]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/huge_memory.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499
[thirdparty/kernel/stable.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
97ae1749 35
71e3aac0
AA
36#include <asm/tlb.h>
37#include <asm/pgalloc.h>
38#include "internal.h"
39
ba76149f 40/*
b14d595a
MD
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
ba76149f 47 */
71e3aac0 48unsigned long transparent_hugepage_flags __read_mostly =
13ece886 49#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
51#endif
52#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54#endif
444eb2a4 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 58
9a982250 59static struct shrinker deferred_split_shrinker;
f000565a 60
97ae1749 61static atomic_t huge_zero_refcount;
56873f43 62struct page *huge_zero_page __read_mostly;
4a6c1297 63
7635d9cb
MH
64bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65{
66 if (vma_is_anonymous(vma))
67 return __transparent_hugepage_enabled(vma);
68 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
69 return __transparent_hugepage_enabled(vma);
70
71 return false;
72}
73
6fcb52a5 74static struct page *get_huge_zero_page(void)
97ae1749
KS
75{
76 struct page *zero_page;
77retry:
78 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 79 return READ_ONCE(huge_zero_page);
97ae1749
KS
80
81 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 82 HPAGE_PMD_ORDER);
d8a8e1f0
KS
83 if (!zero_page) {
84 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 85 return NULL;
d8a8e1f0
KS
86 }
87 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 88 preempt_disable();
5918d10a 89 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 90 preempt_enable();
5ddacbe9 91 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
92 goto retry;
93 }
94
95 /* We take additional reference here. It will be put back by shrinker */
96 atomic_set(&huge_zero_refcount, 2);
97 preempt_enable();
4db0c3c2 98 return READ_ONCE(huge_zero_page);
4a6c1297
KS
99}
100
6fcb52a5 101static void put_huge_zero_page(void)
4a6c1297 102{
97ae1749
KS
103 /*
104 * Counter should never go to zero here. Only shrinker can put
105 * last reference.
106 */
107 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
108}
109
6fcb52a5
AL
110struct page *mm_get_huge_zero_page(struct mm_struct *mm)
111{
112 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
113 return READ_ONCE(huge_zero_page);
114
115 if (!get_huge_zero_page())
116 return NULL;
117
118 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120
121 return READ_ONCE(huge_zero_page);
122}
123
124void mm_put_huge_zero_page(struct mm_struct *mm)
125{
126 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
127 put_huge_zero_page();
128}
129
48896466
GC
130static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
131 struct shrink_control *sc)
4a6c1297 132{
48896466
GC
133 /* we can free zero page only if last reference remains */
134 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
135}
97ae1749 136
48896466
GC
137static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
138 struct shrink_control *sc)
139{
97ae1749 140 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
141 struct page *zero_page = xchg(&huge_zero_page, NULL);
142 BUG_ON(zero_page == NULL);
5ddacbe9 143 __free_pages(zero_page, compound_order(zero_page));
48896466 144 return HPAGE_PMD_NR;
97ae1749
KS
145 }
146
147 return 0;
4a6c1297
KS
148}
149
97ae1749 150static struct shrinker huge_zero_page_shrinker = {
48896466
GC
151 .count_objects = shrink_huge_zero_page_count,
152 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
153 .seeks = DEFAULT_SEEKS,
154};
155
71e3aac0 156#ifdef CONFIG_SYSFS
71e3aac0
AA
157static ssize_t enabled_show(struct kobject *kobj,
158 struct kobj_attribute *attr, char *buf)
159{
444eb2a4
MG
160 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
161 return sprintf(buf, "[always] madvise never\n");
162 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "always [madvise] never\n");
164 else
165 return sprintf(buf, "always madvise [never]\n");
71e3aac0 166}
444eb2a4 167
71e3aac0
AA
168static ssize_t enabled_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171{
21440d7e 172 ssize_t ret = count;
ba76149f 173
21440d7e
DR
174 if (!memcmp("always", buf,
175 min(sizeof("always")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
178 } else if (!memcmp("madvise", buf,
179 min(sizeof("madvise")-1, count))) {
180 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
181 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 } else if (!memcmp("never", buf,
183 min(sizeof("never")-1, count))) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else
187 ret = -EINVAL;
ba76149f
AA
188
189 if (ret > 0) {
b46e756f 190 int err = start_stop_khugepaged();
ba76149f
AA
191 if (err)
192 ret = err;
193 }
ba76149f 194 return ret;
71e3aac0
AA
195}
196static struct kobj_attribute enabled_attr =
197 __ATTR(enabled, 0644, enabled_show, enabled_store);
198
b46e756f 199ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
200 struct kobj_attribute *attr, char *buf,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 return sprintf(buf, "%d\n",
204 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 205}
e27e6151 206
b46e756f 207ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
208 struct kobj_attribute *attr,
209 const char *buf, size_t count,
210 enum transparent_hugepage_flag flag)
211{
e27e6151
BH
212 unsigned long value;
213 int ret;
214
215 ret = kstrtoul(buf, 10, &value);
216 if (ret < 0)
217 return ret;
218 if (value > 1)
219 return -EINVAL;
220
221 if (value)
71e3aac0 222 set_bit(flag, &transparent_hugepage_flags);
e27e6151 223 else
71e3aac0 224 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
225
226 return count;
227}
228
71e3aac0
AA
229static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231{
444eb2a4 232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 233 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
235 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
240 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 241}
21440d7e 242
71e3aac0
AA
243static ssize_t defrag_store(struct kobject *kobj,
244 struct kobj_attribute *attr,
245 const char *buf, size_t count)
246{
21440d7e
DR
247 if (!memcmp("always", buf,
248 min(sizeof("always")-1, count))) {
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
253 } else if (!memcmp("defer+madvise", buf,
254 min(sizeof("defer+madvise")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
259 } else if (!memcmp("defer", buf,
260 min(sizeof("defer")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 } else if (!memcmp("never", buf,
272 min(sizeof("never")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else
278 return -EINVAL;
279
280 return count;
71e3aac0
AA
281}
282static struct kobj_attribute defrag_attr =
283 __ATTR(defrag, 0644, defrag_show, defrag_store);
284
79da5407
KS
285static ssize_t use_zero_page_show(struct kobject *kobj,
286 struct kobj_attribute *attr, char *buf)
287{
b46e756f 288 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
289 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
290}
291static ssize_t use_zero_page_store(struct kobject *kobj,
292 struct kobj_attribute *attr, const char *buf, size_t count)
293{
b46e756f 294 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296}
297static struct kobj_attribute use_zero_page_attr =
298 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
299
300static ssize_t hpage_pmd_size_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
303 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
304}
305static struct kobj_attribute hpage_pmd_size_attr =
306 __ATTR_RO(hpage_pmd_size);
307
71e3aac0
AA
308#ifdef CONFIG_DEBUG_VM
309static ssize_t debug_cow_show(struct kobject *kobj,
310 struct kobj_attribute *attr, char *buf)
311{
b46e756f 312 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
313 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
314}
315static ssize_t debug_cow_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count)
318{
b46e756f 319 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
320 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
321}
322static struct kobj_attribute debug_cow_attr =
323 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
324#endif /* CONFIG_DEBUG_VM */
325
326static struct attribute *hugepage_attr[] = {
327 &enabled_attr.attr,
328 &defrag_attr.attr,
79da5407 329 &use_zero_page_attr.attr,
49920d28 330 &hpage_pmd_size_attr.attr,
e496cf3d 331#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
332 &shmem_enabled_attr.attr,
333#endif
71e3aac0
AA
334#ifdef CONFIG_DEBUG_VM
335 &debug_cow_attr.attr,
336#endif
337 NULL,
338};
339
8aa95a21 340static const struct attribute_group hugepage_attr_group = {
71e3aac0 341 .attrs = hugepage_attr,
ba76149f
AA
342};
343
569e5590 344static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 345{
71e3aac0
AA
346 int err;
347
569e5590
SL
348 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
349 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 350 pr_err("failed to create transparent hugepage kobject\n");
569e5590 351 return -ENOMEM;
ba76149f
AA
352 }
353
569e5590 354 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 355 if (err) {
ae3a8c1c 356 pr_err("failed to register transparent hugepage group\n");
569e5590 357 goto delete_obj;
ba76149f
AA
358 }
359
569e5590 360 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 361 if (err) {
ae3a8c1c 362 pr_err("failed to register transparent hugepage group\n");
569e5590 363 goto remove_hp_group;
ba76149f 364 }
569e5590
SL
365
366 return 0;
367
368remove_hp_group:
369 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
370delete_obj:
371 kobject_put(*hugepage_kobj);
372 return err;
373}
374
375static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376{
377 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
378 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
379 kobject_put(hugepage_kobj);
380}
381#else
382static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
383{
384 return 0;
385}
386
387static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
388{
389}
390#endif /* CONFIG_SYSFS */
391
392static int __init hugepage_init(void)
393{
394 int err;
395 struct kobject *hugepage_kobj;
396
397 if (!has_transparent_hugepage()) {
398 transparent_hugepage_flags = 0;
399 return -EINVAL;
400 }
401
ff20c2e0
KS
402 /*
403 * hugepages can't be allocated by the buddy allocator
404 */
405 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
406 /*
407 * we use page->mapping and page->index in second tail page
408 * as list_head: assuming THP order >= 2
409 */
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
411
569e5590
SL
412 err = hugepage_init_sysfs(&hugepage_kobj);
413 if (err)
65ebb64f 414 goto err_sysfs;
ba76149f 415
b46e756f 416 err = khugepaged_init();
ba76149f 417 if (err)
65ebb64f 418 goto err_slab;
ba76149f 419
65ebb64f
KS
420 err = register_shrinker(&huge_zero_page_shrinker);
421 if (err)
422 goto err_hzp_shrinker;
9a982250
KS
423 err = register_shrinker(&deferred_split_shrinker);
424 if (err)
425 goto err_split_shrinker;
97ae1749 426
97562cd2
RR
427 /*
428 * By default disable transparent hugepages on smaller systems,
429 * where the extra memory used could hurt more than TLB overhead
430 * is likely to save. The admin can still enable it through /sys.
