]> git.ipfire.org Git - thirdparty/gcc.git/blob - libcpp/charset.c
Update libbid according to the latest Intel Decimal Floating-Point Math Library.
[thirdparty/gcc.git] / libcpp / charset.c
1 /* CPP Library - charsets
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3
4 Broken out of c-lex.c Apr 2003, adding valid C99 UCN ranges.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "cpplib.h"
23 #include "internal.h"
24
25 /* Character set handling for C-family languages.
26
27 Terminological note: In what follows, "charset" or "character set"
28 will be taken to mean both an abstract set of characters and an
29 encoding for that set.
30
31 The C99 standard discusses two character sets: source and execution.
32 The source character set is used for internal processing in translation
33 phases 1 through 4; the execution character set is used thereafter.
34 Both are required by 5.2.1.2p1 to be multibyte encodings, not wide
35 character encodings (see 3.7.2, 3.7.3 for the standardese meanings
36 of these terms). Furthermore, the "basic character set" (listed in
37 5.2.1p3) is to be encoded in each with values one byte wide, and is
38 to appear in the initial shift state.
39
40 It is not explicitly mentioned, but there is also a "wide execution
41 character set" used to encode wide character constants and wide
42 string literals; this is supposed to be the result of applying the
43 standard library function mbstowcs() to an equivalent narrow string
44 (6.4.5p5). However, the behavior of hexadecimal and octal
45 \-escapes is at odds with this; they are supposed to be translated
46 directly to wchar_t values (6.4.4.4p5,6).
47
48 The source character set is not necessarily the character set used
49 to encode physical source files on disk; translation phase 1 converts
50 from whatever that encoding is to the source character set.
51
52 The presence of universal character names in C99 (6.4.3 et seq.)
53 forces the source character set to be isomorphic to ISO 10646,
54 that is, Unicode. There is no such constraint on the execution
55 character set; note also that the conversion from source to
56 execution character set does not occur for identifiers (5.1.1.2p1#5).
57
58 For convenience of implementation, the source character set's
59 encoding of the basic character set should be identical to the
60 execution character set OF THE HOST SYSTEM's encoding of the basic
61 character set, and it should not be a state-dependent encoding.
62
63 cpplib uses UTF-8 or UTF-EBCDIC for the source character set,
64 depending on whether the host is based on ASCII or EBCDIC (see
65 respectively Unicode section 2.3/ISO10646 Amendment 2, and Unicode
66 Technical Report #16). With limited exceptions, it relies on the
67 system library's iconv() primitive to do charset conversion
68 (specified in SUSv2). */
69
70 #if !HAVE_ICONV
71 /* Make certain that the uses of iconv(), iconv_open(), iconv_close()
72 below, which are guarded only by if statements with compile-time
73 constant conditions, do not cause link errors. */
74 #define iconv_open(x, y) (errno = EINVAL, (iconv_t)-1)
75 #define iconv(a,b,c,d,e) (errno = EINVAL, (size_t)-1)
76 #define iconv_close(x) (void)0
77 #define ICONV_CONST
78 #endif
79
80 #if HOST_CHARSET == HOST_CHARSET_ASCII
81 #define SOURCE_CHARSET "UTF-8"
82 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0x7e
83 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
84 #define SOURCE_CHARSET "UTF-EBCDIC"
85 #define LAST_POSSIBLY_BASIC_SOURCE_CHAR 0xFF
86 #else
87 #error "Unrecognized basic host character set"
88 #endif
89
90 #ifndef EILSEQ
91 #define EILSEQ EINVAL
92 #endif
93
94 /* This structure is used for a resizable string buffer throughout. */
95 /* Don't call it strbuf, as that conflicts with unistd.h on systems
96 such as DYNIX/ptx where unistd.h includes stropts.h. */
97 struct _cpp_strbuf
98 {
99 uchar *text;
100 size_t asize;
101 size_t len;
102 };
103
104 /* This is enough to hold any string that fits on a single 80-column
105 line, even if iconv quadruples its size (e.g. conversion from
106 ASCII to UTF-32) rounded up to a power of two. */
107 #define OUTBUF_BLOCK_SIZE 256
108
109 /* Conversions between UTF-8 and UTF-16/32 are implemented by custom
110 logic. This is because a depressing number of systems lack iconv,
111 or have have iconv libraries that do not do these conversions, so
112 we need a fallback implementation for them. To ensure the fallback
113 doesn't break due to neglect, it is used on all systems.
114
115 UTF-32 encoding is nice and simple: a four-byte binary number,
116 constrained to the range 00000000-7FFFFFFF to avoid questions of
117 signedness. We do have to cope with big- and little-endian
118 variants.
119
120 UTF-16 encoding uses two-byte binary numbers, again in big- and
121 little-endian variants, for all values in the 00000000-0000FFFF
122 range. Values in the 00010000-0010FFFF range are encoded as pairs
123 of two-byte numbers, called "surrogate pairs": given a number S in
124 this range, it is mapped to a pair (H, L) as follows:
125
126 H = (S - 0x10000) / 0x400 + 0xD800
127 L = (S - 0x10000) % 0x400 + 0xDC00
128
129 Two-byte values in the D800...DFFF range are ill-formed except as a
130 component of a surrogate pair. Even if the encoding within a
131 two-byte value is little-endian, the H member of the surrogate pair
132 comes first.
133
134 There is no way to encode values in the 00110000-7FFFFFFF range,
135 which is not currently a problem as there are no assigned code
136 points in that range; however, the author expects that it will
137 eventually become necessary to abandon UTF-16 due to this
138 limitation. Note also that, because of these pairs, UTF-16 does
139 not meet the requirements of the C standard for a wide character
140 encoding (see 3.7.3 and 6.4.4.4p11).
141
142 UTF-8 encoding looks like this:
143
144 value range encoded as
145 00000000-0000007F 0xxxxxxx
146 00000080-000007FF 110xxxxx 10xxxxxx
147 00000800-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
148 00010000-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
149 00200000-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
150 04000000-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
151
152 Values in the 0000D800 ... 0000DFFF range (surrogates) are invalid,
153 which means that three-byte sequences ED xx yy, with A0 <= xx <= BF,
154 never occur. Note also that any value that can be encoded by a
155 given row of the table can also be encoded by all successive rows,
156 but this is not done; only the shortest possible encoding for any
157 given value is valid. For instance, the character 07C0 could be
158 encoded as any of DF 80, E0 9F 80, F0 80 9F 80, F8 80 80 9F 80, or
159 FC 80 80 80 9F 80. Only the first is valid.
160
161 An implementation note: the transformation from UTF-16 to UTF-8, or
162 vice versa, is easiest done by using UTF-32 as an intermediary. */
163
164 /* Internal primitives which go from an UTF-8 byte stream to native-endian
165 UTF-32 in a cppchar_t, or vice versa; this avoids an extra marshal/unmarshal
166 operation in several places below. */
167 static inline int
168 one_utf8_to_cppchar (const uchar **inbufp, size_t *inbytesleftp,
169 cppchar_t *cp)
170 {
171 static const uchar masks[6] = { 0x7F, 0x1F, 0x0F, 0x07, 0x03, 0x01 };
172 static const uchar patns[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
173
174 cppchar_t c;
175 const uchar *inbuf = *inbufp;
176 size_t nbytes, i;
177
178 if (*inbytesleftp < 1)
179 return EINVAL;
180
181 c = *inbuf;
182 if (c < 0x80)
183 {
184 *cp = c;
185 *inbytesleftp -= 1;
186 *inbufp += 1;
187 return 0;
188 }
189
190 /* The number of leading 1-bits in the first byte indicates how many
191 bytes follow. */
192 for (nbytes = 2; nbytes < 7; nbytes++)
193 if ((c & ~masks[nbytes-1]) == patns[nbytes-1])
194 goto found;
195 return EILSEQ;
196 found:
197
198 if (*inbytesleftp < nbytes)
199 return EINVAL;
200
201 c = (c & masks[nbytes-1]);
202 inbuf++;
203 for (i = 1; i < nbytes; i++)
204 {
205 cppchar_t n = *inbuf++;
206 if ((n & 0xC0) != 0x80)
207 return EILSEQ;
208 c = ((c << 6) + (n & 0x3F));
209 }
210
211 /* Make sure the shortest possible encoding was used. */
212 if (c <= 0x7F && nbytes > 1) return EILSEQ;
213 if (c <= 0x7FF && nbytes > 2) return EILSEQ;
214 if (c <= 0xFFFF && nbytes > 3) return EILSEQ;
215 if (c <= 0x1FFFFF && nbytes > 4) return EILSEQ;
216 if (c <= 0x3FFFFFF && nbytes > 5) return EILSEQ;
217
218 /* Make sure the character is valid. */
219 if (c > 0x7FFFFFFF || (c >= 0xD800 && c <= 0xDFFF)) return EILSEQ;
220
221 *cp = c;
222 *inbufp = inbuf;
223 *inbytesleftp -= nbytes;
224 return 0;
225 }
226
227 static inline int
228 one_cppchar_to_utf8 (cppchar_t c, uchar **outbufp, size_t *outbytesleftp)
229 {
230 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
231 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
232 size_t nbytes;
233 uchar buf[6], *p = &buf[6];
234 uchar *outbuf = *outbufp;
235
236 nbytes = 1;
237 if (c < 0x80)
238 *--p = c;
239 else
240 {
241 do
242 {
243 *--p = ((c & 0x3F) | 0x80);
244 c >>= 6;
245 nbytes++;
246 }
247 while (c >= 0x3F || (c & limits[nbytes-1]));
248 *--p = (c | masks[nbytes-1]);
249 }
250
251 if (*outbytesleftp < nbytes)
252 return E2BIG;
253
254 while (p < &buf[6])
255 *outbuf++ = *p++;
256 *outbytesleftp -= nbytes;
257 *outbufp = outbuf;
258 return 0;
259 }
260
261 /* The following four functions transform one character between the two
262 encodings named in the function name. All have the signature
263 int (*)(iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
264 uchar **outbufp, size_t *outbytesleftp)
265
266 BIGEND must have the value 0 or 1, coerced to (iconv_t); it is
267 interpreted as a boolean indicating whether big-endian or
268 little-endian encoding is to be used for the member of the pair
269 that is not UTF-8.
270
271 INBUFP, INBYTESLEFTP, OUTBUFP, OUTBYTESLEFTP work exactly as they
272 do for iconv.
