]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
Revert "Make the IMSM_DEVNAME_AS_SERIAL option work when creating containers."
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
c2c087e6
DW
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
1484e727
DW
197static __u8 migr_type(struct imsm_dev *dev)
198{
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204}
205
206static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207{
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218}
219
87eb16df 220static unsigned int sector_count(__u32 bytes)
cdddbdbc 221{
87eb16df
DW
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223}
cdddbdbc 224
87eb16df
DW
225static unsigned int mpb_sectors(struct imsm_super *mpb)
226{
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
228}
229
ba2de7ba
DW
230struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234};
235
cdddbdbc
DW
236/* internal representation of IMSM metadata */
237struct intel_super {
238 union {
949c47a0
DW
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 241 };
949c47a0 242 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
c2c087e6
DW
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
bf5a934a 247 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 248 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 249 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 250 struct intel_dev *devlist;
cdddbdbc
DW
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
b9f594fe 257 struct imsm_disk disk;
cdddbdbc 258 int fd;
0dcecb2e
DW
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
efb30e7f 261 int raiddisk; /* slot to fill in autolayout */
cdddbdbc 262 } *disks;
43dad3d6 263 struct dl *add; /* list of disks to add while mdmon active */
47ee5a45 264 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 265 struct bbm_log *bbm_log;
88c32bb1
DW
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269};
270
271struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
cdddbdbc
DW
276};
277
c2c087e6
DW
278struct extent {
279 unsigned long long start, size;
280};
281
88758e9d
DW
282/* definition of messages passed to imsm_process_update */
283enum imsm_update_type {
284 update_activate_spare,
8273f55e 285 update_create_array,
43dad3d6 286 update_add_disk,
88758e9d
DW
287};
288
289struct imsm_update_activate_spare {
290 enum imsm_update_type type;
d23fe947 291 struct dl *dl;
88758e9d
DW
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295};
296
54c2c1ea
DW
297struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299};
300
8273f55e
DW
301struct imsm_update_create_array {
302 enum imsm_update_type type;
8273f55e 303 int dev_idx;
6a3e913e 304 struct imsm_dev dev;
8273f55e
DW
305};
306
43dad3d6
DW
307struct imsm_update_add_disk {
308 enum imsm_update_type type;
309};
310
cdddbdbc
DW
311static struct supertype *match_metadata_desc_imsm(char *arg)
312{
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
4e9d2186
AW
321 if (!st)
322 return NULL;
ef609477 323 memset(st, 0, sizeof(*st));
cdddbdbc
DW
324 st->ss = &super_imsm;
325 st->max_devs = IMSM_MAX_DEVICES;
326 st->minor_version = 0;
327 st->sb = NULL;
328 return st;
329}
330
0e600426 331#ifndef MDASSEMBLE
cdddbdbc
DW
332static __u8 *get_imsm_version(struct imsm_super *mpb)
333{
334 return &mpb->sig[MPB_SIG_LEN];
335}
0e600426 336#endif
cdddbdbc 337
949c47a0
DW
338/* retrieve a disk directly from the anchor when the anchor is known to be
339 * up-to-date, currently only at load time
340 */
341static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 342{
949c47a0 343 if (index >= mpb->num_disks)
cdddbdbc
DW
344 return NULL;
345 return &mpb->disk[index];
346}
347
0e600426 348#ifndef MDASSEMBLE
b9f594fe 349/* retrieve a disk from the parsed metadata */
949c47a0
DW
350static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
351{
b9f594fe
DW
352 struct dl *d;
353
354 for (d = super->disks; d; d = d->next)
355 if (d->index == index)
356 return &d->disk;
357
358 return NULL;
949c47a0 359}
0e600426 360#endif
949c47a0
DW
361
362/* generate a checksum directly from the anchor when the anchor is known to be
363 * up-to-date, currently only at load or write_super after coalescing
364 */
365static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
366{
367 __u32 end = mpb->mpb_size / sizeof(end);
368 __u32 *p = (__u32 *) mpb;
369 __u32 sum = 0;
370
97f734fd
N
371 while (end--) {
372 sum += __le32_to_cpu(*p);
373 p++;
374 }
cdddbdbc
DW
375
376 return sum - __le32_to_cpu(mpb->check_sum);
377}
378
a965f303
DW
379static size_t sizeof_imsm_map(struct imsm_map *map)
380{
381 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
382}
383
384struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 385{
a965f303
DW
386 struct imsm_map *map = &dev->vol.map[0];
387
388 if (second_map && !dev->vol.migr_state)
389 return NULL;
390 else if (second_map) {
391 void *ptr = map;
392
393 return ptr + sizeof_imsm_map(map);
394 } else
395 return map;
396
397}
cdddbdbc 398
3393c6af
DW
399/* return the size of the device.
400 * migr_state increases the returned size if map[0] were to be duplicated
401 */
402static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
403{
404 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
405 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
406
407 /* migrating means an additional map */
a965f303
DW
408 if (dev->vol.migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
410 else if (migr_state)
411 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
412
413 return size;
414}
415
54c2c1ea
DW
416#ifndef MDASSEMBLE
417/* retrieve disk serial number list from a metadata update */
418static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
419{
420 void *u = update;
421 struct disk_info *inf;
422
423 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
424 sizeof_imsm_dev(&update->dev, 0);
425
426 return inf;
427}
428#endif
429
949c47a0 430static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
431{
432 int offset;
433 int i;
434 void *_mpb = mpb;
435
949c47a0 436 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
437 return NULL;
438
439 /* devices start after all disks */
440 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
441
442 for (i = 0; i <= index; i++)
443 if (i == index)
444 return _mpb + offset;
445 else
3393c6af 446 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
447
448 return NULL;
449}
450
949c47a0
DW
451static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
452{
ba2de7ba
DW
453 struct intel_dev *dv;
454
949c47a0
DW
455 if (index >= super->anchor->num_raid_devs)
456 return NULL;
ba2de7ba
DW
457 for (dv = super->devlist; dv; dv = dv->next)
458 if (dv->index == index)
459 return dv->dev;
460 return NULL;
949c47a0
DW
461}
462
7eef0453
DW
463static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
464{
465 struct imsm_map *map;
466
467 if (dev->vol.migr_state)
7eef0453 468 map = get_imsm_map(dev, 1);
fb9bf0d3
DW
469 else
470 map = get_imsm_map(dev, 0);
7eef0453 471
ff077194
DW
472 /* top byte identifies disk under rebuild */
473 return __le32_to_cpu(map->disk_ord_tbl[slot]);
474}
475
476#define ord_to_idx(ord) (((ord) << 8) >> 8)
477static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
478{
479 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
480
481 return ord_to_idx(ord);
7eef0453
DW
482}
483
be73972f
DW
484static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
485{
486 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
487}
488
620b1713
DW
489static int get_imsm_disk_slot(struct imsm_map *map, int idx)
490{
491 int slot;
492 __u32 ord;
493
494 for (slot = 0; slot < map->num_members; slot++) {
495 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
496 if (ord_to_idx(ord) == idx)
497 return slot;
498 }
499
500 return -1;
501}
502
cdddbdbc
DW
503static int get_imsm_raid_level(struct imsm_map *map)
504{
505 if (map->raid_level == 1) {
506 if (map->num_members == 2)
507 return 1;
508 else
509 return 10;
510 }
511
512 return map->raid_level;
513}
514
c2c087e6
DW
515static int cmp_extent(const void *av, const void *bv)
516{
517 const struct extent *a = av;
518 const struct extent *b = bv;
519 if (a->start < b->start)
520 return -1;
521 if (a->start > b->start)
522 return 1;
523 return 0;
524}
525
0dcecb2e 526static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 527{
c2c087e6 528 int memberships = 0;
620b1713 529 int i;
c2c087e6 530
949c47a0
DW
531 for (i = 0; i < super->anchor->num_raid_devs; i++) {
532 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 533 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 534
620b1713
DW
535 if (get_imsm_disk_slot(map, dl->index) >= 0)
536 memberships++;
c2c087e6 537 }
0dcecb2e
DW
538
539 return memberships;
540}
541
542static struct extent *get_extents(struct intel_super *super, struct dl *dl)
543{
544 /* find a list of used extents on the given physical device */
545 struct extent *rv, *e;
620b1713 546 int i;
0dcecb2e
DW
547 int memberships = count_memberships(dl, super);
548 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
549
c2c087e6
DW
550 rv = malloc(sizeof(struct extent) * (memberships + 1));
551 if (!rv)
552 return NULL;
553 e = rv;
554
949c47a0
DW
555 for (i = 0; i < super->anchor->num_raid_devs; i++) {
556 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 557 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 558
620b1713
DW
559 if (get_imsm_disk_slot(map, dl->index) >= 0) {
560 e->start = __le32_to_cpu(map->pba_of_lba0);
561 e->size = __le32_to_cpu(map->blocks_per_member);
562 e++;
c2c087e6
DW
563 }
564 }
565 qsort(rv, memberships, sizeof(*rv), cmp_extent);
566
14e8215b
DW
567 /* determine the start of the metadata
568 * when no raid devices are defined use the default
569 * ...otherwise allow the metadata to truncate the value
570 * as is the case with older versions of imsm
571 */
572 if (memberships) {
573 struct extent *last = &rv[memberships - 1];
574 __u32 remainder;
575
576 remainder = __le32_to_cpu(dl->disk.total_blocks) -
577 (last->start + last->size);
dda5855f
DW
578 /* round down to 1k block to satisfy precision of the kernel
579 * 'size' interface
580 */
581 remainder &= ~1UL;
582 /* make sure remainder is still sane */
583 if (remainder < ROUND_UP(super->len, 512) >> 9)
584 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
585 if (reservation > remainder)
586 reservation = remainder;
587 }
588 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
589 e->size = 0;
590 return rv;
591}
592
14e8215b
DW
593/* try to determine how much space is reserved for metadata from
594 * the last get_extents() entry, otherwise fallback to the
595 * default
596 */
597static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
598{
599 struct extent *e;
600 int i;
601 __u32 rv;
602
603 /* for spares just return a minimal reservation which will grow
604 * once the spare is picked up by an array
605 */
606 if (dl->index == -1)
607 return MPB_SECTOR_CNT;
608
609 e = get_extents(super, dl);
610 if (!e)
611 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
612
613 /* scroll to last entry */
614 for (i = 0; e[i].size; i++)
615 continue;
616
617 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
618
619 free(e);
620
621 return rv;
622}
623
25ed7e59
DW
624static int is_spare(struct imsm_disk *disk)
625{
626 return (disk->status & SPARE_DISK) == SPARE_DISK;
627}
628
629static int is_configured(struct imsm_disk *disk)
630{
631 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
632}
633
634static int is_failed(struct imsm_disk *disk)
635{
636 return (disk->status & FAILED_DISK) == FAILED_DISK;
637}
638
1799c9e8 639#ifndef MDASSEMBLE
1e5c6983
DW
640static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
641
44470971 642static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
cdddbdbc
DW
643{
644 __u64 sz;
645 int slot;
a965f303 646 struct imsm_map *map = get_imsm_map(dev, 0);
b10b37b8 647 __u32 ord;
cdddbdbc
DW
648
649 printf("\n");
1e7bc0ed 650 printf("[%.16s]:\n", dev->volume);
44470971 651 printf(" UUID : %s\n", uuid);
cdddbdbc
DW
652 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
653 printf(" Members : %d\n", map->num_members);
620b1713
DW
654 slot = get_imsm_disk_slot(map, disk_idx);
655 if (slot >= 0) {
b10b37b8
DW
656 ord = get_imsm_ord_tbl_ent(dev, slot);
657 printf(" This Slot : %d%s\n", slot,
658 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
659 } else
cdddbdbc
DW
660 printf(" This Slot : ?\n");
661 sz = __le32_to_cpu(dev->size_high);
662 sz <<= 32;
663 sz += __le32_to_cpu(dev->size_low);
664 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
665 human_size(sz * 512));
666 sz = __le32_to_cpu(map->blocks_per_member);
667 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
668 human_size(sz * 512));
669 printf(" Sector Offset : %u\n",
670 __le32_to_cpu(map->pba_of_lba0));
671 printf(" Num Stripes : %u\n",
672 __le32_to_cpu(map->num_data_stripes));
673 printf(" Chunk Size : %u KiB\n",
674 __le16_to_cpu(map->blocks_per_strip) / 2);
675 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 676 printf(" Migrate State : ");
1484e727
DW
677 if (dev->vol.migr_state) {
678 if (migr_type(dev) == MIGR_INIT)
8655a7b1 679 printf("initialize\n");
1484e727 680 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 681 printf("rebuild\n");
1484e727 682 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 683 printf("check\n");
1484e727 684 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 685 printf("general migration\n");
1484e727 686 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 687 printf("state change\n");
1484e727 688 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 689 printf("repair\n");
1484e727 690 else
8655a7b1
DW
691 printf("<unknown:%d>\n", migr_type(dev));
692 } else
693 printf("idle\n");
3393c6af
DW
694 printf(" Map State : %s", map_state_str[map->map_state]);
695 if (dev->vol.migr_state) {
696 struct imsm_map *map = get_imsm_map(dev, 1);
1e5c6983 697
b10b37b8 698 printf(" <-- %s", map_state_str[map->map_state]);
1e5c6983
DW
699 printf("\n Checkpoint : %u (%llu)",
700 __le32_to_cpu(dev->vol.curr_migr_unit),
701 blocks_per_migr_unit(dev));
3393c6af
DW
702 }
703 printf("\n");
cdddbdbc 704 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
705}
706
14e8215b 707static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 708{
949c47a0 709 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 710 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
711 __u64 sz;
712
d362da3d 713 if (index < 0 || !disk)
e9d82038
DW
714 return;
715
cdddbdbc 716 printf("\n");
1f24f035 717 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 718 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
719 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
720 is_configured(disk) ? " active" : "",
721 is_failed(disk) ? " failed" : "");
cdddbdbc 722 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 723 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
724 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
725 human_size(sz * 512));
726}
727
44470971
DW
728static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
729
cdddbdbc
DW
730static void examine_super_imsm(struct supertype *st, char *homehost)
731{
732 struct intel_super *super = st->sb;
949c47a0 733 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
734 char str[MAX_SIGNATURE_LENGTH];
735 int i;
27fd6274
DW
736 struct mdinfo info;
737 char nbuf[64];
cdddbdbc 738 __u32 sum;
14e8215b 739 __u32 reserved = imsm_reserved_sectors(super, super->disks);
cdddbdbc 740
27fd6274 741
cdddbdbc
DW
742 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
743 printf(" Magic : %s\n", str);
744 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
745 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 746 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
747 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
748 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
27fd6274 749 getinfo_super_imsm(st, &info);
ae2bfd4e 750 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 751 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
752 sum = __le32_to_cpu(mpb->check_sum);
753 printf(" Checksum : %08x %s\n", sum,
949c47a0 754 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 755 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
756 printf(" Disks : %d\n", mpb->num_disks);
757 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 758 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
759 if (super->bbm_log) {
760 struct bbm_log *log = super->bbm_log;
761
762 printf("\n");
763 printf("Bad Block Management Log:\n");
764 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
765 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
766 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
767 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
768 printf(" First Spare : %llx\n",
769 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 770 }
44470971
DW
771 for (i = 0; i < mpb->num_raid_devs; i++) {
772 struct mdinfo info;
773 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
774
775 super->current_vol = i;
776 getinfo_super_imsm(st, &info);
ae2bfd4e 777 fname_from_uuid(st, &info, nbuf, ':');
44470971
DW
778 print_imsm_dev(dev, nbuf + 5, super->disks->index);
779 }
cdddbdbc
DW
780 for (i = 0; i < mpb->num_disks; i++) {
781 if (i == super->disks->index)
782 continue;
14e8215b 783 print_imsm_disk(mpb, i, reserved);
cdddbdbc
DW
784 }
785}
786
061f2c6a 787static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 788{
27fd6274 789 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
790 struct mdinfo info;
791 char nbuf[64];
1e7bc0ed 792 struct intel_super *super = st->sb;
1e7bc0ed 793
0d5a423f
DW
794 if (!super->anchor->num_raid_devs) {
795 printf("ARRAY metadata=imsm\n");
1e7bc0ed 796 return;
0d5a423f 797 }
ff54de6e 798
4737ae25
N
799 getinfo_super_imsm(st, &info);
800 fname_from_uuid(st, &info, nbuf, ':');
801 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
802}
803
804static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
805{
806 /* We just write a generic IMSM ARRAY entry */
807 struct mdinfo info;
808 char nbuf[64];
809 char nbuf1[64];
810 struct intel_super *super = st->sb;
811 int i;
812
813 if (!super->anchor->num_raid_devs)
814 return;
815
ff54de6e 816 getinfo_super_imsm(st, &info);
ae2bfd4e 817 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
818 for (i = 0; i < super->anchor->num_raid_devs; i++) {
819 struct imsm_dev *dev = get_imsm_dev(super, i);
820
821 super->current_vol = i;
822 getinfo_super_imsm(st, &info);
ae2bfd4e 823 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 824 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 825 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 826 }
cdddbdbc
DW
827}
828
9d84c8ea
DW
829static void export_examine_super_imsm(struct supertype *st)
830{
831 struct intel_super *super = st->sb;
832 struct imsm_super *mpb = super->anchor;
833 struct mdinfo info;
834 char nbuf[64];
835
836 getinfo_super_imsm(st, &info);
837 fname_from_uuid(st, &info, nbuf, ':');
838 printf("MD_METADATA=imsm\n");
839 printf("MD_LEVEL=container\n");
840 printf("MD_UUID=%s\n", nbuf+5);
841 printf("MD_DEVICES=%u\n", mpb->num_disks);
842}
843
cdddbdbc
DW
844static void detail_super_imsm(struct supertype *st, char *homehost)
845{
3ebe00a1
DW
846 struct mdinfo info;
847 char nbuf[64];
848
849 getinfo_super_imsm(st, &info);
ae2bfd4e 850 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 851 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
852}
853
854static void brief_detail_super_imsm(struct supertype *st)
855{
ff54de6e
N
856 struct mdinfo info;
857 char nbuf[64];
858 getinfo_super_imsm(st, &info);
ae2bfd4e 859 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 860 printf(" UUID=%s", nbuf + 5);
cdddbdbc 861}
d665cc31
DW
862
863static int imsm_read_serial(int fd, char *devname, __u8 *serial);
864static void fd2devname(int fd, char *name);
865
866static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
867{
868 /* dump an unsorted list of devices attached to ahci, as well as
869 * non-connected ports
870 */
871 int hba_len = strlen(hba_path) + 1;
872 struct dirent *ent;
873 DIR *dir;
874 char *path = NULL;
875 int err = 0;
876 unsigned long port_mask = (1 << port_count) - 1;
877
878 if (port_count > sizeof(port_mask) * 8) {
879 if (verbose)
880 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
881 return 2;
882 }
883
884 /* scroll through /sys/dev/block looking for devices attached to
885 * this hba
886 */
887 dir = opendir("/sys/dev/block");
888 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
889 int fd;
890 char model[64];
891 char vendor[64];
892 char buf[1024];
893 int major, minor;
894 char *device;
895 char *c;
896 int port;
897 int type;
898
899 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
900 continue;
901 path = devt_to_devpath(makedev(major, minor));
902 if (!path)
903 continue;
904 if (!path_attached_to_hba(path, hba_path)) {
905 free(path);
906 path = NULL;
907 continue;
908 }
909
910 /* retrieve the scsi device type */
911 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
912 if (verbose)
913 fprintf(stderr, Name ": failed to allocate 'device'\n");
914 err = 2;
915 break;
916 }
917 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
918 if (load_sys(device, buf) != 0) {
919 if (verbose)
920 fprintf(stderr, Name ": failed to read device type for %s\n",
921 path);
922 err = 2;
923 free(device);
924 break;
925 }
926 type = strtoul(buf, NULL, 10);
927
928 /* if it's not a disk print the vendor and model */
929 if (!(type == 0 || type == 7 || type == 14)) {
930 vendor[0] = '\0';
931 model[0] = '\0';
932 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
933 if (load_sys(device, buf) == 0) {
934 strncpy(vendor, buf, sizeof(vendor));
935 vendor[sizeof(vendor) - 1] = '\0';
936 c = (char *) &vendor[sizeof(vendor) - 1];
937 while (isspace(*c) || *c == '\0')
938 *c-- = '\0';
939
940 }
941 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
942 if (load_sys(device, buf) == 0) {
943 strncpy(model, buf, sizeof(model));
944 model[sizeof(model) - 1] = '\0';
945 c = (char *) &model[sizeof(model) - 1];
946 while (isspace(*c) || *c == '\0')
947 *c-- = '\0';
948 }
949
950 if (vendor[0] && model[0])
951 sprintf(buf, "%.64s %.64s", vendor, model);
952 else
953 switch (type) { /* numbers from hald/linux/device.c */
954 case 1: sprintf(buf, "tape"); break;
955 case 2: sprintf(buf, "printer"); break;
956 case 3: sprintf(buf, "processor"); break;
957 case 4:
958 case 5: sprintf(buf, "cdrom"); break;
959 case 6: sprintf(buf, "scanner"); break;
960 case 8: sprintf(buf, "media_changer"); break;
961 case 9: sprintf(buf, "comm"); break;
962 case 12: sprintf(buf, "raid"); break;
963 default: sprintf(buf, "unknown");
964 }
965 } else
966 buf[0] = '\0';
967 free(device);
968
969 /* chop device path to 'host%d' and calculate the port number */
970 c = strchr(&path[hba_len], '/');
4e5e717d
AW
971 if (!c) {
972 if (verbose)
973 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
974 err = 2;
975 break;
976 }
d665cc31
DW
977 *c = '\0';
978 if (sscanf(&path[hba_len], "host%d", &port) == 1)
979 port -= host_base;
980 else {
981 if (verbose) {
982 *c = '/'; /* repair the full string */
983 fprintf(stderr, Name ": failed to determine port number for %s\n",
984 path);
985 }
986 err = 2;
987 break;
988 }
989
990 /* mark this port as used */
991 port_mask &= ~(1 << port);
992
993 /* print out the device information */
994 if (buf[0]) {
995 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
996 continue;
997 }
998
999 fd = dev_open(ent->d_name, O_RDONLY);
1000 if (fd < 0)
1001 printf(" Port%d : - disk info unavailable -\n", port);
1002 else {
1003 fd2devname(fd, buf);
1004 printf(" Port%d : %s", port, buf);
1005 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1006 printf(" (%s)\n", buf);
1007 else
1008 printf("()\n");
1009 }
1010 close(fd);
1011 free(path);
1012 path = NULL;
1013 }
1014 if (path)
1015 free(path);
1016 if (dir)
1017 closedir(dir);
1018 if (err == 0) {
1019 int i;
1020
1021 for (i = 0; i < port_count; i++)
1022 if (port_mask & (1 << i))
1023 printf(" Port%d : - no device attached -\n", i);
1024 }
1025
1026 return err;
1027}
1028
5615172f 1029static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1030{
1031 /* There are two components to imsm platform support, the ahci SATA
1032 * controller and the option-rom. To find the SATA controller we
1033 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1034 * controller with the Intel vendor id is present. This approach
1035 * allows mdadm to leverage the kernel's ahci detection logic, with the
1036 * caveat that if ahci.ko is not loaded mdadm will not be able to
1037 * detect platform raid capabilities. The option-rom resides in a
1038 * platform "Adapter ROM". We scan for its signature to retrieve the
1039 * platform capabilities. If raid support is disabled in the BIOS the
1040 * option-rom capability structure will not be available.