431 */
ca79b0c2 432 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 433 transparent_hugepage_flags = 0;
79553da2
KS
434 return 0;
435 }
97562cd2 436
79553da2 437 err = start_stop_khugepaged();
65ebb64f
KS
438 if (err)
439 goto err_khugepaged;
ba76149f 440
569e5590 441 return 0;
65ebb64f 442err_khugepaged:
9a982250
KS
443 unregister_shrinker(&deferred_split_shrinker);
444err_split_shrinker:
65ebb64f
KS
445 unregister_shrinker(&huge_zero_page_shrinker);
446err_hzp_shrinker:
b46e756f 447 khugepaged_destroy();
65ebb64f 448err_slab:
569e5590 449 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 450err_sysfs:
ba76149f 451 return err;
71e3aac0 452}
a64fb3cd 453subsys_initcall(hugepage_init);
71e3aac0
AA
454
455static int __init setup_transparent_hugepage(char *str)
456{
457 int ret = 0;
458 if (!str)
459 goto out;
460 if (!strcmp(str, "always")) {
461 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 &transparent_hugepage_flags);
463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 &transparent_hugepage_flags);
465 ret = 1;
466 } else if (!strcmp(str, "madvise")) {
467 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
471 ret = 1;
472 } else if (!strcmp(str, "never")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 }
479out:
480 if (!ret)
ae3a8c1c 481 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
482 return ret;
483}
484__setup("transparent_hugepage=", setup_transparent_hugepage);
485
f55e1014 486pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 487{
f55e1014 488 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
489 pmd = pmd_mkwrite(pmd);
490 return pmd;
491}
492
9a982250
KS
493static inline struct list_head *page_deferred_list(struct page *page)
494{
fa3015b7
MW
495 /* ->lru in the tail pages is occupied by compound_head. */
496 return &page[2].deferred_list;
9a982250
KS
497}
498
499void prep_transhuge_page(struct page *page)
500{
501 /*
502 * we use page->mapping and page->indexlru in second tail page
503 * as list_head: assuming THP order >= 2
504 */
9a982250
KS
505
506 INIT_LIST_HEAD(page_deferred_list(page));
507 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
508}
509
b3b07077 510static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
74d2fad1
TK
511 loff_t off, unsigned long flags, unsigned long size)
512{
513 unsigned long addr;
514 loff_t off_end = off + len;
515 loff_t off_align = round_up(off, size);
516 unsigned long len_pad;
517
518 if (off_end <= off_align || (off_end - off_align) < size)
519 return 0;
520
521 len_pad = len + size;
522 if (len_pad < len || (off + len_pad) < off)
523 return 0;
524
525 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
526 off >> PAGE_SHIFT, flags);
527 if (IS_ERR_VALUE(addr))
528 return 0;
529
530 addr += (off - addr) & (size - 1);
531 return addr;
532}
533
534unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
535 unsigned long len, unsigned long pgoff, unsigned long flags)
536{
537 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
538
539 if (addr)
540 goto out;
541 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
542 goto out;
543
544 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
545 if (addr)
546 return addr;
547
548 out:
549 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
550}
551EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
552
2b740303
SJ
553static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
554 struct page *page, gfp_t gfp)
71e3aac0 555{
82b0f8c3 556 struct vm_area_struct *vma = vmf->vma;
00501b53 557 struct mem_cgroup *memcg;
71e3aac0 558 pgtable_t pgtable;
82b0f8c3 559 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 560 vm_fault_t ret = 0;
71e3aac0 561
309381fe 562 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 563
2cf85583 564 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
565 put_page(page);
566 count_vm_event(THP_FAULT_FALLBACK);
567 return VM_FAULT_FALLBACK;
568 }
00501b53 569
4cf58924 570 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 571 if (unlikely(!pgtable)) {
6b31d595
MH
572 ret = VM_FAULT_OOM;
573 goto release;
00501b53 574 }
71e3aac0 575
c79b57e4 576 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
577 /*
578 * The memory barrier inside __SetPageUptodate makes sure that
579 * clear_huge_page writes become visible before the set_pmd_at()
580 * write.
581 */
71e3aac0
AA
582 __SetPageUptodate(page);
583
82b0f8c3
JK
584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
585 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 586 goto unlock_release;
71e3aac0
AA
587 } else {
588 pmd_t entry;
6b251fc9 589
6b31d595
MH
590 ret = check_stable_address_space(vma->vm_mm);
591 if (ret)
592 goto unlock_release;
593
6b251fc9
AA
594 /* Deliver the page fault to userland */
595 if (userfaultfd_missing(vma)) {
2b740303 596 vm_fault_t ret2;
6b251fc9 597
82b0f8c3 598 spin_unlock(vmf->ptl);
f627c2f5 599 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 600 put_page(page);
bae473a4 601 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
602 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
603 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
604 return ret2;
6b251fc9
AA
605 }
606
3122359a 607 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 608 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 609 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 610 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 611 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
612 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
613 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 614 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 615 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 616 spin_unlock(vmf->ptl);
6b251fc9 617 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 618 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
619 }
620
aa2e878e 621 return 0;
6b31d595
MH
622unlock_release:
623 spin_unlock(vmf->ptl);
624release:
625 if (pgtable)
626 pte_free(vma->vm_mm, pgtable);
627 mem_cgroup_cancel_charge(page, memcg, true);
628 put_page(page);
629 return ret;
630
71e3aac0
AA
631}
632
444eb2a4 633/*
21440d7e
DR
634 * always: directly stall for all thp allocations
635 * defer: wake kswapd and fail if not immediately available
636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637 * fail if not immediately available
638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
639 * available
640 * never: never stall for any thp allocation
444eb2a4 641 */
356ff8a9 642static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 643{
21440d7e 644 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 645
2f0799a0 646 /* Always do synchronous compaction */
21440d7e 647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
356ff8a9 648 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
2f0799a0
DR
649
650 /* Kick kcompactd and fail quickly */
21440d7e 651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
356ff8a9 652 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
2f0799a0
DR
653
654 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
656 return GFP_TRANSHUGE_LIGHT |
657 (vma_madvised ? __GFP_DIRECT_RECLAIM :
658 __GFP_KSWAPD_RECLAIM);
2f0799a0
DR
659
660 /* Only do synchronous compaction if madvised */
21440d7e 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
356ff8a9
DR
662 return GFP_TRANSHUGE_LIGHT |
663 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
2f0799a0 664
356ff8a9 665 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
666}
667
c4088ebd 668/* Caller must hold page table lock. */
d295e341 669static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 671 struct page *zero_page)
fc9fe822
KS
672{
673 pmd_t entry;
7c414164
AM
674 if (!pmd_none(*pmd))
675 return false;
5918d10a 676 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 677 entry = pmd_mkhuge(entry);
12c9d70b
MW
678 if (pgtable)
679 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 680 set_pmd_at(mm, haddr, pmd, entry);
c4812909 681 mm_inc_nr_ptes(mm);
7c414164 682 return true;
fc9fe822
KS
683}
684
2b740303 685vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 686{
82b0f8c3 687 struct vm_area_struct *vma = vmf->vma;
077fcf11 688 gfp_t gfp;
71e3aac0 689 struct page *page;
82b0f8c3 690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 691
128ec037 692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 693 return VM_FAULT_FALLBACK;
128ec037
KS
694 if (unlikely(anon_vma_prepare(vma)))
695 return VM_FAULT_OOM;
6d50e60c 696 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 697 return VM_FAULT_OOM;
82b0f8c3 698 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 699 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
700 transparent_hugepage_use_zero_page()) {
701 pgtable_t pgtable;
702 struct page *zero_page;
703 bool set;
2b740303 704 vm_fault_t ret;
4cf58924 705 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 706 if (unlikely(!pgtable))
ba76149f 707 return VM_FAULT_OOM;
6fcb52a5 708 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 709 if (unlikely(!zero_page)) {
bae473a4 710 pte_free(vma->vm_mm, pgtable);
81ab4201 711 count_vm_event(THP_FAULT_FALLBACK);
c0292554 712 return VM_FAULT_FALLBACK;
b9bbfbe3 713 }
82b0f8c3 714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
715 ret = 0;
716 set = false;
82b0f8c3 717 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
718 ret = check_stable_address_space(vma->vm_mm);
719 if (ret) {
720 spin_unlock(vmf->ptl);
721 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
722 spin_unlock(vmf->ptl);
723 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
724 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 } else {
bae473a4 726 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
727 haddr, vmf->pmd, zero_page);
728 spin_unlock(vmf->ptl);
6b251fc9
AA
729 set = true;
730 }
731 } else
82b0f8c3 732 spin_unlock(vmf->ptl);
6fcb52a5 733 if (!set)
bae473a4 734 pte_free(vma->vm_mm, pgtable);
6b251fc9 735 return ret;
71e3aac0 736 }
356ff8a9
DR
737 gfp = alloc_hugepage_direct_gfpmask(vma);
738 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
739 if (unlikely(!page)) {
740 count_vm_event(THP_FAULT_FALLBACK);
c0292554 741 return VM_FAULT_FALLBACK;
128ec037 742 }
9a982250 743 prep_transhuge_page(page);
82b0f8c3 744 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
745}
746
ae18d6dc 747static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 pgtable_t pgtable)
5cad465d
MW
750{
751 struct mm_struct *mm = vma->vm_mm;
752 pmd_t entry;
753 spinlock_t *ptl;
754
755 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
756 if (!pmd_none(*pmd)) {
757 if (write) {
758 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
759 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
760 goto out_unlock;
761 }
762 entry = pmd_mkyoung(*pmd);
763 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
764 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
765 update_mmu_cache_pmd(vma, addr, pmd);
766 }
767
768 goto out_unlock;
769 }
770
f25748e3
DW
771 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
772 if (pfn_t_devmap(pfn))
773 entry = pmd_mkdevmap(entry);
01871e59 774 if (write) {
f55e1014
LT
775 entry = pmd_mkyoung(pmd_mkdirty(entry));
776 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 777 }
3b6521f5
OH
778
779 if (pgtable) {
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 781 mm_inc_nr_ptes(mm);
c6f3c5ee 782 pgtable = NULL;
3b6521f5
OH
783 }
784
01871e59
RZ
785 set_pmd_at(mm, addr, pmd, entry);
786 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
787
788out_unlock:
5cad465d 789 spin_unlock(ptl);
c6f3c5ee
AK
790 if (pgtable)
791 pte_free(mm, pgtable);
5cad465d
MW
792}
793
fce86ff5 794vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 795{
fce86ff5
DW
796 unsigned long addr = vmf->address & PMD_MASK;
797 struct vm_area_struct *vma = vmf->vma;
5cad465d 798 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 799 pgtable_t pgtable = NULL;
fce86ff5 800
5cad465d
MW
801 /*
802 * If we had pmd_special, we could avoid all these restrictions,
803 * but we need to be consistent with PTEs and architectures that
804 * can't support a 'special' bit.
805 */
e1fb4a08
DJ
806 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
807 !pfn_t_devmap(pfn));
5cad465d
MW
808 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
809 (VM_PFNMAP|VM_MIXEDMAP));
810 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
811
812 if (addr < vma->vm_start || addr >= vma->vm_end)
813 return VM_FAULT_SIGBUS;
308a047c 814
3b6521f5 815 if (arch_needs_pgtable_deposit()) {
4cf58924 816 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
817 if (!pgtable)
818 return VM_FAULT_OOM;
819 }
820
308a047c
BP
821 track_pfn_insert(vma, &pgprot, pfn);
822
fce86ff5 823 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 824 return VM_FAULT_NOPAGE;
5cad465d 825}
dee41079 826EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 827
a00cc7d9 828#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 829static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 830{
f55e1014 831 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
832 pud = pud_mkwrite(pud);
833 return pud;
834}
835
836static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
837 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
838{
839 struct mm_struct *mm = vma->vm_mm;
840 pud_t entry;
841 spinlock_t *ptl;
842
843 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
844 if (!pud_none(*pud)) {
845 if (write) {
846 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
847 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
848 goto out_unlock;
849 }
850 entry = pud_mkyoung(*pud);
851 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
852 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
853 update_mmu_cache_pud(vma, addr, pud);
854 }
855 goto out_unlock;
856 }
857
a00cc7d9
MW
858 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
859 if (pfn_t_devmap(pfn))
860 entry = pud_mkdevmap(entry);
861 if (write) {
f55e1014
LT
862 entry = pud_mkyoung(pud_mkdirty(entry));
863 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
864 }
865 set_pud_at(mm, addr, pud, entry);
866 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
867
868out_unlock:
a00cc7d9
MW
869 spin_unlock(ptl);
870}
871
fce86ff5 872vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 873{
fce86ff5
DW
874 unsigned long addr = vmf->address & PUD_MASK;
875 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 876 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 877
a00cc7d9
MW
878 /*
879 * If we had pud_special, we could avoid all these restrictions,
880 * but we need to be consistent with PTEs and architectures that
881 * can't support a 'special' bit.
