]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/shrink-wrap.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / shrink-wrap.c
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles shrink-wrapping related optimizations. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "emit-rtl.h"
36 #include "output.h"
37 #include "tree-pass.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "params.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
43 #include "regcprop.h"
44 #include "rtl-iter.h"
45 #include "valtrack.h"
46
47
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52 bool
53 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
55 {
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
69 {
70 rtx dreg = DF_REF_REG (def);
71
72 if (!REG_P (dreg))
73 continue;
74
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
76 }
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
85 FOR_EACH_INSN_USE (use, insn)
86 {
87 rtx reg = DF_REF_REG (use);
88
89 if (!REG_P (reg))
90 continue;
91
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
94 }
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
97
98 return false;
99 }
100
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
104
105 static edge
106 live_edge_for_reg (basic_block bb, int regno, int end_regno)
107 {
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
115 {
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
138
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
143
144 return live_edge;
145 }
146
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
151
152 static bool
153 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const HARD_REG_SET uses,
155 const HARD_REG_SET defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
158 {
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses = NULL, bb_defs = NULL;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
168
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
179
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src))
200 ;
201 else if (!REG_P (src))
202 {
203 rtx src_inner = NULL_RTX;
204
205 if (can_throw_internal (insn))
206 return false;
207
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
210 {
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
213 {
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
250 }
251 }
252
253 if (src_inner != NULL)
254 src = src_inner;
255 }
256
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
259 {
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
264 }
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
277
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
281 {
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
285
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
289
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
292
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
296
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
304
305 *split_p = true;
306 }
307
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
312 if (MAY_HAVE_DEBUG_BIND_INSNS)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_BIND_INSN_P (dinsn))
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
322 }
323 else if (dinsn == insn)
324 break;
325 }
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 if (!*split_p)
334 {
335 bb_uses = &DF_LR_BB_INFO (bb)->use;
336 bb_defs = &DF_LR_BB_INFO (bb)->def;
337 }
338 if (df_live)
339 {
340 for (i = dregno; i < end_dregno; i++)
341 {
342 if (*split_p
343 || REGNO_REG_SET_P (bb_uses, i)
344 || REGNO_REG_SET_P (bb_defs, i)
345 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
346 next_block = NULL;
347 CLEAR_REGNO_REG_SET (live_out, i);
348 CLEAR_REGNO_REG_SET (live_in, i);
349 }
350
351 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
352 Either way, SRC is now live on entry. */
353 for (i = sregno; i < end_sregno; i++)
354 {
355 if (*split_p
356 || REGNO_REG_SET_P (bb_defs, i)
357 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
358 next_block = NULL;
359 SET_REGNO_REG_SET (live_out, i);
360 SET_REGNO_REG_SET (live_in, i);
361 }
362 }
363 else
364 {
365 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
366 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
367 at -O1, just give up searching NEXT_BLOCK. */
368 next_block = NULL;
369 for (i = dregno; i < end_dregno; i++)
370 {
371 CLEAR_REGNO_REG_SET (live_out, i);
372 CLEAR_REGNO_REG_SET (live_in, i);
373 }
374
375 for (i = sregno; i < end_sregno; i++)
376 {
377 SET_REGNO_REG_SET (live_out, i);
378 SET_REGNO_REG_SET (live_in, i);
379 }
380 }
381
382 /* If we don't need to add the move to BB, look for a single
383 successor block. */
384 if (next_block)
385 {
386 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
387 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
388 break;
389 next_block = live_edge->dest;
390 }
391 }
392 while (next_block);
393
394 /* For the new created basic block, there is no dataflow info at all.
395 So skip the following dataflow update and check. */
396 if (!(*split_p))
397 {
398 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
399 (next loop). */
400 for (i = dregno; i < end_dregno; i++)
401 {
402 CLEAR_REGNO_REG_SET (bb_uses, i);
403 SET_REGNO_REG_SET (bb_defs, i);
404 }
405
406 /* BB now uses SRC. */
407 for (i = sregno; i < end_sregno; i++)
408 SET_REGNO_REG_SET (bb_uses, i);
409 }
410
411 /* Insert debug temps for dead REGs used in subsequent debug insns. */
412 if (debug->used && !bitmap_empty_p (debug->used))
413 FOR_EACH_INSN_DEF (def, insn)
414 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
415 DEBUG_TEMP_BEFORE_WITH_VALUE);
416
417 rtx_insn *insn_copy = emit_insn_after (PATTERN (insn), bb_note (bb));
418 /* Update the LABEL_NUSES count on any referenced labels. The ideal
419 solution here would be to actually move the instruction instead
420 of copying/deleting it as this loses some notations on the
421 insn. */
422 mark_jump_label (PATTERN (insn), insn_copy, 0);
423 delete_insn (insn);
424 return true;
425 }
426
427 /* Look for register copies in the first block of the function, and move
428 them down into successor blocks if the register is used only on one
429 path. This exposes more opportunities for shrink-wrapping. These
430 kinds of sets often occur when incoming argument registers are moved
431 to call-saved registers because their values are live across one or
432 more calls during the function. */
433
434 static void
435 prepare_shrink_wrap (basic_block entry_block)
436 {
437 rtx_insn *insn, *curr;
438 rtx x;
439 HARD_REG_SET uses, defs;
440 df_ref def, use;
441 bool split_p = false;
442 unsigned int i;
443 struct dead_debug_local debug;
444
445 if (JUMP_P (BB_END (entry_block)))
446 {
447 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
448 to sink the copies from parameter to callee saved register out of
449 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
450 to release some dependences. */
451 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
452 }
453
454 dead_debug_local_init (&debug, NULL, NULL);
455 CLEAR_HARD_REG_SET (uses);
456 CLEAR_HARD_REG_SET (defs);
457
458 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
459 if (NONDEBUG_INSN_P (insn)
460 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
461 &split_p, &debug))
462 {
463 /* Add all defined registers to DEFs. */
464 FOR_EACH_INSN_DEF (def, insn)
465 {
466 x = DF_REF_REG (def);
467 if (REG_P (x) && HARD_REGISTER_P (x))
468 for (i = REGNO (x); i < END_REGNO (x); i++)
469 SET_HARD_REG_BIT (defs, i);
470 }
471
472 /* Add all used registers to USESs. */
473 FOR_EACH_INSN_USE (use, insn)
474 {
475 x = DF_REF_REG (use);
476 if (REG_P (x) && HARD_REGISTER_P (x))
477 for (i = REGNO (x); i < END_REGNO (x); i++)
478 SET_HARD_REG_BIT (uses, i);
479 }
480 }
481
482 dead_debug_local_finish (&debug, NULL);
483 }
484
485 /* Return whether basic block PRO can get the prologue. It cannot if it
486 has incoming complex edges that need a prologue inserted (we make a new
487 block for the prologue, so those edges would need to be redirected, which
488 does not work). It also cannot if there exist registers live on entry
489 to PRO that are clobbered by the prologue. */
490
491 static bool
492 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
493 {
494 edge e;
495 edge_iterator ei;
496 FOR_EACH_EDGE (e, ei, pro->preds)
497 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
498 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
499 return false;
500
501 HARD_REG_SET live;
502 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
503 if (hard_reg_set_intersect_p (live, prologue_clobbered))
504 return false;
505
506 return true;
507 }
508
509 /* Return whether we can duplicate basic block BB for shrink wrapping. We
510 cannot if the block cannot be duplicated at all, or if any of its incoming
511 edges are complex and come from a block that does not require a prologue
512 (we cannot redirect such edges), or if the block is too big to copy.