273
274 The return value is either 0 for success, or an errno value for
275 failure, which may be E2BIG (need more space), EILSEQ (ill-formed
276 input sequence), ir EINVAL (incomplete input sequence). */
277
278 static inline int
279 one_utf8_to_utf32 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
280 uchar **outbufp, size_t *outbytesleftp)
281 {
282 uchar *outbuf;
283 cppchar_t s = 0;
284 int rval;
285
286 /* Check for space first, since we know exactly how much we need. */
287 if (*outbytesleftp < 4)
288 return E2BIG;
289
290 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
291 if (rval)
292 return rval;
293
294 outbuf = *outbufp;
295 outbuf[bigend ? 3 : 0] = (s & 0x000000FF);
296 outbuf[bigend ? 2 : 1] = (s & 0x0000FF00) >> 8;
297 outbuf[bigend ? 1 : 2] = (s & 0x00FF0000) >> 16;
298 outbuf[bigend ? 0 : 3] = (s & 0xFF000000) >> 24;
299
300 *outbufp += 4;
301 *outbytesleftp -= 4;
302 return 0;
303 }
304
305 static inline int
306 one_utf32_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
307 uchar **outbufp, size_t *outbytesleftp)
308 {
309 cppchar_t s;
310 int rval;
311 const uchar *inbuf;
312
313 if (*inbytesleftp < 4)
314 return EINVAL;
315
316 inbuf = *inbufp;
317
318 s = inbuf[bigend ? 0 : 3] << 24;
319 s += inbuf[bigend ? 1 : 2] << 16;
320 s += inbuf[bigend ? 2 : 1] << 8;
321 s += inbuf[bigend ? 3 : 0];
322
323 if (s >= 0x7FFFFFFF || (s >= 0xD800 && s <= 0xDFFF))
324 return EILSEQ;
325
326 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
327 if (rval)
328 return rval;
329
330 *inbufp += 4;
331 *inbytesleftp -= 4;
332 return 0;
333 }
334
335 static inline int
336 one_utf8_to_utf16 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
337 uchar **outbufp, size_t *outbytesleftp)
338 {
339 int rval;
340 cppchar_t s = 0;
341 const uchar *save_inbuf = *inbufp;
342 size_t save_inbytesleft = *inbytesleftp;
343 uchar *outbuf = *outbufp;
344
345 rval = one_utf8_to_cppchar (inbufp, inbytesleftp, &s);
346 if (rval)
347 return rval;
348
349 if (s > 0x0010FFFF)
350 {
351 *inbufp = save_inbuf;
352 *inbytesleftp = save_inbytesleft;
353 return EILSEQ;
354 }
355
356 if (s <= 0xFFFF)
357 {
358 if (*outbytesleftp < 2)
359 {
360 *inbufp = save_inbuf;
361 *inbytesleftp = save_inbytesleft;
362 return E2BIG;
363 }
364 outbuf[bigend ? 1 : 0] = (s & 0x00FF);
365 outbuf[bigend ? 0 : 1] = (s & 0xFF00) >> 8;
366
367 *outbufp += 2;
368 *outbytesleftp -= 2;
369 return 0;
370 }
371 else
372 {
373 cppchar_t hi, lo;
374
375 if (*outbytesleftp < 4)
376 {
377 *inbufp = save_inbuf;
378 *inbytesleftp = save_inbytesleft;
379 return E2BIG;
380 }
381
382 hi = (s - 0x10000) / 0x400 + 0xD800;
383 lo = (s - 0x10000) % 0x400 + 0xDC00;
384
385 /* Even if we are little-endian, put the high surrogate first.
386 ??? Matches practice? */
387 outbuf[bigend ? 1 : 0] = (hi & 0x00FF);
388 outbuf[bigend ? 0 : 1] = (hi & 0xFF00) >> 8;
389 outbuf[bigend ? 3 : 2] = (lo & 0x00FF);
390 outbuf[bigend ? 2 : 3] = (lo & 0xFF00) >> 8;
391
392 *outbufp += 4;
393 *outbytesleftp -= 4;
394 return 0;
395 }
396 }
397
398 static inline int
399 one_utf16_to_utf8 (iconv_t bigend, const uchar **inbufp, size_t *inbytesleftp,
400 uchar **outbufp, size_t *outbytesleftp)
401 {
402 cppchar_t s;
403 const uchar *inbuf = *inbufp;
404 int rval;
405
406 if (*inbytesleftp < 2)
407 return EINVAL;
408 s = inbuf[bigend ? 0 : 1] << 8;
409 s += inbuf[bigend ? 1 : 0];
410
411 /* Low surrogate without immediately preceding high surrogate is invalid. */
412 if (s >= 0xDC00 && s <= 0xDFFF)
413 return EILSEQ;
414 /* High surrogate must have a following low surrogate. */
415 else if (s >= 0xD800 && s <= 0xDBFF)
416 {
417 cppchar_t hi = s, lo;
418 if (*inbytesleftp < 4)
419 return EINVAL;
420
421 lo = inbuf[bigend ? 2 : 3] << 8;
422 lo += inbuf[bigend ? 3 : 2];
423
424 if (lo < 0xDC00 || lo > 0xDFFF)
425 return EILSEQ;
426
427 s = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000;
428 }
429
430 rval = one_cppchar_to_utf8 (s, outbufp, outbytesleftp);
431 if (rval)
432 return rval;
433
434 /* Success - update the input pointers (one_cppchar_to_utf8 has done
435 the output pointers for us). */
436 if (s <= 0xFFFF)
437 {
438 *inbufp += 2;
439 *inbytesleftp -= 2;
440 }
441 else
442 {
443 *inbufp += 4;
444 *inbytesleftp -= 4;
445 }
446 return 0;
447 }
448
449 /* Helper routine for the next few functions. The 'const' on
450 one_conversion means that we promise not to modify what function is
451 pointed to, which lets the inliner see through it. */
452
453 static inline bool
454 conversion_loop (int (*const one_conversion)(iconv_t, const uchar **, size_t *,
455 uchar **, size_t *),
456 iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to)
457 {
458 const uchar *inbuf;
459 uchar *outbuf;
460 size_t inbytesleft, outbytesleft;
461 int rval;
462
463 inbuf = from;
464 inbytesleft = flen;
465 outbuf = to->text + to->len;
466 outbytesleft = to->asize - to->len;
467
468 for (;;)
469 {
470 do
471 rval = one_conversion (cd, &inbuf, &inbytesleft,
472 &outbuf, &outbytesleft);
473 while (inbytesleft && !rval);
474
475 if (__builtin_expect (inbytesleft == 0, 1))
476 {
477 to->len = to->asize - outbytesleft;
478 return true;
479 }
480 if (rval != E2BIG)
481 {
482 errno = rval;
483 return false;
484 }
485
486 outbytesleft += OUTBUF_BLOCK_SIZE;
487 to->asize += OUTBUF_BLOCK_SIZE;
488 to->text = XRESIZEVEC (uchar, to->text, to->asize);
489 outbuf = to->text + to->asize - outbytesleft;
490 }
491 }
492
493
494 /* These functions convert entire strings between character sets.
495 They all have the signature
496
497 bool (*)(iconv_t cd, const uchar *from, size_t flen, struct _cpp_strbuf *to);
498
499 The input string FROM is converted as specified by the function
500 name plus the iconv descriptor CD (which may be fake), and the
501 result appended to TO. On any error, false is returned, otherwise true. */
502
503 /* These four use the custom conversion code above. */
504 static bool
505 convert_utf8_utf16 (iconv_t cd, const uchar *from, size_t flen,
506 struct _cpp_strbuf *to)
507 {
508 return conversion_loop (one_utf8_to_utf16, cd, from, flen, to);
509 }
510
511 static bool
512 convert_utf8_utf32 (iconv_t cd, const uchar *from, size_t flen,
513 struct _cpp_strbuf *to)
514 {
515 return conversion_loop (one_utf8_to_utf32, cd, from, flen, to);
516 }
517
518 static bool
519 convert_utf16_utf8 (iconv_t cd, const uchar *from, size_t flen,
520 struct _cpp_strbuf *to)
521 {
522 return conversion_loop (one_utf16_to_utf8, cd, from, flen, to);
523 }
524
525 static bool
526 convert_utf32_utf8 (iconv_t cd, const uchar *from, size_t flen,
527 struct _cpp_strbuf *to)
528 {
529 return conversion_loop (one_utf32_to_utf8, cd, from, flen, to);
530 }
531
532 /* Identity conversion, used when we have no alternative. */
533 static bool
534 convert_no_conversion (iconv_t cd ATTRIBUTE_UNUSED,
535 const uchar *from, size_t flen, struct _cpp_strbuf *to)
536 {
537 if (to->len + flen > to->asize)
538 {
539 to->asize = to->len + flen;
540 to->asize += to->asize / 4;
541 to->text = XRESIZEVEC (uchar, to->text, to->asize);
542 }
543 memcpy (to->text + to->len, from, flen);
544 to->len += flen;
545 return true;
546 }
547
548 /* And this one uses the system iconv primitive. It's a little
549 different, since iconv's interface is a little different. */
550 #if HAVE_ICONV
551
552 #define CONVERT_ICONV_GROW_BUFFER \
553 do { \
554 outbytesleft += OUTBUF_BLOCK_SIZE; \
555 to->asize += OUTBUF_BLOCK_SIZE; \
556 to->text = XRESIZEVEC (uchar, to->text, to->asize); \
557 outbuf = (char *)to->text + to->asize - outbytesleft; \
558 } while (0)
559
560 static bool
561 convert_using_iconv (iconv_t cd, const uchar *from, size_t flen,
562 struct _cpp_strbuf *to)
563 {
564 ICONV_CONST char *inbuf;
565 char *outbuf;
566 size_t inbytesleft, outbytesleft;
567
568 /* Reset conversion descriptor and check that it is valid. */
569 if (iconv (cd, 0, 0, 0, 0) == (size_t)-1)
570 return false;
571
572 inbuf = (ICONV_CONST char *)from;
573 inbytesleft = flen;
574 outbuf = (char *)to->text + to->len;
575 outbytesleft = to->asize - to->len;
576
577 for (;;)
578 {
579 iconv (cd, &inbuf, &inbytesleft, &outbuf, &outbytesleft);
580 if (__builtin_expect (inbytesleft == 0, 1))
581 {
582 /* Close out any shift states, returning to the initial state. */
583 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
584 {
585 if (errno != E2BIG)
586 return false;
587
588 CONVERT_ICONV_GROW_BUFFER;
589 if (iconv (cd, 0, 0, &outbuf, &outbytesleft) == (size_t)-1)
590 return false;
591 }
592
593 to->len = to->asize - outbytesleft;
594 return true;
595 }
596 if (errno != E2BIG)
597 return false;
598
599 CONVERT_ICONV_GROW_BUFFER;
600 }
601 }
602 #else
603 #define convert_using_iconv 0 /* prevent undefined symbol error below */
604 #endif
605
606 /* Arrange for the above custom conversion logic to be used automatically
607 when conversion between a suitable pair of character sets is requested. */
608
609 #define APPLY_CONVERSION(CONVERTER, FROM, FLEN, TO) \
610 CONVERTER.func (CONVERTER.cd, FROM, FLEN, TO)
611
612 struct cpp_conversion
613 {
614 const char *pair;
615 convert_f func;
616 iconv_t fake_cd;
617 };
618 static const struct cpp_conversion conversion_tab[] = {
619 { "UTF-8/UTF-32LE", convert_utf8_utf32, (iconv_t)0 },
620 { "UTF-8/UTF-32BE", convert_utf8_utf32, (iconv_t)1 },
621 { "UTF-8/UTF-16LE", convert_utf8_utf16, (iconv_t)0 },
622 { "UTF-8/UTF-16BE", convert_utf8_utf16, (iconv_t)1 },
623 { "UTF-32LE/UTF-8", convert_utf32_utf8, (iconv_t)0 },
624 { "UTF-32BE/UTF-8", convert_utf32_utf8, (iconv_t)1 },
625 { "UTF-16LE/UTF-8", convert_utf16_utf8, (iconv_t)0 },
626 { "UTF-16BE/UTF-8", convert_utf16_utf8, (iconv_t)1 },
627 };
628
629 /* Subroutine of cpp_init_iconv: initialize and return a
630 cset_converter structure for conversion from FROM to TO. If
631 iconv_open() fails, issue an error and return an identity
632 converter. Silently return an identity converter if FROM and TO
633 are identical. */
634 static struct cset_converter
635 init_iconv_desc (cpp_reader *pfile, const char *to, const char *from)
636 {
637 struct cset_converter ret;
638 char *pair;
639 size_t i;
640