882 */
62ec0d8c
DJ
883 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
884 !pfn_t_devmap(pfn));
a00cc7d9
MW
885 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
886 (VM_PFNMAP|VM_MIXEDMAP));
887 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
888
889 if (addr < vma->vm_start || addr >= vma->vm_end)
890 return VM_FAULT_SIGBUS;
891
892 track_pfn_insert(vma, &pgprot, pfn);
893
fce86ff5 894 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
895 return VM_FAULT_NOPAGE;
896}
897EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
898#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
899
3565fce3 900static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 901 pmd_t *pmd, int flags)
3565fce3
DW
902{
903 pmd_t _pmd;
904
a8f97366
KS
905 _pmd = pmd_mkyoung(*pmd);
906 if (flags & FOLL_WRITE)
907 _pmd = pmd_mkdirty(_pmd);
3565fce3 908 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 909 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
910 update_mmu_cache_pmd(vma, addr, pmd);
911}
912
913struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 914 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
915{
916 unsigned long pfn = pmd_pfn(*pmd);
917 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
918 struct page *page;
919
920 assert_spin_locked(pmd_lockptr(mm, pmd));
921
8310d48b
KF
922 /*
923 * When we COW a devmap PMD entry, we split it into PTEs, so we should
924 * not be in this function with `flags & FOLL_COW` set.
925 */
926 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
927
f6f37321 928 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
929 return NULL;
930
931 if (pmd_present(*pmd) && pmd_devmap(*pmd))
932 /* pass */;
933 else
934 return NULL;
935
936 if (flags & FOLL_TOUCH)
a8f97366 937 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
938
939 /*
940 * device mapped pages can only be returned if the
941 * caller will manage the page reference count.
942 */
943 if (!(flags & FOLL_GET))
944 return ERR_PTR(-EEXIST);
945
946 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
947 *pgmap = get_dev_pagemap(pfn, *pgmap);
948 if (!*pgmap)
3565fce3
DW
949 return ERR_PTR(-EFAULT);
950 page = pfn_to_page(pfn);
951 get_page(page);
3565fce3
DW
952
953 return page;
954}
955
71e3aac0
AA
956int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
957 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
958 struct vm_area_struct *vma)
959{
c4088ebd 960 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
961 struct page *src_page;
962 pmd_t pmd;
12c9d70b 963 pgtable_t pgtable = NULL;
628d47ce 964 int ret = -ENOMEM;
71e3aac0 965
628d47ce
KS
966 /* Skip if can be re-fill on fault */
967 if (!vma_is_anonymous(vma))
968 return 0;
969
4cf58924 970 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
971 if (unlikely(!pgtable))
972 goto out;
71e3aac0 973
c4088ebd
KS
974 dst_ptl = pmd_lock(dst_mm, dst_pmd);
975 src_ptl = pmd_lockptr(src_mm, src_pmd);
976 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
977
978 ret = -EAGAIN;
979 pmd = *src_pmd;
84c3fc4e
ZY
980
981#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
982 if (unlikely(is_swap_pmd(pmd))) {
983 swp_entry_t entry = pmd_to_swp_entry(pmd);
984
985 VM_BUG_ON(!is_pmd_migration_entry(pmd));
986 if (is_write_migration_entry(entry)) {
987 make_migration_entry_read(&entry);
988 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
989 if (pmd_swp_soft_dirty(*src_pmd))
990 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
991 set_pmd_at(src_mm, addr, src_pmd, pmd);
992 }
dd8a67f9 993 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 994 mm_inc_nr_ptes(dst_mm);
dd8a67f9 995 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
996 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
997 ret = 0;
998 goto out_unlock;
999 }
1000#endif
1001
628d47ce 1002 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1003 pte_free(dst_mm, pgtable);
1004 goto out_unlock;
1005 }
fc9fe822 1006 /*
c4088ebd 1007 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1008 * under splitting since we don't split the page itself, only pmd to
1009 * a page table.
1010 */
1011 if (is_huge_zero_pmd(pmd)) {
5918d10a 1012 struct page *zero_page;
97ae1749
KS
1013 /*
1014 * get_huge_zero_page() will never allocate a new page here,
1015 * since we already have a zero page to copy. It just takes a
1016 * reference.
1017 */
6fcb52a5 1018 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1019 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1020 zero_page);
fc9fe822
KS
1021 ret = 0;
1022 goto out_unlock;
1023 }
de466bd6 1024
628d47ce
KS
1025 src_page = pmd_page(pmd);
1026 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1027 get_page(src_page);
1028 page_dup_rmap(src_page, true);
1029 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1030 mm_inc_nr_ptes(dst_mm);
628d47ce 1031 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1032
1033 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1034 pmd = pmd_mkold(pmd_wrprotect(pmd));
1035 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1036
1037 ret = 0;
1038out_unlock:
c4088ebd
KS
1039 spin_unlock(src_ptl);
1040 spin_unlock(dst_ptl);
71e3aac0
AA
1041out:
1042 return ret;
1043}
1044
a00cc7d9
MW
1045#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1046static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1047 pud_t *pud, int flags)
a00cc7d9
MW
1048{
1049 pud_t _pud;
1050
a8f97366
KS
1051 _pud = pud_mkyoung(*pud);
1052 if (flags & FOLL_WRITE)
1053 _pud = pud_mkdirty(_pud);
a00cc7d9 1054 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1055 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1056 update_mmu_cache_pud(vma, addr, pud);
1057}
1058
1059struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1060 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1061{
1062 unsigned long pfn = pud_pfn(*pud);
1063 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1064 struct page *page;
1065
1066 assert_spin_locked(pud_lockptr(mm, pud));
1067
f6f37321 1068 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1069 return NULL;
1070
1071 if (pud_present(*pud) && pud_devmap(*pud))
1072 /* pass */;
1073 else
1074 return NULL;
1075
1076 if (flags & FOLL_TOUCH)
a8f97366 1077 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1078
1079 /*
1080 * device mapped pages can only be returned if the
1081 * caller will manage the page reference count.
1082 */
1083 if (!(flags & FOLL_GET))
1084 return ERR_PTR(-EEXIST);
1085
1086 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1087 *pgmap = get_dev_pagemap(pfn, *pgmap);
1088 if (!*pgmap)
a00cc7d9
MW
1089 return ERR_PTR(-EFAULT);
1090 page = pfn_to_page(pfn);
1091 get_page(page);
a00cc7d9
MW
1092
1093 return page;
1094}
1095
1096int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1097 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1098 struct vm_area_struct *vma)
1099{
1100 spinlock_t *dst_ptl, *src_ptl;
1101 pud_t pud;
1102 int ret;
1103
1104 dst_ptl = pud_lock(dst_mm, dst_pud);
1105 src_ptl = pud_lockptr(src_mm, src_pud);
1106 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1107
1108 ret = -EAGAIN;
1109 pud = *src_pud;
1110 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1111 goto out_unlock;
1112
1113 /*
1114 * When page table lock is held, the huge zero pud should not be
1115 * under splitting since we don't split the page itself, only pud to
1116 * a page table.
1117 */
1118 if (is_huge_zero_pud(pud)) {
1119 /* No huge zero pud yet */
1120 }
1121
1122 pudp_set_wrprotect(src_mm, addr, src_pud);
1123 pud = pud_mkold(pud_wrprotect(pud));
1124 set_pud_at(dst_mm, addr, dst_pud, pud);
1125
1126 ret = 0;
1127out_unlock:
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
1130 return ret;
1131}
1132
1133void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1134{
1135 pud_t entry;
1136 unsigned long haddr;
1137 bool write = vmf->flags & FAULT_FLAG_WRITE;
1138
1139 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1140 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1141 goto unlock;
1142
1143 entry = pud_mkyoung(orig_pud);
1144 if (write)
1145 entry = pud_mkdirty(entry);
1146 haddr = vmf->address & HPAGE_PUD_MASK;
1147 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1148 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1149
1150unlock:
1151 spin_unlock(vmf->ptl);
1152}
1153#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1154
82b0f8c3 1155void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1156{
1157 pmd_t entry;
1158 unsigned long haddr;
20f664aa 1159 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1160
82b0f8c3
JK
1161 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1162 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1163 goto unlock;
1164
1165 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1166 if (write)
1167 entry = pmd_mkdirty(entry);
82b0f8c3 1168 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1169 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1170 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1171
1172unlock:
82b0f8c3 1173 spin_unlock(vmf->ptl);
a1dd450b
WD
1174}
1175
2b740303
SJ
1176static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1177 pmd_t orig_pmd, struct page *page)
71e3aac0 1178{
82b0f8c3
JK
1179 struct vm_area_struct *vma = vmf->vma;
1180 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1181 struct mem_cgroup *memcg;
71e3aac0
AA
1182 pgtable_t pgtable;
1183 pmd_t _pmd;
2b740303
SJ
1184 int i;
1185 vm_fault_t ret = 0;
71e3aac0 1186 struct page **pages;
ac46d4f3 1187 struct mmu_notifier_range range;
71e3aac0 1188
6da2ec56
KC
1189 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1190 GFP_KERNEL);
71e3aac0
AA
1191 if (unlikely(!pages)) {
1192 ret |= VM_FAULT_OOM;
1193 goto out;
1194 }
1195
1196 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1197 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1198 vmf->address, page_to_nid(page));
b9bbfbe3 1199 if (unlikely(!pages[i] ||
2cf85583 1200 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1201 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1202 if (pages[i])
71e3aac0 1203 put_page(pages[i]);
b9bbfbe3 1204 while (--i >= 0) {
00501b53
JW
1205 memcg = (void *)page_private(pages[i]);
1206 set_page_private(pages[i], 0);
f627c2f5
KS
1207 mem_cgroup_cancel_charge(pages[i], memcg,
1208 false);
b9bbfbe3
AA
1209 put_page(pages[i]);
1210 }
71e3aac0
AA
1211 kfree(pages);
1212 ret |= VM_FAULT_OOM;
1213 goto out;
1214 }
00501b53 1215 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1216 }
1217
1218 for (i = 0; i < HPAGE_PMD_NR; i++) {
1219 copy_user_highpage(pages[i], page + i,
0089e485 1220 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1221 __SetPageUptodate(pages[i]);
1222 cond_resched();
1223 }
1224
7269f999
JG
1225 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1226 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1227 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1228
82b0f8c3
JK
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1231 goto out_free_pages;
309381fe 1232 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1233
0f10851e
JG
1234 /*
1235 * Leave pmd empty until pte is filled note we must notify here as
1236 * concurrent CPU thread might write to new page before the call to
1237 * mmu_notifier_invalidate_range_end() happens which can lead to a
1238 * device seeing memory write in different order than CPU.
1239 *
ad56b738 1240 * See Documentation/vm/mmu_notifier.rst
0f10851e 1241 */
82b0f8c3 1242 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1243
82b0f8c3 1244 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1245 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1246
1247 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1248 pte_t entry;
71e3aac0
AA
1249 entry = mk_pte(pages[i], vma->vm_page_prot);
1250 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1251 memcg = (void *)page_private(pages[i]);
1252 set_page_private(pages[i], 0);
82b0f8c3 1253 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1254 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1255 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1256 vmf->pte = pte_offset_map(&_pmd, haddr);
1257 VM_BUG_ON(!pte_none(*vmf->pte));
1258 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1259 pte_unmap(vmf->pte);
71e3aac0
AA
1260 }
1261 kfree(pages);
1262
71e3aac0 1263 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1264 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1265 page_remove_rmap(page, true);
82b0f8c3 1266 spin_unlock(vmf->ptl);
71e3aac0 1267
4645b9fe
JG
1268 /*
1269 * No need to double call mmu_notifier->invalidate_range() callback as
1270 * the above pmdp_huge_clear_flush_notify() did already call it.
