]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stor-layout.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
49
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
61 \f
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
64
65 tree
66 variable_size (tree size)
67 {
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
71
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
76
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
82
83 return save_expr (size);
84 }
85
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
88
89 /* Return true if T is a self-referential component reference. */
90
91 static bool
92 self_referential_component_ref_p (tree t)
93 {
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
96
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
99
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 }
102
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
106
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 {
110 enum tree_code code = TREE_CODE (*tp);
111
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
116 {
117 *walk_subtrees = 0;
118 return NULL_TREE;
119 }
120
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 {
125 *walk_subtrees = 0;
126 return NULL_TREE;
127 }
128
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
131 {
132 *walk_subtrees = 0;
133 return NULL_TREE;
134 }
135
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
143
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
146
147 return copy_tree_r (tp, walk_subtrees, data);
148 }
149
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
152
153 static tree
154 self_referential_size (tree size)
155 {
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
163
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
168
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
172
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
178
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 {
184 tree subst, param_name, param_type, param_decl;
185
186 if (DECL_P (ref))
187 {
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
191 }
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
198
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
207
208 size = substitute_in_expr (size, subst, param_decl);
209
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
213 }
214
215 self_refs.release ();
216
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
223
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
227
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
243
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
247
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
251
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
258
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
261
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 }
265
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
272
273 void
274 finalize_size_functions (void)
275 {
276 unsigned int i;
277 tree fndecl;
278
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 {
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
284
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
290 }
291
292 vec_free (size_functions);
293 }
294 \f
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
299
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
302 {
303 machine_mode mode;
304 int i;
305
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
308
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
313
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
319
320 return opt_machine_mode ();
321 }
322
323 /* Similar, except passed a tree node. */
324
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 {
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
330
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
338 }
339
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
342
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
345 {
346 machine_mode mode = VOIDmode;
347 int i;
348
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
354
355 gcc_assert (mode != VOIDmode);
356
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
363
364 return mode;
365 }
366
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
368
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
371 {
372 switch (GET_MODE_CLASS (mode))
373 {
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
377
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
394
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
398
399 /* fall through */
400
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
404 }
405 }
406
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
408 if one exists. */
409
410 opt_machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
412 {
413 /* Quick exit if we already have a suitable mode. */
414 scalar_int_mode int_mode;
415 if (is_a <scalar_int_mode> (mode, &int_mode)
416 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
417 return int_mode;
418
419 /* Reuse the sanity checks from int_mode_for_mode. */
420 gcc_checking_assert ((int_mode_for_mode (mode), true));
421
422 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
423
424 /* Try to replace complex modes with complex modes. In general we
425 expect both components to be processed independently, so we only
426 care whether there is a register for the inner mode. */
427 if (COMPLEX_MODE_P (mode))
428 {
429 machine_mode trial = mode;
430 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
431 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
432 && have_regs_of_mode[GET_MODE_INNER (trial)])
433 return trial;
434 }
435
436 /* Try to replace vector modes with vector modes. Also try using vector
437 modes if an integer mode would be too big. */
438 if (VECTOR_MODE_P (mode)
439 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
440 {
441 machine_mode trial = mode;
442 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
443 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
444 && have_regs_of_mode[trial]
445 && targetm.vector_mode_supported_p (trial))
446 return trial;
447 }
448
449 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
450 return mode_for_size (bitsize, MODE_INT, true);
451 }
452
453 /* Find a type that can be used for efficient bitwise operations on MODE.
454 Return null if no such mode exists. */
455
456 tree
457 bitwise_type_for_mode (machine_mode mode)
458 {
459 if (!bitwise_mode_for_mode (mode).exists (&mode))
460 return NULL_TREE;
461
462 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
463 tree inner_type = build_nonstandard_integer_type (inner_size, true);
464
465 if (VECTOR_MODE_P (mode))
466 return build_vector_type_for_mode (inner_type, mode);
467
468 if (COMPLEX_MODE_P (mode))
469 return build_complex_type (inner_type);
470
471 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
472 return inner_type;
473 }
474
475 /* Find a mode that is suitable for representing a vector with NUNITS
476 elements of mode INNERMODE, if one exists. The returned mode can be
477 either an integer mode or a vector mode. */
478
479 opt_machine_mode
480 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
481 {
482 machine_mode mode;
483
484 /* First, look for a supported vector type. */
485 if (SCALAR_FLOAT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FLOAT;
487 else if (SCALAR_FRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_FRACT;
489 else if (SCALAR_UFRACT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_UFRACT;
491 else if (SCALAR_ACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_ACCUM;
493 else if (SCALAR_UACCUM_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UACCUM;
495 else
496 mode = MIN_MODE_VECTOR_INT;
497
498 /* Do not check vector_mode_supported_p here. We'll do that
499 later in vector_type_mode. */
500 FOR_EACH_MODE_FROM (mode, mode)
501 if (known_eq (GET_MODE_NUNITS (mode), nunits)
502 && GET_MODE_INNER (mode) == innermode)
503 return mode;
504
505 /* For integers, try mapping it to a same-sized scalar mode. */
506 if (GET_MODE_CLASS (innermode) == MODE_INT)
507 {
508 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
509 if (int_mode_for_size (nbits, 0).exists (&mode)
510 && have_regs_of_mode[mode])
511 return mode;
512 }
513
514 return opt_machine_mode ();
515 }
516
517 /* Return the mode for a vector that has NUNITS integer elements of
518 INT_BITS bits each, if such a mode exists. The mode can be either
519 an integer mode or a vector mode. */
520
521 opt_machine_mode
522 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
523 {
524 scalar_int_mode int_mode;
525 machine_mode vec_mode;
526 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
527 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
528 return vec_mode;
529 return opt_machine_mode ();
530 }
531
532 /* Return the alignment of MODE. This will be bounded by 1 and
533 BIGGEST_ALIGNMENT. */
534
535 unsigned int
536 get_mode_alignment (machine_mode mode)
537 {
538 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
539 }
540
541 /* Return the natural mode of an array, given that it is SIZE bytes in
542 total and has elements of type ELEM_TYPE. */
543
544 static machine_mode
545 mode_for_array (tree elem_type, tree size)
546 {
547 tree elem_size;
548 poly_uint64 int_size, int_elem_size;
549 unsigned HOST_WIDE_INT num_elems;
550 bool limit_p;
551
552 /* One-element arrays get the component type's mode. */
553 elem_size = TYPE_SIZE (elem_type);
554 if (simple_cst_equal (size, elem_size))
555 return TYPE_MODE (elem_type);
556
557 limit_p = true;
558 if (poly_int_tree_p (size, &int_size)
559 && poly_int_tree_p (elem_size, &int_elem_size)
560 && maybe_ne (int_elem_size, 0U)
561 && constant_multiple_p (int_size, int_elem_size, &num_elems))
562 {
563 machine_mode elem_mode = TYPE_MODE (elem_type);
564 machine_mode mode;
565 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
566 return mode;
567 if (targetm.array_mode_supported_p (elem_mode, num_elems))
568 limit_p = false;
569 }
570 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
571 }
572 \f
573 /* Subroutine of layout_decl: Force alignment required for the data type.
574 But if the decl itself wants greater alignment, don't override that. */
575
576 static inline void
577 do_type_align (tree type, tree decl)
578 {
579 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
580 {
581 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
582 if (TREE_CODE (decl) == FIELD_DECL)
583 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
584 }
585 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
586 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
587 }
588
589 /* Set the size, mode and alignment of a ..._DECL node.
590 TYPE_DECL does need this for C++.
591 Note that LABEL_DECL and CONST_DECL nodes do not need this,
592 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
593 Don't call layout_decl for them.
594
595 KNOWN_ALIGN is the amount of alignment we can assume this
596 decl has with no special effort. It is relevant only for FIELD_DECLs
597 and depends on the previous fields.
598 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
599 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
600 the record will be aligned to suit. */
601
602 void
603 layout_decl (tree decl, unsigned int known_align)
604 {
605 tree type = TREE_TYPE (decl);
606 enum tree_code code = TREE_CODE (decl);
607 rtx rtl = NULL_RTX;
608 location_t loc = DECL_SOURCE_LOCATION (decl);
609
610 if (code == CONST_DECL)
611 return;
612
613 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
614 || code == TYPE_DECL || code == FIELD_DECL);
615
616 rtl = DECL_RTL_IF_SET (decl);
617
618 if (type == error_mark_node)
619 type = void_type_node;
620
621 /* Usually the size and mode come from the data type without change,
622 however, the front-end may set the explicit width of the field, so its
623 size may not be the same as the size of its type. This happens with
624 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
625 also happens with other fields. For example, the C++ front-end creates
626 zero-sized fields corresponding to empty base classes, and depends on
627 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
628 size in bytes from the size in bits. If we have already set the mode,
629 don't set it again since we can be called twice for FIELD_DECLs. */
630
631 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
632 if (DECL_MODE (decl) == VOIDmode)
633 SET_DECL_MODE (decl, TYPE_MODE (type));
634
635 if (DECL_SIZE (decl) == 0)
636 {
637 DECL_SIZE (decl) = TYPE_SIZE (type);
638 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
639 }
640 else if (DECL_SIZE_UNIT (decl) == 0)
641 DECL_SIZE_UNIT (decl)
642 = fold_convert_loc (loc, sizetype,
643 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
644 bitsize_unit_node));
645
646 if (code != FIELD_DECL)
647 /* For non-fields, update the alignment from the type. */
648 do_type_align (type, decl);
649 else
650 /* For fields, it's a bit more complicated... */
651 {
652 bool old_user_align = DECL_USER_ALIGN (decl);
653 bool zero_bitfield = false;
654 bool packed_p = DECL_PACKED (decl);
655 unsigned int mfa;
656
657 if (DECL_BIT_FIELD (decl))
658 {
659 DECL_BIT_FIELD_TYPE (decl) = type;
660
661 /* A zero-length bit-field affects the alignment of the next
662 field. In essence such bit-fields are not influenced by
663 any packing due to #pragma pack or attribute packed. */
664 if (integer_zerop (DECL_SIZE (decl))
665 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
666 {
667 zero_bitfield = true;
668 packed_p = false;
669 if (PCC_BITFIELD_TYPE_MATTERS)
670 do_type_align (type, decl);
671 else
672 {
673 #ifdef EMPTY_FIELD_BOUNDARY
674 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
675 {
676 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
677 DECL_USER_ALIGN (decl) = 0;
678 }
679 #endif
680 }
681 }
682
683 /* See if we can use an ordinary integer mode for a bit-field.