1041 */
1042 const struct imsm_orom *orom;
1043 struct sys_dev *list, *hba;
1044 DIR *dir;
1045 struct dirent *ent;
1046 const char *hba_path;
1047 int host_base = 0;
1048 int port_count = 0;
1049
5615172f
DW
1050 if (enumerate_only) {
1051 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1052 return 0;
1053 return 2;
1054 }
1055
d665cc31
DW
1056 list = find_driver_devices("pci", "ahci");
1057 for (hba = list; hba; hba = hba->next)
1058 if (devpath_to_vendor(hba->path) == 0x8086)
1059 break;
1060
1061 if (!hba) {
1062 if (verbose)
1063 fprintf(stderr, Name ": unable to find active ahci controller\n");
1064 free_sys_dev(&list);
1065 return 2;
1066 } else if (verbose)
1067 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1068 hba_path = hba->path;
1069 hba->path = NULL;
1070 free_sys_dev(&list);
1071
1072 orom = find_imsm_orom();
1073 if (!orom) {
1074 if (verbose)
1075 fprintf(stderr, Name ": imsm option-rom not found\n");
1076 return 2;
1077 }
1078
1079 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1080 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1081 orom->hotfix_ver, orom->build);
1082 printf(" RAID Levels :%s%s%s%s%s\n",
1083 imsm_orom_has_raid0(orom) ? " raid0" : "",
1084 imsm_orom_has_raid1(orom) ? " raid1" : "",
1085 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1086 imsm_orom_has_raid10(orom) ? " raid10" : "",
1087 imsm_orom_has_raid5(orom) ? " raid5" : "");
8be094f0
DW
1088 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1089 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1090 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1091 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1092 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1093 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1094 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1095 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1096 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1097 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1098 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1099 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1100 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1101 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1102 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1103 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1104 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
d665cc31
DW
1105 printf(" Max Disks : %d\n", orom->tds);
1106 printf(" Max Volumes : %d\n", orom->vpa);
1107 printf(" I/O Controller : %s\n", hba_path);
1108
1109 /* find the smallest scsi host number to determine a port number base */
1110 dir = opendir(hba_path);
1111 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1112 int host;
1113
1114 if (sscanf(ent->d_name, "host%d", &host) != 1)
1115 continue;
1116 if (port_count == 0)
1117 host_base = host;
1118 else if (host < host_base)
1119 host_base = host;
1120
1121 if (host + 1 > port_count + host_base)
1122 port_count = host + 1 - host_base;
1123
1124 }
1125 if (dir)
1126 closedir(dir);
1127
1128 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1129 host_base, verbose) != 0) {
1130 if (verbose)
1131 fprintf(stderr, Name ": failed to enumerate ports\n");
1132 return 2;
1133 }
1134
1135 return 0;
1136}
cdddbdbc
DW
1137#endif
1138
1139static int match_home_imsm(struct supertype *st, char *homehost)
1140{
5115ca67
DW
1141 /* the imsm metadata format does not specify any host
1142 * identification information. We return -1 since we can never
1143 * confirm nor deny whether a given array is "meant" for this
148acb7b 1144 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1145 * exclude member disks that do not belong, and we rely on
1146 * mdadm.conf to specify the arrays that should be assembled.
1147 * Auto-assembly may still pick up "foreign" arrays.
1148 */
cdddbdbc 1149
9362c1c8 1150 return -1;
cdddbdbc
DW
1151}
1152
1153static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1154{
51006d85
N
1155 /* The uuid returned here is used for:
1156 * uuid to put into bitmap file (Create, Grow)
1157 * uuid for backup header when saving critical section (Grow)
1158 * comparing uuids when re-adding a device into an array
1159 * In these cases the uuid required is that of the data-array,
1160 * not the device-set.
1161 * uuid to recognise same set when adding a missing device back
1162 * to an array. This is a uuid for the device-set.
1163 *
1164 * For each of these we can make do with a truncated
1165 * or hashed uuid rather than the original, as long as
1166 * everyone agrees.
1167 * In each case the uuid required is that of the data-array,
1168 * not the device-set.
43dad3d6 1169 */
51006d85
N
1170 /* imsm does not track uuid's so we synthesis one using sha1 on
1171 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1172 * - the orig_family_num of the container
51006d85
N
1173 * - the index number of the volume
1174 * - the 'serial' number of the volume.
1175 * Hopefully these are all constant.
1176 */
1177 struct intel_super *super = st->sb;
43dad3d6 1178
51006d85
N
1179 char buf[20];
1180 struct sha1_ctx ctx;
1181 struct imsm_dev *dev = NULL;
148acb7b 1182 __u32 family_num;
51006d85 1183
148acb7b
DW
1184 /* some mdadm versions failed to set ->orig_family_num, in which
1185 * case fall back to ->family_num. orig_family_num will be
1186 * fixed up with the first metadata update.
1187 */
1188 family_num = super->anchor->orig_family_num;
1189 if (family_num == 0)
1190 family_num = super->anchor->family_num;
51006d85 1191 sha1_init_ctx(&ctx);
92bd8f8d 1192 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1193 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1194 if (super->current_vol >= 0)
1195 dev = get_imsm_dev(super, super->current_vol);
1196 if (dev) {
1197 __u32 vol = super->current_vol;
1198 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1199 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1200 }
1201 sha1_finish_ctx(&ctx, buf);
1202 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1203}
1204
0d481d37 1205#if 0
4f5bc454
DW
1206static void
1207get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1208{
cdddbdbc
DW
1209 __u8 *v = get_imsm_version(mpb);
1210 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1211 char major[] = { 0, 0, 0 };
1212 char minor[] = { 0 ,0, 0 };
1213 char patch[] = { 0, 0, 0 };
1214 char *ver_parse[] = { major, minor, patch };
1215 int i, j;
1216
1217 i = j = 0;
1218 while (*v != '\0' && v < end) {
1219 if (*v != '.' && j < 2)
1220 ver_parse[i][j++] = *v;
1221 else {
1222 i++;
1223 j = 0;
1224 }
1225 v++;
1226 }
1227
4f5bc454
DW
1228 *m = strtol(minor, NULL, 0);
1229 *p = strtol(patch, NULL, 0);
1230}
0d481d37 1231#endif
4f5bc454 1232
1e5c6983
DW
1233static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1234{
1235 /* migr_strip_size when repairing or initializing parity */
1236 struct imsm_map *map = get_imsm_map(dev, 0);
1237 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1238
1239 switch (get_imsm_raid_level(map)) {
1240 case 5:
1241 case 10:
1242 return chunk;
1243 default:
1244 return 128*1024 >> 9;
1245 }
1246}
1247
1248static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1249{
1250 /* migr_strip_size when rebuilding a degraded disk, no idea why
1251 * this is different than migr_strip_size_resync(), but it's good
1252 * to be compatible
1253 */
1254 struct imsm_map *map = get_imsm_map(dev, 1);
1255 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1256
1257 switch (get_imsm_raid_level(map)) {
1258 case 1:
1259 case 10:
1260 if (map->num_members % map->num_domains == 0)
1261 return 128*1024 >> 9;
1262 else
1263 return chunk;
1264 case 5:
1265 return max((__u32) 64*1024 >> 9, chunk);
1266 default:
1267 return 128*1024 >> 9;
1268 }
1269}
1270
1271static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1272{
1273 struct imsm_map *lo = get_imsm_map(dev, 0);
1274 struct imsm_map *hi = get_imsm_map(dev, 1);
1275 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1276 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1277
1278 return max((__u32) 1, hi_chunk / lo_chunk);
1279}
1280
1281static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1282{
1283 struct imsm_map *lo = get_imsm_map(dev, 0);
1284 int level = get_imsm_raid_level(lo);
1285
1286 if (level == 1 || level == 10) {
1287 struct imsm_map *hi = get_imsm_map(dev, 1);
1288
1289 return hi->num_domains;
1290 } else
1291 return num_stripes_per_unit_resync(dev);
1292}
1293
1294static __u8 imsm_num_data_members(struct imsm_dev *dev)
1295{
1296 /* named 'imsm_' because raid0, raid1 and raid10
1297 * counter-intuitively have the same number of data disks
1298 */
1299 struct imsm_map *map = get_imsm_map(dev, 0);
1300
1301 switch (get_imsm_raid_level(map)) {
1302 case 0:
1303 case 1:
1304 case 10:
1305 return map->num_members;
1306 case 5:
1307 return map->num_members - 1;
1308 default:
1309 dprintf("%s: unsupported raid level\n", __func__);
1310 return 0;
1311 }
1312}
1313
1314static __u32 parity_segment_depth(struct imsm_dev *dev)
1315{
1316 struct imsm_map *map = get_imsm_map(dev, 0);
1317 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1318
1319 switch(get_imsm_raid_level(map)) {
1320 case 1:
1321 case 10:
1322 return chunk * map->num_domains;
1323 case 5:
1324 return chunk * map->num_members;
1325 default:
1326 return chunk;
1327 }
1328}
1329
1330static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1331{
1332 struct imsm_map *map = get_imsm_map(dev, 1);
1333 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1334 __u32 strip = block / chunk;
1335
1336 switch (get_imsm_raid_level(map)) {
1337 case 1:
1338 case 10: {
1339 __u32 vol_strip = (strip * map->num_domains) + 1;
1340 __u32 vol_stripe = vol_strip / map->num_members;
1341
1342 return vol_stripe * chunk + block % chunk;
1343 } case 5: {
1344 __u32 stripe = strip / (map->num_members - 1);
1345
1346 return stripe * chunk + block % chunk;
1347 }
1348 default:
1349 return 0;
1350 }
1351}
1352
1353static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1354{
1355 /* calculate the conversion factor between per member 'blocks'
1356 * (md/{resync,rebuild}_start) and imsm migration units, return
1357 * 0 for the 'not migrating' and 'unsupported migration' cases
1358 */
1359 if (!dev->vol.migr_state)
1360 return 0;
1361
1362 switch (migr_type(dev)) {
1363 case MIGR_VERIFY:
1364 case MIGR_REPAIR:
1365 case MIGR_INIT: {
1366 struct imsm_map *map = get_imsm_map(dev, 0);
1367 __u32 stripes_per_unit;
1368 __u32 blocks_per_unit;
1369 __u32 parity_depth;
1370 __u32 migr_chunk;
1371 __u32 block_map;
1372 __u32 block_rel;
1373 __u32 segment;
1374 __u32 stripe;
1375 __u8 disks;
1376
1377 /* yes, this is really the translation of migr_units to
1378 * per-member blocks in the 'resync' case
1379 */
1380 stripes_per_unit = num_stripes_per_unit_resync(dev);
1381 migr_chunk = migr_strip_blocks_resync(dev);
1382 disks = imsm_num_data_members(dev);
1383 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1384 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1385 segment = blocks_per_unit / stripe;
1386 block_rel = blocks_per_unit - segment * stripe;
1387 parity_depth = parity_segment_depth(dev);
1388 block_map = map_migr_block(dev, block_rel);
1389 return block_map + parity_depth * segment;
1390 }
1391 case MIGR_REBUILD: {
1392 __u32 stripes_per_unit;
1393 __u32 migr_chunk;
1394
1395 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1396 migr_chunk = migr_strip_blocks_rebuild(dev);
1397 return migr_chunk * stripes_per_unit;
1398 }
1399 case MIGR_GEN_MIGR:
1400 case MIGR_STATE_CHANGE:
1401 default:
1402 return 0;
1403 }
1404}
1405
c2c087e6
DW
1406static int imsm_level_to_layout(int level)
1407{
1408 switch (level) {
1409 case 0:
1410 case 1:
1411 return 0;
1412 case 5:
1413 case 6:
a380c027 1414 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1415 case 10:
c92a2527 1416 return 0x102;
c2c087e6 1417 }
a18a888e 1418 return UnSet;
c2c087e6
DW
1419}
1420
bf5a934a
DW
1421static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1422{
1423 struct intel_super *super = st->sb;
949c47a0 1424 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1425 struct imsm_map *map = get_imsm_map(dev, 0);
efb30e7f 1426 struct dl *dl;
e207da2f 1427 char *devname;
bf5a934a 1428
efb30e7f
DW
1429 for (dl = super->disks; dl; dl = dl->next)
1430 if (dl->raiddisk == info->disk.raid_disk)
1431 break;
bf5a934a
DW
1432 info->container_member = super->current_vol;
1433 info->array.raid_disks = map->num_members;
1434 info->array.level = get_imsm_raid_level(map);
1435 info->array.layout = imsm_level_to_layout(info->array.level);
1436 info->array.md_minor = -1;
1437 info->array.ctime = 0;
1438 info->array.utime = 0;
301406c9
DW
1439 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1440 info->array.state = !dev->vol.dirty;
da9b4a62
DW
1441 info->custom_array_size = __le32_to_cpu(dev->size_high);
1442 info->custom_array_size <<= 32;
1443 info->custom_array_size |= __le32_to_cpu(dev->size_low);
301406c9
DW
1444
1445 info->disk.major = 0;
1446 info->disk.minor = 0;
efb30e7f
DW
1447 if (dl) {
1448 info->disk.major = dl->major;
1449 info->disk.minor = dl->minor;
1450 }
bf5a934a
DW
1451
1452 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1453 info->component_size = __le32_to_cpu(map->blocks_per_member);
301406c9 1454 memset(info->uuid, 0, sizeof(info->uuid));
921d9e16 1455 info->recovery_start = MaxSector;
bf5a934a 1456
1e5c6983 1457 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
301406c9 1458 info->resync_start = 0;
1e5c6983
DW
1459 } else if (dev->vol.migr_state) {
1460 switch (migr_type(dev)) {
1461 case MIGR_REPAIR:
1462 case MIGR_INIT: {
1463 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1464 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1465
1466 info->resync_start = blocks_per_unit * units;
1467 break;
1468 }
1469 case MIGR_VERIFY:
1470 /* we could emulate the checkpointing of
1471 * 'sync_action=check' migrations, but for now
1472 * we just immediately complete them
1473 */
1474 case MIGR_REBUILD:
1475 /* this is handled by container_content_imsm() */
1476 case MIGR_GEN_MIGR:
1477 case MIGR_STATE_CHANGE:
1478 /* FIXME handle other migrations */
1479 default:
1480 /* we are not dirty, so... */
1481 info->resync_start = MaxSector;
1482 }
1483 } else
b7528a20 1484 info->resync_start = MaxSector;
301406c9
DW
1485
1486 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1487 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 1488
f35f2525
N
1489 info->array.major_version = -1;
1490 info->array.minor_version = -2;
e207da2f
AW
1491 devname = devnum2devname(st->container_dev);
1492 *info->text_version = '\0';
1493 if (devname)
1494 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1495 free(devname);
a67dd8cc 1496 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 1497 uuid_from_super_imsm(st, info->uuid);
bf5a934a
DW
1498}
1499
7a70e8aa
DW
1500/* check the config file to see if we can return a real uuid for this spare */
1501static void fixup_container_spare_uuid(struct mdinfo *inf)
1502{
1503 struct mddev_ident_s *array_list;
1504
1505 if (inf->array.level != LEVEL_CONTAINER ||
1506 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1507 return;
1508
1509 array_list = conf_get_ident(NULL);
1510
1511 for (; array_list; array_list = array_list->next) {
1512 if (array_list->uuid_set) {
1513 struct supertype *_sst; /* spare supertype */
1514 struct supertype *_cst; /* container supertype */
1515
1516 _cst = array_list->st;
7e8545e9
DW
1517 if (_cst)
1518 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1519 else
1520 _sst = NULL;
1521
7a70e8aa
DW
1522 if (_sst) {
1523 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1524 free(_sst);
1525 break;
1526 }
1527 }
1528 }
1529}
bf5a934a 1530
4f5bc454
DW
1531static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1532{
1533 struct intel_super *super = st->sb;
4f5bc454 1534 struct imsm_disk *disk;
4f5bc454 1535
bf5a934a
DW
1536 if (super->current_vol >= 0) {
1537 getinfo_super_imsm_volume(st, info);
1538 return;
1539 }
d23fe947
DW
1540
1541 /* Set raid_disks to zero so that Assemble will always pull in valid
1542 * spares
1543 */
1544 info->array.raid_disks = 0;
cdddbdbc
DW
1545 info->array.level = LEVEL_CONTAINER;
1546 info->array.layout = 0;
1547 info->array.md_minor = -1;
c2c087e6 1548 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
1549 info->array.utime = 0;
1550 info->array.chunk_size = 0;
1551
1552 info->disk.major = 0;
1553 info->disk.minor = 0;
cdddbdbc 1554 info->disk.raid_disk = -1;
c2c087e6 1555 info->reshape_active = 0;
f35f2525
N
1556 info->array.major_version = -1;
1557 info->array.minor_version = -2;
c2c087e6 1558 strcpy(info->text_version, "imsm");
a67dd8cc 1559 info->safe_mode_delay = 0;
c2c087e6
DW
1560 info->disk.number = -1;
1561 info->disk.state = 0;
c5afc314 1562 info->name[0] = 0;
921d9e16 1563 info->recovery_start = MaxSector;
c2c087e6 1564
4a04ec6c 1565 if (super->disks) {
14e8215b
DW
1566 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1567
b9f594fe 1568 disk = &super->disks->disk;
14e8215b
DW
1569 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1570 info->component_size = reserved;
25ed7e59 1571 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
1572 /* we don't change info->disk.raid_disk here because
1573 * this state will be finalized in mdmon after we have
1574 * found the 'most fresh' version of the metadata
1575 */
25ed7e59
DW
1576 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1577 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 1578 }
a575e2a7
DW
1579
1580 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1581 * ->compare_super may have updated the 'num_raid_devs' field for spares
1582 */
1583 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 1584 uuid_from_super_imsm(st, info->uuid);
7a70e8aa 1585 else {
032e9e29 1586 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
7a70e8aa
DW
1587 fixup_container_spare_uuid(info);
1588 }
cdddbdbc
DW
1589}
1590
cdddbdbc
DW
1591static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1592 char *update, char *devname, int verbose,
1593 int uuid_set, char *homehost)
1594{
f352c545
DW
1595 /* For 'assemble' and 'force' we need to return non-zero if any
1596 * change was made. For others, the return value is ignored.