1271 */
ac46d4f3 1272 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1273
71e3aac0
AA
1274 ret |= VM_FAULT_WRITE;
1275 put_page(page);
1276
1277out:
1278 return ret;
1279
1280out_free_pages:
82b0f8c3 1281 spin_unlock(vmf->ptl);
ac46d4f3 1282 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1283 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
f627c2f5 1286 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1287 put_page(pages[i]);
b9bbfbe3 1288 }
71e3aac0
AA
1289 kfree(pages);
1290 goto out;
1291}
1292
2b740303 1293vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1294{
82b0f8c3 1295 struct vm_area_struct *vma = vmf->vma;
93b4796d 1296 struct page *page = NULL, *new_page;
00501b53 1297 struct mem_cgroup *memcg;
82b0f8c3 1298 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1299 struct mmu_notifier_range range;
3b363692 1300 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1301 vm_fault_t ret = 0;
71e3aac0 1302
82b0f8c3 1303 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1304 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1305 if (is_huge_zero_pmd(orig_pmd))
1306 goto alloc;
82b0f8c3
JK
1307 spin_lock(vmf->ptl);
1308 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1309 goto out_unlock;
1310
1311 page = pmd_page(orig_pmd);
309381fe 1312 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1313 /*
1314 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1315 * part.
1f25fe20 1316 */
ba3c4ce6
HY
1317 if (!trylock_page(page)) {
1318 get_page(page);
1319 spin_unlock(vmf->ptl);
1320 lock_page(page);
1321 spin_lock(vmf->ptl);
1322 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1323 unlock_page(page);
1324 put_page(page);
1325 goto out_unlock;
1326 }
1327 put_page(page);
1328 }
1329 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1330 pmd_t entry;
1331 entry = pmd_mkyoung(orig_pmd);
f55e1014 1332 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1333 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1334 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1335 ret |= VM_FAULT_WRITE;
ba3c4ce6 1336 unlock_page(page);
71e3aac0
AA
1337 goto out_unlock;
1338 }
ba3c4ce6 1339 unlock_page(page);
ddc58f27 1340 get_page(page);
82b0f8c3 1341 spin_unlock(vmf->ptl);
93b4796d 1342alloc:
7635d9cb 1343 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1344 !transparent_hugepage_debug_cow()) {
356ff8a9
DR
1345 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1346 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1347 } else
71e3aac0
AA
1348 new_page = NULL;
1349
9a982250
KS
1350 if (likely(new_page)) {
1351 prep_transhuge_page(new_page);
1352 } else {
eecc1e42 1353 if (!page) {
82b0f8c3 1354 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1355 ret |= VM_FAULT_FALLBACK;
93b4796d 1356 } else {
82b0f8c3 1357 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1358 if (ret & VM_FAULT_OOM) {
82b0f8c3 1359 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1360 ret |= VM_FAULT_FALLBACK;
1361 }
ddc58f27 1362 put_page(page);
93b4796d 1363 }
17766dde 1364 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1365 goto out;
1366 }
1367
2cf85583 1368 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1369 huge_gfp, &memcg, true))) {
b9bbfbe3 1370 put_page(new_page);
82b0f8c3 1371 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1372 if (page)
ddc58f27 1373 put_page(page);
9845cbbd 1374 ret |= VM_FAULT_FALLBACK;
17766dde 1375 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1376 goto out;
1377 }
1378
17766dde 1379 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1380 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1381
eecc1e42 1382 if (!page)
c79b57e4 1383 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1384 else
c9f4cd71
HY
1385 copy_user_huge_page(new_page, page, vmf->address,
1386 vma, HPAGE_PMD_NR);
71e3aac0
AA
1387 __SetPageUptodate(new_page);
1388
7269f999
JG
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1391 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1392
82b0f8c3 1393 spin_lock(vmf->ptl);
93b4796d 1394 if (page)
ddc58f27 1395 put_page(page);
82b0f8c3
JK
1396 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1397 spin_unlock(vmf->ptl);
f627c2f5 1398 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1399 put_page(new_page);
2ec74c3e 1400 goto out_mn;
b9bbfbe3 1401 } else {
71e3aac0 1402 pmd_t entry;
3122359a 1403 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1404 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1405 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1406 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1407 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1408 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1409 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1410 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1411 if (!page) {
bae473a4 1412 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1413 } else {
309381fe 1414 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1415 page_remove_rmap(page, true);
93b4796d
KS
1416 put_page(page);
1417 }
71e3aac0
AA
1418 ret |= VM_FAULT_WRITE;
1419 }
82b0f8c3 1420 spin_unlock(vmf->ptl);
2ec74c3e 1421out_mn:
4645b9fe
JG
1422 /*
1423 * No need to double call mmu_notifier->invalidate_range() callback as
1424 * the above pmdp_huge_clear_flush_notify() did already call it.
1425 */
ac46d4f3 1426 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1427out:
1428 return ret;
2ec74c3e 1429out_unlock:
82b0f8c3 1430 spin_unlock(vmf->ptl);
2ec74c3e 1431 return ret;
71e3aac0
AA
1432}
1433
8310d48b
KF
1434/*
1435 * FOLL_FORCE can write to even unwritable pmd's, but only
1436 * after we've gone through a COW cycle and they are dirty.
1437 */
1438static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1439{
f6f37321 1440 return pmd_write(pmd) ||
8310d48b
KF
1441 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1442}
1443
b676b293 1444struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1445 unsigned long addr,
1446 pmd_t *pmd,
1447 unsigned int flags)
1448{
b676b293 1449 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1450 struct page *page = NULL;
1451
c4088ebd 1452 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1453
8310d48b 1454 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1455 goto out;
1456
85facf25
KS
1457 /* Avoid dumping huge zero page */
1458 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1459 return ERR_PTR(-EFAULT);
1460
2b4847e7 1461 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1462 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1463 goto out;
1464
71e3aac0 1465 page = pmd_page(*pmd);
ca120cf6 1466 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1467 if (flags & FOLL_TOUCH)
a8f97366 1468 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1469 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1470 /*
1471 * We don't mlock() pte-mapped THPs. This way we can avoid
1472 * leaking mlocked pages into non-VM_LOCKED VMAs.
1473 *
9a73f61b
KS
1474 * For anon THP:
1475 *
e90309c9
KS
1476 * In most cases the pmd is the only mapping of the page as we
1477 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1478 * writable private mappings in populate_vma_page_range().
1479 *
1480 * The only scenario when we have the page shared here is if we
1481 * mlocking read-only mapping shared over fork(). We skip
1482 * mlocking such pages.
9a73f61b
KS
1483 *
1484 * For file THP:
1485 *
1486 * We can expect PageDoubleMap() to be stable under page lock:
1487 * for file pages we set it in page_add_file_rmap(), which
1488 * requires page to be locked.
e90309c9 1489 */
9a73f61b
KS
1490
1491 if (PageAnon(page) && compound_mapcount(page) != 1)
1492 goto skip_mlock;
1493 if (PageDoubleMap(page) || !page->mapping)
1494 goto skip_mlock;
1495 if (!trylock_page(page))
1496 goto skip_mlock;
1497 lru_add_drain();
1498 if (page->mapping && !PageDoubleMap(page))
1499 mlock_vma_page(page);
1500 unlock_page(page);
b676b293 1501 }
9a73f61b 1502skip_mlock:
71e3aac0 1503 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1504 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1505 if (flags & FOLL_GET)
ddc58f27 1506 get_page(page);
71e3aac0
AA
1507
1508out:
1509 return page;
1510}
1511
d10e63f2 1512/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1513vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1514{
82b0f8c3 1515 struct vm_area_struct *vma = vmf->vma;
b8916634 1516 struct anon_vma *anon_vma = NULL;
b32967ff 1517 struct page *page;
82b0f8c3 1518 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1519 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1520 int target_nid, last_cpupid = -1;
8191acbd
MG
1521 bool page_locked;
1522 bool migrated = false;
b191f9b1 1523 bool was_writable;
6688cc05 1524 int flags = 0;
d10e63f2 1525
82b0f8c3
JK
1526 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1527 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1528 goto out_unlock;
1529
de466bd6
MG
1530 /*
1531 * If there are potential migrations, wait for completion and retry
1532 * without disrupting NUMA hinting information. Do not relock and
1533 * check_same as the page may no longer be mapped.
1534 */
82b0f8c3
JK
1535 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1536 page = pmd_page(*vmf->pmd);
3c226c63
MR
1537 if (!get_page_unless_zero(page))
1538 goto out_unlock;
82b0f8c3 1539 spin_unlock(vmf->ptl);
9a1ea439 1540 put_and_wait_on_page_locked(page);
de466bd6
MG
1541 goto out;
1542 }
1543
d10e63f2 1544 page = pmd_page(pmd);
a1a46184 1545 BUG_ON(is_huge_zero_page(page));
8191acbd 1546 page_nid = page_to_nid(page);
90572890 1547 last_cpupid = page_cpupid_last(page);
03c5a6e1 1548 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1549 if (page_nid == this_nid) {
03c5a6e1 1550 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1551 flags |= TNF_FAULT_LOCAL;
1552 }
4daae3b4 1553
bea66fbd 1554 /* See similar comment in do_numa_page for explanation */
288bc549 1555 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1556 flags |= TNF_NO_GROUP;
1557
ff9042b1
MG
1558 /*
1559 * Acquire the page lock to serialise THP migrations but avoid dropping
1560 * page_table_lock if at all possible
1561 */
b8916634
MG
1562 page_locked = trylock_page(page);
1563 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1564 if (target_nid == NUMA_NO_NODE) {
b8916634 1565 /* If the page was locked, there are no parallel migrations */
a54a407f 1566 if (page_locked)
b8916634 1567 goto clear_pmdnuma;
2b4847e7 1568 }
4daae3b4 1569
de466bd6 1570 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1571 if (!page_locked) {
98fa15f3 1572 page_nid = NUMA_NO_NODE;
3c226c63
MR
1573 if (!get_page_unless_zero(page))
1574 goto out_unlock;
82b0f8c3 1575 spin_unlock(vmf->ptl);
9a1ea439 1576 put_and_wait_on_page_locked(page);
b8916634
MG
1577 goto out;
1578 }
1579
2b4847e7
MG
1580 /*
1581 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1582 * to serialises splits
1583 */
b8916634 1584 get_page(page);
82b0f8c3 1585 spin_unlock(vmf->ptl);
b8916634 1586 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1587
c69307d5 1588 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1589 spin_lock(vmf->ptl);
1590 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1591 unlock_page(page);
1592 put_page(page);
98fa15f3 1593 page_nid = NUMA_NO_NODE;
4daae3b4 1594 goto out_unlock;
b32967ff 1595 }
ff9042b1 1596
c3a489ca
MG
1597 /* Bail if we fail to protect against THP splits for any reason */
1598 if (unlikely(!anon_vma)) {
1599 put_page(page);
98fa15f3 1600 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1601 goto clear_pmdnuma;
1602 }
1603
8b1b436d
PZ
1604 /*
1605 * Since we took the NUMA fault, we must have observed the !accessible
1606 * bit. Make sure all other CPUs agree with that, to avoid them
1607 * modifying the page we're about to migrate.