641 if (!strcasecmp (to, from))
642 {
643 ret.func = convert_no_conversion;
644 ret.cd = (iconv_t) -1;
645 ret.width = -1;
646 return ret;
647 }
648
649 pair = (char *) alloca(strlen(to) + strlen(from) + 2);
650
651 strcpy(pair, from);
652 strcat(pair, "/");
653 strcat(pair, to);
654 for (i = 0; i < ARRAY_SIZE (conversion_tab); i++)
655 if (!strcasecmp (pair, conversion_tab[i].pair))
656 {
657 ret.func = conversion_tab[i].func;
658 ret.cd = conversion_tab[i].fake_cd;
659 ret.width = -1;
660 return ret;
661 }
662
663 /* No custom converter - try iconv. */
664 if (HAVE_ICONV)
665 {
666 ret.func = convert_using_iconv;
667 ret.cd = iconv_open (to, from);
668 ret.width = -1;
669
670 if (ret.cd == (iconv_t) -1)
671 {
672 if (errno == EINVAL)
673 cpp_error (pfile, CPP_DL_ERROR, /* FIXME should be DL_SORRY */
674 "conversion from %s to %s not supported by iconv",
675 from, to);
676 else
677 cpp_errno (pfile, CPP_DL_ERROR, "iconv_open");
678
679 ret.func = convert_no_conversion;
680 }
681 }
682 else
683 {
684 cpp_error (pfile, CPP_DL_ERROR, /* FIXME: should be DL_SORRY */
685 "no iconv implementation, cannot convert from %s to %s",
686 from, to);
687 ret.func = convert_no_conversion;
688 ret.cd = (iconv_t) -1;
689 ret.width = -1;
690 }
691 return ret;
692 }
693
694 /* If charset conversion is requested, initialize iconv(3) descriptors
695 for conversion from the source character set to the execution
696 character sets. If iconv is not present in the C library, and
697 conversion is requested, issue an error. */
698
699 void
700 cpp_init_iconv (cpp_reader *pfile)
701 {
702 const char *ncset = CPP_OPTION (pfile, narrow_charset);
703 const char *wcset = CPP_OPTION (pfile, wide_charset);
704 const char *default_wcset;
705
706 bool be = CPP_OPTION (pfile, bytes_big_endian);
707
708 if (CPP_OPTION (pfile, wchar_precision) >= 32)
709 default_wcset = be ? "UTF-32BE" : "UTF-32LE";
710 else if (CPP_OPTION (pfile, wchar_precision) >= 16)
711 default_wcset = be ? "UTF-16BE" : "UTF-16LE";
712 else
713 /* This effectively means that wide strings are not supported,
714 so don't do any conversion at all. */
715 default_wcset = SOURCE_CHARSET;
716
717 if (!ncset)
718 ncset = SOURCE_CHARSET;
719 if (!wcset)
720 wcset = default_wcset;
721
722 pfile->narrow_cset_desc = init_iconv_desc (pfile, ncset, SOURCE_CHARSET);
723 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
724 pfile->utf8_cset_desc = init_iconv_desc (pfile, "UTF-8", SOURCE_CHARSET);
725 pfile->utf8_cset_desc.width = CPP_OPTION (pfile, char_precision);
726 pfile->char16_cset_desc = init_iconv_desc (pfile,
727 be ? "UTF-16BE" : "UTF-16LE",
728 SOURCE_CHARSET);
729 pfile->char16_cset_desc.width = 16;
730 pfile->char32_cset_desc = init_iconv_desc (pfile,
731 be ? "UTF-32BE" : "UTF-32LE",
732 SOURCE_CHARSET);
733 pfile->char32_cset_desc.width = 32;
734 pfile->wide_cset_desc = init_iconv_desc (pfile, wcset, SOURCE_CHARSET);
735 pfile->wide_cset_desc.width = CPP_OPTION (pfile, wchar_precision);
736 }
737
738 /* Destroy iconv(3) descriptors set up by cpp_init_iconv, if necessary. */
739 void
740 _cpp_destroy_iconv (cpp_reader *pfile)
741 {
742 if (HAVE_ICONV)
743 {
744 if (pfile->narrow_cset_desc.func == convert_using_iconv)
745 iconv_close (pfile->narrow_cset_desc.cd);
746 if (pfile->utf8_cset_desc.func == convert_using_iconv)
747 iconv_close (pfile->utf8_cset_desc.cd);
748 if (pfile->char16_cset_desc.func == convert_using_iconv)
749 iconv_close (pfile->char16_cset_desc.cd);
750 if (pfile->char32_cset_desc.func == convert_using_iconv)
751 iconv_close (pfile->char32_cset_desc.cd);
752 if (pfile->wide_cset_desc.func == convert_using_iconv)
753 iconv_close (pfile->wide_cset_desc.cd);
754 }
755 }
756
757 /* Utility routine for use by a full compiler. C is a character taken
758 from the *basic* source character set, encoded in the host's
759 execution encoding. Convert it to (the target's) execution
760 encoding, and return that value.
761
762 Issues an internal error if C's representation in the narrow
763 execution character set fails to be a single-byte value (C99
764 5.2.1p3: "The representation of each member of the source and
765 execution character sets shall fit in a byte.") May also issue an
766 internal error if C fails to be a member of the basic source
767 character set (testing this exactly is too hard, especially when
768 the host character set is EBCDIC). */
769 cppchar_t
770 cpp_host_to_exec_charset (cpp_reader *pfile, cppchar_t c)
771 {
772 uchar sbuf[1];
773 struct _cpp_strbuf tbuf;
774
775 /* This test is merely an approximation, but it suffices to catch
776 the most important thing, which is that we don't get handed a
777 character outside the unibyte range of the host character set. */
778 if (c > LAST_POSSIBLY_BASIC_SOURCE_CHAR)
779 {
780 cpp_error (pfile, CPP_DL_ICE,
781 "character 0x%lx is not in the basic source character set\n",
782 (unsigned long)c);
783 return 0;
784 }
785
786 /* Being a character in the unibyte range of the host character set,
787 we can safely splat it into a one-byte buffer and trust that that
788 is a well-formed string. */
789 sbuf[0] = c;
790
791 /* This should never need to reallocate, but just in case... */
792 tbuf.asize = 1;
793 tbuf.text = XNEWVEC (uchar, tbuf.asize);
794 tbuf.len = 0;
795
796 if (!APPLY_CONVERSION (pfile->narrow_cset_desc, sbuf, 1, &tbuf))
797 {
798 cpp_errno (pfile, CPP_DL_ICE, "converting to execution character set");
799 return 0;
800 }
801 if (tbuf.len != 1)
802 {
803 cpp_error (pfile, CPP_DL_ICE,
804 "character 0x%lx is not unibyte in execution character set",
805 (unsigned long)c);
806 return 0;
807 }
808 c = tbuf.text[0];
809 free(tbuf.text);
810 return c;
811 }
812
813 \f
814
815 /* cpp_substring_ranges's constructor. */
816
817 cpp_substring_ranges::cpp_substring_ranges () :
818 m_ranges (NULL),
819 m_num_ranges (0),
820 m_alloc_ranges (8)
821 {
822 m_ranges = XNEWVEC (source_range, m_alloc_ranges);
823 }
824
825 /* cpp_substring_ranges's destructor. */
826
827 cpp_substring_ranges::~cpp_substring_ranges ()
828 {
829 free (m_ranges);
830 }
831
832 /* Add RANGE to the vector of source_range information. */
833
834 void
835 cpp_substring_ranges::add_range (source_range range)
836 {
837 if (m_num_ranges >= m_alloc_ranges)
838 {
839 m_alloc_ranges *= 2;
840 m_ranges
841 = (source_range *)xrealloc (m_ranges,
842 sizeof (source_range) * m_alloc_ranges);
843 }
844 m_ranges[m_num_ranges++] = range;
845 }
846
847 /* Read NUM ranges from LOC_READER, adding them to the vector of source_range
848 information. */
849
850 void
851 cpp_substring_ranges::add_n_ranges (int num,
852 cpp_string_location_reader &loc_reader)
853 {
854 for (int i = 0; i < num; i++)
855 add_range (loc_reader.get_next ());
856 }
857
858 \f
859
860 /* Utility routine that computes a mask of the form 0000...111... with
861 WIDTH 1-bits. */
862 static inline size_t
863 width_to_mask (size_t width)
864 {
865 width = MIN (width, BITS_PER_CPPCHAR_T);
866 if (width >= CHAR_BIT * sizeof (size_t))
867 return ~(size_t) 0;
868 else
869 return ((size_t) 1 << width) - 1;
870 }
871
872 /* A large table of unicode character information. */
873 enum {
874 /* Valid in a C99 identifier? */
875 C99 = 1,
876 /* Valid in a C99 identifier, but not as the first character? */
877 N99 = 2,
878 /* Valid in a C++ identifier? */
879 CXX = 4,
880 /* Valid in a C11/C++11 identifier? */
881 C11 = 8,
882 /* Valid in a C11/C++11 identifier, but not as the first character? */
883 N11 = 16,
884 /* NFC representation is not valid in an identifier? */
885 CID = 32,
886 /* Might be valid NFC form? */
887 NFC = 64,
888 /* Might be valid NFKC form? */
889 NKC = 128,
890 /* Certain preceding characters might make it not valid NFC/NKFC form? */
891 CTX = 256
892 };
893
894 struct ucnrange {
895 /* Bitmap of flags above. */
896 unsigned short flags;
897 /* Combining class of the character. */
898 unsigned char combine;
899 /* Last character in the range described by this entry. */
900 unsigned int end;
901 };
902 #include "ucnid.h"
903
904 /* ISO 10646 defines the UCS codespace as the range 0-0x10FFFF inclusive. */
905 #define UCS_LIMIT 0x10FFFF
906
907 /* Returns 1 if C is valid in an identifier, 2 if C is valid except at
908 the start of an identifier, and 0 if C is not valid in an
909 identifier. We assume C has already gone through the checks of
910 _cpp_valid_ucn. Also update NST for C if returning nonzero. The
911 algorithm is a simple binary search on the table defined in
912 ucnid.h. */
913
914 static int
915 ucn_valid_in_identifier (cpp_reader *pfile, cppchar_t c,
916 struct normalize_state *nst)
917 {
918 int mn, mx, md;
919 unsigned short valid_flags, invalid_start_flags;
920
921 if (c > UCS_LIMIT)
922 return 0;
923
924 mn = 0;
925 mx = ARRAY_SIZE (ucnranges) - 1;
926 while (mx != mn)
927 {
928 md = (mn + mx) / 2;
929 if (c <= ucnranges[md].end)
930 mx = md;
931 else
932 mn = md + 1;
933 }
934
935 /* When -pedantic, we require the character to have been listed by
936 the standard for the current language. Otherwise, we accept the
937 union of the acceptable sets for all supported language versions. */
938 valid_flags = C99 | CXX | C11;
939 if (CPP_PEDANTIC (pfile))
940 {
941 if (CPP_OPTION (pfile, c11_identifiers))
942 valid_flags = C11;
943 else if (CPP_OPTION (pfile, c99))
944 valid_flags = C99;
945 else if (CPP_OPTION (pfile, cplusplus))
946 valid_flags = CXX;
947 }
948 if (! (ucnranges[mn].flags & valid_flags))
949 return 0;
950 if (CPP_OPTION (pfile, c11_identifiers))
951 invalid_start_flags = N11;
952 else if (CPP_OPTION (pfile, c99))
953 invalid_start_flags = N99;
954 else
955 invalid_start_flags = 0;
956
957 /* Update NST. */
958 if (ucnranges[mn].combine != 0 && ucnranges[mn].combine < nst->prev_class)
959 nst->level = normalized_none;
960 else if (ucnranges[mn].flags & CTX)
961 {
962 bool safe;
963 cppchar_t p = nst->previous;
964
965 /* For Hangul, characters in the range AC00-D7A3 are NFC/NFKC,
966 and are combined algorithmically from a sequence of the form
967 1100-1112 1161-1175 11A8-11C2
968 (if the third is not present, it is treated as 11A7, which is not
969 really a valid character).
