Teach sysfs_add_disk() callers to use ->recovery_start versus 'insync' parameter
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
c2c087e6
DW
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
1484e727
DW
197static __u8 migr_type(struct imsm_dev *dev)
198{
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204}
205
206static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207{
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218}
219
87eb16df 220static unsigned int sector_count(__u32 bytes)
cdddbdbc 221{
87eb16df
DW
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223}
cdddbdbc 224
87eb16df
DW
225static unsigned int mpb_sectors(struct imsm_super *mpb)
226{
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
228}
229
ba2de7ba
DW
230struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234};
235
cdddbdbc
DW
236/* internal representation of IMSM metadata */
237struct intel_super {
238 union {
949c47a0
DW
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 241 };
949c47a0 242 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
c2c087e6
DW
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
bf5a934a 247 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 248 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 249 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 250 struct intel_dev *devlist;
cdddbdbc
DW
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
b9f594fe 257 struct imsm_disk disk;
cdddbdbc 258 int fd;
0dcecb2e
DW
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
efb30e7f 261 int raiddisk; /* slot to fill in autolayout */
cdddbdbc 262 } *disks;
43dad3d6 263 struct dl *add; /* list of disks to add while mdmon active */
47ee5a45 264 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 265 struct bbm_log *bbm_log;
88c32bb1
DW
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269};
270
271struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
cdddbdbc
DW
276};
277
c2c087e6
DW
278struct extent {
279 unsigned long long start, size;
280};
281
88758e9d
DW
282/* definition of messages passed to imsm_process_update */
283enum imsm_update_type {
284 update_activate_spare,
8273f55e 285 update_create_array,
43dad3d6 286 update_add_disk,
88758e9d
DW
287};
288
289struct imsm_update_activate_spare {
290 enum imsm_update_type type;
d23fe947 291 struct dl *dl;
88758e9d
DW
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295};
296
54c2c1ea
DW
297struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299};
300
8273f55e
DW
301struct imsm_update_create_array {
302 enum imsm_update_type type;
8273f55e 303 int dev_idx;
6a3e913e 304 struct imsm_dev dev;
8273f55e
DW
305};
306
43dad3d6
DW
307struct imsm_update_add_disk {
308 enum imsm_update_type type;
309};
310
cdddbdbc
DW
311static struct supertype *match_metadata_desc_imsm(char *arg)
312{
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
ef609477 321 memset(st, 0, sizeof(*st));
cdddbdbc
DW
322 st->ss = &super_imsm;
323 st->max_devs = IMSM_MAX_DEVICES;
324 st->minor_version = 0;
325 st->sb = NULL;
326 return st;
327}
328
0e600426 329#ifndef MDASSEMBLE
cdddbdbc
DW
330static __u8 *get_imsm_version(struct imsm_super *mpb)
331{
332 return &mpb->sig[MPB_SIG_LEN];
333}
0e600426 334#endif
cdddbdbc 335
949c47a0
DW
336/* retrieve a disk directly from the anchor when the anchor is known to be
337 * up-to-date, currently only at load time
338 */
339static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 340{
949c47a0 341 if (index >= mpb->num_disks)
cdddbdbc
DW
342 return NULL;
343 return &mpb->disk[index];
344}
345
0e600426 346#ifndef MDASSEMBLE
b9f594fe 347/* retrieve a disk from the parsed metadata */
949c47a0
DW
348static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
349{
b9f594fe
DW
350 struct dl *d;
351
352 for (d = super->disks; d; d = d->next)
353 if (d->index == index)
354 return &d->disk;
355
356 return NULL;
949c47a0 357}
0e600426 358#endif
949c47a0
DW
359
360/* generate a checksum directly from the anchor when the anchor is known to be
361 * up-to-date, currently only at load or write_super after coalescing
362 */
363static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
364{
365 __u32 end = mpb->mpb_size / sizeof(end);
366 __u32 *p = (__u32 *) mpb;
367 __u32 sum = 0;
368
97f734fd
N
369 while (end--) {
370 sum += __le32_to_cpu(*p);
371 p++;
372 }
cdddbdbc
DW
373
374 return sum - __le32_to_cpu(mpb->check_sum);
375}
376
a965f303
DW
377static size_t sizeof_imsm_map(struct imsm_map *map)
378{
379 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
380}
381
382struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 383{
a965f303
DW
384 struct imsm_map *map = &dev->vol.map[0];
385
386 if (second_map && !dev->vol.migr_state)
387 return NULL;
388 else if (second_map) {
389 void *ptr = map;
390
391 return ptr + sizeof_imsm_map(map);
392 } else
393 return map;
394
395}
cdddbdbc 396
3393c6af
DW
397/* return the size of the device.
