409 break;
410
411 remove_from_deps_list (link, l);
412 }
413 while (1);
414 }
415
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
420 {
421 if (current_sched_info->flags & DO_SPECULATION)
422 {
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
425 }
426 if (current_sched_info->flags & DO_PREDICATION)
427 {
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
430 }
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
434 }
435
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
441
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
450
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
454
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
459
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap true_dependency_cache = NULL;
465 static bitmap output_dependency_cache = NULL;
466 static bitmap anti_dependency_cache = NULL;
467 static bitmap control_dependency_cache = NULL;
468 static bitmap spec_dependency_cache = NULL;
469 static int cache_size;
470
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
473
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
483
484 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
488
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
491
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
495
496 static void check_dep (dep_t, bool);
497
498 \f
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500
501 static int
502 deps_may_trap_p (const_rtx mem)
503 {
504 const_rtx addr = XEXP (mem, 0);
505
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 {
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
511 }
512 return rtx_addr_can_trap_p (addr);
513 }
514 \f
515
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
521 {
522 rtx pat = PATTERN (insn);
523 rtx src;
524
525 if (rev)
526 *rev = false;
527
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
530
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
533
534 src = SET_SRC (pc_set (insn));
535
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
539 {
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
542
543 if (revcode == UNKNOWN)
544 return 0;
545
546 if (rev)
547 *rev = true;
548 return cond;
549 }
550
551 return 0;
552 }
553
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
558 rtx
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
560 {
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
566 {
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
571 }
572 return cond;
573 }
574
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
580 {
581 bool tmp;
582
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
585
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
588
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
590 {
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
594 }
595
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
598
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
600 {
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
603 }
604
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
608 }
609
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
613 {
614 return !! sched_get_condition_with_rev (insn, NULL);
615 }
616
617 \f
618
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
622 {
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
633 }
634
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
639 {
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
642
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
646 {
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
658 }
659 return false;
660 }
661 \f
662
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
666 {
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
669
670 if (!NONJUMP_INSN_P (insn))
671 return false;
672
673 if (SCHED_GROUP_P (insn))
674 return false;
675
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
678
679 if (side_effects_p (PATTERN (insn)))
680 return false;
681
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
685 {
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
692
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
698 }
699
700 return true;
701 }
702
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
711 {
712 sd_list_types_def types = *types_ptr;
713
714 if (types & SD_LIST_HARD_BACK)
715 {
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
719 }
720 else if (types & SD_LIST_SPEC_BACK)
721 {
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
725 }
726 else if (types & SD_LIST_FORW)
727 {
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
731 }
732 else if (types & SD_LIST_RES_BACK)
733 {
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
737 }
738 else if (types & SD_LIST_RES_FORW)
739 {
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
743 }
744 else
745 {
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
749 }
750 }
751
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
753 int
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
755 {
756 int size = 0;
757
758 while (list_types != SD_LIST_NONE)
759 {
760 deps_list_t list;
761 bool resolved_p;
762
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
766 }
767
768 return size;
769 }
770
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
772
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
775 {
776 while (list_types != SD_LIST_NONE)
777 {
778 deps_list_t list;
779 bool resolved_p;
780
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
784 }
785
786 return true;
787 }
788
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
792 {
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
798
799 /* ??? It would be nice to allocate dependency caches here. */
800 }
801
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
805 {
806 /* ??? It would be nice to deallocate dependency caches here. */
807
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
810
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
813
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
816
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
819
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
822 }
823
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
832 {
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
838
839 if (resolved_p)
840 {
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
843 }
844 else
845 {
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
848 }
849
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
853 {
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
857 {
858 found_p = true;
859 break;
860 }
861 }
862 else
863 {
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
867 {
868 found_p = true;
869 break;
870 }
871 }
872
873 if (found_p)
874 {
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
877
878 return dep;
879 }
880
881 return NULL;
882 }
883
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
890 {
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
894 {
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
897
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
903 }
904
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
906 }
907
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
911
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
914
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
920 {
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
923
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
925
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
928 {
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
932
933 return DEP_NODEP;
934 }
935
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
937 }
938
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
948 {
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
951
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
956
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
958 {
959 enum reg_note present_dep_type;
960
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
972
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
976 }
977 else
978 {
979 ds_t present_dep_types = 0;
980
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
989
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
993
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
996 {
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1001 }
1002 else
1003 {
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1008
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1013 }
1014 }
1015
1016 return DEP_CHANGED;
1017 }
1018
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1022 {
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1025
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1027 {
1028 switch (DEP_TYPE (dep))
1029 {
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1033
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1037
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1041
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1045
1046 default:
1047 gcc_unreachable ();
1048 }
1049 }
1050 else
1051 {
1052 ds_t ds = DEP_STATUS (dep);
1053
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1062
1063 if (ds & SPECULATIVE)
1064 {
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1067 }
1068 }
1069 }
1070
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1075 {
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1078
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1082 {
1083 switch (old_type)
1084 {
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1088
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1092
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1096
1097 default:
1098 gcc_unreachable ();
1099 }
1100 }
1101
1102 set_dependency_caches (dep);
1103 }
1104
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1108 {
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1114
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1116
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1118
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1123 }
1124
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1134 {
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1138
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1141
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1146 {
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1149 }
1150
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1153 {
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1157
1158 if (new_status & SPECULATIVE)
1159 {
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1167 {
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1170 {
1171 dw_t dw;
1172
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1175 }
1176
1177 new_status = ds_merge (dep_status, ds);
1178 }
1179 }
1180
1181 ds = new_status;
1182
1183 if (dep_status != ds)
1184 {
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1187 }
1188 }
1189
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1193
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1197
1198 return res;
1199 }
1200
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1204
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1211 {
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1214
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1217
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1220
1221 if (true_dependency_cache != NULL)
1222 {
1223 switch (ask_dependency_caches (new_dep))
1224 {
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1228
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1234
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1239
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1244
1245 default:
1246 gcc_unreachable ();
1247 break;
1248 }
1249 }
1250
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1253 {
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1256
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1258
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1262
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1269 }
1270
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1275
1276 if (mem1 != NULL_RTX)
1277 {
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1281 }
1282
1283 sd_add_dep (new_dep, resolved_p);
1284
1285 return DEP_CREATED;
1286 }
1287
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1295 {
1296 rtx_insn *con = DEP_CON (dep);
1297
1298 if (!resolved_p)
1299 {
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1304
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1306 }
1307 else
1308 {
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1311 }
1312 }
1313
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1318 {
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1324
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1326
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1330
1331 copy_dep (DEP_NODE_DEP (n), dep);
1332
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1334
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1336
1337 if (flag_checking)
1338 check_dep (dep, false);
1339
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1341
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1346 }
1347
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1353 {
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1355 }
1356
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1361 {
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1366
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1373
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1376 }
1377
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1382 {
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1387
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1394
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1397 }
1398
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1403 {
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1407
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1409
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1411 {
1412 dep_def _new_dep, *new_dep = &_new_dep;
1413
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1417 }
1418 }
1419
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1424 {
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1431
1432 if (true_dependency_cache != NULL)
1433 {
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1436
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1441
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1444 }
1445
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1448
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1451
1452 delete_dep_node (n);
1453 }
1454
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1457
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1460
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1463
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1471 {
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1475
1476 all = (flags & 1);
1477
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1480
1481 fprintf (dump, "[");
1482
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1485
1486 if (flags & DUMP_LISTS_DEPS)
1487 {
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1489 {
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1492 }
1493 }
1494 }
1495
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1500 {
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1503 }
1504
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1513 {
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1517
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1522 {
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1526
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1536 {
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1542 }
1543 if (dep_type == REG_DEP_CONTROL)
1544 {
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1550 }
1551 }
1552
1553 add_dependence_1 (con, pro, dep_type);
1554 }
1555
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1558
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1562 {
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1565 {
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1568 }
1569 mark_as_hard = false;
1570 }
1571
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1575
1576 static void
1577 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1580 {
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1582
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1588
1589 free_INSN_LIST_list (listp);
1590 }
1591
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1594
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1597 {
1598 int removed = 0;
1599
1600 while (*listp)
1601 {
1602 if ((*listp)->insn () == insn)
1603 {
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1607 }
1608
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1610 }
1611
1612 return removed;
1613 }
1614
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1620 {
1621 int removed = 0;
1622
1623 while (*listp)
1624 {
1625 if (XEXP (*listp, 0) == insn)
1626 {
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1631 }
1632
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1635 }
1636
1637 return removed;
1638 }
1639
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1643 {
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1646
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1650
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1654 }
1655
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1661
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1664 {
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1668
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1670 {
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1673
1674 do
1675 {
1676 i = prev_nonnote_insn (i);
1677
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1681
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1685 }
1686
1687 delete_all_dependences (insn);
1688
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1693 }
1694 \f
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1697
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1702
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1705
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1709
1710 static void
1711 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1713 {
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1718
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1721 {
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1726 }
1727 else
1728 {
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1732 }
1733
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1736
1737 if (sched_deps_info->use_cselib)
1738 {
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1742 }
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1745 }
1746
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1750
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1754 {
1755 if (for_write)
1756 {
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1760 {
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1763 }
1764 }
1765
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1769
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1774
