]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-threadedge.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / gcc / tree-ssa-threadedge.c
1 /* SSA Jump Threading
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfgloop.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "params.h"
35 #include "tree-ssa-scopedtables.h"
36 #include "tree-ssa-threadedge.h"
37 #include "tree-ssa-dom.h"
38 #include "gimple-fold.h"
39 #include "cfganal.h"
40 #include "alloc-pool.h"
41 #include "vr-values.h"
42 #include "gimple-ssa-evrp-analyze.h"
43
44 /* To avoid code explosion due to jump threading, we limit the
45 number of statements we are going to copy. This variable
46 holds the number of statements currently seen that we'll have
47 to copy as part of the jump threading process. */
48 static int stmt_count;
49
50 /* Array to record value-handles per SSA_NAME. */
51 vec<tree> ssa_name_values;
52
53 typedef tree (pfn_simplify) (gimple *, gimple *,
54 class avail_exprs_stack *,
55 basic_block);
56
57 /* Set the value for the SSA name NAME to VALUE. */
58
59 void
60 set_ssa_name_value (tree name, tree value)
61 {
62 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
63 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
64 if (value && TREE_OVERFLOW_P (value))
65 value = drop_tree_overflow (value);
66 ssa_name_values[SSA_NAME_VERSION (name)] = value;
67 }
68
69 /* Initialize the per SSA_NAME value-handles array. Returns it. */
70 void
71 threadedge_initialize_values (void)
72 {
73 gcc_assert (!ssa_name_values.exists ());
74 ssa_name_values.create (num_ssa_names);
75 }
76
77 /* Free the per SSA_NAME value-handle array. */
78 void
79 threadedge_finalize_values (void)
80 {
81 ssa_name_values.release ();
82 }
83
84 /* Return TRUE if we may be able to thread an incoming edge into
85 BB to an outgoing edge from BB. Return FALSE otherwise. */
86
87 bool
88 potentially_threadable_block (basic_block bb)
89 {
90 gimple_stmt_iterator gsi;
91
92 /* Special case. We can get blocks that are forwarders, but are
93 not optimized away because they forward from outside a loop
94 to the loop header. We want to thread through them as we can
95 sometimes thread to the loop exit, which is obviously profitable.
96 the interesting case here is when the block has PHIs. */
97 if (gsi_end_p (gsi_start_nondebug_bb (bb))
98 && !gsi_end_p (gsi_start_phis (bb)))
99 return true;
100
101 /* If BB has a single successor or a single predecessor, then
102 there is no threading opportunity. */
103 if (single_succ_p (bb) || single_pred_p (bb))
104 return false;
105
106 /* If BB does not end with a conditional, switch or computed goto,
107 then there is no threading opportunity. */
108 gsi = gsi_last_bb (bb);
109 if (gsi_end_p (gsi)
110 || ! gsi_stmt (gsi)
111 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
112 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
113 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
114 return false;
115
116 return true;
117 }
118
119 /* Record temporary equivalences created by PHIs at the target of the
120 edge E. Record unwind information for the equivalences into
121 CONST_AND_COPIES and EVRP_RANGE_DATA.
122
123 If a PHI which prevents threading is encountered, then return FALSE
124 indicating we should not thread this edge, else return TRUE. */
125
126 static bool
127 record_temporary_equivalences_from_phis (edge e,
128 const_and_copies *const_and_copies,
129 evrp_range_analyzer *evrp_range_analyzer)
130 {
131 gphi_iterator gsi;
132
133 /* Each PHI creates a temporary equivalence, record them.
134 These are context sensitive equivalences and will be removed
135 later. */
136 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
137 {
138 gphi *phi = gsi.phi ();
139 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
140 tree dst = gimple_phi_result (phi);
141
142 /* If the desired argument is not the same as this PHI's result
143 and it is set by a PHI in E->dest, then we cannot thread
144 through E->dest. */
145 if (src != dst
146 && TREE_CODE (src) == SSA_NAME
147 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
148 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
149 return false;
150
151 /* We consider any non-virtual PHI as a statement since it
152 count result in a constant assignment or copy operation. */
153 if (!virtual_operand_p (dst))
154 stmt_count++;
155
156 const_and_copies->record_const_or_copy (dst, src);
157
158 /* Also update the value range associated with DST, using
159 the range from SRC.
160
161 Note that even if SRC is a constant we need to set a suitable
162 output range so that VR_UNDEFINED ranges do not leak through. */
163 if (evrp_range_analyzer)
164 {
165 /* Get an empty new VR we can pass to update_value_range and save
166 away in the VR stack. */
167 vr_values *vr_values = evrp_range_analyzer->get_vr_values ();
168 value_range *new_vr = vr_values->allocate_value_range ();
169 new (new_vr) value_range ();
170
171 /* There are three cases to consider:
172
173 First if SRC is an SSA_NAME, then we can copy the value
174 range from SRC into NEW_VR.
175
176 Second if SRC is an INTEGER_CST, then we can just wet
177 NEW_VR to a singleton range.
178
179 Otherwise set NEW_VR to varying. This may be overly
180 conservative. */
181 if (TREE_CODE (src) == SSA_NAME)
182 new_vr->deep_copy (vr_values->get_value_range (src));
183 else if (TREE_CODE (src) == INTEGER_CST)
184 new_vr->set (src);
185 else
186 new_vr->set_varying ();
187
188 /* This is a temporary range for DST, so push it. */
189 evrp_range_analyzer->push_value_range (dst, new_vr);
190 }
191 }
192 return true;
193 }
194
195 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
196
197 static tree
198 threadedge_valueize (tree t)
199 {
200 if (TREE_CODE (t) == SSA_NAME)
201 {
202 tree tem = SSA_NAME_VALUE (t);
203 if (tem)
204 return tem;
205 }
206 return t;
207 }
208
209 /* Try to simplify each statement in E->dest, ultimately leading to
210 a simplification of the COND_EXPR at the end of E->dest.