398 * migr_state increases the returned size if map[0] were to be duplicated
399 */
400static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
401{
402 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
403 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
404
405 /* migrating means an additional map */
a965f303
DW
406 if (dev->vol.migr_state)
407 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
408 else if (migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
410
411 return size;
412}
413
54c2c1ea
DW
414#ifndef MDASSEMBLE
415/* retrieve disk serial number list from a metadata update */
416static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
417{
418 void *u = update;
419 struct disk_info *inf;
420
421 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
422 sizeof_imsm_dev(&update->dev, 0);
423
424 return inf;
425}
426#endif
427
949c47a0 428static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
429{
430 int offset;
431 int i;
432 void *_mpb = mpb;
433
949c47a0 434 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
435 return NULL;
436
437 /* devices start after all disks */
438 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
439
440 for (i = 0; i <= index; i++)
441 if (i == index)
442 return _mpb + offset;
443 else
3393c6af 444 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
445
446 return NULL;
447}
448
949c47a0
DW
449static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
450{
ba2de7ba
DW
451 struct intel_dev *dv;
452
949c47a0
DW
453 if (index >= super->anchor->num_raid_devs)
454 return NULL;
ba2de7ba
DW
455 for (dv = super->devlist; dv; dv = dv->next)
456 if (dv->index == index)
457 return dv->dev;
458 return NULL;
949c47a0
DW
459}
460
7eef0453
DW
461static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
462{
463 struct imsm_map *map;
464
465 if (dev->vol.migr_state)
7eef0453 466 map = get_imsm_map(dev, 1);
fb9bf0d3
DW
467 else
468 map = get_imsm_map(dev, 0);
7eef0453 469
ff077194
DW
470 /* top byte identifies disk under rebuild */
471 return __le32_to_cpu(map->disk_ord_tbl[slot]);
472}
473
474#define ord_to_idx(ord) (((ord) << 8) >> 8)
475static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
476{
477 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
478
479 return ord_to_idx(ord);
7eef0453
DW
480}
481
be73972f
DW
482static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
483{
484 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
485}
486
620b1713
DW
487static int get_imsm_disk_slot(struct imsm_map *map, int idx)
488{
489 int slot;
490 __u32 ord;
491
492 for (slot = 0; slot < map->num_members; slot++) {
493 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
494 if (ord_to_idx(ord) == idx)
495 return slot;
496 }
497
498 return -1;
499}
500
cdddbdbc
DW
501static int get_imsm_raid_level(struct imsm_map *map)
502{
503 if (map->raid_level == 1) {
504 if (map->num_members == 2)
505 return 1;
506 else
507 return 10;
508 }
509
510 return map->raid_level;
511}
512
c2c087e6
DW
513static int cmp_extent(const void *av, const void *bv)
514{
515 const struct extent *a = av;
516 const struct extent *b = bv;
517 if (a->start < b->start)
518 return -1;
519 if (a->start > b->start)
520 return 1;
521 return 0;
522}
523
0dcecb2e 524static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 525{
c2c087e6 526 int memberships = 0;
620b1713 527 int i;
c2c087e6 528
949c47a0
DW
529 for (i = 0; i < super->anchor->num_raid_devs; i++) {
530 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 531 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 532
620b1713
DW
533 if (get_imsm_disk_slot(map, dl->index) >= 0)
534 memberships++;
c2c087e6 535 }
0dcecb2e
DW
536
537 return memberships;
538}
539
540static struct extent *get_extents(struct intel_super *super, struct dl *dl)
541{
542 /* find a list of used extents on the given physical device */
543 struct extent *rv, *e;
620b1713 544 int i;
0dcecb2e
DW
545 int memberships = count_memberships(dl, super);
546 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
547
c2c087e6
DW
548 rv = malloc(sizeof(struct extent) * (memberships + 1));
549 if (!rv)
550 return NULL;
551 e = rv;
552
949c47a0
DW
553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
554 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 555 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 556
620b1713
DW
557 if (get_imsm_disk_slot(map, dl->index) >= 0) {
558 e->start = __le32_to_cpu(map->pba_of_lba0);
559 e->size = __le32_to_cpu(map->blocks_per_member);
560 e++;
c2c087e6
DW
561 }
562 }
563 qsort(rv, memberships, sizeof(*rv), cmp_extent);
564
14e8215b
DW
565 /* determine the start of the metadata
566 * when no raid devices are defined use the default
567 * ...otherwise allow the metadata to truncate the value
568 * as is the case with older versions of imsm
569 */
570 if (memberships) {
571 struct extent *last = &rv[memberships - 1];
572 __u32 remainder;
573
574 remainder = __le32_to_cpu(dl->disk.total_blocks) -
575 (last->start + last->size);
dda5855f
DW
576 /* round down to 1k block to satisfy precision of the kernel
577 * 'size' interface
578 */
579 remainder &= ~1UL;
580 /* make sure remainder is still sane */
581 if (remainder < ROUND_UP(super->len, 512) >> 9)
582 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
583 if (reservation > remainder)
584 reservation = remainder;
585 }
586 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
587 e->size = 0;
588 return rv;
589}
590
14e8215b
DW
591/* try to determine how much space is reserved for metadata from
592 * the last get_extents() entry, otherwise fallback to the
593 * default
594 */
595static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
596{
597 struct extent *e;
598 int i;
599 __u32 rv;
600
601 /* for spares just return a minimal reservation which will grow
602 * once the spare is picked up by an array
603 */
604 if (dl->index == -1)
605 return MPB_SECTOR_CNT;
606
607 e = get_extents(super, dl);
608 if (!e)
609 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
610
611 /* scroll to last entry */
612 for (i = 0; e[i].size; i++)
613 continue;
614
615 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
616
617 free(e);
618
619 return rv;
620}
621
25ed7e59
DW
622static int is_spare(struct imsm_disk *disk)
623{
624 return (disk->status & SPARE_DISK) == SPARE_DISK;
625}
626
627static int is_configured(struct imsm_disk *disk)
628{
629 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
630}
631
632static int is_failed(struct imsm_disk *disk)
633{