970 Unfortunately, C99 allows (only) the NFC form, but C++ allows
971 only the combining characters. */
972 if (c >= 0x1161 && c <= 0x1175)
973 safe = p < 0x1100 || p > 0x1112;
974 else if (c >= 0x11A8 && c <= 0x11C2)
975 safe = (p < 0xAC00 || p > 0xD7A3 || (p - 0xAC00) % 28 != 0);
976 else
977 safe = check_nfc (pfile, c, p);
978 if (!safe)
979 {
980 if ((c >= 0x1161 && c <= 0x1175) || (c >= 0x11A8 && c <= 0x11C2))
981 nst->level = MAX (nst->level, normalized_identifier_C);
982 else
983 nst->level = normalized_none;
984 }
985 }
986 else if (ucnranges[mn].flags & NKC)
987 ;
988 else if (ucnranges[mn].flags & NFC)
989 nst->level = MAX (nst->level, normalized_C);
990 else if (ucnranges[mn].flags & CID)
991 nst->level = MAX (nst->level, normalized_identifier_C);
992 else
993 nst->level = normalized_none;
994 if (ucnranges[mn].combine == 0)
995 nst->previous = c;
996 nst->prev_class = ucnranges[mn].combine;
997
998 /* In C99, UCN digits may not begin identifiers. In C11 and C++11,
999 UCN combining characters may not begin identifiers. */
1000 if (ucnranges[mn].flags & invalid_start_flags)
1001 return 2;
1002
1003 return 1;
1004 }
1005
1006 /* [lex.charset]: The character designated by the universal character
1007 name \UNNNNNNNN is that character whose character short name in
1008 ISO/IEC 10646 is NNNNNNNN; the character designated by the
1009 universal character name \uNNNN is that character whose character
1010 short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal value
1011 for a universal character name corresponds to a surrogate code point
1012 (in the range 0xD800-0xDFFF, inclusive), the program is ill-formed.
1013 Additionally, if the hexadecimal value for a universal-character-name
1014 outside a character or string literal corresponds to a control character
1015 (in either of the ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a
1016 character in the basic source character set, the program is ill-formed.
1017
1018 C99 6.4.3: A universal character name shall not specify a character
1019 whose short identifier is less than 00A0 other than 0024 ($), 0040 (@),
1020 or 0060 (`), nor one in the range D800 through DFFF inclusive.
1021
1022 If the hexadecimal value is larger than the upper bound of the UCS
1023 codespace specified in ISO/IEC 10646, a pedantic warning is issued
1024 in all versions of C and in the C++20 or later versions of C++.
1025
1026 *PSTR must be preceded by "\u" or "\U"; it is assumed that the
1027 buffer end is delimited by a non-hex digit. Returns false if the
1028 UCN has not been consumed, true otherwise.
1029
1030 The value of the UCN, whether valid or invalid, is returned in *CP.
1031 Diagnostics are emitted for invalid values. PSTR is updated to point
1032 one beyond the UCN, or to the syntactically invalid character.
1033
1034 IDENTIFIER_POS is 0 when not in an identifier, 1 for the start of
1035 an identifier, or 2 otherwise.
1036
1037 If LOC_READER is non-NULL, then position information is
1038 read from *LOC_READER and CHAR_RANGE->m_finish is updated accordingly. */
1039
1040 bool
1041 _cpp_valid_ucn (cpp_reader *pfile, const uchar **pstr,
1042 const uchar *limit, int identifier_pos,
1043 struct normalize_state *nst, cppchar_t *cp,
1044 source_range *char_range,
1045 cpp_string_location_reader *loc_reader)
1046 {
1047 cppchar_t result, c;
1048 unsigned int length;
1049 const uchar *str = *pstr;
1050 const uchar *base = str - 2;
1051
1052 if (!CPP_OPTION (pfile, cplusplus) && !CPP_OPTION (pfile, c99))
1053 cpp_error (pfile, CPP_DL_WARNING,
1054 "universal character names are only valid in C++ and C99");
1055 else if (CPP_OPTION (pfile, cpp_warn_c90_c99_compat) > 0
1056 && !CPP_OPTION (pfile, cplusplus))
1057 cpp_error (pfile, CPP_DL_WARNING,
1058 "C99's universal character names are incompatible with C90");
1059 else if (CPP_WTRADITIONAL (pfile) && identifier_pos == 0)
1060 cpp_warning (pfile, CPP_W_TRADITIONAL,
1061 "the meaning of '\\%c' is different in traditional C",
1062 (int) str[-1]);
1063
1064 if (str[-1] == 'u')
1065 length = 4;
1066 else if (str[-1] == 'U')
1067 length = 8;
1068 else
1069 {
1070 cpp_error (pfile, CPP_DL_ICE, "In _cpp_valid_ucn but not a UCN");
1071 length = 4;
1072 }
1073
1074 result = 0;
1075 do
1076 {
1077 c = *str;
1078 if (!ISXDIGIT (c))
1079 break;
1080 str++;
1081 if (loc_reader)
1082 {
1083 gcc_assert (char_range);
1084 char_range->m_finish = loc_reader->get_next ().m_finish;
1085 }
1086 result = (result << 4) + hex_value (c);
1087 }
1088 while (--length && str < limit);
1089
1090 /* Partial UCNs are not valid in strings, but decompose into
1091 multiple tokens in identifiers, so we can't give a helpful
1092 error message in that case. */
1093 if (length && identifier_pos)
1094 {
1095 *cp = 0;
1096 return false;
1097 }
1098
1099 *pstr = str;
1100 if (length)
1101 {
1102 cpp_error (pfile, CPP_DL_ERROR,
1103 "incomplete universal character name %.*s",
1104 (int) (str - base), base);
1105 result = 1;
1106 }
1107 /* The C99 standard permits $, @ and ` to be specified as UCNs. We use
1108 hex escapes so that this also works with EBCDIC hosts.
1109 C++0x permits everything below 0xa0 within literals;
1110 ucn_valid_in_identifier will complain about identifiers. */
1111 else if ((result < 0xa0
1112 && !CPP_OPTION (pfile, cplusplus)
1113 && (result != 0x24 && result != 0x40 && result != 0x60))
1114 || (result & 0x80000000)
1115 || (result >= 0xD800 && result <= 0xDFFF))
1116 {
1117 cpp_error (pfile, CPP_DL_ERROR,
1118 "%.*s is not a valid universal character",
1119 (int) (str - base), base);
1120 result = 1;
1121 }
1122 else if (identifier_pos && result == 0x24
1123 && CPP_OPTION (pfile, dollars_in_ident))
1124 {
1125 if (CPP_OPTION (pfile, warn_dollars) && !pfile->state.skipping)
1126 {
1127 CPP_OPTION (pfile, warn_dollars) = 0;
1128 cpp_error (pfile, CPP_DL_PEDWARN, "'$' in identifier or number");
1129 }
1130 NORMALIZE_STATE_UPDATE_IDNUM (nst, result);
1131 }
1132 else if (identifier_pos)
1133 {
1134 int validity = ucn_valid_in_identifier (pfile, result, nst);
1135
1136 if (validity == 0)
1137 cpp_error (pfile, CPP_DL_ERROR,
1138 "universal character %.*s is not valid in an identifier",
1139 (int) (str - base), base);
1140 else if (validity == 2 && identifier_pos == 1)
1141 cpp_error (pfile, CPP_DL_ERROR,
1142 "universal character %.*s is not valid at the start of an identifier",
1143 (int) (str - base), base);
1144 }
1145 else if (result > UCS_LIMIT
1146 && (!CPP_OPTION (pfile, cplusplus)
1147 || CPP_OPTION (pfile, lang) > CLK_CXX17))
1148 cpp_error (pfile, CPP_DL_PEDWARN,
1149 "%.*s is outside the UCS codespace",
1150 (int) (str - base), base);
1151
1152 *cp = result;
1153 return true;
1154 }
1155
1156 /* Convert an UCN, pointed to by FROM, to UTF-8 encoding, then translate
1157 it to the execution character set and write the result into TBUF,
1158 if TBUF is non-NULL.
1159 An advanced pointer is returned. Issues all relevant diagnostics.
1160 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1161 contains the location of the character so far: location information
1162 is read from *LOC_READER, and *RANGES is updated accordingly. */
1163 static const uchar *
1164 convert_ucn (cpp_reader *pfile, const uchar *from, const uchar *limit,
1165 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1166 source_range char_range,
1167 cpp_string_location_reader *loc_reader,
1168 cpp_substring_ranges *ranges)
1169 {
1170 cppchar_t ucn;
1171 uchar buf[6];
1172 uchar *bufp = buf;
1173 size_t bytesleft = 6;
1174 int rval;
1175 struct normalize_state nst = INITIAL_NORMALIZE_STATE;
1176
1177 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1178 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1179
1180 from++; /* Skip u/U. */
1181
1182 if (loc_reader)
1183 /* The u/U is part of the spelling of this character. */
1184 char_range.m_finish = loc_reader->get_next ().m_finish;
1185
1186 _cpp_valid_ucn (pfile, &from, limit, 0, &nst,
1187 &ucn, &char_range, loc_reader);
1188
1189 rval = one_cppchar_to_utf8 (ucn, &bufp, &bytesleft);
1190 if (rval)
1191 {
1192 errno = rval;
1193 cpp_errno (pfile, CPP_DL_ERROR,
1194 "converting UCN to source character set");
1195 }
1196 else
1197 {
1198 if (tbuf)
1199 if (!APPLY_CONVERSION (cvt, buf, 6 - bytesleft, tbuf))
1200 cpp_errno (pfile, CPP_DL_ERROR,
1201 "converting UCN to execution character set");
1202
1203 if (loc_reader)
1204 {
1205 int num_encoded_bytes = 6 - bytesleft;
1206 for (int i = 0; i < num_encoded_bytes; i++)
1207 ranges->add_range (char_range);
1208 }
1209 }
1210
1211 return from;
1212 }
1213
1214 /* Performs a similar task as _cpp_valid_ucn, but parses UTF-8-encoded
1215 extended characters rather than UCNs. If the return value is TRUE, then a
1216 character was successfully decoded and stored in *CP; *PSTR has been
1217 updated to point one past the valid UTF-8 sequence. Diagnostics may have
1218 been emitted if the character parsed is not allowed in the current context.
