]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched-ir.h
c++: Clear is_unbraced_* when parsing declaration_seq_opt [PR114917]
[thirdparty/gcc.git] / gcc / sel-sched-ir.h
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006-2020 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
23
24 /* For state_t. */
25 /* For reg_note. */
26
27 /* tc_t is a short for target context. This is a state of the target
28 backend. */
29 typedef void *tc_t;
30
31 /* List data types used for av sets, fences, paths, and boundaries. */
32
33 /* Forward declarations for types that are part of some list nodes. */
34 struct _list_node;
35
36 /* List backend. */
37 typedef struct _list_node *_list_t;
38 #define _LIST_NEXT(L) ((L)->next)
39
40 /* Instruction data that is part of vinsn type. */
41 struct idata_def;
42 typedef struct idata_def *idata_t;
43
44 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
45 struct vinsn_def;
46 typedef struct vinsn_def *vinsn_t;
47
48 /* RTX list.
49 This type is the backend for ilist. */
50 typedef _list_t _xlist_t;
51 #define _XLIST_X(L) ((L)->u.x)
52 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
53
54 /* Instruction. */
55 typedef rtx_insn *insn_t;
56
57 /* List of insns. */
58 typedef _list_t ilist_t;
59 #define ILIST_INSN(L) ((L)->u.insn)
60 #define ILIST_NEXT(L) (_LIST_NEXT (L))
61
62 /* This lists possible transformations that done locally, i.e. in
63 moveup_expr. */
64 enum local_trans_type
65 {
66 TRANS_SUBSTITUTION,
67 TRANS_SPECULATION
68 };
69
70 /* This struct is used to record the history of expression's
71 transformations. */
72 struct expr_history_def_1
73 {
74 /* UID of the insn. */
75 unsigned uid;
76
77 /* How the expression looked like. */
78 vinsn_t old_expr_vinsn;
79
80 /* How the expression looks after the transformation. */
81 vinsn_t new_expr_vinsn;
82
83 /* And its speculative status. */
84 ds_t spec_ds;
85
86 /* Type of the transformation. */
87 enum local_trans_type type;
88 };
89
90 typedef struct expr_history_def_1 expr_history_def;
91
92
93 /* Expression information. */
94 struct _expr
95 {
96 /* Insn description. */
97 vinsn_t vinsn;
98
99 /* SPEC is the degree of speculativeness.
100 FIXME: now spec is increased when an rhs is moved through a
101 conditional, thus showing only control speculativeness. In the
102 future we'd like to count data spec separately to allow a better
103 control on scheduling. */
104 int spec;
105
106 /* Degree of speculativeness measured as probability of executing
107 instruction's original basic block given relative to
108 the current scheduling point. */
109 int usefulness;
110
111 /* A priority of this expression. */
112 int priority;
113
114 /* A priority adjustment of this expression. */
115 int priority_adj;
116
117 /* Number of times the insn was scheduled. */
118 int sched_times;
119
120 /* A basic block index this was originated from. Zero when there is
121 more than one originator. */
122 int orig_bb_index;
123
124 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
125 point. */
126 ds_t spec_done_ds;
127
128 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
129 (used only during move_op ()). */
130 ds_t spec_to_check_ds;
131
132 /* Cycle on which original insn was scheduled. Zero when it has not yet
133 been scheduled or more than one originator. */
134 int orig_sched_cycle;
135
136 /* This vector contains the history of insn's transformations. */
137 vec<expr_history_def> history_of_changes;
138
139 /* True (1) when original target (register or memory) of this instruction
140 is available for scheduling, false otherwise. -1 means we're not sure;
141 please run find_used_regs to clarify. */
142 signed char target_available;
143
144 /* True when this expression needs a speculation check to be scheduled.
145 This is used during find_used_regs. */
146 BOOL_BITFIELD needs_spec_check_p : 1;
147
148 /* True when the expression was substituted. Used for statistical
149 purposes. */
150 BOOL_BITFIELD was_substituted : 1;
151
152 /* True when the expression was renamed. */
153 BOOL_BITFIELD was_renamed : 1;
154
155 /* True when expression can't be moved. */
156 BOOL_BITFIELD cant_move : 1;
157 };
158
159 typedef struct _expr expr_def;
160 typedef expr_def *expr_t;
161
162 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
163 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
164 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
165 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
166 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
167 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
168 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
169
170 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
171 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
172 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
173 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
174 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
175 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
176 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
177 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
178 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
179 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
180 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
181 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
182 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
183 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
184 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
185
186 /* Insn definition for list of original insns in find_used_regs. */
187 struct _def
188 {
189 insn_t orig_insn;
190
191 /* FIXME: Get rid of CROSSED_CALL_ABIS in each def, since if we're moving up
192 rhs from two different places, but only one of the code motion paths
193 crosses a call, we can't use any of the call_used_regs, no matter which
194 path or whether all paths crosses a call. Thus we should move
195 CROSSED_CALL_ABIS to static params. */
196 unsigned int crossed_call_abis;
197 };
198 typedef struct _def *def_t;
199
200
201 /* Availability sets are sets of expressions we're scheduling. */
202 typedef _list_t av_set_t;
203 #define _AV_SET_EXPR(L) (&(L)->u.expr)
204 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
205
206
207 /* Boundary of the current fence group. */
208 struct _bnd
209 {
210 /* The actual boundary instruction. */
211 insn_t to;
212
213 /* Its path to the fence. */
214 ilist_t ptr;
215
216 /* Availability set at the boundary. */
217 av_set_t av;
218
219 /* This set moved to the fence. */
220 av_set_t av1;
221
222 /* Deps context at this boundary. As long as we have one boundary per fence,
223 this is just a pointer to the same deps context as in the corresponding
224 fence. */
225 deps_t dc;
226 };
227 typedef struct _bnd *bnd_t;
228 #define BND_TO(B) ((B)->to)
229
230 /* PTR stands not for pointer as you might think, but as a Path To Root of the
231 current instruction group from boundary B. */
232 #define BND_PTR(B) ((B)->ptr)
233 #define BND_AV(B) ((B)->av)
234 #define BND_AV1(B) ((B)->av1)
235 #define BND_DC(B) ((B)->dc)
236
237 /* List of boundaries. */
238 typedef _list_t blist_t;
239 #define BLIST_BND(L) (&(L)->u.bnd)
240 #define BLIST_NEXT(L) (_LIST_NEXT (L))
241
242
243 /* Fence information. A fence represents current scheduling point and also
244 blocks code motion through it when pipelining. */
245 struct _fence
246 {
247 /* Insn before which we gather an instruction group.*/
248 insn_t insn;
249
250 /* Modeled state of the processor pipeline. */
251 state_t state;
252
253 /* Current cycle that is being scheduled on this fence. */
254 int cycle;
255
256 /* Number of insns that were scheduled on the current cycle.