634 return (disk->status & FAILED_DISK) == FAILED_DISK;
635}
636
1799c9e8 637#ifndef MDASSEMBLE
44470971 638static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
cdddbdbc
DW
639{
640 __u64 sz;
641 int slot;
a965f303 642 struct imsm_map *map = get_imsm_map(dev, 0);
b10b37b8 643 __u32 ord;
cdddbdbc
DW
644
645 printf("\n");
1e7bc0ed 646 printf("[%.16s]:\n", dev->volume);
44470971 647 printf(" UUID : %s\n", uuid);
cdddbdbc
DW
648 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
649 printf(" Members : %d\n", map->num_members);
620b1713
DW
650 slot = get_imsm_disk_slot(map, disk_idx);
651 if (slot >= 0) {
b10b37b8
DW
652 ord = get_imsm_ord_tbl_ent(dev, slot);
653 printf(" This Slot : %d%s\n", slot,
654 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
655 } else
cdddbdbc
DW
656 printf(" This Slot : ?\n");
657 sz = __le32_to_cpu(dev->size_high);
658 sz <<= 32;
659 sz += __le32_to_cpu(dev->size_low);
660 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
661 human_size(sz * 512));
662 sz = __le32_to_cpu(map->blocks_per_member);
663 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
664 human_size(sz * 512));
665 printf(" Sector Offset : %u\n",
666 __le32_to_cpu(map->pba_of_lba0));
667 printf(" Num Stripes : %u\n",
668 __le32_to_cpu(map->num_data_stripes));
669 printf(" Chunk Size : %u KiB\n",
670 __le16_to_cpu(map->blocks_per_strip) / 2);
671 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
8655a7b1 672 printf(" Migrate State : ");
1484e727
DW
673 if (dev->vol.migr_state) {
674 if (migr_type(dev) == MIGR_INIT)
8655a7b1 675 printf("initialize\n");
1484e727 676 else if (migr_type(dev) == MIGR_REBUILD)
8655a7b1 677 printf("rebuild\n");
1484e727 678 else if (migr_type(dev) == MIGR_VERIFY)
8655a7b1 679 printf("check\n");
1484e727 680 else if (migr_type(dev) == MIGR_GEN_MIGR)
8655a7b1 681 printf("general migration\n");
1484e727 682 else if (migr_type(dev) == MIGR_STATE_CHANGE)
8655a7b1 683 printf("state change\n");
1484e727 684 else if (migr_type(dev) == MIGR_REPAIR)
8655a7b1 685 printf("repair\n");
1484e727 686 else
8655a7b1
DW
687 printf("<unknown:%d>\n", migr_type(dev));
688 } else
689 printf("idle\n");
3393c6af
DW
690 printf(" Map State : %s", map_state_str[map->map_state]);
691 if (dev->vol.migr_state) {
692 struct imsm_map *map = get_imsm_map(dev, 1);
b10b37b8 693 printf(" <-- %s", map_state_str[map->map_state]);
3393c6af
DW
694 }
695 printf("\n");
cdddbdbc 696 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
697}
698
14e8215b 699static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 700{
949c47a0 701 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 702 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
703 __u64 sz;
704
e9d82038
DW
705 if (index < 0)
706 return;
707
cdddbdbc 708 printf("\n");
1f24f035 709 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 710 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
711 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
712 is_configured(disk) ? " active" : "",
713 is_failed(disk) ? " failed" : "");
cdddbdbc 714 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 715 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
716 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
717 human_size(sz * 512));
718}
719
44470971
DW
720static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
721
cdddbdbc
DW
722static void examine_super_imsm(struct supertype *st, char *homehost)
723{
724 struct intel_super *super = st->sb;
949c47a0 725 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
726 char str[MAX_SIGNATURE_LENGTH];
727 int i;
27fd6274
DW
728 struct mdinfo info;
729 char nbuf[64];
cdddbdbc 730 __u32 sum;
14e8215b 731 __u32 reserved = imsm_reserved_sectors(super, super->disks);
cdddbdbc 732
27fd6274 733
cdddbdbc
DW
734 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
735 printf(" Magic : %s\n", str);
736 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
737 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 738 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
739 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
740 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
27fd6274 741 getinfo_super_imsm(st, &info);
ae2bfd4e 742 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 743 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
744 sum = __le32_to_cpu(mpb->check_sum);
745 printf(" Checksum : %08x %s\n", sum,
949c47a0 746 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 747 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
748 printf(" Disks : %d\n", mpb->num_disks);
749 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 750 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
751 if (super->bbm_log) {
752 struct bbm_log *log = super->bbm_log;
753
754 printf("\n");
755 printf("Bad Block Management Log:\n");
756 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
757 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
758 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
759 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
760 printf(" First Spare : %llx\n",
761 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 762 }
44470971
DW
763 for (i = 0; i < mpb->num_raid_devs; i++) {
764 struct mdinfo info;
765 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
766
767 super->current_vol = i;
768 getinfo_super_imsm(st, &info);
ae2bfd4e 769 fname_from_uuid(st, &info, nbuf, ':');
44470971
DW
770 print_imsm_dev(dev, nbuf + 5, super->disks->index);
771 }
cdddbdbc
DW
772 for (i = 0; i < mpb->num_disks; i++) {
773 if (i == super->disks->index)
774 continue;
14e8215b 775 print_imsm_disk(mpb, i, reserved);
cdddbdbc
DW
776 }
777}
778
061f2c6a 779static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 780{
27fd6274 781 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
782 struct mdinfo info;
783 char nbuf[64];
1e7bc0ed 784 struct intel_super *super = st->sb;
1e7bc0ed 785
0d5a423f
DW
786 if (!super->anchor->num_raid_devs) {
787 printf("ARRAY metadata=imsm\n");
1e7bc0ed 788 return;
0d5a423f 789 }
ff54de6e 790
4737ae25
N
791 getinfo_super_imsm(st, &info);
792 fname_from_uuid(st, &info, nbuf, ':');
793 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
794}
795
796static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
797{
798 /* We just write a generic IMSM ARRAY entry */
799 struct mdinfo info;
800 char nbuf[64];
801 char nbuf1[64];
802 struct intel_super *super = st->sb;
803 int i;
804
805 if (!super->anchor->num_raid_devs)
806 return;
807
ff54de6e 808 getinfo_super_imsm(st, &info);
