]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dse.c
RISC-V: Add testcase for pr114734
[thirdparty/gcc.git] / gcc / tree-ssa-dse.c
1 /* Dead and redundant store elimination
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-dfa.h"
34 #include "domwalk.h"
35 #include "tree-cfgcleanup.h"
36 #include "alias.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-ssa-dse.h"
39 #include "builtins.h"
40 #include "gimple-fold.h"
41 #include "gimplify.h"
42
43 /* This file implements dead store elimination.
44
45 A dead store is a store into a memory location which will later be
46 overwritten by another store without any intervening loads. In this
47 case the earlier store can be deleted or trimmed if the store
48 was partially dead.
49
50 A redundant store is a store into a memory location which stores
51 the exact same value as a prior store to the same memory location.
52 While this can often be handled by dead store elimination, removing
53 the redundant store is often better than removing or trimming the
54 dead store.
55
56 In our SSA + virtual operand world we use immediate uses of virtual
57 operands to detect these cases. If a store's virtual definition
58 is used precisely once by a later store to the same location which
59 post dominates the first store, then the first store is dead. If
60 the data stored is the same, then the second store is redundant.
61
62 The single use of the store's virtual definition ensures that
63 there are no intervening aliased loads and the requirement that
64 the second load post dominate the first ensures that if the earlier
65 store executes, then the later stores will execute before the function
66 exits.
67
68 It may help to think of this as first moving the earlier store to
69 the point immediately before the later store. Again, the single
70 use of the virtual definition and the post-dominance relationship
71 ensure that such movement would be safe. Clearly if there are
72 back to back stores, then the second is makes the first dead. If
73 the second store stores the same value, then the second store is
74 redundant.
75
76 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
77 may also help in understanding this code since it discusses the
78 relationship between dead store and redundant load elimination. In
79 fact, they are the same transformation applied to different views of
80 the CFG. */
81
82 static void delete_dead_or_redundant_call (gimple_stmt_iterator *, const char *);
83
84 /* Bitmap of blocks that have had EH statements cleaned. We should
85 remove their dead edges eventually. */
86 static bitmap need_eh_cleanup;
87
88 /* STMT is a statement that may write into memory. Analyze it and
89 initialize WRITE to describe how STMT affects memory.
90
91 Return TRUE if the statement was analyzed, FALSE otherwise.
92
93 It is always safe to return FALSE. But typically better optimziation
94 can be achieved by analyzing more statements. */
95
96 static bool
97 initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
98 {
99 /* It's advantageous to handle certain mem* functions. */
100 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
101 {
102 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
103 {
104 case BUILT_IN_MEMCPY:
105 case BUILT_IN_MEMMOVE:
106 case BUILT_IN_MEMSET:
107 case BUILT_IN_MEMCPY_CHK:
108 case BUILT_IN_MEMMOVE_CHK:
109 case BUILT_IN_MEMSET_CHK:
110 case BUILT_IN_STRNCPY:
111 case BUILT_IN_STRNCPY_CHK:
112 {
113 tree size = gimple_call_arg (stmt, 2);
114 tree ptr = gimple_call_arg (stmt, 0);
115 ao_ref_init_from_ptr_and_size (write, ptr, size);
116 return true;
117 }
118
119 /* A calloc call can never be dead, but it can make
120 subsequent stores redundant if they store 0 into
121 the same memory locations. */
122 case BUILT_IN_CALLOC:
123 {
124 tree nelem = gimple_call_arg (stmt, 0);
125 tree selem = gimple_call_arg (stmt, 1);
126 tree lhs;
127 if (TREE_CODE (nelem) == INTEGER_CST
128 && TREE_CODE (selem) == INTEGER_CST
129 && (lhs = gimple_call_lhs (stmt)) != NULL_TREE)
130 {
131 tree size = fold_build2 (MULT_EXPR, TREE_TYPE (nelem),
132 nelem, selem);
133 ao_ref_init_from_ptr_and_size (write, lhs, size);
134 return true;
135 }
136 }
137
138 default:
139 break;
140 }
141 }
142 else if (is_gimple_assign (stmt))
143 {
144 ao_ref_init (write, gimple_assign_lhs (stmt));
145 return true;
146 }
147 return false;
148 }
149
150 /* Given REF from the alias oracle, return TRUE if it is a valid
151 memory reference for dead store elimination, false otherwise.
152
153 In particular, the reference must have a known base, known maximum
154 size, start at a byte offset and have a size that is one or more
155 bytes. */
156
157 static bool
158 valid_ao_ref_for_dse (ao_ref *ref)
159 {
160 return (ao_ref_base (ref)
161 && known_size_p (ref->max_size)
162 && maybe_ne (ref->size, 0)
163 && known_eq (ref->max_size, ref->size)
164 && known_ge (ref->offset, 0)
165 && multiple_p (ref->offset, BITS_PER_UNIT)
166 && multiple_p (ref->size, BITS_PER_UNIT));
167 }
168
169 /* Try to normalize COPY (an ao_ref) relative to REF. Essentially when we are
170 done COPY will only refer bytes found within REF. Return true if COPY
171 is known to intersect at least one byte of REF. */
172
173 static bool
174 normalize_ref (ao_ref *copy, ao_ref *ref)
175 {
176 if (!ordered_p (copy->offset, ref->offset))
177 return false;
178
179 /* If COPY starts before REF, then reset the beginning of
180 COPY to match REF and decrease the size of COPY by the
181 number of bytes removed from COPY. */
182 if (maybe_lt (copy->offset, ref->offset))
183 {
184 poly_int64 diff = ref->offset - copy->offset;
185 if (maybe_le (copy->size, diff))
186 return false;
187 copy->size -= diff;
188 copy->offset = ref->offset;
189 }
190
191 poly_int64 diff = copy->offset - ref->offset;
192 if (maybe_le (ref->size, diff))
193 return false;
194
195 /* If COPY extends beyond REF, chop off its size appropriately. */
196 poly_int64 limit = ref->size - diff;
197 if (!ordered_p (limit, copy->size))
198 return false;
199
200 if (maybe_gt (copy->size, limit))
201 copy->size = limit;
202 return true;
203 }
204
205 /* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base
206 address written by STMT must match the one found in REF, which must
207 have its base address previously initialized.