257 This information has to be local to a fence. */
258 int cycle_issued_insns;
259
260 /* At the end of fill_insns () this field holds the list of the instructions
261 that are inner boundaries of the scheduled parallel group. */
262 ilist_t bnds;
263
264 /* Deps context at this fence. It is used to model dependencies at the
265 fence so that insn ticks can be properly evaluated. */
266 deps_t dc;
267
268 /* Target context at this fence. Used to save and load any local target
269 scheduling information when changing fences. */
270 tc_t tc;
271
272 /* A vector of insns that are scheduled but not yet completed. */
273 vec<rtx_insn *, va_gc> *executing_insns;
274
275 /* A vector indexed by UIDs that caches the earliest cycle on which
276 an insn can be scheduled on this fence. */
277 int *ready_ticks;
278
279 /* Its size. */
280 int ready_ticks_size;
281
282 /* Insn, which has been scheduled last on this fence. */
283 rtx_insn *last_scheduled_insn;
284
285 /* The last value of can_issue_more variable on this fence. */
286 int issue_more;
287
288 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
289 rtx_insn *sched_next;
290
291 /* True if fill_insns processed this fence. */
292 BOOL_BITFIELD processed_p : 1;
293
294 /* True if fill_insns actually scheduled something on this fence. */
295 BOOL_BITFIELD scheduled_p : 1;
296
297 /* True when the next insn scheduled here would start a cycle. */
298 BOOL_BITFIELD starts_cycle_p : 1;
299
300 /* True when the next insn scheduled here would be scheduled after a stall. */
301 BOOL_BITFIELD after_stall_p : 1;
302 };
303 typedef struct _fence *fence_t;
304
305 #define FENCE_INSN(F) ((F)->insn)
306 #define FENCE_STATE(F) ((F)->state)
307 #define FENCE_BNDS(F) ((F)->bnds)
308 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
309 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
310 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
311 #define FENCE_CYCLE(F) ((F)->cycle)
312 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
313 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
314 #define FENCE_DC(F) ((F)->dc)
315 #define FENCE_TC(F) ((F)->tc)
316 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
317 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
318 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
319 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
320 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
321 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
322
323 /* List of fences. */
324 typedef _list_t flist_t;
325 #define FLIST_FENCE(L) (&(L)->u.fence)
326 #define FLIST_NEXT(L) (_LIST_NEXT (L))
327
328 /* List of fences with pointer to the tail node. */
329 struct flist_tail_def
330 {
331 flist_t head;
332 flist_t *tailp;
333 };
334
335 typedef struct flist_tail_def *flist_tail_t;
336 #define FLIST_TAIL_HEAD(L) ((L)->head)
337 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
338
339 /* List node information. A list node can be any of the types above. */
340 struct _list_node
341 {
342 _list_t next;
343
344 union
345 {
346 rtx x;
347 insn_t insn;
348 struct _bnd bnd;
349 expr_def expr;
350 struct _fence fence;
351 struct _def def;
352 void *data;
353 } u;
354 };
355 \f
356
357 /* _list_t functions.
358 All of _*list_* functions are used through accessor macros, thus
359 we can't move them in sel-sched-ir.c. */
360 extern object_allocator<_list_node> sched_lists_pool;
361
362 static inline _list_t
363 _list_alloc (void)
364 {
365 return sched_lists_pool.allocate ();
366 }
367
368 static inline void
369 _list_add (_list_t *lp)
370 {
371 _list_t l = _list_alloc ();
372
373 _LIST_NEXT (l) = *lp;
374 *lp = l;
375 }
376
377 static inline void
378 _list_remove_nofree (_list_t *lp)
379 {
380 _list_t n = *lp;
381
382 *lp = _LIST_NEXT (n);
383 }
384
385 static inline void
386 _list_remove (_list_t *lp)
387 {
388 _list_t n = *lp;
389
390 *lp = _LIST_NEXT (n);
391 sched_lists_pool.remove (n);
392 }
393
394 static inline void
395 _list_clear (_list_t *l)
396 {
397 while (*l)
398 _list_remove (l);
399 }
400 \f
401
402 /* List iterator backend. */
403 struct _list_iterator
404 {
405 /* The list we're iterating. */
406 _list_t *lp;
407
408 /* True when this iterator supprts removing. */
409 bool can_remove_p;
410
411 /* True when we've actually removed something. */
412 bool removed_p;
413 };
414
415 static inline void
416 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
417 {
418 ip->lp = lp;
419 ip->can_remove_p = can_remove_p;
420 ip->removed_p = false;
421 }
422
423 static inline void
424 _list_iter_next (_list_iterator *ip)
425 {
426 if (!ip->removed_p)
427 ip->lp = &_LIST_NEXT (*ip->lp);
428 else
429 ip->removed_p = false;
430 }
431
432 static inline void
433 _list_iter_remove (_list_iterator *ip)
434 {
435 gcc_assert (!ip->removed_p && ip->can_remove_p);
436 _list_remove (ip->lp);
437 ip->removed_p = true;
438 }
439
440 static inline void
441 _list_iter_remove_nofree (_list_iterator *ip)
442 {
443 gcc_assert (!ip->removed_p && ip->can_remove_p);
444 _list_remove_nofree (ip->lp);
445 ip->removed_p = true;
446 }
447
448 /* General macros to traverse a list. FOR_EACH_* interfaces are
449 implemented using these. */
450 #define _FOR_EACH(TYPE, ELEM, I, L) \