1219 If the return value is FALSE, then *PSTR has not been modified and *CP may
1220 equal 0, to indicate that *PSTR does not form a valid UTF-8 sequence, or it
1221 may, when processing an identifier in C mode, equal a codepoint that was
1222 validly encoded but is not allowed to appear in an identifier. In either
1223 case, no diagnostic is emitted, and the return value of FALSE should cause
1224 a new token to be formed.
1225
1226 Unlike _cpp_valid_ucn, this will never be called when lexing a string; only
1227 a potential identifier, or a CPP_OTHER token. NST is unused in the latter
1228 case.
1229
1230 As in _cpp_valid_ucn, IDENTIFIER_POS is 0 when not in an identifier, 1 for
1231 the start of an identifier, or 2 otherwise. */
1232
1233 extern bool
1234 _cpp_valid_utf8 (cpp_reader *pfile,
1235 const uchar **pstr,
1236 const uchar *limit,
1237 int identifier_pos,
1238 struct normalize_state *nst,
1239 cppchar_t *cp)
1240 {
1241 const uchar *base = *pstr;
1242 size_t inbytesleft = limit - base;
1243 if (one_utf8_to_cppchar (pstr, &inbytesleft, cp))
1244 {
1245 /* No diagnostic here as this byte will rather become a
1246 new token. */
1247 *cp = 0;
1248 return false;
1249 }
1250
1251 if (identifier_pos)
1252 {
1253 switch (ucn_valid_in_identifier (pfile, *cp, nst))
1254 {
1255
1256 case 0:
1257 /* In C++, this is an error for invalid character in an identifier
1258 because logically, the UTF-8 was converted to a UCN during
1259 translation phase 1 (even though we don't physically do it that
1260 way). In C, this byte rather becomes grammatically a separate
1261 token. */
1262
1263 if (CPP_OPTION (pfile, cplusplus))
1264 cpp_error (pfile, CPP_DL_ERROR,
1265 "extended character %.*s is not valid in an identifier",
1266 (int) (*pstr - base), base);
1267 else
1268 {
1269 *pstr = base;
1270 return false;
1271 }
1272
1273 break;
1274
1275 case 2:
1276 if (identifier_pos == 1)
1277 {
1278 /* This is treated the same way in C++ or C99 -- lexed as an
1279 identifier which is then invalid because an identifier is
1280 not allowed to start with this character. */
1281 cpp_error (pfile, CPP_DL_ERROR,
1282 "extended character %.*s is not valid at the start of an identifier",
1283 (int) (*pstr - base), base);
1284 }
1285 break;
1286 }
1287 }
1288
1289 return true;
1290 }
1291
1292 /* Subroutine of convert_hex and convert_oct. N is the representation
1293 in the execution character set of a numeric escape; write it into the
1294 string buffer TBUF and update the end-of-string pointer therein. WIDE
1295 is true if it's a wide string that's being assembled in TBUF. This
1296 function issues no diagnostics and never fails. */
1297 static void
1298 emit_numeric_escape (cpp_reader *pfile, cppchar_t n,
1299 struct _cpp_strbuf *tbuf, struct cset_converter cvt)
1300 {
1301 size_t width = cvt.width;
1302
1303 if (width != CPP_OPTION (pfile, char_precision))
1304 {
1305 /* We have to render this into the target byte order, which may not
1306 be our byte order. */
1307 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1308 size_t cwidth = CPP_OPTION (pfile, char_precision);
1309 size_t cmask = width_to_mask (cwidth);
1310 size_t nbwc = width / cwidth;
1311 size_t i;
1312 size_t off = tbuf->len;
1313 cppchar_t c;
1314
1315 if (tbuf->len + nbwc > tbuf->asize)
1316 {
1317 tbuf->asize += OUTBUF_BLOCK_SIZE;
1318 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1319 }
1320
1321 for (i = 0; i < nbwc; i++)
1322 {
1323 c = n & cmask;
1324 n >>= cwidth;
1325 tbuf->text[off + (bigend ? nbwc - i - 1 : i)] = c;
1326 }
1327 tbuf->len += nbwc;
1328 }
1329 else
1330 {
1331 /* Note: this code does not handle the case where the target
1332 and host have a different number of bits in a byte. */
1333 if (tbuf->len + 1 > tbuf->asize)
1334 {
1335 tbuf->asize += OUTBUF_BLOCK_SIZE;
1336 tbuf->text = XRESIZEVEC (uchar, tbuf->text, tbuf->asize);
1337 }
1338 tbuf->text[tbuf->len++] = n;
1339 }
1340 }
1341
1342 /* Convert a hexadecimal escape, pointed to by FROM, to the execution
1343 character set and write it into the string buffer TBUF (if non-NULL).
1344 Returns an advanced pointer, and issues diagnostics as necessary.
1345 No character set translation occurs; this routine always produces the
1346 execution-set character with numeric value equal to the given hex
1347 number. You can, e.g. generate surrogate pairs this way.
1348 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1349 contains the location of the character so far: location information
1350 is read from *LOC_READER, and *RANGES is updated accordingly. */
1351 static const uchar *
1352 convert_hex (cpp_reader *pfile, const uchar *from, const uchar *limit,
1353 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1354 source_range char_range,
1355 cpp_string_location_reader *loc_reader,
1356 cpp_substring_ranges *ranges)
1357 {
1358 cppchar_t c, n = 0, overflow = 0;
1359 int digits_found = 0;
1360 size_t width = cvt.width;
1361 size_t mask = width_to_mask (width);
1362
1363 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1364 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1365
1366 if (CPP_WTRADITIONAL (pfile))
1367 cpp_warning (pfile, CPP_W_TRADITIONAL,
1368 "the meaning of '\\x' is different in traditional C");
1369
1370 /* Skip 'x'. */
1371 from++;
1372
1373 /* The 'x' is part of the spelling of this character. */
1374 if (loc_reader)
1375 char_range.m_finish = loc_reader->get_next ().m_finish;
1376
1377 while (from < limit)
1378 {
1379 c = *from;
1380 if (! hex_p (c))
1381 break;
1382 from++;
1383 if (loc_reader)
1384 char_range.m_finish = loc_reader->get_next ().m_finish;
1385 overflow |= n ^ (n << 4 >> 4);
1386 n = (n << 4) + hex_value (c);
1387 digits_found = 1;
1388 }
1389
1390 if (!digits_found)
1391 {
1392 cpp_error (pfile, CPP_DL_ERROR,
1393 "\\x used with no following hex digits");
1394 return from;
1395 }
1396
1397 if (overflow | (n != (n & mask)))
1398 {
1399 cpp_error (pfile, CPP_DL_PEDWARN,
1400 "hex escape sequence out of range");
1401 n &= mask;
1402 }
1403
1404 if (tbuf)
1405 emit_numeric_escape (pfile, n, tbuf, cvt);
1406 if (ranges)
1407 ranges->add_range (char_range);
1408
1409 return from;
1410 }
1411
1412 /* Convert an octal escape, pointed to by FROM, to the execution
1413 character set and write it into the string buffer TBUF. Returns an
1414 advanced pointer, and issues diagnostics as necessary.
1415 No character set translation occurs; this routine always produces the
1416 execution-set character with numeric value equal to the given octal
1417 number.
1418 If LOC_READER is non-NULL, then RANGES must be non-NULL and CHAR_RANGE
1419 contains the location of the character so far: location information
1420 is read from *LOC_READER, and *RANGES is updated accordingly. */
1421 static const uchar *
1422 convert_oct (cpp_reader *pfile, const uchar *from, const uchar *limit,
1423 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1424 source_range char_range,
1425 cpp_string_location_reader *loc_reader,
1426 cpp_substring_ranges *ranges)
1427 {
1428 size_t count = 0;
1429 cppchar_t c, n = 0;
1430 size_t width = cvt.width;
1431 size_t mask = width_to_mask (width);
1432 bool overflow = false;
1433
1434 /* loc_reader and ranges must either be both NULL, or both be non-NULL. */
1435 gcc_assert ((loc_reader != NULL) == (ranges != NULL));
1436
1437 while (from < limit && count++ < 3)
1438 {
1439 c = *from;
1440 if (c < '0' || c > '7')
1441 break;
1442 from++;
1443 if (loc_reader)
1444 char_range.m_finish = loc_reader->get_next ().m_finish;
1445 overflow |= n ^ (n << 3 >> 3);
1446 n = (n << 3) + c - '0';
1447 }
1448
1449 if (n != (n & mask))
1450 {
1451 cpp_error (pfile, CPP_DL_PEDWARN,
1452 "octal escape sequence out of range");
1453 n &= mask;
1454 }
1455
1456 if (tbuf)
1457 emit_numeric_escape (pfile, n, tbuf, cvt);
1458 if (ranges)
1459 ranges->add_range (char_range);
1460
1461 return from;