208
209 This routine must be conservative. If we don't know the offset or
210 actual size written, assume nothing was written. */
211
212 static void
213 clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
214 {
215 ao_ref write;
216 if (!initialize_ao_ref_for_dse (stmt, &write))
217 return;
218
219 /* Verify we have the same base memory address, the write
220 has a known size and overlaps with REF. */
221 HOST_WIDE_INT start, size;
222 if (valid_ao_ref_for_dse (&write)
223 && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
224 && known_eq (write.size, write.max_size)
225 && normalize_ref (&write, ref)
226 && (write.offset - ref->offset).is_constant (&start)
227 && write.size.is_constant (&size))
228 bitmap_clear_range (live_bytes, start / BITS_PER_UNIT,
229 size / BITS_PER_UNIT);
230 }
231
232 /* REF is a memory write. Extract relevant information from it and
233 initialize the LIVE_BYTES bitmap. If successful, return TRUE.
234 Otherwise return FALSE. */
235
236 static bool
237 setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
238 {
239 HOST_WIDE_INT const_size;
240 if (valid_ao_ref_for_dse (ref)
241 && ref->size.is_constant (&const_size)
242 && (const_size / BITS_PER_UNIT
243 <= param_dse_max_object_size))
244 {
245 bitmap_clear (live_bytes);
246 bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT);
247 return true;
248 }
249 return false;
250 }
251
252 /* Compute the number of elements that we can trim from the head and
253 tail of ORIG resulting in a bitmap that is a superset of LIVE.
254
255 Store the number of elements trimmed from the head and tail in
256 TRIM_HEAD and TRIM_TAIL.
257
258 STMT is the statement being trimmed and is used for debugging dump
259 output only. */
260
261 static void
262 compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
263 gimple *stmt)
264 {
265 /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
266 extends through ref->size. So we know that in the original bitmap
267 bits 0..ref->size were true. We don't actually need the bitmap, just
268 the REF to compute the trims. */
269
270 /* Now identify how much, if any of the tail we can chop off. */
271 HOST_WIDE_INT const_size;
272 int last_live = bitmap_last_set_bit (live);
273 if (ref->size.is_constant (&const_size))
274 {
275 int last_orig = (const_size / BITS_PER_UNIT) - 1;
276 /* We can leave inconvenient amounts on the tail as
277 residual handling in mem* and str* functions is usually
278 reasonably efficient. */
279 *trim_tail = last_orig - last_live;
280
281 /* But don't trim away out of bounds accesses, as this defeats
282 proper warnings.
283
284 We could have a type with no TYPE_SIZE_UNIT or we could have a VLA
285 where TYPE_SIZE_UNIT is not a constant. */
286 if (*trim_tail
287 && TYPE_SIZE_UNIT (TREE_TYPE (ref->base))
288 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref->base))) == INTEGER_CST
289 && compare_tree_int (TYPE_SIZE_UNIT (TREE_TYPE (ref->base)),
290 last_orig) <= 0)
291 *trim_tail = 0;
292 }
293 else
294 *trim_tail = 0;
295
296 /* Identify how much, if any of the head we can chop off. */
297 int first_orig = 0;
298 int first_live = bitmap_first_set_bit (live);
299 *trim_head = first_live - first_orig;
300
301 /* If more than a word remains, then make sure to keep the
302 starting point at least word aligned. */
303 if (last_live - first_live > UNITS_PER_WORD)
304 *trim_head &= ~(UNITS_PER_WORD - 1);
305
306 if ((*trim_head || *trim_tail)
307 && dump_file && (dump_flags & TDF_DETAILS))
308 {
309 fprintf (dump_file, " Trimming statement (head = %d, tail = %d): ",
310 *trim_head, *trim_tail);
311 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
312 fprintf (dump_file, "\n");
313 }
314 }
315
316 /* STMT initializes an object from COMPLEX_CST where one or more of the
317 bytes written may be dead stores. REF is a representation of the
318 memory written. LIVE is the bitmap of stores that are actually live.