451 for (_list_iter_start (&(I), &(L), false); \
452 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
453 _list_iter_next (&(I)))
454
455 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
456 for (_list_iter_start (&(I), (LP), true); \
457 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
458 _list_iter_next (&(I)))
459 \f
460
461 /* _xlist_t functions. */
462
463 static inline void
464 _xlist_add (_xlist_t *lp, rtx x)
465 {
466 _list_add (lp);
467 _XLIST_X (*lp) = x;
468 }
469
470 #define _xlist_remove(LP) (_list_remove (LP))
471 #define _xlist_clear(LP) (_list_clear (LP))
472
473 static inline bool
474 _xlist_is_in_p (_xlist_t l, rtx x)
475 {
476 while (l)
477 {
478 if (_XLIST_X (l) == x)
479 return true;
480 l = _XLIST_NEXT (l);
481 }
482
483 return false;
484 }
485
486 /* Used through _FOR_EACH. */
487 static inline bool
488 _list_iter_cond_x (_xlist_t l, rtx *xp)
489 {
490 if (l)
491 {
492 *xp = _XLIST_X (l);
493 return true;
494 }
495
496 return false;
497 }
498
499 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
500
501 typedef _list_iterator _xlist_iterator;
502 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
503 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
504 \f
505
506 /* ilist_t functions. */
507
508 static inline void
509 ilist_add (ilist_t *lp, insn_t insn)
510 {
511 _list_add (lp);
512 ILIST_INSN (*lp) = insn;
513 }
514 #define ilist_remove(LP) (_list_remove (LP))
515 #define ilist_clear(LP) (_list_clear (LP))
516
517 static inline bool
518 ilist_is_in_p (ilist_t l, insn_t insn)
519 {
520 while (l)
521 {
522 if (ILIST_INSN (l) == insn)
523 return true;
524 l = ILIST_NEXT (l);
525 }
526
527 return false;
528 }
529
530 /* Used through _FOR_EACH. */
531 static inline bool
532 _list_iter_cond_insn (ilist_t l, insn_t *ip)
533 {
534 if (l)
535 {
536 *ip = ILIST_INSN (l);
537 return true;
538 }
539
540 return false;
541 }
542
543 #define ilist_iter_remove(IP) (_list_iter_remove (IP))
544
545 typedef _list_iterator ilist_iterator;
546 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH (insn, (INSN), (I), (L))
547 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_1 (insn, (INSN), (I), (LP))
548 \f
549
550 /* Av set iterators. */
551 typedef _list_iterator av_set_iterator;
552 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
553 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
554
555 inline bool
556 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
557 {
558 if (av)
559 {
560 *exprp = _AV_SET_EXPR (av);
561 return true;
562 }
563
564 return false;
565 }
566 \f
567
568 /* Def list iterators. */
569 typedef _list_t def_list_t;
570 typedef _list_iterator def_list_iterator;
571
572 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
573 #define DEF_LIST_DEF(L) (&(L)->u.def)
574
575 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
576
577 static inline bool
578 _list_iter_cond_def (def_list_t def_list, def_t *def)
579 {
580 if (def_list)
581 {
582 *def = DEF_LIST_DEF (def_list);
583 return true;
584 }
585
586 return false;
587 }
588 \f
589
590 /* InstructionData. Contains information about insn pattern. */
591 struct idata_def
592 {
593 /* Type of the insn.
594 o CALL_INSN - Call insn
595 o JUMP_INSN - Jump insn
596 o INSN - INSN that cannot be cloned
597 o USE - INSN that can be cloned
598 o SET - INSN that can be cloned and separable into lhs and rhs
599 o PC - simplejump. Insns that simply redirect control flow should not
600 have any dependencies. Sched-deps.c, though, might consider them as
601 producers or consumers of certain registers. To avoid that we handle
602 dependency for simple jumps ourselves. */
603 int type;
604
605 /* If insn is a SET, this is its left hand side. */
606 rtx lhs;
607
608 /* If insn is a SET, this is its right hand side. */
609 rtx rhs;
610
611 /* Registers that are set/used by this insn. This info is now gathered
612 via sched-deps.c. The downside of this is that we also use live info
613 from flow that is accumulated in the basic blocks. These two infos
614 can be slightly inconsistent, hence in the beginning we make a pass
615 through CFG and calculating the conservative solution for the info in
616 basic blocks. When this scheduler will be switched to use dataflow,
617 this can be unified as df gives us both per basic block and per
618 instruction info. Actually, we don't do that pass and just hope
619 for the best. */
620 regset reg_sets;
621
622 regset reg_clobbers;
623
624 regset reg_uses;
625 };
626
627 #define IDATA_TYPE(ID) ((ID)->type)
628 #define IDATA_LHS(ID) ((ID)->lhs)
629 #define IDATA_RHS(ID) ((ID)->rhs)
630 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
631 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
632 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
633
634 /* Type to represent all needed info to emit an insn.
635 This is a virtual equivalent of the insn.
636 Every insn in the stream has an associated vinsn. This is used
637 to reduce memory consumption basing on the fact that many insns
638 don't change through the scheduler.
639
640 vinsn can be either normal or unique.
641 * Normal vinsn is the one, that can be cloned multiple times and typically
642 corresponds to normal instruction.