1597 * Update options are:
1598 * force-one : This device looks a bit old but needs to be included,
1599 * update age info appropriately.
1600 * assemble: clear any 'faulty' flag to allow this device to
1601 * be assembled.
1602 * force-array: Array is degraded but being forced, mark it clean
1603 * if that will be needed to assemble it.
1604 *
1605 * newdev: not used ????
1606 * grow: Array has gained a new device - this is currently for
1607 * linear only
1608 * resync: mark as dirty so a resync will happen.
1609 * name: update the name - preserving the homehost
6e46bf34 1610 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
1611 *
1612 * Following are not relevant for this imsm:
1613 * sparc2.2 : update from old dodgey metadata
1614 * super-minor: change the preferred_minor number
1615 * summaries: update redundant counters.
f352c545
DW
1616 * homehost: update the recorded homehost
1617 * _reshape_progress: record new reshape_progress position.
1618 */
6e46bf34
DW
1619 int rv = 1;
1620 struct intel_super *super = st->sb;
1621 struct imsm_super *mpb;
f352c545 1622
6e46bf34
DW
1623 /* we can only update container info */
1624 if (!super || super->current_vol >= 0 || !super->anchor)
1625 return 1;
1626
1627 mpb = super->anchor;
1628
1629 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1630 fprintf(stderr,
1631 Name ": '--uuid' not supported for imsm metadata\n");
1632 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1633 mpb->orig_family_num = *((__u32 *) info->update_private);
1634 rv = 0;
1635 } else if (strcmp(update, "uuid") == 0) {
1636 __u32 *new_family = malloc(sizeof(*new_family));
1637
1638 /* update orig_family_number with the incoming random
1639 * data, report the new effective uuid, and store the
1640 * new orig_family_num for future updates.
1641 */
1642 if (new_family) {
1643 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1644 uuid_from_super_imsm(st, info->uuid);
1645 *new_family = mpb->orig_family_num;
1646 info->update_private = new_family;
1647 rv = 0;
1648 }
1649 } else if (strcmp(update, "assemble") == 0)
1650 rv = 0;
1651 else
1652 fprintf(stderr,
1653 Name ": '--update=%s' not supported for imsm metadata\n",
1654 update);
f352c545 1655
6e46bf34
DW
1656 /* successful update? recompute checksum */
1657 if (rv == 0)
1658 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
1659
1660 return rv;
cdddbdbc
DW
1661}
1662
c2c087e6 1663static size_t disks_to_mpb_size(int disks)
cdddbdbc 1664{
c2c087e6 1665 size_t size;
cdddbdbc 1666
c2c087e6
DW
1667 size = sizeof(struct imsm_super);
1668 size += (disks - 1) * sizeof(struct imsm_disk);
1669 size += 2 * sizeof(struct imsm_dev);
1670 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1671 size += (4 - 2) * sizeof(struct imsm_map);
1672 /* 4 possible disk_ord_tbl's */
1673 size += 4 * (disks - 1) * sizeof(__u32);
1674
1675 return size;
1676}
1677
1678static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1679{
1680 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1681 return 0;
1682
1683 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
1684}
1685
ba2de7ba
DW
1686static void free_devlist(struct intel_super *super)
1687{
1688 struct intel_dev *dv;
1689
1690 while (super->devlist) {
1691 dv = super->devlist->next;
1692 free(super->devlist->dev);
1693 free(super->devlist);
1694 super->devlist = dv;
1695 }
1696}
1697
1698static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1699{
1700 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1701}
1702
cdddbdbc
DW
1703static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1704{
1705 /*
1706 * return:
1707 * 0 same, or first was empty, and second was copied
1708 * 1 second had wrong number
1709 * 2 wrong uuid
1710 * 3 wrong other info
1711 */
1712 struct intel_super *first = st->sb;
1713 struct intel_super *sec = tst->sb;
1714
1715 if (!first) {
1716 st->sb = tst->sb;
1717 tst->sb = NULL;
1718 return 0;
1719 }
1720
d23fe947
DW
1721 /* if an anchor does not have num_raid_devs set then it is a free
1722 * floating spare
1723 */
1724 if (first->anchor->num_raid_devs > 0 &&
1725 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
1726 /* Determine if these disks might ever have been
1727 * related. Further disambiguation can only take place
1728 * in load_super_imsm_all
1729 */
1730 __u32 first_family = first->anchor->orig_family_num;
1731 __u32 sec_family = sec->anchor->orig_family_num;
1732
f796af5d
DW
1733 if (memcmp(first->anchor->sig, sec->anchor->sig,
1734 MAX_SIGNATURE_LENGTH) != 0)
1735 return 3;
1736
a2b97981
DW
1737 if (first_family == 0)
1738 first_family = first->anchor->family_num;
1739 if (sec_family == 0)
1740 sec_family = sec->anchor->family_num;
1741
1742 if (first_family != sec_family)
d23fe947 1743 return 3;
f796af5d 1744
d23fe947 1745 }
cdddbdbc 1746
f796af5d 1747
3e372e5a
DW
1748 /* if 'first' is a spare promote it to a populated mpb with sec's
1749 * family number
1750 */
1751 if (first->anchor->num_raid_devs == 0 &&
1752 sec->anchor->num_raid_devs > 0) {
78d30f94 1753 int i;
ba2de7ba
DW
1754 struct intel_dev *dv;
1755 struct imsm_dev *dev;
78d30f94
DW
1756
1757 /* we need to copy raid device info from sec if an allocation
1758 * fails here we don't associate the spare
1759 */
1760 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
1761 dv = malloc(sizeof(*dv));
1762 if (!dv)
1763 break;
1764 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1765 if (!dev) {
1766 free(dv);
1767 break;
78d30f94 1768 }
ba2de7ba
DW
1769 dv->dev = dev;
1770 dv->index = i;
1771 dv->next = first->devlist;
1772 first->devlist = dv;
78d30f94 1773 }
709743c5 1774 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
1775 /* allocation failure */
1776 free_devlist(first);
1777 fprintf(stderr, "imsm: failed to associate spare\n");
1778 return 3;
78d30f94 1779 }
3e372e5a 1780 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 1781 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 1782 first->anchor->family_num = sec->anchor->family_num;
ac6449be 1783 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
1784 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1785 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
1786 }
1787
cdddbdbc
DW
1788 return 0;
1789}
1790
0030e8d6
DW
1791static void fd2devname(int fd, char *name)
1792{
1793 struct stat st;
1794 char path[256];
33a6535d 1795 char dname[PATH_MAX];
0030e8d6
DW
1796 char *nm;
1797 int rv;
1798
1799 name[0] = '\0';
1800 if (fstat(fd, &st) != 0)
1801 return;
1802 sprintf(path, "/sys/dev/block/%d:%d",
1803 major(st.st_rdev), minor(st.st_rdev));
1804
1805 rv = readlink(path, dname, sizeof(dname));
1806 if (rv <= 0)
1807 return;
1808
1809 dname[rv] = '\0';
1810 nm = strrchr(dname, '/');
1811 nm++;
1812 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1813}
1814
cdddbdbc
DW
1815extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1816
1817static int imsm_read_serial(int fd, char *devname,
1818 __u8 serial[MAX_RAID_SERIAL_LEN])
1819{
1820 unsigned char scsi_serial[255];
cdddbdbc
DW
1821 int rv;
1822 int rsp_len;
1f24f035 1823 int len;
316e2bf4
DW
1824 char *dest;
1825 char *src;
1826 char *rsp_buf;
1827 int i;
cdddbdbc
DW
1828
1829 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 1830
f9ba0ff1
DW
1831 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1832
40ebbb9c 1833 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
1834 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1835 fd2devname(fd, (char *) serial);
0030e8d6
DW
1836 return 0;
1837 }
1838
cdddbdbc
DW
1839 if (rv != 0) {
1840 if (devname)
1841 fprintf(stderr,
1842 Name ": Failed to retrieve serial for %s\n",
1843 devname);
1844 return rv;
1845 }
1846
1847 rsp_len = scsi_serial[3];
03cd4cc8
DW
1848 if (!rsp_len) {
1849 if (devname)
1850 fprintf(stderr,
1851 Name ": Failed to retrieve serial for %s\n",
1852 devname);
1853 return 2;
1854 }
1f24f035 1855 rsp_buf = (char *) &scsi_serial[4];
5c3db629 1856
316e2bf4
DW
1857 /* trim all whitespace and non-printable characters and convert
1858 * ':' to ';'
1859 */
1860 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1861 src = &rsp_buf[i];
1862 if (*src > 0x20) {
1863 /* ':' is reserved for use in placeholder serial
1864 * numbers for missing disks
1865 */
1866 if (*src == ':')
1867 *dest++ = ';';
1868 else
1869 *dest++ = *src;
1870 }
1871 }
1872 len = dest - rsp_buf;
1873 dest = rsp_buf;
1874
1875 /* truncate leading characters */
1876 if (len > MAX_RAID_SERIAL_LEN) {
1877 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 1878 len = MAX_RAID_SERIAL_LEN;
316e2bf4 1879 }
5c3db629 1880
5c3db629 1881 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 1882 memcpy(serial, dest, len);
cdddbdbc
DW
1883
1884 return 0;
1885}
1886
1f24f035
DW
1887static int serialcmp(__u8 *s1, __u8 *s2)
1888{
1889 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1890}
1891
1892static void serialcpy(__u8 *dest, __u8 *src)
1893{
1894 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1895}
1896
1799c9e8 1897#ifndef MDASSEMBLE
54c2c1ea
DW
1898static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1899{
1900 struct dl *dl;
1901
1902 for (dl = super->disks; dl; dl = dl->next)
1903 if (serialcmp(dl->serial, serial) == 0)
1904 break;
1905
1906 return dl;
1907}
1799c9e8 1908#endif
54c2c1ea 1909
a2b97981
DW
1910static struct imsm_disk *
1911__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1912{
1913 int i;
1914
1915 for (i = 0; i < mpb->num_disks; i++) {
1916 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1917
1918 if (serialcmp(disk->serial, serial) == 0) {
1919 if (idx)
1920 *idx = i;
1921 return disk;
1922 }
1923 }
1924
1925 return NULL;
1926}
1927
cdddbdbc
DW
1928static int
1929load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1930{
a2b97981 1931 struct imsm_disk *disk;
cdddbdbc
DW
1932 struct dl *dl;
1933 struct stat stb;
cdddbdbc 1934 int rv;
a2b97981 1935 char name[40];
d23fe947
DW
1936 __u8 serial[MAX_RAID_SERIAL_LEN];
1937
1938 rv = imsm_read_serial(fd, devname, serial);
1939
1940 if (rv != 0)
1941 return 2;
1942
a2b97981 1943 dl = calloc(1, sizeof(*dl));
b9f594fe 1944 if (!dl) {
cdddbdbc
DW
1945 if (devname)
1946 fprintf(stderr,
1947 Name ": failed to allocate disk buffer for %s\n",
1948 devname);
1949 return 2;
1950 }
cdddbdbc 1951
a2b97981
DW
1952 fstat(fd, &stb);
1953 dl->major = major(stb.st_rdev);
1954 dl->minor = minor(stb.st_rdev);
1955 dl->next = super->disks;
1956 dl->fd = keep_fd ? fd : -1;
1957 assert(super->disks == NULL);
1958 super->disks = dl;
1959 serialcpy(dl->serial, serial);
1960 dl->index = -2;
1961 dl->e = NULL;
1962 fd2devname(fd, name);
1963 if (devname)
1964 dl->devname = strdup(devname);
1965 else
1966 dl->devname = strdup(name);
cdddbdbc 1967
d23fe947 1968 /* look up this disk's index in the current anchor */
a2b97981
DW
1969 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1970 if (disk) {
1971 dl->disk = *disk;
1972 /* only set index on disks that are a member of a
1973 * populated contianer, i.e. one with raid_devs
1974 */
1975 if (is_failed(&dl->disk))
3f6efecc 1976 dl->index = -2;
a2b97981
DW
1977 else if (is_spare(&dl->disk))
1978 dl->index = -1;
3f6efecc
DW
1979 }
1980
949c47a0
DW
1981 return 0;
1982}
1983
0e600426 1984#ifndef MDASSEMBLE
0c046afd
DW
1985/* When migrating map0 contains the 'destination' state while map1
1986 * contains the current state. When not migrating map0 contains the
1987 * current state. This routine assumes that map[0].map_state is set to
1988 * the current array state before being called.
1989 *
1990 * Migration is indicated by one of the following states
1991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 1992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 1993 * map1state=unitialized)
1484e727 1994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 1995 * map1state=normal)
e3bba0e0 1996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd
DW
1997 * map1state=degraded)
1998 */
0556e1a2 1999static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
3393c6af 2000{
0c046afd 2001 struct imsm_map *dest;
3393c6af
DW
2002 struct imsm_map *src = get_imsm_map(dev, 0);
2003
0c046afd 2004 dev->vol.migr_state = 1;
1484e727 2005 set_migr_type(dev, migr_type);
f8f603f1 2006 dev->vol.curr_migr_unit = 0;
0c046afd
DW
2007 dest = get_imsm_map(dev, 1);
2008
0556e1a2 2009 /* duplicate and then set the target end state in map[0] */
3393c6af 2010 memcpy(dest, src, sizeof_imsm_map(src));
0556e1a2
DW
2011 if (migr_type == MIGR_REBUILD) {
2012 __u32 ord;
2013 int i;
2014
2015 for (i = 0; i < src->num_members; i++) {
2016 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2017 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2018 }
2019 }
2020
0c046afd 2021 src->map_state = to_state;
949c47a0 2022}
f8f603f1
DW
2023
2024static void end_migration(struct imsm_dev *dev, __u8 map_state)
2025{
2026 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
2027 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2028 int i;
2029
2030 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2031 * completed in the last migration.
2032 *
2033 * FIXME add support for online capacity expansion and
2034 * raid-level-migration
2035 */
2036 for (i = 0; i < prev->num_members; i++)
2037 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
f8f603f1
DW
2038
2039 dev->vol.migr_state = 0;
2040 dev->vol.curr_migr_unit = 0;
2041 map->map_state = map_state;
2042}
0e600426 2043#endif
949c47a0
DW
2044
2045static int parse_raid_devices(struct intel_super *super)
2046{
2047 int i;
2048 struct imsm_dev *dev_new;
4d7b1503
DW
2049 size_t len, len_migr;
2050 size_t space_needed = 0;
2051 struct imsm_super *mpb = super->anchor;
949c47a0
DW
2052
2053 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2054 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 2055 struct intel_dev *dv;
949c47a0 2056
4d7b1503
DW
2057 len = sizeof_imsm_dev(dev_iter, 0);
2058 len_migr = sizeof_imsm_dev(dev_iter, 1);
2059 if (len_migr > len)
2060 space_needed += len_migr - len;
2061
ba2de7ba
DW
2062 dv = malloc(sizeof(*dv));
2063 if (!dv)
2064 return 1;
4d7b1503 2065 dev_new = malloc(len_migr);
ba2de7ba
DW
2066 if (!dev_new) {
2067 free(dv);
949c47a0 2068 return 1;
ba2de7ba 2069 }
949c47a0 2070 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
2071 dv->dev = dev_new;
2072 dv->index = i;
2073 dv->next = super->devlist;
2074 super->devlist = dv;
949c47a0 2075 }
cdddbdbc 2076
4d7b1503
DW
2077 /* ensure that super->buf is large enough when all raid devices
2078 * are migrating
2079 */
2080 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2081 void *buf;
2082
2083 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2084 if (posix_memalign(&buf, 512, len) != 0)
2085 return 1;
2086
1f45a8ad
DW
2087 memcpy(buf, super->buf, super->len);
2088 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
2089 free(super->buf);
2090 super->buf = buf;
2091 super->len = len;
2092 }
2093
cdddbdbc
DW
2094 return 0;
2095}
2096
604b746f
JD
2097/* retrieve a pointer to the bbm log which starts after all raid devices */
2098struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2099{
2100 void *ptr = NULL;
2101
2102 if (__le32_to_cpu(mpb->bbm_log_size)) {
2103 ptr = mpb;
2104 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2105 }
2106
2107 return ptr;
2108}
2109
d23fe947 2110static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 2111
cdddbdbc
DW
2112/* load_imsm_mpb - read matrix metadata
2113 * allocates super->mpb to be freed by free_super
2114 */
2115static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2116{
2117 unsigned long long dsize;
cdddbdbc
DW
2118 unsigned long long sectors;
2119 struct stat;
6416d527 2120 struct imsm_super *anchor;
cdddbdbc
DW
2121 __u32 check_sum;
2122
cdddbdbc
DW
2123 get_dev_size(fd, NULL, &dsize);
2124
2125 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2126 if (devname)
2127 fprintf(stderr,
2128 Name ": Cannot seek to anchor block on %s: %s\n",
2129 devname, strerror(errno));
2130 return 1;
2131 }
2132
949c47a0 2133 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
2134 if (devname)
2135 fprintf(stderr,
2136 Name ": Failed to allocate imsm anchor buffer"
2137 " on %s\n", devname);
2138 return 1;
2139 }
949c47a0 2140 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
2141 if (devname)
2142 fprintf(stderr,
2143 Name ": Cannot read anchor block on %s: %s\n",
2144 devname, strerror(errno));
6416d527 2145 free(anchor);
cdddbdbc
DW
2146 return 1;
2147 }
2148
6416d527 2149 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
2150 if (devname)
2151 fprintf(stderr,
2152 Name ": no IMSM anchor on %s\n", devname);
6416d527 2153 free(anchor);
cdddbdbc
DW
2154 return 2;
2155 }
2156
d23fe947 2157 __free_imsm(super, 0);
949c47a0
DW
2158 super->len = ROUND_UP(anchor->mpb_size, 512);
2159 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
2160 if (devname)
2161 fprintf(stderr,
2162 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 2163 super->len);
6416d527 2164 free(anchor);
cdddbdbc
DW
2165 return 2;
2166 }
949c47a0 2167 memcpy(super->buf, anchor, 512);
cdddbdbc 2168
6416d527
NB
2169 sectors = mpb_sectors(anchor) - 1;
2170 free(anchor);
949c47a0 2171 if (!sectors) {
ecf45690
DW
2172 check_sum = __gen_imsm_checksum(super->anchor);
2173 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2174 if (devname)
2175 fprintf(stderr,
2176 Name ": IMSM checksum %x != %x on %s\n",
2177 check_sum,
2178 __le32_to_cpu(super->anchor->check_sum),
2179 devname);
2180 return 2;
2181 }
2182
a2b97981 2183 return 0;
949c47a0 2184 }
cdddbdbc
DW
2185
2186 /* read the extended mpb */
2187 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2188 if (devname)
2189 fprintf(stderr,
2190 Name ": Cannot seek to extended mpb on %s: %s\n",
2191 devname, strerror(errno));
2192 return 1;
2193 }
2194
949c47a0 2195 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
2196 if (devname)
2197 fprintf(stderr,
2198 Name ": Cannot read extended mpb on %s: %s\n",
2199 devname, strerror(errno));
2200 return 2;
2201 }
2202
949c47a0
DW
2203 check_sum = __gen_imsm_checksum(super->anchor);
2204 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
2205 if (devname)
2206 fprintf(stderr,
2207 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 2208 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 2209 devname);
db575f3b 2210 return 3;
cdddbdbc
DW
2211 }
2212
604b746f
JD
2213 /* FIXME the BBM log is disk specific so we cannot use this global
2214 * buffer for all disks. Ok for now since we only look at the global
2215 * bbm_log_size parameter to gate assembly
2216 */
2217 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2218
a2b97981
DW
2219 return 0;
2220}
2221
2222static int
2223load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2224{
2225 int err;
2226
2227 err = load_imsm_mpb(fd, super, devname);
2228 if (err)
2229 return err;
2230 err = load_imsm_disk(fd, super, devname, keep_fd);
2231 if (err)
2232 return err;
2233 err = parse_raid_devices(super);
4d7b1503 2234
a2b97981 2235 return err;
cdddbdbc
DW
2236}
2237
ae6aad82
DW
2238static void __free_imsm_disk(struct dl *d)
2239{
2240 if (d->fd >= 0)
2241 close(d->fd);
2242 if (d->devname)
2243 free(d->devname);
0dcecb2e
DW
2244 if (d->e)
2245 free(d->e);
ae6aad82
DW
2246 free(d);
2247
2248}
cdddbdbc
DW
2249static void free_imsm_disks(struct intel_super *super)
2250{
47ee5a45 2251 struct dl *d;
cdddbdbc 2252
47ee5a45
DW
2253 while (super->disks) {
2254 d = super->disks;
cdddbdbc 2255 super->disks = d->next;
ae6aad82 2256 __free_imsm_disk(d);
cdddbdbc 2257 }
47ee5a45
DW
2258 while (super->missing) {
2259 d = super->missing;
2260 super->missing = d->next;
2261 __free_imsm_disk(d);
2262 }
2263
cdddbdbc
DW
2264}
2265
9ca2c81c 2266/* free all the pieces hanging off of a super pointer */
d23fe947 2267static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 2268{
9ca2c81c 2269 if (super->buf) {
949c47a0 2270 free(super->buf);
9ca2c81c
DW
2271 super->buf = NULL;
2272 }
d23fe947
DW
2273 if (free_disks)
2274 free_imsm_disks(super);
ba2de7ba 2275 free_devlist(super);
88c32bb1
DW
2276 if (super->hba) {
2277 free((void *) super->hba);
2278 super->hba = NULL;
2279 }
cdddbdbc
DW
2280}
2281
9ca2c81c
DW
2282static void free_imsm(struct intel_super *super)
2283{
d23fe947 2284 __free_imsm(super, 1);
9ca2c81c
DW
2285 free(super);
2286}
cdddbdbc
DW
2287
2288static void free_super_imsm(struct supertype *st)
2289{
2290 struct intel_super *super = st->sb;
2291
2292 if (!super)
2293 return;
2294
2295 free_imsm(super);
2296 st->sb = NULL;
2297}
2298
c2c087e6
DW
2299static struct intel_super *alloc_super(int creating_imsm)
2300{
2301 struct intel_super *super = malloc(sizeof(*super));
2302
2303 if (super) {
2304 memset(super, 0, sizeof(*super));
2305 super->creating_imsm = creating_imsm;
bf5a934a 2306 super->current_vol = -1;
0dcecb2e 2307 super->create_offset = ~((__u32 ) 0);
88c32bb1
DW
2308 if (!check_env("IMSM_NO_PLATFORM"))
2309 super->orom = find_imsm_orom();
cceebc67 2310 if (super->orom && !check_env("IMSM_TEST_OROM")) {
88c32bb1
DW
2311 struct sys_dev *list, *ent;
2312
2313 /* find the first intel ahci controller */
2314 list = find_driver_devices("pci", "ahci");
2315 for (ent = list; ent; ent = ent->next)
2316 if (devpath_to_vendor(ent->path) == 0x8086)
2317 break;
2318 if (ent) {
2319 super->hba = ent->path;
2320 ent->path = NULL;
2321 }
2322 free_sys_dev(&list);
2323 }
c2c087e6
DW
2324 }
2325
2326 return super;
2327}
2328
cdddbdbc 2329#ifndef MDASSEMBLE
47ee5a45
DW
2330/* find_missing - helper routine for load_super_imsm_all that identifies
2331 * disks that have disappeared from the system. This routine relies on
2332 * the mpb being uptodate, which it is at load time.