319
320 Attempt to rewrite STMT so that only the real or imaginary part of
321 the object is actually stored. */
322
323 static void
324 maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
325 {
326 int trim_head, trim_tail;
327 compute_trims (ref, live, &trim_head, &trim_tail, stmt);
328
329 /* The amount of data trimmed from the head or tail must be at
330 least half the size of the object to ensure we're trimming
331 the entire real or imaginary half. By writing things this
332 way we avoid more O(n) bitmap operations. */
333 if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size))
334 {
335 /* TREE_REALPART is live */
336 tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
337 tree y = gimple_assign_lhs (stmt);
338 y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
339 gimple_assign_set_lhs (stmt, y);
340 gimple_assign_set_rhs1 (stmt, x);
341 }
342 else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size))
343 {
344 /* TREE_IMAGPART is live */
345 tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
346 tree y = gimple_assign_lhs (stmt);
347 y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
348 gimple_assign_set_lhs (stmt, y);
349 gimple_assign_set_rhs1 (stmt, x);
350 }
351
352 /* Other cases indicate parts of both the real and imag subobjects
353 are live. We do not try to optimize those cases. */
354 }
355
356 /* STMT initializes an object using a CONSTRUCTOR where one or more of the
357 bytes written are dead stores. ORIG is the bitmap of bytes stored by
358 STMT. LIVE is the bitmap of stores that are actually live.
359
360 Attempt to rewrite STMT so that only the real or imaginary part of
361 the object is actually stored.
362
363 The most common case for getting here is a CONSTRUCTOR with no elements
364 being used to zero initialize an object. We do not try to handle other
365 cases as those would force us to fully cover the object with the
366 CONSTRUCTOR node except for the components that are dead. */
367
368 static void
369 maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
370 {
371 tree ctor = gimple_assign_rhs1 (stmt);
372
373 /* This is the only case we currently handle. It actually seems to
374 catch most cases of actual interest. */
375 gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
376
377 int head_trim = 0;
378 int tail_trim = 0;
379 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
380
381 /* Now we want to replace the constructor initializer
382 with memset (object + head_trim, 0, size - head_trim - tail_trim). */
383 if (head_trim || tail_trim)
384 {
385 /* We want &lhs for the MEM_REF expression. */
386 tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
387
388 if (! is_gimple_min_invariant (lhs_addr))
389 return;
390
391 /* The number of bytes for the new constructor. */
392 poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT);
393 poly_int64 count = ref_bytes - head_trim - tail_trim;
394
395 /* And the new type for the CONSTRUCTOR. Essentially it's just
396 a char array large enough to cover the non-trimmed parts of
397 the original CONSTRUCTOR. Note we want explicit bounds here
398 so that we know how many bytes to clear when expanding the
399 CONSTRUCTOR. */
400 tree type = build_array_type_nelts (char_type_node, count);
401
402 /* Build a suitable alias type rather than using alias set zero
403 to avoid pessimizing. */
404 tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
405
406 /* Build a MEM_REF representing the whole accessed area, starting
407 at the first byte not trimmed. */
408 tree exp = fold_build2 (MEM_REF, type, lhs_addr,
409 build_int_cst (alias_type, head_trim));
410
411 /* Now update STMT with a new RHS and LHS. */
412 gimple_assign_set_lhs (stmt, exp);
413 gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
414 }
415 }
416
417 /* STMT is a memcpy, memmove or memset. Decrement the number of bytes
418 copied/set by DECREMENT. */
419 static void
420 decrement_count (gimple *stmt, int decrement)
421 {
422 tree *countp = gimple_call_arg_ptr (stmt, 2);
423 gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
424 *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
425 - decrement));
426 }
427
428 static void
429 increment_start_addr (gimple *stmt, tree *where, int increment)
430 {
431 if (tree lhs = gimple_call_lhs (stmt))
432 if (where == gimple_call_arg_ptr (stmt, 0))
433 {
434 gassign *newop = gimple_build_assign (lhs, unshare_expr (*where));
435 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
436 gsi_insert_after (&gsi, newop, GSI_SAME_STMT);
437 gimple_call_set_lhs (stmt, NULL_TREE);
438 update_stmt (stmt);
439 }
440
441 if (TREE_CODE (*where) == SSA_NAME)
442 {
443 tree tem = make_ssa_name (TREE_TYPE (*where));
444 gassign *newop
445 = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
446 build_int_cst (sizetype, increment));
447 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
448 gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
449 *where = tem;
450 update_stmt (stmt);
451 return;
452 }
453
454 *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
455 *where,
456 build_int_cst (ptr_type_node,
457 increment)));
458 }
459
460 /* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
461 (ORIG & ~NEW) and need not be stored. Try to rewrite STMT to reduce
462 the amount of data it actually writes.