684 Conditions are: a fixed size that is correct for another mode,
685 occupying a complete byte or bytes on proper boundary. */
686 if (TYPE_SIZE (type) != 0
687 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
688 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
689 {
690 machine_mode xmode;
691 if (mode_for_size_tree (DECL_SIZE (decl),
692 MODE_INT, 1).exists (&xmode))
693 {
694 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
695 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
696 && (known_align == 0 || known_align >= xalign))
697 {
698 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
699 SET_DECL_MODE (decl, xmode);
700 DECL_BIT_FIELD (decl) = 0;
701 }
702 }
703 }
704
705 /* Turn off DECL_BIT_FIELD if we won't need it set. */
706 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
707 && known_align >= TYPE_ALIGN (type)
708 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
709 DECL_BIT_FIELD (decl) = 0;
710 }
711 else if (packed_p && DECL_USER_ALIGN (decl))
712 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
713 round up; we'll reduce it again below. We want packing to
714 supersede USER_ALIGN inherited from the type, but defer to
715 alignment explicitly specified on the field decl. */;
716 else
717 do_type_align (type, decl);
718
719 /* If the field is packed and not explicitly aligned, give it the
720 minimum alignment. Note that do_type_align may set
721 DECL_USER_ALIGN, so we need to check old_user_align instead. */
722 if (packed_p
723 && !old_user_align)
724 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
725
726 if (! packed_p && ! DECL_USER_ALIGN (decl))
727 {
728 /* Some targets (i.e. i386, VMS) limit struct field alignment
729 to a lower boundary than alignment of variables unless
730 it was overridden by attribute aligned. */
731 #ifdef BIGGEST_FIELD_ALIGNMENT
732 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
733 (unsigned) BIGGEST_FIELD_ALIGNMENT));
734 #endif
735 #ifdef ADJUST_FIELD_ALIGN
736 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
737 DECL_ALIGN (decl)));
738 #endif
739 }
740
741 if (zero_bitfield)
742 mfa = initial_max_fld_align * BITS_PER_UNIT;
743 else
744 mfa = maximum_field_alignment;
745 /* Should this be controlled by DECL_USER_ALIGN, too? */
746 if (mfa != 0)
747 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
748 }
749
750 /* Evaluate nonconstant size only once, either now or as soon as safe. */
751 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
752 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
753 if (DECL_SIZE_UNIT (decl) != 0
754 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
755 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
756
757 /* If requested, warn about definitions of large data objects. */
758 if ((code == PARM_DECL || (code == VAR_DECL && !DECL_NONLOCAL_FRAME (decl)))
759 && !DECL_EXTERNAL (decl))
760 {
761 tree size = DECL_SIZE_UNIT (decl);
762
763 if (size != 0 && TREE_CODE (size) == INTEGER_CST)
764 {
765 /* -Wlarger-than= argument of HOST_WIDE_INT_MAX is treated
766 as if PTRDIFF_MAX had been specified, with the value
767 being that on the target rather than the host. */
768 unsigned HOST_WIDE_INT max_size = warn_larger_than_size;
769 if (max_size == HOST_WIDE_INT_MAX)
770 max_size = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
771
772 if (compare_tree_int (size, max_size) > 0)
773 warning (OPT_Wlarger_than_, "size of %q+D %E bytes exceeds "
774 "maximum object size %wu",
775 decl, size, max_size);
776 }
777 }
778
779 /* If the RTL was already set, update its mode and mem attributes. */
780 if (rtl)
781 {
782 PUT_MODE (rtl, DECL_MODE (decl));
783 SET_DECL_RTL (decl, 0);
784 if (MEM_P (rtl))
785 set_mem_attributes (rtl, decl, 1);
786 SET_DECL_RTL (decl, rtl);
787 }
788 }
789
790 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
791 results of a previous call to layout_decl and calls it again. */
792
793 void
794 relayout_decl (tree decl)
795 {
796 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
797 SET_DECL_MODE (decl, VOIDmode);
798 if (!DECL_USER_ALIGN (decl))
799 SET_DECL_ALIGN (decl, 0);
800 if (DECL_RTL_SET_P (decl))
801 SET_DECL_RTL (decl, 0);
802
803 layout_decl (decl, 0);
804 }
805 \f
806 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
807 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
808 is to be passed to all other layout functions for this record. It is the
809 responsibility of the caller to call `free' for the storage returned.
810 Note that garbage collection is not permitted until we finish laying
811 out the record. */
812
813 record_layout_info
814 start_record_layout (tree t)
815 {
816 record_layout_info rli = XNEW (struct record_layout_info_s);
817
818 rli->t = t;
819
820 /* If the type has a minimum specified alignment (via an attribute
821 declaration, for example) use it -- otherwise, start with a
822 one-byte alignment. */
823 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
824 rli->unpacked_align = rli->record_align;
825 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
826
827 #ifdef STRUCTURE_SIZE_BOUNDARY
828 /* Packed structures don't need to have minimum size. */
829 if (! TYPE_PACKED (t))
830 {
831 unsigned tmp;
832
833 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
834 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
835 if (maximum_field_alignment != 0)
836 tmp = MIN (tmp, maximum_field_alignment);
837 rli->record_align = MAX (rli->record_align, tmp);
838 }
839 #endif
840
841 rli->offset = size_zero_node;
842 rli->bitpos = bitsize_zero_node;
843 rli->prev_field = 0;
844 rli->pending_statics = 0;
845 rli->packed_maybe_necessary = 0;
846 rli->remaining_in_alignment = 0;
847
848 return rli;
849 }
850
851 /* Fold sizetype value X to bitsizetype, given that X represents a type
852 size or offset. */
853
854 static tree
855 bits_from_bytes (tree x)
856 {
857 if (POLY_INT_CST_P (x))
858 /* The runtime calculation isn't allowed to overflow sizetype;
859 increasing the runtime values must always increase the size
860 or offset of the object. This means that the object imposes
861 a maximum value on the runtime parameters, but we don't record
862 what that is. */
863 return build_poly_int_cst
864 (bitsizetype,
865 poly_wide_int::from (poly_int_cst_value (x),
866 TYPE_PRECISION (bitsizetype),
867 TYPE_SIGN (TREE_TYPE (x))));
868 x = fold_convert (bitsizetype, x);
869 gcc_checking_assert (x);
870 return x;
871 }
872
873 /* Return the combined bit position for the byte offset OFFSET and the
874 bit position BITPOS.
875
876 These functions operate on byte and bit positions present in FIELD_DECLs
877 and assume that these expressions result in no (intermediate) overflow.
878 This assumption is necessary to fold the expressions as much as possible,
879 so as to avoid creating artificially variable-sized types in languages
880 supporting variable-sized types like Ada. */
881
882 tree
883 bit_from_pos (tree offset, tree bitpos)
884 {
885 return size_binop (PLUS_EXPR, bitpos,
886 size_binop (MULT_EXPR, bits_from_bytes (offset),
887 bitsize_unit_node));
888 }
889
890 /* Return the combined truncated byte position for the byte offset OFFSET and
891 the bit position BITPOS. */
892
893 tree
894 byte_from_pos (tree offset, tree bitpos)
895 {
896 tree bytepos;
897 if (TREE_CODE (bitpos) == MULT_EXPR
898 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
899 bytepos = TREE_OPERAND (bitpos, 0);
900 else
901 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
902 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
903 }
904
905 /* Split the bit position POS into a byte offset *POFFSET and a bit
906 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
907
908 void
909 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
910 tree pos)
911 {
912 tree toff_align = bitsize_int (off_align);
913 if (TREE_CODE (pos) == MULT_EXPR
914 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
915 {
916 *poffset = size_binop (MULT_EXPR,
917 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
918 size_int (off_align / BITS_PER_UNIT));
919 *pbitpos = bitsize_zero_node;
920 }
921 else
922 {
923 *poffset = size_binop (MULT_EXPR,
924 fold_convert (sizetype,
925 size_binop (FLOOR_DIV_EXPR, pos,
926 toff_align)),
927 size_int (off_align / BITS_PER_UNIT));
928 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
929 }
930 }
931
932 /* Given a pointer to bit and byte offsets and an offset alignment,
933 normalize the offsets so they are within the alignment. */
934
935 void
936 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
937 {
938 /* If the bit position is now larger than it should be, adjust it
939 downwards. */
940 if (compare_tree_int (*pbitpos, off_align) >= 0)
941 {
942 tree offset, bitpos;
943 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
944 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
945 *pbitpos = bitpos;
946 }
947 }
948
949 /* Print debugging information about the information in RLI. */
950
951 DEBUG_FUNCTION void
952 debug_rli (record_layout_info rli)
953 {
954 print_node_brief (stderr, "type", rli->t, 0);
955 print_node_brief (stderr, "\noffset", rli->offset, 0);
956 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
957
958 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
959 rli->record_align, rli->unpacked_align,
960 rli->offset_align);
961
962 /* The ms_struct code is the only that uses this. */
963 if (targetm.ms_bitfield_layout_p (rli->t))
964 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
965
966 if (rli->packed_maybe_necessary)
967 fprintf (stderr, "packed may be necessary\n");
968
969 if (!vec_safe_is_empty (rli->pending_statics))
970 {
971 fprintf (stderr, "pending statics:\n");
972 debug (rli->pending_statics);
973 }
974 }
975
976 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
977 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
978
979 void
980 normalize_rli (record_layout_info rli)
981 {
982 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
983 }
984
985 /* Returns the size in bytes allocated so far. */
986
987 tree
988 rli_size_unit_so_far (record_layout_info rli)
989 {
990 return byte_from_pos (rli->offset, rli->bitpos);
991 }
992
993 /* Returns the size in bits allocated so far. */
994
995 tree
996 rli_size_so_far (record_layout_info rli)
997 {
998 return bit_from_pos (rli->offset, rli->bitpos);
999 }
1000
1001 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1002 the next available location within the record is given by KNOWN_ALIGN.
1003 Update the variable alignment fields in RLI, and return the alignment
1004 to give the FIELD. */
1005
1006 unsigned int
1007 update_alignment_for_field (record_layout_info rli, tree field,
1008 unsigned int known_align)
1009 {
1010 /* The alignment required for FIELD. */
1011 unsigned int desired_align;
1012 /* The type of this field. */
1013 tree type = TREE_TYPE (field);
1014 /* True if the field was explicitly aligned by the user. */
1015 bool user_align;
1016 bool is_bitfield;
1017
1018 /* Do not attempt to align an ERROR_MARK node */
1019 if (TREE_CODE (type) == ERROR_MARK)
1020 return 0;
1021
1022 /* Lay out the field so we know what alignment it needs. */
1023 layout_decl (field, known_align);
1024 desired_align = DECL_ALIGN (field);
1025 user_align = DECL_USER_ALIGN (field);
1026
1027 is_bitfield = (type != error_mark_node
1028 && DECL_BIT_FIELD_TYPE (field)
1029 && ! integer_zerop (TYPE_SIZE (type)));
1030
1031 /* Record must have at least as much alignment as any field.