1608 *
1609 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1610 * inc_tlb_flush_pending().
1611 *
1612 * We are not sure a pending tlb flush here is for a huge page
1613 * mapping or not. Hence use the tlb range variant
8b1b436d 1614 */
7066f0f9 1615 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1616 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1617 /*
1618 * change_huge_pmd() released the pmd lock before
1619 * invalidating the secondary MMUs sharing the primary
1620 * MMU pagetables (with ->invalidate_range()). The
1621 * mmu_notifier_invalidate_range_end() (which
1622 * internally calls ->invalidate_range()) in
1623 * change_pmd_range() will run after us, so we can't
1624 * rely on it here and we need an explicit invalidate.
1625 */
1626 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1627 haddr + HPAGE_PMD_SIZE);
1628 }
8b1b436d 1629
a54a407f
MG
1630 /*
1631 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1632 * and access rights restored.
a54a407f 1633 */
82b0f8c3 1634 spin_unlock(vmf->ptl);
8b1b436d 1635
bae473a4 1636 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1637 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1638 if (migrated) {
1639 flags |= TNF_MIGRATED;
8191acbd 1640 page_nid = target_nid;
074c2381
MG
1641 } else
1642 flags |= TNF_MIGRATE_FAIL;
b32967ff 1643
8191acbd 1644 goto out;
b32967ff 1645clear_pmdnuma:
a54a407f 1646 BUG_ON(!PageLocked(page));
288bc549 1647 was_writable = pmd_savedwrite(pmd);
4d942466 1648 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1649 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1650 if (was_writable)
1651 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1652 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1653 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1654 unlock_page(page);
d10e63f2 1655out_unlock:
82b0f8c3 1656 spin_unlock(vmf->ptl);
b8916634
MG
1657
1658out:
1659 if (anon_vma)
1660 page_unlock_anon_vma_read(anon_vma);
1661
98fa15f3 1662 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1663 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1664 flags);
8191acbd 1665
d10e63f2
MG
1666 return 0;
1667}
1668
319904ad
HY
1669/*
1670 * Return true if we do MADV_FREE successfully on entire pmd page.
1671 * Otherwise, return false.
1672 */
1673bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1674 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1675{
1676 spinlock_t *ptl;
1677 pmd_t orig_pmd;
1678 struct page *page;
1679 struct mm_struct *mm = tlb->mm;
319904ad 1680 bool ret = false;
b8d3c4c3 1681
ed6a7935 1682 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1683
b6ec57f4
KS
1684 ptl = pmd_trans_huge_lock(pmd, vma);
1685 if (!ptl)
25eedabe 1686 goto out_unlocked;
b8d3c4c3
MK
1687
1688 orig_pmd = *pmd;
319904ad 1689 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1690 goto out;
b8d3c4c3 1691
84c3fc4e
ZY
1692 if (unlikely(!pmd_present(orig_pmd))) {
1693 VM_BUG_ON(thp_migration_supported() &&
1694 !is_pmd_migration_entry(orig_pmd));
1695 goto out;
1696 }
1697
b8d3c4c3
MK
1698 page = pmd_page(orig_pmd);
1699 /*
1700 * If other processes are mapping this page, we couldn't discard
1701 * the page unless they all do MADV_FREE so let's skip the page.
1702 */
1703 if (page_mapcount(page) != 1)
1704 goto out;
1705
1706 if (!trylock_page(page))
1707 goto out;
1708
1709 /*
1710 * If user want to discard part-pages of THP, split it so MADV_FREE
1711 * will deactivate only them.
1712 */
1713 if (next - addr != HPAGE_PMD_SIZE) {
1714 get_page(page);
1715 spin_unlock(ptl);
9818b8cd 1716 split_huge_page(page);
b8d3c4c3 1717 unlock_page(page);
bbf29ffc 1718 put_page(page);
b8d3c4c3
MK
1719 goto out_unlocked;
1720 }
1721
1722 if (PageDirty(page))
1723 ClearPageDirty(page);
1724 unlock_page(page);
1725
b8d3c4c3 1726 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1727 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1728 orig_pmd = pmd_mkold(orig_pmd);
1729 orig_pmd = pmd_mkclean(orig_pmd);
1730
1731 set_pmd_at(mm, addr, pmd, orig_pmd);
1732 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1733 }
802a3a92
SL
1734
1735 mark_page_lazyfree(page);
319904ad 1736 ret = true;
b8d3c4c3
MK
1737out:
1738 spin_unlock(ptl);
1739out_unlocked:
1740 return ret;
1741}
1742
953c66c2
AK
1743static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1744{
1745 pgtable_t pgtable;
1746
1747 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1748 pte_free(mm, pgtable);
c4812909 1749 mm_dec_nr_ptes(mm);
953c66c2
AK
1750}
1751
71e3aac0 1752int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1753 pmd_t *pmd, unsigned long addr)
71e3aac0 1754{
da146769 1755 pmd_t orig_pmd;
bf929152 1756 spinlock_t *ptl;
71e3aac0 1757
ed6a7935 1758 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1759
b6ec57f4
KS
1760 ptl = __pmd_trans_huge_lock(pmd, vma);
1761 if (!ptl)
da146769
KS
1762 return 0;
1763 /*
1764 * For architectures like ppc64 we look at deposited pgtable
1765 * when calling pmdp_huge_get_and_clear. So do the
1766 * pgtable_trans_huge_withdraw after finishing pmdp related
1767 * operations.
1768 */
1769 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1770 tlb->fullmm);
1771 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1772 if (vma_is_dax(vma)) {
3b6521f5
OH
1773 if (arch_needs_pgtable_deposit())
1774 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1775 spin_unlock(ptl);
1776 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1777 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1778 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1779 zap_deposited_table(tlb->mm, pmd);
da146769 1780 spin_unlock(ptl);
c0f2e176 1781 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1782 } else {
616b8371
ZY
1783 struct page *page = NULL;
1784 int flush_needed = 1;
1785
1786 if (pmd_present(orig_pmd)) {
1787 page = pmd_page(orig_pmd);
1788 page_remove_rmap(page, true);
1789 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1790 VM_BUG_ON_PAGE(!PageHead(page), page);
1791 } else if (thp_migration_supported()) {
1792 swp_entry_t entry;
1793
1794 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1795 entry = pmd_to_swp_entry(orig_pmd);
1796 page = pfn_to_page(swp_offset(entry));
1797 flush_needed = 0;
1798 } else
1799 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1800
b5072380 1801 if (PageAnon(page)) {
c14a6eb4 1802 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1803 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1804 } else {
953c66c2
AK
1805 if (arch_needs_pgtable_deposit())
1806 zap_deposited_table(tlb->mm, pmd);
fadae295 1807 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1808 }
616b8371 1809
da146769 1810 spin_unlock(ptl);
616b8371
ZY
1811 if (flush_needed)
1812 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1813 }
da146769 1814 return 1;
71e3aac0
AA
1815}
1816
1dd38b6c
AK
1817#ifndef pmd_move_must_withdraw
1818static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1819 spinlock_t *old_pmd_ptl,
1820 struct vm_area_struct *vma)
1821{
1822 /*
1823 * With split pmd lock we also need to move preallocated
1824 * PTE page table if new_pmd is on different PMD page table.
1825 *
1826 * We also don't deposit and withdraw tables for file pages.
1827 */
1828 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1829}
1830#endif
1831
ab6e3d09
NH
1832static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1833{
1834#ifdef CONFIG_MEM_SOFT_DIRTY
1835 if (unlikely(is_pmd_migration_entry(pmd)))
1836 pmd = pmd_swp_mksoft_dirty(pmd);
1837 else if (pmd_present(pmd))
1838 pmd = pmd_mksoft_dirty(pmd);
1839#endif
1840 return pmd;
1841}
1842
bf8616d5 1843bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1844 unsigned long new_addr, unsigned long old_end,
eb66ae03 1845 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1846{
bf929152 1847 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1848 pmd_t pmd;
37a1c49a 1849 struct mm_struct *mm = vma->vm_mm;
5d190420 1850 bool force_flush = false;
37a1c49a
AA
1851
1852 if ((old_addr & ~HPAGE_PMD_MASK) ||
1853 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1854 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1855 return false;
37a1c49a
AA
1856
1857 /*
1858 * The destination pmd shouldn't be established, free_pgtables()
1859 * should have release it.
1860 */
1861 if (WARN_ON(!pmd_none(*new_pmd))) {
1862 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1863 return false;
37a1c49a
AA
1864 }
1865
bf929152
KS
1866 /*
1867 * We don't have to worry about the ordering of src and dst
1868 * ptlocks because exclusive mmap_sem prevents deadlock.
1869 */
b6ec57f4
KS
1870 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1871 if (old_ptl) {
bf929152
KS
1872 new_ptl = pmd_lockptr(mm, new_pmd);
1873 if (new_ptl != old_ptl)
1874 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1875 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1876 if (pmd_present(pmd))
a2ce2666 1877 force_flush = true;
025c5b24 1878 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1879
1dd38b6c 1880 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1881 pgtable_t pgtable;
3592806c
KS
1882 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1883 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1884 }
ab6e3d09
NH
1885 pmd = move_soft_dirty_pmd(pmd);
1886 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1887 if (force_flush)
1888 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1889 if (new_ptl != old_ptl)
1890 spin_unlock(new_ptl);
bf929152 1891 spin_unlock(old_ptl);
4b471e88 1892 return true;
37a1c49a 1893 }
4b471e88 1894 return false;
37a1c49a
AA
1895}
1896
f123d74a
MG
1897/*
1898 * Returns
1899 * - 0 if PMD could not be locked
1900 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1901 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1902 */
cd7548ab 1903int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1904 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1905{
1906 struct mm_struct *mm = vma->vm_mm;
bf929152 1907 spinlock_t *ptl;
0a85e51d
KS
1908 pmd_t entry;
1909 bool preserve_write;
1910 int ret;
cd7548ab 1911
b6ec57f4 1912 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1913 if (!ptl)
1914 return 0;
e944fd67 1915
0a85e51d
KS
1916 preserve_write = prot_numa && pmd_write(*pmd);
1917 ret = 1;
e944fd67 1918
84c3fc4e
ZY
1919#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1920 if (is_swap_pmd(*pmd)) {
1921 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1922
1923 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1924 if (is_write_migration_entry(entry)) {
1925 pmd_t newpmd;
1926 /*
1927 * A protection check is difficult so
1928 * just be safe and disable write
1929 */
1930 make_migration_entry_read(&entry);
1931 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1932 if (pmd_swp_soft_dirty(*pmd))
1933 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1934 set_pmd_at(mm, addr, pmd, newpmd);
1935 }
1936 goto unlock;
1937 }
1938#endif
1939
0a85e51d
KS
1940 /*
1941 * Avoid trapping faults against the zero page. The read-only
1942 * data is likely to be read-cached on the local CPU and
1943 * local/remote hits to the zero page are not interesting.
1944 */
1945 if (prot_numa && is_huge_zero_pmd(*pmd))
1946 goto unlock;
025c5b24 1947
0a85e51d
KS
1948 if (prot_numa && pmd_protnone(*pmd))
1949 goto unlock;
1950
ced10803
KS
1951 /*
1952 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1953 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1954 * which is also under down_read(mmap_sem):
1955 *
1956 * CPU0: CPU1:
1957 * change_huge_pmd(prot_numa=1)
1958 * pmdp_huge_get_and_clear_notify()
1959 * madvise_dontneed()
1960 * zap_pmd_range()
1961 * pmd_trans_huge(*pmd) == 0 (without ptl)
1962 * // skip the pmd
1963 * set_pmd_at();
1964 * // pmd is re-established
1965 *
1966 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1967 * which may break userspace.