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1777
1778 if (DEBUG_INSN_P (insn))
1779 {
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1785 }
1786
1787 if (!deps->readonly)
1788 {
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1791
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1794 }
1795 mark_as_hard = false;
1796 }
1797 \f
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1800
1801 /* Implement hooks for haifa scheduler. */
1802
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1805 {
1806 gcc_assert (insn && !cur_insn);
1807
1808 cur_insn = insn;
1809 }
1810
1811 static void
1812 haifa_finish_insn (void)
1813 {
1814 cur_insn = NULL;
1815 }
1816
1817 void
1818 haifa_note_reg_set (int regno)
1819 {
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1821 }
1822
1823 void
1824 haifa_note_reg_clobber (int regno)
1825 {
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1827 }
1828
1829 void
1830 haifa_note_reg_use (int regno)
1831 {
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1833 }
1834
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1837 {
1838 if (!(ds & SPECULATIVE))
1839 {
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1842 }
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1845
1846 {
1847 dep_def _dep, *dep = &_dep;
1848
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1853 }
1854
1855 }
1856
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1859 {
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1862
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1867 }
1868
1869 static void
1870 note_reg_use (int r)
1871 {
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1874 }
1875
1876 static void
1877 note_reg_set (int r)
1878 {
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1881 }
1882
1883 static void
1884 note_reg_clobber (int r)
1885 {
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1888 }
1889
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1892 {
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1895 }
1896
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1899 {
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1902 }
1903
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1907 {
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1915 {
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1918 }
1919 }
1920
1921 \f
1922
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1925
1926
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1930 {
1931 struct reg_use_data *use;
1932
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1939 }
1940
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1944 {
1945 struct reg_set_data *set;
1946
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1952 }
1953
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1957 {
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1962
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1964 {
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1968
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1974
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1978
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1981 {
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1986 }
1987 }
1988 }
1989
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1992
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1996 {
1997 struct reg_use_data *use;
1998
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2003 }
2004
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2010 {
2011 int incr, new_incr;
2012 enum reg_class cl;
2013
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2017 {
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2020 {
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2023 }
2024 else if (unused_p)
2025 {
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2028 }
2029 else
2030 {
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2036 }
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2038 }
2039 }
2040
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2046 {
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2049
2050 while (regno < last)
2051 {
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2054 {
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2057 {
2058 if (clobber_p)
2059 {
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2062 }
2063 else if (unused_p)
2064 {
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2067 }
2068 else
2069 {
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2075 }
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2077 }
2078 }
2079 regno++;
2080 }
2081 }
2082
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2089 {
2090 int regno;
2091
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2094
2095 if (! REG_P (reg))
2096 return;
2097
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2104 }
2105
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2110 {
2111 int incr;
2112 enum reg_class cl;
2113
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2117 {
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2120 }
2121 }
2122
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2127 {
2128 enum reg_class cl;
2129 int last = regno + nregs;
2130
2131 while (regno < last)
2132 {
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2135 {
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2139 }
2140 regno++;
2141 }
2142 }
2143
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2148 {
2149 int regno;
2150
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2153
2154 if (! REG_P (reg))
2155 return;
2156
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2162 }
2163
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2167 {
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2173 }
2174
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2178 {
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2181 }
2182
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2186 {
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2191
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2193
2194 if (! INSN_P (insn))
2195 return;
2196
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2198 {
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2204 }
2205
2206 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2207
2208 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2209
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2214
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2218
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2226 {
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2234 }
2235 }
2236
2237
2238 \f
2239
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2244
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (struct deps_desc *deps, int regno)
2249 {
2250 int max_regno = regno + 1;
2251
2252 gcc_assert (!reload_completed);
2253
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2257 {
2258 deps->max_reg = max_regno;
2259 return;
2260 }
2261
2262 if (max_regno > deps->max_reg)
2263 {
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2270 }
2271 }
2272
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2276 {
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2279 {
2280 size_t new_reg_info_p_size = max_regno + 128;
2281
2282 gcc_assert (!reload_completed && sel_sched_p ());
2283
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2289 }
2290 }
2291
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2295
2296 static void
2297 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2299 {
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2304
2305 maybe_extend_reg_info_p ();
2306
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2310 {
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2313 {
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2316 }
2317 else if (ref == USE)
2318 {
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2321 }
2322 else if (ref == CLOBBER_HIGH)
2323 {
2324 gcc_assert (i == 1);
2325 /* We don't know the current state of the register, so have to treat
2326 the clobber high as a full clobber. */
2327 note_reg_clobber (regno);
2328 }
2329 else
2330 {
2331 while (--i >= 0)
2332 note_reg_clobber (regno + i);
2333 }
2334 }
2335
2336 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2337 it does not reload. Ignore these as they have served their
2338 purpose already. */
2339 else if (regno >= deps->max_reg)
2340 {
2341 enum rtx_code code = GET_CODE (PATTERN (insn));
2342 gcc_assert (code == USE || code == CLOBBER);
2343 }
2344
2345 else
2346 {
2347 if (ref == SET)
2348 note_reg_set (regno);
2349 else if (ref == USE)
2350 note_reg_use (regno);
2351 else
2352 /* For CLOBBER_HIGH, we don't know the current state of the register,
2353 so have to treat it as a full clobber. */
2354 note_reg_clobber (regno);
2355
2356 /* Pseudos that are REG_EQUIV to something may be replaced
2357 by that during reloading. We need only add dependencies for
2358 the address in the REG_EQUIV note. */
2359 if (!reload_completed && get_reg_known_equiv_p (regno))
2360 {
2361 rtx t = get_reg_known_value (regno);
2362 if (MEM_P (t))
2363 sched_analyze_2 (deps, XEXP (t, 0), insn);
2364 }
2365
2366 /* Don't let it cross a call after scheduling if it doesn't
2367 already cross one. */
2368 if (REG_N_CALLS_CROSSED (regno) == 0)
2369 {
2370 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2371 deps->sched_before_next_call
2372 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2373 else
2374 add_dependence_list (insn, deps->last_function_call, 1,
2375 REG_DEP_ANTI, false);
2376 }
2377 }
2378 }
2379
2380 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2381 rtx, X, creating all dependencies generated by the write to the
2382 destination of X, and reads of everything mentioned. */
2383
2384 static void
2385 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2386 {
2387 rtx dest = XEXP (x, 0);
2388 enum rtx_code code = GET_CODE (x);
2389 bool cslr_p = can_start_lhs_rhs_p;
2390
2391 can_start_lhs_rhs_p = false;
2392
2393 gcc_assert (dest);
2394 if (dest == 0)
2395 return;
2396
2397 if (cslr_p && sched_deps_info->start_lhs)
2398 sched_deps_info->start_lhs (dest);
2399
2400 if (GET_CODE (dest) == PARALLEL)
2401 {
2402 int i;
2403
2404 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2405 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2406 sched_analyze_1 (deps,
2407 gen_rtx_CLOBBER (VOIDmode,
2408 XEXP (XVECEXP (dest, 0, i), 0)),
2409 insn);
2410
2411 if (cslr_p && sched_deps_info->finish_lhs)
2412 sched_deps_info->finish_lhs ();
2413
2414 if (code == SET)
2415 {
2416 can_start_lhs_rhs_p = cslr_p;
2417
2418 sched_analyze_2 (deps, SET_SRC (x), insn);
2419
2420 can_start_lhs_rhs_p = false;
2421 }
2422
2423 return;
2424 }
2425
2426 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2427 || GET_CODE (dest) == ZERO_EXTRACT)
2428 {
2429 if (GET_CODE (dest) == STRICT_LOW_PART
2430 || GET_CODE (dest) == ZERO_EXTRACT
2431 || read_modify_subreg_p (dest))
2432 {
2433 /* These both read and modify the result. We must handle
2434 them as writes to get proper dependencies for following
2435 instructions. We must handle them as reads to get proper
2436 dependencies from this to previous instructions.
2437 Thus we need to call sched_analyze_2. */
2438
2439 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2440 }
2441 if (GET_CODE (dest) == ZERO_EXTRACT)
2442 {
2443 /* The second and third arguments are values read by this insn. */
2444 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2445 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2446 }
2447 dest = XEXP (dest, 0);
2448 }
2449
2450 if (REG_P (dest))
2451 {
2452 int regno = REGNO (dest);
2453 machine_mode mode = GET_MODE (dest);
2454
2455 sched_analyze_reg (deps, regno, mode, code, insn);
2456
2457 #ifdef STACK_REGS
2458 /* Treat all writes to a stack register as modifying the TOS. */
2459 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2460 {
2461 /* Avoid analyzing the same register twice. */
2462 if (regno != FIRST_STACK_REG)
2463 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2464
2465 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2466 FIRST_STACK_REG);
2467 }
2468 #endif
2469 }
2470 else if (MEM_P (dest))
2471 {
2472 /* Writing memory. */
2473 rtx t = dest;
2474
2475 if (sched_deps_info->use_cselib)
2476 {
2477 machine_mode address_mode = get_address_mode (dest);
2478
2479 t = shallow_copy_rtx (dest);
2480 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2481 GET_MODE (t), insn);
2482 XEXP (t, 0)
2483 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2484 insn);
2485 }
2486 t = canon_rtx (t);
2487
2488 /* Pending lists can't get larger with a readonly context. */
2489 if (!deps->readonly
2490 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2491 >= MAX_PENDING_LIST_LENGTH))
2492 {
2493 /* Flush all pending reads and writes to prevent the pending lists
2494 from getting any larger. Insn scheduling runs too slowly when
2495 these lists get long. When compiling GCC with itself,
2496 this flush occurs 8 times for sparc, and 10 times for m88k using
2497 the default value of 32. */
2498 flush_pending_lists (deps, insn, false, true);
2499 }
2500 else
2501 {
2502 rtx_insn_list *pending;
2503 rtx_expr_list *pending_mem;
2504
2505 pending = deps->pending_read_insns;
2506 pending_mem = deps->pending_read_mems;
2507 while (pending)
2508 {
2509 if (anti_dependence (pending_mem->element (), t)
2510 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2511 note_mem_dep (t, pending_mem->element (), pending->insn (),
2512 DEP_ANTI);
2513
2514 pending = pending->next ();
2515 pending_mem = pending_mem->next ();
2516 }
2517
2518 pending = deps->pending_write_insns;
2519 pending_mem = deps->pending_write_mems;
2520 while (pending)
2521 {
2522 if (output_dependence (pending_mem->element (), t)
2523 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2524 note_mem_dep (t, pending_mem->element (),
2525 pending->insn (),
2526 DEP_OUTPUT);
2527
2528 pending = pending->next ();
2529 pending_mem = pending_mem-> next ();
2530 }
2531
2532 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2533 REG_DEP_ANTI, true);
2534 add_dependence_list (insn, deps->pending_jump_insns, 1,
2535 REG_DEP_CONTROL, true);
2536
2537 if (!deps->readonly)
2538 add_insn_mem_dependence (deps, false, insn, dest);
2539 }
2540 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2541 }
2542
2543 if (cslr_p && sched_deps_info->finish_lhs)
2544 sched_deps_info->finish_lhs ();
2545
2546 /* Analyze reads. */
2547 if (GET_CODE (x) == SET)
2548 {
2549 can_start_lhs_rhs_p = cslr_p;
2550
2551 sched_analyze_2 (deps, SET_SRC (x), insn);
2552
2553 can_start_lhs_rhs_p = false;
2554 }
2555 }
2556
2557 /* Analyze the uses of memory and registers in rtx X in INSN. */
2558 static void
2559 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2560 {
2561 int i;
2562 int j;
2563 enum rtx_code code;
2564 const char *fmt;
2565 bool cslr_p = can_start_lhs_rhs_p;
2566
2567 can_start_lhs_rhs_p = false;
2568
2569 gcc_assert (x);
2570 if (x == 0)
2571 return;
2572
2573 if (cslr_p && sched_deps_info->start_rhs)
2574 sched_deps_info->start_rhs (x);
2575
2576 code = GET_CODE (x);
2577
2578 switch (code)
2579 {
2580 CASE_CONST_ANY:
2581 case SYMBOL_REF:
2582 case CONST:
2583 case LABEL_REF:
2584 /* Ignore constants. */
2585 if (cslr_p && sched_deps_info->finish_rhs)
2586 sched_deps_info->finish_rhs ();
2587
2588 return;
2589
2590 case CC0:
2591 if (!HAVE_cc0)
2592 gcc_unreachable ();
2593
2594 /* User of CC0 depends on immediately preceding insn. */
2595 SCHED_GROUP_P (insn) = 1;
2596 /* Don't move CC0 setter to another block (it can set up the
2597 same flag for previous CC0 users which is safe). */
2598 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2599
2600 if (cslr_p && sched_deps_info->finish_rhs)
2601 sched_deps_info->finish_rhs ();
2602
2603 return;
2604
2605 case REG:
2606 {
2607 int regno = REGNO (x);
2608 machine_mode mode = GET_MODE (x);
2609
2610 sched_analyze_reg (deps, regno, mode, USE, insn);
2611
2612 #ifdef STACK_REGS
2613 /* Treat all reads of a stack register as modifying the TOS. */
2614 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2615 {
2616 /* Avoid analyzing the same register twice. */
2617 if (regno != FIRST_STACK_REG)
2618 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2619 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2620 }
2621 #endif
2622
2623 if (cslr_p && sched_deps_info->finish_rhs)
2624 sched_deps_info->finish_rhs ();
2625
2626 return;
2627 }
2628
2629 case MEM:
2630 {
2631 /* Reading memory. */
2632 rtx_insn_list *u;
2633 rtx_insn_list *pending;
2634 rtx_expr_list *pending_mem;
2635 rtx t = x;
2636
2637 if (sched_deps_info->use_cselib)
2638 {
2639 machine_mode address_mode = get_address_mode (t);
2640
2641 t = shallow_copy_rtx (t);
2642 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2643 GET_MODE (t), insn);
2644 XEXP (t, 0)
2645 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2646 insn);
2647 }
2648
2649 if (!DEBUG_INSN_P (insn))
2650 {
2651 t = canon_rtx (t);
2652 pending = deps->pending_read_insns;
2653 pending_mem = deps->pending_read_mems;
2654 while (pending)
2655 {
2656 if (read_dependence (pending_mem->element (), t)
2657 && ! sched_insns_conditions_mutex_p (insn,
2658 pending->insn ()))
2659 note_mem_dep (t, pending_mem->element (),
2660 pending->insn (),
2661 DEP_ANTI);
2662
2663 pending = pending->next ();
2664 pending_mem = pending_mem->next ();
2665 }
2666
2667 pending = deps->pending_write_insns;
2668 pending_mem = deps->pending_write_mems;
2669 while (pending)
2670 {
2671 if (true_dependence (pending_mem->element (), VOIDmode, t)
2672 && ! sched_insns_conditions_mutex_p (insn,
2673 pending->insn ()))
2674 note_mem_dep (t, pending_mem->element (),
2675 pending->insn (),
2676 sched_deps_info->generate_spec_deps
2677 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2678
2679 pending = pending->next ();
2680 pending_mem = pending_mem->next ();
2681 }
2682
2683 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2684 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2685
2686 for (u = deps->pending_jump_insns; u; u = u->next ())
2687 if (deps_may_trap_p (x))
2688 {
2689 if ((sched_deps_info->generate_spec_deps)
2690 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2691 {
2692 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2693 MAX_DEP_WEAK);
2694
2695 note_dep (u->insn (), ds);
2696 }
2697 else
2698 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2699 }
2700 }
2701
2702 /* Always add these dependencies to pending_reads, since
2703 this insn may be followed by a write. */
2704 if (!deps->readonly)
2705 {
2706 if ((deps->pending_read_list_length
2707 + deps->pending_write_list_length)
2708 >= MAX_PENDING_LIST_LENGTH
2709 && !DEBUG_INSN_P (insn))
2710 flush_pending_lists (deps, insn, true, true);
2711 add_insn_mem_dependence (deps, true, insn, x);
2712 }
2713
2714 sched_analyze_2 (deps, XEXP (x, 0), insn);
2715
2716 if (cslr_p && sched_deps_info->finish_rhs)
2717 sched_deps_info->finish_rhs ();
2718
2719 return;
2720 }
2721
2722 /* Force pending stores to memory in case a trap handler needs them.