1032 Otherwise, the alignment of the field within the record is
1033 meaningless. */
1034 if (targetm.ms_bitfield_layout_p (rli->t))
1035 {
1036 /* Here, the alignment of the underlying type of a bitfield can
1037 affect the alignment of a record; even a zero-sized field
1038 can do this. The alignment should be to the alignment of
1039 the type, except that for zero-size bitfields this only
1040 applies if there was an immediately prior, nonzero-size
1041 bitfield. (That's the way it is, experimentally.) */
1042 if (!is_bitfield
1043 || ((DECL_SIZE (field) == NULL_TREE
1044 || !integer_zerop (DECL_SIZE (field)))
1045 ? !DECL_PACKED (field)
1046 : (rli->prev_field
1047 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1048 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1049 {
1050 unsigned int type_align = TYPE_ALIGN (type);
1051 if (!is_bitfield && DECL_PACKED (field))
1052 type_align = desired_align;
1053 else
1054 type_align = MAX (type_align, desired_align);
1055 if (maximum_field_alignment != 0)
1056 type_align = MIN (type_align, maximum_field_alignment);
1057 rli->record_align = MAX (rli->record_align, type_align);
1058 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1059 }
1060 }
1061 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1062 {
1063 /* Named bit-fields cause the entire structure to have the
1064 alignment implied by their type. Some targets also apply the same
1065 rules to unnamed bitfields. */
1066 if (DECL_NAME (field) != 0
1067 || targetm.align_anon_bitfield ())
1068 {
1069 unsigned int type_align = TYPE_ALIGN (type);
1070
1071 #ifdef ADJUST_FIELD_ALIGN
1072 if (! TYPE_USER_ALIGN (type))
1073 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1074 #endif
1075
1076 /* Targets might chose to handle unnamed and hence possibly
1077 zero-width bitfield. Those are not influenced by #pragmas
1078 or packed attributes. */
1079 if (integer_zerop (DECL_SIZE (field)))
1080 {
1081 if (initial_max_fld_align)
1082 type_align = MIN (type_align,
1083 initial_max_fld_align * BITS_PER_UNIT);
1084 }
1085 else if (maximum_field_alignment != 0)
1086 type_align = MIN (type_align, maximum_field_alignment);
1087 else if (DECL_PACKED (field))
1088 type_align = MIN (type_align, BITS_PER_UNIT);
1089
1090 /* The alignment of the record is increased to the maximum
1091 of the current alignment, the alignment indicated on the
1092 field (i.e., the alignment specified by an __aligned__
1093 attribute), and the alignment indicated by the type of
1094 the field. */
1095 rli->record_align = MAX (rli->record_align, desired_align);
1096 rli->record_align = MAX (rli->record_align, type_align);
1097
1098 if (warn_packed)
1099 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1100 user_align |= TYPE_USER_ALIGN (type);
1101 }
1102 }
1103 else
1104 {
1105 rli->record_align = MAX (rli->record_align, desired_align);
1106 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1107 }
1108
1109 TYPE_USER_ALIGN (rli->t) |= user_align;
1110
1111 return desired_align;
1112 }
1113
1114 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1115 the field alignment of FIELD or FIELD isn't aligned. */
1116
1117 static void
1118 handle_warn_if_not_align (tree field, unsigned int record_align)
1119 {
1120 tree type = TREE_TYPE (field);
1121
1122 if (type == error_mark_node)
1123 return;
1124
1125 unsigned int warn_if_not_align = 0;
1126
1127 int opt_w = 0;
1128
1129 if (warn_if_not_aligned)
1130 {
1131 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1132 if (!warn_if_not_align)
1133 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1134 if (warn_if_not_align)
1135 opt_w = OPT_Wif_not_aligned;
1136 }
1137
1138 if (!warn_if_not_align
1139 && warn_packed_not_aligned
1140 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1141 {
1142 warn_if_not_align = TYPE_ALIGN (type);
1143 opt_w = OPT_Wpacked_not_aligned;
1144 }
1145
1146 if (!warn_if_not_align)
1147 return;
1148
1149 tree context = DECL_CONTEXT (field);
1150
1151 warn_if_not_align /= BITS_PER_UNIT;
1152 record_align /= BITS_PER_UNIT;
1153 if ((record_align % warn_if_not_align) != 0)
1154 warning (opt_w, "alignment %u of %qT is less than %u",
1155 record_align, context, warn_if_not_align);
1156
1157 tree off = byte_position (field);
1158 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1159 {
1160 if (TREE_CODE (off) == INTEGER_CST)
1161 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1162 field, off, context, warn_if_not_align);
1163 else
1164 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1165 field, off, context, warn_if_not_align);
1166 }
1167 }
1168
1169 /* Called from place_field to handle unions. */
1170
1171 static void
1172 place_union_field (record_layout_info rli, tree field)
1173 {
1174 update_alignment_for_field (rli, field, /*known_align=*/0);
1175
1176 DECL_FIELD_OFFSET (field) = size_zero_node;
1177 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1178 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1179 handle_warn_if_not_align (field, rli->record_align);
1180
1181 /* If this is an ERROR_MARK return *after* having set the
1182 field at the start of the union. This helps when parsing
1183 invalid fields. */
1184 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1185 return;
1186
1187 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1188 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1189 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1190
1191 /* We assume the union's size will be a multiple of a byte so we don't
1192 bother with BITPOS. */
1193 if (TREE_CODE (rli->t) == UNION_TYPE)
1194 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1195 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1196 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1197 DECL_SIZE_UNIT (field), rli->offset);
1198 }
1199
1200 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1201 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1202 units of alignment than the underlying TYPE. */
1203 static int
1204 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1205 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1206 {
1207 /* Note that the calculation of OFFSET might overflow; we calculate it so
1208 that we still get the right result as long as ALIGN is a power of two. */
1209 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1210
1211 offset = offset % align;
1212 return ((offset + size + align - 1) / align
1213 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1214 }
1215
1216 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1217 is a FIELD_DECL to be added after those fields already present in
1218 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1219 callers that desire that behavior must manually perform that step.) */
1220
1221 void
1222 place_field (record_layout_info rli, tree field)
1223 {
1224 /* The alignment required for FIELD. */
1225 unsigned int desired_align;
1226 /* The alignment FIELD would have if we just dropped it into the
1227 record as it presently stands. */
1228 unsigned int known_align;
1229 unsigned int actual_align;
1230 /* The type of this field. */
1231 tree type = TREE_TYPE (field);
1232
1233 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1234
1235 /* If FIELD is static, then treat it like a separate variable, not
1236 really like a structure field. If it is a FUNCTION_DECL, it's a
1237 method. In both cases, all we do is lay out the decl, and we do
1238 it *after* the record is laid out. */
1239 if (VAR_P (field))
1240 {
1241 vec_safe_push (rli->pending_statics, field);
1242 return;
1243 }
1244
1245 /* Enumerators and enum types which are local to this class need not
1246 be laid out. Likewise for initialized constant fields. */
1247 else if (TREE_CODE (field) != FIELD_DECL)
1248 return;
1249
1250 /* Unions are laid out very differently than records, so split
1251 that code off to another function. */
1252 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1253 {
1254 place_union_field (rli, field);
1255 return;
1256 }
1257
1258 else if (TREE_CODE (type) == ERROR_MARK)
1259 {
1260 /* Place this field at the current allocation position, so we
1261 maintain monotonicity. */
1262 DECL_FIELD_OFFSET (field) = rli->offset;
1263 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1264 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1265 handle_warn_if_not_align (field, rli->record_align);
1266 return;
1267 }
1268
1269 if (AGGREGATE_TYPE_P (type)
1270 && TYPE_TYPELESS_STORAGE (type))
1271 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1272
1273 /* Work out the known alignment so far. Note that A & (-A) is the
1274 value of the least-significant bit in A that is one. */
1275 if (! integer_zerop (rli->bitpos))
1276 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1277 else if (integer_zerop (rli->offset))
1278 known_align = 0;
1279 else if (tree_fits_uhwi_p (rli->offset))
1280 known_align = (BITS_PER_UNIT
1281 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1282 else
1283 known_align = rli->offset_align;
1284
1285 desired_align = update_alignment_for_field (rli, field, known_align);
1286 if (known_align == 0)
1287 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1288
1289 if (warn_packed && DECL_PACKED (field))
1290 {
1291 if (known_align >= TYPE_ALIGN (type))
1292 {
1293 if (TYPE_ALIGN (type) > desired_align)
1294 {
1295 if (STRICT_ALIGNMENT)
1296 warning (OPT_Wattributes, "packed attribute causes "
1297 "inefficient alignment for %q+D", field);
1298 /* Don't warn if DECL_PACKED was set by the type. */
1299 else if (!TYPE_PACKED (rli->t))
1300 warning (OPT_Wattributes, "packed attribute is "
1301 "unnecessary for %q+D", field);
1302 }
1303 }
1304 else
1305 rli->packed_maybe_necessary = 1;
1306 }
1307
1308 /* Does this field automatically have alignment it needs by virtue
1309 of the fields that precede it and the record's own alignment? */
1310 if (known_align < desired_align
1311 && (! targetm.ms_bitfield_layout_p (rli->t)
1312 || rli->prev_field == NULL))
1313 {
1314 /* No, we need to skip space before this field.