211
212 Record unwind information for temporary equivalences onto STACK.
213
214 Use SIMPLIFY (a pointer to a callback function) to further simplify
215 statements using pass specific information.
216
217 We might consider marking just those statements which ultimately
218 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
219 would be recovered by trying to simplify fewer statements.
220
221 If we are able to simplify a statement into the form
222 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
223 a context sensitive equivalence which may help us simplify
224 later statements in E->dest. */
225
226 static gimple *
227 record_temporary_equivalences_from_stmts_at_dest (edge e,
228 const_and_copies *const_and_copies,
229 avail_exprs_stack *avail_exprs_stack,
230 evrp_range_analyzer *evrp_range_analyzer,
231 pfn_simplify simplify)
232 {
233 gimple *stmt = NULL;
234 gimple_stmt_iterator gsi;
235 int max_stmt_count;
236
237 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
238
239 /* Walk through each statement in the block recording equivalences
240 we discover. Note any equivalences we discover are context
241 sensitive (ie, are dependent on traversing E) and must be unwound
242 when we're finished processing E. */
243 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
244 {
245 tree cached_lhs = NULL;
246
247 stmt = gsi_stmt (gsi);
248
249 /* Ignore empty statements and labels. */
250 if (gimple_code (stmt) == GIMPLE_NOP
251 || gimple_code (stmt) == GIMPLE_LABEL
252 || is_gimple_debug (stmt))
253 continue;
254
255 /* If the statement has volatile operands, then we assume we
256 cannot thread through this block. This is overly
257 conservative in some ways. */
258 if (gimple_code (stmt) == GIMPLE_ASM
259 && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
260 return NULL;
261
262 /* If the statement is a unique builtin, we cannot thread
263 through here. */
264 if (gimple_code (stmt) == GIMPLE_CALL
265 && gimple_call_internal_p (stmt)
266 && gimple_call_internal_unique_p (stmt))
267 return NULL;
268
269 /* If duplicating this block is going to cause too much code
270 expansion, then do not thread through this block. */
271 stmt_count++;
272 if (stmt_count > max_stmt_count)
273 {
274 /* If any of the stmts in the PATH's dests are going to be
275 killed due to threading, grow the max count
276 accordingly. */
277 if (max_stmt_count
278 == PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS))
279 {
280 max_stmt_count += estimate_threading_killed_stmts (e->dest);
281 if (dump_file)
282 fprintf (dump_file, "threading bb %i up to %i stmts\n",
283 e->dest->index, max_stmt_count);
284 }
285 /* If we're still past the limit, we're done. */
286 if (stmt_count > max_stmt_count)
287 return NULL;
288 }
289
290 /* These are temporary ranges, do nto reflect them back into
291 the global range data. */
292 if (evrp_range_analyzer)
293 evrp_range_analyzer->record_ranges_from_stmt (stmt, true);
294
295 /* If this is not a statement that sets an SSA_NAME to a new
296 value, then do not try to simplify this statement as it will
297 not simplify in any way that is helpful for jump threading. */
298 if ((gimple_code (stmt) != GIMPLE_ASSIGN
299 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
300 && (gimple_code (stmt) != GIMPLE_CALL
301 || gimple_call_lhs (stmt) == NULL_TREE
302 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
303 continue;
304
305 /* The result of __builtin_object_size depends on all the arguments
306 of a phi node. Temporarily using only one edge produces invalid
307 results. For example
308
309 if (x < 6)
310 goto l;
311 else
312 goto l;
313
314 l:
315 r = PHI <&w[2].a[1](2), &a.a[6](3)>
316 __builtin_object_size (r, 0)
317
318 The result of __builtin_object_size is defined to be the maximum of
319 remaining bytes. If we use only one edge on the phi, the result will
320 change to be the remaining bytes for the corresponding phi argument.
321
322 Similarly for __builtin_constant_p:
323
324 r = PHI <1(2), 2(3)>
325 __builtin_constant_p (r)
326
327 Both PHI arguments are constant, but x ? 1 : 2 is still not
328 constant. */
329
330 if (is_gimple_call (stmt))
331 {
332 tree fndecl = gimple_call_fndecl (stmt);
333 if (fndecl
334 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
335 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
336 continue;
337 }
338
339 /* At this point we have a statement which assigns an RHS to an
340 SSA_VAR on the LHS. We want to try and simplify this statement
341 to expose more context sensitive equivalences which in turn may
342 allow us to simplify the condition at the end of the loop.
343
344 Handle simple copy operations as well as implied copies from
345 ASSERT_EXPRs. */
346 if (gimple_assign_single_p (stmt)
347 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
348 cached_lhs = gimple_assign_rhs1 (stmt);
349 else if (gimple_assign_single_p (stmt)
350 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
351 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
352 else
353 {
354 /* A statement that is not a trivial copy or ASSERT_EXPR.
355 Try to fold the new expression. Inserting the
356 expression into the hash table is unlikely to help. */
357 /* ??? The DOM callback below can be changed to setting
358 the mprts_hook around the call to thread_across_edge,
359 avoiding the use substitution. The VRP hook should be
360 changed to properly valueize operands itself using
361 SSA_NAME_VALUE in addition to its own lattice. */
362 cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
363 threadedge_valueize);
364 if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
365 && (!cached_lhs
366 || (TREE_CODE (cached_lhs) != SSA_NAME
367 && !is_gimple_min_invariant (cached_lhs))))
368 {
369 /* We're going to temporarily copy propagate the operands
370 and see if that allows us to simplify this statement. */
371 tree *copy;
372 ssa_op_iter iter;
373 use_operand_p use_p;
374 unsigned int num, i = 0;
375
376 num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
377 copy = XALLOCAVEC (tree, num);
378
379 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
380 the operands. */
381 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
382 {
383 tree tmp = NULL;
384 tree use = USE_FROM_PTR (use_p);
385
386 copy[i++] = use;
387 if (TREE_CODE (use) == SSA_NAME)
388 tmp = SSA_NAME_VALUE (use);
389 if (tmp)
390 SET_USE (use_p, tmp);
391 }
392
393 cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
394
395 /* Restore the statement's original uses/defs. */
396 i = 0;
397 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
398 SET_USE (use_p, copy[i++]);
399 }
400 }
401
402 /* Record the context sensitive equivalence if we were able
403 to simplify this statement. */
404 if (cached_lhs
405 && (TREE_CODE (cached_lhs) == SSA_NAME
406 || is_gimple_min_invariant (cached_lhs)))
407 const_and_copies->record_const_or_copy (gimple_get_lhs (stmt),
408 cached_lhs);
409 }
410 return stmt;
411 }
412
413 static tree simplify_control_stmt_condition_1 (edge, gimple *,
414 class avail_exprs_stack *,
415 tree, enum tree_code, tree,
416 gcond *, pfn_simplify,
417 unsigned);
418
419 /* Simplify the control statement at the end of the block E->dest.