463
464 Right now we only support trimming from the head or the tail of the
465 memory region. In theory we could split the mem* call, but it's
466 likely of marginal value. */
467
468 static void
469 maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
470 {
471 int head_trim, tail_trim;
472 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
473 {
474 case BUILT_IN_STRNCPY:
475 case BUILT_IN_STRNCPY_CHK:
476 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
477 if (head_trim)
478 {
479 /* Head trimming of strncpy is only possible if we can
480 prove all bytes we would trim are non-zero (or we could
481 turn the strncpy into memset if there must be zero
482 among the head trimmed bytes). If we don't know anything
483 about those bytes, the presence or absence of '\0' bytes
484 in there will affect whether it acts for the non-trimmed
485 bytes as memset or memcpy/strncpy. */
486 c_strlen_data lendata = { };
487 int orig_head_trim = head_trim;
488 tree srcstr = gimple_call_arg (stmt, 1);
489 if (!get_range_strlen (srcstr, &lendata, /*eltsize=*/1)
490 || !tree_fits_uhwi_p (lendata.minlen))
491 head_trim = 0;
492 else if (tree_to_uhwi (lendata.minlen) < (unsigned) head_trim)
493 {
494 head_trim = tree_to_uhwi (lendata.minlen);
495 if ((orig_head_trim & (UNITS_PER_WORD - 1)) == 0)
496 head_trim &= ~(UNITS_PER_WORD - 1);
497 }
498 if (orig_head_trim != head_trim
499 && dump_file
500 && (dump_flags & TDF_DETAILS))
501 fprintf (dump_file,
502 " Adjusting strncpy trimming to (head = %d,"
503 " tail = %d)\n", head_trim, tail_trim);
504 }
505 goto do_memcpy;
506
507 case BUILT_IN_MEMCPY:
508 case BUILT_IN_MEMMOVE:
509 case BUILT_IN_MEMCPY_CHK:
510 case BUILT_IN_MEMMOVE_CHK:
511 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
512
513 do_memcpy:
514 /* Tail trimming is easy, we can just reduce the count. */
515 if (tail_trim)
516 decrement_count (stmt, tail_trim);
517
518 /* Head trimming requires adjusting all the arguments. */
519 if (head_trim)
520 {
521 /* For __*_chk need to adjust also the last argument. */
522 if (gimple_call_num_args (stmt) == 4)
523 {
524 tree size = gimple_call_arg (stmt, 3);
525 if (!tree_fits_uhwi_p (size))
526 break;
527 if (!integer_all_onesp (size))
528 {
529 unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
530 if (sz < (unsigned) head_trim)
531 break;
532 tree arg = wide_int_to_tree (TREE_TYPE (size),
533 sz - head_trim);
534 gimple_call_set_arg (stmt, 3, arg);
535 }
536 }
537 tree *dst = gimple_call_arg_ptr (stmt, 0);
538 increment_start_addr (stmt, dst, head_trim);
539 tree *src = gimple_call_arg_ptr (stmt, 1);
540 increment_start_addr (stmt, src, head_trim);
541 decrement_count (stmt, head_trim);
542 }
543 break;
544
545 case BUILT_IN_MEMSET:
546 case BUILT_IN_MEMSET_CHK:
547 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
548
549 /* Tail trimming is easy, we can just reduce the count. */
550 if (tail_trim)
551 decrement_count (stmt, tail_trim);
552
553 /* Head trimming requires adjusting all the arguments. */
554 if (head_trim)
555 {
556 /* For __*_chk need to adjust also the last argument. */
557 if (gimple_call_num_args (stmt) == 4)
558 {
559 tree size = gimple_call_arg (stmt, 3);
560 if (!tree_fits_uhwi_p (size))
561 break;
562 if (!integer_all_onesp (size))
563 {
564 unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
565 if (sz < (unsigned) head_trim)
566 break;
567 tree arg = wide_int_to_tree (TREE_TYPE (size),
568 sz - head_trim);
569 gimple_call_set_arg (stmt, 3, arg);
570 }
571 }
572 tree *dst = gimple_call_arg_ptr (stmt, 0);
573 increment_start_addr (stmt, dst, head_trim);
574 decrement_count (stmt, head_trim);
575 }
576 break;
577
578 default:
579 break;
580 }
581 }
582
583 /* STMT is a memory write where one or more bytes written are dead
584 stores. ORIG is the bitmap of bytes stored by STMT. LIVE is the
585 bitmap of stores that are actually live.
586
587 Attempt to rewrite STMT so that it writes fewer memory locations. Right
588 now we only support trimming at the start or end of the memory region.
589 It's not clear how much there is to be gained by trimming from the middle
590 of the region. */
591
592 static void
593 maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
594 {
595 if (is_gimple_assign (stmt)
596 && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
597 {
598 switch (gimple_assign_rhs_code (stmt))
599 {
600 case CONSTRUCTOR:
601 maybe_trim_constructor_store (ref, live, stmt);
602 break;
603 case COMPLEX_CST:
604 maybe_trim_complex_store (ref, live, stmt);
605 break;
606 default:
607 break;
608 }
609 }
610 }
611
612 /* Return TRUE if USE_REF reads bytes from LIVE where live is
613 derived from REF, a write reference.
614
615 While this routine may modify USE_REF, it's passed by value, not
616 location. So callers do not see those modifications. */
617
618 static bool
619 live_bytes_read (ao_ref use_ref, ao_ref *ref, sbitmap live)
620 {
621 /* We have already verified that USE_REF and REF hit the same object.
622 Now verify that there's actually an overlap between USE_REF and REF. */
623 HOST_WIDE_INT start, size;
624 if (normalize_ref (&use_ref, ref)
625 && (use_ref.offset - ref->offset).is_constant (&start)
626 && use_ref.size.is_constant (&size))
627 {
628 /* If USE_REF covers all of REF, then it will hit one or more
629 live bytes. This avoids useless iteration over the bitmap
630 below. */
631 if (start == 0 && known_eq (size, ref->size))
632 return true;
633
634 /* Now check if any of the remaining bits in use_ref are set in LIVE. */
635 return bitmap_bit_in_range_p (live, start / BITS_PER_UNIT,
636 (start + size - 1) / BITS_PER_UNIT);
637 }
638 return true;
639 }
640
641 /* Callback for dse_classify_store calling for_each_index. Verify that
642 indices are invariant in the loop with backedge PHI in basic-block DATA. */
643
644 static bool
645 check_name (tree, tree *idx, void *data)
646 {
647 basic_block phi_bb = (basic_block) data;
648 if (TREE_CODE (*idx) == SSA_NAME
649 && !SSA_NAME_IS_DEFAULT_DEF (*idx)
650 && dominated_by_p (CDI_DOMINATORS, gimple_bb (SSA_NAME_DEF_STMT (*idx)),
651 phi_bb))
652 return false;
653 return true;
654 }
655
656 /* STMT stores the value 0 into one or more memory locations
657 (via memset, empty constructor, calloc call, etc).