513 PRO is the basic block before which we would put the prologue, MAX_SIZE is
514 the maximum size block we allow to be copied. */
515
516 static bool
517 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
518 {
519 if (!can_duplicate_block_p (bb))
520 return false;
521
522 edge e;
523 edge_iterator ei;
524 FOR_EACH_EDGE (e, ei, bb->preds)
525 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
526 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
527 return false;
528
529 unsigned size = 0;
530
531 rtx_insn *insn;
532 FOR_BB_INSNS (bb, insn)
533 if (NONDEBUG_INSN_P (insn))
534 {
535 size += get_attr_min_length (insn);
536 if (size > max_size)
537 return false;
538 }
539
540 return true;
541 }
542
543 /* Do whatever needs to be done for exits that run without prologue.
544 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
545
546 static void
547 handle_simple_exit (edge e)
548 {
549
550 if (e->flags & EDGE_SIBCALL)
551 {
552 /* Tell function.c to take no further action on this edge. */
553 e->flags |= EDGE_IGNORE;
554
555 e->flags &= ~EDGE_FALLTHRU;
556 emit_barrier_after_bb (e->src);
557 return;
558 }
559
560 /* If the basic block the edge comes from has multiple successors,
561 split the edge. */
562 if (EDGE_COUNT (e->src->succs) > 1)
563 {
564 basic_block old_bb = e->src;
565 rtx_insn *end = BB_END (old_bb);
566 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
567 basic_block new_bb = create_basic_block (note, note, old_bb);
568 BB_COPY_PARTITION (new_bb, old_bb);
569 BB_END (old_bb) = end;
570
571 redirect_edge_succ (e, new_bb);
572 new_bb->count = e->count ();
573 e->flags |= EDGE_FALLTHRU;
574
575 e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
576 }
577
578 e->flags &= ~EDGE_FALLTHRU;
579 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
580 BB_END (e->src));
581 JUMP_LABEL (ret) = simple_return_rtx;
582 emit_barrier_after_bb (e->src);
583
584 if (dump_file)
585 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
586 INSN_UID (ret), e->src->index);
587 }
588
589 /* Try to perform a kind of shrink-wrapping, making sure the
590 prologue/epilogue is emitted only around those parts of the
591 function that require it.
592
593 There will be exactly one prologue, and it will be executed either
594 zero or one time, on any path. Depending on where the prologue is
595 placed, some of the basic blocks can be reached via both paths with
596 and without a prologue. Such blocks will be duplicated here, and the
597 edges changed to match.
598
599 Paths that go to the exit without going through the prologue will use
600 a simple_return instead of the epilogue. We maximize the number of
601 those, making sure to only duplicate blocks that can be duplicated.
602 If the prologue can then still be placed in multiple locations, we
603 place it as early as possible.
604
605 An example, where we duplicate blocks with control flow (legend:
606 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
607 be taken to point down or to the right, to simplify the diagram; here,
608 block 3 needs a prologue, the rest does not):
609
610
611 B B
612 | |
613 2 2
614 |\ |\
615 | 3 becomes | 3
616 |/ | \
617 4 7 4
618 |\ |\ |\
619 | 5 | 8 | 5
620 |/ |/ |/
621 6 9 6
622 | | |
623 R S R
624
625
626 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
627 edge 2->3).
628
629 Another example, where part of a loop is duplicated (again, bb 3 is
630 the only block that needs a prologue):
631
632
633 B 3<-- B ->3<--
634 | | | | | | |
635 | v | becomes | | v |
636 2---4--- 2---5-- 4---
637 | | |
638 R S R
639
640
641 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
642
643 ENTRY_EDGE is the edge where the prologue will be placed, possibly
644 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
645
646 void
647 try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
648 {
649 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
650 no sense to shrink-wrap: then do not shrink-wrap! */
651
652 if (!SHRINK_WRAPPING_ENABLED)
653 return;
654
655 if (crtl->profile && !targetm.profile_before_prologue ())
656 return;
657
658 if (crtl->calls_eh_return)
659 return;
660
661 bool empty_prologue = true;
662 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
663 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
664 {
665 empty_prologue = false;
666 break;
667 }
668 if (empty_prologue)
669 return;
670
671 /* Move some code down to expose more shrink-wrapping opportunities. */
672
673 basic_block entry = (*entry_edge)->dest;
674 prepare_shrink_wrap (entry);
675
676 if (dump_file)
677 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
678
679 /* Compute the registers set and used in the prologue. */
680
681 HARD_REG_SET prologue_clobbered, prologue_used;
682 CLEAR_HARD_REG_SET (prologue_clobbered);
683 CLEAR_HARD_REG_SET (prologue_used);
684 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
685 if (NONDEBUG_INSN_P (insn))
686 {
687 HARD_REG_SET this_used;
688 CLEAR_HARD_REG_SET (this_used);
689 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
690 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
691 IOR_HARD_REG_SET (prologue_used, this_used);
692 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
693 }
694 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
695 if (frame_pointer_needed)
696 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
697
698 /* Find out what registers are set up by the prologue; any use of these
699 cannot happen before the prologue. */
700
701 struct hard_reg_set_container set_up_by_prologue;
702 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
703 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
704 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
705 if (frame_pointer_needed)
706 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
707 HARD_FRAME_POINTER_REGNUM);
708 if (pic_offset_table_rtx
709 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
710 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
711 PIC_OFFSET_TABLE_REGNUM);
712 if (crtl->drap_reg)
713 add_to_hard_reg_set (&set_up_by_prologue.set,
714 GET_MODE (crtl->drap_reg),
715 REGNO (crtl->drap_reg));
716 if (targetm.set_up_by_prologue)
717 targetm.set_up_by_prologue (&set_up_by_prologue);
718
719 /* We will insert the prologue before the basic block PRO. PRO should
720 dominate all basic blocks that need the prologue to be executed
721 before them. First, make PRO the "tightest wrap" possible. */
722
723 calculate_dominance_info (CDI_DOMINATORS);
724
725 basic_block pro = 0;
726
727 basic_block bb;
728 edge e;
729 edge_iterator ei;
730 FOR_EACH_BB_FN (bb, cfun)
731 {
732 rtx_insn *insn;
733 FOR_BB_INSNS (bb, insn)
734 if (NONDEBUG_INSN_P (insn)
735 && requires_stack_frame_p (insn, prologue_used,
736 set_up_by_prologue.set))
737 {
738 if (dump_file)
739 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
740 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
741 break;
742 }
743 }
744
745 /* If nothing needs a prologue, just put it at the start. This really
746 shouldn't happen, but we cannot fix it here. */
747
748 if (pro == 0)
749 {
750 if (dump_file)
751 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
752 "putting it at the start.\n");
753 pro = entry;
754 }
755
756 if (dump_file)
757 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
758 pro->index);
759
760 /* Now see if we can put the prologue at the start of PRO. Putting it
761 there might require duplicating a block that cannot be duplicated,
762 or in some cases we cannot insert the prologue there at all. If PRO
763 wont't do, try again with the immediate dominator of PRO, and so on.