420
421 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
422 is available to use/clobber in DUMMY_COND.
423
424 Use SIMPLIFY (a pointer to a callback function) to further simplify
425 a condition using pass specific information.
426
427 Return the simplified condition or NULL if simplification could
428 not be performed. When simplifying a GIMPLE_SWITCH, we may return
429 the CASE_LABEL_EXPR that will be taken.
430
431 The available expression table is referenced via AVAIL_EXPRS_STACK. */
432
433 static tree
434 simplify_control_stmt_condition (edge e,
435 gimple *stmt,
436 class avail_exprs_stack *avail_exprs_stack,
437 gcond *dummy_cond,
438 pfn_simplify simplify)
439 {
440 tree cond, cached_lhs;
441 enum gimple_code code = gimple_code (stmt);
442
443 /* For comparisons, we have to update both operands, then try
444 to simplify the comparison. */
445 if (code == GIMPLE_COND)
446 {
447 tree op0, op1;
448 enum tree_code cond_code;
449
450 op0 = gimple_cond_lhs (stmt);
451 op1 = gimple_cond_rhs (stmt);
452 cond_code = gimple_cond_code (stmt);
453
454 /* Get the current value of both operands. */
455 if (TREE_CODE (op0) == SSA_NAME)
456 {
457 for (int i = 0; i < 2; i++)
458 {
459 if (TREE_CODE (op0) == SSA_NAME
460 && SSA_NAME_VALUE (op0))
461 op0 = SSA_NAME_VALUE (op0);
462 else
463 break;
464 }
465 }
466
467 if (TREE_CODE (op1) == SSA_NAME)
468 {
469 for (int i = 0; i < 2; i++)
470 {
471 if (TREE_CODE (op1) == SSA_NAME
472 && SSA_NAME_VALUE (op1))
473 op1 = SSA_NAME_VALUE (op1);
474 else
475 break;
476 }
477 }
478
479 const unsigned recursion_limit = 4;
480
481 cached_lhs
482 = simplify_control_stmt_condition_1 (e, stmt, avail_exprs_stack,
483 op0, cond_code, op1,
484 dummy_cond, simplify,
485 recursion_limit);
486
487 /* If we were testing an integer/pointer against a constant, then
488 we can use the FSM code to trace the value of the SSA_NAME. If
489 a value is found, then the condition will collapse to a constant.
490
491 Return the SSA_NAME we want to trace back rather than the full
492 expression and give the FSM threader a chance to find its value. */
493 if (cached_lhs == NULL)
494 {
495 /* Recover the original operands. They may have been simplified
496 using context sensitive equivalences. Those context sensitive
497 equivalences may not be valid on paths found by the FSM optimizer. */
498 tree op0 = gimple_cond_lhs (stmt);
499 tree op1 = gimple_cond_rhs (stmt);
500
501 if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
502 || POINTER_TYPE_P (TREE_TYPE (op0)))
503 && TREE_CODE (op0) == SSA_NAME
504 && TREE_CODE (op1) == INTEGER_CST)
505 return op0;
506 }
507
508 return cached_lhs;
509 }
510
511 if (code == GIMPLE_SWITCH)
512 cond = gimple_switch_index (as_a <gswitch *> (stmt));
513 else if (code == GIMPLE_GOTO)
514 cond = gimple_goto_dest (stmt);
515 else
516 gcc_unreachable ();
517
518 /* We can have conditionals which just test the state of a variable
519 rather than use a relational operator. These are simpler to handle. */
520 if (TREE_CODE (cond) == SSA_NAME)
521 {
522 tree original_lhs = cond;
523 cached_lhs = cond;
524
525 /* Get the variable's current value from the equivalence chains.