658
659 See if there is a subsequent store of the value 0 to one
660 or more of the same memory location(s). If so, the subsequent
661 store is redundant and can be removed.
662
663 The subsequent stores could be via memset, empty constructors,
664 simple MEM stores, etc. */
665
666 static void
667 dse_optimize_redundant_stores (gimple *stmt)
668 {
669 int cnt = 0;
670
671 /* TBAA state of STMT, if it is a call it is effectively alias-set zero. */
672 alias_set_type earlier_set = 0;
673 alias_set_type earlier_base_set = 0;
674 if (is_gimple_assign (stmt))
675 {
676 ao_ref lhs_ref;
677 ao_ref_init (&lhs_ref, gimple_assign_lhs (stmt));
678 earlier_set = ao_ref_alias_set (&lhs_ref);
679 earlier_base_set = ao_ref_base_alias_set (&lhs_ref);
680 }
681
682 /* We could do something fairly complex and look through PHIs
683 like DSE_CLASSIFY_STORE, but it doesn't seem to be worth
684 the effort.
685
686 Look at all the immediate uses of the VDEF (which are obviously
687 dominated by STMT). See if one or more stores 0 into the same
688 memory locations a STMT, if so remove the immediate use statements. */
689 tree defvar = gimple_vdef (stmt);
690 imm_use_iterator ui;
691 gimple *use_stmt;
692 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
693 {
694 /* Limit stmt walking. */
695 if (++cnt > param_dse_max_alias_queries_per_store)
696 BREAK_FROM_IMM_USE_STMT (ui);
697
698 /* If USE_STMT stores 0 into one or more of the same locations
699 as STMT and STMT would kill USE_STMT, then we can just remove
700 USE_STMT. */
701 tree fndecl;
702 if ((is_gimple_assign (use_stmt)
703 && gimple_vdef (use_stmt)
704 && (gimple_assign_single_p (use_stmt)
705 && initializer_zerop (gimple_assign_rhs1 (use_stmt))))
706 || (gimple_call_builtin_p (use_stmt, BUILT_IN_NORMAL)
707 && (fndecl = gimple_call_fndecl (use_stmt)) != NULL
708 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
709 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
710 && integer_zerop (gimple_call_arg (use_stmt, 1))))
711 {
712 ao_ref write;
713
714 if (!initialize_ao_ref_for_dse (use_stmt, &write))
715 BREAK_FROM_IMM_USE_STMT (ui)
716
717 if (valid_ao_ref_for_dse (&write)
718 && stmt_kills_ref_p (stmt, &write))
719 {
720 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
721 if (is_gimple_assign (use_stmt))
722 {
723 ao_ref lhs_ref;
724 ao_ref_init (&lhs_ref, gimple_assign_lhs (use_stmt));
725 if ((earlier_set == ao_ref_alias_set (&lhs_ref)
726 || alias_set_subset_of (ao_ref_alias_set (&lhs_ref),
727 earlier_set))
728 && (earlier_base_set == ao_ref_base_alias_set (&lhs_ref)
729 || alias_set_subset_of
730 (ao_ref_base_alias_set (&lhs_ref),
731 earlier_base_set)))
732 delete_dead_or_redundant_assignment (&gsi, "redundant",
733 need_eh_cleanup);
734 }
735 else if (is_gimple_call (use_stmt))
736 {
737 if ((earlier_set == 0
738 || alias_set_subset_of (0, earlier_set))
739 && (earlier_base_set == 0
740 || alias_set_subset_of (0, earlier_base_set)))
741 delete_dead_or_redundant_call (&gsi, "redundant");
742 }
743 else
744 gcc_unreachable ();
745 }
746 }
747 }
748 }
749
750 /* A helper of dse_optimize_stmt.
751 Given a GIMPLE_ASSIGN in STMT that writes to REF, classify it
752 according to downstream uses and defs. Sets *BY_CLOBBER_P to true
753 if only clobber statements influenced the classification result.