764
765 The blocks that need duplicating are those reachable from PRO but
766 not dominated by it. We keep in BB_WITH a bitmap of the blocks
767 reachable from PRO that we already found, and in VEC a stack of
768 those we still need to consider (to find successors). */
769
770 auto_bitmap bb_with;
771 bitmap_set_bit (bb_with, pro->index);
772
773 vec<basic_block> vec;
774 vec.create (n_basic_blocks_for_fn (cfun));
775 vec.quick_push (pro);
776
777 unsigned max_grow_size = get_uncond_jump_length ();
778 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
779
780 while (!vec.is_empty () && pro != entry)
781 {
782 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
783 {
784 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
785
786 if (bitmap_set_bit (bb_with, pro->index))
787 vec.quick_push (pro);
788 }
789
790 basic_block bb = vec.pop ();
791 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
792 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
793 {
794 gcc_assert (pro != entry);
795
796 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
797
798 if (bitmap_set_bit (bb_with, pro->index))
799 vec.quick_push (pro);
800 }
801
802 FOR_EACH_EDGE (e, ei, bb->succs)
803 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
804 && bitmap_set_bit (bb_with, e->dest->index))
805 vec.quick_push (e->dest);
806 }
807
808 if (dump_file)
809 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
810 pro->index);
811
812 /* If we can move PRO back without having to duplicate more blocks, do so.
813 We do this because putting the prologue earlier is better for scheduling.
814
815 We can move back to a block PRE if every path from PRE will eventually
816 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
817 to dominate every block reachable from itself. We keep in BB_TMP a
818 bitmap of the blocks reachable from PRE that we already found, and in
819 VEC a stack of those we still need to consider.
820
821 Any block reachable from PRE is also reachable from all predecessors
822 of PRE, so if we find we need to move PRE back further we can leave
823 everything not considered so far on the stack. Any block dominated
824 by PRE is also dominated by all other dominators of PRE, so anything
825 found good for some PRE does not need to be reconsidered later.
826
827 We don't need to update BB_WITH because none of the new blocks found
828 can jump to a block that does not need the prologue. */
829
830 if (pro != entry)
831 {
832 calculate_dominance_info (CDI_POST_DOMINATORS);
833
834 auto_bitmap bb_tmp;
835 bitmap_copy (bb_tmp, bb_with);
836 basic_block last_ok = pro;
837 vec.truncate (0);
838
839 while (pro != entry)
840 {
841 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
842 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
843 break;
844
845 if (bitmap_set_bit (bb_tmp, pre->index))
846 vec.quick_push (pre);
847
848 bool ok = true;
849 while (!vec.is_empty ())
850 {
851 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
852 {
853 ok = false;
854 break;
855 }
856
857 basic_block bb = vec.pop ();
858 FOR_EACH_EDGE (e, ei, bb->succs)
859 if (bitmap_set_bit (bb_tmp, e->dest->index))
860 vec.quick_push (e->dest);
861 }
862
863 if (ok && can_get_prologue (pre, prologue_clobbered))
864 last_ok = pre;
865
866 pro = pre;
867 }
868
869 pro = last_ok;
870
871 free_dominance_info (CDI_POST_DOMINATORS);
872 }
873
874 vec.release ();
875
876 if (dump_file)
877 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
878 pro->index);
879
880 if (pro == entry)
881 {
882 free_dominance_info (CDI_DOMINATORS);
883 return;
884 }
885
886 /* Compute what fraction of the frequency and count of the blocks that run
887 both with and without prologue are for running with prologue. This gives
888 the correct answer for reducible flow graphs; for irreducible flow graphs
889 our profile is messed up beyond repair anyway. */
890
891 profile_count num = profile_count::zero ();
892 profile_count den = profile_count::zero ();
893
894 FOR_EACH_EDGE (e, ei, pro->preds)
895 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
896 {
897 if (e->count ().initialized_p ())
898 num += e->count ();
899 if (e->src->count.initialized_p ())
900 den += e->src->count;
901 }
902
903 /* All is okay, so do it. */
904
905 crtl->shrink_wrapped = true;
906 if (dump_file)
907 fprintf (dump_file, "Performing shrink-wrapping.\n");
908
909 /* Copy the blocks that can run both with and without prologue. The
910 originals run with prologue, the copies without. Store a pointer to
911 the copy in the ->aux field of the original. */
912
913 FOR_EACH_BB_FN (bb, cfun)
914 if (bitmap_bit_p (bb_with, bb->index)
915 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
916 {
917 basic_block dup = duplicate_block (bb, 0, 0);
918
919 bb->aux = dup;
920
921 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
922 emit_barrier_after_bb (dup);
923
924 if (EDGE_COUNT (dup->succs) == 0)
925 emit_barrier_after_bb (dup);
926
927 if (dump_file)
928 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
929
930 if (num == profile_count::zero () || den.nonzero_p ())
931 bb->count = bb->count.apply_scale (num, den);
932 dup->count -= bb->count;
933 }
934
935 /* Now change the edges to point to the copies, where appropriate. */
936
937 FOR_EACH_BB_FN (bb, cfun)
938 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
939 {
940 basic_block src = bb;
941 if (bitmap_bit_p (bb_with, bb->index))
942 src = (basic_block) bb->aux;
943
944 FOR_EACH_EDGE (e, ei, src->succs)
945 {
946 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
947 continue;
948
949 if (bitmap_bit_p (bb_with, e->dest->index)
950 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
951 {
952 if (dump_file)
953 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
954 e->src->index, e->dest->index,
955 ((basic_block) e->dest->aux)->index);
956 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
957 }
958 else if (e->flags & EDGE_FALLTHRU
959 && bitmap_bit_p (bb_with, bb->index))
960 force_nonfallthru (e);
961 }
962 }
963
964 /* Also redirect the function entry edge if necessary. */
965
966 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
967 if (bitmap_bit_p (bb_with, e->dest->index)
968 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
969 {
970 basic_block split_bb = split_edge (e);
971 e = single_succ_edge (split_bb);
972 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
973 }
974
975 /* Make a simple_return for those exits that run without prologue. */
976
977 FOR_EACH_BB_REVERSE_FN (bb, cfun)
978 if (!bitmap_bit_p (bb_with, bb->index))
979 FOR_EACH_EDGE (e, ei, bb->succs)
980 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
981 handle_simple_exit (e);
982
983 /* Finally, we want a single edge to put the prologue on. Make a new
984 block before the PRO block; the edge beteen them is the edge we want.