643
644 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
645 unusual stuff. Such a vinsn is described by its INSN field, which is a
646 reference to the original instruction. */
647 struct vinsn_def
648 {
649 /* Associated insn. */
650 rtx_insn *insn_rtx;
651
652 /* Its description. */
653 struct idata_def id;
654
655 /* Hash of vinsn. It is computed either from pattern or from rhs using
656 hash_rtx. It is not placed in ID for faster compares. */
657 unsigned hash;
658
659 /* Hash of the insn_rtx pattern. */
660 unsigned hash_rtx;
661
662 /* Smart pointer counter. */
663 int count;
664
665 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
666 int cost;
667
668 /* Mark insns that may trap so we don't move them through jumps. */
669 bool may_trap_p;
670 };
671
672 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
673 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
674
675 #define VINSN_ID(VI) (&((VI)->id))
676 #define VINSN_HASH(VI) ((VI)->hash)
677 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
678 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
679 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
680 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
681 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
682 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
683 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
684 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
685 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
686 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
687 #define VINSN_COUNT(VI) ((VI)->count)
688 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
689 \f
690
691 /* An entry of the hashtable describing transformations happened when
692 moving up through an insn. */
693 struct transformed_insns
694 {
695 /* Previous vinsn. Used to find the proper element. */
696 vinsn_t vinsn_old;
697
698 /* A new vinsn. */
699 vinsn_t vinsn_new;
700
701 /* Speculative status. */
702 ds_t ds;
703
704 /* Type of transformation happened. */
705 enum local_trans_type type;
706
707 /* Whether a conflict on the target register happened. */
708 BOOL_BITFIELD was_target_conflict : 1;
709
710 /* Whether a check was needed. */
711 BOOL_BITFIELD needs_check : 1;
712 };
713
714 /* Indexed by INSN_LUID, the collection of all data associated with
715 a single instruction that is in the stream. */
716 class _sel_insn_data
717 {
718 public:
719 /* The expression that contains vinsn for this insn and some
720 flow-sensitive data like priority. */
721 expr_def expr;
722
723 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
724 int ws_level;
725
726 /* A number that helps in defining a traversing order for a region. */
727 int seqno;
728
729 /* A liveness data computed above this insn. */
730 regset live;
731
732 /* An INSN_UID bit is set when deps analysis result is already known. */
733 bitmap analyzed_deps;
734
735 /* An INSN_UID bit is set when a hard dep was found, not set when
736 no dependence is found. This is meaningful only when the analyzed_deps
737 bitmap has its bit set. */
738 bitmap found_deps;
739
740 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
741 a parent with this uid. If a parent is a bookkeeping copy, all its
742 originators are transitively included in this set. */
743 bitmap originators;
744
745 /* A hashtable caching the result of insn transformations through this one. */
746 htab_t transformed_insns;
747
748 /* A context incapsulating this insn. */
749 class deps_desc deps_context;
750
751 /* This field is initialized at the beginning of scheduling and is used
752 to handle sched group instructions. If it is non-null, then it points
753 to the instruction, which should be forced to schedule next. Such
754 instructions are unique. */
755 insn_t sched_next;
756
757 /* Cycle at which insn was scheduled. It is greater than zero if insn was
758 scheduled. This is used for bundling. */
759 int sched_cycle;
760
761 /* Cycle at which insn's data will be fully ready. */
762 int ready_cycle;
763
764 /* Speculations that are being checked by this insn. */
765 ds_t spec_checked_ds;
766
767 /* Whether the live set valid or not. */
768 BOOL_BITFIELD live_valid_p : 1;
769 /* Insn is an ASM. */
770 BOOL_BITFIELD asm_p : 1;
771
772 /* True when an insn is scheduled after we've determined that a stall is
773 required.
774 This is used when emulating the Haifa scheduler for bundling. */
775 BOOL_BITFIELD after_stall_p : 1;
776 };
777
778 typedef class _sel_insn_data sel_insn_data_def;
779 typedef sel_insn_data_def *sel_insn_data_t;
780
781 extern vec<sel_insn_data_def> s_i_d;
782
783 /* Accessor macros for s_i_d. */
784 #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
785 #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
786
787 extern sel_insn_data_def insn_sid (insn_t);
788
789 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
790 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
791 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
792 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
793 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
794 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
795 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
796 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
797
798 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
799 #define INSN_LIVE(INSN) (SID (INSN)->live)
800 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
801 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
802 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
803 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
804 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
805 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
806 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
807 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
808 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
809 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
810 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
811 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
812 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
813 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
814 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
815
816 /* A global level shows whether an insn is valid or not. */
817 extern int global_level;
818
819 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
820
821 extern av_set_t get_av_set (insn_t);
822 extern int get_av_level (insn_t);
823
824 #define AV_SET(INSN) (get_av_set (INSN))
825 #define AV_LEVEL(INSN) (get_av_level (INSN))
826 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
827
828 /* A list of fences currently in the works. */
829 extern flist_t fences;
830
831 /* A NOP pattern used as a placeholder for real insns. */
832 extern rtx nop_pattern;
833
834 /* An insn that 'contained' in EXIT block. */
835 extern rtx_insn *exit_insn;
836
837 /* Provide a separate luid for the insn. */
838 #define INSN_INIT_TODO_LUID (1)
839
840 /* Initialize s_s_i_d. */
841 #define INSN_INIT_TODO_SSID (2)
842
843 /* Initialize data for simplejump. */
844 #define INSN_INIT_TODO_SIMPLEJUMP (4)
845
846 /* Return true if INSN is a local NOP. The nop is local in the sense that
847 it was emitted by the scheduler as a temporary insn and will soon be
848 deleted. These nops are identified by their pattern. */
849 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
850
851 /* Return true if INSN is linked into instruction stream.
852 NB: It is impossible for INSN to have one field null and the other not
853 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
854 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
855 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
856
857 /* Return true if INSN is in current fence. */
858 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
859
860 /* Marks loop as being considered for pipelining. */
861 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
862 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
863
864 /* Saved loop preheader to transfer when scheduling the loop. */
865 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
866 ? NULL \
867 : ((vec<basic_block> *) (LOOP)->aux))
868 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
869 = (BLOCKS != NULL \
870 ? BLOCKS \
871 : (LOOP)->aux))
872
873 extern bitmap blocks_to_reschedule;
874 \f
875
876 /* A variable to track which part of rtx we are scanning in
877 sched-deps.c: sched_analyze_insn (). */
878 enum deps_where_t
879 {
880 DEPS_IN_INSN,
881 DEPS_IN_LHS,
882 DEPS_IN_RHS,
883 DEPS_IN_NOWHERE
884 };
885 \f
886
887 /* Per basic block data for the whole CFG. */
888 struct sel_global_bb_info_def
889 {
890 /* For each bb header this field contains a set of live registers.
891 For all other insns this field has a NULL.
892 We also need to know LV sets for the instructions, that are immediately
893 after the border of the region. */
894 regset lv_set;
895
896 /* Status of LV_SET.
897 true - block has usable LV_SET.