ae2bfd4e 809 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
810 for (i = 0; i < super->anchor->num_raid_devs; i++) {
811 struct imsm_dev *dev = get_imsm_dev(super, i);
812
813 super->current_vol = i;
814 getinfo_super_imsm(st, &info);
ae2bfd4e 815 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 816 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 817 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 818 }
cdddbdbc
DW
819}
820
9d84c8ea
DW
821static void export_examine_super_imsm(struct supertype *st)
822{
823 struct intel_super *super = st->sb;
824 struct imsm_super *mpb = super->anchor;
825 struct mdinfo info;
826 char nbuf[64];
827
828 getinfo_super_imsm(st, &info);
829 fname_from_uuid(st, &info, nbuf, ':');
830 printf("MD_METADATA=imsm\n");
831 printf("MD_LEVEL=container\n");
832 printf("MD_UUID=%s\n", nbuf+5);
833 printf("MD_DEVICES=%u\n", mpb->num_disks);
834}
835
cdddbdbc
DW
836static void detail_super_imsm(struct supertype *st, char *homehost)
837{
3ebe00a1
DW
838 struct mdinfo info;
839 char nbuf[64];
840
841 getinfo_super_imsm(st, &info);
ae2bfd4e 842 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 843 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
844}
845
846static void brief_detail_super_imsm(struct supertype *st)
847{
ff54de6e
N
848 struct mdinfo info;
849 char nbuf[64];
850 getinfo_super_imsm(st, &info);
ae2bfd4e 851 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 852 printf(" UUID=%s", nbuf + 5);
cdddbdbc 853}
d665cc31
DW
854
855static int imsm_read_serial(int fd, char *devname, __u8 *serial);
856static void fd2devname(int fd, char *name);
857
858static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
859{
860 /* dump an unsorted list of devices attached to ahci, as well as
861 * non-connected ports
862 */
863 int hba_len = strlen(hba_path) + 1;
864 struct dirent *ent;
865 DIR *dir;
866 char *path = NULL;
867 int err = 0;
868 unsigned long port_mask = (1 << port_count) - 1;
869
870 if (port_count > sizeof(port_mask) * 8) {
871 if (verbose)
872 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
873 return 2;
874 }
875
876 /* scroll through /sys/dev/block looking for devices attached to
877 * this hba
878 */
879 dir = opendir("/sys/dev/block");
880 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
881 int fd;
882 char model[64];
883 char vendor[64];
884 char buf[1024];
885 int major, minor;
886 char *device;
887 char *c;
888 int port;
889 int type;
890
891 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
892 continue;
893 path = devt_to_devpath(makedev(major, minor));
894 if (!path)
895 continue;
896 if (!path_attached_to_hba(path, hba_path)) {
897 free(path);
898 path = NULL;
899 continue;
900 }
901
902 /* retrieve the scsi device type */
903 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
904 if (verbose)
905 fprintf(stderr, Name ": failed to allocate 'device'\n");
906 err = 2;
907 break;
908 }
909 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
910 if (load_sys(device, buf) != 0) {
911 if (verbose)
912 fprintf(stderr, Name ": failed to read device type for %s\n",
913 path);
914 err = 2;
915 free(device);
916 break;
917 }
918 type = strtoul(buf, NULL, 10);
919
920 /* if it's not a disk print the vendor and model */
921 if (!(type == 0 || type == 7 || type == 14)) {
922 vendor[0] = '\0';
923 model[0] = '\0';
924 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
925 if (load_sys(device, buf) == 0) {
926 strncpy(vendor, buf, sizeof(vendor));
927 vendor[sizeof(vendor) - 1] = '\0';
928 c = (char *) &vendor[sizeof(vendor) - 1];
929 while (isspace(*c) || *c == '\0')
930 *c-- = '\0';
931
932 }
933 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
934 if (load_sys(device, buf) == 0) {
935 strncpy(model, buf, sizeof(model));
936 model[sizeof(model) - 1] = '\0';
937 c = (char *) &model[sizeof(model) - 1];
938 while (isspace(*c) || *c == '\0')
939 *c-- = '\0';
940 }
941
942 if (vendor[0] && model[0])
943 sprintf(buf, "%.64s %.64s", vendor, model);
944 else
945 switch (type) { /* numbers from hald/linux/device.c */
946 case 1: sprintf(buf, "tape"); break;
947 case 2: sprintf(buf, "printer"); break;
948 case 3: sprintf(buf, "processor"); break;
949 case 4:
950 case 5: sprintf(buf, "cdrom"); break;
951 case 6: sprintf(buf, "scanner"); break;
952 case 8: sprintf(buf, "media_changer"); break;
953 case 9: sprintf(buf, "comm"); break;
954 case 12: sprintf(buf, "raid"); break;
955 default: sprintf(buf, "unknown");
956 }
957 } else
958 buf[0] = '\0';
959 free(device);
960
961 /* chop device path to 'host%d' and calculate the port number */
962 c = strchr(&path[hba_len], '/');
963 *c = '\0';
964 if (sscanf(&path[hba_len], "host%d", &port) == 1)
965 port -= host_base;
966 else {
967 if (verbose) {
968 *c = '/'; /* repair the full string */
969 fprintf(stderr, Name ": failed to determine port number for %s\n",
970 path);
971 }
972 err = 2;
973 break;
974 }
975
976 /* mark this port as used */
977 port_mask &= ~(1 << port);
978
979 /* print out the device information */
980 if (buf[0]) {
981 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
982 continue;
983 }
984
985 fd = dev_open(ent->d_name, O_RDONLY);
986 if (fd < 0)
987 printf(" Port%d : - disk info unavailable -\n", port);
988 else {
989 fd2devname(fd, buf);
990 printf(" Port%d : %s", port, buf);
991 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
992 printf(" (%s)\n", buf);
993 else
994 printf("()\n");
995 }
996 close(fd);
997 free(path);
998 path = NULL;
999 }
1000 if (path)
1001 free(path);
1002 if (dir)
1003 closedir(dir);
1004 if (err == 0) {
1005 int i;
1006
1007 for (i = 0; i < port_count; i++)
1008 if (port_mask & (1 << i))
1009 printf(" Port%d : - no device attached -\n", i);
1010 }
1011
1012 return err;
1013}
1014
5615172f 1015static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1016{
1017 /* There are two components to imsm platform support, the ahci SATA
1018 * controller and the option-rom. To find the SATA controller we
1019 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1020 * controller with the Intel vendor id is present. This approach
1021 * allows mdadm to leverage the kernel's ahci detection logic, with the
1022 * caveat that if ahci.ko is not loaded mdadm will not be able to
1023 * detect platform raid capabilities. The option-rom resides in a
1024 * platform "Adapter ROM". We scan for its signature to retrieve the
1025 * platform capabilities. If raid support is disabled in the BIOS the
1026 * option-rom capability structure will not be available.