526
527 It is possible to get loops in the SSA_NAME_VALUE chains
528 (consider threading the backedge of a loop where we have
529 a loop invariant SSA_NAME used in the condition). */
530 if (cached_lhs)
531 {
532 for (int i = 0; i < 2; i++)
533 {
534 if (TREE_CODE (cached_lhs) == SSA_NAME
535 && SSA_NAME_VALUE (cached_lhs))
536 cached_lhs = SSA_NAME_VALUE (cached_lhs);
537 else
538 break;
539 }
540 }
541
542 /* If we haven't simplified to an invariant yet, then use the
543 pass specific callback to try and simplify it further. */
544 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
545 {
546 if (code == GIMPLE_SWITCH)
547 {
548 /* Replace the index operand of the GIMPLE_SWITCH with any LHS
549 we found before handing off to VRP. If simplification is
550 possible, the simplified value will be a CASE_LABEL_EXPR of
551 the label that is proven to be taken. */
552 gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
553 gimple_switch_set_index (dummy_switch, cached_lhs);
554 cached_lhs = (*simplify) (dummy_switch, stmt,
555 avail_exprs_stack, e->src);
556 ggc_free (dummy_switch);
557 }
558 else
559 cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
560 }
561
562 /* We couldn't find an invariant. But, callers of this
563 function may be able to do something useful with the
564 unmodified destination. */
565 if (!cached_lhs)
566 cached_lhs = original_lhs;
567 }
568 else
569 cached_lhs = NULL;
570
571 return cached_lhs;
572 }
573
574 /* Recursive helper for simplify_control_stmt_condition. */
575
576 static tree
577 simplify_control_stmt_condition_1 (edge e,
578 gimple *stmt,
579 class avail_exprs_stack *avail_exprs_stack,
580 tree op0,
581 enum tree_code cond_code,
582 tree op1,
583 gcond *dummy_cond,
584 pfn_simplify simplify,
585 unsigned limit)
586 {
587 if (limit == 0)
588 return NULL_TREE;
589
590 /* We may need to canonicalize the comparison. For
591 example, op0 might be a constant while op1 is an
592 SSA_NAME. Failure to canonicalize will cause us to
593 miss threading opportunities. */
594 if (tree_swap_operands_p (op0, op1))
595 {
596 cond_code = swap_tree_comparison (cond_code);
597 std::swap (op0, op1);
598 }
599
600 /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
601 recurse into the LHS to see if there is a dominating ASSERT_EXPR
602 of A or of B that makes this condition always true or always false
603 along the edge E. */
604 if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
605 && TREE_CODE (op0) == SSA_NAME
606 && integer_zerop (op1))
607 {
608 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
609 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
610 ;
611 else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
612 || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
613 {
614 enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
615 const tree rhs1 = gimple_assign_rhs1 (def_stmt);
616 const tree rhs2 = gimple_assign_rhs2 (def_stmt);
617
618 /* Is A != 0 ? */
619 const tree res1
620 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
621 rhs1, NE_EXPR, op1,
622 dummy_cond, simplify,
623 limit - 1);
624 if (res1 == NULL_TREE)
625 ;
626 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
627 {
628 /* If A == 0 then (A & B) != 0 is always false. */
629 if (cond_code == NE_EXPR)
630 return boolean_false_node;
631 /* If A == 0 then (A & B) == 0 is always true. */
632 if (cond_code == EQ_EXPR)
633 return boolean_true_node;
634 }
635 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
636 {
637 /* If A != 0 then (A | B) != 0 is always true. */
638 if (cond_code == NE_EXPR)
639 return boolean_true_node;
640 /* If A != 0 then (A | B) == 0 is always false. */
641 if (cond_code == EQ_EXPR)
642 return boolean_false_node;
643 }
644
645 /* Is B != 0 ? */
646 const tree res2
647 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
648 rhs2, NE_EXPR, op1,
649 dummy_cond, simplify,
650 limit - 1);
651 if (res2 == NULL_TREE)
652 ;
653 else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
654 {
655 /* If B == 0 then (A & B) != 0 is always false. */
656 if (cond_code == NE_EXPR)
657 return boolean_false_node;
658 /* If B == 0 then (A & B) == 0 is always true. */
659 if (cond_code == EQ_EXPR)
660 return boolean_true_node;
661 }
662 else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
663 {
664 /* If B != 0 then (A | B) != 0 is always true. */
665 if (cond_code == NE_EXPR)
666 return boolean_true_node;
667 /* If B != 0 then (A | B) == 0 is always false. */
668 if (cond_code == EQ_EXPR)
669 return boolean_false_node;
670 }
671
672 if (res1 != NULL_TREE && res2 != NULL_TREE)
673 {
674 if (rhs_code == BIT_AND_EXPR
675 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
676 && integer_nonzerop (res1)
677 && integer_nonzerop (res2))
678 {
679 /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true. */
680 if (cond_code == NE_EXPR)
681 return boolean_true_node;
682 /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false. */
683 if (cond_code == EQ_EXPR)
684 return boolean_false_node;
685 }
686
687 if (rhs_code == BIT_IOR_EXPR
688 && integer_zerop (res1)
689 && integer_zerop (res2))
690 {
691 /* If A == 0 and B == 0 then (A | B) != 0 is false. */
692 if (cond_code == NE_EXPR)
693 return boolean_false_node;
694 /* If A == 0 and B == 0 then (A | B) == 0 is true. */
695 if (cond_code == EQ_EXPR)
696 return boolean_true_node;
697 }
698 }
699 }
700 /* Handle (A CMP B) CMP 0. */
701 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
702 == tcc_comparison)
703 {
704 tree rhs1 = gimple_assign_rhs1 (def_stmt);
705 tree rhs2 = gimple_assign_rhs2 (def_stmt);
706
707 tree_code new_cond = gimple_assign_rhs_code (def_stmt);
708 if (cond_code == EQ_EXPR)
709 new_cond = invert_tree_comparison (new_cond, false);
710
711 tree res
712 = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
713 rhs1, new_cond, rhs2,
714 dummy_cond, simplify,
715 limit - 1);
716 if (res != NULL_TREE && is_gimple_min_invariant (res))
717 return res;
718 }
719 }
720
721 gimple_cond_set_code (dummy_cond, cond_code);
722 gimple_cond_set_lhs (dummy_cond, op0);
723 gimple_cond_set_rhs (dummy_cond, op1);
724
725 /* We absolutely do not care about any type conversions
726 we only care about a zero/nonzero value. */
727 fold_defer_overflow_warnings ();
728
729 tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
730 if (res)
731 while (CONVERT_EXPR_P (res))
732 res = TREE_OPERAND (res, 0);
733
734 fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
735 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
736
737 /* If we have not simplified the condition down to an invariant,
738 then use the pass specific callback to simplify the condition. */
739 if (!res
740 || !is_gimple_min_invariant (res))
741 res = (*simplify) (dummy_cond, stmt, avail_exprs_stack, e->src);
742
743 return res;
744 }
745
746 /* Copy debug stmts from DEST's chain of single predecessors up to
747 SRC, so that we don't lose the bindings as PHI nodes are introduced
748 when DEST gains new predecessors. */
749 void
750 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
751 {
752 if (!MAY_HAVE_DEBUG_BIND_STMTS)
753 return;
754
755 if (!single_pred_p (dest))
756 return;
757
758 gcc_checking_assert (dest != src);
759
760 gimple_stmt_iterator gsi = gsi_after_labels (dest);
761 int i = 0;
762 const int alloc_count = 16; // ?? Should this be a PARAM?