1462 }
1463
1464 /* Convert an escape sequence (pointed to by FROM) to its value on
1465 the target, and to the execution character set. Do not scan past
1466 LIMIT. Write the converted value into TBUF, if TBUF is non-NULL.
1467 Returns an advanced pointer. Handles all relevant diagnostics.
1468 If LOC_READER is non-NULL, then RANGES must be non-NULL: location
1469 information is read from *LOC_READER, and *RANGES is updated
1470 accordingly. */
1471 static const uchar *
1472 convert_escape (cpp_reader *pfile, const uchar *from, const uchar *limit,
1473 struct _cpp_strbuf *tbuf, struct cset_converter cvt,
1474 cpp_string_location_reader *loc_reader,
1475 cpp_substring_ranges *ranges)
1476 {
1477 /* Values of \a \b \e \f \n \r \t \v respectively. */
1478 #if HOST_CHARSET == HOST_CHARSET_ASCII
1479 static const uchar charconsts[] = { 7, 8, 27, 12, 10, 13, 9, 11 };
1480 #elif HOST_CHARSET == HOST_CHARSET_EBCDIC
1481 static const uchar charconsts[] = { 47, 22, 39, 12, 21, 13, 5, 11 };
1482 #else
1483 #error "unknown host character set"
1484 #endif
1485
1486 uchar c;
1487
1488 /* Record the location of the backslash. */
1489 source_range char_range;
1490 if (loc_reader)
1491 char_range = loc_reader->get_next ();
1492
1493 c = *from;
1494 switch (c)
1495 {
1496 /* UCNs, hex escapes, and octal escapes are processed separately. */
1497 case 'u': case 'U':
1498 return convert_ucn (pfile, from, limit, tbuf, cvt,
1499 char_range, loc_reader, ranges);
1500
1501 case 'x':
1502 return convert_hex (pfile, from, limit, tbuf, cvt,
1503 char_range, loc_reader, ranges);
1504 break;
1505
1506 case '0': case '1': case '2': case '3':
1507 case '4': case '5': case '6': case '7':
1508 return convert_oct (pfile, from, limit, tbuf, cvt,
1509 char_range, loc_reader, ranges);
1510
1511 /* Various letter escapes. Get the appropriate host-charset
1512 value into C. */
1513 case '\\': case '\'': case '"': case '?': break;
1514
1515 case '(': case '{': case '[': case '%':
1516 /* '\(', etc, can be used at the beginning of a line in a long
1517 string split onto multiple lines with \-newline, to prevent
1518 Emacs or other text editors from getting confused. '\%' can
1519 be used to prevent SCCS from mangling printf format strings. */
1520 if (CPP_PEDANTIC (pfile))
1521 goto unknown;
1522 break;
1523
1524 case 'b': c = charconsts[1]; break;
1525 case 'f': c = charconsts[3]; break;
1526 case 'n': c = charconsts[4]; break;
1527 case 'r': c = charconsts[5]; break;
1528 case 't': c = charconsts[6]; break;
1529 case 'v': c = charconsts[7]; break;
1530
1531 case 'a':
1532 if (CPP_WTRADITIONAL (pfile))
1533 cpp_warning (pfile, CPP_W_TRADITIONAL,
1534 "the meaning of '\\a' is different in traditional C");
1535 c = charconsts[0];
1536 break;
1537
1538 case 'e': case 'E':
1539 if (CPP_PEDANTIC (pfile))
1540 cpp_error (pfile, CPP_DL_PEDWARN,
1541 "non-ISO-standard escape sequence, '\\%c'", (int) c);
1542 c = charconsts[2];
1543 break;
1544
1545 default:
1546 unknown:
1547 if (ISGRAPH (c))
1548 cpp_error (pfile, CPP_DL_PEDWARN,
1549 "unknown escape sequence: '\\%c'", (int) c);
1550 else
1551 {
1552 /* diagnostic.c does not support "%03o". When it does, this
1553 code can use %03o directly in the diagnostic again. */
1554 char buf[32];
1555 sprintf(buf, "%03o", (int) c);
1556 cpp_error (pfile, CPP_DL_PEDWARN,
1557 "unknown escape sequence: '\\%s'", buf);
1558 }
1559 }
1560
1561 if (tbuf)
1562 /* Now convert what we have to the execution character set. */
1563 if (!APPLY_CONVERSION (cvt, &c, 1, tbuf))
1564 cpp_errno (pfile, CPP_DL_ERROR,
1565 "converting escape sequence to execution character set");
1566
1567 if (loc_reader)
1568 {
1569 char_range.m_finish = loc_reader->get_next ().m_finish;
1570 ranges->add_range (char_range);
1571 }
1572
1573 return from + 1;
1574 }
1575 \f
1576 /* TYPE is a token type. The return value is the conversion needed to
1577 convert from source to execution character set for the given type. */
1578 static struct cset_converter
1579 converter_for_type (cpp_reader *pfile, enum cpp_ttype type)
1580 {
1581 switch (type)
1582 {
1583 default:
1584 return pfile->narrow_cset_desc;
1585 case CPP_UTF8CHAR:
1586 case CPP_UTF8STRING:
1587 return pfile->utf8_cset_desc;
1588 case CPP_CHAR16:
1589 case CPP_STRING16:
1590 return pfile->char16_cset_desc;
1591 case CPP_CHAR32:
1592 case CPP_STRING32:
1593 return pfile->char32_cset_desc;
1594 case CPP_WCHAR:
1595 case CPP_WSTRING:
1596 return pfile->wide_cset_desc;
1597 }
1598 }
1599
1600 /* FROM is an array of cpp_string structures of length COUNT. These
1601 are to be converted from the source to the execution character set,
1602 escape sequences translated, and finally all are to be
1603 concatenated. WIDE indicates whether or not to produce a wide
1604 string. If TO is non-NULL, the result is written into TO.
1605 If LOC_READERS and OUT are non-NULL, then location information
1606 is read from LOC_READERS (which must be an array of length COUNT),
1607 and location information is written to *RANGES.
1608
1609 Returns true for success, false for failure. */
1610
1611 static bool
1612 cpp_interpret_string_1 (cpp_reader *pfile, const cpp_string *from, size_t count,
1613 cpp_string *to, enum cpp_ttype type,
1614 cpp_string_location_reader *loc_readers,
1615 cpp_substring_ranges *out)
1616 {
1617 struct _cpp_strbuf tbuf;
1618 const uchar *p, *base, *limit;
1619 size_t i;
1620 struct cset_converter cvt = converter_for_type (pfile, type);
1621
1622 /* loc_readers and out must either be both NULL, or both be non-NULL. */
1623 gcc_assert ((loc_readers != NULL) == (out != NULL));
1624
1625 if (to)
1626 {
1627 tbuf.asize = MAX (OUTBUF_BLOCK_SIZE, from->len);
1628 tbuf.text = XNEWVEC (uchar, tbuf.asize);
1629 tbuf.len = 0;
1630 }
1631
1632 cpp_string_location_reader *loc_reader = NULL;
1633 for (i = 0; i < count; i++)
1634 {
1635 if (loc_readers)
1636 loc_reader = &loc_readers[i];
1637
1638 p = from[i].text;
1639 if (*p == 'u')
1640 {
1641 p++;
1642 if (loc_reader)
1643 loc_reader->get_next ();
1644 if (*p == '8')
1645 {
1646 p++;
1647 if (loc_reader)
1648 loc_reader->get_next ();
1649 }
1650 }
1651 else if (*p == 'L' || *p == 'U') p++;
1652 if (*p == 'R')
1653 {
1654 const uchar *prefix;
1655
1656 /* Skip over 'R"'. */
1657 p += 2;
1658 if (loc_reader)
1659 {
1660 loc_reader->get_next ();
1661 loc_reader->get_next ();
1662 }
1663 prefix = p;
1664 while (*p != '(')
1665 {
1666 p++;
1667 if (loc_reader)
1668 loc_reader->get_next ();
1669 }
1670 p++;
1671 if (loc_reader)
1672 loc_reader->get_next ();
1673 limit = from[i].text + from[i].len;
1674 if (limit >= p + (p - prefix) + 1)
1675 limit -= (p - prefix) + 1;
1676
1677 /* Raw strings are all normal characters; these can be fed
1678 directly to convert_cset. */
1679 if (to)
1680 if (!APPLY_CONVERSION (cvt, p, limit - p, &tbuf))
1681 goto fail;
1682
1683 if (loc_reader)
1684 {
1685 /* If generating source ranges, assume we have a 1:1
1686 correspondence between bytes in the source encoding and bytes
1687 in the execution encoding (e.g. if we have a UTF-8 to UTF-8
1688 conversion), so that this run of bytes in the source file
1689 corresponds to a run of bytes in the execution string.
1690 This requirement is guaranteed by an early-reject in
1691 cpp_interpret_string_ranges. */
1692 gcc_assert (cvt.func == convert_no_conversion);
1693 out->add_n_ranges (limit - p, *loc_reader);
1694 }
1695
1696 continue;
1697 }
1698
1699 /* If we don't now have a leading quote, something has gone wrong.
1700 This can occur if cpp_interpret_string_ranges is handling a
1701 stringified macro argument, but should not be possible otherwise. */
1702 if (*p != '"' && *p != '\'')
1703 {
1704 gcc_assert (out != NULL);
1705 cpp_error (pfile, CPP_DL_ERROR, "missing open quote");
1706 if (to)
1707 free (tbuf.text);
1708 return false;
1709 }
1710
1711 /* Skip leading quote. */
1712 p++;
1713 if (loc_reader)
1714 loc_reader->get_next ();
1715
1716 limit = from[i].text + from[i].len - 1; /* Skip trailing quote. */
1717
1718 for (;;)
1719 {
1720 base = p;
1721 while (p < limit && *p != '\\')
1722 p++;
1723 if (p > base)
1724 {
1725 /* We have a run of normal characters; these can be fed
1726 directly to convert_cset. */
1727 if (to)
1728 if (!APPLY_CONVERSION (cvt, base, p - base, &tbuf))
1729 goto fail;
1730 /* Similar to above: assumes we have a 1:1 correspondence
1731 between bytes in the source encoding and bytes in the
1732 execution encoding. */
1733 if (loc_reader)
1734 {
1735 gcc_assert (cvt.func == convert_no_conversion);
1736 out->add_n_ranges (p - base, *loc_reader);
1737 }
1738 }
1739 if (p >= limit)
1740 break;
1741
1742 struct _cpp_strbuf *tbuf_ptr = to ? &tbuf : NULL;
1743 p = convert_escape (pfile, p + 1, limit, tbuf_ptr, cvt,
1744 loc_reader, out);
1745 }
1746 }
1747
1748 if (to)
1749 {
1750 /* NUL-terminate the 'to' buffer and translate it to a cpp_string
1751 structure. */
1752 emit_numeric_escape (pfile, 0, &tbuf, cvt);
1753 tbuf.text = XRESIZEVEC (uchar, tbuf.text, tbuf.len);
1754 to->text = tbuf.text;
1755 to->len = tbuf.len;
1756 }
1757 /* Use the location of the trailing quote as the location of the
1758 NUL-terminator. */
1759 if (loc_reader)
1760 {
1761 source_range range = loc_reader->get_next ();
1762 out->add_range (range);
1763 }
1764
1765 return true;
1766
1767 fail:
1768 cpp_errno (pfile, CPP_DL_ERROR, "converting to execution character set");
1769 if (to)
1770 free (tbuf.text);
1771 return false;
1772 }
1773
1774 /* FROM is an array of cpp_string structures of length COUNT. These
1775 are to be converted from the source to the execution character set,
1776 escape sequences translated, and finally all are to be
1777 concatenated. WIDE indicates whether or not to produce a wide
1778 string. The result is written into TO. Returns true for success,
1779 false for failure. */
1780 bool
1781 cpp_interpret_string (cpp_reader *pfile, const cpp_string *from, size_t count,
1782 cpp_string *to, enum cpp_ttype type)
1783 {
1784 return cpp_interpret_string_1 (pfile, from, count, to, type, NULL, NULL);
1785 }
1786
1787 /* A "do nothing" diagnostic-handling callback for use by
1788 cpp_interpret_string_ranges, so that it can temporarily suppress
1789 diagnostic-handling. */
1790
1791 static bool
1792 noop_diagnostic_cb (cpp_reader *, enum cpp_diagnostic_level,
1793 enum cpp_warning_reason, rich_location *,
1794 const char *, va_list *)
1795 {
1796 /* no-op. */
1797 return true;
1798 }
1799
1800 /* This function mimics the behavior of cpp_interpret_string, but
1801 rather than generating a string in the execution character set,
1802 *OUT is written to with the source code ranges of the characters
1803 in such a string.
1804 FROM and LOC_READERS should both be arrays of length COUNT.
1805 Returns NULL for success, or an error message for failure. */
1806
1807 const char *
1808 cpp_interpret_string_ranges (cpp_reader *pfile, const cpp_string *from,
1809 cpp_string_location_reader *loc_readers,
1810 size_t count,
1811 cpp_substring_ranges *out,
1812 enum cpp_ttype type)
1813 {
1814 /* There are a couple of cases in the range-handling in
1815 cpp_interpret_string_1 that rely on there being a 1:1 correspondence
1816 between bytes in the source encoding and bytes in the execution
1817 encoding, so that each byte in the execution string can correspond
1818 to the location of a byte in the source string.
1819
1820 This holds for the typical case of a UTF-8 to UTF-8 conversion.
1821 Enforce this requirement by only attempting to track substring
1822 locations if we have source encoding == execution encoding.
1823
1824 This is a stronger condition than we need, since we could e.g.
1825 have ASCII to EBCDIC (with 1 byte per character before and after),
1826 but it seems to be a reasonable restriction. */
1827 struct cset_converter cvt = converter_for_type (pfile, type);
1828 if (cvt.func != convert_no_conversion)
1829 return "execution character set != source character set";
1830
1831 /* For on-demand strings we have already lexed the strings, so there
1832 should be no diagnostics. However, if we have bogus source location
1833 data (or stringified macro arguments), the attempt to lex the
1834 strings could fail with an diagnostic. Temporarily install an
1835 diagnostic-handler to catch the diagnostic, so that it can lead to this call
1836 failing, rather than being emitted as a user-visible diagnostic.