2333 */
2334static int find_missing(struct intel_super *super)
2335{
2336 int i;
2337 struct imsm_super *mpb = super->anchor;
2338 struct dl *dl;
2339 struct imsm_disk *disk;
47ee5a45
DW
2340
2341 for (i = 0; i < mpb->num_disks; i++) {
2342 disk = __get_imsm_disk(mpb, i);
54c2c1ea 2343 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
2344 if (dl)
2345 continue;
47ee5a45
DW
2346
2347 dl = malloc(sizeof(*dl));
2348 if (!dl)
2349 return 1;
2350 dl->major = 0;
2351 dl->minor = 0;
2352 dl->fd = -1;
2353 dl->devname = strdup("missing");
2354 dl->index = i;
2355 serialcpy(dl->serial, disk->serial);
2356 dl->disk = *disk;
689c9bf3 2357 dl->e = NULL;
47ee5a45
DW
2358 dl->next = super->missing;
2359 super->missing = dl;
2360 }
2361
2362 return 0;
2363}
2364
a2b97981
DW
2365static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2366{
2367 struct intel_disk *idisk = disk_list;
2368
2369 while (idisk) {
2370 if (serialcmp(idisk->disk.serial, serial) == 0)
2371 break;
2372 idisk = idisk->next;
2373 }
2374
2375 return idisk;
2376}
2377
2378static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2379 struct intel_super *super,
2380 struct intel_disk **disk_list)
2381{
2382 struct imsm_disk *d = &super->disks->disk;
2383 struct imsm_super *mpb = super->anchor;
2384 int i, j;
2385
2386 for (i = 0; i < tbl_size; i++) {
2387 struct imsm_super *tbl_mpb = table[i]->anchor;
2388 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2389
2390 if (tbl_mpb->family_num == mpb->family_num) {
2391 if (tbl_mpb->check_sum == mpb->check_sum) {
2392 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2393 __func__, super->disks->major,
2394 super->disks->minor,
2395 table[i]->disks->major,
2396 table[i]->disks->minor);
2397 break;
2398 }
2399
2400 if (((is_configured(d) && !is_configured(tbl_d)) ||
2401 is_configured(d) == is_configured(tbl_d)) &&
2402 tbl_mpb->generation_num < mpb->generation_num) {
2403 /* current version of the mpb is a
2404 * better candidate than the one in
2405 * super_table, but copy over "cross
2406 * generational" status
2407 */
2408 struct intel_disk *idisk;
2409
2410 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2411 __func__, super->disks->major,
2412 super->disks->minor,
2413 table[i]->disks->major,
2414 table[i]->disks->minor);
2415
2416 idisk = disk_list_get(tbl_d->serial, *disk_list);
2417 if (idisk && is_failed(&idisk->disk))
2418 tbl_d->status |= FAILED_DISK;
2419 break;
2420 } else {
2421 struct intel_disk *idisk;
2422 struct imsm_disk *disk;
2423
2424 /* tbl_mpb is more up to date, but copy
2425 * over cross generational status before
2426 * returning
2427 */
2428 disk = __serial_to_disk(d->serial, mpb, NULL);
2429 if (disk && is_failed(disk))
2430 d->status |= FAILED_DISK;
2431
2432 idisk = disk_list_get(d->serial, *disk_list);
2433 if (idisk) {
2434 idisk->owner = i;
2435 if (disk && is_configured(disk))
2436 idisk->disk.status |= CONFIGURED_DISK;
2437 }
2438
2439 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2440 __func__, super->disks->major,
2441 super->disks->minor,
2442 table[i]->disks->major,
2443 table[i]->disks->minor);
2444
2445 return tbl_size;
2446 }
2447 }
2448 }
2449
2450 if (i >= tbl_size)
2451 table[tbl_size++] = super;
2452 else
2453 table[i] = super;
2454
2455 /* update/extend the merged list of imsm_disk records */
2456 for (j = 0; j < mpb->num_disks; j++) {
2457 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2458 struct intel_disk *idisk;
2459
2460 idisk = disk_list_get(disk->serial, *disk_list);
2461 if (idisk) {
2462 idisk->disk.status |= disk->status;
2463 if (is_configured(&idisk->disk) ||
2464 is_failed(&idisk->disk))
2465 idisk->disk.status &= ~(SPARE_DISK);
2466 } else {
2467 idisk = calloc(1, sizeof(*idisk));
2468 if (!idisk)
2469 return -1;
2470 idisk->owner = IMSM_UNKNOWN_OWNER;
2471 idisk->disk = *disk;
2472 idisk->next = *disk_list;
2473 *disk_list = idisk;
2474 }
2475
2476 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2477 idisk->owner = i;
2478 }
2479
2480 return tbl_size;
2481}
2482
2483static struct intel_super *
2484validate_members(struct intel_super *super, struct intel_disk *disk_list,
2485 const int owner)
2486{
2487 struct imsm_super *mpb = super->anchor;
2488 int ok_count = 0;
2489 int i;
2490
2491 for (i = 0; i < mpb->num_disks; i++) {
2492 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2493 struct intel_disk *idisk;
2494
2495 idisk = disk_list_get(disk->serial, disk_list);
2496 if (idisk) {
2497 if (idisk->owner == owner ||
2498 idisk->owner == IMSM_UNKNOWN_OWNER)
2499 ok_count++;
2500 else
2501 dprintf("%s: '%.16s' owner %d != %d\n",
2502 __func__, disk->serial, idisk->owner,
2503 owner);
2504 } else {
2505 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2506 __func__, __le32_to_cpu(mpb->family_num), i,
2507 disk->serial);
2508 break;
2509 }
2510 }
2511
2512 if (ok_count == mpb->num_disks)
2513 return super;
2514 return NULL;
2515}
2516
2517static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2518{
2519 struct intel_super *s;
2520
2521 for (s = super_list; s; s = s->next) {
2522 if (family_num != s->anchor->family_num)
2523 continue;
2524 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2525 __le32_to_cpu(family_num), s->disks->devname);
2526 }
2527}
2528
2529static struct intel_super *
2530imsm_thunderdome(struct intel_super **super_list, int len)
2531{
2532 struct intel_super *super_table[len];
2533 struct intel_disk *disk_list = NULL;
2534 struct intel_super *champion, *spare;
2535 struct intel_super *s, **del;
2536 int tbl_size = 0;
2537 int conflict;
2538 int i;
2539
2540 memset(super_table, 0, sizeof(super_table));
2541 for (s = *super_list; s; s = s->next)
2542 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2543
2544 for (i = 0; i < tbl_size; i++) {
2545 struct imsm_disk *d;
2546 struct intel_disk *idisk;
2547 struct imsm_super *mpb = super_table[i]->anchor;
2548
2549 s = super_table[i];
2550 d = &s->disks->disk;
2551
2552 /* 'd' must appear in merged disk list for its
2553 * configuration to be valid
2554 */
2555 idisk = disk_list_get(d->serial, disk_list);
2556 if (idisk && idisk->owner == i)
2557 s = validate_members(s, disk_list, i);
2558 else
2559 s = NULL;
2560
2561 if (!s)
2562 dprintf("%s: marking family: %#x from %d:%d offline\n",
2563 __func__, mpb->family_num,
2564 super_table[i]->disks->major,
2565 super_table[i]->disks->minor);
2566 super_table[i] = s;
2567 }
2568
2569 /* This is where the mdadm implementation differs from the Windows
2570 * driver which has no strict concept of a container. We can only
2571 * assemble one family from a container, so when returning a prodigal
2572 * array member to this system the code will not be able to disambiguate
2573 * the container contents that should be assembled ("foreign" versus
2574 * "local"). It requires user intervention to set the orig_family_num
2575 * to a new value to establish a new container. The Windows driver in
2576 * this situation fixes up the volume name in place and manages the
2577 * foreign array as an independent entity.
2578 */
2579 s = NULL;
2580 spare = NULL;
2581 conflict = 0;
2582 for (i = 0; i < tbl_size; i++) {
2583 struct intel_super *tbl_ent = super_table[i];
2584 int is_spare = 0;
2585
2586 if (!tbl_ent)
2587 continue;
2588
2589 if (tbl_ent->anchor->num_raid_devs == 0) {
2590 spare = tbl_ent;
2591 is_spare = 1;
2592 }
2593
2594 if (s && !is_spare) {
2595 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2596 conflict++;
2597 } else if (!s && !is_spare)
2598 s = tbl_ent;
2599 }
2600
2601 if (!s)
2602 s = spare;
2603 if (!s) {
2604 champion = NULL;
2605 goto out;
2606 }
2607 champion = s;
2608
2609 if (conflict)
2610 fprintf(stderr, "Chose family %#x on '%s', "
2611 "assemble conflicts to new container with '--update=uuid'\n",
2612 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2613
2614 /* collect all dl's onto 'champion', and update them to
2615 * champion's version of the status
2616 */
2617 for (s = *super_list; s; s = s->next) {
2618 struct imsm_super *mpb = champion->anchor;
2619 struct dl *dl = s->disks;
2620
2621 if (s == champion)
2622 continue;
2623
2624 for (i = 0; i < mpb->num_disks; i++) {
2625 struct imsm_disk *disk;
2626
2627 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2628 if (disk) {
2629 dl->disk = *disk;
2630 /* only set index on disks that are a member of
2631 * a populated contianer, i.e. one with
2632 * raid_devs
2633 */
2634 if (is_failed(&dl->disk))
2635 dl->index = -2;
2636 else if (is_spare(&dl->disk))
2637 dl->index = -1;
2638 break;
2639 }
2640 }
2641
2642 if (i >= mpb->num_disks) {
2643 struct intel_disk *idisk;
2644
2645 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 2646 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
2647 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2648 dl->index = -1;
2649 else {
2650 dl->index = -2;
2651 continue;
2652 }
2653 }
2654
2655 dl->next = champion->disks;
2656 champion->disks = dl;
2657 s->disks = NULL;
2658 }
2659
2660 /* delete 'champion' from super_list */
2661 for (del = super_list; *del; ) {
2662 if (*del == champion) {
2663 *del = (*del)->next;
2664 break;
2665 } else
2666 del = &(*del)->next;
2667 }
2668 champion->next = NULL;
2669
2670 out:
2671 while (disk_list) {
2672 struct intel_disk *idisk = disk_list;
2673
2674 disk_list = disk_list->next;
2675 free(idisk);
2676 }
2677
2678 return champion;
2679}
2680
cdddbdbc
DW
2681static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2682 char *devname, int keep_fd)
2683{
2684 struct mdinfo *sra;
a2b97981
DW
2685 struct intel_super *super_list = NULL;
2686 struct intel_super *super = NULL;
db575f3b 2687 int devnum = fd2devnum(fd);
a2b97981 2688 struct mdinfo *sd;
db575f3b 2689 int retry;
a2b97981
DW
2690 int err = 0;
2691 int i;
dab4a513 2692 enum sysfs_read_flags flags;
cdddbdbc 2693
dab4a513
DW
2694 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2695 if (mdmon_running(devnum))
2696 flags |= SKIP_GONE_DEVS;
2697
2698 /* check if 'fd' an opened container */
2699 sra = sysfs_read(fd, 0, flags);
cdddbdbc
DW
2700 if (!sra)
2701 return 1;
2702
2703 if (sra->array.major_version != -1 ||
2704 sra->array.minor_version != -2 ||
1602d52c
AW
2705 strcmp(sra->text_version, "imsm") != 0) {
2706 err = 1;
2707 goto error;
2708 }
a2b97981
DW
2709 /* load all mpbs */
2710 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2711 struct intel_super *s = alloc_super(0);
7a6ecd55 2712 char nm[32];
a2b97981
DW
2713 int dfd;
2714
2715 err = 1;
2716 if (!s)
2717 goto error;
2718 s->next = super_list;
2719 super_list = s;
cdddbdbc 2720
a2b97981 2721 err = 2;
cdddbdbc
DW
2722 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2723 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
a2b97981
DW
2724 if (dfd < 0)
2725 goto error;
2726
2727 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
db575f3b
DW
2728
2729 /* retry the load if we might have raced against mdmon */
a2b97981 2730 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
2731 for (retry = 0; retry < 3; retry++) {
2732 usleep(3000);
a2b97981
DW
2733 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2734 if (err != 3)
db575f3b
DW
2735 break;
2736 }
cdddbdbc
DW
2737 if (!keep_fd)
2738 close(dfd);
a2b97981
DW
2739 if (err)
2740 goto error;
cdddbdbc
DW
2741 }
2742
a2b97981
DW
2743 /* all mpbs enter, maybe one leaves */
2744 super = imsm_thunderdome(&super_list, i);
2745 if (!super) {
2746 err = 1;
2747 goto error;
cdddbdbc
DW
2748 }
2749
47ee5a45
DW
2750 if (find_missing(super) != 0) {
2751 free_imsm(super);
a2b97981
DW
2752 err = 2;
2753 goto error;
47ee5a45
DW
2754 }
2755
f7e7067b 2756 if (st->subarray[0]) {
949c47a0 2757 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
bf5a934a 2758 super->current_vol = atoi(st->subarray);
af99d9ca
DW
2759 else {
2760 free_imsm(super);
a2b97981
DW
2761 err = 1;
2762 goto error;
af99d9ca 2763 }
f7e7067b 2764 }
a2b97981
DW
2765 err = 0;
2766
2767 error:
2768 while (super_list) {
2769 struct intel_super *s = super_list;
2770
2771 super_list = super_list->next;
2772 free_imsm(s);
2773 }
1602d52c 2774 sysfs_free(sra);
a2b97981
DW
2775
2776 if (err)
2777 return err;
f7e7067b 2778
cdddbdbc 2779 *sbp = super;
db575f3b 2780 st->container_dev = devnum;
a2b97981 2781 if (err == 0 && st->ss == NULL) {
bf5a934a 2782 st->ss = &super_imsm;
cdddbdbc
DW
2783 st->minor_version = 0;
2784 st->max_devs = IMSM_MAX_DEVICES;
2785 }
352452c3 2786 st->loaded_container = 1;
cdddbdbc
DW
2787
2788 return 0;
2789}
2790#endif
2791
2792static int load_super_imsm(struct supertype *st, int fd, char *devname)
2793{
2794 struct intel_super *super;
2795 int rv;
2796
2797#ifndef MDASSEMBLE
3dbccbcf 2798 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
cdddbdbc
DW
2799 return 0;
2800#endif
2801
37424f13
DW
2802 free_super_imsm(st);
2803
c2c087e6 2804 super = alloc_super(0);
cdddbdbc
DW
2805 if (!super) {
2806 fprintf(stderr,
2807 Name ": malloc of %zu failed.\n",
2808 sizeof(*super));
2809 return 1;
2810 }
2811
a2b97981 2812 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
2813
2814 if (rv) {
2815 if (devname)
2816 fprintf(stderr,
2817 Name ": Failed to load all information "
2818 "sections on %s\n", devname);
2819 free_imsm(super);
2820 return rv;
2821 }
2822
af99d9ca
DW
2823 if (st->subarray[0]) {
2824 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2825 super->current_vol = atoi(st->subarray);
2826 else {
2827 free_imsm(super);
2828 return 1;
2829 }
2830 }
2831
cdddbdbc
DW
2832 st->sb = super;
2833 if (st->ss == NULL) {
2834 st->ss = &super_imsm;
2835 st->minor_version = 0;
2836 st->max_devs = IMSM_MAX_DEVICES;
2837 }
352452c3 2838 st->loaded_container = 0;
cdddbdbc
DW
2839
2840 return 0;
2841}
2842
ef6ffade
DW
2843static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2844{
2845 if (info->level == 1)
2846 return 128;
2847 return info->chunk_size >> 9;
2848}
2849
ff596308 2850static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
2851{
2852 __u32 num_stripes;
2853
2854 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 2855 num_stripes /= num_domains;
ef6ffade
DW
2856
2857 return num_stripes;
2858}
2859
fcfd9599
DW
2860static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2861{
4025c288
DW
2862 if (info->level == 1)
2863 return info->size * 2;
2864 else
2865 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
2866}
2867
4d1313e9
DW
2868static void imsm_update_version_info(struct intel_super *super)
2869{
2870 /* update the version and attributes */
2871 struct imsm_super *mpb = super->anchor;
2872 char *version;
2873 struct imsm_dev *dev;
2874 struct imsm_map *map;
2875 int i;
2876
2877 for (i = 0; i < mpb->num_raid_devs; i++) {
2878 dev = get_imsm_dev(super, i);
2879 map = get_imsm_map(dev, 0);
2880 if (__le32_to_cpu(dev->size_high) > 0)
2881 mpb->attributes |= MPB_ATTRIB_2TB;
2882
2883 /* FIXME detect when an array spans a port multiplier */
2884 #if 0
2885 mpb->attributes |= MPB_ATTRIB_PM;
2886 #endif
2887
2888 if (mpb->num_raid_devs > 1 ||
2889 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2890 version = MPB_VERSION_ATTRIBS;
2891 switch (get_imsm_raid_level(map)) {
2892 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2893 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2894 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2895 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2896 }
2897 } else {
2898 if (map->num_members >= 5)
2899 version = MPB_VERSION_5OR6_DISK_ARRAY;
2900 else if (dev->status == DEV_CLONE_N_GO)
2901 version = MPB_VERSION_CNG;
2902 else if (get_imsm_raid_level(map) == 5)
2903 version = MPB_VERSION_RAID5;
2904 else if (map->num_members >= 3)
2905 version = MPB_VERSION_3OR4_DISK_ARRAY;
2906 else if (get_imsm_raid_level(map) == 1)
2907 version = MPB_VERSION_RAID1;
2908 else
2909 version = MPB_VERSION_RAID0;
2910 }
2911 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2912 }
2913}
2914
8b353278
DW
2915static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2916 unsigned long long size, char *name,
2917 char *homehost, int *uuid)
cdddbdbc 2918{
c2c087e6
DW
2919 /* We are creating a volume inside a pre-existing container.