1027 */
1028 const struct imsm_orom *orom;
1029 struct sys_dev *list, *hba;
1030 DIR *dir;
1031 struct dirent *ent;
1032 const char *hba_path;
1033 int host_base = 0;
1034 int port_count = 0;
1035
5615172f
DW
1036 if (enumerate_only) {
1037 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1038 return 0;
1039 return 2;
1040 }
1041
d665cc31
DW
1042 list = find_driver_devices("pci", "ahci");
1043 for (hba = list; hba; hba = hba->next)
1044 if (devpath_to_vendor(hba->path) == 0x8086)
1045 break;
1046
1047 if (!hba) {
1048 if (verbose)
1049 fprintf(stderr, Name ": unable to find active ahci controller\n");
1050 free_sys_dev(&list);
1051 return 2;
1052 } else if (verbose)
1053 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1054 hba_path = hba->path;
1055 hba->path = NULL;
1056 free_sys_dev(&list);
1057
1058 orom = find_imsm_orom();
1059 if (!orom) {
1060 if (verbose)
1061 fprintf(stderr, Name ": imsm option-rom not found\n");
1062 return 2;
1063 }
1064
1065 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1066 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1067 orom->hotfix_ver, orom->build);
1068 printf(" RAID Levels :%s%s%s%s%s\n",
1069 imsm_orom_has_raid0(orom) ? " raid0" : "",
1070 imsm_orom_has_raid1(orom) ? " raid1" : "",
1071 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1072 imsm_orom_has_raid10(orom) ? " raid10" : "",
1073 imsm_orom_has_raid5(orom) ? " raid5" : "");
8be094f0
DW
1074 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1075 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1076 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1077 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1078 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1079 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1080 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1081 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1082 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1083 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1084 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1085 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1086 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1087 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1088 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1089 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1090 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
d665cc31
DW
1091 printf(" Max Disks : %d\n", orom->tds);
1092 printf(" Max Volumes : %d\n", orom->vpa);
1093 printf(" I/O Controller : %s\n", hba_path);
1094
1095 /* find the smallest scsi host number to determine a port number base */
1096 dir = opendir(hba_path);
1097 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1098 int host;
1099
1100 if (sscanf(ent->d_name, "host%d", &host) != 1)
1101 continue;
1102 if (port_count == 0)
1103 host_base = host;
1104 else if (host < host_base)
1105 host_base = host;
1106
1107 if (host + 1 > port_count + host_base)
1108 port_count = host + 1 - host_base;
1109
1110 }
1111 if (dir)
1112 closedir(dir);
1113
1114 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1115 host_base, verbose) != 0) {
1116 if (verbose)
1117 fprintf(stderr, Name ": failed to enumerate ports\n");
1118 return 2;
1119 }
1120
1121 return 0;
1122}
cdddbdbc
DW
1123#endif
1124
1125static int match_home_imsm(struct supertype *st, char *homehost)
1126{
5115ca67
DW
1127 /* the imsm metadata format does not specify any host
1128 * identification information. We return -1 since we can never
1129 * confirm nor deny whether a given array is "meant" for this
148acb7b 1130 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1131 * exclude member disks that do not belong, and we rely on
1132 * mdadm.conf to specify the arrays that should be assembled.
1133 * Auto-assembly may still pick up "foreign" arrays.
1134 */
cdddbdbc 1135
9362c1c8 1136 return -1;
cdddbdbc
DW
1137}
1138
1139static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1140{
51006d85
N
1141 /* The uuid returned here is used for:
1142 * uuid to put into bitmap file (Create, Grow)
1143 * uuid for backup header when saving critical section (Grow)
1144 * comparing uuids when re-adding a device into an array
1145 * In these cases the uuid required is that of the data-array,
1146 * not the device-set.
1147 * uuid to recognise same set when adding a missing device back
1148 * to an array. This is a uuid for the device-set.
1149 *
1150 * For each of these we can make do with a truncated
1151 * or hashed uuid rather than the original, as long as
1152 * everyone agrees.
1153 * In each case the uuid required is that of the data-array,
1154 * not the device-set.
43dad3d6 1155 */
51006d85
N
1156 /* imsm does not track uuid's so we synthesis one using sha1 on
1157 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1158 * - the orig_family_num of the container
51006d85
N
1159 * - the index number of the volume
1160 * - the 'serial' number of the volume.
1161 * Hopefully these are all constant.
1162 */
1163 struct intel_super *super = st->sb;
43dad3d6 1164
51006d85
N
1165 char buf[20];
1166 struct sha1_ctx ctx;
1167 struct imsm_dev *dev = NULL;
148acb7b 1168 __u32 family_num;
51006d85 1169
148acb7b
DW
1170 /* some mdadm versions failed to set ->orig_family_num, in which
1171 * case fall back to ->family_num. orig_family_num will be
1172 * fixed up with the first metadata update.