754 Returns the classification. */
755
756 dse_store_status
757 dse_classify_store (ao_ref *ref, gimple *stmt,
758 bool byte_tracking_enabled, sbitmap live_bytes,
759 bool *by_clobber_p, tree stop_at_vuse)
760 {
761 gimple *temp;
762 int cnt = 0;
763 auto_bitmap visited;
764
765 if (by_clobber_p)
766 *by_clobber_p = true;
767
768 /* Find the first dominated statement that clobbers (part of) the
769 memory stmt stores to with no intermediate statement that may use
770 part of the memory stmt stores. That is, find a store that may
771 prove stmt to be a dead store. */
772 temp = stmt;
773 do
774 {
775 gimple *use_stmt;
776 imm_use_iterator ui;
777 bool fail = false;
778 tree defvar;
779
780 if (gimple_code (temp) == GIMPLE_PHI)
781 {
782 /* If we visit this PHI by following a backedge then we have to
783 make sure ref->ref only refers to SSA names that are invariant
784 with respect to the loop represented by this PHI node. */
785 if (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt),
786 gimple_bb (temp))
787 && !for_each_index (ref->ref ? &ref->ref : &ref->base,
788 check_name, gimple_bb (temp)))
789 return DSE_STORE_LIVE;
790 defvar = PHI_RESULT (temp);
791 bitmap_set_bit (visited, SSA_NAME_VERSION (defvar));
792 }
793 else
794 defvar = gimple_vdef (temp);
795
796 /* If we're instructed to stop walking at region boundary, do so. */
797 if (defvar == stop_at_vuse)
798 return DSE_STORE_LIVE;
799
800 auto_vec<gimple *, 10> defs;
801 gimple *phi_def = NULL;
802 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
803 {
804 /* Limit stmt walking. */
805 if (++cnt > param_dse_max_alias_queries_per_store)
806 {
807 fail = true;
808 BREAK_FROM_IMM_USE_STMT (ui);
809 }
810
811 /* We have visited ourselves already so ignore STMT for the
812 purpose of chaining. */
813 if (use_stmt == stmt)
814 ;
815 /* In simple cases we can look through PHI nodes, but we
816 have to be careful with loops and with memory references
817 containing operands that are also operands of PHI nodes.
818 See gcc.c-torture/execute/20051110-*.c. */
819 else if (gimple_code (use_stmt) == GIMPLE_PHI)
820 {
821 /* If we already visited this PHI ignore it for further
822 processing. */
823 if (!bitmap_bit_p (visited,
824 SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
825 {
826 defs.safe_push (use_stmt);
827 phi_def = use_stmt;
828 }
829 }
830 /* If the statement is a use the store is not dead. */
831 else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
832 {
833 /* Handle common cases where we can easily build an ao_ref
834 structure for USE_STMT and in doing so we find that the
835 references hit non-live bytes and thus can be ignored. */
836 if (byte_tracking_enabled
837 && is_gimple_assign (use_stmt))
838 {
839 ao_ref use_ref;
840 ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt));
841 if (valid_ao_ref_for_dse (&use_ref)
842 && use_ref.base == ref->base
843 && known_eq (use_ref.size, use_ref.max_size)
844 && !live_bytes_read (use_ref, ref, live_bytes))
845 {
846 /* If this is a store, remember it as we possibly
847 need to walk the defs uses. */
848 if (gimple_vdef (use_stmt))
849 defs.safe_push (use_stmt);
850 continue;
851 }
852 }
853
854 fail = true;
855 BREAK_FROM_IMM_USE_STMT (ui);
856 }
857 /* If this is a store, remember it as we possibly need to walk the
858 defs uses. */
859 else if (gimple_vdef (use_stmt))
860 defs.safe_push (use_stmt);
861 }
862
863 if (fail)
864 {
865 /* STMT might be partially dead and we may be able to reduce
866 how many memory locations it stores into. */
867 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
868 return DSE_STORE_MAYBE_PARTIAL_DEAD;
869 return DSE_STORE_LIVE;
870 }
871
872 /* If we didn't find any definition this means the store is dead
873 if it isn't a store to global reachable memory. In this case
874 just pretend the stmt makes itself dead. Otherwise fail. */
875 if (defs.is_empty ())
876 {
877 if (ref_may_alias_global_p (ref))
878 return DSE_STORE_LIVE;
879
880 if (by_clobber_p)
881 *by_clobber_p = false;
882 return DSE_STORE_DEAD;
883 }
884
885 /* Process defs and remove those we need not process further. */
886 for (unsigned i = 0; i < defs.length ();)
887 {
888 gimple *def = defs[i];
889 gimple *use_stmt;
890 use_operand_p use_p;
891 /* If the path to check starts with a kill we do not need to
892 process it further.