763
764 /* Estimate the number of debug vars overridden in the beginning of
765 DEST, to tell how many we're going to need to begin with. */
766 for (gimple_stmt_iterator si = gsi;
767 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
768 {
769 gimple *stmt = gsi_stmt (si);
770 if (!is_gimple_debug (stmt))
771 break;
772 if (gimple_debug_nonbind_marker_p (stmt))
773 continue;
774 i++;
775 }
776
777 auto_vec<tree, alloc_count> fewvars;
778 hash_set<tree> *vars = NULL;
779
780 /* If we're already starting with 3/4 of alloc_count, go for a
781 hash_set, otherwise start with an unordered stack-allocated
782 VEC. */
783 if (i * 4 > alloc_count * 3)
784 vars = new hash_set<tree>;
785
786 /* Now go through the initial debug stmts in DEST again, this time
787 actually inserting in VARS or FEWVARS. Don't bother checking for
788 duplicates in FEWVARS. */
789 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
790 {
791 gimple *stmt = gsi_stmt (si);
792 if (!is_gimple_debug (stmt))
793 break;
794
795 tree var;
796
797 if (gimple_debug_bind_p (stmt))
798 var = gimple_debug_bind_get_var (stmt);
799 else if (gimple_debug_source_bind_p (stmt))
800 var = gimple_debug_source_bind_get_var (stmt);
801 else if (gimple_debug_nonbind_marker_p (stmt))
802 continue;
803 else
804 gcc_unreachable ();
805
806 if (vars)
807 vars->add (var);
808 else
809 fewvars.quick_push (var);
810 }
811
812 basic_block bb = dest;
813
814 do
815 {
816 bb = single_pred (bb);
817 for (gimple_stmt_iterator si = gsi_last_bb (bb);
818 !gsi_end_p (si); gsi_prev (&si))
819 {
820 gimple *stmt = gsi_stmt (si);
821 if (!is_gimple_debug (stmt))
822 continue;
823
824 tree var;
825
826 if (gimple_debug_bind_p (stmt))
827 var = gimple_debug_bind_get_var (stmt);
828 else if (gimple_debug_source_bind_p (stmt))
829 var = gimple_debug_source_bind_get_var (stmt);
830 else if (gimple_debug_nonbind_marker_p (stmt))
831 continue;
832 else
833 gcc_unreachable ();
834
835 /* Discard debug bind overlaps. Unlike stmts from src,
836 copied into a new block that will precede BB, debug bind
837 stmts in bypassed BBs may actually be discarded if
838 they're overwritten by subsequent debug bind stmts. We
839 want to copy binds for all modified variables, so that we
840 retain a bind to the shared def if there is one, or to a
841 newly introduced PHI node if there is one. Our bind will
842 end up reset if the value is dead, but that implies the
843 variable couldn't have survived, so it's fine. We are
844 not actually running the code that performed the binds at
845 this point, we're just adding binds so that they survive
846 the new confluence, so markers should not be copied. */
847 if (vars && vars->add (var))
848 continue;
849 else if (!vars)
850 {
851 int i = fewvars.length ();
852 while (i--)
853 if (fewvars[i] == var)
854 break;
855 if (i >= 0)
856 continue;
857 else if (fewvars.length () < (unsigned) alloc_count)
858 fewvars.quick_push (var);
859 else
860 {
861 vars = new hash_set<tree>;
862 for (i = 0; i < alloc_count; i++)
863 vars->add (fewvars[i]);
864 fewvars.release ();
865 vars->add (var);
866 }
867 }
868
869 stmt = gimple_copy (stmt);
870 /* ??? Should we drop the location of the copy to denote
871 they're artificial bindings? */
872 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
873 }
874 }
875 while (bb != src && single_pred_p (bb));
876
877 if (vars)
878 delete vars;
879 else if (fewvars.exists ())
880 fewvars.release ();
881 }
882
883 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
884 need not be duplicated as part of the CFG/SSA updating process).
885
886 If it is threadable, add it to PATH and VISITED and recurse, ultimately
887 returning TRUE from the toplevel call. Otherwise do nothing and
888 return false.
889
890 DUMMY_COND, SIMPLIFY are used to try and simplify the condition at the
891 end of TAKEN_EDGE->dest.
892
893 The available expression table is referenced via AVAIL_EXPRS_STACK. */
894
895 static bool
896 thread_around_empty_blocks (edge taken_edge,
897 gcond *dummy_cond,
898 class avail_exprs_stack *avail_exprs_stack,
899 pfn_simplify simplify,
900 bitmap visited,
901 vec<jump_thread_edge *> *path)
902 {
903 basic_block bb = taken_edge->dest;
904 gimple_stmt_iterator gsi;
905 gimple *stmt;
906 tree cond;
907
908 /* The key property of these blocks is that they need not be duplicated
909 when threading. Thus they cannot have visible side effects such
910 as PHI nodes. */
911 if (!gsi_end_p (gsi_start_phis (bb)))
912 return false;
913
914 /* Skip over DEBUG statements at the start of the block. */
915 gsi = gsi_start_nondebug_bb (bb);
916
917 /* If the block has no statements, but does have a single successor, then
918 it's just a forwarding block and we can thread through it trivially.
919
920 However, note that just threading through empty blocks with single
921 successors is not inherently profitable. For the jump thread to
922 be profitable, we must avoid a runtime conditional.
923
924 By taking the return value from the recursive call, we get the
925 desired effect of returning TRUE when we found a profitable jump
926 threading opportunity and FALSE otherwise.