1315 Bump the cumulative size to multiple of field alignment. */
1316
1317 if (!targetm.ms_bitfield_layout_p (rli->t)
1318 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1319 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1320
1321 /* If the alignment is still within offset_align, just align
1322 the bit position. */
1323 if (desired_align < rli->offset_align)
1324 rli->bitpos = round_up (rli->bitpos, desired_align);
1325 else
1326 {
1327 /* First adjust OFFSET by the partial bits, then align. */
1328 rli->offset
1329 = size_binop (PLUS_EXPR, rli->offset,
1330 fold_convert (sizetype,
1331 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1332 bitsize_unit_node)));
1333 rli->bitpos = bitsize_zero_node;
1334
1335 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1336 }
1337
1338 if (! TREE_CONSTANT (rli->offset))
1339 rli->offset_align = desired_align;
1340 }
1341
1342 /* Handle compatibility with PCC. Note that if the record has any
1343 variable-sized fields, we need not worry about compatibility. */
1344 if (PCC_BITFIELD_TYPE_MATTERS
1345 && ! targetm.ms_bitfield_layout_p (rli->t)
1346 && TREE_CODE (field) == FIELD_DECL
1347 && type != error_mark_node
1348 && DECL_BIT_FIELD (field)
1349 && (! DECL_PACKED (field)
1350 /* Enter for these packed fields only to issue a warning. */
1351 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1352 && maximum_field_alignment == 0
1353 && ! integer_zerop (DECL_SIZE (field))
1354 && tree_fits_uhwi_p (DECL_SIZE (field))
1355 && tree_fits_uhwi_p (rli->offset)
1356 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1357 {
1358 unsigned int type_align = TYPE_ALIGN (type);
1359 tree dsize = DECL_SIZE (field);
1360 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1361 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1362 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1363
1364 #ifdef ADJUST_FIELD_ALIGN
1365 if (! TYPE_USER_ALIGN (type))
1366 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1367 #endif
1368
1369 /* A bit field may not span more units of alignment of its type
1370 than its type itself. Advance to next boundary if necessary. */
1371 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1372 {
1373 if (DECL_PACKED (field))
1374 {
1375 if (warn_packed_bitfield_compat == 1)
1376 inform
1377 (input_location,
1378 "offset of packed bit-field %qD has changed in GCC 4.4",
1379 field);
1380 }
1381 else
1382 rli->bitpos = round_up (rli->bitpos, type_align);
1383 }
1384
1385 if (! DECL_PACKED (field))
1386 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1387
1388 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1389 TYPE_WARN_IF_NOT_ALIGN (type));
1390 }
1391
1392 #ifdef BITFIELD_NBYTES_LIMITED
1393 if (BITFIELD_NBYTES_LIMITED
1394 && ! targetm.ms_bitfield_layout_p (rli->t)
1395 && TREE_CODE (field) == FIELD_DECL
1396 && type != error_mark_node
1397 && DECL_BIT_FIELD_TYPE (field)
1398 && ! DECL_PACKED (field)
1399 && ! integer_zerop (DECL_SIZE (field))
1400 && tree_fits_uhwi_p (DECL_SIZE (field))
1401 && tree_fits_uhwi_p (rli->offset)
1402 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1403 {
1404 unsigned int type_align = TYPE_ALIGN (type);
1405 tree dsize = DECL_SIZE (field);
1406 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1407 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1408 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1409
1410 #ifdef ADJUST_FIELD_ALIGN
1411 if (! TYPE_USER_ALIGN (type))
1412 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1413 #endif
1414
1415 if (maximum_field_alignment != 0)
1416 type_align = MIN (type_align, maximum_field_alignment);
1417 /* ??? This test is opposite the test in the containing if
1418 statement, so this code is unreachable currently. */
1419 else if (DECL_PACKED (field))
1420 type_align = MIN (type_align, BITS_PER_UNIT);
1421
1422 /* A bit field may not span the unit of alignment of its type.
1423 Advance to next boundary if necessary. */
1424 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1425 rli->bitpos = round_up (rli->bitpos, type_align);
1426
1427 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1428 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1429 TYPE_WARN_IF_NOT_ALIGN (type));
1430 }
1431 #endif
1432
1433 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1434 A subtlety:
1435 When a bit field is inserted into a packed record, the whole
1436 size of the underlying type is used by one or more same-size
1437 adjacent bitfields. (That is, if its long:3, 32 bits is
1438 used in the record, and any additional adjacent long bitfields are
1439 packed into the same chunk of 32 bits. However, if the size
1440 changes, a new field of that size is allocated.) In an unpacked
1441 record, this is the same as using alignment, but not equivalent
1442 when packing.
1443
1444 Note: for compatibility, we use the type size, not the type alignment
1445 to determine alignment, since that matches the documentation */
1446
1447 if (targetm.ms_bitfield_layout_p (rli->t))
1448 {
1449 tree prev_saved = rli->prev_field;
1450 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1451
1452 /* This is a bitfield if it exists. */
1453 if (rli->prev_field)
1454 {
1455 bool realign_p = known_align < desired_align;
1456
1457 /* If both are bitfields, nonzero, and the same size, this is
1458 the middle of a run. Zero declared size fields are special
1459 and handled as "end of run". (Note: it's nonzero declared
1460 size, but equal type sizes!) (Since we know that both
1461 the current and previous fields are bitfields by the
1462 time we check it, DECL_SIZE must be present for both.) */
1463 if (DECL_BIT_FIELD_TYPE (field)
1464 && !integer_zerop (DECL_SIZE (field))
1465 && !integer_zerop (DECL_SIZE (rli->prev_field))
1466 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1467 && tree_fits_uhwi_p (TYPE_SIZE (type))
1468 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1469 {
1470 /* We're in the middle of a run of equal type size fields; make
1471 sure we realign if we run out of bits. (Not decl size,
1472 type size!) */
1473 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1474
1475 if (rli->remaining_in_alignment < bitsize)
1476 {
1477 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1478
1479 /* out of bits; bump up to next 'word'. */
1480 rli->bitpos
1481 = size_binop (PLUS_EXPR, rli->bitpos,
1482 bitsize_int (rli->remaining_in_alignment));
1483 rli->prev_field = field;
1484 if (typesize < bitsize)
1485 rli->remaining_in_alignment = 0;
1486 else
1487 rli->remaining_in_alignment = typesize - bitsize;
1488 }
1489 else
1490 {
1491 rli->remaining_in_alignment -= bitsize;
1492 realign_p = false;
1493 }
1494 }
1495 else
1496 {
1497 /* End of a run: if leaving a run of bitfields of the same type
1498 size, we have to "use up" the rest of the bits of the type
1499 size.
1500
1501 Compute the new position as the sum of the size for the prior
1502 type and where we first started working on that type.
1503 Note: since the beginning of the field was aligned then
1504 of course the end will be too. No round needed. */
1505
1506 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1507 {
1508 rli->bitpos
1509 = size_binop (PLUS_EXPR, rli->bitpos,
1510 bitsize_int (rli->remaining_in_alignment));
1511 }
1512 else
1513 /* We "use up" size zero fields; the code below should behave
1514 as if the prior field was not a bitfield. */
1515 prev_saved = NULL;
1516
1517 /* Cause a new bitfield to be captured, either this time (if
1518 currently a bitfield) or next time we see one. */
1519 if (!DECL_BIT_FIELD_TYPE (field)
1520 || integer_zerop (DECL_SIZE (field)))
1521 rli->prev_field = NULL;
1522 }
1523
1524 /* Does this field automatically have alignment it needs by virtue
1525 of the fields that precede it and the record's own alignment? */
1526 if (realign_p)
1527 {
1528 /* If the alignment is still within offset_align, just align
1529 the bit position. */
1530 if (desired_align < rli->offset_align)
1531 rli->bitpos = round_up (rli->bitpos, desired_align);
1532 else
1533 {
1534 /* First adjust OFFSET by the partial bits, then align. */
1535 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1536 bitsize_unit_node);
1537 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1538 fold_convert (sizetype, d));
1539 rli->bitpos = bitsize_zero_node;
1540
1541 rli->offset = round_up (rli->offset,
1542 desired_align / BITS_PER_UNIT);
1543 }
1544
1545 if (! TREE_CONSTANT (rli->offset))
1546 rli->offset_align = desired_align;
1547 }
1548
1549 normalize_rli (rli);
1550 }
1551
1552 /* If we're starting a new run of same type size bitfields
1553 (or a run of non-bitfields), set up the "first of the run"
1554 fields.
1555
1556 That is, if the current field is not a bitfield, or if there
1557 was a prior bitfield the type sizes differ, or if there wasn't
1558 a prior bitfield the size of the current field is nonzero.
1559
1560 Note: we must be sure to test ONLY the type size if there was
1561 a prior bitfield and ONLY for the current field being zero if
1562 there wasn't. */
1563
1564 if (!DECL_BIT_FIELD_TYPE (field)
1565 || (prev_saved != NULL
1566 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1567 : !integer_zerop (DECL_SIZE (field))))
1568 {
1569 /* Never smaller than a byte for compatibility. */
1570 unsigned int type_align = BITS_PER_UNIT;
1571
1572 /* (When not a bitfield), we could be seeing a flex array (with
1573 no DECL_SIZE). Since we won't be using remaining_in_alignment
1574 until we see a bitfield (and come by here again) we just skip
1575 calculating it. */
1576 if (DECL_SIZE (field) != NULL
1577 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1578 && tree_fits_uhwi_p (DECL_SIZE (field)))
1579 {
1580 unsigned HOST_WIDE_INT bitsize
1581 = tree_to_uhwi (DECL_SIZE (field));
1582 unsigned HOST_WIDE_INT typesize
1583 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1584
1585 if (typesize < bitsize)
1586 rli->remaining_in_alignment = 0;
1587 else
1588 rli->remaining_in_alignment = typesize - bitsize;
1589 }
1590
1591 /* Now align (conventionally) for the new type. */
1592 if (! DECL_PACKED (field))
1593 type_align = TYPE_ALIGN (TREE_TYPE (field));
1594
1595 if (maximum_field_alignment != 0)
1596 type_align = MIN (type_align, maximum_field_alignment);
1597
1598 rli->bitpos = round_up (rli->bitpos, type_align);
1599
1600 /* If we really aligned, don't allow subsequent bitfields
1601 to undo that. */
1602 rli->prev_field = NULL;
1603 }
1604 }
1605
1606 /* Offset so far becomes the position of this field after normalizing. */
1607 normalize_rli (rli);
1608 DECL_FIELD_OFFSET (field) = rli->offset;
1609 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1610 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1611 handle_warn_if_not_align (field, rli->record_align);
1612
1613 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1614 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1615 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1616
1617 /* If this field ended up more aligned than we thought it would be (we
1618 approximate this by seeing if its position changed), lay out the field
1619 again; perhaps we can use an integral mode for it now. */
1620 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1621 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1622 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1623 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1624 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1625 actual_align = (BITS_PER_UNIT
1626 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1627 else
1628 actual_align = DECL_OFFSET_ALIGN (field);
1629 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1630 store / extract bit field operations will check the alignment of the
1631 record against the mode of bit fields. */
1632
1633 if (known_align != actual_align)
1634 layout_decl (field, actual_align);
1635
1636 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1637 rli->prev_field = field;
1638
1639 /* Now add size of this field to the size of the record. If the size is
1640 not constant, treat the field as being a multiple of bytes and just
1641 adjust the offset, resetting the bit position. Otherwise, apportion the
1642 size amongst the bit position and offset. First handle the case of an
1643 unspecified size, which can happen when we have an invalid nested struct