985 Then redirect those edges into PRO that come from blocks without the
986 prologue, to point to the new block instead. The new prologue block
987 is put at the end of the insn chain. */
988
989 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
990 BB_COPY_PARTITION (new_bb, pro);
991 new_bb->count = profile_count::zero ();
992 if (dump_file)
993 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
994
995 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
996 {
997 if (bitmap_bit_p (bb_with, e->src->index)
998 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
999 {
1000 ei_next (&ei);
1001 continue;
1002 }
1003
1004 new_bb->count += e->count ();
1005
1006 redirect_edge_and_branch_force (e, new_bb);
1007 if (dump_file)
1008 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1009 }
1010
1011 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1012 force_nonfallthru (*entry_edge);
1013
1014 free_dominance_info (CDI_DOMINATORS);
1015 }
1016 \f
1017 /* Separate shrink-wrapping
1018
1019 Instead of putting all of the prologue and epilogue in one spot, we
1020 can put parts of it in places where those components are executed less
1021 frequently. The following code does this, for prologue and epilogue
1022 components that can be put in more than one location, and where those
1023 components can be executed more than once (the epilogue component will
1024 always be executed before the prologue component is executed a second
1025 time).
1026
1027 What exactly is a component is target-dependent. The more usual
1028 components are simple saves/restores to/from the frame of callee-saved
1029 registers. This code treats components abstractly (as an sbitmap),
1030 letting the target handle all details.
1031
1032 Prologue components are placed in such a way that for every component
1033 the prologue is executed as infrequently as possible. We do this by
1034 walking the dominator tree, comparing the cost of placing a prologue
1035 component before a block to the sum of costs determined for all subtrees
1036 of that block.
1037
1038 From this placement, we then determine for each component all blocks
1039 where at least one of this block's dominators (including itself) will
1040 get a prologue inserted. That then is how the components are placed.
1041 We could place the epilogue components a bit smarter (we can save a
1042 bit of code size sometimes); this is a possible future improvement.
1043
1044 Prologues and epilogues are preferably placed into a block, either at
1045 the beginning or end of it, if it is needed for all predecessor resp.
1046 successor edges; or placed on the edge otherwise.
1047
1048 If the placement of any prologue/epilogue leads to a situation we cannot
1049 handle (for example, an abnormal edge would need to be split, or some
1050 targets want to use some specific registers that may not be available
1051 where we want to put them), separate shrink-wrapping for the components
1052 in that prologue/epilogue is aborted. */
1053
1054
1055 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1056 label LABEL. */
1057 static void
1058 dump_components (const char *label, sbitmap components)
1059 {
1060 if (bitmap_empty_p (components))
1061 return;
1062
1063 fprintf (dump_file, " [%s", label);
1064
1065 for (unsigned int j = 0; j < components->n_bits; j++)
1066 if (bitmap_bit_p (components, j))
1067 fprintf (dump_file, " %u", j);
1068
1069 fprintf (dump_file, "]");
1070 }
1071
1072 /* The data we collect for each bb. */
1073 struct sw {
1074 /* What components does this BB need? */
1075 sbitmap needs_components;
1076
1077 /* What components does this BB have? This is the main decision this
1078 pass makes. */
1079 sbitmap has_components;
1080
1081 /* The components for which we placed code at the start of the BB (instead
1082 of on all incoming edges). */
1083 sbitmap head_components;
1084
1085 /* The components for which we placed code at the end of the BB (instead
1086 of on all outgoing edges). */
1087 sbitmap tail_components;
1088
1089 /* The frequency of executing the prologue for this BB, if a prologue is
1090 placed on this BB. This is a pessimistic estimate (no prologue is
1091 needed for edges from blocks that have the component under consideration
1092 active already). */
1093 gcov_type own_cost;
1094
1095 /* The frequency of executing the prologue for this BB and all BBs
1096 dominated by it. */
1097 gcov_type total_cost;
1098 };
1099
1100 /* A helper function for accessing the pass-specific info. */
1101 static inline struct sw *
1102 SW (basic_block bb)
1103 {
1104 gcc_assert (bb->aux);
1105 return (struct sw *) bb->aux;
1106 }
1107
1108 /* Create the pass-specific data structures for separately shrink-wrapping
1109 with components COMPONENTS. */
1110 static void
1111 init_separate_shrink_wrap (sbitmap components)
1112 {
1113 basic_block bb;
1114 FOR_ALL_BB_FN (bb, cfun)
1115 {
1116 bb->aux = xcalloc (1, sizeof (struct sw));
1117
1118 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1119
1120 /* Mark all basic blocks without successor as needing all components.