927
928 This is particularly important when this routine is called after
929 processing a joiner block. Returning TRUE too aggressively in
930 that case results in pointless duplication of the joiner block. */
931 if (gsi_end_p (gsi))
932 {
933 if (single_succ_p (bb))
934 {
935 taken_edge = single_succ_edge (bb);
936
937 if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
938 return false;
939
940 if (!bitmap_bit_p (visited, taken_edge->dest->index))
941 {
942 jump_thread_edge *x
943 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
944 path->safe_push (x);
945 bitmap_set_bit (visited, taken_edge->dest->index);
946 return thread_around_empty_blocks (taken_edge,
947 dummy_cond,
948 avail_exprs_stack,
949 simplify,
950 visited,
951 path);
952 }
953 }
954
955 /* We have a block with no statements, but multiple successors? */
956 return false;
957 }
958
959 /* The only real statements this block can have are a control
960 flow altering statement. Anything else stops the thread. */
961 stmt = gsi_stmt (gsi);
962 if (gimple_code (stmt) != GIMPLE_COND
963 && gimple_code (stmt) != GIMPLE_GOTO
964 && gimple_code (stmt) != GIMPLE_SWITCH)
965 return false;
966
967 /* Extract and simplify the condition. */
968 cond = simplify_control_stmt_condition (taken_edge, stmt,
969 avail_exprs_stack, dummy_cond,
970 simplify);
971
972 /* If the condition can be statically computed and we have not already
973 visited the destination edge, then add the taken edge to our thread
974 path. */
975 if (cond != NULL_TREE
976 && (is_gimple_min_invariant (cond)
977 || TREE_CODE (cond) == CASE_LABEL_EXPR))
978 {
979 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
980 taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
981 else
982 taken_edge = find_taken_edge (bb, cond);
983
984 if (!taken_edge
985 || (taken_edge->flags & EDGE_DFS_BACK) != 0)
986 return false;
987
988 if (bitmap_bit_p (visited, taken_edge->dest->index))
989 return false;
990 bitmap_set_bit (visited, taken_edge->dest->index);
991
992 jump_thread_edge *x
993 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
994 path->safe_push (x);
995
996 thread_around_empty_blocks (taken_edge,
997 dummy_cond,
998 avail_exprs_stack,
999 simplify,
1000 visited,
1001 path);
1002 return true;
1003 }
1004
1005 return false;
1006 }
1007
1008 /* We are exiting E->src, see if E->dest ends with a conditional
1009 jump which has a known value when reached via E.
1010
1011 E->dest can have arbitrary side effects which, if threading is
1012 successful, will be maintained.
1013
1014 Special care is necessary if E is a back edge in the CFG as we
1015 may have already recorded equivalences for E->dest into our
1016 various tables, including the result of the conditional at
1017 the end of E->dest. Threading opportunities are severely
1018 limited in that case to avoid short-circuiting the loop
1019 incorrectly.
1020
1021 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1022 to avoid allocating memory.
1023
1024 STACK is used to undo temporary equivalences created during the walk of
1025 E->dest.
1026
1027 SIMPLIFY is a pass-specific function used to simplify statements.
1028
1029 Our caller is responsible for restoring the state of the expression
1030 and const_and_copies stacks.
1031
1032 Positive return value is success. Zero return value is failure, but
1033 the block can still be duplicated as a joiner in a jump thread path,
1034 negative indicates the block should not be duplicated and thus is not
1035 suitable for a joiner in a jump threading path. */
1036
1037 static int
1038 thread_through_normal_block (edge e,
1039 gcond *dummy_cond,
1040 const_and_copies *const_and_copies,
1041 avail_exprs_stack *avail_exprs_stack,
1042 evrp_range_analyzer *evrp_range_analyzer,
1043 pfn_simplify simplify,
1044 vec<jump_thread_edge *> *path,
1045 bitmap visited)
1046 {
1047 /* We want to record any equivalences created by traversing E. */
1048 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1049
1050 /* PHIs create temporary equivalences.
1051 Note that if we found a PHI that made the block non-threadable, then
1052 we need to bubble that up to our caller in the same manner we do
1053 when we prematurely stop processing statements below. */
1054 if (!record_temporary_equivalences_from_phis (e, const_and_copies,
1055 evrp_range_analyzer))
1056 return -1;
1057
1058 /* Now walk each statement recording any context sensitive
1059 temporary equivalences we can detect. */
1060 gimple *stmt
1061 = record_temporary_equivalences_from_stmts_at_dest (e, const_and_copies,
1062 avail_exprs_stack,
1063 evrp_range_analyzer,
1064 simplify);
1065
1066 /* There's two reasons STMT might be null, and distinguishing
1067 between them is important.
1068
1069 First the block may not have had any statements. For example, it
1070 might have some PHIs and unconditionally transfer control elsewhere.
1071 Such blocks are suitable for jump threading, particularly as a
1072 joiner block.
1073
1074 The second reason would be if we did not process all the statements
1075 in the block (because there were too many to make duplicating the
1076 block profitable. If we did not look at all the statements, then
1077 we may not have invalidated everything needing invalidation. Thus
1078 we must signal to our caller that this block is not suitable for
1079 use as a joiner in a threading path. */
1080 if (!stmt)
1081 {
1082 /* First case. The statement simply doesn't have any instructions, but
1083 does have PHIs. */
1084 if (gsi_end_p (gsi_start_nondebug_bb (e->dest))
1085 && !gsi_end_p (gsi_start_phis (e->dest)))
1086 return 0;
1087
1088 /* Second case. */
1089 return -1;
1090 }
1091
1092 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
1093 will be taken. */
1094 if (gimple_code (stmt) == GIMPLE_COND
1095 || gimple_code (stmt) == GIMPLE_GOTO
1096 || gimple_code (stmt) == GIMPLE_SWITCH)
1097 {
1098 tree cond;
1099
1100 /* Extract and simplify the condition. */
1101 cond = simplify_control_stmt_condition (e, stmt, avail_exprs_stack,
1102 dummy_cond, simplify);
1103
1104 if (!cond)
1105 return 0;
1106
1107 if (is_gimple_min_invariant (cond)
1108 || TREE_CODE (cond) == CASE_LABEL_EXPR)
1109 {
1110 edge taken_edge;
1111 if (TREE_CODE (cond) == CASE_LABEL_EXPR)
1112 taken_edge = find_edge (e->dest,
1113 label_to_block (cfun, CASE_LABEL (cond)));
1114 else
1115 taken_edge = find_taken_edge (e->dest, cond);
1116
1117 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
1118
1119 /* DEST could be NULL for a computed jump to an absolute
1120 address. */
1121 if (dest == NULL
1122 || dest == e->dest
1123 || (taken_edge->flags & EDGE_DFS_BACK) != 0
1124 || bitmap_bit_p (visited, dest->index))
1125 return 0;
1126
1127 /* Only push the EDGE_START_JUMP_THREAD marker if this is
1128 first edge on the path. */
1129 if (path->length () == 0)
1130 {
1131 jump_thread_edge *x
1132 = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1133 path->safe_push (x);
1134 }
1135
1136 jump_thread_edge *x
1137 = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1138 path->safe_push (x);