1644 definition, such as struct j { struct j { int i; } }. The error message
1645 is printed in finish_struct. */
1646 if (DECL_SIZE (field) == 0)
1647 /* Do nothing. */;
1648 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1649 || TREE_OVERFLOW (DECL_SIZE (field)))
1650 {
1651 rli->offset
1652 = size_binop (PLUS_EXPR, rli->offset,
1653 fold_convert (sizetype,
1654 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1655 bitsize_unit_node)));
1656 rli->offset
1657 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1658 rli->bitpos = bitsize_zero_node;
1659 rli->offset_align = MIN (rli->offset_align, desired_align);
1660
1661 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1662 bitsize_int (rli->offset_align)))
1663 {
1664 tree type = strip_array_types (TREE_TYPE (field));
1665 /* The above adjusts offset_align just based on the start of the
1666 field. The field might not have a size that is a multiple of
1667 that offset_align though. If the field is an array of fixed
1668 sized elements, assume there can be any multiple of those
1669 sizes. If it is a variable length aggregate or array of
1670 variable length aggregates, assume worst that the end is
1671 just BITS_PER_UNIT aligned. */
1672 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1673 {
1674 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1675 {
1676 unsigned HOST_WIDE_INT sz
1677 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1678 rli->offset_align = MIN (rli->offset_align, sz);
1679 }
1680 }
1681 else
1682 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1683 }
1684 }
1685 else if (targetm.ms_bitfield_layout_p (rli->t))
1686 {
1687 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1688
1689 /* If FIELD is the last field and doesn't end at the full length
1690 of the type then pad the struct out to the full length of the
1691 last type. */
1692 if (DECL_BIT_FIELD_TYPE (field)
1693 && !integer_zerop (DECL_SIZE (field)))
1694 {
1695 /* We have to scan, because non-field DECLS are also here. */
1696 tree probe = field;
1697 while ((probe = DECL_CHAIN (probe)))
1698 if (TREE_CODE (probe) == FIELD_DECL)
1699 break;
1700 if (!probe)
1701 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1702 bitsize_int (rli->remaining_in_alignment));
1703 }
1704
1705 normalize_rli (rli);
1706 }
1707 else
1708 {
1709 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1710 normalize_rli (rli);
1711 }
1712 }
1713
1714 /* Assuming that all the fields have been laid out, this function uses
1715 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1716 indicated by RLI. */
1717
1718 static void
1719 finalize_record_size (record_layout_info rli)
1720 {
1721 tree unpadded_size, unpadded_size_unit;
1722
1723 /* Now we want just byte and bit offsets, so set the offset alignment
1724 to be a byte and then normalize. */
1725 rli->offset_align = BITS_PER_UNIT;
1726 normalize_rli (rli);
1727
1728 /* Determine the desired alignment. */
1729 #ifdef ROUND_TYPE_ALIGN
1730 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1731 rli->record_align));
1732 #else
1733 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1734 #endif
1735
1736 /* Compute the size so far. Be sure to allow for extra bits in the
1737 size in bytes. We have guaranteed above that it will be no more
1738 than a single byte. */
1739 unpadded_size = rli_size_so_far (rli);
1740 unpadded_size_unit = rli_size_unit_so_far (rli);
1741 if (! integer_zerop (rli->bitpos))
1742 unpadded_size_unit
1743 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1744
1745 /* Round the size up to be a multiple of the required alignment. */
1746 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1747 TYPE_SIZE_UNIT (rli->t)
1748 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1749
1750 if (TREE_CONSTANT (unpadded_size)
1751 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1752 && input_location != BUILTINS_LOCATION)
1753 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1754
1755 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1756 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1757 && TREE_CONSTANT (unpadded_size))
1758 {
1759 tree unpacked_size;
1760
1761 #ifdef ROUND_TYPE_ALIGN
1762 rli->unpacked_align
1763 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1764 #else
1765 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1766 #endif
1767
1768 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1769 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1770 {
1771 if (TYPE_NAME (rli->t))
1772 {
1773 tree name;
1774
1775 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1776 name = TYPE_NAME (rli->t);
1777 else
1778 name = DECL_NAME (TYPE_NAME (rli->t));
1779
1780 if (STRICT_ALIGNMENT)
1781 warning (OPT_Wpacked, "packed attribute causes inefficient "
1782 "alignment for %qE", name);
1783 else
1784 warning (OPT_Wpacked,
1785 "packed attribute is unnecessary for %qE", name);
1786 }
1787 else
1788 {
1789 if (STRICT_ALIGNMENT)
1790 warning (OPT_Wpacked,
1791 "packed attribute causes inefficient alignment");
1792 else
1793 warning (OPT_Wpacked, "packed attribute is unnecessary");
1794 }
1795 }
1796 }
1797 }
1798
1799 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1800
1801 void
1802 compute_record_mode (tree type)
1803 {
1804 tree field;
1805 machine_mode mode = VOIDmode;
1806
1807 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1808 However, if possible, we use a mode that fits in a register
1809 instead, in order to allow for better optimization down the
1810 line. */
1811 SET_TYPE_MODE (type, BLKmode);
1812
1813 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1814 return;
1815
1816 /* A record which has any BLKmode members must itself be
1817 BLKmode; it can't go in a register. Unless the member is
1818 BLKmode only because it isn't aligned. */
1819 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1820 {
1821 if (TREE_CODE (field) != FIELD_DECL)
1822 continue;
1823
1824 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1825 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1826 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1827 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1828 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1829 || ! tree_fits_uhwi_p (bit_position (field))
1830 || DECL_SIZE (field) == 0
1831 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1832 return;
1833
1834 /* If this field is the whole struct, remember its mode so
1835 that, say, we can put a double in a class into a DF
1836 register instead of forcing it to live in the stack. */
1837 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field))
1838 /* Partial int types (e.g. __int20) may have TYPE_SIZE equal to
1839 wider types (e.g. int32), despite precision being less. Ensure
1840 that the TYPE_MODE of the struct does not get set to the partial
1841 int mode if there is a wider type also in the struct. */
1842 && known_gt (GET_MODE_PRECISION (DECL_MODE (field)),
1843 GET_MODE_PRECISION (mode)))
1844 mode = DECL_MODE (field);
1845
1846 /* With some targets, it is sub-optimal to access an aligned
1847 BLKmode structure as a scalar. */
1848 if (targetm.member_type_forces_blk (field, mode))
1849 return;
1850 }
1851
1852 /* If we only have one real field; use its mode if that mode's size
1853 matches the type's size. This generally only applies to RECORD_TYPE.
1854 For UNION_TYPE, if the widest field is MODE_INT then use that mode.
1855 If the widest field is MODE_PARTIAL_INT, and the union will be passed
1856 by reference, then use that mode. */
1857 poly_uint64 type_size;
1858 if ((TREE_CODE (type) == RECORD_TYPE
1859 || (TREE_CODE (type) == UNION_TYPE
1860 && (GET_MODE_CLASS (mode) == MODE_INT
1861 || (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
1862 && targetm.calls.pass_by_reference (pack_cumulative_args (0),
1863 mode, type, 0)))))
1864 && mode != VOIDmode
1865 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
1866 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1867 ;
1868 else
1869 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1870
1871 /* If structure's known alignment is less than what the scalar
1872 mode would need, and it matters, then stick with BLKmode. */
1873 if (mode != BLKmode
1874 && STRICT_ALIGNMENT
1875 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1876 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1877 {
1878 /* If this is the only reason this type is BLKmode, then
1879 don't force containing types to be BLKmode. */
1880 TYPE_NO_FORCE_BLK (type) = 1;
1881 mode = BLKmode;
1882 }
1883
1884 SET_TYPE_MODE (type, mode);
1885 }
1886
1887 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1888 out. */
1889
1890 static void
1891 finalize_type_size (tree type)
1892 {
1893 /* Normally, use the alignment corresponding to the mode chosen.
1894 However, where strict alignment is not required, avoid
1895 over-aligning structures, since most compilers do not do this
1896 alignment. */
1897 if (TYPE_MODE (type) != BLKmode
1898 && TYPE_MODE (type) != VOIDmode
1899 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1900 {
1901 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1902
1903 /* Don't override a larger alignment requirement coming from a user
1904 alignment of one of the fields. */
1905 if (mode_align >= TYPE_ALIGN (type))
1906 {
1907 SET_TYPE_ALIGN (type, mode_align);
1908 TYPE_USER_ALIGN (type) = 0;
1909 }
1910 }
1911
1912 /* Do machine-dependent extra alignment. */
1913 #ifdef ROUND_TYPE_ALIGN
1914 SET_TYPE_ALIGN (type,
1915 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1916 #endif
1917
1918 /* If we failed to find a simple way to calculate the unit size
1919 of the type, find it by division. */
1920 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1921 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1922 result will fit in sizetype. We will get more efficient code using
1923 sizetype, so we force a conversion. */
1924 TYPE_SIZE_UNIT (type)
1925 = fold_convert (sizetype,
1926 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1927 bitsize_unit_node));
1928
1929 if (TYPE_SIZE (type) != 0)
1930 {
1931 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1932 TYPE_SIZE_UNIT (type)
1933 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1934 }
1935
1936 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1937 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1938 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1939 if (TYPE_SIZE_UNIT (type) != 0
1940 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1941 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1942
1943 /* Handle empty records as per the x86-64 psABI. */
1944 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1945
1946 /* Also layout any other variants of the type. */
1947 if (TYPE_NEXT_VARIANT (type)
1948 || type != TYPE_MAIN_VARIANT (type))
1949 {
1950 tree variant;
1951 /* Record layout info of this variant. */
1952 tree size = TYPE_SIZE (type);
1953 tree size_unit = TYPE_SIZE_UNIT (type);
1954 unsigned int align = TYPE_ALIGN (type);
1955 unsigned int precision = TYPE_PRECISION (type);
1956 unsigned int user_align = TYPE_USER_ALIGN (type);
1957 machine_mode mode = TYPE_MODE (type);
1958 bool empty_p = TYPE_EMPTY_P (type);
1959
1960 /* Copy it into all variants. */
1961 for (variant = TYPE_MAIN_VARIANT (type);
1962 variant != 0;
1963 variant = TYPE_NEXT_VARIANT (variant))
1964 {
1965 TYPE_SIZE (variant) = size;
1966 TYPE_SIZE_UNIT (variant) = size_unit;
1967 unsigned valign = align;
1968 if (TYPE_USER_ALIGN (variant))
1969 valign = MAX (valign, TYPE_ALIGN (variant));
1970 else
1971 TYPE_USER_ALIGN (variant) = user_align;
1972 SET_TYPE_ALIGN (variant, valign);
1973 TYPE_PRECISION (variant) = precision;
1974 SET_TYPE_MODE (variant, mode);
1975 TYPE_EMPTY_P (variant) = empty_p;
1976 }
1977 }
1978 }
1979
1980 /* Return a new underlying object for a bitfield started with FIELD. */
1981
1982 static tree
1983 start_bitfield_representative (tree field)
1984 {
1985 tree repr = make_node (FIELD_DECL);
1986 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1987 /* Force the representative to begin at a BITS_PER_UNIT aligned
1988 boundary - C++ may use tail-padding of a base object to
1989 continue packing bits so the bitfield region does not start
1990 at bit zero (see g++.dg/abi/bitfield5.C for example).