2723 Also force pending loads from memory; loads and stores can segfault
2724 and the signal handler won't be triggered if the trap insn was moved
2725 above load or store insn. */
2726 case TRAP_IF:
2727 flush_pending_lists (deps, insn, true, true);
2728 break;
2729
2730 case PREFETCH:
2731 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2732 reg_pending_barrier = TRUE_BARRIER;
2733 /* Prefetch insn contains addresses only. So if the prefetch
2734 address has no registers, there will be no dependencies on
2735 the prefetch insn. This is wrong with result code
2736 correctness point of view as such prefetch can be moved below
2737 a jump insn which usually generates MOVE_BARRIER preventing
2738 to move insns containing registers or memories through the
2739 barrier. It is also wrong with generated code performance
2740 point of view as prefetch withouth dependecies will have a
2741 tendency to be issued later instead of earlier. It is hard
2742 to generate accurate dependencies for prefetch insns as
2743 prefetch has only the start address but it is better to have
2744 something than nothing. */
2745 if (!deps->readonly)
2746 {
2747 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2748 if (sched_deps_info->use_cselib)
2749 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2750 add_insn_mem_dependence (deps, true, insn, x);
2751 }
2752 break;
2753
2754 case UNSPEC_VOLATILE:
2755 flush_pending_lists (deps, insn, true, true);
2756 /* FALLTHRU */
2757
2758 case ASM_OPERANDS:
2759 case ASM_INPUT:
2760 {
2761 /* Traditional and volatile asm instructions must be considered to use
2762 and clobber all hard registers, all pseudo-registers and all of
2763 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2764
2765 Consider for instance a volatile asm that changes the fpu rounding
2766 mode. An insn should not be moved across this even if it only uses
2767 pseudo-regs because it might give an incorrectly rounded result. */
2768 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2769 && !DEBUG_INSN_P (insn))
2770 reg_pending_barrier = TRUE_BARRIER;
2771
2772 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2773 We cannot just fall through here since then we would be confused
2774 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2775 traditional asms unlike their normal usage. */
2776
2777 if (code == ASM_OPERANDS)
2778 {
2779 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2780 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2781
2782 if (cslr_p && sched_deps_info->finish_rhs)
2783 sched_deps_info->finish_rhs ();
2784
2785 return;
2786 }
2787 break;
2788 }
2789
2790 case PRE_DEC:
2791 case POST_DEC:
2792 case PRE_INC:
2793 case POST_INC:
2794 /* These both read and modify the result. We must handle them as writes
2795 to get proper dependencies for following instructions. We must handle
2796 them as reads to get proper dependencies from this to previous
2797 instructions. Thus we need to pass them to both sched_analyze_1
2798 and sched_analyze_2. We must call sched_analyze_2 first in order
2799 to get the proper antecedent for the read. */
2800 sched_analyze_2 (deps, XEXP (x, 0), insn);
2801 sched_analyze_1 (deps, x, insn);
2802
2803 if (cslr_p && sched_deps_info->finish_rhs)
2804 sched_deps_info->finish_rhs ();
2805
2806 return;
2807
2808 case POST_MODIFY:
2809 case PRE_MODIFY:
2810 /* op0 = op0 + op1 */
2811 sched_analyze_2 (deps, XEXP (x, 0), insn);
2812 sched_analyze_2 (deps, XEXP (x, 1), insn);
2813 sched_analyze_1 (deps, x, insn);
2814
2815 if (cslr_p && sched_deps_info->finish_rhs)
2816 sched_deps_info->finish_rhs ();
2817
2818 return;
2819
2820 default:
2821 break;
2822 }
2823
2824 /* Other cases: walk the insn. */
2825 fmt = GET_RTX_FORMAT (code);
2826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2827 {
2828 if (fmt[i] == 'e')
2829 sched_analyze_2 (deps, XEXP (x, i), insn);
2830 else if (fmt[i] == 'E')
2831 for (j = 0; j < XVECLEN (x, i); j++)
2832 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2833 }
2834
2835 if (cslr_p && sched_deps_info->finish_rhs)
2836 sched_deps_info->finish_rhs ();
2837 }
2838
2839 /* Try to group two fusible insns together to prevent scheduler
2840 from scheduling them apart. */
2841
2842 static void
2843 sched_macro_fuse_insns (rtx_insn *insn)
2844 {
2845 rtx_insn *prev;
2846 /* No target hook would return true for debug insn as any of the
2847 hook operand, and with very large sequences of only debug insns
2848 where on each we call sched_macro_fuse_insns it has quadratic
2849 compile time complexity. */
2850 if (DEBUG_INSN_P (insn))
2851 return;
2852 prev = prev_nonnote_nondebug_insn (insn);
2853 if (!prev)
2854 return;
2855
2856 if (any_condjump_p (insn))
2857 {
2858 unsigned int condreg1, condreg2;
2859 rtx cc_reg_1;
2860 if (targetm.fixed_condition_code_regs (&condreg1, &condreg2))
2861 {
2862 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2863 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2864 && modified_in_p (cc_reg_1, prev))
2865 {
2866 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2867 SCHED_GROUP_P (insn) = 1;
2868 return;
2869 }
2870 }
2871 }
2872
2873 if (single_set (insn) && single_set (prev))
2874 {
2875 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2876 SCHED_GROUP_P (insn) = 1;
2877 }
2878 }
2879
2880 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2881 void
2882 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2883 {
2884 extract_insn (insn);
2885 preprocess_constraints (insn);
2886 alternative_mask preferred = get_preferred_alternatives (insn);
2887 ira_implicitly_set_insn_hard_regs (temp, preferred);
2888 AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2889 }
2890
2891 /* Analyze an INSN with pattern X to find all dependencies. */
2892 static void
2893 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2894 {
2895 RTX_CODE code = GET_CODE (x);
2896 rtx link;
2897 unsigned i;
2898 reg_set_iterator rsi;
2899
2900 if (! reload_completed)
2901 {
2902 HARD_REG_SET temp;
2903 get_implicit_reg_pending_clobbers (&temp, insn);
2904 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2905 }
2906
2907 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2908 && code == SET);
2909
2910 /* Group compare and branch insns for macro-fusion. */
2911 if (!deps->readonly
2912 && targetm.sched.macro_fusion_p
2913 && targetm.sched.macro_fusion_p ())
2914 sched_macro_fuse_insns (insn);
2915
2916 if (may_trap_p (x))
2917 /* Avoid moving trapping instructions across function calls that might
2918 not always return. */
2919 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2920 1, REG_DEP_ANTI, true);
2921
2922 /* We must avoid creating a situation in which two successors of the
2923 current block have different unwind info after scheduling. If at any
2924 point the two paths re-join this leads to incorrect unwind info. */
2925 /* ??? There are certain situations involving a forced frame pointer in
2926 which, with extra effort, we could fix up the unwind info at a later
2927 CFG join. However, it seems better to notice these cases earlier
2928 during prologue generation and avoid marking the frame pointer setup
2929 as frame-related at all. */
2930 if (RTX_FRAME_RELATED_P (insn))
2931 {
2932 /* Make sure prologue insn is scheduled before next jump. */
2933 deps->sched_before_next_jump
2934 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2935
2936 /* Make sure epilogue insn is scheduled after preceding jumps. */
2937 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2938 REG_DEP_ANTI, true);
2939 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2940 true);
2941 }
2942
2943 if (code == COND_EXEC)
2944 {
2945 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2946
2947 /* ??? Should be recording conditions so we reduce the number of
2948 false dependencies. */
2949 x = COND_EXEC_CODE (x);
2950 code = GET_CODE (x);
2951 }
2952 if (code == SET || code == CLOBBER)
2953 {
2954 sched_analyze_1 (deps, x, insn);
2955
2956 /* Bare clobber insns are used for letting life analysis, reg-stack
2957 and others know that a value is dead. Depend on the last call
2958 instruction so that reg-stack won't get confused. */
2959 if (code == CLOBBER)
2960 add_dependence_list (insn, deps->last_function_call, 1,
2961 REG_DEP_OUTPUT, true);
2962 }
2963 else if (code == PARALLEL)
2964 {
2965 for (i = XVECLEN (x, 0); i--;)
2966 {
2967 rtx sub = XVECEXP (x, 0, i);
2968 code = GET_CODE (sub);
2969
2970 if (code == COND_EXEC)
2971 {
2972 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2973 sub = COND_EXEC_CODE (sub);
2974 code = GET_CODE (sub);
2975 }
2976 else if (code == SET || code == CLOBBER || code == CLOBBER_HIGH)
2977 sched_analyze_1 (deps, sub, insn);
2978 else
2979 sched_analyze_2 (deps, sub, insn);
2980 }
2981 }
2982 else
2983 sched_analyze_2 (deps, x, insn);
2984
2985 /* Mark registers CLOBBERED or used by called function. */
2986 if (CALL_P (insn))
2987 {
2988 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2989 {
2990 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2991 sched_analyze_1 (deps, XEXP (link, 0), insn);
2992 else if (GET_CODE (XEXP (link, 0)) == CLOBBER_HIGH)
2993 /* We could support CLOBBER_HIGH and treat it in the same way as
2994 HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that yet. */
2995 gcc_unreachable ();
2996 else if (GET_CODE (XEXP (link, 0)) != SET)
2997 sched_analyze_2 (deps, XEXP (link, 0), insn);
2998 }
2999 /* Don't schedule anything after a tail call, tail call needs
3000 to use at least all call-saved registers. */
3001 if (SIBLING_CALL_P (insn))
3002 reg_pending_barrier = TRUE_BARRIER;
3003 else if (find_reg_note (insn, REG_SETJMP, NULL))
3004 reg_pending_barrier = MOVE_BARRIER;
3005 }
3006
3007 if (JUMP_P (insn))
3008 {
3009 rtx_insn *next = next_nonnote_nondebug_insn (insn);
3010 /* ??? For tablejumps, the barrier may appear not immediately after
3011 the jump, but after a label and a jump_table_data insn. */
3012 if (next && LABEL_P (next) && NEXT_INSN (next)
3013 && JUMP_TABLE_DATA_P (NEXT_INSN (next)))
3014 next = NEXT_INSN (NEXT_INSN (next));
3015 if (next && BARRIER_P (next))
3016 reg_pending_barrier = MOVE_BARRIER;
3017 else
3018 {
3019 rtx_insn_list *pending;
3020 rtx_expr_list *pending_mem;
3021
3022 if (sched_deps_info->compute_jump_reg_dependencies)
3023 {
3024 (*sched_deps_info->compute_jump_reg_dependencies)
3025 (insn, reg_pending_control_uses);
3026
3027 /* Make latency of jump equal to 0 by using anti-dependence. */
3028 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3029 {
3030 struct deps_reg *reg_last = &deps->reg_last[i];
3031 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3032 false);
3033 add_dependence_list (insn, reg_last->implicit_sets,
3034 0, REG_DEP_ANTI, false);
3035 add_dependence_list (insn, reg_last->clobbers, 0,
3036 REG_DEP_ANTI, false);
3037 }
3038 }
3039
3040 /* All memory writes and volatile reads must happen before the
3041 jump. Non-volatile reads must happen before the jump iff
3042 the result is needed by the above register used mask. */
3043
3044 pending = deps->pending_write_insns;
3045 pending_mem = deps->pending_write_mems;
3046 while (pending)
3047 {
3048 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3049 add_dependence (insn, pending->insn (),
3050 REG_DEP_OUTPUT);
3051 pending = pending->next ();
3052 pending_mem = pending_mem->next ();
3053 }
3054
3055 pending = deps->pending_read_insns;
3056 pending_mem = deps->pending_read_mems;
3057 while (pending)
3058 {
3059 if (MEM_VOLATILE_P (pending_mem->element ())
3060 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3061 add_dependence (insn, pending->insn (),
3062 REG_DEP_OUTPUT);
3063 pending = pending->next ();
3064 pending_mem = pending_mem->next ();
3065 }
3066
3067 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3068 REG_DEP_ANTI, true);
3069 add_dependence_list (insn, deps->pending_jump_insns, 1,
3070 REG_DEP_ANTI, true);
3071 }
3072 }
3073
3074 /* If this instruction can throw an exception, then moving it changes
3075 where block boundaries fall. This is mighty confusing elsewhere.