898 false - block's LV_SET should be recomputed. */
899 bool lv_set_valid_p;
900 };
901
902 typedef sel_global_bb_info_def *sel_global_bb_info_t;
903
904
905 /* Per basic block data. This array is indexed by basic block index. */
906 extern vec<sel_global_bb_info_def> sel_global_bb_info;
907
908 extern void sel_extend_global_bb_info (void);
909 extern void sel_finish_global_bb_info (void);
910
911 /* Get data for BB. */
912 #define SEL_GLOBAL_BB_INFO(BB) \
913 (&sel_global_bb_info[(BB)->index])
914
915 /* Access macros. */
916 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
917 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
918
919 /* Per basic block data for the region. */
920 struct sel_region_bb_info_def
921 {
922 /* This insn stream is constructed in such a way that it should be
923 traversed by PREV_INSN field - (*not* NEXT_INSN). */
924 rtx_insn *note_list;
925
926 /* Cached availability set at the beginning of a block.
927 See also AV_LEVEL () for conditions when this av_set can be used. */
928 av_set_t av_set;
929
930 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
931 int av_level;
932 };
933
934 typedef sel_region_bb_info_def *sel_region_bb_info_t;
935
936
937 /* Per basic block data. This array is indexed by basic block index. */
938 extern vec<sel_region_bb_info_def> sel_region_bb_info;
939
940 /* Get data for BB. */
941 #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
942
943 /* Get BB's note_list.
944 A note_list is a list of various notes that was scattered across BB
945 before scheduling, and will be appended at the beginning of BB after
946 scheduling is finished. */
947 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
948
949 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
950 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
951 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
952
953 /* Used in bb_in_ebb_p. */
954 extern bitmap_head *forced_ebb_heads;
955
956 /* The loop nest being pipelined. */
957 extern class loop *current_loop_nest;
958
959 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
960 extern sbitmap bbs_pipelined;
961
962 /* Various flags. */
963 extern bool enable_moveup_set_path_p;
964 extern bool pipelining_p;
965 extern bool bookkeeping_p;
966 extern int max_insns_to_rename;
967 extern bool preheader_removed;
968
969 /* Software lookahead window size.
970 According to the results in Nakatani and Ebcioglu [1993], window size of 16
971 is enough to extract most ILP in integer code. */
972 #define MAX_WS (param_selsched_max_lookahead)
973
974 extern regset sel_all_regs;
975 \f
976
977 /* Successor iterator backend. */
978 struct succ_iterator
979 {
980 /* True if we're at BB end. */
981 bool bb_end;
982
983 /* An edge on which we're iterating. */
984 edge e1;
985
986 /* The previous edge saved after skipping empty blocks. */
987 edge e2;
988
989 /* Edge iterator used when there are successors in other basic blocks. */
990 edge_iterator ei;
991
992 /* Successor block we're traversing. */
993 basic_block bb;
994
995 /* Flags that are passed to the iterator. We return only successors
996 that comply to these flags. */
997 short flags;
998
999 /* When flags include SUCCS_ALL, this will be set to the exact type
1000 of the successor we're traversing now. */
1001 short current_flags;
1002
1003 /* If skip to loop exits, save here information about loop exits. */
1004 int current_exit;
1005 vec<edge> loop_exits;
1006 };
1007
1008 /* A structure returning all successor's information. */
1009 struct succs_info
1010 {
1011 /* Flags that these succcessors were computed with. */
1012 short flags;
1013
1014 /* Successors that correspond to the flags. */
1015 insn_vec_t succs_ok;
1016
1017 /* Their probabilities. As of now, we don't need this for other
1018 successors. */
1019 vec<int> probs_ok;
1020
1021 /* Other successors. */
1022 insn_vec_t succs_other;
1023
1024 /* Probability of all successors. */
1025 int all_prob;
1026
1027 /* The number of all successors. */
1028 int all_succs_n;
1029
1030 /* The number of good successors. */
1031 int succs_ok_n;
1032 };
1033
1034 /* Some needed definitions. */
1035 extern basic_block after_recovery;
1036
1037 extern rtx_insn *sel_bb_head (basic_block);
1038 extern rtx_insn *sel_bb_end (basic_block);
1039 extern bool sel_bb_empty_p (basic_block);
1040 extern bool in_current_region_p (basic_block);
1041
1042 /* True when BB is a header of the inner loop. */
1043 static inline bool
1044 inner_loop_header_p (basic_block bb)
1045 {
1046 class loop *inner_loop;
1047
1048 if (!current_loop_nest)
1049 return false;
1050
1051 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1052 return false;
1053
1054 inner_loop = bb->loop_father;
1055 if (inner_loop == current_loop_nest)
1056 return false;
1057
1058 /* If successor belongs to another loop. */
1059 if (bb == inner_loop->header
1060 && flow_bb_inside_loop_p (current_loop_nest, bb))
1061 {
1062 /* Could be '=' here because of wrong loop depths. */
1063 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1064 return true;
1065 }
1066
1067 return false;
1068 }
1069
1070 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1071 static inline vec<edge>
1072 get_loop_exit_edges_unique_dests (const class loop *loop)
1073 {
1074 vec<edge> edges = vNULL;
1075 struct loop_exit *exit;
1076
1077 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1078 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1079
1080 for (exit = loop->exits->next; exit->e; exit = exit->next)
1081 {
1082 int i;
1083 edge e;
1084 bool was_dest = false;
1085
1086 for (i = 0; edges.iterate (i, &e); i++)
1087 if (e->dest == exit->e->dest)
1088 {
1089 was_dest = true;
1090 break;
1091 }
1092
1093 if (!was_dest)
1094 edges.safe_push (exit->e);
1095 }
1096 return edges;
1097 }
1098
1099 static bool
1100 sel_bb_empty_or_nop_p (basic_block bb)
1101 {
1102 insn_t first = sel_bb_head (bb), last;
1103
1104 if (first == NULL_RTX)
1105 return true;
1106
1107 if (!INSN_NOP_P (first))
1108 return false;
1109
1110 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1111 return false;
1112
1113 last = sel_bb_end (bb);
1114 if (first != last)
1115 return false;
1116
1117 return true;
1118 }
1119
1120 /* Collect all loop exits recursively, skipping empty BBs between them.