1121 This avoids problems in at least cfgcleanup, sel-sched, and
1122 regrename (largely to do with all paths to such a block still
1123 needing the same dwarf CFI info). */
1124 if (EDGE_COUNT (bb->succs) == 0)
1125 bitmap_copy (SW (bb)->needs_components, components);
1126
1127 if (dump_file)
1128 {
1129 fprintf (dump_file, "bb %d components:", bb->index);
1130 dump_components ("has", SW (bb)->needs_components);
1131 fprintf (dump_file, "\n");
1132 }
1133
1134 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1135 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1136 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1137 bitmap_clear (SW (bb)->has_components);
1138 }
1139 }
1140
1141 /* Destroy the pass-specific data. */
1142 static void
1143 fini_separate_shrink_wrap (void)
1144 {
1145 basic_block bb;
1146 FOR_ALL_BB_FN (bb, cfun)
1147 if (bb->aux)
1148 {
1149 sbitmap_free (SW (bb)->needs_components);
1150 sbitmap_free (SW (bb)->has_components);
1151 sbitmap_free (SW (bb)->head_components);
1152 sbitmap_free (SW (bb)->tail_components);
1153 free (bb->aux);
1154 bb->aux = 0;
1155 }
1156 }
1157
1158 /* Place the prologue for component WHICH, in the basic blocks dominated
1159 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1160 HAS_COMPONENTS of a block if either the block has that bit set in
1161 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1162 dominator subtrees separately. */
1163 static void
1164 place_prologue_for_one_component (unsigned int which, basic_block head)
1165 {
1166 /* The block we are currently dealing with. */
1167 basic_block bb = head;
1168 /* Is this the first time we visit this block, i.e. have we just gone
1169 down the tree. */
1170 bool first_visit = true;
1171
1172 /* Walk the dominator tree, visit one block per iteration of this loop.
1173 Each basic block is visited twice: once before visiting any children
1174 of the block, and once after visiting all of them (leaf nodes are
1175 visited only once). As an optimization, we do not visit subtrees
1176 that can no longer influence the prologue placement. */
1177 for (;;)
1178 {
1179 /* First visit of a block: set the (children) cost accumulator to zero;
1180 if the block does not have the component itself, walk down. */
1181 if (first_visit)
1182 {
1183 /* Initialize the cost. The cost is the block execution frequency
1184 that does not come from backedges. Calculating this by simply
1185 adding the cost of all edges that aren't backedges does not
1186 work: this does not always add up to the block frequency at
1187 all, and even if it does, rounding error makes for bad
1188 decisions. */
1189 SW (bb)->own_cost = bb->count.to_frequency (cfun);
1190
1191 edge e;
1192 edge_iterator ei;
1193 FOR_EACH_EDGE (e, ei, bb->preds)
1194 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1195 {
1196 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1197 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1198 else
1199 SW (bb)->own_cost = 0;
1200 }
1201
1202 SW (bb)->total_cost = 0;
1203
1204 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1205 && first_dom_son (CDI_DOMINATORS, bb))
1206 {
1207 bb = first_dom_son (CDI_DOMINATORS, bb);
1208 continue;
1209 }
1210 }
1211
1212 /* If this block does need the component itself, or it is cheaper to
1213 put the prologue here than in all the descendants that need it,
1214 mark it so. If this block's immediate post-dominator is dominated
1215 by this block, and that needs the prologue, we can put it on this
1216 block as well (earlier is better). */
1217 if (bitmap_bit_p (SW (bb)->needs_components, which)
1218 || SW (bb)->total_cost > SW (bb)->own_cost)
1219 {
1220 SW (bb)->total_cost = SW (bb)->own_cost;
1221 bitmap_set_bit (SW (bb)->has_components, which);
1222 }
1223 else
1224 {
1225 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1226 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1227 && bitmap_bit_p (SW (kid)->has_components, which))
1228 {
1229 SW (bb)->total_cost = SW (bb)->own_cost;
1230 bitmap_set_bit (SW (bb)->has_components, which);
1231 }
1232 }
1233
1234 /* We are back where we started, so we are done now. */
1235 if (bb == head)
1236 return;
1237
1238 /* We now know the cost of the subtree rooted at the current block.
1239 Accumulate this cost in the parent. */
1240 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1241 SW (parent)->total_cost += SW (bb)->total_cost;
1242
1243 /* Don't walk the tree down unless necessary. */
1244 if (next_dom_son (CDI_DOMINATORS, bb)
1245 && SW (parent)->total_cost <= SW (parent)->own_cost)
1246 {
1247 bb = next_dom_son (CDI_DOMINATORS, bb);
1248 first_visit = true;
1249 }
1250 else
1251 {
1252 bb = parent;
1253 first_visit = false;
1254 }
1255 }
1256 }
1257
1258 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1259 setting it on any path from entry to exit where it was not already set
1260 somewhere (or, for blocks that have no path to the exit, consider only
1261 paths from the entry to the block itself). Return whether any changes
1262 were made to some HAS_COMPONENTS. */
1263 static bool
1264 spread_components (sbitmap components)
1265 {
1266 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1267 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1268
1269 /* A stack of all blocks left to consider, and a bitmap of all blocks
1270 on that stack. */
1271 vec<basic_block> todo;
1272 todo.create (n_basic_blocks_for_fn (cfun));
1273 auto_bitmap seen;
1274
1275 auto_sbitmap old (SBITMAP_SIZE (components));
1276
1277 /* Find for every block the components that are *not* needed on some path
1278 from the entry to that block. Do this with a flood fill from the entry
1279 block. Every block can be visited at most as often as the number of
1280 components (plus one), and usually much less often. */
1281
1282 if (dump_file)
1283 fprintf (dump_file, "Spreading down...\n");
1284
1285 basic_block bb;
1286 FOR_ALL_BB_FN (bb, cfun)