1139
1140 /* See if we can thread through DEST as well, this helps capture
1141 secondary effects of threading without having to re-run DOM or
1142 VRP.
1143
1144 We don't want to thread back to a block we have already
1145 visited. This may be overly conservative. */
1146 bitmap_set_bit (visited, dest->index);
1147 bitmap_set_bit (visited, e->dest->index);
1148 thread_around_empty_blocks (taken_edge,
1149 dummy_cond,
1150 avail_exprs_stack,
1151 simplify,
1152 visited,
1153 path);
1154 return 1;
1155 }
1156 }
1157 return 0;
1158 }
1159
1160 /* There are basic blocks look like:
1161 <P0>
1162 p0 = a CMP b ; or p0 = (INT) (a CMP b)
1163 goto <X>;
1164
1165 <P1>
1166 p1 = c CMP d
1167 goto <X>;
1168
1169 <X>
1170 # phi = PHI <p0 (P0), p1 (P1)>
1171 if (phi != 0) goto <Y>; else goto <Z>;
1172
1173 Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
1174 And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
1175
1176 Return true if E is (P0,X) or (P1,X) */
1177
1178 bool
1179 edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
1180 {
1181 /* See if there is only one stmt which is gcond. */
1182 gcond *gs;
1183 if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
1184 return false;
1185
1186 /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
1187 tree cond = gimple_cond_lhs (gs);
1188 enum tree_code code = gimple_cond_code (gs);
1189 tree rhs = gimple_cond_rhs (gs);
1190 if (TREE_CODE (cond) != SSA_NAME
1191 || (code != NE_EXPR && code != EQ_EXPR)
1192 || (!integer_onep (rhs) && !integer_zerop (rhs)))
1193 return false;
1194 gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
1195 if (phi == NULL || gimple_bb (phi) != e->dest)
1196 return false;
1197
1198 /* Check if phi's incoming value is CMP. */
1199 gassign *def;
1200 tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
1201 if (TREE_CODE (value) != SSA_NAME
1202 || !has_single_use (value)
1203 || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
1204 return false;
1205
1206 /* Or if it is (INT) (a CMP b). */
1207 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1208 {
1209 value = gimple_assign_rhs1 (def);
1210 if (TREE_CODE (value) != SSA_NAME
1211 || !has_single_use (value)
1212 || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
1213 return false;
1214 }
1215
1216 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
1217 return false;
1218
1219 return true;
1220 }
1221
1222 /* We are exiting E->src, see if E->dest ends with a conditional
1223 jump which has a known value when reached via E.
1224
1225 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1226 to avoid allocating memory.
1227
1228 CONST_AND_COPIES is used to undo temporary equivalences created during the
1229 walk of E->dest.
1230
1231 The available expression table is referenced vai AVAIL_EXPRS_STACK.
1232
1233 SIMPLIFY is a pass-specific function used to simplify statements. */
1234
1235 static void
1236 thread_across_edge (gcond *dummy_cond,
1237 edge e,
1238 class const_and_copies *const_and_copies,
1239 class avail_exprs_stack *avail_exprs_stack,
1240 class evrp_range_analyzer *evrp_range_analyzer,
1241 pfn_simplify simplify)
1242 {
1243 bitmap visited = BITMAP_ALLOC (NULL);
1244
1245 const_and_copies->push_marker ();
1246 avail_exprs_stack->push_marker ();
1247 if (evrp_range_analyzer)
1248 evrp_range_analyzer->push_marker ();
1249
1250 stmt_count = 0;
1251
1252 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1253 bitmap_clear (visited);
1254 bitmap_set_bit (visited, e->src->index);
1255 bitmap_set_bit (visited, e->dest->index);
1256
1257 int threaded;
1258 if ((e->flags & EDGE_DFS_BACK) == 0)
1259 threaded = thread_through_normal_block (e, dummy_cond,
1260 const_and_copies,
1261 avail_exprs_stack,
1262 evrp_range_analyzer,
1263 simplify, path,
1264 visited);
1265 else
1266 threaded = 0;
1267
1268 if (threaded > 0)
1269 {
1270 propagate_threaded_block_debug_into (path->last ()->e->dest,
1271 e->dest);
1272 const_and_copies->pop_to_marker ();
1273 avail_exprs_stack->pop_to_marker ();
1274 if (evrp_range_analyzer)
1275 evrp_range_analyzer->pop_to_marker ();
1276 BITMAP_FREE (visited);
1277 register_jump_thread (path);
1278 return;
1279 }
1280 else
1281 {
1282 /* Negative and zero return values indicate no threading was possible,
1283 thus there should be no edges on the thread path and no need to walk
1284 through the vector entries. */
1285 gcc_assert (path->length () == 0);
1286 path->release ();
1287 delete path;
1288
1289 /* A negative status indicates the target block was deemed too big to
1290 duplicate. Just quit now rather than trying to use the block as
1291 a joiner in a jump threading path.
1292
1293 This prevents unnecessary code growth, but more importantly if we
1294 do not look at all the statements in the block, then we may have
1295 missed some invalidations if we had traversed a backedge! */
1296 if (threaded < 0)
1297 {
1298 BITMAP_FREE (visited);
1299 const_and_copies->pop_to_marker ();
1300 avail_exprs_stack->pop_to_marker ();
1301 if (evrp_range_analyzer)
1302 evrp_range_analyzer->pop_to_marker ();
1303 return;
1304 }
1305 }
1306
1307 /* We were unable to determine what out edge from E->dest is taken. However,
1308 we might still be able to thread through successors of E->dest. This
1309 often occurs when E->dest is a joiner block which then fans back out
1310 based on redundant tests.