1121 E.g. if BB is a loop header which has several loop exits,
1122 traverse all of them and if any of them turns out to be another loop header
1123 (after skipping empty BBs), add its loop exits to the resulting vector
1124 as well. */
1125 static inline vec<edge>
1126 get_all_loop_exits (basic_block bb)
1127 {
1128 vec<edge> exits = vNULL;
1129
1130 /* If bb is empty, and we're skipping to loop exits, then
1131 consider bb as a possible gate to the inner loop now. */
1132 while (sel_bb_empty_or_nop_p (bb)
1133 && in_current_region_p (bb)
1134 && EDGE_COUNT (bb->succs) > 0)
1135 {
1136 bb = single_succ (bb);
1137
1138 /* This empty block could only lead outside the region. */
1139 gcc_assert (! in_current_region_p (bb));
1140 }
1141
1142 /* And now check whether we should skip over inner loop. */
1143 if (inner_loop_header_p (bb))
1144 {
1145 class loop *this_loop;
1146 class loop *pred_loop = NULL;
1147 int i;
1148 unsigned this_depth;
1149 edge e;
1150
1151 for (this_loop = bb->loop_father;
1152 this_loop && this_loop != current_loop_nest;
1153 this_loop = loop_outer (this_loop))
1154 pred_loop = this_loop;
1155
1156 this_loop = pred_loop;
1157 gcc_assert (this_loop != NULL);
1158
1159 exits = get_loop_exit_edges_unique_dests (this_loop);
1160 this_depth = loop_depth (this_loop);
1161
1162 /* Traverse all loop headers. Be careful not to go back
1163 to the outer loop's header (see PR 84206). */
1164 for (i = 0; exits.iterate (i, &e); i++)
1165 if ((in_current_region_p (e->dest)
1166 || (inner_loop_header_p (e->dest)))
1167 && loop_depth (e->dest->loop_father) >= this_depth)
1168 {
1169 vec<edge> next_exits = get_all_loop_exits (e->dest);
1170
1171 if (next_exits.exists ())
1172 {
1173 int j;
1174 edge ne;
1175
1176 /* Add all loop exits for the current edge into the
1177 resulting vector. */
1178 for (j = 0; next_exits.iterate (j, &ne); j++)
1179 exits.safe_push (ne);
1180
1181 /* Remove the original edge. */
1182 exits.ordered_remove (i);
1183
1184 /* Decrease the loop counter so we won't skip anything. */
1185 i--;
1186 continue;
1187 }
1188 }
1189 }
1190
1191 return exits;
1192 }
1193
1194 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1195 Any successor will fall into exactly one category. */
1196
1197 /* Include normal successors. */
1198 #define SUCCS_NORMAL (1)
1199
1200 /* Include back-edge successors. */
1201 #define SUCCS_BACK (2)
1202
1203 /* Include successors that are outside of the current region. */
1204 #define SUCCS_OUT (4)
1205
1206 /* When pipelining of the outer loops is enabled, skip innermost loops
1207 to their exits. */
1208 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1209
1210 /* Include all successors. */
1211 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1212
1213 /* We need to return a succ_iterator to avoid 'unitialized' warning
1214 during bootstrap. */
1215 static inline succ_iterator
1216 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1217 {
1218 succ_iterator i;
1219
1220 basic_block bb = BLOCK_FOR_INSN (insn);
1221
1222 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1223
1224 i.flags = flags;
1225
1226 /* Avoid 'uninitialized' warning. */
1227 *succp = NULL;
1228 i.e1 = NULL;
1229 i.e2 = NULL;
1230 i.bb = bb;
1231 i.current_flags = 0;
1232 i.current_exit = -1;
1233 i.loop_exits.create (0);
1234
1235 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
1236 {
1237 i.bb_end = false;
1238
1239 /* Avoid 'uninitialized' warning. */
1240 i.ei.index = 0;
1241 i.ei.container = 0;
1242 }
1243 else
1244 {
1245 i.ei = ei_start (bb->succs);
1246 i.bb_end = true;
1247 }
1248
1249 return i;
1250 }
1251
1252 static inline bool
1253 _succ_iter_cond (succ_iterator *ip, insn_t *succp, insn_t insn,
1254 bool check (edge, succ_iterator *))
1255 {
1256 if (!ip->bb_end)
1257 {
1258 /* When we're in a middle of a basic block, return
1259 the next insn immediately, but only when SUCCS_NORMAL is set. */
1260 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1261 return false;
1262
1263 *succp = NEXT_INSN (insn);
1264 ip->current_flags = SUCCS_NORMAL;
1265 return true;
1266 }
1267 else
1268 {
1269 while (1)
1270 {
1271 edge e_tmp = NULL;
1272
1273 /* First, try loop exits, if we have them. */
1274 if (ip->loop_exits.exists ())
1275 {
1276 do
1277 {
1278 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1279 ip->current_exit++;
1280 }
1281 while (e_tmp && !check (e_tmp, ip));
1282
1283 if (!e_tmp)
1284 ip->loop_exits.release ();
1285 }
1286
1287 /* If we have found a successor, then great. */
1288 if (e_tmp)
1289 {
1290 ip->e1 = e_tmp;
1291 break;
1292 }
1293
1294 /* If not, then try the next edge. */
1295 while (ei_cond (ip->ei, &(ip->e1)))
1296 {
1297 basic_block bb = ip->e1->dest;
1298
1299 /* Consider bb as a possible loop header. */
1300 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1301 && flag_sel_sched_pipelining_outer_loops
1302 && (!in_current_region_p (bb)
1303 || BLOCK_TO_BB (ip->bb->index)
1304 < BLOCK_TO_BB (bb->index)))
1305 {
1306 /* Get all loop exits recursively. */
1307 ip->loop_exits = get_all_loop_exits (bb);
1308
1309 if (ip->loop_exits.exists ())
1310 {
1311 ip->current_exit = 0;
1312 /* Move the iterator now, because we won't do
1313 succ_iter_next until loop exits will end. */
1314 ei_next (&(ip->ei));
1315 break;
1316 }
1317 }
1318
1319 /* bb is not a loop header, check as usual. */
1320 if (check (ip->e1, ip))
1321 break;
1322
1323 ei_next (&(ip->ei));
1324 }
1325
1326 /* If loop_exits are non null, we have found an inner loop;
1327 do one more iteration to fetch an edge from these exits. */
1328 if (ip->loop_exits.exists ())
1329 continue;
1330
1331 /* Otherwise, we've found an edge in a usual way. Break now. */
1332 break;
1333 }
1334
1335 if (ip->e1)
1336 {
1337 basic_block bb = ip->e2->dest;
1338
1339 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
1340 *succp = exit_insn;
1341 else
1342 {
1343 *succp = sel_bb_head (bb);
1344
1345 gcc_assert (ip->flags != SUCCS_NORMAL
1346 || *succp == NEXT_INSN (bb_note (bb)));
1347 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1348 }
1349
1350 return true;
1351 }
1352 else
1353 return false;
1354 }
1355 }
1356
1357 static inline void
1358 _succ_iter_next (succ_iterator *ip)
1359 {
1360 gcc_assert (!ip->e2 || ip->e1);
1361
1362 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1363 ei_next (&(ip->ei));
1364 }
1365
1366 /* Returns true when E1 is an eligible successor edge, possibly skipping
1367 empty blocks. When E2P is not null, the resulting edge is written there.