2920 * so st->sb is already set.
2921 */
2922 struct intel_super *super = st->sb;
949c47a0 2923 struct imsm_super *mpb = super->anchor;
ba2de7ba 2924 struct intel_dev *dv;
c2c087e6
DW
2925 struct imsm_dev *dev;
2926 struct imsm_vol *vol;
2927 struct imsm_map *map;
2928 int idx = mpb->num_raid_devs;
2929 int i;
2930 unsigned long long array_blocks;
2c092cad 2931 size_t size_old, size_new;
ff596308 2932 __u32 num_data_stripes;
cdddbdbc 2933
88c32bb1 2934 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 2935 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 2936 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
2937 return 0;
2938 }
2939
2c092cad
DW
2940 /* ensure the mpb is large enough for the new data */
2941 size_old = __le32_to_cpu(mpb->mpb_size);
2942 size_new = disks_to_mpb_size(info->nr_disks);
2943 if (size_new > size_old) {
2944 void *mpb_new;
2945 size_t size_round = ROUND_UP(size_new, 512);
2946
2947 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2948 fprintf(stderr, Name": could not allocate new mpb\n");
2949 return 0;
2950 }
2951 memcpy(mpb_new, mpb, size_old);
2952 free(mpb);
2953 mpb = mpb_new;
949c47a0 2954 super->anchor = mpb_new;
2c092cad
DW
2955 mpb->mpb_size = __cpu_to_le32(size_new);
2956 memset(mpb_new + size_old, 0, size_round - size_old);
2957 }
bf5a934a 2958 super->current_vol = idx;
d23fe947
DW
2959 /* when creating the first raid device in this container set num_disks
2960 * to zero, i.e. delete this spare and add raid member devices in
2961 * add_to_super_imsm_volume()
2962 */
2963 if (super->current_vol == 0)
2964 mpb->num_disks = 0;
5a038140
DW
2965
2966 for (i = 0; i < super->current_vol; i++) {
2967 dev = get_imsm_dev(super, i);
2968 if (strncmp((char *) dev->volume, name,
2969 MAX_RAID_SERIAL_LEN) == 0) {
2970 fprintf(stderr, Name": '%s' is already defined for this container\n",
2971 name);
2972 return 0;
2973 }
2974 }
2975
bf5a934a 2976 sprintf(st->subarray, "%d", idx);
ba2de7ba
DW
2977 dv = malloc(sizeof(*dv));
2978 if (!dv) {
2979 fprintf(stderr, Name ": failed to allocate device list entry\n");
2980 return 0;
2981 }
949c47a0
DW
2982 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2983 if (!dev) {
ba2de7ba 2984 free(dv);
949c47a0
DW
2985 fprintf(stderr, Name": could not allocate raid device\n");
2986 return 0;
2987 }
c2c087e6 2988 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
2989 if (info->level == 1)
2990 array_blocks = info_to_blocks_per_member(info);
2991 else
2992 array_blocks = calc_array_size(info->level, info->raid_disks,
2993 info->layout, info->chunk_size,
2994 info->size*2);
979d38be
DW
2995 /* round array size down to closest MB */
2996 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2997
c2c087e6
DW
2998 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2999 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3000 dev->status = __cpu_to_le32(0);
3001 dev->reserved_blocks = __cpu_to_le32(0);
3002 vol = &dev->vol;
3003 vol->migr_state = 0;
1484e727 3004 set_migr_type(dev, MIGR_INIT);
c2c087e6 3005 vol->dirty = 0;
f8f603f1 3006 vol->curr_migr_unit = 0;
a965f303 3007 map = get_imsm_map(dev, 0);
0dcecb2e 3008 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 3009 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 3010 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 3011 map->failed_disk_num = ~0;
c2c087e6
DW
3012 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3013 IMSM_T_STATE_NORMAL;
252d23c0 3014 map->ddf = 1;
ef6ffade
DW
3015
3016 if (info->level == 1 && info->raid_disks > 2) {
38950822
AW
3017 free(dev);
3018 free(dv);
ef6ffade
DW
3019 fprintf(stderr, Name": imsm does not support more than 2 disks"
3020 "in a raid1 volume\n");
3021 return 0;
3022 }
81062a36
DW
3023
3024 map->raid_level = info->level;
4d1313e9 3025 if (info->level == 10) {
c2c087e6 3026 map->raid_level = 1;
4d1313e9 3027 map->num_domains = info->raid_disks / 2;
81062a36
DW
3028 } else if (info->level == 1)
3029 map->num_domains = info->raid_disks;
3030 else
ff596308 3031 map->num_domains = 1;
81062a36 3032
ff596308
DW
3033 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3034 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 3035
c2c087e6
DW
3036 map->num_members = info->raid_disks;
3037 for (i = 0; i < map->num_members; i++) {
3038 /* initialized in add_to_super */
be73972f 3039 set_imsm_ord_tbl_ent(map, i, 0);
c2c087e6 3040 }
949c47a0 3041 mpb->num_raid_devs++;
ba2de7ba
DW
3042
3043 dv->dev = dev;
3044 dv->index = super->current_vol;
3045 dv->next = super->devlist;
3046 super->devlist = dv;
c2c087e6 3047
4d1313e9
DW
3048 imsm_update_version_info(super);
3049
c2c087e6 3050 return 1;
cdddbdbc
DW
3051}
3052
bf5a934a
DW
3053static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3054 unsigned long long size, char *name,
3055 char *homehost, int *uuid)
3056{
3057 /* This is primarily called by Create when creating a new array.
3058 * We will then get add_to_super called for each component, and then
3059 * write_init_super called to write it out to each device.
3060 * For IMSM, Create can create on fresh devices or on a pre-existing
3061 * array.
3062 * To create on a pre-existing array a different method will be called.
3063 * This one is just for fresh drives.
3064 */
3065 struct intel_super *super;
3066 struct imsm_super *mpb;
3067 size_t mpb_size;
4d1313e9 3068 char *version;
bf5a934a 3069
bf5a934a 3070 if (st->sb)
e683ca88
DW
3071 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3072
3073 if (info)
3074 mpb_size = disks_to_mpb_size(info->nr_disks);
3075 else
3076 mpb_size = 512;
bf5a934a
DW
3077
3078 super = alloc_super(1);
e683ca88 3079 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 3080 free(super);
e683ca88
DW
3081 super = NULL;
3082 }
3083 if (!super) {
3084 fprintf(stderr, Name
3085 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
3086 return 0;
3087 }
e683ca88 3088 memset(super->buf, 0, mpb_size);
ef649044 3089 mpb = super->buf;
e683ca88
DW
3090 mpb->mpb_size = __cpu_to_le32(mpb_size);
3091 st->sb = super;
3092
3093 if (info == NULL) {
3094 /* zeroing superblock */
3095 return 0;
3096 }
bf5a934a 3097
4d1313e9
DW
3098 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3099
3100 version = (char *) mpb->sig;
3101 strcpy(version, MPB_SIGNATURE);
3102 version += strlen(MPB_SIGNATURE);
3103 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 3104
bf5a934a
DW
3105 return 1;
3106}
3107
0e600426 3108#ifndef MDASSEMBLE
f20c3968 3109static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
3110 int fd, char *devname)
3111{
3112 struct intel_super *super = st->sb;
d23fe947 3113 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
3114 struct dl *dl;
3115 struct imsm_dev *dev;
3116 struct imsm_map *map;
bf5a934a 3117
949c47a0 3118 dev = get_imsm_dev(super, super->current_vol);
a965f303 3119 map = get_imsm_map(dev, 0);
bf5a934a 3120
208933a7
N
3121 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3122 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3123 devname);
3124 return 1;
3125 }
3126
efb30e7f
DW
3127 if (fd == -1) {
3128 /* we're doing autolayout so grab the pre-marked (in
3129 * validate_geometry) raid_disk
3130 */
3131 for (dl = super->disks; dl; dl = dl->next)
3132 if (dl->raiddisk == dk->raid_disk)
3133 break;
3134 } else {
3135 for (dl = super->disks; dl ; dl = dl->next)
3136 if (dl->major == dk->major &&
3137 dl->minor == dk->minor)
3138 break;
3139 }
d23fe947 3140
208933a7
N
3141 if (!dl) {
3142 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 3143 return 1;
208933a7 3144 }
bf5a934a 3145
d23fe947
DW
3146 /* add a pristine spare to the metadata */
3147 if (dl->index < 0) {
3148 dl->index = super->anchor->num_disks;
3149 super->anchor->num_disks++;
3150 }
be73972f 3151 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 3152 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
3153
3154 /* if we are creating the first raid device update the family number */
3155 if (super->current_vol == 0) {
3156 __u32 sum;
3157 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3158 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3159
791b666a
AW
3160 if (!_dev || !_disk) {
3161 fprintf(stderr, Name ": BUG mpb setup error\n");
3162 return 1;
3163 }
d23fe947
DW
3164 *_dev = *dev;
3165 *_disk = dl->disk;
148acb7b
DW
3166 sum = random32();
3167 sum += __gen_imsm_checksum(mpb);
d23fe947 3168 mpb->family_num = __cpu_to_le32(sum);
148acb7b 3169 mpb->orig_family_num = mpb->family_num;
d23fe947 3170 }
f20c3968
DW
3171
3172 return 0;
bf5a934a
DW
3173}
3174
f20c3968 3175static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
cdddbdbc
DW
3176 int fd, char *devname)
3177{
c2c087e6 3178 struct intel_super *super = st->sb;
c2c087e6
DW
3179 struct dl *dd;
3180 unsigned long long size;
f2f27e63 3181 __u32 id;
c2c087e6
DW
3182 int rv;
3183 struct stat stb;
3184
88c32bb1
DW
3185 /* if we are on an RAID enabled platform check that the disk is
3186 * attached to the raid controller
3187 */
3188 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3189 fprintf(stderr,
3190 Name ": %s is not attached to the raid controller: %s\n",
3191 devname ? : "disk", super->hba);
3192 return 1;
3193 }
3194
f20c3968
DW
3195 if (super->current_vol >= 0)
3196 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 3197
c2c087e6
DW
3198 fstat(fd, &stb);
3199 dd = malloc(sizeof(*dd));
b9f594fe 3200 if (!dd) {
c2c087e6
DW
3201 fprintf(stderr,
3202 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 3203 return 1;
c2c087e6
DW
3204 }
3205 memset(dd, 0, sizeof(*dd));
3206 dd->major = major(stb.st_rdev);
3207 dd->minor = minor(stb.st_rdev);
b9f594fe 3208 dd->index = -1;
c2c087e6 3209 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 3210 dd->fd = fd;
689c9bf3 3211 dd->e = NULL;
c2c087e6 3212 rv = imsm_read_serial(fd, devname, dd->serial);
32ba9157 3213 if (rv) {
c2c087e6 3214 fprintf(stderr,
0030e8d6 3215 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 3216 free(dd);
0030e8d6 3217 abort();
c2c087e6
DW
3218 }
3219
c2c087e6
DW
3220 get_dev_size(fd, NULL, &size);
3221 size /= 512;
1f24f035 3222 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 3223 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 3224 dd->disk.status = SPARE_DISK;
c2c087e6 3225 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 3226 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 3227 else
b9f594fe 3228 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
3229
3230 if (st->update_tail) {
3231 dd->next = super->add;
3232 super->add = dd;
3233 } else {
3234 dd->next = super->disks;
3235 super->disks = dd;
3236 }
f20c3968
DW
3237
3238 return 0;
cdddbdbc
DW
3239}
3240
f796af5d
DW
3241static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3242
3243static union {
3244 char buf[512];
3245 struct imsm_super anchor;
3246} spare_record __attribute__ ((aligned(512)));
c2c087e6 3247
d23fe947
DW
3248/* spare records have their own family number and do not have any defined raid
3249 * devices
3250 */
3251static int write_super_imsm_spares(struct intel_super *super, int doclose)
3252{
d23fe947 3253 struct imsm_super *mpb = super->anchor;
f796af5d 3254 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
3255 __u32 sum;
3256 struct dl *d;
3257
f796af5d
DW
3258 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3259 spare->generation_num = __cpu_to_le32(1UL),
3260 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3261 spare->num_disks = 1,
3262 spare->num_raid_devs = 0,
3263 spare->cache_size = mpb->cache_size,
3264 spare->pwr_cycle_count = __cpu_to_le32(1),
3265
3266 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3267 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
3268
3269 for (d = super->disks; d; d = d->next) {
8796fdc4 3270 if (d->index != -1)
d23fe947
DW
3271 continue;
3272
f796af5d
DW
3273 spare->disk[0] = d->disk;
3274 sum = __gen_imsm_checksum(spare);
3275 spare->family_num = __cpu_to_le32(sum);
3276 spare->orig_family_num = 0;
3277 sum = __gen_imsm_checksum(spare);
3278 spare->check_sum = __cpu_to_le32(sum);
d23fe947 3279
f796af5d 3280 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
3281 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3282 __func__, d->major, d->minor, strerror(errno));
e74255d9 3283 return 1;
d23fe947
DW
3284 }
3285 if (doclose) {
3286 close(d->fd);
3287 d->fd = -1;
3288 }
3289 }
3290
e74255d9 3291 return 0;
d23fe947
DW
3292}
3293
c2c087e6 3294static int write_super_imsm(struct intel_super *super, int doclose)
cdddbdbc 3295{
949c47a0 3296 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3297 struct dl *d;
3298 __u32 generation;
3299 __u32 sum;
d23fe947 3300 int spares = 0;
949c47a0 3301 int i;
a48ac0a8 3302 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
cdddbdbc 3303
c2c087e6
DW
3304 /* 'generation' is incremented everytime the metadata is written */
3305 generation = __le32_to_cpu(mpb->generation_num);
3306 generation++;
3307 mpb->generation_num = __cpu_to_le32(generation);
3308
148acb7b
DW
3309 /* fix up cases where previous mdadm releases failed to set
3310 * orig_family_num
3311 */
3312 if (mpb->orig_family_num == 0)
3313 mpb->orig_family_num = mpb->family_num;
3314
1ee1e9fc 3315 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
d23fe947 3316 for (d = super->disks; d; d = d->next) {
8796fdc4 3317 if (d->index == -1)
d23fe947 3318 spares++;
1ee1e9fc 3319 else
d23fe947 3320 mpb->disk[d->index] = d->disk;
d23fe947 3321 }
47ee5a45
DW
3322 for (d = super->missing; d; d = d->next)
3323 mpb->disk[d->index] = d->disk;
b9f594fe 3324
949c47a0
DW
3325 for (i = 0; i < mpb->num_raid_devs; i++) {
3326 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3327
ba2de7ba 3328 imsm_copy_dev(dev, get_imsm_dev(super, i));
a48ac0a8 3329 mpb_size += sizeof_imsm_dev(dev, 0);
949c47a0 3330 }
a48ac0a8
DW
3331 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3332 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 3333
c2c087e6 3334 /* recalculate checksum */
949c47a0 3335 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
3336 mpb->check_sum = __cpu_to_le32(sum);
3337
d23fe947 3338 /* write the mpb for disks that compose raid devices */
c2c087e6 3339 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
3340 if (d->index < 0)
3341 continue;
f796af5d 3342 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
3343 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3344 __func__, d->major, d->minor, strerror(errno));
c2c087e6
DW
3345 if (doclose) {
3346 close(d->fd);
3347 d->fd = -1;
3348 }
3349 }
3350
d23fe947
DW
3351 if (spares)
3352 return write_super_imsm_spares(super, doclose);
3353
e74255d9 3354 return 0;
c2c087e6
DW
3355}
3356
0e600426 3357
9b1fb677 3358static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
3359{
3360 size_t len;
3361 struct imsm_update_create_array *u;
3362 struct intel_super *super = st->sb;
9b1fb677 3363 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
3364 struct imsm_map *map = get_imsm_map(dev, 0);
3365 struct disk_info *inf;
3366 struct imsm_disk *disk;
3367 int i;
43dad3d6 3368
54c2c1ea
DW
3369 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3370 sizeof(*inf) * map->num_members;
43dad3d6
DW
3371 u = malloc(len);
3372 if (!u) {
3373 fprintf(stderr, "%s: failed to allocate update buffer\n",
3374 __func__);
3375 return 1;
3376 }
3377
3378 u->type = update_create_array;
9b1fb677 3379 u->dev_idx = dev_idx;
43dad3d6 3380 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
3381 inf = get_disk_info(u);
3382 for (i = 0; i < map->num_members; i++) {
9b1fb677
DW
3383 int idx = get_imsm_disk_idx(dev, i);
3384
54c2c1ea
DW
3385 disk = get_imsm_disk(super, idx);
3386 serialcpy(inf[i].serial, disk->serial);
3387 }
43dad3d6
DW
3388 append_metadata_update(st, u, len);
3389
3390 return 0;
3391}
3392
7801ac20 3393static int _add_disk(struct supertype *st)
43dad3d6
DW
3394{
3395 struct intel_super *super = st->sb;
3396 size_t len;
3397 struct imsm_update_add_disk *u;
3398
3399 if (!super->add)
3400 return 0;
3401
3402 len = sizeof(*u);
3403 u = malloc(len);
3404 if (!u) {
3405 fprintf(stderr, "%s: failed to allocate update buffer\n",
3406 __func__);
3407 return 1;
3408 }
3409
3410 u->type = update_add_disk;
3411 append_metadata_update(st, u, len);
3412
3413 return 0;
3414}
3415
c2c087e6
DW
3416static int write_init_super_imsm(struct supertype *st)
3417{
9b1fb677
DW
3418 struct intel_super *super = st->sb;
3419 int current_vol = super->current_vol;
3420
3421 /* we are done with current_vol reset it to point st at the container */
3422 super->current_vol = -1;
3423
8273f55e 3424 if (st->update_tail) {
43dad3d6
DW
3425 /* queue the recently created array / added disk
3426 * as a metadata update */
8273f55e 3427 struct dl *d;
43dad3d6 3428 int rv;
8273f55e 3429
43dad3d6 3430 /* determine if we are creating a volume or adding a disk */
9b1fb677 3431 if (current_vol < 0) {
43dad3d6
DW
3432 /* in the add disk case we are running in mdmon
3433 * context, so don't close fd's
3434 */
7801ac20 3435 return _add_disk(st);