1837 If an diagnostic does occur, we should see it via the return value of
1838 cpp_interpret_string_1. */
1839 bool (*saved_diagnostic_handler) (cpp_reader *, enum cpp_diagnostic_level,
1840 enum cpp_warning_reason, rich_location *,
1841 const char *, va_list *)
1842 ATTRIBUTE_FPTR_PRINTF(5,0);
1843
1844 saved_diagnostic_handler = pfile->cb.diagnostic;
1845 pfile->cb.diagnostic = noop_diagnostic_cb;
1846
1847 bool result = cpp_interpret_string_1 (pfile, from, count, NULL, type,
1848 loc_readers, out);
1849
1850 /* Restore the saved diagnostic-handler. */
1851 pfile->cb.diagnostic = saved_diagnostic_handler;
1852
1853 if (!result)
1854 return "cpp_interpret_string_1 failed";
1855
1856 /* Success. */
1857 return NULL;
1858 }
1859
1860 /* Subroutine of do_line and do_linemarker. Convert escape sequences
1861 in a string, but do not perform character set conversion. */
1862 bool
1863 cpp_interpret_string_notranslate (cpp_reader *pfile, const cpp_string *from,
1864 size_t count, cpp_string *to,
1865 enum cpp_ttype type ATTRIBUTE_UNUSED)
1866 {
1867 struct cset_converter save_narrow_cset_desc = pfile->narrow_cset_desc;
1868 bool retval;
1869
1870 pfile->narrow_cset_desc.func = convert_no_conversion;
1871 pfile->narrow_cset_desc.cd = (iconv_t) -1;
1872 pfile->narrow_cset_desc.width = CPP_OPTION (pfile, char_precision);
1873
1874 retval = cpp_interpret_string (pfile, from, count, to, CPP_STRING);
1875
1876 pfile->narrow_cset_desc = save_narrow_cset_desc;
1877 return retval;
1878 }
1879
1880 \f
1881 /* Subroutine of cpp_interpret_charconst which performs the conversion
1882 to a number, for narrow strings. STR is the string structure returned
1883 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1884 cpp_interpret_charconst. TYPE is the token type. */
1885 static cppchar_t
1886 narrow_str_to_charconst (cpp_reader *pfile, cpp_string str,
1887 unsigned int *pchars_seen, int *unsignedp,
1888 enum cpp_ttype type)
1889 {
1890 size_t width = CPP_OPTION (pfile, char_precision);
1891 size_t max_chars = CPP_OPTION (pfile, int_precision) / width;
1892 size_t mask = width_to_mask (width);
1893 size_t i;
1894 cppchar_t result, c;
1895 bool unsigned_p;
1896
1897 /* The value of a multi-character character constant, or a
1898 single-character character constant whose representation in the
1899 execution character set is more than one byte long, is
1900 implementation defined. This implementation defines it to be the
1901 number formed by interpreting the byte sequence in memory as a
1902 big-endian binary number. If overflow occurs, the high bytes are
1903 lost, and a warning is issued.
1904
1905 We don't want to process the NUL terminator handed back by
1906 cpp_interpret_string. */
1907 result = 0;
1908 for (i = 0; i < str.len - 1; i++)
1909 {
1910 c = str.text[i] & mask;
1911 if (width < BITS_PER_CPPCHAR_T)
1912 result = (result << width) | c;
1913 else
1914 result = c;
1915 }
1916
1917 if (type == CPP_UTF8CHAR)
1918 max_chars = 1;
1919 if (i > max_chars)
1920 {
1921 i = max_chars;
1922 cpp_error (pfile, type == CPP_UTF8CHAR ? CPP_DL_ERROR : CPP_DL_WARNING,
1923 "character constant too long for its type");
1924 }
1925 else if (i > 1 && CPP_OPTION (pfile, warn_multichar))
1926 cpp_warning (pfile, CPP_W_MULTICHAR, "multi-character character constant");
1927
1928 /* Multichar constants are of type int and therefore signed. */
1929 if (i > 1)
1930 unsigned_p = 0;
1931 else if (type == CPP_UTF8CHAR && !CPP_OPTION (pfile, cplusplus))
1932 unsigned_p = 1;
1933 else
1934 unsigned_p = CPP_OPTION (pfile, unsigned_char);
1935
1936 /* Truncate the constant to its natural width, and simultaneously
1937 sign- or zero-extend to the full width of cppchar_t.
1938 For single-character constants, the value is WIDTH bits wide.
1939 For multi-character constants, the value is INT_PRECISION bits wide. */
1940 if (i > 1)
1941 width = CPP_OPTION (pfile, int_precision);
1942 if (width < BITS_PER_CPPCHAR_T)
1943 {
1944 mask = ((cppchar_t) 1 << width) - 1;
1945 if (unsigned_p || !(result & (1 << (width - 1))))
1946 result &= mask;
1947 else
1948 result |= ~mask;
1949 }
1950 *pchars_seen = i;
1951 *unsignedp = unsigned_p;
1952 return result;
1953 }
1954
1955 /* Subroutine of cpp_interpret_charconst which performs the conversion
1956 to a number, for wide strings. STR is the string structure returned
1957 by cpp_interpret_string. PCHARS_SEEN and UNSIGNEDP are as for
1958 cpp_interpret_charconst. TYPE is the token type. */
1959 static cppchar_t
1960 wide_str_to_charconst (cpp_reader *pfile, cpp_string str,
1961 unsigned int *pchars_seen, int *unsignedp,
1962 enum cpp_ttype type)
1963 {
1964 bool bigend = CPP_OPTION (pfile, bytes_big_endian);
1965 size_t width = converter_for_type (pfile, type).width;
1966 size_t cwidth = CPP_OPTION (pfile, char_precision);
1967 size_t mask = width_to_mask (width);
1968 size_t cmask = width_to_mask (cwidth);
1969 size_t nbwc = width / cwidth;
1970 size_t off, i;
1971 cppchar_t result = 0, c;
1972
1973 if (str.len <= nbwc)
1974 {
1975 /* Error recovery, if no errors have been diagnosed previously,
1976 there should be at least two wide characters. Empty literals
1977 are diagnosed earlier and we can get just the zero terminator
1978 only if there were errors diagnosed during conversion. */
1979 *pchars_seen = 0;
1980 *unsignedp = 0;
1981 return 0;
1982 }
1983
1984 /* This is finicky because the string is in the target's byte order,
1985 which may not be our byte order. Only the last character, ignoring
1986 the NUL terminator, is relevant. */
1987 off = str.len - (nbwc * 2);
1988 result = 0;
1989 for (i = 0; i < nbwc; i++)
1990 {
1991 c = bigend ? str.text[off + i] : str.text[off + nbwc - i - 1];
1992 result = (result << cwidth) | (c & cmask);
1993 }
1994
1995 /* Wide character constants have type wchar_t, and a single
1996 character exactly fills a wchar_t, so a multi-character wide
1997 character constant is guaranteed to overflow. */
1998 if (str.len > nbwc * 2)
1999 cpp_error (pfile, (CPP_OPTION (pfile, cplusplus)
2000 && (type == CPP_CHAR16 || type == CPP_CHAR32))
2001 ? CPP_DL_ERROR : CPP_DL_WARNING,
2002 "character constant too long for its type");
2003
2004 /* Truncate the constant to its natural width, and simultaneously
2005 sign- or zero-extend to the full width of cppchar_t. */
2006 if (width < BITS_PER_CPPCHAR_T)
2007 {
2008 if (type == CPP_CHAR16 || type == CPP_CHAR32
2009 || CPP_OPTION (pfile, unsigned_wchar)
2010 || !(result & (1 << (width - 1))))
2011 result &= mask;
2012 else
2013 result |= ~mask;
2014 }
2015
2016 if (type == CPP_CHAR16 || type == CPP_CHAR32
2017 || CPP_OPTION (pfile, unsigned_wchar))
2018 *unsignedp = 1;
2019 else
2020 *unsignedp = 0;
2021
2022 *pchars_seen = 1;
2023 return result;
2024 }
2025
2026 /* Interpret a (possibly wide) character constant in TOKEN.
2027 PCHARS_SEEN points to a variable that is filled in with the number
2028 of characters seen, and UNSIGNEDP to a variable that indicates
2029 whether the result has signed type. */
2030 cppchar_t
2031 cpp_interpret_charconst (cpp_reader *pfile, const cpp_token *token,
2032 unsigned int *pchars_seen, int *unsignedp)
2033 {
2034 cpp_string str = { 0, 0 };
2035 bool wide = (token->type != CPP_CHAR && token->type != CPP_UTF8CHAR);
2036 int u8 = 2 * int(token->type == CPP_UTF8CHAR);
2037 cppchar_t result;
2038
2039 /* An empty constant will appear as L'', u'', U'', u8'', or '' */
2040 if (token->val.str.len == (size_t) (2 + wide + u8))
2041 {
2042 cpp_error (pfile, CPP_DL_ERROR, "empty character constant");
2043 *pchars_seen = 0;
2044 *unsignedp = 0;
2045 return 0;
2046 }
2047 else if (!cpp_interpret_string (pfile, &token->val.str, 1, &str,
2048 token->type))
2049 {
2050 *pchars_seen = 0;
2051 *unsignedp = 0;
2052 return 0;
2053 }
2054
2055 if (wide)
2056 result = wide_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2057 token->type);
2058 else
2059 result = narrow_str_to_charconst (pfile, str, pchars_seen, unsignedp,
2060 token->type);
2061
2062 if (str.text != token->val.str.text)
2063 free ((void *)str.text);
2064
2065 return result;
2066 }
2067 \f
2068 /* Convert an identifier denoted by ID and LEN, which might contain
2069 UCN escapes or UTF-8 multibyte chars, to the source character set,
2070 either UTF-8 or UTF-EBCDIC. Assumes that the identifier is actually
2071 a valid identifier. */
2072 cpp_hashnode *
2073 _cpp_interpret_identifier (cpp_reader *pfile, const uchar *id, size_t len)
2074 {
2075 /* It turns out that a UCN escape always turns into fewer characters
2076 than the escape itself, so we can allocate a temporary in advance. */
2077 uchar * buf = (uchar *) alloca (len + 1);
2078 uchar * bufp = buf;
2079 size_t idp;
2080
2081 for (idp = 0; idp < len; idp++)
2082 if (id[idp] != '\\')
2083 *bufp++ = id[idp];
2084 else
2085 {
2086 unsigned length = id[idp+1] == 'u' ? 4 : 8;
2087 cppchar_t value = 0;
2088 size_t bufleft = len - (bufp - buf);
2089 int rval;
2090
2091 idp += 2;
2092 while (length && idp < len && ISXDIGIT (id[idp]))
2093 {
2094 value = (value << 4) + hex_value (id[idp]);
2095 idp++;
2096 length--;
2097 }
2098 idp--;
2099
2100 /* Special case for EBCDIC: if the identifier contains
2101 a '$' specified using a UCN, translate it to EBCDIC. */
2102 if (value == 0x24)
2103 {
2104 *bufp++ = '$';
2105 continue;
2106 }
2107
2108 rval = one_cppchar_to_utf8 (value, &bufp, &bufleft);
2109 if (rval)
2110 {
2111 errno = rval;
2112 cpp_errno (pfile, CPP_DL_ERROR,
2113 "converting UCN to source character set");
2114 break;
2115 }
2116 }
2117
2118 return CPP_HASHNODE (ht_lookup (pfile->hash_table,
2119 buf, bufp - buf, HT_ALLOC));
2120 }
2121 \f
2122 /* Convert an input buffer (containing the complete contents of one
2123 source file) from INPUT_CHARSET to the source character set. INPUT
2124 points to the input buffer, SIZE is its allocated size, and LEN is
2125 the length of the meaningful data within the buffer. The
2126 translated buffer is returned, *ST_SIZE is set to the length of
2127 the meaningful data within the translated buffer, and *BUFFER_START
2128 is set to the start of the returned buffer. *BUFFER_START may
2129 differ from the return value in the case of a BOM or other ignored
2130 marker information.