1991 Unallocated bits may happen for other reasons as well,
1992 for example Ada which allows explicit bit-granular structure layout. */
1993 DECL_FIELD_BIT_OFFSET (repr)
1994 = size_binop (BIT_AND_EXPR,
1995 DECL_FIELD_BIT_OFFSET (field),
1996 bitsize_int (~(BITS_PER_UNIT - 1)));
1997 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1998 DECL_SIZE (repr) = DECL_SIZE (field);
1999 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
2000 DECL_PACKED (repr) = DECL_PACKED (field);
2001 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
2002 /* There are no indirect accesses to this field. If we introduce
2003 some then they have to use the record alias set. This makes
2004 sure to properly conflict with [indirect] accesses to addressable
2005 fields of the bitfield group. */
2006 DECL_NONADDRESSABLE_P (repr) = 1;
2007 return repr;
2008 }
2009
2010 /* Finish up a bitfield group that was started by creating the underlying
2011 object REPR with the last field in the bitfield group FIELD. */
2012
2013 static void
2014 finish_bitfield_representative (tree repr, tree field)
2015 {
2016 unsigned HOST_WIDE_INT bitsize, maxbitsize;
2017 tree nextf, size;
2018
2019 size = size_diffop (DECL_FIELD_OFFSET (field),
2020 DECL_FIELD_OFFSET (repr));
2021 while (TREE_CODE (size) == COMPOUND_EXPR)
2022 size = TREE_OPERAND (size, 1);
2023 gcc_assert (tree_fits_uhwi_p (size));
2024 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2025 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2026 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2027 + tree_to_uhwi (DECL_SIZE (field)));
2028
2029 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2030 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2031
2032 /* Now nothing tells us how to pad out bitsize ... */
2033 nextf = DECL_CHAIN (field);
2034 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2035 nextf = DECL_CHAIN (nextf);
2036 if (nextf)
2037 {
2038 tree maxsize;
2039 /* If there was an error, the field may be not laid out
2040 correctly. Don't bother to do anything. */
2041 if (TREE_TYPE (nextf) == error_mark_node)
2042 return;
2043 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2044 DECL_FIELD_OFFSET (repr));
2045 if (tree_fits_uhwi_p (maxsize))
2046 {
2047 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2048 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2049 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2050 /* If the group ends within a bitfield nextf does not need to be
2051 aligned to BITS_PER_UNIT. Thus round up. */
2052 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2053 }
2054 else
2055 maxbitsize = bitsize;
2056 }
2057 else
2058 {
2059 /* Note that if the C++ FE sets up tail-padding to be re-used it
2060 creates a as-base variant of the type with TYPE_SIZE adjusted
2061 accordingly. So it is safe to include tail-padding here. */
2062 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2063 (DECL_CONTEXT (field));
2064 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2065 /* We cannot generally rely on maxsize to fold to an integer constant,
2066 so use bitsize as fallback for this case. */
2067 if (tree_fits_uhwi_p (maxsize))
2068 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2069 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2070 else
2071 maxbitsize = bitsize;
2072 }
2073
2074 /* Only if we don't artificially break up the representative in
2075 the middle of a large bitfield with different possibly
2076 overlapping representatives. And all representatives start
2077 at byte offset. */
2078 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2079
2080 /* Find the smallest nice mode to use. */
2081 opt_scalar_int_mode mode_iter;
2082 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2083 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2084 break;
2085
2086 scalar_int_mode mode;
2087 if (!mode_iter.exists (&mode)
2088 || GET_MODE_BITSIZE (mode) > maxbitsize
2089 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2090 {
2091 /* We really want a BLKmode representative only as a last resort,
2092 considering the member b in
2093 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2094 Otherwise we simply want to split the representative up
2095 allowing for overlaps within the bitfield region as required for
2096 struct { int a : 7; int b : 7;
2097 int c : 10; int d; } __attribute__((packed));
2098 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2099 DECL_SIZE (repr) = bitsize_int (bitsize);
2100 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2101 SET_DECL_MODE (repr, BLKmode);
2102 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2103 bitsize / BITS_PER_UNIT);
2104 }
2105 else
2106 {
2107 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2108 DECL_SIZE (repr) = bitsize_int (modesize);
2109 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2110 SET_DECL_MODE (repr, mode);
2111 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2112 }
2113
2114 /* Remember whether the bitfield group is at the end of the
2115 structure or not. */
2116 DECL_CHAIN (repr) = nextf;
2117 }
2118
2119 /* Compute and set FIELD_DECLs for the underlying objects we should
2120 use for bitfield access for the structure T. */
2121
2122 void
2123 finish_bitfield_layout (tree t)
2124 {
2125 tree field, prev;
2126 tree repr = NULL_TREE;
2127
2128 /* Unions would be special, for the ease of type-punning optimizations
2129 we could use the underlying type as hint for the representative
2130 if the bitfield would fit and the representative would not exceed
2131 the union in size. */
2132 if (TREE_CODE (t) != RECORD_TYPE)
2133 return;
2134
2135 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2136 field; field = DECL_CHAIN (field))
2137 {
2138 if (TREE_CODE (field) != FIELD_DECL)
2139 continue;
2140
2141 /* In the C++ memory model, consecutive bit fields in a structure are
2142 considered one memory location and updating a memory location
2143 may not store into adjacent memory locations. */
2144 if (!repr
2145 && DECL_BIT_FIELD_TYPE (field))
2146 {
2147 /* Start new representative. */
2148 repr = start_bitfield_representative (field);
2149 }
2150 else if (repr
2151 && ! DECL_BIT_FIELD_TYPE (field))
2152 {
2153 /* Finish off new representative. */
2154 finish_bitfield_representative (repr, prev);
2155 repr = NULL_TREE;
2156 }
2157 else if (DECL_BIT_FIELD_TYPE (field))
2158 {
2159 gcc_assert (repr != NULL_TREE);
2160
2161 /* Zero-size bitfields finish off a representative and
2162 do not have a representative themselves. This is
2163 required by the C++ memory model. */
2164 if (integer_zerop (DECL_SIZE (field)))
2165 {
2166 finish_bitfield_representative (repr, prev);
2167 repr = NULL_TREE;
2168 }
2169
2170 /* We assume that either DECL_FIELD_OFFSET of the representative
2171 and each bitfield member is a constant or they are equal.
2172 This is because we need to be able to compute the bit-offset
2173 of each field relative to the representative in get_bit_range
2174 during RTL expansion.
2175 If these constraints are not met, simply force a new
2176 representative to be generated. That will at most
2177 generate worse code but still maintain correctness with
2178 respect to the C++ memory model. */
2179 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2180 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2181 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2182 DECL_FIELD_OFFSET (field), 0)))
2183 {
2184 finish_bitfield_representative (repr, prev);
2185 repr = start_bitfield_representative (field);
2186 }
2187 }
2188 else
2189 continue;
2190
2191 if (repr)
2192 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2193
2194 prev = field;
2195 }
2196
2197 if (repr)
2198 finish_bitfield_representative (repr, prev);
2199 }
2200
2201 /* Do all of the work required to layout the type indicated by RLI,
2202 once the fields have been laid out. This function will call `free'
2203 for RLI, unless FREE_P is false. Passing a value other than false
2204 for FREE_P is bad practice; this option only exists to support the
2205 G++ 3.2 ABI. */
2206
2207 void
2208 finish_record_layout (record_layout_info rli, int free_p)
2209 {
2210 tree variant;
2211
2212 /* Compute the final size. */
2213 finalize_record_size (rli);
2214
2215 /* Compute the TYPE_MODE for the record. */
2216 compute_record_mode (rli->t);
2217
2218 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2219 finalize_type_size (rli->t);
2220
2221 /* Compute bitfield representatives. */
2222 finish_bitfield_layout (rli->t);
2223
2224 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2225 With C++ templates, it is too early to do this when the attribute
2226 is being parsed. */
2227 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2228 variant = TYPE_NEXT_VARIANT (variant))
2229 {
2230 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2231 TYPE_REVERSE_STORAGE_ORDER (variant)
2232 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2233 }
2234
2235 /* Lay out any static members. This is done now because their type
2236 may use the record's type. */
2237 while (!vec_safe_is_empty (rli->pending_statics))
2238 layout_decl (rli->pending_statics->pop (), 0);
2239
2240 /* Clean up. */
2241 if (free_p)
2242 {
2243 vec_free (rli->pending_statics);
2244 free (rli);
2245 }
2246 }
2247 \f
2248
2249 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2250 NAME, its fields are chained in reverse on FIELDS.
2251
2252 If ALIGN_TYPE is non-null, it is given the same alignment as
2253 ALIGN_TYPE. */
2254
2255 void
2256 finish_builtin_struct (tree type, const char *name, tree fields,
2257 tree align_type)
2258 {
2259 tree tail, next;
2260
2261 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2262 {
2263 DECL_FIELD_CONTEXT (fields) = type;
2264 next = DECL_CHAIN (fields);
2265 DECL_CHAIN (fields) = tail;
2266 }
2267 TYPE_FIELDS (type) = tail;
2268
2269 if (align_type)
2270 {
2271 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2272 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2273 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2274 TYPE_WARN_IF_NOT_ALIGN (align_type));
2275 }
2276
2277 layout_type (type);
2278 #if 0 /* not yet, should get fixed properly later */
2279 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2280 #else
2281 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2282 TYPE_DECL, get_identifier (name), type);
2283 #endif
2284 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2285 layout_decl (TYPE_NAME (type), 0);
2286 }
2287
2288 /* Calculate the mode, size, and alignment for TYPE.
2289 For an array type, calculate the element separation as well.
2290 Record TYPE on the chain of permanent or temporary types
2291 so that dbxout will find out about it.
2292
2293 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2294 layout_type does nothing on such a type.
2295
2296 If the type is incomplete, its TYPE_SIZE remains zero. */
2297
2298 void
2299 layout_type (tree type)
2300 {
2301 gcc_assert (type);
2302
2303 if (type == error_mark_node)
2304 return;
2305
2306 /* We don't want finalize_type_size to copy an alignment attribute to
2307 variants that don't have it. */
2308 type = TYPE_MAIN_VARIANT (type);
2309
2310 /* Do nothing if type has been laid out before. */
2311 if (TYPE_SIZE (type))
2312 return;
2313
2314 switch (TREE_CODE (type))
2315 {
2316 case LANG_TYPE:
2317 /* This kind of type is the responsibility
2318 of the language-specific code. */
2319 gcc_unreachable ();
2320
2321 case BOOLEAN_TYPE:
2322 case INTEGER_TYPE:
2323 case ENUMERAL_TYPE:
2324 {
2325 scalar_int_mode mode
2326 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2327 SET_TYPE_MODE (type, mode);
2328 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2329 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2330 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2331 break;
2332 }
2333
2334 case REAL_TYPE:
2335 {
2336 /* Allow the caller to choose the type mode, which is how decimal
2337 floats are distinguished from binary ones. */
2338 if (TYPE_MODE (type) == VOIDmode)
2339 SET_TYPE_MODE
2340 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2341 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2342 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2343 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2344 break;
2345 }
2346
2347 case FIXED_POINT_TYPE:
2348 {
2349 /* TYPE_MODE (type) has been set already. */
2350 scalar_mode mode = SCALAR_TYPE_MODE (type);
2351 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2352 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2353 break;
2354 }
2355
2356 case COMPLEX_TYPE:
2357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2358 SET_TYPE_MODE (type,
2359 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2360
2361 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2362 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2363 break;
2364
2365 case VECTOR_TYPE:
2366 {
2367 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2368 tree innertype = TREE_TYPE (type);
2369
2370 /* Find an appropriate mode for the vector type. */
2371 if (TYPE_MODE (type) == VOIDmode)
2372 SET_TYPE_MODE (type,
2373 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2374 nunits).else_blk ());
2375
2376 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2377 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2378 /* Several boolean vector elements may fit in a single unit. */
2379 if (VECTOR_BOOLEAN_TYPE_P (type)
2380 && type->type_common.mode != BLKmode)
2381 TYPE_SIZE_UNIT (type)
2382 = size_int (GET_MODE_SIZE (type->type_common.mode));
2383 else
2384 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2385 TYPE_SIZE_UNIT (innertype),
2386 size_int (nunits));
2387 TYPE_SIZE (type) = int_const_binop
2388 (MULT_EXPR,
2389 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2390 bitsize_int (BITS_PER_UNIT));
2391
2392 /* For vector types, we do not default to the mode's alignment.