1287 bitmap_clear (SW (bb)->head_components);
1288
1289 bitmap_copy (SW (entry_block)->head_components, components);
1290
1291 edge e;
1292 edge_iterator ei;
1293
1294 todo.quick_push (single_succ (entry_block));
1295 bitmap_set_bit (seen, single_succ (entry_block)->index);
1296 while (!todo.is_empty ())
1297 {
1298 bb = todo.pop ();
1299
1300 bitmap_copy (old, SW (bb)->head_components);
1301
1302 FOR_EACH_EDGE (e, ei, bb->preds)
1303 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1304 SW (e->src)->head_components);
1305
1306 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1307 SW (bb)->has_components);
1308
1309 if (!bitmap_equal_p (old, SW (bb)->head_components))
1310 FOR_EACH_EDGE (e, ei, bb->succs)
1311 if (bitmap_set_bit (seen, e->dest->index))
1312 todo.quick_push (e->dest);
1313
1314 bitmap_clear_bit (seen, bb->index);
1315 }
1316
1317 /* Find for every block the components that are *not* needed on some reverse
1318 path from the exit to that block. */
1319
1320 if (dump_file)
1321 fprintf (dump_file, "Spreading up...\n");
1322
1323 /* First, mark all blocks not reachable from the exit block as not needing
1324 any component on any path to the exit. Mark everything, and then clear
1325 again by a flood fill. */
1326
1327 FOR_ALL_BB_FN (bb, cfun)
1328 bitmap_copy (SW (bb)->tail_components, components);
1329
1330 FOR_EACH_EDGE (e, ei, exit_block->preds)
1331 {
1332 todo.quick_push (e->src);
1333 bitmap_set_bit (seen, e->src->index);
1334 }
1335
1336 while (!todo.is_empty ())
1337 {
1338 bb = todo.pop ();
1339
1340 if (!bitmap_empty_p (SW (bb)->tail_components))
1341 FOR_EACH_EDGE (e, ei, bb->preds)
1342 if (bitmap_set_bit (seen, e->src->index))
1343 todo.quick_push (e->src);
1344
1345 bitmap_clear (SW (bb)->tail_components);
1346
1347 bitmap_clear_bit (seen, bb->index);
1348 }
1349
1350 /* And then, flood fill backwards to find for every block the components
1351 not needed on some path to the exit. */
1352
1353 bitmap_copy (SW (exit_block)->tail_components, components);
1354
1355 FOR_EACH_EDGE (e, ei, exit_block->preds)
1356 {
1357 todo.quick_push (e->src);
1358 bitmap_set_bit (seen, e->src->index);
1359 }
1360
1361 while (!todo.is_empty ())
1362 {
1363 bb = todo.pop ();
1364
1365 bitmap_copy (old, SW (bb)->tail_components);
1366
1367 FOR_EACH_EDGE (e, ei, bb->succs)
1368 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1369 SW (e->dest)->tail_components);
1370
1371 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1372 SW (bb)->has_components);
1373
1374 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1375 FOR_EACH_EDGE (e, ei, bb->preds)
1376 if (bitmap_set_bit (seen, e->src->index))
1377 todo.quick_push (e->src);
1378
1379 bitmap_clear_bit (seen, bb->index);
1380 }
1381
1382 todo.release ();
1383
1384 /* Finally, mark everything not not needed both forwards and backwards. */
1385
1386 bool did_changes = false;
1387
1388 FOR_EACH_BB_FN (bb, cfun)
1389 {
1390 bitmap_copy (old, SW (bb)->has_components);
1391
1392 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1393 SW (bb)->tail_components);
1394 bitmap_and_compl (SW (bb)->has_components, components,
1395 SW (bb)->head_components);
1396
1397 if (!did_changes && !bitmap_equal_p (old, SW (bb)->has_components))
1398 did_changes = true;
1399 }
1400
1401 FOR_ALL_BB_FN (bb, cfun)
1402 {
1403 if (dump_file)
1404 {
1405 fprintf (dump_file, "bb %d components:", bb->index);
1406 dump_components ("has", SW (bb)->has_components);
1407 fprintf (dump_file, "\n");
1408 }
1409 }
1410
1411 return did_changes;
1412 }
1413
1414 /* If we cannot handle placing some component's prologues or epilogues where
1415 we decided we should place them, unmark that component in COMPONENTS so
1416 that it is not wrapped separately. */
1417 static void
1418 disqualify_problematic_components (sbitmap components)
1419 {
1420 auto_sbitmap pro (SBITMAP_SIZE (components));
1421 auto_sbitmap epi (SBITMAP_SIZE (components));
1422
1423 basic_block bb;
1424 FOR_EACH_BB_FN (bb, cfun)
1425 {
1426 edge e;
1427 edge_iterator ei;
1428 FOR_EACH_EDGE (e, ei, bb->succs)
1429 {
1430 /* Find which components we want pro/epilogues for here. */
1431 bitmap_and_compl (epi, SW (e->src)->has_components,
1432 SW (e->dest)->has_components);
1433 bitmap_and_compl (pro, SW (e->dest)->has_components,
1434 SW (e->src)->has_components);
1435
1436 /* Ask the target what it thinks about things. */
1437 if (!bitmap_empty_p (epi))
1438 targetm.shrink_wrap.disqualify_components (components, e, epi,
1439 false);
1440 if (!bitmap_empty_p (pro))
1441 targetm.shrink_wrap.disqualify_components (components, e, pro,
1442 true);
1443
1444 /* If this edge doesn't need splitting, we're fine. */
1445 if (single_pred_p (e->dest)
1446 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1447 continue;
1448
1449 /* If the edge can be split, that is fine too. */
1450 if ((e->flags & EDGE_ABNORMAL) == 0)
1451 continue;
1452
1453 /* We also can handle sibcalls. */
1454 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1455 {
1456 gcc_assert (e->flags & EDGE_SIBCALL);
1457 continue;
1458 }
1459
1460 /* Remove from consideration those components we would need
1461 pro/epilogues for on edges where we cannot insert them. */
1462 bitmap_and_compl (components, components, epi);
1463 bitmap_and_compl (components, components, pro);
1464
1465 if (dump_file && !bitmap_subset_p (epi, components))
1466 {
1467 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1468 e->dest->index);
1469 if (e->flags & EDGE_EH)
1470 fprintf (dump_file, " for EH");
1471 dump_components ("epi", epi);
1472 fprintf (dump_file, "\n");
1473 }
1474
1475 if (dump_file && !bitmap_subset_p (pro, components))
1476 {
1477 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1478 e->dest->index);
1479 if (e->flags & EDGE_EH)
1480 fprintf (dump_file, " for EH");
1481 dump_components ("pro", pro);
1482 fprintf (dump_file, "\n");
1483 }
1484 }
1485 }
1486 }
1487