3076 Therefore, prevent such an instruction from being moved. Same for
3077 non-jump instructions that define block boundaries.
3078 ??? Unclear whether this is still necessary in EBB mode. If not,
3079 add_branch_dependences should be adjusted for RGN mode instead. */
3080 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3081 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3082 reg_pending_barrier = MOVE_BARRIER;
3083
3084 if (sched_pressure != SCHED_PRESSURE_NONE)
3085 {
3086 setup_insn_reg_uses (deps, insn);
3087 init_insn_reg_pressure_info (insn);
3088 }
3089
3090 /* Add register dependencies for insn. */
3091 if (DEBUG_INSN_P (insn))
3092 {
3093 rtx_insn *prev = deps->last_debug_insn;
3094 rtx_insn_list *u;
3095
3096 if (!deps->readonly)
3097 deps->last_debug_insn = insn;
3098
3099 if (prev)
3100 add_dependence (insn, prev, REG_DEP_ANTI);
3101
3102 add_dependence_list (insn, deps->last_function_call, 1,
3103 REG_DEP_ANTI, false);
3104
3105 if (!sel_sched_p ())
3106 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3107 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3108
3109 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3110 {
3111 struct deps_reg *reg_last = &deps->reg_last[i];
3112 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3113 /* There's no point in making REG_DEP_CONTROL dependencies for
3114 debug insns. */
3115 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3116 false);
3117
3118 if (!deps->readonly)
3119 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3120 }
3121 CLEAR_REG_SET (reg_pending_uses);
3122
3123 /* Quite often, a debug insn will refer to stuff in the
3124 previous instruction, but the reason we want this
3125 dependency here is to make sure the scheduler doesn't
3126 gratuitously move a debug insn ahead. This could dirty
3127 DF flags and cause additional analysis that wouldn't have
3128 occurred in compilation without debug insns, and such
3129 additional analysis can modify the generated code. */
3130 prev = PREV_INSN (insn);
3131
3132 if (prev && NONDEBUG_INSN_P (prev))
3133 add_dependence (insn, prev, REG_DEP_ANTI);
3134 }
3135 else
3136 {
3137 regset_head set_or_clobbered;
3138
3139 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3140 {
3141 struct deps_reg *reg_last = &deps->reg_last[i];
3142 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3143 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3144 false);
3145 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3146 false);
3147
3148 if (!deps->readonly)
3149 {
3150 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3151 reg_last->uses_length++;
3152 }
3153 }
3154
3155 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3156 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3157 {
3158 struct deps_reg *reg_last = &deps->reg_last[i];
3159 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3160 add_dependence_list (insn, reg_last->implicit_sets, 0,
3161 REG_DEP_ANTI, false);
3162 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3163 false);
3164
3165 if (!deps->readonly)
3166 {
3167 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3168 reg_last->uses_length++;
3169 }
3170 }
3171
3172 if (targetm.sched.exposed_pipeline)
3173 {
3174 INIT_REG_SET (&set_or_clobbered);
3175 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3176 reg_pending_sets);
3177 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3178 {
3179 struct deps_reg *reg_last = &deps->reg_last[i];
3180 rtx list;
3181 for (list = reg_last->uses; list; list = XEXP (list, 1))
3182 {
3183 rtx other = XEXP (list, 0);
3184 if (INSN_CACHED_COND (other) != const_true_rtx
3185 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3186 INSN_CACHED_COND (other) = const_true_rtx;
3187 }
3188 }
3189 }
3190
3191 /* If the current insn is conditional, we can't free any
3192 of the lists. */
3193 if (sched_has_condition_p (insn))
3194 {
3195 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3196 {
3197 struct deps_reg *reg_last = &deps->reg_last[i];
3198 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3199 false);
3200 add_dependence_list (insn, reg_last->implicit_sets, 0,
3201 REG_DEP_ANTI, false);
3202 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3203 false);
3204 add_dependence_list (insn, reg_last->control_uses, 0,
3205 REG_DEP_CONTROL, false);
3206
3207 if (!deps->readonly)
3208 {
3209 reg_last->clobbers
3210 = alloc_INSN_LIST (insn, reg_last->clobbers);
3211 reg_last->clobbers_length++;
3212 }
3213 }
3214 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3215 {
3216 struct deps_reg *reg_last = &deps->reg_last[i];
3217 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3218 false);
3219 add_dependence_list (insn, reg_last->implicit_sets, 0,
3220 REG_DEP_ANTI, false);
3221 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3222 false);
3223 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3224 false);
3225 add_dependence_list (insn, reg_last->control_uses, 0,
3226 REG_DEP_CONTROL, false);
3227
3228 if (!deps->readonly)
3229 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3230 }
3231 }
3232 else
3233 {
3234 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3235 {
3236 struct deps_reg *reg_last = &deps->reg_last[i];
3237 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3238 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3239 {
3240 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3241 REG_DEP_OUTPUT, false);
3242 add_dependence_list_and_free (deps, insn,
3243 &reg_last->implicit_sets, 0,
3244 REG_DEP_ANTI, false);
3245 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3246 REG_DEP_ANTI, false);
3247 add_dependence_list_and_free (deps, insn,
3248 &reg_last->control_uses, 0,
3249 REG_DEP_ANTI, false);
3250 add_dependence_list_and_free (deps, insn,
3251 &reg_last->clobbers, 0,
3252 REG_DEP_OUTPUT, false);
3253
3254 if (!deps->readonly)
3255 {
3256 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3257 reg_last->clobbers_length = 0;
3258 reg_last->uses_length = 0;
3259 }
3260 }
3261 else
3262 {
3263 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3264 false);
3265 add_dependence_list (insn, reg_last->implicit_sets, 0,
3266 REG_DEP_ANTI, false);
3267 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3268 false);
3269 add_dependence_list (insn, reg_last->control_uses, 0,
3270 REG_DEP_CONTROL, false);
3271 }
3272
3273 if (!deps->readonly)
3274 {
3275 reg_last->clobbers_length++;
3276 reg_last->clobbers
3277 = alloc_INSN_LIST (insn, reg_last->clobbers);
3278 }
3279 }
3280 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3281 {
3282 struct deps_reg *reg_last = &deps->reg_last[i];
3283
3284 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3285 REG_DEP_OUTPUT, false);
3286 add_dependence_list_and_free (deps, insn,
3287 &reg_last->implicit_sets,
3288 0, REG_DEP_ANTI, false);
3289 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3290 REG_DEP_OUTPUT, false);
3291 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3292 REG_DEP_ANTI, false);
3293 add_dependence_list (insn, reg_last->control_uses, 0,
3294 REG_DEP_CONTROL, false);
3295
3296 if (!deps->readonly)
3297 {
3298 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3299 reg_last->uses_length = 0;
3300 reg_last->clobbers_length = 0;
3301 }
3302 }
3303 }
3304 if (!deps->readonly)
3305 {
3306 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3307 {
3308 struct deps_reg *reg_last = &deps->reg_last[i];
3309 reg_last->control_uses
3310 = alloc_INSN_LIST (insn, reg_last->control_uses);
3311 }
3312 }
3313 }
3314
3315 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3316 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3317 {
3318 struct deps_reg *reg_last = &deps->reg_last[i];
3319 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3320 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3321 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3322 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3323 false);
3324
3325 if (!deps->readonly)
3326 reg_last->implicit_sets
3327 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3328 }
3329
3330 if (!deps->readonly)
3331 {
3332 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3333 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3334 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3335 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3336 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3337 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3338 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3339
3340 /* Set up the pending barrier found. */
3341 deps->last_reg_pending_barrier = reg_pending_barrier;
3342 }
3343
3344 CLEAR_REG_SET (reg_pending_uses);
3345 CLEAR_REG_SET (reg_pending_clobbers);
3346 CLEAR_REG_SET (reg_pending_sets);
3347 CLEAR_REG_SET (reg_pending_control_uses);
3348 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3349 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3350
3351 /* Add dependencies if a scheduling barrier was found. */
3352 if (reg_pending_barrier)
3353 {
3354 /* In the case of barrier the most added dependencies are not
3355 real, so we use anti-dependence here. */
3356 if (sched_has_condition_p (insn))
3357 {
3358 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3359 {
3360 struct deps_reg *reg_last = &deps->reg_last[i];
3361 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3362 true);
3363 add_dependence_list (insn, reg_last->sets, 0,
3364 reg_pending_barrier == TRUE_BARRIER
3365 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3366 add_dependence_list (insn, reg_last->implicit_sets, 0,
3367 REG_DEP_ANTI, true);
3368 add_dependence_list (insn, reg_last->clobbers, 0,
3369 reg_pending_barrier == TRUE_BARRIER
3370 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3371 }
3372 }
3373 else
3374 {
3375 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3376 {
3377 struct deps_reg *reg_last = &deps->reg_last[i];
3378 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3379 REG_DEP_ANTI, true);
3380 add_dependence_list_and_free (deps, insn,
3381 &reg_last->control_uses, 0,
3382 REG_DEP_CONTROL, true);
3383 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3384 reg_pending_barrier == TRUE_BARRIER
3385 ? REG_DEP_TRUE : REG_DEP_ANTI,
3386 true);
3387 add_dependence_list_and_free (deps, insn,
3388 &reg_last->implicit_sets, 0,
3389 REG_DEP_ANTI, true);
3390 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3391 reg_pending_barrier == TRUE_BARRIER
3392 ? REG_DEP_TRUE : REG_DEP_ANTI,
3393 true);
3394
3395 if (!deps->readonly)
3396 {
3397 reg_last->uses_length = 0;
3398 reg_last->clobbers_length = 0;
3399 }
3400 }
3401 }
3402
3403 if (!deps->readonly)
3404 for (i = 0; i < (unsigned)deps->max_reg; i++)
3405 {
3406 struct deps_reg *reg_last = &deps->reg_last[i];
3407 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3408 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3409 }
3410
3411 /* Don't flush pending lists on speculative checks for
3412 selective scheduling. */
3413 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3414 flush_pending_lists (deps, insn, true, true);
3415
3416 reg_pending_barrier = NOT_A_BARRIER;
3417 }
3418
3419 /* If a post-call group is still open, see if it should remain so.
3420 This insn must be a simple move of a hard reg to a pseudo or
3421 vice-versa.