1173 */
1174 family_num = super->anchor->orig_family_num;
1175 if (family_num == 0)
1176 family_num = super->anchor->family_num;
51006d85 1177 sha1_init_ctx(&ctx);
92bd8f8d 1178 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1179 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1180 if (super->current_vol >= 0)
1181 dev = get_imsm_dev(super, super->current_vol);
1182 if (dev) {
1183 __u32 vol = super->current_vol;
1184 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1185 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1186 }
1187 sha1_finish_ctx(&ctx, buf);
1188 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1189}
1190
0d481d37 1191#if 0
4f5bc454
DW
1192static void
1193get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1194{
cdddbdbc
DW
1195 __u8 *v = get_imsm_version(mpb);
1196 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1197 char major[] = { 0, 0, 0 };
1198 char minor[] = { 0 ,0, 0 };
1199 char patch[] = { 0, 0, 0 };
1200 char *ver_parse[] = { major, minor, patch };
1201 int i, j;
1202
1203 i = j = 0;
1204 while (*v != '\0' && v < end) {
1205 if (*v != '.' && j < 2)
1206 ver_parse[i][j++] = *v;
1207 else {
1208 i++;
1209 j = 0;
1210 }
1211 v++;
1212 }
1213
4f5bc454
DW
1214 *m = strtol(minor, NULL, 0);
1215 *p = strtol(patch, NULL, 0);
1216}
0d481d37 1217#endif
4f5bc454 1218
c2c087e6
DW
1219static int imsm_level_to_layout(int level)
1220{
1221 switch (level) {
1222 case 0:
1223 case 1:
1224 return 0;
1225 case 5:
1226 case 6:
a380c027 1227 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1228 case 10:
c92a2527 1229 return 0x102;
c2c087e6 1230 }
a18a888e 1231 return UnSet;
c2c087e6
DW
1232}
1233
bf5a934a
DW
1234static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1235{
1236 struct intel_super *super = st->sb;
949c47a0 1237 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1238 struct imsm_map *map = get_imsm_map(dev, 0);
efb30e7f 1239 struct dl *dl;
bf5a934a 1240
efb30e7f
DW
1241 for (dl = super->disks; dl; dl = dl->next)
1242 if (dl->raiddisk == info->disk.raid_disk)
1243 break;
bf5a934a
DW
1244 info->container_member = super->current_vol;
1245 info->array.raid_disks = map->num_members;
1246 info->array.level = get_imsm_raid_level(map);
1247 info->array.layout = imsm_level_to_layout(info->array.level);
1248 info->array.md_minor = -1;
1249 info->array.ctime = 0;
1250 info->array.utime = 0;
301406c9
DW
1251 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1252 info->array.state = !dev->vol.dirty;
da9b4a62
DW
1253 info->custom_array_size = __le32_to_cpu(dev->size_high);
1254 info->custom_array_size <<= 32;
1255 info->custom_array_size |= __le32_to_cpu(dev->size_low);
301406c9
DW
1256
1257 info->disk.major = 0;
1258 info->disk.minor = 0;
efb30e7f
DW
1259 if (dl) {
1260 info->disk.major = dl->major;
1261 info->disk.minor = dl->minor;
1262 }
bf5a934a
DW
1263
1264 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1265 info->component_size = __le32_to_cpu(map->blocks_per_member);
301406c9 1266 memset(info->uuid, 0, sizeof(info->uuid));
bf5a934a 1267
f8f603f1 1268 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
301406c9 1269 info->resync_start = 0;
f8f603f1 1270 else if (dev->vol.migr_state)
da188789
DW
1271 /* FIXME add curr_migr_unit to resync_start conversion */
1272 info->resync_start = 0;
301406c9 1273 else
b7528a20 1274 info->resync_start = MaxSector;
301406c9
DW
1275
1276 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1277 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 1278
f35f2525
N
1279 info->array.major_version = -1;
1280 info->array.minor_version = -2;
bf5a934a
DW
1281 sprintf(info->text_version, "/%s/%d",
1282 devnum2devname(st->container_dev),
1283 info->container_member);
a67dd8cc 1284 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 1285 uuid_from_super_imsm(st, info->uuid);
bf5a934a
DW
1286}
1287
7a70e8aa
DW
1288/* check the config file to see if we can return a real uuid for this spare */
1289static void fixup_container_spare_uuid(struct mdinfo *inf)
1290{
1291 struct mddev_ident_s *array_list;
1292
1293 if (inf->array.level != LEVEL_CONTAINER ||
1294 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1295 return;
1296
1297 array_list = conf_get_ident(NULL);
1298
1299 for (; array_list; array_list = array_list->next) {
1300 if (array_list->uuid_set) {
1301 struct supertype *_sst; /* spare supertype */
1302 struct supertype *_cst; /* container supertype */
1303
1304 _cst = array_list->st;
7e8545e9
DW
1305 if (_cst)
1306 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1307 else
1308 _sst = NULL;
1309
7a70e8aa
DW
1310 if (_sst) {
1311 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1312 free(_sst);
1313 break;
1314 }
1315 }
1316 }
1317}
bf5a934a 1318
4f5bc454
DW
1319static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1320{
1321 struct intel_super *super = st->sb;
4f5bc454 1322 struct imsm_disk *disk;
4f5bc454 1323
bf5a934a
DW
1324 if (super->current_vol >= 0) {
1325 getinfo_super_imsm_volume(st, info);
1326 return;
1327 }
d23fe947
DW
1328
1329 /* Set raid_disks to zero so that Assemble will always pull in valid
1330 * spares
1331 */
1332 info->array.raid_disks = 0;
cdddbdbc
DW
1333 info->array.level = LEVEL_CONTAINER;
1334 info->array.layout = 0;
1335 info->array.md_minor = -1;
c2c087e6 1336 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