893 ??? With byte tracking we need only kill the bytes currently
894 live. */
895 if (stmt_kills_ref_p (def, ref))
896 {
897 if (by_clobber_p && !gimple_clobber_p (def))
898 *by_clobber_p = false;
899 defs.unordered_remove (i);
900 }
901 /* In addition to kills we can remove defs whose only use
902 is another def in defs. That can only ever be PHIs of which
903 we track a single for simplicity reasons (we fail for multiple
904 PHIs anyways). We can also ignore defs that feed only into
905 already visited PHIs. */
906 else if (gimple_code (def) != GIMPLE_PHI
907 && single_imm_use (gimple_vdef (def), &use_p, &use_stmt)
908 && (use_stmt == phi_def
909 || (gimple_code (use_stmt) == GIMPLE_PHI
910 && bitmap_bit_p (visited,
911 SSA_NAME_VERSION
912 (PHI_RESULT (use_stmt))))))
913 defs.unordered_remove (i);
914 else
915 ++i;
916 }
917
918 /* If all defs kill the ref we are done. */
919 if (defs.is_empty ())
920 return DSE_STORE_DEAD;
921 /* If more than one def survives fail. */
922 if (defs.length () > 1)
923 {
924 /* STMT might be partially dead and we may be able to reduce
925 how many memory locations it stores into. */
926 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
927 return DSE_STORE_MAYBE_PARTIAL_DEAD;
928 return DSE_STORE_LIVE;
929 }
930 temp = defs[0];
931
932 /* Track partial kills. */
933 if (byte_tracking_enabled)
934 {
935 clear_bytes_written_by (live_bytes, temp, ref);
936 if (bitmap_empty_p (live_bytes))
937 {
938 if (by_clobber_p && !gimple_clobber_p (temp))
939 *by_clobber_p = false;
940 return DSE_STORE_DEAD;
941 }
942 }
943 }
944 /* Continue walking until there are no more live bytes. */
945 while (1);
946 }
947
948
949 class dse_dom_walker : public dom_walker
950 {
951 public:
952 dse_dom_walker (cdi_direction direction)
953 : dom_walker (direction),
954 m_live_bytes (param_dse_max_object_size),
955 m_byte_tracking_enabled (false) {}
956
957 virtual edge before_dom_children (basic_block);
958
959 private:
960 auto_sbitmap m_live_bytes;
961 bool m_byte_tracking_enabled;
962 void dse_optimize_stmt (gimple_stmt_iterator *);
963 };
964
965 /* Delete a dead call at GSI, which is mem* call of some kind. */
966 static void
967 delete_dead_or_redundant_call (gimple_stmt_iterator *gsi, const char *type)
968 {
969 gimple *stmt = gsi_stmt (*gsi);
970 if (dump_file && (dump_flags & TDF_DETAILS))
971 {
972 fprintf (dump_file, " Deleted %s call: ", type);
973 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
974 fprintf (dump_file, "\n");
975 }
976
977 tree lhs = gimple_call_lhs (stmt);
978 if (lhs)
979 {
980 tree ptr = gimple_call_arg (stmt, 0);
981 gimple *new_stmt = gimple_build_assign (lhs, ptr);
982 unlink_stmt_vdef (stmt);
983 if (gsi_replace (gsi, new_stmt, true))
984 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
985 }
986 else
987 {
988 /* Then we need to fix the operand of the consuming stmt. */
989 unlink_stmt_vdef (stmt);
990
991 /* Remove the dead store. */
992 if (gsi_remove (gsi, true))
993 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
994 release_defs (stmt);
995 }
996 }
997
998 /* Delete a dead store at GSI, which is a gimple assignment. */
999
1000 void
1001 delete_dead_or_redundant_assignment (gimple_stmt_iterator *gsi, const char *type,
1002 bitmap need_eh_cleanup)
1003 {
1004 gimple *stmt = gsi_stmt (*gsi);
1005 if (dump_file && (dump_flags & TDF_DETAILS))
1006 {
1007 fprintf (dump_file, " Deleted %s store: ", type);
1008 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1009 fprintf (dump_file, "\n");
1010 }
1011
1012 /* Then we need to fix the operand of the consuming stmt. */
1013 unlink_stmt_vdef (stmt);
1014
1015 /* Remove the dead store. */
1016 basic_block bb = gimple_bb (stmt);
1017 if (gsi_remove (gsi, true) && need_eh_cleanup)
1018 bitmap_set_bit (need_eh_cleanup, bb->index);
1019
1020 /* And release any SSA_NAMEs set in this statement back to the
1021 SSA_NAME manager. */
1022 release_defs (stmt);
1023 }
1024
1025 /* Attempt to eliminate dead stores in the statement referenced by BSI.
1026
1027 A dead store is a store into a memory location which will later be
1028 overwritten by another store without any intervening loads. In this
1029 case the earlier store can be deleted.
1030
1031 In our SSA + virtual operand world we use immediate uses of virtual
1032 operands to detect dead stores. If a store's virtual definition
1033 is used precisely once by a later store to the same location which
1034 post dominates the first store, then the first store is dead. */
1035
1036 void
1037 dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
1038 {
1039 gimple *stmt = gsi_stmt (*gsi);
1040
1041 /* If this statement has no virtual defs, then there is nothing
1042 to do. */
1043 if (!gimple_vdef (stmt))
1044 return;
1045
1046 /* Don't return early on *this_2(D) ={v} {CLOBBER}. */
1047 if (gimple_has_volatile_ops (stmt)
1048 && (!gimple_clobber_p (stmt)
1049 || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
1050 return;
1051
1052 ao_ref ref;
1053 if (!initialize_ao_ref_for_dse (stmt, &ref))
1054 return;
1055
1056 /* We know we have virtual definitions. We can handle assignments and
1057 some builtin calls. */
1058 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1059 {
1060 tree fndecl = gimple_call_fndecl (stmt);
1061 switch (DECL_FUNCTION_CODE (fndecl))
1062 {
1063 case BUILT_IN_MEMCPY:
1064 case BUILT_IN_MEMMOVE:
1065 case BUILT_IN_STRNCPY:
1066 case BUILT_IN_MEMSET:
1067 case BUILT_IN_MEMCPY_CHK:
1068 case BUILT_IN_MEMMOVE_CHK:
1069 case BUILT_IN_STRNCPY_CHK:
1070 case BUILT_IN_MEMSET_CHK:
1071 {
1072 /* Occasionally calls with an explicit length of zero
1073 show up in the IL. It's pointless to do analysis
1074 on them, they're trivially dead. */
1075 tree size = gimple_call_arg (stmt, 2);
1076 if (integer_zerop (size))
1077 {
1078 delete_dead_or_redundant_call (gsi, "dead");
1079 return;
1080 }
1081
1082 /* If this is a memset call that initializes an object
1083 to zero, it may be redundant with an earlier memset
1084 or empty CONSTRUCTOR of a larger object. */
1085 if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
1086 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
1087 && integer_zerop (gimple_call_arg (stmt, 1)))
1088 dse_optimize_redundant_stores (stmt);
1089
1090 enum dse_store_status store_status;
1091 m_byte_tracking_enabled
1092 = setup_live_bytes_from_ref (&ref, m_live_bytes);
1093 store_status = dse_classify_store (&ref, stmt,
1094 m_byte_tracking_enabled,
1095 m_live_bytes);
1096 if (store_status == DSE_STORE_LIVE)
1097 return;
1098
1099 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
1100 {
1101 maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
1102 return;
1103 }
1104
1105 if (store_status == DSE_STORE_DEAD)
1106 delete_dead_or_redundant_call (gsi, "dead");
1107 return;
1108 }
1109
1110 case BUILT_IN_CALLOC:
1111 /* We already know the arguments are integer constants. */
1112 dse_optimize_redundant_stores (stmt);
1113 return;
1114
1115 default:
1116 return;
1117 }
1118 }
1119
1120 if (is_gimple_assign (stmt))
1121 {
1122 bool by_clobber_p = false;
1123
1124 /* Check if this statement stores zero to a memory location,
1125 and if there is a subsequent store of zero to the same
1126 memory location. If so, remove the subsequent store. */
1127 if (gimple_assign_single_p (stmt)
1128 && initializer_zerop (gimple_assign_rhs1 (stmt)))
1129 dse_optimize_redundant_stores (stmt);
1130
1131 /* Self-assignments are zombies. */
1132 if (operand_equal_p (gimple_assign_rhs1 (stmt),
1133 gimple_assign_lhs (stmt), 0))
1134 ;
1135 else
1136 {
1137 m_byte_tracking_enabled
1138 = setup_live_bytes_from_ref (&ref, m_live_bytes);
1139 enum dse_store_status store_status;
1140 store_status = dse_classify_store (&ref, stmt,
1141 m_byte_tracking_enabled,
1142 m_live_bytes, &by_clobber_p);
1143 if (store_status == DSE_STORE_LIVE)
1144 return;
1145
1146 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
1147 {
1148 maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
1149 return;
1150 }
1151 }
1152
1153 /* Now we know that use_stmt kills the LHS of stmt. */
1154
1155 /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
1156 another clobber stmt. */
1157 if (gimple_clobber_p (stmt)
1158 && !by_clobber_p)
1159 return;
1160
1161 delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup);
1162 }
1163 }
1164
1165 edge
1166 dse_dom_walker::before_dom_children (basic_block bb)
1167 {
1168 gimple_stmt_iterator gsi;
1169
1170 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1171 {
1172 dse_optimize_stmt (&gsi);
1173 if (gsi_end_p (gsi))
1174 gsi = gsi_last_bb (bb);
1175 else
1176 gsi_prev (&gsi);
1177 }
1178 return NULL;
1179 }
1180
1181 namespace {
1182
1183 const pass_data pass_data_dse =
1184 {
1185 GIMPLE_PASS, /* type */
1186 "dse", /* name */
1187 OPTGROUP_NONE, /* optinfo_flags */
1188 TV_TREE_DSE, /* tv_id */
1189 ( PROP_cfg | PROP_ssa ), /* properties_required */
1190 0, /* properties_provided */
1191 0, /* properties_destroyed */
1192 0, /* todo_flags_start */
1193 0, /* todo_flags_finish */
1194 };
1195
1196 class pass_dse : public gimple_opt_pass
1197 {
1198 public:
1199 pass_dse (gcc::context *ctxt)
1200 : gimple_opt_pass (pass_data_dse, ctxt)
1201 {}
1202
1203 /* opt_pass methods: */
1204 opt_pass * clone () { return new pass_dse (m_ctxt); }
1205 virtual bool gate (function *) { return flag_tree_dse != 0; }
1206 virtual unsigned int execute (function *);
1207
1208 }; // class pass_dse
1209
1210 unsigned int
1211 pass_dse::execute (function *fun)
1212 {
1213 need_eh_cleanup = BITMAP_ALLOC (NULL);
1214
1215 renumber_gimple_stmt_uids (cfun);
1216
1217 /* We might consider making this a property of each pass so that it
1218 can be [re]computed on an as-needed basis. Particularly since
1219 this pass could be seen as an extension of DCE which needs post
1220 dominators. */
1221 calculate_dominance_info (CDI_POST_DOMINATORS);
1222 calculate_dominance_info (CDI_DOMINATORS);
1223
1224 /* Dead store elimination is fundamentally a walk of the post-dominator
1225 tree and a backwards walk of statements within each block. */
1226 dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);
1227
1228 /* Removal of stores may make some EH edges dead. Purge such edges from
1229 the CFG as needed. */
1230 if (!bitmap_empty_p (need_eh_cleanup))
1231 {
1232 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
1233 cleanup_tree_cfg ();
1234 }
1235
1236 BITMAP_FREE (need_eh_cleanup);
1237
1238 /* For now, just wipe the post-dominator information. */
1239 free_dominance_info (CDI_POST_DOMINATORS);
1240 return 0;
1241 }
1242
1243 } // anon namespace
1244
1245 gimple_opt_pass *
1246 make_pass_dse (gcc::context *ctxt)
1247 {
1248 return new pass_dse (ctxt);
1249 }