43dad3d6 3436 } else
9b1fb677 3437 rv = create_array(st, current_vol);
8273f55e
DW
3438
3439 for (d = super->disks; d ; d = d->next) {
3440 close(d->fd);
3441 d->fd = -1;
3442 }
3443
43dad3d6 3444 return rv;
8273f55e
DW
3445 } else
3446 return write_super_imsm(st->sb, 1);
cdddbdbc 3447}
0e600426 3448#endif
cdddbdbc 3449
e683ca88 3450static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 3451{
e683ca88
DW
3452 struct intel_super *super = st->sb;
3453 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 3454
e683ca88 3455 if (!mpb)
ad97895e
DW
3456 return 1;
3457
1799c9e8 3458#ifndef MDASSEMBLE
e683ca88 3459 return store_imsm_mpb(fd, mpb);
1799c9e8
N
3460#else
3461 return 1;
3462#endif
cdddbdbc
DW
3463}
3464
0e600426
N
3465static int imsm_bbm_log_size(struct imsm_super *mpb)
3466{
3467 return __le32_to_cpu(mpb->bbm_log_size);
3468}
3469
3470#ifndef MDASSEMBLE
cdddbdbc
DW
3471static int validate_geometry_imsm_container(struct supertype *st, int level,
3472 int layout, int raiddisks, int chunk,
c2c087e6 3473 unsigned long long size, char *dev,
2c514b71
NB
3474 unsigned long long *freesize,
3475 int verbose)
cdddbdbc 3476{
c2c087e6
DW
3477 int fd;
3478 unsigned long long ldsize;
88c32bb1 3479 const struct imsm_orom *orom;
cdddbdbc 3480
c2c087e6
DW
3481 if (level != LEVEL_CONTAINER)
3482 return 0;
3483 if (!dev)
3484 return 1;
3485
88c32bb1
DW
3486 if (check_env("IMSM_NO_PLATFORM"))
3487 orom = NULL;
3488 else
3489 orom = find_imsm_orom();
3490 if (orom && raiddisks > orom->tds) {
3491 if (verbose)
3492 fprintf(stderr, Name ": %d exceeds maximum number of"
3493 " platform supported disks: %d\n",
3494 raiddisks, orom->tds);
3495 return 0;
3496 }
3497
c2c087e6
DW
3498 fd = open(dev, O_RDONLY|O_EXCL, 0);
3499 if (fd < 0) {
2c514b71
NB
3500 if (verbose)
3501 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3502 dev, strerror(errno));
c2c087e6
DW
3503 return 0;
3504 }
3505 if (!get_dev_size(fd, dev, &ldsize)) {
3506 close(fd);
3507 return 0;
3508 }
3509 close(fd);
3510
3511 *freesize = avail_size_imsm(st, ldsize >> 9);
3512
3513 return 1;
cdddbdbc
DW
3514}
3515
0dcecb2e
DW
3516static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3517{
3518 const unsigned long long base_start = e[*idx].start;
3519 unsigned long long end = base_start + e[*idx].size;
3520 int i;
3521
3522 if (base_start == end)
3523 return 0;
3524
3525 *idx = *idx + 1;
3526 for (i = *idx; i < num_extents; i++) {
3527 /* extend overlapping extents */
3528 if (e[i].start >= base_start &&
3529 e[i].start <= end) {
3530 if (e[i].size == 0)
3531 return 0;
3532 if (e[i].start + e[i].size > end)
3533 end = e[i].start + e[i].size;
3534 } else if (e[i].start > end) {
3535 *idx = i;
3536 break;
3537 }
3538 }
3539
3540 return end - base_start;
3541}
3542
3543static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3544{
3545 /* build a composite disk with all known extents and generate a new
3546 * 'maxsize' given the "all disks in an array must share a common start
3547 * offset" constraint
3548 */
3549 struct extent *e = calloc(sum_extents, sizeof(*e));
3550 struct dl *dl;
3551 int i, j;
3552 int start_extent;
3553 unsigned long long pos;
b9d77223 3554 unsigned long long start = 0;
0dcecb2e
DW
3555 unsigned long long maxsize;
3556 unsigned long reserve;
3557
3558 if (!e)
a7dd165b 3559 return 0;
0dcecb2e
DW
3560
3561 /* coalesce and sort all extents. also, check to see if we need to
3562 * reserve space between member arrays
3563 */
3564 j = 0;
3565 for (dl = super->disks; dl; dl = dl->next) {
3566 if (!dl->e)
3567 continue;
3568 for (i = 0; i < dl->extent_cnt; i++)
3569 e[j++] = dl->e[i];
3570 }
3571 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3572
3573 /* merge extents */
3574 i = 0;
3575 j = 0;
3576 while (i < sum_extents) {
3577 e[j].start = e[i].start;
3578 e[j].size = find_size(e, &i, sum_extents);
3579 j++;
3580 if (e[j-1].size == 0)
3581 break;
3582 }
3583
3584 pos = 0;
3585 maxsize = 0;
3586 start_extent = 0;
3587 i = 0;
3588 do {
3589 unsigned long long esize;
3590
3591 esize = e[i].start - pos;
3592 if (esize >= maxsize) {
3593 maxsize = esize;
3594 start = pos;
3595 start_extent = i;
3596 }
3597 pos = e[i].start + e[i].size;
3598 i++;
3599 } while (e[i-1].size);
3600 free(e);
3601
a7dd165b
DW
3602 if (maxsize == 0)
3603 return 0;
3604
3605 /* FIXME assumes volume at offset 0 is the first volume in a
3606 * container
3607 */
0dcecb2e
DW
3608 if (start_extent > 0)
3609 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3610 else
3611 reserve = 0;
3612
3613 if (maxsize < reserve)
a7dd165b 3614 return 0;
0dcecb2e
DW
3615
3616 super->create_offset = ~((__u32) 0);
3617 if (start + reserve > super->create_offset)
a7dd165b 3618 return 0; /* start overflows create_offset */
0dcecb2e
DW
3619 super->create_offset = start + reserve;
3620
3621 return maxsize - reserve;
3622}
3623
88c32bb1
DW
3624static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3625{
3626 if (level < 0 || level == 6 || level == 4)
3627 return 0;
3628
3629 /* if we have an orom prevent invalid raid levels */
3630 if (orom)
3631 switch (level) {
3632 case 0: return imsm_orom_has_raid0(orom);
3633 case 1:
3634 if (raiddisks > 2)
3635 return imsm_orom_has_raid1e(orom);
1c556e92
DW
3636 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3637 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3638 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
3639 }
3640 else
3641 return 1; /* not on an Intel RAID platform so anything goes */
3642
3643 return 0;
3644}
3645
35f81cbb 3646#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
3647static int
3648validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3649 int raiddisks, int chunk, int verbose)
3650{
3651 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3652 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3653 level, raiddisks, raiddisks > 1 ? "s" : "");
3654 return 0;
3655 }
3656 if (super->orom && level != 1 &&
3657 !imsm_orom_has_chunk(super->orom, chunk)) {
3658 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3659 return 0;
3660 }
3661 if (layout != imsm_level_to_layout(level)) {
3662 if (level == 5)
3663 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3664 else if (level == 10)
3665 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3666 else
3667 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3668 layout, level);
3669 return 0;
3670 }
3671
3672 return 1;
3673}
3674
c2c087e6
DW
3675/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3676 * FIX ME add ahci details
3677 */
8b353278
DW
3678static int validate_geometry_imsm_volume(struct supertype *st, int level,
3679 int layout, int raiddisks, int chunk,
c2c087e6 3680 unsigned long long size, char *dev,
2c514b71
NB
3681 unsigned long long *freesize,
3682 int verbose)
cdddbdbc 3683{
c2c087e6
DW
3684 struct stat stb;
3685 struct intel_super *super = st->sb;
a20d2ba5 3686 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3687 struct dl *dl;
3688 unsigned long long pos = 0;
3689 unsigned long long maxsize;
3690 struct extent *e;
3691 int i;
cdddbdbc 3692
88c32bb1
DW
3693 /* We must have the container info already read in. */
3694 if (!super)
c2c087e6
DW
3695 return 0;
3696
6592ce37 3697 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
c2c087e6 3698 return 0;
c2c087e6
DW
3699
3700 if (!dev) {
3701 /* General test: make sure there is space for
2da8544a
DW
3702 * 'raiddisks' device extents of size 'size' at a given
3703 * offset
c2c087e6 3704 */
e46273eb 3705 unsigned long long minsize = size;
b7528a20 3706 unsigned long long start_offset = MaxSector;
c2c087e6
DW
3707 int dcnt = 0;
3708 if (minsize == 0)
3709 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3710 for (dl = super->disks; dl ; dl = dl->next) {
3711 int found = 0;
3712
bf5a934a 3713 pos = 0;
c2c087e6
DW
3714 i = 0;
3715 e = get_extents(super, dl);
3716 if (!e) continue;
3717 do {
3718 unsigned long long esize;
3719 esize = e[i].start - pos;
3720 if (esize >= minsize)
3721 found = 1;
b7528a20 3722 if (found && start_offset == MaxSector) {
2da8544a
DW
3723 start_offset = pos;
3724 break;
3725 } else if (found && pos != start_offset) {
3726 found = 0;
3727 break;
3728 }
c2c087e6
DW
3729 pos = e[i].start + e[i].size;
3730 i++;
3731 } while (e[i-1].size);
3732 if (found)
3733 dcnt++;
3734 free(e);
3735 }
3736 if (dcnt < raiddisks) {
2c514b71
NB
3737 if (verbose)
3738 fprintf(stderr, Name ": imsm: Not enough "
3739 "devices with space for this array "
3740 "(%d < %d)\n",
3741 dcnt, raiddisks);
c2c087e6
DW
3742 return 0;
3743 }
3744 return 1;
3745 }
0dcecb2e 3746
c2c087e6
DW
3747 /* This device must be a member of the set */
3748 if (stat(dev, &stb) < 0)
3749 return 0;
3750 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3751 return 0;
3752 for (dl = super->disks ; dl ; dl = dl->next) {
3753 if (dl->major == major(stb.st_rdev) &&
3754 dl->minor == minor(stb.st_rdev))
3755 break;
3756 }
3757 if (!dl) {
2c514b71
NB
3758 if (verbose)
3759 fprintf(stderr, Name ": %s is not in the "
3760 "same imsm set\n", dev);
c2c087e6 3761 return 0;
a20d2ba5
DW
3762 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3763 /* If a volume is present then the current creation attempt
3764 * cannot incorporate new spares because the orom may not
3765 * understand this configuration (all member disks must be
3766 * members of each array in the container).
3767 */
3768 fprintf(stderr, Name ": %s is a spare and a volume"
3769 " is already defined for this container\n", dev);
3770 fprintf(stderr, Name ": The option-rom requires all member"
3771 " disks to be a member of all volumes\n");
3772 return 0;
c2c087e6 3773 }
0dcecb2e
DW
3774
3775 /* retrieve the largest free space block */
c2c087e6
DW
3776 e = get_extents(super, dl);
3777 maxsize = 0;
3778 i = 0;
0dcecb2e
DW
3779 if (e) {
3780 do {
3781 unsigned long long esize;
3782
3783 esize = e[i].start - pos;
3784 if (esize >= maxsize)
3785 maxsize = esize;
3786 pos = e[i].start + e[i].size;
3787 i++;
3788 } while (e[i-1].size);
3789 dl->e = e;
3790 dl->extent_cnt = i;
3791 } else {
3792 if (verbose)
3793 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3794 dev);
3795 return 0;
3796 }
3797 if (maxsize < size) {
3798 if (verbose)
3799 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3800 dev, maxsize, size);
3801 return 0;
3802 }
3803
3804 /* count total number of extents for merge */
3805 i = 0;
3806 for (dl = super->disks; dl; dl = dl->next)
3807 if (dl->e)
3808 i += dl->extent_cnt;
3809
3810 maxsize = merge_extents(super, i);
a7dd165b 3811 if (maxsize < size || maxsize == 0) {
0dcecb2e
DW
3812 if (verbose)
3813 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3814 maxsize, size);
3815 return 0;
0dcecb2e
DW
3816 }
3817
c2c087e6
DW
3818 *freesize = maxsize;
3819
3820 return 1;
cdddbdbc
DW
3821}
3822
efb30e7f
DW
3823static int reserve_space(struct supertype *st, int raiddisks,
3824 unsigned long long size, int chunk,
3825 unsigned long long *freesize)
3826{
3827 struct intel_super *super = st->sb;
3828 struct imsm_super *mpb = super->anchor;
3829 struct dl *dl;
3830 int i;
3831 int extent_cnt;
3832 struct extent *e;
3833 unsigned long long maxsize;
3834 unsigned long long minsize;
3835 int cnt;
3836 int used;
3837
3838 /* find the largest common start free region of the possible disks */
3839 used = 0;
3840 extent_cnt = 0;
3841 cnt = 0;
3842 for (dl = super->disks; dl; dl = dl->next) {
3843 dl->raiddisk = -1;
3844
3845 if (dl->index >= 0)
3846 used++;
3847
3848 /* don't activate new spares if we are orom constrained
3849 * and there is already a volume active in the container
3850 */
3851 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3852 continue;
3853
3854 e = get_extents(super, dl);
3855 if (!e)
3856 continue;
3857 for (i = 1; e[i-1].size; i++)
3858 ;
3859 dl->e = e;
3860 dl->extent_cnt = i;
3861 extent_cnt += i;
3862 cnt++;
3863 }
3864
3865 maxsize = merge_extents(super, extent_cnt);
3866 minsize = size;
3867 if (size == 0)
3868 minsize = chunk;
3869
3870 if (cnt < raiddisks ||
3871 (super->orom && used && used != raiddisks) ||
a7dd165b
DW
3872 maxsize < minsize ||
3873 maxsize == 0) {
efb30e7f
DW
3874 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3875 return 0; /* No enough free spaces large enough */
3876 }
3877
3878 if (size == 0) {
3879 size = maxsize;
3880 if (chunk) {
3881 size /= chunk;
3882 size *= chunk;
3883 }
3884 }
3885
3886 cnt = 0;
3887 for (dl = super->disks; dl; dl = dl->next)
3888 if (dl->e)
3889 dl->raiddisk = cnt++;
3890
3891 *freesize = size;
3892
3893 return 1;
3894}
3895
bf5a934a
DW
3896static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3897 int raiddisks, int chunk, unsigned long long size,
3898 char *dev, unsigned long long *freesize,
3899 int verbose)
3900{
3901 int fd, cfd;
3902 struct mdinfo *sra;
20cbe8d2 3903 int is_member = 0;
bf5a934a
DW
3904
3905 /* if given unused devices create a container
3906 * if given given devices in a container create a member volume
3907 */
3908 if (level == LEVEL_CONTAINER) {
3909 /* Must be a fresh device to add to a container */
3910 return validate_geometry_imsm_container(st, level, layout,
3911 raiddisks, chunk, size,
3912 dev, freesize,
3913 verbose);
3914 }
3915
8592f29d
N
3916 if (!dev) {
3917 if (st->sb && freesize) {
efb30e7f
DW
3918 /* we are being asked to automatically layout a
3919 * new volume based on the current contents of
3920 * the container. If the the parameters can be
3921 * satisfied reserve_space will record the disks,
3922 * start offset, and size of the volume to be
3923 * created. add_to_super and getinfo_super
3924 * detect when autolayout is in progress.
3925 */
6592ce37
DW
3926 if (!validate_geometry_imsm_orom(st->sb, level, layout,
3927 raiddisks, chunk,
3928 verbose))
3929 return 0;
efb30e7f 3930 return reserve_space(st, raiddisks, size, chunk, freesize);
8592f29d
N
3931 }
3932 return 1;
3933 }
bf5a934a
DW
3934 if (st->sb) {
3935 /* creating in a given container */
3936 return validate_geometry_imsm_volume(st, level, layout,
3937 raiddisks, chunk, size,
3938 dev, freesize, verbose);
3939 }
3940
bf5a934a
DW
3941 /* This device needs to be a device in an 'imsm' container */
3942 fd = open(dev, O_RDONLY|O_EXCL, 0);
3943 if (fd >= 0) {
3944 if (verbose)
3945 fprintf(stderr,
3946 Name ": Cannot create this array on device %s\n",
3947 dev);
3948 close(fd);
3949 return 0;
3950 }
3951 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3952 if (verbose)
3953 fprintf(stderr, Name ": Cannot open %s: %s\n",
3954 dev, strerror(errno));
3955 return 0;
3956 }
3957 /* Well, it is in use by someone, maybe an 'imsm' container. */
3958 cfd = open_container(fd);
20cbe8d2 3959 close(fd);
bf5a934a 3960 if (cfd < 0) {
bf5a934a
DW
3961 if (verbose)
3962 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3963 dev);
3964 return 0;
3965 }
3966 sra = sysfs_read(cfd, 0, GET_VERSION);
bf5a934a 3967 if (sra && sra->array.major_version == -1 &&
20cbe8d2
AW
3968 strcmp(sra->text_version, "imsm") == 0)
3969 is_member = 1;
3970 sysfs_free(sra);
3971 if (is_member) {
bf5a934a
DW
3972 /* This is a member of a imsm container. Load the container
3973 * and try to create a volume
3974 */
3975 struct intel_super *super;
3976
3977 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3978 st->sb = super;
3979 st->container_dev = fd2devnum(cfd);
3980 close(cfd);
3981 return validate_geometry_imsm_volume(st, level, layout,
3982 raiddisks, chunk,
3983 size, dev,
3984 freesize, verbose);
3985 }
20cbe8d2 3986 }
bf5a934a 3987
20cbe8d2
AW
3988 if (verbose)
3989 fprintf(stderr, Name ": failed container membership check\n");
3990
3991 close(cfd);
3992 return 0;
bf5a934a 3993}
0e600426 3994#endif /* MDASSEMBLE */
bf5a934a 3995
1e5c6983
DW
3996static int is_rebuilding(struct imsm_dev *dev)
3997{
3998 struct imsm_map *migr_map;
3999
4000 if (!dev->vol.migr_state)
4001 return 0;
4002
4003 if (migr_type(dev) != MIGR_REBUILD)
4004 return 0;
4005
4006 migr_map = get_imsm_map(dev, 1);
4007
4008 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4009 return 1;
4010 else
4011 return 0;
4012}
4013
4014static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4015{
4016 struct mdinfo *rebuild = NULL;
4017 struct mdinfo *d;
4018 __u32 units;
4019
4020 if (!is_rebuilding(dev))
4021 return;
4022
4023 /* Find the rebuild target, but punt on the dual rebuild case */
4024 for (d = array->devs; d; d = d->next)
4025 if (d->recovery_start == 0) {
4026 if (rebuild)
4027 return;
4028 rebuild = d;
4029 }
4030
4031 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4032 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4033}
4034
4035
cdddbdbc
DW
4036static struct mdinfo *container_content_imsm(struct supertype *st)
4037{
4f5bc454
DW
4038 /* Given a container loaded by load_super_imsm_all,
4039 * extract information about all the arrays into
4040 * an mdinfo tree.
4041 *
4042 * For each imsm_dev create an mdinfo, fill it in,
4043 * then look for matching devices in super->disks
4044 * and create appropriate device mdinfo.