1337 info->array.utime = 0;
1338 info->array.chunk_size = 0;
1339
1340 info->disk.major = 0;
1341 info->disk.minor = 0;
cdddbdbc 1342 info->disk.raid_disk = -1;
c2c087e6 1343 info->reshape_active = 0;
f35f2525
N
1344 info->array.major_version = -1;
1345 info->array.minor_version = -2;
c2c087e6 1346 strcpy(info->text_version, "imsm");
a67dd8cc 1347 info->safe_mode_delay = 0;
c2c087e6
DW
1348 info->disk.number = -1;
1349 info->disk.state = 0;
c5afc314 1350 info->name[0] = 0;
c2c087e6 1351
4a04ec6c 1352 if (super->disks) {
14e8215b
DW
1353 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1354
b9f594fe 1355 disk = &super->disks->disk;
14e8215b
DW
1356 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1357 info->component_size = reserved;
25ed7e59 1358 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
1359 /* we don't change info->disk.raid_disk here because
1360 * this state will be finalized in mdmon after we have
1361 * found the 'most fresh' version of the metadata
1362 */
25ed7e59
DW
1363 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1364 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 1365 }
a575e2a7
DW
1366
1367 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1368 * ->compare_super may have updated the 'num_raid_devs' field for spares
1369 */
1370 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 1371 uuid_from_super_imsm(st, info->uuid);
7a70e8aa 1372 else {
032e9e29 1373 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
7a70e8aa
DW
1374 fixup_container_spare_uuid(info);
1375 }
cdddbdbc
DW
1376}
1377
cdddbdbc
DW
1378static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1379 char *update, char *devname, int verbose,
1380 int uuid_set, char *homehost)
1381{
f352c545
DW
1382 /* For 'assemble' and 'force' we need to return non-zero if any
1383 * change was made. For others, the return value is ignored.
1384 * Update options are:
1385 * force-one : This device looks a bit old but needs to be included,
1386 * update age info appropriately.
1387 * assemble: clear any 'faulty' flag to allow this device to
1388 * be assembled.
1389 * force-array: Array is degraded but being forced, mark it clean
1390 * if that will be needed to assemble it.
1391 *
1392 * newdev: not used ????
1393 * grow: Array has gained a new device - this is currently for
1394 * linear only
1395 * resync: mark as dirty so a resync will happen.
1396 * name: update the name - preserving the homehost
6e46bf34 1397 * uuid: Change the uuid of the array to match watch is given
f352c545
DW
1398 *
1399 * Following are not relevant for this imsm:
1400 * sparc2.2 : update from old dodgey metadata
1401 * super-minor: change the preferred_minor number
1402 * summaries: update redundant counters.
f352c545
DW
1403 * homehost: update the recorded homehost
1404 * _reshape_progress: record new reshape_progress position.
1405 */
6e46bf34
DW
1406 int rv = 1;
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb;
f352c545 1409
6e46bf34
DW
1410 /* we can only update container info */
1411 if (!super || super->current_vol >= 0 || !super->anchor)
1412 return 1;
1413
1414 mpb = super->anchor;
1415
1416 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1417 fprintf(stderr,
1418 Name ": '--uuid' not supported for imsm metadata\n");
1419 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1420 mpb->orig_family_num = *((__u32 *) info->update_private);
1421 rv = 0;
1422 } else if (strcmp(update, "uuid") == 0) {
1423 __u32 *new_family = malloc(sizeof(*new_family));
1424
1425 /* update orig_family_number with the incoming random
1426 * data, report the new effective uuid, and store the
1427 * new orig_family_num for future updates.
1428 */
1429 if (new_family) {
1430 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1431 uuid_from_super_imsm(st, info->uuid);
1432 *new_family = mpb->orig_family_num;
1433 info->update_private = new_family;
1434 rv = 0;
1435 }
1436 } else if (strcmp(update, "assemble") == 0)
1437 rv = 0;
1438 else
1439 fprintf(stderr,
1440 Name ": '--update=%s' not supported for imsm metadata\n",
1441 update);
f352c545 1442
6e46bf34
DW
1443 /* successful update? recompute checksum */
1444 if (rv == 0)
1445 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
f352c545
DW
1446
1447 return rv;
cdddbdbc
DW
1448}
1449
c2c087e6 1450static size_t disks_to_mpb_size(int disks)
cdddbdbc 1451{
c2c087e6 1452 size_t size;
cdddbdbc 1453
c2c087e6
DW
1454 size = sizeof(struct imsm_super);
1455 size += (disks - 1) * sizeof(struct imsm_disk);
1456 size += 2 * sizeof(struct imsm_dev);
1457 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1458 size += (4 - 2) * sizeof(struct imsm_map);
1459 /* 4 possible disk_ord_tbl's */
1460 size += 4 * (disks - 1) * sizeof(__u32);
1461
1462 return size;
1463}
1464
1465static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1466{
1467 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1468 return 0;
1469
1470 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
1471}
1472
ba2de7ba
DW
1473static void free_devlist(struct intel_super *super)
1474{
1475 struct intel_dev *dv;
1476
1477 while (super->devlist) {
1478 dv = super->devlist->next;
1479 free(super->devlist->dev);
1480 free(super->devlist);
1481 super->devlist = dv;
1482 }
1483}
1484
1485static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1486{