3422
3423 We must avoid moving these insns for correctness on targets
3424 with small register classes, and for special registers like
3425 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3426 hard regs for all targets. */
3427
3428 if (deps->in_post_call_group_p)
3429 {
3430 rtx tmp, set = single_set (insn);
3431 int src_regno, dest_regno;
3432
3433 if (set == NULL)
3434 {
3435 if (DEBUG_INSN_P (insn))
3436 /* We don't want to mark debug insns as part of the same
3437 sched group. We know they really aren't, but if we use
3438 debug insns to tell that a call group is over, we'll
3439 get different code if debug insns are not there and
3440 instructions that follow seem like they should be part
3441 of the call group.
3442
3443 Also, if we did, chain_to_prev_insn would move the
3444 deps of the debug insn to the call insn, modifying
3445 non-debug post-dependency counts of the debug insn
3446 dependencies and otherwise messing with the scheduling
3447 order.
3448
3449 Instead, let such debug insns be scheduled freely, but
3450 keep the call group open in case there are insns that
3451 should be part of it afterwards. Since we grant debug
3452 insns higher priority than even sched group insns, it
3453 will all turn out all right. */
3454 goto debug_dont_end_call_group;
3455 else
3456 goto end_call_group;
3457 }
3458
3459 tmp = SET_DEST (set);
3460 if (GET_CODE (tmp) == SUBREG)
3461 tmp = SUBREG_REG (tmp);
3462 if (REG_P (tmp))
3463 dest_regno = REGNO (tmp);
3464 else
3465 goto end_call_group;
3466
3467 tmp = SET_SRC (set);
3468 if (GET_CODE (tmp) == SUBREG)
3469 tmp = SUBREG_REG (tmp);
3470 if ((GET_CODE (tmp) == PLUS
3471 || GET_CODE (tmp) == MINUS)
3472 && REG_P (XEXP (tmp, 0))
3473 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3474 && dest_regno == STACK_POINTER_REGNUM)
3475 src_regno = STACK_POINTER_REGNUM;
3476 else if (REG_P (tmp))
3477 src_regno = REGNO (tmp);
3478 else
3479 goto end_call_group;
3480
3481 if (src_regno < FIRST_PSEUDO_REGISTER
3482 || dest_regno < FIRST_PSEUDO_REGISTER)
3483 {
3484 if (!deps->readonly
3485 && deps->in_post_call_group_p == post_call_initial)
3486 deps->in_post_call_group_p = post_call;
3487
3488 if (!sel_sched_p () || sched_emulate_haifa_p)
3489 {
3490 SCHED_GROUP_P (insn) = 1;
3491 CANT_MOVE (insn) = 1;
3492 }
3493 }
3494 else
3495 {
3496 end_call_group:
3497 if (!deps->readonly)
3498 deps->in_post_call_group_p = not_post_call;
3499 }
3500 }
3501
3502 debug_dont_end_call_group:
3503 if ((current_sched_info->flags & DO_SPECULATION)
3504 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3505 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3506 be speculated. */
3507 {
3508 if (sel_sched_p ())
3509 sel_mark_hard_insn (insn);
3510 else
3511 {
3512 sd_iterator_def sd_it;
3513 dep_t dep;
3514
3515 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3516 sd_iterator_cond (&sd_it, &dep);)
3517 change_spec_dep_to_hard (sd_it);
3518 }
3519 }
3520
3521 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3522 honor their original ordering. */
3523 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3524 {
3525 if (deps->last_args_size)
3526 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3527 if (!deps->readonly)
3528 deps->last_args_size = insn;
3529 }
3530
3531 /* We must not mix prologue and epilogue insns. See PR78029. */
3532 if (prologue_contains (insn))
3533 {
3534 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3535 if (!deps->readonly)
3536 {
3537 if (deps->last_logue_was_epilogue)
3538 free_INSN_LIST_list (&deps->last_prologue);
3539 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3540 deps->last_logue_was_epilogue = false;
3541 }
3542 }
3543
3544 if (epilogue_contains (insn))
3545 {
3546 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3547 if (!deps->readonly)
3548 {
3549 if (!deps->last_logue_was_epilogue)
3550 free_INSN_LIST_list (&deps->last_epilogue);
3551 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3552 deps->last_logue_was_epilogue = true;
3553 }
3554 }
3555 }
3556
3557 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3558 longjmp, loop forever, ...). */
3559 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3560 test for ECF_NORETURN? */
3561 static bool
3562 call_may_noreturn_p (rtx_insn *insn)
3563 {
3564 rtx call;
3565
3566 /* const or pure calls that aren't looping will always return. */
3567 if (RTL_CONST_OR_PURE_CALL_P (insn)
3568 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3569 return false;
3570
3571 call = get_call_rtx_from (insn);
3572 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3573 {
3574 rtx symbol = XEXP (XEXP (call, 0), 0);
3575 if (SYMBOL_REF_DECL (symbol)
3576 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3577 {
3578 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3579 == BUILT_IN_NORMAL)
3580 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3581 {
3582 case BUILT_IN_BCMP:
3583 case BUILT_IN_BCOPY:
3584 case BUILT_IN_BZERO:
3585 case BUILT_IN_INDEX:
3586 case BUILT_IN_MEMCHR:
3587 case BUILT_IN_MEMCMP:
3588 case BUILT_IN_MEMCPY:
3589 case BUILT_IN_MEMMOVE:
3590 case BUILT_IN_MEMPCPY:
3591 case BUILT_IN_MEMSET:
3592 case BUILT_IN_RINDEX:
3593 case BUILT_IN_STPCPY:
3594 case BUILT_IN_STPNCPY:
3595 case BUILT_IN_STRCAT:
3596 case BUILT_IN_STRCHR:
3597 case BUILT_IN_STRCMP:
3598 case BUILT_IN_STRCPY:
3599 case BUILT_IN_STRCSPN:
3600 case BUILT_IN_STRLEN:
3601 case BUILT_IN_STRNCAT:
3602 case BUILT_IN_STRNCMP:
3603 case BUILT_IN_STRNCPY:
3604 case BUILT_IN_STRPBRK:
3605 case BUILT_IN_STRRCHR:
3606 case BUILT_IN_STRSPN:
3607 case BUILT_IN_STRSTR:
3608 /* Assume certain string/memory builtins always return. */
3609 return false;
3610 default:
3611 break;
3612 }
3613 }
3614 }
3615
3616 /* For all other calls assume that they might not always return. */
3617 return true;
3618 }
3619
3620 /* Return true if INSN should be made dependent on the previous instruction
3621 group, and if all INSN's dependencies should be moved to the first
3622 instruction of that group. */
3623
3624 static bool
3625 chain_to_prev_insn_p (rtx_insn *insn)
3626 {
3627 /* INSN forms a group with the previous instruction. */
3628 if (SCHED_GROUP_P (insn))
3629 return true;
3630
3631 /* If the previous instruction clobbers a register R and this one sets
3632 part of R, the clobber was added specifically to help us track the
3633 liveness of R. There's no point scheduling the clobber and leaving
3634 INSN behind, especially if we move the clobber to another block. */
3635 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3636 if (prev
3637 && INSN_P (prev)
3638 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3639 && GET_CODE (PATTERN (prev)) == CLOBBER)
3640 {
3641 rtx x = XEXP (PATTERN (prev), 0);
3642 if (set_of (x, insn))
3643 return true;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Analyze INSN with DEPS as a context. */
3650 void
3651 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3652 {
3653 if (sched_deps_info->start_insn)
3654 sched_deps_info->start_insn (insn);
3655
3656 /* Record the condition for this insn. */
3657 if (NONDEBUG_INSN_P (insn))
3658 {
3659 rtx t;
3660 sched_get_condition_with_rev (insn, NULL);
3661 t = INSN_CACHED_COND (insn);
3662 INSN_COND_DEPS (insn) = NULL;
3663 if (reload_completed
3664 && (current_sched_info->flags & DO_PREDICATION)
3665 && COMPARISON_P (t)
3666 && REG_P (XEXP (t, 0))
3667 && CONSTANT_P (XEXP (t, 1)))
3668 {
3669 unsigned int regno;
3670 int nregs;
3671 rtx_insn_list *cond_deps = NULL;
3672 t = XEXP (t, 0);
3673 regno = REGNO (t);
3674 nregs = REG_NREGS (t);
3675 while (nregs-- > 0)
3676 {
3677 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3678 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3679 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3680 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3681 }
3682 INSN_COND_DEPS (insn) = cond_deps;
3683 }
3684 }
3685
3686 if (JUMP_P (insn))
3687 {
3688 /* Make each JUMP_INSN (but not a speculative check)
3689 a scheduling barrier for memory references. */
3690 if (!deps->readonly
3691 && !(sel_sched_p ()
3692 && sel_insn_is_speculation_check (insn)))
3693 {
3694 /* Keep the list a reasonable size. */
3695 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3696 flush_pending_lists (deps, insn, true, true);
3697 else
3698 deps->pending_jump_insns
3699 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3700 }
3701
3702 /* For each insn which shouldn't cross a jump, add a dependence. */
3703 add_dependence_list_and_free (deps, insn,
3704 &deps->sched_before_next_jump, 1,
3705 REG_DEP_ANTI, true);
3706
3707 sched_analyze_insn (deps, PATTERN (insn), insn);
3708 }
3709 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3710 {
3711 sched_analyze_insn (deps, PATTERN (insn), insn);
3712 }
3713 else if (CALL_P (insn))
3714 {
3715 int i;
3716
3717 CANT_MOVE (insn) = 1;
3718
3719 if (find_reg_note (insn, REG_SETJMP, NULL))
3720 {
3721 /* This is setjmp. Assume that all registers, not just
3722 hard registers, may be clobbered by this call. */
3723 reg_pending_barrier = MOVE_BARRIER;
3724 }
3725 else
3726 {
3727 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3728 /* A call may read and modify global register variables. */
3729 if (global_regs[i])
3730 {
3731 SET_REGNO_REG_SET (reg_pending_sets, i);
3732 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3733 }
3734 /* Other call-clobbered hard regs may be clobbered.
3735 Since we only have a choice between 'might be clobbered'
3736 and 'definitely not clobbered', we must include all
3737 partly call-clobbered registers here. */
3738 else if (targetm.hard_regno_call_part_clobbered (insn, i,
3739 reg_raw_mode[i])
3740 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3741 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3742 /* We don't know what set of fixed registers might be used
3743 by the function, but it is certain that the stack pointer
3744 is among them, but be conservative. */
3745 else if (fixed_regs[i])
3746 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3747 /* The frame pointer is normally not used by the function
3748 itself, but by the debugger. */
3749 /* ??? MIPS o32 is an exception. It uses the frame pointer
3750 in the macro expansion of jal but does not represent this
3751 fact in the call_insn rtl. */
3752 else if (i == FRAME_POINTER_REGNUM
3753 || (i == HARD_FRAME_POINTER_REGNUM
3754 && (! reload_completed || frame_pointer_needed)))
3755 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3756 }
3757
3758 /* For each insn which shouldn't cross a call, add a dependence
3759 between that insn and this call insn. */
3760 add_dependence_list_and_free (deps, insn,
3761 &deps->sched_before_next_call, 1,
3762 REG_DEP_ANTI, true);
3763
3764 sched_analyze_insn (deps, PATTERN (insn), insn);
3765
3766 /* If CALL would be in a sched group, then this will violate
3767 convention that sched group insns have dependencies only on the
3768 previous instruction.