2393 Instead, query a target hook, defaulting to natural alignment.
2394 This prevents ABI changes depending on whether or not native
2395 vector modes are supported. */
2396 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2397
2398 /* However, if the underlying mode requires a bigger alignment than
2399 what the target hook provides, we cannot use the mode. For now,
2400 simply reject that case. */
2401 gcc_assert (TYPE_ALIGN (type)
2402 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2403 break;
2404 }
2405
2406 case VOID_TYPE:
2407 /* This is an incomplete type and so doesn't have a size. */
2408 SET_TYPE_ALIGN (type, 1);
2409 TYPE_USER_ALIGN (type) = 0;
2410 SET_TYPE_MODE (type, VOIDmode);
2411 break;
2412
2413 case OFFSET_TYPE:
2414 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2415 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2416 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2417 integral, which may be an __intN. */
2418 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2419 TYPE_PRECISION (type) = POINTER_SIZE;
2420 break;
2421
2422 case FUNCTION_TYPE:
2423 case METHOD_TYPE:
2424 /* It's hard to see what the mode and size of a function ought to
2425 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2426 make it consistent with that. */
2427 SET_TYPE_MODE (type,
2428 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2429 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2430 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2431 break;
2432
2433 case POINTER_TYPE:
2434 case REFERENCE_TYPE:
2435 {
2436 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2437 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2438 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2439 TYPE_UNSIGNED (type) = 1;
2440 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2441 }
2442 break;
2443
2444 case ARRAY_TYPE:
2445 {
2446 tree index = TYPE_DOMAIN (type);
2447 tree element = TREE_TYPE (type);
2448
2449 /* We need to know both bounds in order to compute the size. */
2450 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2451 && TYPE_SIZE (element))
2452 {
2453 tree ub = TYPE_MAX_VALUE (index);
2454 tree lb = TYPE_MIN_VALUE (index);
2455 tree element_size = TYPE_SIZE (element);
2456 tree length;
2457
2458 /* Make sure that an array of zero-sized element is zero-sized
2459 regardless of its extent. */
2460 if (integer_zerop (element_size))
2461 length = size_zero_node;
2462
2463 /* The computation should happen in the original signedness so
2464 that (possible) negative values are handled appropriately
2465 when determining overflow. */
2466 else
2467 {
2468 /* ??? When it is obvious that the range is signed
2469 represent it using ssizetype. */
2470 if (TREE_CODE (lb) == INTEGER_CST
2471 && TREE_CODE (ub) == INTEGER_CST
2472 && TYPE_UNSIGNED (TREE_TYPE (lb))
2473 && tree_int_cst_lt (ub, lb))
2474 {
2475 lb = wide_int_to_tree (ssizetype,
2476 offset_int::from (wi::to_wide (lb),
2477 SIGNED));
2478 ub = wide_int_to_tree (ssizetype,
2479 offset_int::from (wi::to_wide (ub),
2480 SIGNED));
2481 }
2482 length
2483 = fold_convert (sizetype,
2484 size_binop (PLUS_EXPR,
2485 build_int_cst (TREE_TYPE (lb), 1),
2486 size_binop (MINUS_EXPR, ub, lb)));
2487 }
2488
2489 /* ??? We have no way to distinguish a null-sized array from an
2490 array spanning the whole sizetype range, so we arbitrarily
2491 decide that [0, -1] is the only valid representation. */
2492 if (integer_zerop (length)
2493 && TREE_OVERFLOW (length)
2494 && integer_zerop (lb))
2495 length = size_zero_node;
2496
2497 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2498 bits_from_bytes (length));
2499
2500 /* If we know the size of the element, calculate the total size
2501 directly, rather than do some division thing below. This
2502 optimization helps Fortran assumed-size arrays (where the
2503 size of the array is determined at runtime) substantially. */
2504 if (TYPE_SIZE_UNIT (element))
2505 TYPE_SIZE_UNIT (type)
2506 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2507 }
2508
2509 /* Now round the alignment and size,
2510 using machine-dependent criteria if any. */
2511
2512 unsigned align = TYPE_ALIGN (element);
2513 if (TYPE_USER_ALIGN (type))
2514 align = MAX (align, TYPE_ALIGN (type));
2515 else
2516 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2517 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2518 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2519 TYPE_WARN_IF_NOT_ALIGN (element));
2520 #ifdef ROUND_TYPE_ALIGN
2521 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2522 #else
2523 align = MAX (align, BITS_PER_UNIT);
2524 #endif
2525 SET_TYPE_ALIGN (type, align);
2526 SET_TYPE_MODE (type, BLKmode);
2527 if (TYPE_SIZE (type) != 0
2528 && ! targetm.member_type_forces_blk (type, VOIDmode)
2529 /* BLKmode elements force BLKmode aggregate;
2530 else extract/store fields may lose. */
2531 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2532 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2533 {
2534 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2535 TYPE_SIZE (type)));
2536 if (TYPE_MODE (type) != BLKmode
2537 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2538 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2539 {
2540 TYPE_NO_FORCE_BLK (type) = 1;
2541 SET_TYPE_MODE (type, BLKmode);
2542 }
2543 }
2544 if (AGGREGATE_TYPE_P (element))
2545 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2546 /* When the element size is constant, check that it is at least as
2547 large as the element alignment. */
2548 if (TYPE_SIZE_UNIT (element)
2549 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2550 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2551 TYPE_ALIGN_UNIT. */
2552 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2553 && !integer_zerop (TYPE_SIZE_UNIT (element))
2554 && compare_tree_int (TYPE_SIZE_UNIT (element),
2555 TYPE_ALIGN_UNIT (element)) < 0)
2556 error ("alignment of array elements is greater than element size");
2557 break;
2558 }
2559
2560 case RECORD_TYPE:
2561 case UNION_TYPE:
2562 case QUAL_UNION_TYPE:
2563 {
2564 tree field;
2565 record_layout_info rli;
2566
2567 /* Initialize the layout information. */
2568 rli = start_record_layout (type);
2569
2570 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2571 in the reverse order in building the COND_EXPR that denotes
2572 its size. We reverse them again later. */
2573 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2574 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2575
2576 /* Place all the fields. */
2577 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2578 place_field (rli, field);
2579
2580 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2581 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2582
2583 /* Finish laying out the record. */
2584 finish_record_layout (rli, /*free_p=*/true);
2585 }
2586 break;
2587
2588 default:
2589 gcc_unreachable ();
2590 }
2591
2592 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2593 records and unions, finish_record_layout already called this
2594 function. */
2595 if (!RECORD_OR_UNION_TYPE_P (type))
2596 finalize_type_size (type);
2597
2598 /* We should never see alias sets on incomplete aggregates. And we
2599 should not call layout_type on not incomplete aggregates. */
2600 if (AGGREGATE_TYPE_P (type))
2601 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2602 }
2603
2604 /* Return the least alignment required for type TYPE. */
2605
2606 unsigned int
2607 min_align_of_type (tree type)
2608 {
2609 unsigned int align = TYPE_ALIGN (type);
2610 if (!TYPE_USER_ALIGN (type))
2611 {
2612 align = MIN (align, BIGGEST_ALIGNMENT);
2613 #ifdef BIGGEST_FIELD_ALIGNMENT
2614 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2615 #endif
2616 unsigned int field_align = align;
2617 #ifdef ADJUST_FIELD_ALIGN
2618 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2619 #endif
2620 align = MIN (align, field_align);
2621 }
2622 return align / BITS_PER_UNIT;
2623 }
2624 \f
2625 /* Create and return a type for signed integers of PRECISION bits. */
2626
2627 tree
2628 make_signed_type (int precision)
2629 {
2630 tree type = make_node (INTEGER_TYPE);
2631
2632 TYPE_PRECISION (type) = precision;
2633
2634 fixup_signed_type (type);
2635 return type;
2636 }
2637
2638 /* Create and return a type for unsigned integers of PRECISION bits. */
2639
2640 tree
2641 make_unsigned_type (int precision)
2642 {
2643 tree type = make_node (INTEGER_TYPE);
2644
2645 TYPE_PRECISION (type) = precision;
2646
2647 fixup_unsigned_type (type);
2648 return type;
2649 }
2650 \f
2651 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2652 and SATP. */
2653
2654 tree
2655 make_fract_type (int precision, int unsignedp, int satp)
2656 {
2657 tree type = make_node (FIXED_POINT_TYPE);
2658
2659 TYPE_PRECISION (type) = precision;
2660
2661 if (satp)
2662 TYPE_SATURATING (type) = 1;
2663
2664 /* Lay out the type: set its alignment, size, etc. */
2665 TYPE_UNSIGNED (type) = unsignedp;
2666 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2667 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2668 layout_type (type);
2669
2670 return type;
2671 }
2672
2673 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2674 and SATP. */
2675
2676 tree
2677 make_accum_type (int precision, int unsignedp, int satp)
2678 {
2679 tree type = make_node (FIXED_POINT_TYPE);
2680
2681 TYPE_PRECISION (type) = precision;
2682
2683 if (satp)
2684 TYPE_SATURATING (type) = 1;
2685
2686 /* Lay out the type: set its alignment, size, etc. */
2687 TYPE_UNSIGNED (type) = unsignedp;
2688 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2689 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2690 layout_type (type);
2691
2692 return type;
2693 }
2694
2695 /* Initialize sizetypes so layout_type can use them. */
2696
2697 void
2698 initialize_sizetypes (void)
2699 {
2700 int precision, bprecision;
2701
2702 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2703 if (strcmp (SIZETYPE, "unsigned int") == 0)
2704 precision = INT_TYPE_SIZE;
2705 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2706 precision = LONG_TYPE_SIZE;
2707 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2708 precision = LONG_LONG_TYPE_SIZE;
2709 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2710 precision = SHORT_TYPE_SIZE;
2711 else
2712 {
2713 int i;
2714
2715 precision = -1;
2716 for (i = 0; i < NUM_INT_N_ENTS; i++)
2717 if (int_n_enabled_p[i])
2718 {
2719 char name[50];
2720 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2721
2722 if (strcmp (name, SIZETYPE) == 0)
2723 {
2724 precision = int_n_data[i].bitsize;
2725 }
2726 }
2727 if (precision == -1)
2728 gcc_unreachable ();
2729 }
2730
2731 bprecision
2732 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2733 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2734 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2735 bprecision = HOST_BITS_PER_DOUBLE_INT;
2736
2737 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2738 sizetype = make_node (INTEGER_TYPE);
2739 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2740 TYPE_PRECISION (sizetype) = precision;
2741 TYPE_UNSIGNED (sizetype) = 1;
2742 bitsizetype = make_node (INTEGER_TYPE);
2743 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2744 TYPE_PRECISION (bitsizetype) = bprecision;
2745 TYPE_UNSIGNED (bitsizetype) = 1;
2746
2747 /* Now layout both types manually. */
2748 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2749 SET_TYPE_MODE (sizetype, mode);
2750 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2751 TYPE_SIZE (sizetype) = bitsize_int (precision);
2752 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2753 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2754
2755 mode = smallest_int_mode_for_size (bprecision);
2756 SET_TYPE_MODE (bitsizetype, mode);
2757 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2758 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2759 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2760 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2761
2762 /* Create the signed variants of *sizetype. */
2763 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2764 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2765 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2766 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2767 }
2768 \f
2769 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2770 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2771 for TYPE, based on the PRECISION and whether or not the TYPE
2772 IS_UNSIGNED. PRECISION need not correspond to a width supported
2773 natively by the hardware; for example, on a machine with 8-bit,
2774 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2775 61. */
2776
2777 void
2778 set_min_and_max_values_for_integral_type (tree type,
2779 int precision,
2780 signop sgn)
2781 {
2782 /* For bitfields with zero width we end up creating integer types
2783 with zero precision. Don't assign any minimum/maximum values
2784 to those types, they don't have any valid value. */
2785 if (precision < 1)
2786 return;
2787
2788 TYPE_MIN_VALUE (type)
2789 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2790 TYPE_MAX_VALUE (type)
2791 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2792 }
2793
2794 /* Set the extreme values of TYPE based on its precision in bits,
2795 then lay it out. Used when make_signed_type won't do
2796 because the tree code is not INTEGER_TYPE. */
2797
2798 void
2799 fixup_signed_type (tree type)
2800 {
2801 int precision = TYPE_PRECISION (type);
2802
2803 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2804
2805 /* Lay out the type: set its alignment, size, etc. */
2806 layout_type (type);
2807 }
2808
2809 /* Set the extreme values of TYPE based on its precision in bits,
2810 then lay it out. This is used both in `make_unsigned_type'
2811 and for enumeral types. */
2812
2813 void
2814 fixup_unsigned_type (tree type)
2815 {
2816 int precision = TYPE_PRECISION (type);
2817
2818 TYPE_UNSIGNED (type) = 1;
2819
2820 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2821
2822 /* Lay out the type: set its alignment, size, etc. */
2823 layout_type (type);
2824 }
2825 \f
2826 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2827 starting at BITPOS.