2131
2132 INPUT is expected to have been allocated with xmalloc. This
2133 function will either set *BUFFER_START to INPUT, or free it and set
2134 *BUFFER_START to a pointer to another xmalloc-allocated block of
2135 memory. */
2136 uchar *
2137 _cpp_convert_input (cpp_reader *pfile, const char *input_charset,
2138 uchar *input, size_t size, size_t len,
2139 const unsigned char **buffer_start, off_t *st_size)
2140 {
2141 struct cset_converter input_cset;
2142 struct _cpp_strbuf to;
2143 unsigned char *buffer;
2144
2145 input_cset = init_iconv_desc (pfile, SOURCE_CHARSET, input_charset);
2146 if (input_cset.func == convert_no_conversion)
2147 {
2148 to.text = input;
2149 to.asize = size;
2150 to.len = len;
2151 }
2152 else
2153 {
2154 to.asize = MAX (65536, len);
2155 to.text = XNEWVEC (uchar, to.asize);
2156 to.len = 0;
2157
2158 if (!APPLY_CONVERSION (input_cset, input, len, &to))
2159 cpp_error (pfile, CPP_DL_ERROR,
2160 "failure to convert %s to %s",
2161 CPP_OPTION (pfile, input_charset), SOURCE_CHARSET);
2162
2163 free (input);
2164 }
2165
2166 /* Clean up the mess. */
2167 if (input_cset.func == convert_using_iconv)
2168 iconv_close (input_cset.cd);
2169
2170 /* Resize buffer if we allocated substantially too much, or if we
2171 haven't enough space for the \n-terminator or following
2172 15 bytes of padding (used to quiet warnings from valgrind or
2173 Address Sanitizer, when the optimized lexer accesses aligned
2174 16-byte memory chunks, including the bytes after the malloced,
2175 area, and stops lexing on '\n'). */
2176 if (to.len + 4096 < to.asize || to.len + 16 > to.asize)
2177 to.text = XRESIZEVEC (uchar, to.text, to.len + 16);
2178
2179 memset (to.text + to.len, '\0', 16);
2180
2181 /* If the file is using old-school Mac line endings (\r only),
2182 terminate with another \r, not an \n, so that we do not mistake
2183 the \r\n sequence for a single DOS line ending and erroneously
2184 issue the "No newline at end of file" diagnostic. */
2185 if (to.len && to.text[to.len - 1] == '\r')
2186 to.text[to.len] = '\r';
2187 else
2188 to.text[to.len] = '\n';
2189
2190 buffer = to.text;
2191 *st_size = to.len;
2192 #if HOST_CHARSET == HOST_CHARSET_ASCII
2193 /* The HOST_CHARSET test just above ensures that the source charset
2194 is UTF-8. So, ignore a UTF-8 BOM if we see one. Note that
2195 glib'c UTF-8 iconv() provider (as of glibc 2.7) does not ignore a
2196 BOM -- however, even if it did, we would still need this code due
2197 to the 'convert_no_conversion' case. */
2198 if (to.len >= 3 && to.text[0] == 0xef && to.text[1] == 0xbb
2199 && to.text[2] == 0xbf)
2200 {
2201 *st_size -= 3;
2202 buffer += 3;
2203 }
2204 #endif
2205
2206 *buffer_start = to.text;
2207 return buffer;
2208 }
2209
2210 /* Decide on the default encoding to assume for input files. */
2211 const char *
2212 _cpp_default_encoding (void)
2213 {
2214 const char *current_encoding = NULL;
2215
2216 /* We disable this because the default codeset is 7-bit ASCII on
2217 most platforms, and this causes conversion failures on every
2218 file in GCC that happens to have one of the upper 128 characters
2219 in it -- most likely, as part of the name of a contributor.
2220 We should definitely recognize in-band markers of file encoding,
2221 like:
2222 - the appropriate Unicode byte-order mark (FE FF) to recognize
2223 UTF16 and UCS4 (in both big-endian and little-endian flavors)
2224 and UTF8
2225 - a "#i", "#d", "/ *", "//", " #p" or "#p" (for #pragma) to
2226 distinguish ASCII and EBCDIC.
2227 - now we can parse something like "#pragma GCC encoding <xyz>
2228 on the first line, or even Emacs/VIM's mode line tags (there's
2229 a problem here in that VIM uses the last line, and Emacs has
2230 its more elaborate "local variables" convention).
2231 - investigate whether Java has another common convention, which
2232 would be friendly to support.
2233 (Zack Weinberg and Paolo Bonzini, May 20th 2004) */
2234 #if defined (HAVE_LOCALE_H) && defined (HAVE_LANGINFO_CODESET) && 0
2235 setlocale (LC_CTYPE, "");
2236 current_encoding = nl_langinfo (CODESET);
2237 #endif
2238 if (current_encoding == NULL || *current_encoding == '\0')
2239 current_encoding = SOURCE_CHARSET;
2240
2241 return current_encoding;
2242 }
2243
2244 /* Implementation of class cpp_string_location_reader. */
2245
2246 /* Constructor for cpp_string_location_reader. */
2247
2248 cpp_string_location_reader::
2249 cpp_string_location_reader (location_t src_loc,
2250 line_maps *line_table)
2251 {
2252 src_loc = get_range_from_loc (line_table, src_loc).m_start;
2253
2254 /* SRC_LOC might be a macro location. It only makes sense to do
2255 column-by-column calculations on ordinary maps, so get the
2256 corresponding location in an ordinary map. */
2257 m_loc
2258 = linemap_resolve_location (line_table, src_loc,
2259 LRK_SPELLING_LOCATION, NULL);
2260
2261 const line_map_ordinary *map
2262 = linemap_check_ordinary (linemap_lookup (line_table, m_loc));
2263 m_offset_per_column = (1 << map->m_range_bits);
2264 }
2265
2266 /* Get the range of the next source byte. */
2267
2268 source_range
2269 cpp_string_location_reader::get_next ()
2270 {
2271 source_range result;
2272 result.m_start = m_loc;
2273 result.m_finish = m_loc;
2274 if (m_loc <= LINE_MAP_MAX_LOCATION_WITH_COLS)
2275 m_loc += m_offset_per_column;
2276 return result;
2277 }
2278
2279 /* Helper for cpp_byte_column_to_display_column and its inverse. Given a
2280 pointer to a UTF-8-encoded character, compute its display width. *INBUFP
2281 points on entry to the start of the UTF-8 encoding of the character, and
2282 is updated to point just after the last byte of the encoding. *INBYTESLEFTP
2283 contains on entry the remaining size of the buffer into which *INBUFP
2284 points, and this is also updated accordingly. If *INBUFP does not
2285 point to a valid UTF-8-encoded sequence, then it will be treated as a single
2286 byte with display width 1. */
2287
2288 static inline int
2289 compute_next_display_width (const uchar **inbufp, size_t *inbytesleftp)
2290 {
2291 cppchar_t c;
2292 if (one_utf8_to_cppchar (inbufp, inbytesleftp, &c) != 0)
2293 {
2294 /* Input is not convertible to UTF-8. This could be fine, e.g. in a
2295 string literal, so don't complain. Just treat it as if it has a width
2296 of one. */
2297 ++*inbufp;
2298 --*inbytesleftp;
2299 return 1;
2300 }
2301
2302 /* one_utf8_to_cppchar() has updated inbufp and inbytesleftp for us. */
2303 return cpp_wcwidth (c);
2304 }
2305
2306 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2307 how many display columns are occupied by the first COLUMN bytes. COLUMN
2308 may exceed DATA_LENGTH, in which case the phantom bytes at the end are
2309 treated as if they have display width 1. */
2310
2311 int
2312 cpp_byte_column_to_display_column (const char *data, int data_length,
2313 int column)
2314 {
2315 int display_col = 0;
2316 const uchar *udata = (const uchar *) data;
2317 const int offset = MAX (0, column - data_length);
2318 size_t inbytesleft = column - offset;
2319 while (inbytesleft)
2320 display_col += compute_next_display_width (&udata, &inbytesleft);
2321 return display_col + offset;
2322 }
2323
2324 /* For the string of length DATA_LENGTH bytes that begins at DATA, compute
2325 the least number of bytes that will result in at least DISPLAY_COL display
2326 columns. The return value may exceed DATA_LENGTH if the entire string does
2327 not occupy enough display columns. */
2328
2329 int
2330 cpp_display_column_to_byte_column (const char *data, int data_length,
2331 int display_col)
2332 {
2333 int column = 0;
2334 const uchar *udata = (const uchar *) data;
2335 size_t inbytesleft = data_length;
2336 while (column < display_col && inbytesleft)
2337 column += compute_next_display_width (&udata, &inbytesleft);
2338 return data_length - inbytesleft + MAX (0, display_col - column);
2339 }
2340
2341 /* Our own version of wcwidth(). We don't use the actual wcwidth() in glibc,
2342 because that will inspect the user's locale, and in particular in an ASCII
2343 locale, it will not return anything useful for extended characters. But GCC
2344 in other respects (see e.g. _cpp_default_encoding()) behaves as if
2345 everything is UTF-8. We also make some tweaks that are useful for the way
2346 GCC needs to use this data, e.g. tabs and other control characters should be
2347 treated as having width 1. The lookup tables are generated from
2348 contrib/unicode/gen_wcwidth.py and were made by simply calling glibc
2349 wcwidth() on all codepoints, then applying the small tweaks. These tables
2350 are not highly optimized, but for the present purpose of outputting
2351 diagnostics, they are sufficient. */
2352
2353 #include "generated_cpp_wcwidth.h"
2354 int cpp_wcwidth (cppchar_t c)
2355 {
2356 if (__builtin_expect (c <= wcwidth_range_ends[0], true))
2357 return wcwidth_widths[0];
2358
2359 /* Binary search the tables. */
2360 int begin = 1;
2361 static const int end
2362 = sizeof wcwidth_range_ends / sizeof (*wcwidth_range_ends);
2363 int len = end - begin;
2364 do
2365 {
2366 int half = len/2;
2367 int middle = begin + half;
2368 if (c > wcwidth_range_ends[middle])
2369 {
2370 begin = middle + 1;
2371 len -= half + 1;
2372 }
2373 else
2374 len = half;
2375 } while (len);
2376
2377 if (__builtin_expect (begin != end, true))
2378 return wcwidth_widths[begin];
2379 return 1;
2380 }