1488 /* Place code for prologues and epilogues for COMPONENTS where we can put
1489 that code at the start of basic blocks. */
1490 static void
1491 emit_common_heads_for_components (sbitmap components)
1492 {
1493 auto_sbitmap pro (SBITMAP_SIZE (components));
1494 auto_sbitmap epi (SBITMAP_SIZE (components));
1495 auto_sbitmap tmp (SBITMAP_SIZE (components));
1496
1497 basic_block bb;
1498 FOR_ALL_BB_FN (bb, cfun)
1499 bitmap_clear (SW (bb)->head_components);
1500
1501 FOR_EACH_BB_FN (bb, cfun)
1502 {
1503 /* Find which prologue resp. epilogue components are needed for all
1504 predecessor edges to this block. */
1505
1506 /* First, select all possible components. */
1507 bitmap_copy (epi, components);
1508 bitmap_copy (pro, components);
1509
1510 edge e;
1511 edge_iterator ei;
1512 FOR_EACH_EDGE (e, ei, bb->preds)
1513 {
1514 if (e->flags & EDGE_ABNORMAL)
1515 {
1516 bitmap_clear (epi);
1517 bitmap_clear (pro);
1518 break;
1519 }
1520
1521 /* Deselect those epilogue components that should not be inserted
1522 for this edge. */
1523 bitmap_and_compl (tmp, SW (e->src)->has_components,
1524 SW (e->dest)->has_components);
1525 bitmap_and (epi, epi, tmp);
1526
1527 /* Similar, for the prologue. */
1528 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1529 SW (e->src)->has_components);
1530 bitmap_and (pro, pro, tmp);
1531 }
1532
1533 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1534 fprintf (dump_file, " bb %d", bb->index);
1535
1536 if (dump_file && !bitmap_empty_p (epi))
1537 dump_components ("epi", epi);
1538 if (dump_file && !bitmap_empty_p (pro))
1539 dump_components ("pro", pro);
1540
1541 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1542 fprintf (dump_file, "\n");
1543
1544 /* Place code after the BB note. */
1545 if (!bitmap_empty_p (pro))
1546 {
1547 start_sequence ();
1548 targetm.shrink_wrap.emit_prologue_components (pro);
1549 rtx_insn *seq = get_insns ();
1550 end_sequence ();
1551 record_prologue_seq (seq);
1552
1553 emit_insn_after (seq, bb_note (bb));
1554
1555 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1556 }
1557
1558 if (!bitmap_empty_p (epi))
1559 {
1560 start_sequence ();
1561 targetm.shrink_wrap.emit_epilogue_components (epi);
1562 rtx_insn *seq = get_insns ();
1563 end_sequence ();
1564 record_epilogue_seq (seq);
1565
1566 emit_insn_after (seq, bb_note (bb));
1567
1568 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1569 }
1570 }
1571 }
1572
1573 /* Place code for prologues and epilogues for COMPONENTS where we can put
1574 that code at the end of basic blocks. */
1575 static void
1576 emit_common_tails_for_components (sbitmap components)
1577 {
1578 auto_sbitmap pro (SBITMAP_SIZE (components));
1579 auto_sbitmap epi (SBITMAP_SIZE (components));
1580 auto_sbitmap tmp (SBITMAP_SIZE (components));
1581
1582 basic_block bb;
1583 FOR_ALL_BB_FN (bb, cfun)
1584 bitmap_clear (SW (bb)->tail_components);
1585
1586 FOR_EACH_BB_FN (bb, cfun)
1587 {
1588 /* Find which prologue resp. epilogue components are needed for all
1589 successor edges from this block. */
1590 if (EDGE_COUNT (bb->succs) == 0)
1591 continue;
1592
1593 /* First, select all possible components. */
1594 bitmap_copy (epi, components);
1595 bitmap_copy (pro, components);
1596
1597 edge e;
1598 edge_iterator ei;
1599 FOR_EACH_EDGE (e, ei, bb->succs)
1600 {
1601 if (e->flags & EDGE_ABNORMAL)
1602 {
1603 bitmap_clear (epi);
1604 bitmap_clear (pro);
1605 break;
1606 }
1607
1608 /* Deselect those epilogue components that should not be inserted
1609 for this edge, and also those that are already put at the head
1610 of the successor block. */
1611 bitmap_and_compl (tmp, SW (e->src)->has_components,
1612 SW (e->dest)->has_components);
1613 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1614 bitmap_and (epi, epi, tmp);
1615
1616 /* Similarly, for the prologue. */
1617 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1618 SW (e->src)->has_components);
1619 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1620 bitmap_and (pro, pro, tmp);
1621 }
1622
1623 /* If the last insn of this block is a control flow insn we cannot
1624 put anything after it. We can put our code before it instead,
1625 but only if that jump insn is a simple jump. */
1626 rtx_insn *last_insn = BB_END (bb);
1627 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1628 {
1629 bitmap_clear (epi);
1630 bitmap_clear (pro);
1631 }
1632
1633 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1634 fprintf (dump_file, " bb %d", bb->index);
1635
1636 if (dump_file && !bitmap_empty_p (epi))
1637 dump_components ("epi", epi);
1638 if (dump_file && !bitmap_empty_p (pro))
1639 dump_components ("pro", pro);
1640
1641 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1642 fprintf (dump_file, "\n");
1643
1644 /* Put the code at the end of the BB, but before any final jump. */
1645 if (!bitmap_empty_p (epi))
1646 {
1647 start_sequence ();
1648 targetm.shrink_wrap.emit_epilogue_components (epi);
1649 rtx_insn *seq = get_insns ();
1650 end_sequence ();
1651 record_epilogue_seq (seq);
1652
1653 if (control_flow_insn_p (last_insn))
1654 emit_insn_before (seq, last_insn);
1655 else
1656 emit_insn_after (seq, last_insn);
1657
1658 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1659 }
1660
1661 if (!bitmap_empty_p (pro))
1662 {
1663 start_sequence ();
1664 targetm.shrink_wrap.emit_prologue_components (pro);
1665 rtx_insn *seq = get_insns ();
1666 end_sequence ();
1667 record_prologue_seq (seq);
1668
1669 if (control_flow_insn_p (last_insn))
1670 emit_insn_before (seq, last_insn);
1671 else
1672 emit_insn_after (seq, last_insn);
1673
1674 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1675 }
1676 }
1677 }
1678
1679 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1680 placed them inside blocks directly. */
1681 static void
1682 insert_prologue_epilogue_for_components (sbitmap components)
1683 {
1684 auto_sbitmap pro (SBITMAP_SIZE (components));
1685 auto_sbitmap epi (SBITMAP_SIZE (components));