1968 *
1969 * pmdp_invalidate() is required to make sure we don't miss
1970 * dirty/young flags set by hardware.
1971 */
a3cf988f 1972 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1973
0a85e51d
KS
1974 entry = pmd_modify(entry, newprot);
1975 if (preserve_write)
1976 entry = pmd_mk_savedwrite(entry);
1977 ret = HPAGE_PMD_NR;
1978 set_pmd_at(mm, addr, pmd, entry);
1979 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1980unlock:
1981 spin_unlock(ptl);
025c5b24
NH
1982 return ret;
1983}
1984
1985/*
8f19b0c0 1986 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1987 *
8f19b0c0
HY
1988 * Note that if it returns page table lock pointer, this routine returns without
1989 * unlocking page table lock. So callers must unlock it.
025c5b24 1990 */
b6ec57f4 1991spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1992{
b6ec57f4
KS
1993 spinlock_t *ptl;
1994 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1995 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1996 pmd_devmap(*pmd)))
b6ec57f4
KS
1997 return ptl;
1998 spin_unlock(ptl);
1999 return NULL;
cd7548ab
JW
2000}
2001
a00cc7d9
MW
2002/*
2003 * Returns true if a given pud maps a thp, false otherwise.
2004 *
2005 * Note that if it returns true, this routine returns without unlocking page
2006 * table lock. So callers must unlock it.
2007 */
2008spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2009{
2010 spinlock_t *ptl;
2011
2012 ptl = pud_lock(vma->vm_mm, pud);
2013 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2014 return ptl;
2015 spin_unlock(ptl);
2016 return NULL;
2017}
2018
2019#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2020int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2021 pud_t *pud, unsigned long addr)
2022{
a00cc7d9
MW
2023 spinlock_t *ptl;
2024
2025 ptl = __pud_trans_huge_lock(pud, vma);
2026 if (!ptl)
2027 return 0;
2028 /*
2029 * For architectures like ppc64 we look at deposited pgtable
2030 * when calling pudp_huge_get_and_clear. So do the
2031 * pgtable_trans_huge_withdraw after finishing pudp related
2032 * operations.
2033 */
70516b93 2034 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2035 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2036 if (vma_is_dax(vma)) {
2037 spin_unlock(ptl);
2038 /* No zero page support yet */
2039 } else {
2040 /* No support for anonymous PUD pages yet */
2041 BUG();
2042 }
2043 return 1;
2044}
2045
2046static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2047 unsigned long haddr)
2048{
2049 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2050 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2051 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2052 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2053
ce9311cf 2054 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2055
2056 pudp_huge_clear_flush_notify(vma, haddr, pud);
2057}
2058
2059void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2060 unsigned long address)
2061{
2062 spinlock_t *ptl;
ac46d4f3 2063 struct mmu_notifier_range range;
a00cc7d9 2064
7269f999 2065 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2066 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2067 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2068 mmu_notifier_invalidate_range_start(&range);
2069 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2070 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2071 goto out;
ac46d4f3 2072 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2073
2074out:
2075 spin_unlock(ptl);
4645b9fe
JG
2076 /*
2077 * No need to double call mmu_notifier->invalidate_range() callback as
2078 * the above pudp_huge_clear_flush_notify() did already call it.
2079 */
ac46d4f3 2080 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2081}
2082#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2083
eef1b3ba
KS
2084static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2085 unsigned long haddr, pmd_t *pmd)
2086{
2087 struct mm_struct *mm = vma->vm_mm;
2088 pgtable_t pgtable;
2089 pmd_t _pmd;
2090 int i;
2091
0f10851e
JG
2092 /*
2093 * Leave pmd empty until pte is filled note that it is fine to delay
2094 * notification until mmu_notifier_invalidate_range_end() as we are
2095 * replacing a zero pmd write protected page with a zero pte write
2096 * protected page.
2097 *
ad56b738 2098 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2099 */
2100 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2101
2102 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2103 pmd_populate(mm, &_pmd, pgtable);
2104
2105 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2106 pte_t *pte, entry;
2107 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2108 entry = pte_mkspecial(entry);
2109 pte = pte_offset_map(&_pmd, haddr);
2110 VM_BUG_ON(!pte_none(*pte));
2111 set_pte_at(mm, haddr, pte, entry);
2112 pte_unmap(pte);
2113 }
2114 smp_wmb(); /* make pte visible before pmd */
2115 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2116}
2117
2118static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2119 unsigned long haddr, bool freeze)
eef1b3ba
KS
2120{
2121 struct mm_struct *mm = vma->vm_mm;
2122 struct page *page;
2123 pgtable_t pgtable;
423ac9af 2124 pmd_t old_pmd, _pmd;
a3cf988f 2125 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2126 unsigned long addr;
eef1b3ba
KS
2127 int i;
2128
2129 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2130 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2131 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2132 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2133 && !pmd_devmap(*pmd));
eef1b3ba
KS
2134
2135 count_vm_event(THP_SPLIT_PMD);
2136
d21b9e57
KS
2137 if (!vma_is_anonymous(vma)) {
2138 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2139 /*
2140 * We are going to unmap this huge page. So
2141 * just go ahead and zap it
2142 */
2143 if (arch_needs_pgtable_deposit())
2144 zap_deposited_table(mm, pmd);
d21b9e57
KS
2145 if (vma_is_dax(vma))
2146 return;
2147 page = pmd_page(_pmd);
e1f1b157
HD
2148 if (!PageDirty(page) && pmd_dirty(_pmd))
2149 set_page_dirty(page);
d21b9e57
KS
2150 if (!PageReferenced(page) && pmd_young(_pmd))
2151 SetPageReferenced(page);
2152 page_remove_rmap(page, true);
2153 put_page(page);
fadae295 2154 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba
KS
2155 return;
2156 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2157 /*
2158 * FIXME: Do we want to invalidate secondary mmu by calling
2159 * mmu_notifier_invalidate_range() see comments below inside
2160 * __split_huge_pmd() ?
2161 *
2162 * We are going from a zero huge page write protected to zero
2163 * small page also write protected so it does not seems useful
2164 * to invalidate secondary mmu at this time.
2165 */
eef1b3ba
KS
2166 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2167 }
2168
423ac9af
AK
2169 /*
2170 * Up to this point the pmd is present and huge and userland has the
2171 * whole access to the hugepage during the split (which happens in
2172 * place). If we overwrite the pmd with the not-huge version pointing
2173 * to the pte here (which of course we could if all CPUs were bug
2174 * free), userland could trigger a small page size TLB miss on the
2175 * small sized TLB while the hugepage TLB entry is still established in
2176 * the huge TLB. Some CPU doesn't like that.
2177 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2178 * 383 on page 93. Intel should be safe but is also warns that it's
2179 * only safe if the permission and cache attributes of the two entries
2180 * loaded in the two TLB is identical (which should be the case here).
2181 * But it is generally safer to never allow small and huge TLB entries
2182 * for the same virtual address to be loaded simultaneously. So instead
2183 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2184 * current pmd notpresent (atomically because here the pmd_trans_huge
2185 * must remain set at all times on the pmd until the split is complete
2186 * for this pmd), then we flush the SMP TLB and finally we write the
2187 * non-huge version of the pmd entry with pmd_populate.
2188 */
2189 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2190
423ac9af 2191 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2192 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2193 swp_entry_t entry;
2194
423ac9af 2195 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2196 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2197 write = is_write_migration_entry(entry);
2198 young = false;
2199 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2200 } else {
423ac9af 2201 page = pmd_page(old_pmd);
2e83ee1d
PX
2202 if (pmd_dirty(old_pmd))
2203 SetPageDirty(page);
2204 write = pmd_write(old_pmd);
2205 young = pmd_young(old_pmd);
2206 soft_dirty = pmd_soft_dirty(old_pmd);
2207 }
eef1b3ba 2208 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2209 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2210
423ac9af
AK
2211 /*
2212 * Withdraw the table only after we mark the pmd entry invalid.
2213 * This's critical for some architectures (Power).
2214 */
eef1b3ba
KS
2215 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2216 pmd_populate(mm, &_pmd, pgtable);
2217
2ac015e2 2218 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2219 pte_t entry, *pte;
2220 /*
2221 * Note that NUMA hinting access restrictions are not
2222 * transferred to avoid any possibility of altering
2223 * permissions across VMAs.
2224 */
84c3fc4e 2225 if (freeze || pmd_migration) {
ba988280
KS
2226 swp_entry_t swp_entry;
2227 swp_entry = make_migration_entry(page + i, write);
2228 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2229 if (soft_dirty)
2230 entry = pte_swp_mksoft_dirty(entry);
ba988280 2231 } else {
6d2329f8 2232 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2233 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2234 if (!write)
2235 entry = pte_wrprotect(entry);
2236 if (!young)
2237 entry = pte_mkold(entry);
804dd150
AA
2238 if (soft_dirty)
2239 entry = pte_mksoft_dirty(entry);
ba988280 2240 }
2ac015e2 2241 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2242 BUG_ON(!pte_none(*pte));
2ac015e2 2243 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2244 atomic_inc(&page[i]._mapcount);
2245 pte_unmap(pte);
2246 }
2247
2248 /*
2249 * Set PG_double_map before dropping compound_mapcount to avoid
2250 * false-negative page_mapped().
2251 */
2252 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2253 for (i = 0; i < HPAGE_PMD_NR; i++)
2254 atomic_inc(&page[i]._mapcount);
2255 }
2256
2257 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2258 /* Last compound_mapcount is gone. */
11fb9989 2259 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2260 if (TestClearPageDoubleMap(page)) {
2261 /* No need in mapcount reference anymore */
2262 for (i = 0; i < HPAGE_PMD_NR; i++)
2263 atomic_dec(&page[i]._mapcount);
2264 }
2265 }
2266
2267 smp_wmb(); /* make pte visible before pmd */
2268 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2269
2270 if (freeze) {
2ac015e2 2271 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2272 page_remove_rmap(page + i, false);
2273 put_page(page + i);
2274 }
2275 }
eef1b3ba
KS
2276}
2277
2278void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2279 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2280{
2281 spinlock_t *ptl;
ac46d4f3 2282 struct mmu_notifier_range range;
eef1b3ba 2283
7269f999 2284 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2285 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2286 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2287 mmu_notifier_invalidate_range_start(&range);
2288 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2289
2290 /*
2291 * If caller asks to setup a migration entries, we need a page to check
2292 * pmd against. Otherwise we can end up replacing wrong page.
2293 */
2294 VM_BUG_ON(freeze && !page);
2295 if (page && page != pmd_page(*pmd))
2296 goto out;
2297
5c7fb56e 2298 if (pmd_trans_huge(*pmd)) {
33f4751e 2299 page = pmd_page(*pmd);
5c7fb56e 2300 if (PageMlocked(page))
5f737714 2301 clear_page_mlock(page);
84c3fc4e 2302 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2303 goto out;
ac46d4f3 2304 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2305out:
eef1b3ba 2306 spin_unlock(ptl);
4645b9fe
JG
2307 /*
2308 * No need to double call mmu_notifier->invalidate_range() callback.