3769
3770 Of course one can say: "Hey! What about head of the sched group?"
3771 And I will answer: "Basic principles (one dep per insn) are always
3772 the same." */
3773 gcc_assert (!SCHED_GROUP_P (insn));
3774
3775 /* In the absence of interprocedural alias analysis, we must flush
3776 all pending reads and writes, and start new dependencies starting
3777 from here. But only flush writes for constant calls (which may
3778 be passed a pointer to something we haven't written yet). */
3779 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3780
3781 if (!deps->readonly)
3782 {
3783 /* Remember the last function call for limiting lifetimes. */
3784 free_INSN_LIST_list (&deps->last_function_call);
3785 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3786
3787 if (call_may_noreturn_p (insn))
3788 {
3789 /* Remember the last function call that might not always return
3790 normally for limiting moves of trapping insns. */
3791 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3792 deps->last_function_call_may_noreturn
3793 = alloc_INSN_LIST (insn, NULL_RTX);
3794 }
3795
3796 /* Before reload, begin a post-call group, so as to keep the
3797 lifetimes of hard registers correct. */
3798 if (! reload_completed)
3799 deps->in_post_call_group_p = post_call;
3800 }
3801 }
3802
3803 if (sched_deps_info->use_cselib)
3804 cselib_process_insn (insn);
3805
3806 if (sched_deps_info->finish_insn)
3807 sched_deps_info->finish_insn ();
3808
3809 /* Fixup the dependencies in the sched group. */
3810 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3811 && chain_to_prev_insn_p (insn)
3812 && !sel_sched_p ())
3813 chain_to_prev_insn (insn);
3814 }
3815
3816 /* Initialize DEPS for the new block beginning with HEAD. */
3817 void
3818 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3819 {
3820 gcc_assert (!deps->readonly);
3821
3822 /* Before reload, if the previous block ended in a call, show that
3823 we are inside a post-call group, so as to keep the lifetimes of
3824 hard registers correct. */
3825 if (! reload_completed && !LABEL_P (head))
3826 {
3827 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3828
3829 if (insn && CALL_P (insn))
3830 deps->in_post_call_group_p = post_call_initial;
3831 }
3832 }
3833
3834 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3835 dependencies for each insn. */
3836 void
3837 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3838 {
3839 rtx_insn *insn;
3840
3841 if (sched_deps_info->use_cselib)
3842 cselib_init (CSELIB_RECORD_MEMORY);
3843
3844 deps_start_bb (deps, head);
3845
3846 for (insn = head;; insn = NEXT_INSN (insn))
3847 {
3848
3849 if (INSN_P (insn))
3850 {
3851 /* And initialize deps_lists. */
3852 sd_init_insn (insn);
3853 /* Clean up SCHED_GROUP_P which may be set by last
3854 scheduler pass. */
3855 if (SCHED_GROUP_P (insn))
3856 SCHED_GROUP_P (insn) = 0;
3857 }
3858
3859 deps_analyze_insn (deps, insn);
3860
3861 if (insn == tail)
3862 {
3863 if (sched_deps_info->use_cselib)
3864 cselib_finish ();
3865 return;
3866 }
3867 }
3868 gcc_unreachable ();
3869 }
3870
3871 /* Helper for sched_free_deps ().
3872 Delete INSN's (RESOLVED_P) backward dependencies. */
3873 static void
3874 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3875 {
3876 sd_iterator_def sd_it;
3877 dep_t dep;
3878 sd_list_types_def types;
3879
3880 if (resolved_p)
3881 types = SD_LIST_RES_BACK;
3882 else
3883 types = SD_LIST_BACK;
3884
3885 for (sd_it = sd_iterator_start (insn, types);
3886 sd_iterator_cond (&sd_it, &dep);)
3887 {
3888 dep_link_t link = *sd_it.linkp;
3889 dep_node_t node = DEP_LINK_NODE (link);
3890 deps_list_t back_list;
3891 deps_list_t forw_list;
3892
3893 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3894 remove_from_deps_list (link, back_list);
3895 delete_dep_node (node);
3896 }
3897 }
3898
3899 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3900 deps_lists. */
3901 void
3902 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3903 {
3904 rtx_insn *insn;
3905 rtx_insn *next_tail = NEXT_INSN (tail);
3906
3907 /* We make two passes since some insns may be scheduled before their
3908 dependencies are resolved. */
3909 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3910 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3911 {
3912 /* Clear forward deps and leave the dep_nodes to the
3913 corresponding back_deps list. */
3914 if (resolved_p)
3915 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3916 else
3917 clear_deps_list (INSN_FORW_DEPS (insn));
3918 }
3919 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3920 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3921 {
3922 /* Clear resolved back deps together with its dep_nodes. */
3923 delete_dep_nodes_in_back_deps (insn, resolved_p);
3924
3925 sd_finish_insn (insn);
3926 }
3927 }
3928 \f
3929 /* Initialize variables for region data dependence analysis.
3930 When LAZY_REG_LAST is true, do not allocate reg_last array
3931 of struct deps_desc immediately. */
3932
3933 void
3934 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3935 {
3936 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3937
3938 deps->max_reg = max_reg;
3939 if (lazy_reg_last)
3940 deps->reg_last = NULL;
3941 else
3942 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3943 INIT_REG_SET (&deps->reg_last_in_use);
3944
3945 deps->pending_read_insns = 0;
3946 deps->pending_read_mems = 0;
3947 deps->pending_write_insns = 0;
3948 deps->pending_write_mems = 0;
3949 deps->pending_jump_insns = 0;
3950 deps->pending_read_list_length = 0;
3951 deps->pending_write_list_length = 0;
3952 deps->pending_flush_length = 0;
3953 deps->last_pending_memory_flush = 0;
3954 deps->last_function_call = 0;
3955 deps->last_function_call_may_noreturn = 0;
3956 deps->sched_before_next_call = 0;
3957 deps->sched_before_next_jump = 0;
3958 deps->in_post_call_group_p = not_post_call;
3959 deps->last_debug_insn = 0;
3960 deps->last_args_size = 0;
3961 deps->last_prologue = 0;
3962 deps->last_epilogue = 0;
3963 deps->last_logue_was_epilogue = false;
3964 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3965 deps->readonly = 0;
3966 }
3967
3968 /* Init only reg_last field of DEPS, which was not allocated before as
3969 we inited DEPS lazily. */
3970 void
3971 init_deps_reg_last (struct deps_desc *deps)
3972 {
3973 gcc_assert (deps && deps->max_reg > 0);
3974 gcc_assert (deps->reg_last == NULL);
3975
3976 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3977 }
3978
3979
3980 /* Free insn lists found in DEPS. */
3981
3982 void
3983 free_deps (struct deps_desc *deps)
3984 {
3985 unsigned i;
3986 reg_set_iterator rsi;
3987
3988 /* We set max_reg to 0 when this context was already freed. */
3989 if (deps->max_reg == 0)
3990 {
3991 gcc_assert (deps->reg_last == NULL);
3992 return;
3993 }
3994 deps->max_reg = 0;
3995
3996 free_INSN_LIST_list (&deps->pending_read_insns);
3997 free_EXPR_LIST_list (&deps->pending_read_mems);
3998 free_INSN_LIST_list (&deps->pending_write_insns);
3999 free_EXPR_LIST_list (&deps->pending_write_mems);
4000 free_INSN_LIST_list (&deps->last_pending_memory_flush);
4001
4002 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
4003 times. For a testcase with 42000 regs and 8000 small basic blocks,
4004 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
4005 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4006 {
4007 struct deps_reg *reg_last = &deps->reg_last[i];
4008 if (reg_last->uses)
4009 free_INSN_LIST_list (&reg_last->uses);
4010 if (reg_last->sets)
4011 free_INSN_LIST_list (&reg_last->sets);
4012 if (reg_last->implicit_sets)
4013 free_INSN_LIST_list (&reg_last->implicit_sets);
4014 if (reg_last->control_uses)
4015 free_INSN_LIST_list (&reg_last->control_uses);
4016 if (reg_last->clobbers)
4017 free_INSN_LIST_list (&reg_last->clobbers);
4018 }
4019 CLEAR_REG_SET (&deps->reg_last_in_use);
4020
4021 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4022 it at all. */
4023 free (deps->reg_last);
4024 deps->reg_last = NULL;
4025
4026 deps = NULL;
4027 }
4028
4029 /* Remove INSN from dependence contexts DEPS. */
4030 void
4031 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4032 {
4033 int removed;
4034 unsigned i;
4035 reg_set_iterator rsi;
4036
4037 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4038 &deps->pending_read_mems);
4039 if (!DEBUG_INSN_P (insn))
4040 deps->pending_read_list_length -= removed;
4041 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4042 &deps->pending_write_mems);
4043 deps->pending_write_list_length -= removed;
4044
4045 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4046 deps->pending_flush_length -= removed;
4047 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4048 deps->pending_flush_length -= removed;
4049
4050 unsigned to_clear = -1U;
4051 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4052 {
4053 if (to_clear != -1U)
4054 {
4055 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4056 to_clear = -1U;
4057 }
4058 struct deps_reg *reg_last = &deps->reg_last[i];
4059 if (reg_last->uses)
4060 remove_from_dependence_list (insn, &reg_last->uses);
4061 if (reg_last->sets)
4062 remove_from_dependence_list (insn, &reg_last->sets);
4063 if (reg_last->implicit_sets)
4064 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4065 if (reg_last->clobbers)
4066 remove_from_dependence_list (insn, &reg_last->clobbers);
4067 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4068 && !reg_last->clobbers)
4069 to_clear = i;
4070 }
4071 if (to_clear != -1U)
4072 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4073
4074 if (CALL_P (insn))
4075 {
4076 remove_from_dependence_list (insn, &deps->last_function_call);
4077 remove_from_dependence_list (insn,
4078 &deps->last_function_call_may_noreturn);
4079 }
4080 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4081 }
4082
4083 /* Init deps data vector. */
4084 static void
4085 init_deps_data_vector (void)
4086 {
4087 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4088 if (reserve > 0 && ! h_d_i_d.space (reserve))
4089 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4090 }
4091
4092 /* If it is profitable to use them, initialize or extend (depending on
4093 GLOBAL_P) dependency data. */
4094 void
4095 sched_deps_init (bool global_p)
4096 {
4097 /* Average number of insns in the basic block.