1368 FLAGS are used to specify whether back edges and out-of-region edges
1369 should be considered. */
1370 static inline bool
1371 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1372 {
1373 edge e2 = e1;
1374 basic_block bb;
1375 int flags = ip->flags;
1376 bool src_outside_rgn = !in_current_region_p (e1->src);
1377
1378 gcc_assert (flags != 0);
1379
1380 if (src_outside_rgn)
1381 {
1382 /* Any successor of the block that is outside current region is
1383 ineligible, except when we're skipping to loop exits. */
1384 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1385
1386 if (flags & SUCCS_OUT)
1387 return false;
1388 }
1389
1390 bb = e2->dest;
1391
1392 /* Skip empty blocks, but be careful not to leave the region. */
1393 while (1)
1394 {
1395 if (!sel_bb_empty_p (bb))
1396 {
1397 edge ne;
1398 basic_block nbb;
1399
1400 if (!sel_bb_empty_or_nop_p (bb))
1401 break;
1402
1403 ne = EDGE_SUCC (bb, 0);
1404 nbb = ne->dest;
1405
1406 if (!in_current_region_p (nbb)
1407 && !(flags & SUCCS_OUT))
1408 break;
1409
1410 e2 = ne;
1411 bb = nbb;
1412 continue;
1413 }
1414
1415 if (!in_current_region_p (bb)
1416 && !(flags & SUCCS_OUT))
1417 return false;
1418
1419 if (EDGE_COUNT (bb->succs) == 0)
1420 return false;
1421
1422 e2 = EDGE_SUCC (bb, 0);
1423 bb = e2->dest;
1424 }
1425
1426 /* Save the second edge for later checks. */
1427 ip->e2 = e2;
1428
1429 if (in_current_region_p (bb))
1430 {
1431 /* BLOCK_TO_BB sets topological order of the region here.
1432 It is important to use real predecessor here, which is ip->bb,
1433 as we may well have e1->src outside current region,
1434 when skipping to loop exits. */
1435 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1436 < BLOCK_TO_BB (bb->index));
1437
1438 /* This is true for the all cases except the last one. */
1439 ip->current_flags = SUCCS_NORMAL;
1440
1441 /* We are advancing forward in the region, as usual. */
1442 if (succeeds_in_top_order)
1443 {
1444 /* We are skipping to loop exits here. */
1445 gcc_assert (!src_outside_rgn
1446 || flag_sel_sched_pipelining_outer_loops);
1447 return !!(flags & SUCCS_NORMAL);
1448 }
1449
1450 /* This is a back edge. During pipelining we ignore back edges,
1451 but only when it leads to the same loop. It can lead to the header
1452 of the outer loop, which will also be the preheader of
1453 the current loop. */
1454 if (pipelining_p
1455 && e1->src->loop_father == bb->loop_father)
1456 return !!(flags & SUCCS_NORMAL);
1457
1458 /* A back edge should be requested explicitly. */
1459 ip->current_flags = SUCCS_BACK;
1460 return !!(flags & SUCCS_BACK);
1461 }
1462
1463 ip->current_flags = SUCCS_OUT;
1464 return !!(flags & SUCCS_OUT);
1465 }
1466
1467 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1468 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1469 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1470 _succ_iter_next (&(ITER)))
1471
1472 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1473 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1474
1475 /* Return the current edge along which a successor was built. */
1476 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1477
1478 /* Return the next block of BB not running into inconsistencies. */
1479 static inline basic_block
1480 bb_next_bb (basic_block bb)
1481 {
1482 switch (EDGE_COUNT (bb->succs))
1483 {
1484 case 0:
1485 return bb->next_bb;
1486
1487 case 1:
1488 return single_succ (bb);
1489
1490 case 2:
1491 return FALLTHRU_EDGE (bb)->dest;
1492
1493 default:
1494 return bb->next_bb;
1495 }
1496
1497 gcc_unreachable ();
1498 }
1499
1500 \f
1501
1502 /* Functions that are used in sel-sched.c. */
1503
1504 /* List functions. */
1505 extern ilist_t ilist_copy (ilist_t);
1506 extern ilist_t ilist_invert (ilist_t);
1507 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1508 extern void blist_remove (blist_t *);
1509 extern void flist_tail_init (flist_tail_t);
1510
1511 extern fence_t flist_lookup (flist_t, insn_t);
1512 extern void flist_clear (flist_t *);
1513 extern void def_list_add (def_list_t *, insn_t, unsigned int);
1514
1515 /* Target context functions. */
1516 extern tc_t create_target_context (bool);
1517 extern void set_target_context (tc_t);
1518 extern void reset_target_context (tc_t, bool);
1519
1520 /* Deps context functions. */
1521 extern void advance_deps_context (deps_t, insn_t);
1522
1523 /* Fences functions. */
1524 extern void init_fences (insn_t);
1525 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1526 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1527 extern void move_fence_to_fences (flist_t, flist_tail_t);
1528
1529 /* Pool functions. */
1530 extern regset get_regset_from_pool (void);
1531 extern regset get_clear_regset_from_pool (void);
1532 extern void return_regset_to_pool (regset);
1533 extern void free_regset_pool (void);
1534
1535 extern insn_t get_nop_from_pool (insn_t);
1536 extern void return_nop_to_pool (insn_t, bool);
1537 extern void free_nop_pool (void);
1538
1539 /* Vinsns functions. */
1540 extern bool vinsn_separable_p (vinsn_t);
1541 extern bool vinsn_cond_branch_p (vinsn_t);
1542 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1543 extern int sel_vinsn_cost (vinsn_t);
1544 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1545 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1546 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1547 extern insn_t sel_move_insn (expr_t, int, insn_t);
1548 extern void vinsn_attach (vinsn_t);