2309 * They are 3 cases to consider inside __split_huge_pmd_locked():
2310 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2311 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2312 * fault will trigger a flush_notify before pointing to a new page
2313 * (it is fine if the secondary mmu keeps pointing to the old zero
2314 * page in the meantime)
2315 * 3) Split a huge pmd into pte pointing to the same page. No need
2316 * to invalidate secondary tlb entry they are all still valid.
2317 * any further changes to individual pte will notify. So no need
2318 * to call mmu_notifier->invalidate_range()
2319 */
ac46d4f3 2320 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2321}
2322
fec89c10
KS
2323void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2324 bool freeze, struct page *page)
94fcc585 2325{
f72e7dcd 2326 pgd_t *pgd;
c2febafc 2327 p4d_t *p4d;
f72e7dcd 2328 pud_t *pud;
94fcc585
AA
2329 pmd_t *pmd;
2330
78ddc534 2331 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2332 if (!pgd_present(*pgd))
2333 return;
2334
c2febafc
KS
2335 p4d = p4d_offset(pgd, address);
2336 if (!p4d_present(*p4d))
2337 return;
2338
2339 pud = pud_offset(p4d, address);
f72e7dcd
HD
2340 if (!pud_present(*pud))
2341 return;
2342
2343 pmd = pmd_offset(pud, address);
fec89c10 2344
33f4751e 2345 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2346}
2347
e1b9996b 2348void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2349 unsigned long start,
2350 unsigned long end,
2351 long adjust_next)
2352{
2353 /*
2354 * If the new start address isn't hpage aligned and it could
2355 * previously contain an hugepage: check if we need to split
2356 * an huge pmd.
2357 */
2358 if (start & ~HPAGE_PMD_MASK &&
2359 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2360 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2361 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2362
2363 /*
2364 * If the new end address isn't hpage aligned and it could
2365 * previously contain an hugepage: check if we need to split
2366 * an huge pmd.
2367 */
2368 if (end & ~HPAGE_PMD_MASK &&
2369 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2370 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2371 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2372
2373 /*
2374 * If we're also updating the vma->vm_next->vm_start, if the new
2375 * vm_next->vm_start isn't page aligned and it could previously
2376 * contain an hugepage: check if we need to split an huge pmd.
2377 */
2378 if (adjust_next > 0) {
2379 struct vm_area_struct *next = vma->vm_next;
2380 unsigned long nstart = next->vm_start;
2381 nstart += adjust_next << PAGE_SHIFT;
2382 if (nstart & ~HPAGE_PMD_MASK &&
2383 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2384 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2385 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2386 }
2387}
e9b61f19 2388
906f9cdf 2389static void unmap_page(struct page *page)
e9b61f19 2390{
baa355fd 2391 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2392 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2393 bool unmap_success;
e9b61f19
KS
2394
2395 VM_BUG_ON_PAGE(!PageHead(page), page);
2396
baa355fd 2397 if (PageAnon(page))
b5ff8161 2398 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2399
666e5a40
MK
2400 unmap_success = try_to_unmap(page, ttu_flags);
2401 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2402}
2403
906f9cdf 2404static void remap_page(struct page *page)
e9b61f19 2405{
fec89c10 2406 int i;
ace71a19
KS
2407 if (PageTransHuge(page)) {
2408 remove_migration_ptes(page, page, true);
2409 } else {
2410 for (i = 0; i < HPAGE_PMD_NR; i++)
2411 remove_migration_ptes(page + i, page + i, true);
2412 }
e9b61f19
KS
2413}
2414
8df651c7 2415static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2416 struct lruvec *lruvec, struct list_head *list)
2417{
e9b61f19
KS
2418 struct page *page_tail = head + tail;
2419
8df651c7 2420 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2421
2422 /*
605ca5ed
KK
2423 * Clone page flags before unfreezing refcount.
2424 *
2425 * After successful get_page_unless_zero() might follow flags change,
2426 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2427 */
e9b61f19
KS
2428 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2429 page_tail->flags |= (head->flags &
2430 ((1L << PG_referenced) |
2431 (1L << PG_swapbacked) |
38d8b4e6 2432 (1L << PG_swapcache) |
e9b61f19
KS
2433 (1L << PG_mlocked) |
2434 (1L << PG_uptodate) |
2435 (1L << PG_active) |
1899ad18 2436 (1L << PG_workingset) |
e9b61f19 2437 (1L << PG_locked) |
b8d3c4c3
MK
2438 (1L << PG_unevictable) |
2439 (1L << PG_dirty)));
e9b61f19 2440
173d9d9f
HD
2441 /* ->mapping in first tail page is compound_mapcount */
2442 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2443 page_tail);
2444 page_tail->mapping = head->mapping;
2445 page_tail->index = head->index + tail;
2446
605ca5ed 2447 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2448 smp_wmb();
2449
605ca5ed
KK
2450 /*
2451 * Clear PageTail before unfreezing page refcount.
2452 *
2453 * After successful get_page_unless_zero() might follow put_page()
2454 * which needs correct compound_head().
2455 */
e9b61f19
KS
2456 clear_compound_head(page_tail);
2457
605ca5ed
KK
2458 /* Finally unfreeze refcount. Additional reference from page cache. */
2459 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2460 PageSwapCache(head)));
2461
e9b61f19
KS
2462 if (page_is_young(head))
2463 set_page_young(page_tail);
2464 if (page_is_idle(head))
2465 set_page_idle(page_tail);
2466
e9b61f19 2467 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2468
2469 /*
2470 * always add to the tail because some iterators expect new
2471 * pages to show after the currently processed elements - e.g.
2472 * migrate_pages
2473 */
e9b61f19 2474 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2475}
2476
baa355fd 2477static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2478 pgoff_t end, unsigned long flags)
e9b61f19
KS
2479{
2480 struct page *head = compound_head(page);
f4b7e272 2481 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2482 struct lruvec *lruvec;
8df651c7 2483 int i;
e9b61f19 2484
f4b7e272 2485 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2486
2487 /* complete memcg works before add pages to LRU */
2488 mem_cgroup_split_huge_fixup(head);
2489
baa355fd 2490 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2491 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2492 /* Some pages can be beyond i_size: drop them from page cache */
2493 if (head[i].index >= end) {
2d077d4b 2494 ClearPageDirty(head + i);
baa355fd 2495 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2496 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2497 shmem_uncharge(head->mapping->host, 1);
baa355fd 2498 put_page(head + i);
5fd4ca2d
MW
2499 } else if (!PageAnon(page)) {
2500 __xa_store(&head->mapping->i_pages, head[i].index,
2501 head + i, 0);
baa355fd
KS
2502 }
2503 }
e9b61f19
KS
2504
2505 ClearPageCompound(head);
baa355fd
KS
2506 /* See comment in __split_huge_page_tail() */
2507 if (PageAnon(head)) {
aa5dc07f 2508 /* Additional pin to swap cache */
38d8b4e6
HY
2509 if (PageSwapCache(head))
2510 page_ref_add(head, 2);
2511 else
2512 page_ref_inc(head);
baa355fd 2513 } else {
aa5dc07f 2514 /* Additional pin to page cache */
baa355fd 2515 page_ref_add(head, 2);
b93b0163 2516 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2517 }
2518
f4b7e272 2519 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2520
906f9cdf 2521 remap_page(head);
e9b61f19
KS
2522
2523 for (i = 0; i < HPAGE_PMD_NR; i++) {
2524 struct page *subpage = head + i;
2525 if (subpage == page)
2526 continue;
2527 unlock_page(subpage);
2528
2529 /*
2530 * Subpages may be freed if there wasn't any mapping
2531 * like if add_to_swap() is running on a lru page that
2532 * had its mapping zapped. And freeing these pages
2533 * requires taking the lru_lock so we do the put_page
2534 * of the tail pages after the split is complete.
2535 */
2536 put_page(subpage);
2537 }
2538}
2539
b20ce5e0
KS
2540int total_mapcount(struct page *page)
2541{
dd78fedd 2542 int i, compound, ret;
b20ce5e0
KS
2543
2544 VM_BUG_ON_PAGE(PageTail(page), page);
2545
2546 if (likely(!PageCompound(page)))
2547 return atomic_read(&page->_mapcount) + 1;
2548
dd78fedd 2549 compound = compound_mapcount(page);
b20ce5e0 2550 if (PageHuge(page))
dd78fedd
KS
2551 return compound;
2552 ret = compound;
b20ce5e0
KS
2553 for (i = 0; i < HPAGE_PMD_NR; i++)
2554 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2555 /* File pages has compound_mapcount included in _mapcount */
2556 if (!PageAnon(page))
2557 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2558 if (PageDoubleMap(page))
2559 ret -= HPAGE_PMD_NR;
2560 return ret;
2561}
2562
6d0a07ed
AA
2563/*
2564 * This calculates accurately how many mappings a transparent hugepage
2565 * has (unlike page_mapcount() which isn't fully accurate). This full
2566 * accuracy is primarily needed to know if copy-on-write faults can
2567 * reuse the page and change the mapping to read-write instead of
2568 * copying them. At the same time this returns the total_mapcount too.
2569 *
2570 * The function returns the highest mapcount any one of the subpages
2571 * has. If the return value is one, even if different processes are
2572 * mapping different subpages of the transparent hugepage, they can
2573 * all reuse it, because each process is reusing a different subpage.
2574 *
2575 * The total_mapcount is instead counting all virtual mappings of the
2576 * subpages. If the total_mapcount is equal to "one", it tells the
2577 * caller all mappings belong to the same "mm" and in turn the
2578 * anon_vma of the transparent hugepage can become the vma->anon_vma
2579 * local one as no other process may be mapping any of the subpages.
2580 *
2581 * It would be more accurate to replace page_mapcount() with
2582 * page_trans_huge_mapcount(), however we only use
2583 * page_trans_huge_mapcount() in the copy-on-write faults where we
2584 * need full accuracy to avoid breaking page pinning, because
2585 * page_trans_huge_mapcount() is slower than page_mapcount().
2586 */
2587int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2588{
2589 int i, ret, _total_mapcount, mapcount;
2590
2591 /* hugetlbfs shouldn't call it */
2592 VM_BUG_ON_PAGE(PageHuge(page), page);
2593
2594 if (likely(!PageTransCompound(page))) {
2595 mapcount = atomic_read(&page->_mapcount) + 1;
2596 if (total_mapcount)
2597 *total_mapcount = mapcount;
2598 return mapcount;
2599 }
2600
2601 page = compound_head(page);
2602
2603 _total_mapcount = ret = 0;
2604 for (i = 0; i < HPAGE_PMD_NR; i++) {
2605 mapcount = atomic_read(&page[i]._mapcount) + 1;
2606 ret = max(ret, mapcount);
2607 _total_mapcount += mapcount;
2608 }
2609 if (PageDoubleMap(page)) {
2610 ret -= 1;
2611 _total_mapcount -= HPAGE_PMD_NR;
2612 }
2613 mapcount = compound_mapcount(page);
2614 ret += mapcount;
2615 _total_mapcount += mapcount;
2616 if (total_mapcount)
2617 *total_mapcount = _total_mapcount;
2618 return ret;
2619}
2620
b8f593cd
HY
2621/* Racy check whether the huge page can be split */
2622bool can_split_huge_page(struct page *page, int *pextra_pins)
2623{
2624 int extra_pins;
2625
aa5dc07f 2626 /* Additional pins from page cache */
b8f593cd
HY
2627 if (PageAnon(page))
2628 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2629 else
2630 extra_pins = HPAGE_PMD_NR;
2631 if (pextra_pins)
2632 *pextra_pins = extra_pins;
2633 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2634}
2635
e9b61f19
KS
2636/*
2637 * This function splits huge page into normal pages. @page can point to any
2638 * subpage of huge page to split. Split doesn't change the position of @page.