1311
1312 If so, we'll copy E->dest and redirect the appropriate predecessor to
1313 the copy. Within the copy of E->dest, we'll thread one or more edges
1314 to points deeper in the CFG.
1315
1316 This is a stopgap until we have a more structured approach to path
1317 isolation. */
1318 {
1319 edge taken_edge;
1320 edge_iterator ei;
1321 bool found;
1322
1323 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1324 we can safely redirect any of the edges. Just punt those cases. */
1325 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1326 if (taken_edge->flags & EDGE_ABNORMAL)
1327 {
1328 const_and_copies->pop_to_marker ();
1329 avail_exprs_stack->pop_to_marker ();
1330 if (evrp_range_analyzer)
1331 evrp_range_analyzer->pop_to_marker ();
1332 BITMAP_FREE (visited);
1333 return;
1334 }
1335
1336 /* Look at each successor of E->dest to see if we can thread through it. */
1337 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1338 {
1339 if ((e->flags & EDGE_DFS_BACK) != 0
1340 || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1341 continue;
1342
1343 /* Push a fresh marker so we can unwind the equivalences created
1344 for each of E->dest's successors. */
1345 const_and_copies->push_marker ();
1346 avail_exprs_stack->push_marker ();
1347 if (evrp_range_analyzer)
1348 evrp_range_analyzer->push_marker ();
1349
1350 /* Avoid threading to any block we have already visited. */
1351 bitmap_clear (visited);
1352 bitmap_set_bit (visited, e->src->index);
1353 bitmap_set_bit (visited, e->dest->index);
1354 bitmap_set_bit (visited, taken_edge->dest->index);
1355 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1356
1357 /* Record whether or not we were able to thread through a successor
1358 of E->dest. */
1359 jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1360 path->safe_push (x);
1361
1362 x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1363 path->safe_push (x);
1364 found = false;
1365 found = thread_around_empty_blocks (taken_edge,
1366 dummy_cond,
1367 avail_exprs_stack,
1368 simplify,
1369 visited,
1370 path);
1371
1372 if (!found)
1373 found = thread_through_normal_block (path->last ()->e, dummy_cond,
1374 const_and_copies,
1375 avail_exprs_stack,
1376 evrp_range_analyzer,
1377 simplify, path,
1378 visited) > 0;
1379
1380 /* If we were able to thread through a successor of E->dest, then
1381 record the jump threading opportunity. */
1382 if (found
1383 || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
1384 {
1385 if (taken_edge->dest != path->last ()->e->dest)
1386 propagate_threaded_block_debug_into (path->last ()->e->dest,
1387 taken_edge->dest);
1388 register_jump_thread (path);
1389 }
1390 else
1391 delete_jump_thread_path (path);
1392
1393 /* And unwind the equivalence table. */
1394 if (evrp_range_analyzer)
1395 evrp_range_analyzer->pop_to_marker ();
1396 avail_exprs_stack->pop_to_marker ();
1397 const_and_copies->pop_to_marker ();
1398 }
1399 BITMAP_FREE (visited);
1400 }
1401
1402 if (evrp_range_analyzer)
1403 evrp_range_analyzer->pop_to_marker ();
1404 const_and_copies->pop_to_marker ();
1405 avail_exprs_stack->pop_to_marker ();
1406 }
1407
1408 /* Examine the outgoing edges from BB and conditionally
1409 try to thread them.
1410
1411 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1412 to avoid allocating memory.
1413
1414 CONST_AND_COPIES is used to undo temporary equivalences created during the
1415 walk of E->dest.
1416
1417 The available expression table is referenced vai AVAIL_EXPRS_STACK.
1418
1419 SIMPLIFY is a pass-specific function used to simplify statements. */
1420
1421 void
1422 thread_outgoing_edges (basic_block bb, gcond *dummy_cond,
1423 class const_and_copies *const_and_copies,
1424 class avail_exprs_stack *avail_exprs_stack,
1425 class evrp_range_analyzer *evrp_range_analyzer,
1426 tree (*simplify) (gimple *, gimple *,
1427 class avail_exprs_stack *,
1428 basic_block))
1429 {
1430 int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1431 gimple *last;
1432
1433 /* If we have an outgoing edge to a block with multiple incoming and
1434 outgoing edges, then we may be able to thread the edge, i.e., we
1435 may be able to statically determine which of the outgoing edges
1436 will be traversed when the incoming edge from BB is traversed. */
1437 if (single_succ_p (bb)
1438 && (single_succ_edge (bb)->flags & flags) == 0
1439 && potentially_threadable_block (single_succ (bb)))
1440 {
1441 thread_across_edge (dummy_cond, single_succ_edge (bb),
1442 const_and_copies, avail_exprs_stack,
1443 evrp_range_analyzer, simplify);
1444 }
1445 else if ((last = last_stmt (bb))
1446 && gimple_code (last) == GIMPLE_COND
1447 && EDGE_COUNT (bb->succs) == 2
1448 && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1449 && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1450 {
1451 edge true_edge, false_edge;
1452
1453 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1454
1455 /* Only try to thread the edge if it reaches a target block with
1456 more than one predecessor and more than one successor. */
1457 if (potentially_threadable_block (true_edge->dest))
1458 thread_across_edge (dummy_cond, true_edge,
1459 const_and_copies, avail_exprs_stack,
1460 evrp_range_analyzer, simplify);
1461
1462 /* Similarly for the ELSE arm. */
1463 if (potentially_threadable_block (false_edge->dest))
1464 thread_across_edge (dummy_cond, false_edge,
1465 const_and_copies, avail_exprs_stack,
1466 evrp_range_analyzer, simplify);
1467 }
1468 }