1686
1687 basic_block bb;
1688 FOR_EACH_BB_FN (bb, cfun)
1689 {
1690 if (!bb->aux)
1691 continue;
1692
1693 edge e;
1694 edge_iterator ei;
1695 FOR_EACH_EDGE (e, ei, bb->succs)
1696 {
1697 /* Find which pro/epilogue components are needed on this edge. */
1698 bitmap_and_compl (epi, SW (e->src)->has_components,
1699 SW (e->dest)->has_components);
1700 bitmap_and_compl (pro, SW (e->dest)->has_components,
1701 SW (e->src)->has_components);
1702 bitmap_and (epi, epi, components);
1703 bitmap_and (pro, pro, components);
1704
1705 /* Deselect those we already have put at the head or tail of the
1706 edge's dest resp. src. */
1707 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1708 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1709 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1710 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1711
1712 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1713 {
1714 if (dump_file)
1715 {
1716 fprintf (dump_file, " %d->%d", e->src->index,
1717 e->dest->index);
1718 dump_components ("epi", epi);
1719 dump_components ("pro", pro);
1720 if (e->flags & EDGE_SIBCALL)
1721 fprintf (dump_file, " (SIBCALL)");
1722 else if (e->flags & EDGE_ABNORMAL)
1723 fprintf (dump_file, " (ABNORMAL)");
1724 fprintf (dump_file, "\n");
1725 }
1726
1727 /* Put the epilogue components in place. */
1728 start_sequence ();
1729 targetm.shrink_wrap.emit_epilogue_components (epi);
1730 rtx_insn *seq = get_insns ();
1731 end_sequence ();
1732 record_epilogue_seq (seq);
1733
1734 if (e->flags & EDGE_SIBCALL)
1735 {
1736 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1737
1738 rtx_insn *insn = BB_END (e->src);
1739 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1740 emit_insn_before (seq, insn);
1741 }
1742 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1743 {
1744 gcc_assert (e->flags & EDGE_FALLTHRU);
1745 basic_block new_bb = split_edge (e);
1746 emit_insn_after (seq, BB_END (new_bb));
1747 }
1748 else
1749 insert_insn_on_edge (seq, e);
1750
1751 /* Put the prologue components in place. */
1752 start_sequence ();
1753 targetm.shrink_wrap.emit_prologue_components (pro);
1754 seq = get_insns ();
1755 end_sequence ();
1756 record_prologue_seq (seq);
1757
1758 insert_insn_on_edge (seq, e);
1759 }
1760 }
1761 }
1762
1763 commit_edge_insertions ();
1764 }
1765
1766 /* The main entry point to this subpass. FIRST_BB is where the prologue
1767 would be normally put. */
1768 void
1769 try_shrink_wrapping_separate (basic_block first_bb)
1770 {
1771 if (HAVE_cc0)
1772 return;
1773
1774 if (!(SHRINK_WRAPPING_ENABLED
1775 && flag_shrink_wrap_separate
1776 && optimize_function_for_speed_p (cfun)
1777 && targetm.shrink_wrap.get_separate_components))
1778 return;
1779
1780 /* We don't handle "strange" functions. */
1781 if (cfun->calls_alloca
1782 || cfun->calls_setjmp
1783 || cfun->can_throw_non_call_exceptions
1784 || crtl->calls_eh_return
1785 || crtl->has_nonlocal_goto
1786 || crtl->saves_all_registers)
1787 return;
1788
1789 /* Ask the target what components there are. If it returns NULL, don't
1790 do anything. */
1791 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1792 if (!components)
1793 return;
1794
1795 /* We need LIVE info, not defining anything in the entry block and not
1796 using anything in the exit block. A block then needs a component if
1797 the register for that component is in the IN or GEN or KILL set for
1798 that block. */
1799 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1800 df_update_entry_exit_and_calls ();
1801 df_live_add_problem ();
1802 df_live_set_all_dirty ();
1803 df_analyze ();
1804
1805 calculate_dominance_info (CDI_DOMINATORS);
1806 calculate_dominance_info (CDI_POST_DOMINATORS);
1807
1808 init_separate_shrink_wrap (components);
1809
1810 sbitmap_iterator sbi;
1811 unsigned int j;
1812 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1813 place_prologue_for_one_component (j, first_bb);
1814
1815 /* Try to minimize the number of saves and restores. Do this as long as
1816 it changes anything. This does not iterate more than a few times. */
1817 int spread_times = 0;
1818 while (spread_components (components))
1819 {
1820 spread_times++;
1821
1822 if (dump_file)
1823 fprintf (dump_file, "Now spread %d times.\n", spread_times);
1824 }
1825
1826 disqualify_problematic_components (components);
1827
1828 /* Don't separately shrink-wrap anything where the "main" prologue will
1829 go; the target code can often optimize things if it is presented with
1830 all components together (say, if it generates store-multiple insns). */
1831 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1832
1833 if (bitmap_empty_p (components))
1834 {
1835 if (dump_file)
1836 fprintf (dump_file, "Not wrapping anything separately.\n");
1837 }
1838 else
1839 {
1840 if (dump_file)
1841 {
1842 fprintf (dump_file, "The components we wrap separately are");
1843 dump_components ("sep", components);
1844 fprintf (dump_file, "\n");
1845
1846 fprintf (dump_file, "... Inserting common heads...\n");
1847 }
1848
1849 emit_common_heads_for_components (components);
1850
1851 if (dump_file)
1852 fprintf (dump_file, "... Inserting common tails...\n");
1853
1854 emit_common_tails_for_components (components);
1855
1856 if (dump_file)
1857 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1858
1859 insert_prologue_epilogue_for_components (components);
1860
1861 if (dump_file)
1862 fprintf (dump_file, "... Done.\n");
1863
1864 targetm.shrink_wrap.set_handled_components (components);
1865
1866 crtl->shrink_wrapped_separate = true;
1867 }
1868
1869 fini_separate_shrink_wrap ();
1870
1871 sbitmap_free (components);
1872 free_dominance_info (CDI_DOMINATORS);
1873 free_dominance_info (CDI_POST_DOMINATORS);
1874
1875 /* All done. */
1876 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1877 df_update_entry_exit_and_calls ();
1878 df_live_set_all_dirty ();
1879 df_analyze ();
1880 }