4098 '+ 1' is used to make it nonzero. */
4099 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4100
4101 init_deps_data_vector ();
4102
4103 /* We use another caching mechanism for selective scheduling, so
4104 we don't use this one. */
4105 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4106 {
4107 /* ?!? We could save some memory by computing a per-region luid mapping
4108 which could reduce both the number of vectors in the cache and the
4109 size of each vector. Instead we just avoid the cache entirely unless
4110 the average number of instructions in a basic block is very high. See
4111 the comment before the declaration of true_dependency_cache for
4112 what we consider "very high". */
4113 cache_size = 0;
4114 extend_dependency_caches (sched_max_luid, true);
4115 }
4116
4117 if (global_p)
4118 {
4119 dl_pool = new object_allocator<_deps_list> ("deps_list");
4120 /* Allocate lists for one block at a time. */
4121 dn_pool = new object_allocator<_dep_node> ("dep_node");
4122 /* Allocate nodes for one block at a time. */
4123 }
4124 }
4125
4126
4127 /* Create or extend (depending on CREATE_P) dependency caches to
4128 size N. */
4129 void
4130 extend_dependency_caches (int n, bool create_p)
4131 {
4132 if (create_p || true_dependency_cache)
4133 {
4134 int i, luid = cache_size + n;
4135
4136 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4137 luid);
4138 output_dependency_cache = XRESIZEVEC (bitmap_head,
4139 output_dependency_cache, luid);
4140 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4141 luid);
4142 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4143 luid);
4144
4145 if (current_sched_info->flags & DO_SPECULATION)
4146 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4147 luid);
4148
4149 for (i = cache_size; i < luid; i++)
4150 {
4151 bitmap_initialize (&true_dependency_cache[i], 0);
4152 bitmap_initialize (&output_dependency_cache[i], 0);
4153 bitmap_initialize (&anti_dependency_cache[i], 0);
4154 bitmap_initialize (&control_dependency_cache[i], 0);
4155
4156 if (current_sched_info->flags & DO_SPECULATION)
4157 bitmap_initialize (&spec_dependency_cache[i], 0);
4158 }
4159 cache_size = luid;
4160 }
4161 }
4162
4163 /* Finalize dependency information for the whole function. */
4164 void
4165 sched_deps_finish (void)
4166 {
4167 gcc_assert (deps_pools_are_empty_p ());
4168 delete dn_pool;
4169 delete dl_pool;
4170 dn_pool = NULL;
4171 dl_pool = NULL;
4172
4173 h_d_i_d.release ();
4174 cache_size = 0;
4175
4176 if (true_dependency_cache)
4177 {
4178 int i;
4179
4180 for (i = 0; i < cache_size; i++)
4181 {
4182 bitmap_clear (&true_dependency_cache[i]);
4183 bitmap_clear (&output_dependency_cache[i]);
4184 bitmap_clear (&anti_dependency_cache[i]);
4185 bitmap_clear (&control_dependency_cache[i]);
4186
4187 if (sched_deps_info->generate_spec_deps)
4188 bitmap_clear (&spec_dependency_cache[i]);
4189 }
4190 free (true_dependency_cache);
4191 true_dependency_cache = NULL;
4192 free (output_dependency_cache);
4193 output_dependency_cache = NULL;
4194 free (anti_dependency_cache);
4195 anti_dependency_cache = NULL;
4196 free (control_dependency_cache);
4197 control_dependency_cache = NULL;
4198
4199 if (sched_deps_info->generate_spec_deps)
4200 {
4201 free (spec_dependency_cache);
4202 spec_dependency_cache = NULL;
4203 }
4204
4205 }
4206 }
4207
4208 /* Initialize some global variables needed by the dependency analysis
4209 code. */
4210
4211 void
4212 init_deps_global (void)
4213 {
4214 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4215 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4216 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4217 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4218 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4219 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4220 reg_pending_barrier = NOT_A_BARRIER;
4221
4222 if (!sel_sched_p () || sched_emulate_haifa_p)
4223 {
4224 sched_deps_info->start_insn = haifa_start_insn;
4225 sched_deps_info->finish_insn = haifa_finish_insn;
4226
4227 sched_deps_info->note_reg_set = haifa_note_reg_set;
4228 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4229 sched_deps_info->note_reg_use = haifa_note_reg_use;
4230
4231 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4232 sched_deps_info->note_dep = haifa_note_dep;
4233 }
4234 }
4235
4236 /* Free everything used by the dependency analysis code. */
4237
4238 void
4239 finish_deps_global (void)
4240 {
4241 FREE_REG_SET (reg_pending_sets);
4242 FREE_REG_SET (reg_pending_clobbers);
4243 FREE_REG_SET (reg_pending_uses);
4244 FREE_REG_SET (reg_pending_control_uses);
4245 }
4246
4247 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4248 dw_t
4249 estimate_dep_weak (rtx mem1, rtx mem2)
4250 {
4251 if (mem1 == mem2)
4252 /* MEMs are the same - don't speculate. */
4253 return MIN_DEP_WEAK;
4254
4255 rtx r1 = XEXP (mem1, 0);
4256 rtx r2 = XEXP (mem2, 0);
4257
4258 if (sched_deps_info->use_cselib)
4259 {
4260 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4261 dangling at this point, since we never preserve them. Instead we
4262 canonicalize manually to get stable VALUEs out of hashing. */
4263 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4264 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4265 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4266 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4267 }
4268
4269 if (r1 == r2
4270 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4271 /* Again, MEMs are the same. */
4272 return MIN_DEP_WEAK;
4273 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4274 /* Different addressing modes - reason to be more speculative,
4275 than usual. */
4276 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4277 else
4278 /* We can't say anything about the dependence. */
4279 return UNCERTAIN_DEP_WEAK;
4280 }
4281
4282 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4283 This function can handle same INSN and ELEM (INSN == ELEM).
4284 It is a convenience wrapper. */
4285 static void
4286 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4287 {
4288 ds_t ds;
4289 bool internal;
4290
4291 if (dep_type == REG_DEP_TRUE)
4292 ds = DEP_TRUE;
4293 else if (dep_type == REG_DEP_OUTPUT)
4294 ds = DEP_OUTPUT;
4295 else if (dep_type == REG_DEP_CONTROL)
4296 ds = DEP_CONTROL;
4297 else
4298 {
4299 gcc_assert (dep_type == REG_DEP_ANTI);
4300 ds = DEP_ANTI;
4301 }
4302
4303 /* When add_dependence is called from inside sched-deps.c, we expect
4304 cur_insn to be non-null. */
4305 internal = cur_insn != NULL;
4306 if (internal)
4307 gcc_assert (insn == cur_insn);
4308 else
4309 cur_insn = insn;
4310
4311 note_dep (elem, ds);
4312 if (!internal)
4313 cur_insn = NULL;
4314 }
4315
4316 /* Return weakness of speculative type TYPE in the dep_status DS,
4317 without checking to prevent ICEs on malformed input. */
4318 static dw_t
4319 get_dep_weak_1 (ds_t ds, ds_t type)
4320 {
4321 ds = ds & type;
4322
4323 switch (type)
4324 {
4325 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4326 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4327 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4328 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4329 default: gcc_unreachable ();
4330 }
4331
4332 return (dw_t) ds;
4333 }
4334
4335 /* Return weakness of speculative type TYPE in the dep_status DS. */
4336 dw_t
4337 get_dep_weak (ds_t ds, ds_t type)
4338 {
4339 dw_t dw = get_dep_weak_1 (ds, type);
4340
4341 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4342 return dw;
4343 }
4344
4345 /* Return the dep_status, which has the same parameters as DS, except for
4346 speculative type TYPE, that will have weakness DW. */
4347 ds_t
4348 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4349 {
4350 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4351
4352 ds &= ~type;
4353 switch (type)
4354 {
4355 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4356 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4357 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4358 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4359 default: gcc_unreachable ();
4360 }
4361 return ds;
4362 }
4363
4364 /* Return the join of two dep_statuses DS1 and DS2.
4365 If MAX_P is true then choose the greater probability,
4366 otherwise multiply probabilities.
4367 This function assumes that both DS1 and DS2 contain speculative bits. */
4368 static ds_t
4369 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4370 {
4371 ds_t ds, t;
4372
4373 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4374
4375 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4376
4377 t = FIRST_SPEC_TYPE;
4378 do
4379 {
4380 if ((ds1 & t) && !(ds2 & t))
4381 ds |= ds1 & t;
4382 else if (!(ds1 & t) && (ds2 & t))
4383 ds |= ds2 & t;
4384 else if ((ds1 & t) && (ds2 & t))
4385 {
4386 dw_t dw1 = get_dep_weak (ds1, t);
4387 dw_t dw2 = get_dep_weak (ds2, t);
4388 ds_t dw;
4389
4390 if (!max_p)
4391 {
4392 dw = ((ds_t) dw1) * ((ds_t) dw2);
4393 dw /= MAX_DEP_WEAK;
4394 if (dw < MIN_DEP_WEAK)
4395 dw = MIN_DEP_WEAK;
4396 }
4397 else
4398 {
4399 if (dw1 >= dw2)
4400 dw = dw1;
4401 else
4402 dw = dw2;
4403 }
4404
4405 ds = set_dep_weak (ds, t, (dw_t) dw);
4406 }
4407
4408 if (t == LAST_SPEC_TYPE)
4409 break;
4410 t <<= SPEC_TYPE_SHIFT;
4411 }
4412 while (1);
4413
4414 return ds;
4415 }
4416
4417 /* Return the join of two dep_statuses DS1 and DS2.
4418 This function assumes that both DS1 and DS2 contain speculative bits. */
4419 ds_t
4420 ds_merge (ds_t ds1, ds_t ds2)
4421 {
4422 return ds_merge_1 (ds1, ds2, false);
4423 }
4424
4425 /* Return the join of two dep_statuses DS1 and DS2. */
4426 ds_t
4427 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4428 {
4429 ds_t new_status = ds | ds2;
4430
4431 if (new_status & SPECULATIVE)
4432 {
4433 if ((ds && !(ds & SPECULATIVE))
4434 || (ds2 && !(ds2 & SPECULATIVE)))
4435 /* Then this dep can't be speculative. */
4436 new_status &= ~SPECULATIVE;
4437 else
4438 {
4439 /* Both are speculative. Merging probabilities. */
4440 if (mem1)
4441 {
4442 dw_t dw;
4443
4444 dw = estimate_dep_weak (mem1, mem2);
4445 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4446 }
4447
4448 if (!ds)
4449 new_status = ds2;
4450 else if (!ds2)
4451 new_status = ds;
4452 else
4453 new_status = ds_merge (ds2, ds);
4454 }
4455 }
4456
4457 return new_status;
4458 }
4459
4460 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4461 probabilities. */
4462 ds_t
4463 ds_max_merge (ds_t ds1, ds_t ds2)
4464 {
4465 if (ds1 == 0 && ds2 == 0)
4466 return 0;
4467
4468 if (ds1 == 0 && ds2 != 0)
4469 return ds2;
4470
4471 if (ds1 != 0 && ds2 == 0)
4472 return ds1;
4473
4474 return ds_merge_1 (ds1, ds2, true);
4475 }
4476
4477 /* Return the probability of speculation success for the speculation
4478 status DS. */
4479 dw_t
4480 ds_weak (ds_t ds)
4481 {
4482 ds_t res = 1, dt;
4483 int n = 0;
4484
4485 dt = FIRST_SPEC_TYPE;
4486 do
4487 {
4488 if (ds & dt)
4489 {
4490 res *= (ds_t) get_dep_weak (ds, dt);
4491 n++;
4492 }
4493
4494 if (dt == LAST_SPEC_TYPE)
4495 break;
4496 dt <<= SPEC_TYPE_SHIFT;
4497 }
4498 while (1);
4499
4500 gcc_assert (n);
4501 while (--n)
4502 res /= MAX_DEP_WEAK;
4503
4504 if (res < MIN_DEP_WEAK)
4505 res = MIN_DEP_WEAK;
4506
4507 gcc_assert (res <= MAX_DEP_WEAK);
4508
4509 return (dw_t) res;
4510 }
4511
4512 /* Return a dep status that contains all speculation types of DS. */
4513 ds_t
4514 ds_get_speculation_types (ds_t ds)
4515 {
4516 if (ds & BEGIN_DATA)
4517 ds |= BEGIN_DATA;
4518 if (ds & BE_IN_DATA)
4519 ds |= BE_IN_DATA;
4520 if (ds & BEGIN_CONTROL)
4521 ds |= BEGIN_CONTROL;
4522 if (ds & BE_IN_CONTROL)
4523 ds |= BE_IN_CONTROL;
4524
4525 return ds & SPECULATIVE;
4526 }
4527
4528 /* Return a dep status that contains maximal weakness for each speculation
4529 type present in DS. */
4530 ds_t
4531 ds_get_max_dep_weak (ds_t ds)
4532 {
4533 if (ds & BEGIN_DATA)
4534 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4535 if (ds & BE_IN_DATA)
4536 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4537 if (ds & BEGIN_CONTROL)
4538 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4539 if (ds & BE_IN_CONTROL)
4540 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4541
4542 return ds;
4543 }
4544
4545 /* Dump information about the dependence status S. */
4546 static void
4547 dump_ds (FILE *f, ds_t s)
4548 {
4549 fprintf (f, "{");
4550
4551 if (s & BEGIN_DATA)
4552 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4553 if (s & BE_IN_DATA)
4554 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4555 if (s & BEGIN_CONTROL)
4556 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4557 if (s & BE_IN_CONTROL)
4558 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4559
4560 if (s & HARD_DEP)
4561 fprintf (f, "HARD_DEP; ");
4562
4563 if (s & DEP_TRUE)
4564 fprintf (f, "DEP_TRUE; ");
4565 if (s & DEP_OUTPUT)
4566 fprintf (f, "DEP_OUTPUT; ");
4567 if (s & DEP_ANTI)
4568 fprintf (f, "DEP_ANTI; ");
4569 if (s & DEP_CONTROL)
4570 fprintf (f, "DEP_CONTROL; ");
4571
4572 fprintf (f, "}");
4573 }
4574
4575 DEBUG_FUNCTION void
4576 debug_ds (ds_t s)
4577 {
4578 dump_ds (stderr, s);
4579 fprintf (stderr, "\n");
4580 }
4581
4582 /* Verify that dependence type and status are consistent.