4045 */
4046 struct intel_super *super = st->sb;
949c47a0 4047 struct imsm_super *mpb = super->anchor;
4f5bc454
DW
4048 struct mdinfo *rest = NULL;
4049 int i;
cdddbdbc 4050
604b746f
JD
4051 /* do not assemble arrays that might have bad blocks */
4052 if (imsm_bbm_log_size(super->anchor)) {
4053 fprintf(stderr, Name ": BBM log found in metadata. "
4054 "Cannot activate array(s).\n");
4055 return NULL;
4056 }
4057
4f5bc454 4058 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 4059 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 4060 struct imsm_map *map = get_imsm_map(dev, 0);
4f5bc454 4061 struct mdinfo *this;
4f5bc454
DW
4062 int slot;
4063
1ce0101c
DW
4064 /* do not publish arrays that are in the middle of an
4065 * unsupported migration
4066 */
4067 if (dev->vol.migr_state &&
4068 (migr_type(dev) == MIGR_GEN_MIGR ||
4069 migr_type(dev) == MIGR_STATE_CHANGE)) {
4070 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4071 " unsupported migration in progress\n",
4072 dev->volume);
4073 continue;
4074 }
4075
4f5bc454 4076 this = malloc(sizeof(*this));
0fbd635c 4077 if (!this) {
cf1be220 4078 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
0fbd635c
AW
4079 sizeof(*this));
4080 break;
4081 }
4f5bc454
DW
4082 memset(this, 0, sizeof(*this));
4083 this->next = rest;
4f5bc454 4084
301406c9
DW
4085 super->current_vol = i;
4086 getinfo_super_imsm_volume(st, this);
4f5bc454 4087 for (slot = 0 ; slot < map->num_members; slot++) {
1e5c6983 4088 unsigned long long recovery_start;
4f5bc454
DW
4089 struct mdinfo *info_d;
4090 struct dl *d;
4091 int idx;
9a1608e5 4092 int skip;
7eef0453 4093 __u32 ord;
4f5bc454 4094
9a1608e5 4095 skip = 0;
ff077194 4096 idx = get_imsm_disk_idx(dev, slot);
7eef0453 4097 ord = get_imsm_ord_tbl_ent(dev, slot);
4f5bc454
DW
4098 for (d = super->disks; d ; d = d->next)
4099 if (d->index == idx)
0fbd635c 4100 break;
4f5bc454 4101
1e5c6983 4102 recovery_start = MaxSector;
4f5bc454 4103 if (d == NULL)
9a1608e5 4104 skip = 1;
25ed7e59 4105 if (d && is_failed(&d->disk))
9a1608e5 4106 skip = 1;
7eef0453 4107 if (ord & IMSM_ORD_REBUILD)
1e5c6983 4108 recovery_start = 0;
9a1608e5
DW
4109
4110 /*
4111 * if we skip some disks the array will be assmebled degraded;
1e5c6983
DW
4112 * reset resync start to avoid a dirty-degraded
4113 * situation when performing the intial sync
9a1608e5
DW
4114 *
4115 * FIXME handle dirty degraded
4116 */
1e5c6983 4117 if ((skip || recovery_start == 0) && !dev->vol.dirty)
b7528a20 4118 this->resync_start = MaxSector;
9a1608e5
DW
4119 if (skip)
4120 continue;
4f5bc454 4121
1e5c6983 4122 info_d = calloc(1, sizeof(*info_d));
9a1608e5
DW
4123 if (!info_d) {
4124 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 4125 " for volume %.16s\n", dev->volume);
1e5c6983
DW
4126 info_d = this->devs;
4127 while (info_d) {
4128 struct mdinfo *d = info_d->next;
4129
4130 free(info_d);
4131 info_d = d;
4132 }
9a1608e5
DW
4133 free(this);
4134 this = rest;
4135 break;
4136 }
4f5bc454
DW
4137 info_d->next = this->devs;
4138 this->devs = info_d;
4139
4f5bc454
DW
4140 info_d->disk.number = d->index;
4141 info_d->disk.major = d->major;
4142 info_d->disk.minor = d->minor;
4143 info_d->disk.raid_disk = slot;
1e5c6983 4144 info_d->recovery_start = recovery_start;
4f5bc454 4145
1e5c6983
DW
4146 if (info_d->recovery_start == MaxSector)
4147 this->array.working_disks++;
4f5bc454
DW
4148
4149 info_d->events = __le32_to_cpu(mpb->generation_num);
4150 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4151 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4f5bc454 4152 }
1e5c6983
DW
4153 /* now that the disk list is up-to-date fixup recovery_start */
4154 update_recovery_start(dev, this);
9a1608e5 4155 rest = this;
4f5bc454
DW
4156 }
4157
4158 return rest;
cdddbdbc
DW
4159}
4160
845dea95 4161
0e600426 4162#ifndef MDASSEMBLE
cba0191b
NB
4163static int imsm_open_new(struct supertype *c, struct active_array *a,
4164 char *inst)
845dea95 4165{
0372d5a2 4166 struct intel_super *super = c->sb;
949c47a0 4167 struct imsm_super *mpb = super->anchor;
0372d5a2 4168
949c47a0 4169 if (atoi(inst) >= mpb->num_raid_devs) {
0372d5a2
DW
4170 fprintf(stderr, "%s: subarry index %d, out of range\n",
4171 __func__, atoi(inst));
4172 return -ENODEV;
4173 }
4174
4e6e574a 4175 dprintf("imsm: open_new %s\n", inst);
cba0191b 4176 a->info.container_member = atoi(inst);
845dea95
NB
4177 return 0;
4178}
4179
fb49eef2 4180static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 4181{
a965f303 4182 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
4183
4184 if (!failed)
3393c6af
DW
4185 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4186 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
4187
4188 switch (get_imsm_raid_level(map)) {
4189 case 0:
4190 return IMSM_T_STATE_FAILED;
4191 break;
4192 case 1:
4193 if (failed < map->num_members)
4194 return IMSM_T_STATE_DEGRADED;
4195 else
4196 return IMSM_T_STATE_FAILED;
4197 break;
4198 case 10:
4199 {
4200 /**
c92a2527
DW
4201 * check to see if any mirrors have failed, otherwise we
4202 * are degraded. Even numbered slots are mirrored on
4203 * slot+1
c2a1e7da 4204 */
c2a1e7da 4205 int i;
d9b420a5
N
4206 /* gcc -Os complains that this is unused */
4207 int insync = insync;
c2a1e7da
DW
4208
4209 for (i = 0; i < map->num_members; i++) {
c92a2527
DW
4210 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4211 int idx = ord_to_idx(ord);
4212 struct imsm_disk *disk;
c2a1e7da 4213
c92a2527
DW
4214 /* reset the potential in-sync count on even-numbered
4215 * slots. num_copies is always 2 for imsm raid10
4216 */
4217 if ((i & 1) == 0)
4218 insync = 2;
c2a1e7da 4219
c92a2527 4220 disk = get_imsm_disk(super, idx);
25ed7e59 4221 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 4222 insync--;
c2a1e7da 4223
c92a2527
DW
4224 /* no in-sync disks left in this mirror the
4225 * array has failed
4226 */
4227 if (insync == 0)
4228 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
4229 }
4230
4231 return IMSM_T_STATE_DEGRADED;
4232 }
4233 case 5:
4234 if (failed < 2)
4235 return IMSM_T_STATE_DEGRADED;
4236 else
4237 return IMSM_T_STATE_FAILED;
4238 break;
4239 default:
4240 break;
4241 }
4242
4243 return map->map_state;
4244}
4245
ff077194 4246static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
4247{
4248 int i;
4249 int failed = 0;
4250 struct imsm_disk *disk;
ff077194 4251 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
4252 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4253 __u32 ord;
4254 int idx;
c2a1e7da 4255
0556e1a2
DW
4256 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4257 * disks that are being rebuilt. New failures are recorded to
4258 * map[0]. So we look through all the disks we started with and
4259 * see if any failures are still present, or if any new ones
4260 * have arrived
4261 *
4262 * FIXME add support for online capacity expansion and
4263 * raid-level-migration
4264 */
4265 for (i = 0; i < prev->num_members; i++) {
4266 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4267 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4268 idx = ord_to_idx(ord);
c2a1e7da 4269
949c47a0 4270 disk = get_imsm_disk(super, idx);
25ed7e59 4271 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 4272 failed++;
c2a1e7da
DW
4273 }
4274
4275 return failed;
845dea95
NB
4276}
4277
0c046afd
DW
4278static int is_resyncing(struct imsm_dev *dev)
4279{
4280 struct imsm_map *migr_map;
4281
4282 if (!dev->vol.migr_state)
4283 return 0;
4284
1484e727
DW
4285 if (migr_type(dev) == MIGR_INIT ||
4286 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
4287 return 1;
4288
4289 migr_map = get_imsm_map(dev, 1);
4290
4291 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4292 return 1;
4293 else
4294 return 0;
4295}
4296
0556e1a2
DW
4297/* return true if we recorded new information */
4298static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 4299{
0556e1a2
DW
4300 __u32 ord;
4301 int slot;
4302 struct imsm_map *map;
4303
4304 /* new failures are always set in map[0] */
4305 map = get_imsm_map(dev, 0);
4306
4307 slot = get_imsm_disk_slot(map, idx);
4308 if (slot < 0)
4309 return 0;
4310
4311 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 4312 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
4313 return 0;
4314
f2f27e63 4315 disk->status |= FAILED_DISK;
cf53434e 4316 disk->status &= ~CONFIGURED_DISK;
0556e1a2 4317 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4291d691 4318 if (~map->failed_disk_num == 0)
0556e1a2
DW
4319 map->failed_disk_num = slot;
4320 return 1;
4321}
4322
4323static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4324{
4325 mark_failure(dev, disk, idx);
4326
4327 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4328 return;
4329
47ee5a45
DW
4330 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4331 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4332}
4333
0c046afd
DW
4334/* Handle dirty -> clean transititions and resync. Degraded and rebuild
4335 * states are handled in imsm_set_disk() with one exception, when a
4336 * resync is stopped due to a new failure this routine will set the
4337 * 'degraded' state for the array.
4338 */
01f157d7 4339static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
4340{
4341 int inst = a->info.container_member;
4342 struct intel_super *super = a->container->sb;
949c47a0 4343 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4344 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
4345 int failed = imsm_count_failed(super, dev);
4346 __u8 map_state = imsm_check_degraded(super, dev, failed);
1e5c6983 4347 __u32 blocks_per_unit;
a862209d 4348
47ee5a45
DW
4349 /* before we activate this array handle any missing disks */
4350 if (consistent == 2 && super->missing) {
4351 struct dl *dl;
4352
4353 dprintf("imsm: mark missing\n");
4354 end_migration(dev, map_state);
4355 for (dl = super->missing; dl; dl = dl->next)
0556e1a2 4356 mark_missing(dev, &dl->disk, dl->index);
47ee5a45
DW
4357 super->updates_pending++;
4358 }
1e5c6983 4359
0c046afd 4360 if (consistent == 2 &&
b7941fd6 4361 (!is_resync_complete(&a->info) ||
0c046afd
DW
4362 map_state != IMSM_T_STATE_NORMAL ||
4363 dev->vol.migr_state))
01f157d7 4364 consistent = 0;
272906ef 4365
b7941fd6 4366 if (is_resync_complete(&a->info)) {
0c046afd 4367 /* complete intialization / resync,
0556e1a2
DW
4368 * recovery and interrupted recovery is completed in
4369 * ->set_disk
0c046afd
DW
4370 */
4371 if (is_resyncing(dev)) {
4372 dprintf("imsm: mark resync done\n");
f8f603f1 4373 end_migration(dev, map_state);
115c3803 4374 super->updates_pending++;
115c3803 4375 }
0c046afd
DW
4376 } else if (!is_resyncing(dev) && !failed) {
4377 /* mark the start of the init process if nothing is failed */
b7941fd6 4378 dprintf("imsm: mark resync start\n");
1484e727 4379 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
e3bba0e0 4380 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727
DW
4381 else
4382 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 4383 super->updates_pending++;
115c3803 4384 }
a862209d 4385
1e5c6983
DW
4386 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4387 blocks_per_unit = blocks_per_migr_unit(dev);
4388 if (blocks_per_unit && failed <= 1) {
4389 __u32 units32;
4390 __u64 units;
4391
4392 if (migr_type(dev) == MIGR_REBUILD)
4393 units = min_recovery_start(&a->info) / blocks_per_unit;
4394 else
4395 units = a->info.resync_start / blocks_per_unit;
4396 units32 = units;
4397
4398 /* check that we did not overflow 32-bits, and that
4399 * curr_migr_unit needs updating
4400 */
4401 if (units32 == units &&
4402 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4403 dprintf("imsm: mark checkpoint (%u)\n", units32);
4404 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4405 super->updates_pending++;
4406 }
4407 }
f8f603f1 4408
3393c6af 4409 /* mark dirty / clean */
0c046afd 4410 if (dev->vol.dirty != !consistent) {
b7941fd6 4411 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
0c046afd
DW
4412 if (consistent)
4413 dev->vol.dirty = 0;
4414 else
4415 dev->vol.dirty = 1;
a862209d
DW
4416 super->updates_pending++;
4417 }
01f157d7 4418 return consistent;
a862209d
DW
4419}
4420
8d45d196 4421static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 4422{
8d45d196
DW
4423 int inst = a->info.container_member;
4424 struct intel_super *super = a->container->sb;
949c47a0 4425 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4426 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 4427 struct imsm_disk *disk;
0c046afd 4428 int failed;
b10b37b8 4429 __u32 ord;
0c046afd 4430 __u8 map_state;
8d45d196
DW
4431
4432 if (n > map->num_members)
4433 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4434 n, map->num_members - 1);
4435
4436 if (n < 0)
4437 return;
4438
4e6e574a 4439 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 4440
b10b37b8
DW
4441 ord = get_imsm_ord_tbl_ent(dev, n);
4442 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 4443
5802a811 4444 /* check for new failures */
0556e1a2
DW
4445 if (state & DS_FAULTY) {
4446 if (mark_failure(dev, disk, ord_to_idx(ord)))
4447 super->updates_pending++;
8d45d196 4448 }
47ee5a45 4449
19859edc 4450 /* check if in_sync */
0556e1a2 4451 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
4452 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4453
4454 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
4455 super->updates_pending++;
4456 }
8d45d196 4457
0c046afd
DW
4458 failed = imsm_count_failed(super, dev);
4459 map_state = imsm_check_degraded(super, dev, failed);
5802a811 4460
0c046afd
DW
4461 /* check if recovery complete, newly degraded, or failed */
4462 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 4463 end_migration(dev, map_state);
0556e1a2
DW
4464 map = get_imsm_map(dev, 0);
4465 map->failed_disk_num = ~0;
0c046afd
DW
4466 super->updates_pending++;
4467 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4468 map->map_state != map_state &&
4469 !dev->vol.migr_state) {
4470 dprintf("imsm: mark degraded\n");
4471 map->map_state = map_state;
4472 super->updates_pending++;
4473 } else if (map_state == IMSM_T_STATE_FAILED &&
4474 map->map_state != map_state) {
4475 dprintf("imsm: mark failed\n");
f8f603f1 4476 end_migration(dev, map_state);
0c046afd 4477 super->updates_pending++;
5802a811 4478 }
845dea95
NB
4479}
4480
f796af5d 4481static int store_imsm_mpb(int fd, struct imsm_super *mpb)
c2a1e7da 4482{
f796af5d 4483 void *buf = mpb;
c2a1e7da
DW
4484 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4485 unsigned long long dsize;
4486 unsigned long long sectors;
4487
4488 get_dev_size(fd, NULL, &dsize);
4489
272f648f
DW
4490 if (mpb_size > 512) {
4491 /* -1 to account for anchor */
4492 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 4493
272f648f
DW
4494 /* write the extended mpb to the sectors preceeding the anchor */
4495 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4496 return 1;
c2a1e7da 4497
f796af5d 4498 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
272f648f
DW
4499 return 1;
4500 }
c2a1e7da 4501
272f648f
DW
4502 /* first block is stored on second to last sector of the disk */
4503 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
4504 return 1;
4505
f796af5d 4506 if (write(fd, buf, 512) != 512)
c2a1e7da
DW
4507 return 1;
4508
c2a1e7da
DW
4509 return 0;
4510}
4511
2e735d19 4512static void imsm_sync_metadata(struct supertype *container)
845dea95 4513{
2e735d19 4514 struct intel_super *super = container->sb;
c2a1e7da
DW
4515
4516 if (!super->updates_pending)
4517 return;
4518
c2c087e6 4519 write_super_imsm(super, 0);
c2a1e7da
DW
4520
4521 super->updates_pending = 0;
845dea95
NB
4522}
4523
272906ef
DW
4524static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4525{
4526 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
ff077194 4527 int i = get_imsm_disk_idx(dev, idx);
272906ef
DW
4528 struct dl *dl;
4529
4530 for (dl = super->disks; dl; dl = dl->next)
4531 if (dl->index == i)
4532 break;
4533
25ed7e59 4534 if (dl && is_failed(&dl->disk))
272906ef
DW
4535 dl = NULL;
4536
4537 if (dl)
4538 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4539
4540 return dl;
4541}
4542
a20d2ba5
DW
4543static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4544 struct active_array *a, int activate_new)
272906ef
DW
4545{
4546 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
e553d2a4 4547 int idx = get_imsm_disk_idx(dev, slot);
a20d2ba5
DW
4548 struct imsm_super *mpb = super->anchor;
4549 struct imsm_map *map;
272906ef
DW
4550 unsigned long long pos;
4551 struct mdinfo *d;
4552 struct extent *ex;
a20d2ba5 4553 int i, j;
272906ef
DW
4554 int found;
4555 __u32 array_start;
329c8278 4556 __u32 array_end;
272906ef
DW
4557 struct dl *dl;
4558
4559 for (dl = super->disks; dl; dl = dl->next) {
4560 /* If in this array, skip */
4561 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
4562 if (d->state_fd >= 0 &&
4563 d->disk.major == dl->major &&
272906ef
DW
4564 d->disk.minor == dl->minor) {
4565 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4566 break;
4567 }
4568 if (d)
4569 continue;
4570
e553d2a4 4571 /* skip in use or failed drives */
25ed7e59 4572 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
4573 dl->index == -2) {
4574 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 4575 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
4576 continue;
4577 }
4578
a20d2ba5
DW
4579 /* skip pure spares when we are looking for partially
4580 * assimilated drives
4581 */
4582 if (dl->index == -1 && !activate_new)
4583 continue;
4584
272906ef 4585 /* Does this unused device have the requisite free space?
a20d2ba5 4586 * It needs to be able to cover all member volumes
272906ef
DW
4587 */
4588 ex = get_extents(super, dl);
4589 if (!ex) {
4590 dprintf("cannot get extents\n");
4591 continue;
4592 }
a20d2ba5
DW
4593 for (i = 0; i < mpb->num_raid_devs; i++) {
4594 dev = get_imsm_dev(super, i);
4595 map = get_imsm_map(dev, 0);
272906ef 4596
a20d2ba5
DW
4597 /* check if this disk is already a member of
4598 * this array
272906ef 4599 */
620b1713 4600 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
4601 continue;
4602
4603 found = 0;
4604 j = 0;
4605 pos = 0;
4606 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
4607 array_end = array_start +
4608 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
4609
4610 do {
4611 /* check that we can start at pba_of_lba0 with
4612 * blocks_per_member of space
4613 */
329c8278 4614 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
4615 found = 1;
4616 break;
4617 }
4618 pos = ex[j].start + ex[j].size;
4619 j++;
4620 } while (ex[j-1].size);
4621
4622 if (!found)
272906ef 4623 break;
a20d2ba5 4624 }
272906ef
DW
4625
4626 free(ex);
a20d2ba5 4627 if (i < mpb->num_raid_devs) {
329c8278
DW
4628 dprintf("%x:%x does not have %u to %u available\n",
4629 dl->major, dl->minor, array_start, array_end);
272906ef
DW
4630 /* No room */
4631 continue;
a20d2ba5
DW
4632 }
4633 return dl;
272906ef
DW
4634 }
4635
4636 return dl;
4637}
4638
88758e9d
DW
4639static struct mdinfo *imsm_activate_spare(struct active_array *a,
4640 struct metadata_update **updates)
4641{
4642 /**
d23fe947
DW
4643 * Find a device with unused free space and use it to replace a
4644 * failed/vacant region in an array. We replace failed regions one a
4645 * array at a time. The result is that a new spare disk will be added
4646 * to the first failed array and after the monitor has finished
4647 * propagating failures the remainder will be consumed.
88758e9d 4648 *
d23fe947
DW
4649 * FIXME add a capability for mdmon to request spares from another
4650 * container.
88758e9d
DW
4651 */
4652
4653 struct intel_super *super = a->container->sb;
88758e9d 4654 int inst = a->info.container_member;
949c47a0 4655 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4656 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
4657 int failed = a->info.array.raid_disks;
4658 struct mdinfo *rv = NULL;
4659 struct mdinfo *d;
4660 struct mdinfo *di;
4661 struct metadata_update *mu;
4662 struct dl *dl;
4663 struct imsm_update_activate_spare *u;
4664 int num_spares = 0;
4665 int i;
4666
4667 for (d = a->info.devs ; d ; d = d->next) {
4668 if ((d->curr_state & DS_FAULTY) &&
4669 d->state_fd >= 0)
4670 /* wait for Removal to happen */
4671 return NULL;
4672 if (d->state_fd >= 0)
4673 failed--;
4674 }
4675
4676 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4677 inst, failed, a->info.array.raid_disks, a->info.array.level);
fb49eef2 4678 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
4679 return NULL;
4680
4681 /* For each slot, if it is not working, find a spare */
88758e9d
DW
4682 for (i = 0; i < a->info.array.raid_disks; i++) {
4683 for (d = a->info.devs ; d ; d = d->next)
4684 if (d->disk.raid_disk == i)
4685 break;
4686 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4687 if (d && (d->state_fd >= 0))
4688 continue;
4689
272906ef 4690 /*
a20d2ba5
DW
4691 * OK, this device needs recovery. Try to re-add the
4692 * previous occupant of this slot, if this fails see if
4693 * we can continue the assimilation of a spare that was
4694 * partially assimilated, finally try to activate a new
4695 * spare.