2639 *
2640 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2641 * The huge page must be locked.
2642 *
2643 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2644 *
2645 * Both head page and tail pages will inherit mapping, flags, and so on from
2646 * the hugepage.
2647 *
2648 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2649 * they are not mapped.
2650 *
2651 * Returns 0 if the hugepage is split successfully.
2652 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2653 * us.
2654 */
2655int split_huge_page_to_list(struct page *page, struct list_head *list)
2656{
2657 struct page *head = compound_head(page);
a3d0a918 2658 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2659 struct anon_vma *anon_vma = NULL;
2660 struct address_space *mapping = NULL;
2661 int count, mapcount, extra_pins, ret;
d9654322 2662 bool mlocked;
0b9b6fff 2663 unsigned long flags;
006d3ff2 2664 pgoff_t end;
e9b61f19
KS
2665
2666 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2667 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2668 VM_BUG_ON_PAGE(!PageCompound(page), page);
2669
59807685
HY
2670 if (PageWriteback(page))
2671 return -EBUSY;
2672
baa355fd
KS
2673 if (PageAnon(head)) {
2674 /*
2675 * The caller does not necessarily hold an mmap_sem that would
2676 * prevent the anon_vma disappearing so we first we take a
2677 * reference to it and then lock the anon_vma for write. This
2678 * is similar to page_lock_anon_vma_read except the write lock
2679 * is taken to serialise against parallel split or collapse
2680 * operations.
2681 */
2682 anon_vma = page_get_anon_vma(head);
2683 if (!anon_vma) {
2684 ret = -EBUSY;
2685 goto out;
2686 }
006d3ff2 2687 end = -1;
baa355fd
KS
2688 mapping = NULL;
2689 anon_vma_lock_write(anon_vma);
2690 } else {
2691 mapping = head->mapping;
2692
2693 /* Truncated ? */
2694 if (!mapping) {
2695 ret = -EBUSY;
2696 goto out;
2697 }
2698
baa355fd
KS
2699 anon_vma = NULL;
2700 i_mmap_lock_read(mapping);
006d3ff2
HD
2701
2702 /*
2703 *__split_huge_page() may need to trim off pages beyond EOF:
2704 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2705 * which cannot be nested inside the page tree lock. So note
2706 * end now: i_size itself may be changed at any moment, but
2707 * head page lock is good enough to serialize the trimming.
2708 */
2709 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2710 }
e9b61f19
KS
2711
2712 /*
906f9cdf 2713 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2714 * split PMDs
2715 */
b8f593cd 2716 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2717 ret = -EBUSY;
2718 goto out_unlock;
2719 }
2720
d9654322 2721 mlocked = PageMlocked(page);
906f9cdf 2722 unmap_page(head);
e9b61f19
KS
2723 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2724
d9654322
KS
2725 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2726 if (mlocked)
2727 lru_add_drain();
2728
baa355fd 2729 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2730 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2731
2732 if (mapping) {
aa5dc07f 2733 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2734
baa355fd 2735 /*
aa5dc07f 2736 * Check if the head page is present in page cache.
baa355fd
KS
2737 * We assume all tail are present too, if head is there.
2738 */
aa5dc07f
MW
2739 xa_lock(&mapping->i_pages);
2740 if (xas_load(&xas) != head)
baa355fd
KS
2741 goto fail;
2742 }
2743
0139aa7b 2744 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2745 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2746 count = page_count(head);
2747 mapcount = total_mapcount(head);
baa355fd 2748 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2749 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2750 pgdata->split_queue_len--;
9a982250
KS
2751 list_del(page_deferred_list(head));
2752 }
65c45377 2753 if (mapping)
11fb9989 2754 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2755 spin_unlock(&pgdata->split_queue_lock);
006d3ff2 2756 __split_huge_page(page, list, end, flags);
59807685
HY
2757 if (PageSwapCache(head)) {
2758 swp_entry_t entry = { .val = page_private(head) };
2759
2760 ret = split_swap_cluster(entry);
2761 } else
2762 ret = 0;
e9b61f19 2763 } else {
baa355fd
KS
2764 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2765 pr_alert("total_mapcount: %u, page_count(): %u\n",
2766 mapcount, count);
2767 if (PageTail(page))
2768 dump_page(head, NULL);
2769 dump_page(page, "total_mapcount(head) > 0");
2770 BUG();
2771 }
2772 spin_unlock(&pgdata->split_queue_lock);
2773fail: if (mapping)
b93b0163 2774 xa_unlock(&mapping->i_pages);
f4b7e272 2775 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2776 remap_page(head);
e9b61f19
KS
2777 ret = -EBUSY;
2778 }
2779
2780out_unlock:
baa355fd
KS
2781 if (anon_vma) {
2782 anon_vma_unlock_write(anon_vma);
2783 put_anon_vma(anon_vma);
2784 }
2785 if (mapping)
2786 i_mmap_unlock_read(mapping);
e9b61f19
KS
2787out:
2788 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2789 return ret;
2790}
9a982250
KS
2791
2792void free_transhuge_page(struct page *page)
2793{
a3d0a918 2794 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2795 unsigned long flags;
2796
a3d0a918 2797 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2798 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2799 pgdata->split_queue_len--;
9a982250
KS
2800 list_del(page_deferred_list(page));
2801 }
a3d0a918 2802 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2803 free_compound_page(page);
2804}
2805
2806void deferred_split_huge_page(struct page *page)
2807{
a3d0a918 2808 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2809 unsigned long flags;
2810
2811 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2812
a3d0a918 2813 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2814 if (list_empty(page_deferred_list(page))) {
f9719a03 2815 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2816 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2817 pgdata->split_queue_len++;
9a982250 2818 }
a3d0a918 2819 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2820}
2821
2822static unsigned long deferred_split_count(struct shrinker *shrink,
2823 struct shrink_control *sc)
2824{
a3d0a918 2825 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2826 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2827}
2828
2829static unsigned long deferred_split_scan(struct shrinker *shrink,
2830 struct shrink_control *sc)
2831{
a3d0a918 2832 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2833 unsigned long flags;
2834 LIST_HEAD(list), *pos, *next;
2835 struct page *page;
2836 int split = 0;
2837
a3d0a918 2838 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2839 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2840 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2841 page = list_entry((void *)pos, struct page, mapping);
2842 page = compound_head(page);
e3ae1953
KS
2843 if (get_page_unless_zero(page)) {
2844 list_move(page_deferred_list(page), &list);
2845 } else {
2846 /* We lost race with put_compound_page() */
9a982250 2847 list_del_init(page_deferred_list(page));
a3d0a918 2848 pgdata->split_queue_len--;
9a982250 2849 }
e3ae1953
KS
2850 if (!--sc->nr_to_scan)
2851 break;
9a982250 2852 }
a3d0a918 2853 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2854
2855 list_for_each_safe(pos, next, &list) {
2856 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2857 if (!trylock_page(page))
2858 goto next;
9a982250
KS
2859 /* split_huge_page() removes page from list on success */
2860 if (!split_huge_page(page))
2861 split++;
2862 unlock_page(page);
fa41b900 2863next:
9a982250
KS
2864 put_page(page);
2865 }
2866
a3d0a918
KS
2867 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2868 list_splice_tail(&list, &pgdata->split_queue);
2869 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2870
cb8d68ec
KS
2871 /*
2872 * Stop shrinker if we didn't split any page, but the queue is empty.
2873 * This can happen if pages were freed under us.
2874 */
2875 if (!split && list_empty(&pgdata->split_queue))
2876 return SHRINK_STOP;
2877 return split;
9a982250
KS
2878}
2879
2880static struct shrinker deferred_split_shrinker = {
2881 .count_objects = deferred_split_count,
2882 .scan_objects = deferred_split_scan,
2883 .seeks = DEFAULT_SEEKS,
a3d0a918 2884 .flags = SHRINKER_NUMA_AWARE,
9a982250 2885};
49071d43
KS
2886
2887#ifdef CONFIG_DEBUG_FS
2888static int split_huge_pages_set(void *data, u64 val)
2889{
2890 struct zone *zone;
2891 struct page *page;
2892 unsigned long pfn, max_zone_pfn;
2893 unsigned long total = 0, split = 0;
2894
2895 if (val != 1)
2896 return -EINVAL;
2897
2898 for_each_populated_zone(zone) {
2899 max_zone_pfn = zone_end_pfn(zone);
2900 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2901 if (!pfn_valid(pfn))
2902 continue;
2903
2904 page = pfn_to_page(pfn);
2905 if (!get_page_unless_zero(page))
2906 continue;
2907
2908 if (zone != page_zone(page))
2909 goto next;
2910
baa355fd 2911 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2912 goto next;
2913
2914 total++;
2915 lock_page(page);
2916 if (!split_huge_page(page))
2917 split++;
2918 unlock_page(page);
2919next:
2920 put_page(page);
2921 }
2922 }
2923
145bdaa1 2924 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2925
2926 return 0;
2927}
2928DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2929 "%llu\n");
2930
2931static int __init split_huge_pages_debugfs(void)
2932{
d9f7979c
GKH
2933 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2934 &split_huge_pages_fops);
49071d43
KS
2935 return 0;
2936}
2937late_initcall(split_huge_pages_debugfs);
2938#endif
616b8371
ZY
2939
2940#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2941void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2942 struct page *page)
2943{
2944 struct vm_area_struct *vma = pvmw->vma;
2945 struct mm_struct *mm = vma->vm_mm;
2946 unsigned long address = pvmw->address;
2947 pmd_t pmdval;
2948 swp_entry_t entry;
ab6e3d09 2949 pmd_t pmdswp;
616b8371
ZY
2950
2951 if (!(pvmw->pmd && !pvmw->pte))
2952 return;
2953
616b8371
ZY
2954 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2955 pmdval = *pvmw->pmd;
2956 pmdp_invalidate(vma, address, pvmw->pmd);
2957 if (pmd_dirty(pmdval))
2958 set_page_dirty(page);
2959 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2960 pmdswp = swp_entry_to_pmd(entry);
2961 if (pmd_soft_dirty(pmdval))
2962 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2963 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2964 page_remove_rmap(page, true);
2965 put_page(page);
616b8371
ZY
2966}
2967
2968void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2969{
2970 struct vm_area_struct *vma = pvmw->vma;
2971 struct mm_struct *mm = vma->vm_mm;
2972 unsigned long address = pvmw->address;
2973 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2974 pmd_t pmde;
2975 swp_entry_t entry;
2976
2977 if (!(pvmw->pmd && !pvmw->pte))
2978 return;
2979
2980 entry = pmd_to_swp_entry(*pvmw->pmd);
2981 get_page(new);
2982 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2983 if (pmd_swp_soft_dirty(*pvmw->pmd))
2984 pmde = pmd_mksoft_dirty(pmde);
616b8371 2985 if (is_write_migration_entry(entry))
f55e1014 2986 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2987
2988 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
2989 if (PageAnon(new))
2990 page_add_anon_rmap(new, vma, mmun_start, true);
2991 else
2992 page_add_file_rmap(new, true);
616b8371 2993 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 2994 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2995 mlock_vma_page(new);
2996 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2997}
2998#endif