4583 If RELAXED_P is true, then skip dep_weakness checks. */
4584 static void
4585 check_dep (dep_t dep, bool relaxed_p)
4586 {
4587 enum reg_note dt = DEP_TYPE (dep);
4588 ds_t ds = DEP_STATUS (dep);
4589
4590 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4591
4592 if (!(current_sched_info->flags & USE_DEPS_LIST))
4593 {
4594 gcc_assert (ds == 0);
4595 return;
4596 }
4597
4598 /* Check that dependence type contains the same bits as the status. */
4599 if (dt == REG_DEP_TRUE)
4600 gcc_assert (ds & DEP_TRUE);
4601 else if (dt == REG_DEP_OUTPUT)
4602 gcc_assert ((ds & DEP_OUTPUT)
4603 && !(ds & DEP_TRUE));
4604 else if (dt == REG_DEP_ANTI)
4605 gcc_assert ((ds & DEP_ANTI)
4606 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4607 else
4608 gcc_assert (dt == REG_DEP_CONTROL
4609 && (ds & DEP_CONTROL)
4610 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4611
4612 /* HARD_DEP cannot appear in dep_status of a link. */
4613 gcc_assert (!(ds & HARD_DEP));
4614
4615 /* Check that dependence status is set correctly when speculation is not
4616 supported. */
4617 if (!sched_deps_info->generate_spec_deps)
4618 gcc_assert (!(ds & SPECULATIVE));
4619 else if (ds & SPECULATIVE)
4620 {
4621 if (!relaxed_p)
4622 {
4623 ds_t type = FIRST_SPEC_TYPE;
4624
4625 /* Check that dependence weakness is in proper range. */
4626 do
4627 {
4628 if (ds & type)
4629 get_dep_weak (ds, type);
4630
4631 if (type == LAST_SPEC_TYPE)
4632 break;
4633 type <<= SPEC_TYPE_SHIFT;
4634 }
4635 while (1);
4636 }
4637
4638 if (ds & BEGIN_SPEC)
4639 {
4640 /* Only true dependence can be data speculative. */
4641 if (ds & BEGIN_DATA)
4642 gcc_assert (ds & DEP_TRUE);
4643
4644 /* Control dependencies in the insn scheduler are represented by
4645 anti-dependencies, therefore only anti dependence can be
4646 control speculative. */
4647 if (ds & BEGIN_CONTROL)
4648 gcc_assert (ds & DEP_ANTI);
4649 }
4650 else
4651 {
4652 /* Subsequent speculations should resolve true dependencies. */
4653 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4654 }
4655
4656 /* Check that true and anti dependencies can't have other speculative
4657 statuses. */
4658 if (ds & DEP_TRUE)
4659 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4660 /* An output dependence can't be speculative at all. */
4661 gcc_assert (!(ds & DEP_OUTPUT));
4662 if (ds & DEP_ANTI)
4663 gcc_assert (ds & BEGIN_CONTROL);
4664 }
4665 }
4666
4667 /* The following code discovers opportunities to switch a memory reference
4668 and an increment by modifying the address. We ensure that this is done
4669 only for dependencies that are only used to show a single register
4670 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4671 instruction involved is subject to only one dep that can cause a pattern
4672 change.
4673
4674 When we discover a suitable dependency, we fill in the dep_replacement
4675 structure to show how to modify the memory reference. */
4676
4677 /* Holds information about a pair of memory reference and register increment
4678 insns which depend on each other, but could possibly be interchanged. */
4679 struct mem_inc_info
4680 {
4681 rtx_insn *inc_insn;
4682 rtx_insn *mem_insn;
4683
4684 rtx *mem_loc;
4685 /* A register occurring in the memory address for which we wish to break
4686 the dependence. This must be identical to the destination register of
4687 the increment. */
4688 rtx mem_reg0;
4689 /* Any kind of index that is added to that register. */
4690 rtx mem_index;
4691 /* The constant offset used in the memory address. */
4692 HOST_WIDE_INT mem_constant;
4693 /* The constant added in the increment insn. Negated if the increment is
4694 after the memory address. */
4695 HOST_WIDE_INT inc_constant;
4696 /* The source register used in the increment. May be different from mem_reg0
4697 if the increment occurs before the memory address. */
4698 rtx inc_input;
4699 };
4700
4701 /* Verify that the memory location described in MII can be replaced with
4702 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4703 insn remains unchanged by this function. */
4704
4705 static rtx
4706 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4707 {
4708 rtx mem = *mii->mem_loc;
4709 rtx new_mem;
4710
4711 /* Jump through a lot of hoops to keep the attributes up to date. We
4712 do not want to call one of the change address variants that take
4713 an offset even though we know the offset in many cases. These
4714 assume you are changing where the address is pointing by the
4715 offset. */
4716 new_mem = replace_equiv_address_nv (mem, new_addr);
4717 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4718 {
4719 if (sched_verbose >= 5)
4720 fprintf (sched_dump, "validation failure\n");
4721 return NULL_RTX;
4722 }
4723
4724 /* Put back the old one. */
4725 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4726
4727 return new_mem;
4728 }
4729
4730 /* Return true if INSN is of a form "a = b op c" where a and b are
4731 regs. op is + if c is a reg and +|- if c is a const. Fill in
4732 informantion in MII about what is found.
4733 BEFORE_MEM indicates whether the increment is found before or after
4734 a corresponding memory reference. */
4735
4736 static bool
4737 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4738 {
4739 rtx pat = single_set (insn);
4740 rtx src, cst;
4741 bool regs_equal;
4742
4743 if (RTX_FRAME_RELATED_P (insn) || !pat)
4744 return false;
4745
4746 /* Do not allow breaking data dependencies for insns that are marked
4747 with REG_STACK_CHECK. */
4748 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4749 return false;
4750
4751 /* Result must be single reg. */
4752 if (!REG_P (SET_DEST (pat)))
4753 return false;
4754
4755 if (GET_CODE (SET_SRC (pat)) != PLUS)
4756 return false;
4757
4758 mii->inc_insn = insn;
4759 src = SET_SRC (pat);
4760 mii->inc_input = XEXP (src, 0);
4761
4762 if (!REG_P (XEXP (src, 0)))
4763 return false;
4764
4765 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4766 return false;
4767
4768 cst = XEXP (src, 1);
4769 if (!CONST_INT_P (cst))
4770 return false;
4771 mii->inc_constant = INTVAL (cst);
4772
4773 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4774
4775 if (!before_mem)
4776 {
4777 mii->inc_constant = -mii->inc_constant;
4778 if (!regs_equal)
4779 return false;
4780 }
4781
4782 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4783 {
4784 /* Note that the sign has already been reversed for !before_mem. */
4785 if (STACK_GROWS_DOWNWARD)
4786 return mii->inc_constant > 0;
4787 else
4788 return mii->inc_constant < 0;
4789 }
4790 return true;
4791 }
4792
4793 /* Once a suitable mem reference has been found and the corresponding data
4794 in MII has been filled in, this function is called to find a suitable
4795 add or inc insn involving the register we found in the memory
4796 reference. */
4797
4798 static bool
4799 find_inc (struct mem_inc_info *mii, bool backwards)
4800 {
4801 sd_iterator_def sd_it;
4802 dep_t dep;
4803
4804 sd_it = sd_iterator_start (mii->mem_insn,
4805 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4806 while (sd_iterator_cond (&sd_it, &dep))
4807 {
4808 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4809 rtx_insn *pro = DEP_PRO (dep);
4810 rtx_insn *con = DEP_CON (dep);
4811 rtx_insn *inc_cand = backwards ? pro : con;
4812 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4813 goto next;
4814 if (parse_add_or_inc (mii, inc_cand, backwards))
4815 {
4816 struct dep_replacement *desc;
4817 df_ref def;
4818 rtx newaddr, newmem;
4819
4820 if (sched_verbose >= 5)
4821 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4822 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4823
4824 /* Need to assure that none of the operands of the inc
4825 instruction are assigned to by the mem insn. */
4826 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4827 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4828 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4829 {
4830 if (sched_verbose >= 5)
4831 fprintf (sched_dump,
4832 "inc conflicts with store failure.\n");
4833 goto next;
4834 }
4835
4836 newaddr = mii->inc_input;
4837 if (mii->mem_index != NULL_RTX)
4838 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4839 mii->mem_index);
4840 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4841 mii->mem_constant + mii->inc_constant);
4842 newmem = attempt_change (mii, newaddr);
4843 if (newmem == NULL_RTX)
4844 goto next;
4845 if (sched_verbose >= 5)
4846 fprintf (sched_dump, "successful address replacement\n");
4847 desc = XCNEW (struct dep_replacement);
4848 DEP_REPLACE (dep) = desc;
4849 desc->loc = mii->mem_loc;
4850 desc->newval = newmem;
4851 desc->orig = *desc->loc;
4852 desc->insn = mii->mem_insn;
4853 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4854 INSN_SPEC_BACK_DEPS (con));
4855 if (backwards)
4856 {
4857 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4858 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4859 REG_DEP_TRUE);
4860 }
4861 else
4862 {
4863 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4864 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4865 REG_DEP_ANTI);
4866 }
4867 return true;
4868 }
4869 next:
4870 sd_iterator_next (&sd_it);
4871 }
4872 return false;
4873 }
4874
4875 /* A recursive function that walks ADDRESS_OF_X to find memory references
4876 which could be modified during scheduling. We call find_inc for each
4877 one we find that has a recognizable form. MII holds information about
4878 the pair of memory/increment instructions.
4879 We ensure that every instruction with a memory reference (which will be
4880 the location of the replacement) is assigned at most one breakable
4881 dependency. */
4882
4883 static bool
4884 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4885 {
4886 rtx x = *address_of_x;
4887 enum rtx_code code = GET_CODE (x);
4888 const char *const fmt = GET_RTX_FORMAT (code);
4889 int i;
4890
4891 if (code == MEM)
4892 {
4893 rtx reg0 = XEXP (x, 0);
4894
4895 mii->mem_loc = address_of_x;
4896 mii->mem_index = NULL_RTX;
4897 mii->mem_constant = 0;
4898 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4899 {
4900 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4901 reg0 = XEXP (reg0, 0);
4902 }
4903 if (GET_CODE (reg0) == PLUS)
4904 {
4905 mii->mem_index = XEXP (reg0, 1);
4906 reg0 = XEXP (reg0, 0);
4907 }
4908 if (REG_P (reg0))
4909 {
4910 df_ref use;
4911 int occurrences = 0;
4912
4913 /* Make sure this reg appears only once in this insn. Can't use
4914 count_occurrences since that only works for pseudos. */
4915 FOR_EACH_INSN_USE (use, mii->mem_insn)
4916 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4917 if (++occurrences > 1)
4918 {
4919 if (sched_verbose >= 5)
4920 fprintf (sched_dump, "mem count failure\n");
4921 return false;
4922 }
4923
4924 mii->mem_reg0 = reg0;
4925 return find_inc (mii, true) || find_inc (mii, false);
4926 }
4927 return false;
4928 }
4929
4930 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4931 {
4932 /* If REG occurs inside a MEM used in a bit-field reference,
4933 that is unacceptable. */
4934 return false;
4935 }
4936
4937 /* Time for some deep diving. */
4938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4939 {
4940 if (fmt[i] == 'e')
4941 {
4942 if (find_mem (mii, &XEXP (x, i)))
4943 return true;
4944 }
4945 else if (fmt[i] == 'E')
4946 {
4947 int j;
4948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4949 if (find_mem (mii, &XVECEXP (x, i, j)))
4950 return true;
4951 }
4952 }
4953 return false;
4954 }
4955
4956
4957 /* Examine the instructions between HEAD and TAIL and try to find
4958 dependencies that can be broken by modifying one of the patterns. */
4959
4960 void
4961 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4962 {
4963 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4964 int success_in_block = 0;
4965
4966 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4967 {
4968 struct mem_inc_info mii;
4969
4970 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4971 continue;
4972
4973 mii.mem_insn = insn;
4974 if (find_mem (&mii, &PATTERN (insn)))
4975 success_in_block++;
4976 }
4977 if (success_in_block && sched_verbose >= 5)
4978 fprintf (sched_dump, "%d candidates for address modification found.\n",
4979 success_in_block);
4980 }
4981
4982 #endif /* INSN_SCHEDULING */