272906ef
DW
4696 */
4697 dl = imsm_readd(super, i, a);
4698 if (!dl)
a20d2ba5
DW
4699 dl = imsm_add_spare(super, i, a, 0);
4700 if (!dl)
4701 dl = imsm_add_spare(super, i, a, 1);
272906ef
DW
4702 if (!dl)
4703 continue;
4704
4705 /* found a usable disk with enough space */
4706 di = malloc(sizeof(*di));
79244939
DW
4707 if (!di)
4708 continue;
272906ef
DW
4709 memset(di, 0, sizeof(*di));
4710
4711 /* dl->index will be -1 in the case we are activating a
4712 * pristine spare. imsm_process_update() will create a
4713 * new index in this case. Once a disk is found to be
4714 * failed in all member arrays it is kicked from the
4715 * metadata
4716 */
4717 di->disk.number = dl->index;
d23fe947 4718
272906ef
DW
4719 /* (ab)use di->devs to store a pointer to the device
4720 * we chose
4721 */
4722 di->devs = (struct mdinfo *) dl;
4723
4724 di->disk.raid_disk = i;
4725 di->disk.major = dl->major;
4726 di->disk.minor = dl->minor;
4727 di->disk.state = 0;
d23534e4 4728 di->recovery_start = 0;
272906ef
DW
4729 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4730 di->component_size = a->info.component_size;
4731 di->container_member = inst;
148acb7b 4732 super->random = random32();
272906ef
DW
4733 di->next = rv;
4734 rv = di;
4735 num_spares++;
4736 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4737 i, di->data_offset);
88758e9d 4738
272906ef 4739 break;
88758e9d
DW
4740 }
4741
4742 if (!rv)
4743 /* No spares found */
4744 return rv;
4745 /* Now 'rv' has a list of devices to return.
4746 * Create a metadata_update record to update the
4747 * disk_ord_tbl for the array
4748 */
4749 mu = malloc(sizeof(*mu));
79244939
DW
4750 if (mu) {
4751 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4752 if (mu->buf == NULL) {
4753 free(mu);
4754 mu = NULL;
4755 }
4756 }
4757 if (!mu) {
4758 while (rv) {
4759 struct mdinfo *n = rv->next;
4760
4761 free(rv);
4762 rv = n;
4763 }
4764 return NULL;
4765 }
4766
88758e9d
DW
4767 mu->space = NULL;
4768 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4769 mu->next = *updates;
4770 u = (struct imsm_update_activate_spare *) mu->buf;
4771
4772 for (di = rv ; di ; di = di->next) {
4773 u->type = update_activate_spare;
d23fe947
DW
4774 u->dl = (struct dl *) di->devs;
4775 di->devs = NULL;
88758e9d
DW
4776 u->slot = di->disk.raid_disk;
4777 u->array = inst;
4778 u->next = u + 1;
4779 u++;
4780 }
4781 (u-1)->next = NULL;
4782 *updates = mu;
4783
4784 return rv;
4785}
4786
54c2c1ea 4787static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 4788{
54c2c1ea
DW
4789 struct imsm_dev *dev = get_imsm_dev(super, idx);
4790 struct imsm_map *map = get_imsm_map(dev, 0);
4791 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4792 struct disk_info *inf = get_disk_info(u);
4793 struct imsm_disk *disk;
8273f55e
DW
4794 int i;
4795 int j;
8273f55e 4796
54c2c1ea
DW
4797 for (i = 0; i < map->num_members; i++) {
4798 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4799 for (j = 0; j < new_map->num_members; j++)
4800 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
4801 return 1;
4802 }
4803
4804 return 0;
4805}
4806
24565c9a 4807static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
ae6aad82 4808
e8319a19
DW
4809static void imsm_process_update(struct supertype *st,
4810 struct metadata_update *update)
4811{
4812 /**
4813 * crack open the metadata_update envelope to find the update record
4814 * update can be one of:
4815 * update_activate_spare - a spare device has replaced a failed
4816 * device in an array, update the disk_ord_tbl. If this disk is
4817 * present in all member arrays then also clear the SPARE_DISK
4818 * flag
4819 */
4820 struct intel_super *super = st->sb;
4d7b1503 4821 struct imsm_super *mpb;
e8319a19
DW
4822 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4823
4d7b1503
DW
4824 /* update requires a larger buf but the allocation failed */
4825 if (super->next_len && !super->next_buf) {
4826 super->next_len = 0;
4827 return;
4828 }
4829
4830 if (super->next_buf) {
4831 memcpy(super->next_buf, super->buf, super->len);
4832 free(super->buf);
4833 super->len = super->next_len;
4834 super->buf = super->next_buf;
4835
4836 super->next_len = 0;
4837 super->next_buf = NULL;
4838 }
4839
4840 mpb = super->anchor;
4841
e8319a19
DW
4842 switch (type) {
4843 case update_activate_spare: {
4844 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 4845 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 4846 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 4847 struct imsm_map *migr_map;
e8319a19
DW
4848 struct active_array *a;
4849 struct imsm_disk *disk;
0c046afd 4850 __u8 to_state;
e8319a19 4851 struct dl *dl;
e8319a19 4852 unsigned int found;
0c046afd
DW
4853 int failed;
4854 int victim = get_imsm_disk_idx(dev, u->slot);
e8319a19
DW
4855 int i;
4856
4857 for (dl = super->disks; dl; dl = dl->next)
d23fe947 4858 if (dl == u->dl)
e8319a19
DW
4859 break;
4860
4861 if (!dl) {
4862 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
4863 "an unknown disk (index: %d)\n",
4864 u->dl->index);
e8319a19
DW
4865 return;
4866 }
4867
4868 super->updates_pending++;
4869
0c046afd
DW
4870 /* count failures (excluding rebuilds and the victim)
4871 * to determine map[0] state
4872 */
4873 failed = 0;
4874 for (i = 0; i < map->num_members; i++) {
4875 if (i == u->slot)
4876 continue;
4877 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
25ed7e59 4878 if (!disk || is_failed(disk))
0c046afd
DW
4879 failed++;
4880 }
4881
d23fe947
DW
4882 /* adding a pristine spare, assign a new index */
4883 if (dl->index < 0) {
4884 dl->index = super->anchor->num_disks;
4885 super->anchor->num_disks++;
4886 }
d23fe947 4887 disk = &dl->disk;
f2f27e63
DW
4888 disk->status |= CONFIGURED_DISK;
4889 disk->status &= ~SPARE_DISK;
e8319a19 4890
0c046afd
DW
4891 /* mark rebuild */
4892 to_state = imsm_check_degraded(super, dev, failed);
4893 map->map_state = IMSM_T_STATE_DEGRADED;
e3bba0e0 4894 migrate(dev, to_state, MIGR_REBUILD);
0c046afd
DW
4895 migr_map = get_imsm_map(dev, 1);
4896 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4897 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4898
148acb7b
DW
4899 /* update the family_num to mark a new container
4900 * generation, being careful to record the existing
4901 * family_num in orig_family_num to clean up after
4902 * earlier mdadm versions that neglected to set it.
4903 */
4904 if (mpb->orig_family_num == 0)
4905 mpb->orig_family_num = mpb->family_num;
4906 mpb->family_num += super->random;
4907
e8319a19
DW
4908 /* count arrays using the victim in the metadata */
4909 found = 0;
4910 for (a = st->arrays; a ; a = a->next) {
949c47a0 4911 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
4912 map = get_imsm_map(dev, 0);
4913
4914 if (get_imsm_disk_slot(map, victim) >= 0)
4915 found++;
e8319a19
DW
4916 }
4917
24565c9a 4918 /* delete the victim if it is no longer being
e8319a19
DW
4919 * utilized anywhere
4920 */
e8319a19 4921 if (!found) {
ae6aad82 4922 struct dl **dlp;
24565c9a 4923
47ee5a45
DW
4924 /* We know that 'manager' isn't touching anything,
4925 * so it is safe to delete
4926 */
24565c9a 4927 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
4928 if ((*dlp)->index == victim)
4929 break;
47ee5a45
DW
4930
4931 /* victim may be on the missing list */
4932 if (!*dlp)
4933 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4934 if ((*dlp)->index == victim)
4935 break;
24565c9a 4936 imsm_delete(super, dlp, victim);
e8319a19 4937 }
8273f55e
DW
4938 break;
4939 }
4940 case update_create_array: {
4941 /* someone wants to create a new array, we need to be aware of
4942 * a few races/collisions:
4943 * 1/ 'Create' called by two separate instances of mdadm
4944 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4945 * devices that have since been assimilated via
4946 * activate_spare.
4947 * In the event this update can not be carried out mdadm will
4948 * (FIX ME) notice that its update did not take hold.
4949 */
4950 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 4951 struct intel_dev *dv;
8273f55e
DW
4952 struct imsm_dev *dev;
4953 struct imsm_map *map, *new_map;
4954 unsigned long long start, end;
4955 unsigned long long new_start, new_end;
4956 int i;
54c2c1ea
DW
4957 struct disk_info *inf;
4958 struct dl *dl;
8273f55e
DW
4959
4960 /* handle racing creates: first come first serve */
4961 if (u->dev_idx < mpb->num_raid_devs) {
4962 dprintf("%s: subarray %d already defined\n",
4963 __func__, u->dev_idx);
ba2de7ba 4964 goto create_error;
8273f55e
DW
4965 }
4966
4967 /* check update is next in sequence */
4968 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
4969 dprintf("%s: can not create array %d expected index %d\n",
4970 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 4971 goto create_error;
8273f55e
DW
4972 }
4973
a965f303 4974 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
4975 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4976 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 4977 inf = get_disk_info(u);
8273f55e
DW
4978
4979 /* handle activate_spare versus create race:
4980 * check to make sure that overlapping arrays do not include
4981 * overalpping disks
4982 */
4983 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 4984 dev = get_imsm_dev(super, i);
a965f303 4985 map = get_imsm_map(dev, 0);
8273f55e
DW
4986 start = __le32_to_cpu(map->pba_of_lba0);
4987 end = start + __le32_to_cpu(map->blocks_per_member);
4988 if ((new_start >= start && new_start <= end) ||
4989 (start >= new_start && start <= new_end))
54c2c1ea
DW
4990 /* overlap */;
4991 else
4992 continue;
4993
4994 if (disks_overlap(super, i, u)) {
8273f55e 4995 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 4996 goto create_error;
8273f55e
DW
4997 }
4998 }
8273f55e 4999
949c47a0
DW
5000 /* check that prepare update was successful */
5001 if (!update->space) {
5002 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 5003 goto create_error;
949c47a0
DW
5004 }
5005
54c2c1ea
DW
5006 /* check that all disks are still active before committing
5007 * changes. FIXME: could we instead handle this by creating a
5008 * degraded array? That's probably not what the user expects,
5009 * so better to drop this update on the floor.
5010 */
5011 for (i = 0; i < new_map->num_members; i++) {
5012 dl = serial_to_dl(inf[i].serial, super);
5013 if (!dl) {
5014 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 5015 goto create_error;
54c2c1ea 5016 }
949c47a0
DW
5017 }
5018
8273f55e 5019 super->updates_pending++;
54c2c1ea
DW
5020
5021 /* convert spares to members and fixup ord_tbl */
5022 for (i = 0; i < new_map->num_members; i++) {
5023 dl = serial_to_dl(inf[i].serial, super);
5024 if (dl->index == -1) {
5025 dl->index = mpb->num_disks;
5026 mpb->num_disks++;
5027 dl->disk.status |= CONFIGURED_DISK;
5028 dl->disk.status &= ~SPARE_DISK;
5029 }
5030 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5031 }
5032
ba2de7ba
DW
5033 dv = update->space;
5034 dev = dv->dev;
949c47a0
DW
5035 update->space = NULL;
5036 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
5037 dv->index = u->dev_idx;
5038 dv->next = super->devlist;
5039 super->devlist = dv;
8273f55e 5040 mpb->num_raid_devs++;
8273f55e 5041
4d1313e9 5042 imsm_update_version_info(super);
8273f55e 5043 break;
ba2de7ba
DW
5044 create_error:
5045 /* mdmon knows how to release update->space, but not
5046 * ((struct intel_dev *) update->space)->dev
5047 */
5048 if (update->space) {
5049 dv = update->space;
5050 free(dv->dev);
5051 }
8273f55e 5052 break;
e8319a19 5053 }
43dad3d6
DW
5054 case update_add_disk:
5055
5056 /* we may be able to repair some arrays if disks are
5057 * being added */
5058 if (super->add) {
5059 struct active_array *a;
072b727f
DW
5060
5061 super->updates_pending++;
43dad3d6
DW
5062 for (a = st->arrays; a; a = a->next)
5063 a->check_degraded = 1;
5064 }
e553d2a4 5065 /* add some spares to the metadata */
43dad3d6 5066 while (super->add) {
e553d2a4
DW
5067 struct dl *al;
5068
43dad3d6
DW
5069 al = super->add;
5070 super->add = al->next;
43dad3d6
DW
5071 al->next = super->disks;
5072 super->disks = al;
e553d2a4
DW
5073 dprintf("%s: added %x:%x\n",
5074 __func__, al->major, al->minor);
43dad3d6
DW
5075 }
5076
5077 break;
e8319a19
DW
5078 }
5079}
88758e9d 5080
8273f55e
DW
5081static void imsm_prepare_update(struct supertype *st,
5082 struct metadata_update *update)
5083{
949c47a0 5084 /**
4d7b1503
DW
5085 * Allocate space to hold new disk entries, raid-device entries or a new
5086 * mpb if necessary. The manager synchronously waits for updates to
5087 * complete in the monitor, so new mpb buffers allocated here can be
5088 * integrated by the monitor thread without worrying about live pointers
5089 * in the manager thread.
8273f55e 5090 */
949c47a0 5091 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
5092 struct intel_super *super = st->sb;
5093 struct imsm_super *mpb = super->anchor;
5094 size_t buf_len;
5095 size_t len = 0;
949c47a0
DW
5096
5097 switch (type) {
5098 case update_create_array: {
5099 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 5100 struct intel_dev *dv;
54c2c1ea
DW
5101 struct imsm_dev *dev = &u->dev;
5102 struct imsm_map *map = get_imsm_map(dev, 0);
5103 struct dl *dl;
5104 struct disk_info *inf;
5105 int i;
5106 int activate = 0;
949c47a0 5107
54c2c1ea
DW
5108 inf = get_disk_info(u);
5109 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
5110 /* allocate a new super->devlist entry */
5111 dv = malloc(sizeof(*dv));
5112 if (dv) {
5113 dv->dev = malloc(len);
5114 if (dv->dev)
5115 update->space = dv;
5116 else {
5117 free(dv);
5118 update->space = NULL;
5119 }
5120 }
949c47a0 5121
54c2c1ea
DW
5122 /* count how many spares will be converted to members */
5123 for (i = 0; i < map->num_members; i++) {
5124 dl = serial_to_dl(inf[i].serial, super);
5125 if (!dl) {
5126 /* hmm maybe it failed?, nothing we can do about
5127 * it here
5128 */
5129 continue;
5130 }
5131 if (count_memberships(dl, super) == 0)
5132 activate++;
5133 }
5134 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
5135 break;
5136 default:
5137 break;
5138 }
5139 }
8273f55e 5140
4d7b1503
DW
5141 /* check if we need a larger metadata buffer */
5142 if (super->next_buf)
5143 buf_len = super->next_len;
5144 else
5145 buf_len = super->len;
5146
5147 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5148 /* ok we need a larger buf than what is currently allocated
5149 * if this allocation fails process_update will notice that
5150 * ->next_len is set and ->next_buf is NULL
5151 */
5152 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5153 if (super->next_buf)
5154 free(super->next_buf);
5155
5156 super->next_len = buf_len;
1f45a8ad
DW
5157 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5158 memset(super->next_buf, 0, buf_len);
5159 else
4d7b1503
DW
5160 super->next_buf = NULL;
5161 }
8273f55e
DW
5162}
5163
ae6aad82 5164/* must be called while manager is quiesced */
24565c9a 5165static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
ae6aad82
DW
5166{
5167 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
5168 struct dl *iter;
5169 struct imsm_dev *dev;
5170 struct imsm_map *map;
24565c9a
DW
5171 int i, j, num_members;
5172 __u32 ord;
ae6aad82 5173
24565c9a
DW
5174 dprintf("%s: deleting device[%d] from imsm_super\n",
5175 __func__, index);
ae6aad82
DW
5176
5177 /* shift all indexes down one */
5178 for (iter = super->disks; iter; iter = iter->next)
24565c9a 5179 if (iter->index > index)
ae6aad82 5180 iter->index--;
47ee5a45
DW
5181 for (iter = super->missing; iter; iter = iter->next)
5182 if (iter->index > index)
5183 iter->index--;
ae6aad82
DW
5184
5185 for (i = 0; i < mpb->num_raid_devs; i++) {
5186 dev = get_imsm_dev(super, i);
5187 map = get_imsm_map(dev, 0);
24565c9a
DW
5188 num_members = map->num_members;
5189 for (j = 0; j < num_members; j++) {
5190 /* update ord entries being careful not to propagate
5191 * ord-flags to the first map
5192 */
5193 ord = get_imsm_ord_tbl_ent(dev, j);
ae6aad82 5194
24565c9a
DW
5195 if (ord_to_idx(ord) <= index)
5196 continue;
ae6aad82 5197
24565c9a
DW
5198 map = get_imsm_map(dev, 0);
5199 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5200 map = get_imsm_map(dev, 1);
5201 if (map)
5202 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
5203 }
5204 }
5205
5206 mpb->num_disks--;
5207 super->updates_pending++;
24565c9a
DW
5208 if (*dlp) {
5209 struct dl *dl = *dlp;
5210
5211 *dlp = (*dlp)->next;
5212 __free_imsm_disk(dl);
5213 }
ae6aad82 5214}
0e600426 5215#endif /* MDASSEMBLE */
ae6aad82 5216
cdddbdbc
DW
5217struct superswitch super_imsm = {
5218#ifndef MDASSEMBLE
5219 .examine_super = examine_super_imsm,
5220 .brief_examine_super = brief_examine_super_imsm,
4737ae25 5221 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 5222 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
5223 .detail_super = detail_super_imsm,
5224 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 5225 .write_init_super = write_init_super_imsm,
0e600426
N
5226 .validate_geometry = validate_geometry_imsm,
5227 .add_to_super = add_to_super_imsm,
d665cc31 5228 .detail_platform = detail_platform_imsm,
cdddbdbc
DW
5229#endif
5230 .match_home = match_home_imsm,
5231 .uuid_from_super= uuid_from_super_imsm,
5232 .getinfo_super = getinfo_super_imsm,
5233 .update_super = update_super_imsm,
5234
5235 .avail_size = avail_size_imsm,
5236
5237 .compare_super = compare_super_imsm,
5238
5239 .load_super = load_super_imsm,
bf5a934a 5240 .init_super = init_super_imsm,
e683ca88 5241 .store_super = store_super_imsm,
cdddbdbc
DW
5242 .free_super = free_super_imsm,
5243 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 5244 .container_content = container_content_imsm,
a18a888e 5245 .default_layout = imsm_level_to_layout,
cdddbdbc 5246
cdddbdbc 5247 .external = 1,
4cce4069 5248 .name = "imsm",
845dea95 5249
0e600426 5250#ifndef MDASSEMBLE
845dea95
NB
5251/* for mdmon */
5252 .open_new = imsm_open_new,
5253 .load_super = load_super_imsm,
ed9d66aa 5254 .set_array_state= imsm_set_array_state,
845dea95
NB
5255 .set_disk = imsm_set_disk,
5256 .sync_metadata = imsm_sync_metadata,
88758e9d 5257 .activate_spare = imsm_activate_spare,
e8319a19 5258 .process_update = imsm_process_update,
8273f55e 5259 .prepare_update = imsm_prepare_update,
0e600426 5260#endif /* MDASSEMBLE */
cdddbdbc 5261};