2828
2829 BITREGION_START is the bit position of the first bit in this
2830 sequence of bit fields. BITREGION_END is the last bit in this
2831 sequence. If these two fields are non-zero, we should restrict the
2832 memory access to that range. Otherwise, we are allowed to touch
2833 any adjacent non bit-fields.
2834
2835 ALIGN is the alignment of the underlying object in bits.
2836 VOLATILEP says whether the bitfield is volatile. */
2837
2838 bit_field_mode_iterator
2839 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2840 poly_int64 bitregion_start,
2841 poly_int64 bitregion_end,
2842 unsigned int align, bool volatilep)
2843 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2844 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2845 m_bitregion_end (bitregion_end), m_align (align),
2846 m_volatilep (volatilep), m_count (0)
2847 {
2848 if (known_eq (m_bitregion_end, 0))
2849 {
2850 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2851 the bitfield is mapped and won't trap, provided that ALIGN isn't
2852 too large. The cap is the biggest required alignment for data,
2853 or at least the word size. And force one such chunk at least. */
2854 unsigned HOST_WIDE_INT units
2855 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2856 if (bitsize <= 0)
2857 bitsize = 1;
2858 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2859 m_bitregion_end = end - end % units - 1;
2860 }
2861 }
2862
2863 /* Calls to this function return successively larger modes that can be used
2864 to represent the bitfield. Return true if another bitfield mode is
2865 available, storing it in *OUT_MODE if so. */
2866
2867 bool
2868 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2869 {
2870 scalar_int_mode mode;
2871 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2872 {
2873 unsigned int unit = GET_MODE_BITSIZE (mode);
2874
2875 /* Skip modes that don't have full precision. */
2876 if (unit != GET_MODE_PRECISION (mode))
2877 continue;
2878
2879 /* Stop if the mode is too wide to handle efficiently. */
2880 if (unit > MAX_FIXED_MODE_SIZE)
2881 break;
2882
2883 /* Don't deliver more than one multiword mode; the smallest one
2884 should be used. */
2885 if (m_count > 0 && unit > BITS_PER_WORD)
2886 break;
2887
2888 /* Skip modes that are too small. */
2889 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2890 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2891 if (subend > unit)
2892 continue;
2893
2894 /* Stop if the mode goes outside the bitregion. */
2895 HOST_WIDE_INT start = m_bitpos - substart;
2896 if (maybe_ne (m_bitregion_start, 0)
2897 && maybe_lt (start, m_bitregion_start))
2898 break;
2899 HOST_WIDE_INT end = start + unit;
2900 if (maybe_gt (end, m_bitregion_end + 1))
2901 break;
2902
2903 /* Stop if the mode requires too much alignment. */
2904 if (GET_MODE_ALIGNMENT (mode) > m_align
2905 && targetm.slow_unaligned_access (mode, m_align))
2906 break;
2907
2908 *out_mode = mode;
2909 m_mode = GET_MODE_WIDER_MODE (mode);
2910 m_count++;
2911 return true;
2912 }
2913 return false;
2914 }
2915
2916 /* Return true if smaller modes are generally preferred for this kind
2917 of bitfield. */
2918
2919 bool
2920 bit_field_mode_iterator::prefer_smaller_modes ()
2921 {
2922 return (m_volatilep
2923 ? targetm.narrow_volatile_bitfield ()
2924 : !SLOW_BYTE_ACCESS);
2925 }
2926
2927 /* Find the best machine mode to use when referencing a bit field of length
2928 BITSIZE bits starting at BITPOS.
2929
2930 BITREGION_START is the bit position of the first bit in this
2931 sequence of bit fields. BITREGION_END is the last bit in this
2932 sequence. If these two fields are non-zero, we should restrict the
2933 memory access to that range. Otherwise, we are allowed to touch
2934 any adjacent non bit-fields.
2935
2936 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2937 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2938 doesn't want to apply a specific limit.
2939
2940 If no mode meets all these conditions, we return VOIDmode.
2941
2942 The underlying object is known to be aligned to a boundary of ALIGN bits.
2943
2944 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2945 smallest mode meeting these conditions.
2946
2947 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2948 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2949 all the conditions.
2950
2951 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2952 decide which of the above modes should be used. */
2953
2954 bool
2955 get_best_mode (int bitsize, int bitpos,
2956 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2957 unsigned int align,
2958 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2959 scalar_int_mode *best_mode)
2960 {
2961 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2962 bitregion_end, align, volatilep);
2963 scalar_int_mode mode;
2964 bool found = false;
2965 while (iter.next_mode (&mode)
2966 /* ??? For historical reasons, reject modes that would normally
2967 receive greater alignment, even if unaligned accesses are
2968 acceptable. This has both advantages and disadvantages.
2969 Removing this check means that something like:
2970
2971 struct s { unsigned int x; unsigned int y; };
2972 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2973
2974 can be implemented using a single load and compare on
2975 64-bit machines that have no alignment restrictions.
2976 For example, on powerpc64-linux-gnu, we would generate:
2977
2978 ld 3,0(3)
2979 cntlzd 3,3
2980 srdi 3,3,6
2981 blr
2982
2983 rather than:
2984
2985 lwz 9,0(3)
2986 cmpwi 7,9,0
2987 bne 7,.L3
2988 lwz 3,4(3)
2989 cntlzw 3,3
2990 srwi 3,3,5
2991 extsw 3,3
2992 blr
2993 .p2align 4,,15
2994 .L3:
2995 li 3,0
2996 blr
2997
2998 However, accessing more than one field can make life harder
2999 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
3000 has a series of unsigned short copies followed by a series of
3001 unsigned short comparisons. With this check, both the copies
3002 and comparisons remain 16-bit accesses and FRE is able
3003 to eliminate the latter. Without the check, the comparisons
3004 can be done using 2 64-bit operations, which FRE isn't able
3005 to handle in the same way.
3006
3007 Either way, it would probably be worth disabling this check
3008 during expand. One particular example where removing the
3009 check would help is the get_best_mode call in store_bit_field.
3010 If we are given a memory bitregion of 128 bits that is aligned
3011 to a 64-bit boundary, and the bitfield we want to modify is
3012 in the second half of the bitregion, this check causes
3013 store_bitfield to turn the memory into a 64-bit reference
3014 to the _first_ half of the region. We later use
3015 adjust_bitfield_address to get a reference to the correct half,
3016 but doing so looks to adjust_bitfield_address as though we are
3017 moving past the end of the original object, so it drops the
3018 associated MEM_EXPR and MEM_OFFSET. Removing the check
3019 causes store_bit_field to keep a 128-bit memory reference,
3020 so that the final bitfield reference still has a MEM_EXPR
3021 and MEM_OFFSET. */
3022 && GET_MODE_ALIGNMENT (mode) <= align
3023 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3024 {
3025 *best_mode = mode;
3026 found = true;
3027 if (iter.prefer_smaller_modes ())
3028 break;
3029 }
3030
3031 return found;
3032 }
3033
3034 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3035 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3036
3037 void
3038 get_mode_bounds (scalar_int_mode mode, int sign,
3039 scalar_int_mode target_mode,
3040 rtx *mmin, rtx *mmax)
3041 {
3042 unsigned size = GET_MODE_PRECISION (mode);
3043 unsigned HOST_WIDE_INT min_val, max_val;
3044
3045 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3046
3047 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3048 if (mode == BImode)
3049 {
3050 if (STORE_FLAG_VALUE < 0)
3051 {
3052 min_val = STORE_FLAG_VALUE;
3053 max_val = 0;
3054 }
3055 else
3056 {
3057 min_val = 0;
3058 max_val = STORE_FLAG_VALUE;
3059 }
3060 }
3061 else if (sign)
3062 {
3063 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3064 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3065 }
3066 else
3067 {
3068 min_val = 0;
3069 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3070 }
3071
3072 *mmin = gen_int_mode (min_val, target_mode);
3073 *mmax = gen_int_mode (max_val, target_mode);
3074 }
3075
3076 #include "gt-stor-layout.h"