1549 extern void vinsn_detach (vinsn_t);
1550 extern vinsn_t vinsn_copy (vinsn_t, bool);
1551 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1552
1553 /* EXPR functions. */
1554 extern void copy_expr (expr_t, expr_t);
1555 extern void copy_expr_onside (expr_t, expr_t);
1556 extern void merge_expr_data (expr_t, expr_t, insn_t);
1557 extern void merge_expr (expr_t, expr_t, insn_t);
1558 extern void clear_expr (expr_t);
1559 extern unsigned expr_dest_regno (expr_t);
1560 extern rtx expr_dest_reg (expr_t);
1561 extern int find_in_history_vect (vec<expr_history_def> ,
1562 rtx, vinsn_t, bool);
1563 extern void insert_in_history_vect (vec<expr_history_def> *,
1564 unsigned, enum local_trans_type,
1565 vinsn_t, vinsn_t, ds_t);
1566 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1567 extern int speculate_expr (expr_t, ds_t);
1568
1569 /* Av set functions. */
1570 extern void av_set_add (av_set_t *, expr_t);
1571 extern void av_set_iter_remove (av_set_iterator *);
1572 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1573 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1574 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1575 extern av_set_t av_set_copy (av_set_t);
1576 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1577 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1578 extern void av_set_clear (av_set_t *);
1579 extern void av_set_leave_one_nonspec (av_set_t *);
1580 extern expr_t av_set_element (av_set_t, int);
1581 extern void av_set_substract_cond_branches (av_set_t *);
1582 extern void av_set_split_usefulness (av_set_t, int, int);
1583 extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1584
1585 extern void sel_save_haifa_priorities (void);
1586
1587 extern void sel_init_global_and_expr (bb_vec_t);
1588 extern void sel_finish_global_and_expr (void);
1589
1590 extern regset compute_live (insn_t);
1591 extern bool register_unavailable_p (regset, rtx);
1592
1593 /* Dependence analysis functions. */
1594 extern void sel_clear_has_dependence (void);
1595 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1596
1597 extern int tick_check_p (expr_t, deps_t, fence_t);
1598
1599 /* Functions to work with insns. */
1600 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1601 extern bool insn_eligible_for_subst_p (insn_t);
1602 extern void get_dest_and_mode (rtx, rtx *, machine_mode *);
1603
1604 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1605 extern bool sel_remove_insn (insn_t, bool, bool);
1606 extern bool bb_header_p (insn_t);
1607 extern void sel_init_invalid_data_sets (insn_t);
1608 extern bool insn_at_boundary_p (insn_t);
1609
1610 /* Basic block and CFG functions. */
1611
1612 extern rtx_insn *sel_bb_head (basic_block);
1613 extern bool sel_bb_head_p (insn_t);
1614 extern rtx_insn *sel_bb_end (basic_block);
1615 extern bool sel_bb_end_p (insn_t);
1616 extern bool sel_bb_empty_p (basic_block);
1617
1618 extern bool in_current_region_p (basic_block);
1619 extern basic_block fallthru_bb_of_jump (const rtx_insn *);
1620
1621 extern void sel_init_bbs (bb_vec_t);
1622 extern void sel_finish_bbs (void);
1623
1624 extern struct succs_info * compute_succs_info (insn_t, short);
1625 extern void free_succs_info (struct succs_info *);
1626 extern bool sel_insn_has_single_succ_p (insn_t, int);
1627 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1628 extern int get_seqno_by_preds (rtx_insn *);
1629
1630 extern bool bb_ends_ebb_p (basic_block);
1631 extern bool in_same_ebb_p (insn_t, insn_t);
1632
1633 extern bool tidy_control_flow (basic_block, bool);
1634 extern void free_bb_note_pool (void);
1635
1636 extern void purge_empty_blocks (void);
1637 extern basic_block sel_split_edge (edge);
1638 extern basic_block sel_create_recovery_block (insn_t);
1639 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1640 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1641 extern void sel_init_pipelining (void);
1642 extern void sel_finish_pipelining (void);
1643 extern void sel_sched_region (int);
1644 extern loop_p get_loop_nest_for_rgn (unsigned int);
1645 extern bool considered_for_pipelining_p (class loop *);
1646 extern void make_region_from_loop_preheader (vec<basic_block> *&);
1647 extern void sel_add_loop_preheaders (bb_vec_t *);
1648 extern bool sel_is_loop_preheader_p (basic_block);
1649 extern void clear_outdated_rtx_info (basic_block);
1650 extern void free_data_sets (basic_block);
1651 extern void exchange_data_sets (basic_block, basic_block);
1652 extern void copy_data_sets (basic_block, basic_block);
1653
1654 extern void sel_register_cfg_hooks (void);
1655 extern void sel_unregister_cfg_hooks (void);
1656
1657 /* Expression transformation routines. */
1658 extern rtx_insn *create_insn_rtx_from_pattern (rtx, rtx);
1659 extern vinsn_t create_vinsn_from_insn_rtx (rtx_insn *, bool);
1660 extern rtx_insn *create_copy_of_insn_rtx (rtx);
1661 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1662
1663 /* Various initialization functions. */
1664 extern void init_lv_sets (void);
1665 extern void free_lv_sets (void);
1666 extern void setup_nop_and_exit_insns (void);
1667 extern void free_nop_and_exit_insns (void);
1668 extern void free_data_for_scheduled_insn (insn_t);
1669 extern void setup_nop_vinsn (void);
1670 extern void free_nop_vinsn (void);
1671 extern void sel_set_sched_flags (void);
1672 extern void sel_setup_sched_infos (void);
1673 extern void alloc_sched_pools (void);
1674 extern void free_sched_pools (void);
1675
1676 #endif /* GCC_SEL_SCHED_IR_H */