1487 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1488}
1489
cdddbdbc
DW
1490static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1491{
1492 /*
1493 * return:
1494 * 0 same, or first was empty, and second was copied
1495 * 1 second had wrong number
1496 * 2 wrong uuid
1497 * 3 wrong other info
1498 */
1499 struct intel_super *first = st->sb;
1500 struct intel_super *sec = tst->sb;
1501
1502 if (!first) {
1503 st->sb = tst->sb;
1504 tst->sb = NULL;
1505 return 0;
1506 }
1507
d23fe947
DW
1508 /* if an anchor does not have num_raid_devs set then it is a free
1509 * floating spare
1510 */
1511 if (first->anchor->num_raid_devs > 0 &&
1512 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
1513 /* Determine if these disks might ever have been
1514 * related. Further disambiguation can only take place
1515 * in load_super_imsm_all
1516 */
1517 __u32 first_family = first->anchor->orig_family_num;
1518 __u32 sec_family = sec->anchor->orig_family_num;
1519
f796af5d
DW
1520 if (memcmp(first->anchor->sig, sec->anchor->sig,
1521 MAX_SIGNATURE_LENGTH) != 0)
1522 return 3;
1523
a2b97981
DW
1524 if (first_family == 0)
1525 first_family = first->anchor->family_num;
1526 if (sec_family == 0)
1527 sec_family = sec->anchor->family_num;
1528
1529 if (first_family != sec_family)
d23fe947 1530 return 3;
f796af5d 1531
d23fe947 1532 }
cdddbdbc 1533
f796af5d 1534
3e372e5a
DW
1535 /* if 'first' is a spare promote it to a populated mpb with sec's
1536 * family number
1537 */
1538 if (first->anchor->num_raid_devs == 0 &&
1539 sec->anchor->num_raid_devs > 0) {
78d30f94 1540 int i;
ba2de7ba
DW
1541 struct intel_dev *dv;
1542 struct imsm_dev *dev;
78d30f94
DW
1543
1544 /* we need to copy raid device info from sec if an allocation
1545 * fails here we don't associate the spare
1546 */
1547 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
1548 dv = malloc(sizeof(*dv));
1549 if (!dv)
1550 break;
1551 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1552 if (!dev) {
1553 free(dv);
1554 break;
78d30f94 1555 }
ba2de7ba
DW
1556 dv->dev = dev;
1557 dv->index = i;
1558 dv->next = first->devlist;
1559 first->devlist = dv;
78d30f94 1560 }
709743c5 1561 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
1562 /* allocation failure */
1563 free_devlist(first);
1564 fprintf(stderr, "imsm: failed to associate spare\n");
1565 return 3;
78d30f94 1566 }
3e372e5a 1567 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 1568 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 1569 first->anchor->family_num = sec->anchor->family_num;
ac6449be 1570 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
709743c5
DW
1571 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1572 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
1573 }
1574
cdddbdbc
DW
1575 return 0;
1576}
1577
0030e8d6
DW
1578static void fd2devname(int fd, char *name)
1579{
1580 struct stat st;
1581 char path[256];
1582 char dname[100];
1583 char *nm;
1584 int rv;
1585
1586 name[0] = '\0';
1587 if (fstat(fd, &st) != 0)
1588 return;
1589 sprintf(path, "/sys/dev/block/%d:%d",
1590 major(st.st_rdev), minor(st.st_rdev));
1591
1592 rv = readlink(path, dname, sizeof(dname));
1593 if (rv <= 0)
1594 return;
1595
1596 dname[rv] = '\0';
1597 nm = strrchr(dname, '/');
1598 nm++;
1599 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1600}
1601
cdddbdbc
DW
1602extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1603
1604static int imsm_read_serial(int fd, char *devname,
1605 __u8 serial[MAX_RAID_SERIAL_LEN])
1606{
1607 unsigned char scsi_serial[255];
cdddbdbc
DW
1608 int rv;
1609 int rsp_len;
1f24f035 1610 int len;
316e2bf4
DW
1611 char *dest;
1612 char *src;
1613 char *rsp_buf;
1614 int i;
cdddbdbc
DW
1615
1616 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 1617
f9ba0ff1
DW
1618 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1619
40ebbb9c 1620 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
1621 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1622 fd2devname(fd, (char *) serial);
0030e8d6
DW
1623 return 0;
1624 }
1625
cdddbdbc
DW
1626 if (rv != 0) {
1627 if (devname)
1628 fprintf(stderr,
1629 Name ": Failed to retrieve serial for %s\n",
1630 devname);
1631 return rv;
1632 }
1633
1634 rsp_len = scsi_serial[3];
03cd4cc8
DW
1635 if (!rsp_len) {
1636 if (devname)
1637 fprintf(stderr,
1638 Name ": Failed to retrieve serial for %s\n",
1639 devname);
1640 return 2;
1641 }
1f24f035 1642 rsp_buf = (char *) &scsi_serial[4];
5c3db629 1643
316e2bf4
DW
1644 /* trim all whitespace and non-printable characters and convert
1645 * ':' to ';'
1646 */
1647 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1648 src = &rsp_buf[i];
1649 if (*src > 0x20) {
1650 /* ':' is reserved for use in placeholder serial
1651 * numbers for missing disks
1652 */
1653 if (*src == ':')
1654 *dest++ = ';';
1655 else
1656 *dest++ = *src;
1657 }
1658 }
1659 len = dest - rsp_buf;
1660 dest = rsp_buf;
1661
1662 /* truncate leading characters */
1663 if (len > MAX_RAID_SERIAL_LEN) {
1664 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 1665 len = MAX_RAID_SERIAL_LEN;
316e2bf4 1666 }
5c3db629 1667
5c3db629 1668 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 1669 memcpy(serial, dest, len);
cdddbdbc
DW
1670
1671 return 0;
1672}
1673
1f24f035
DW
1674static int serialcmp(__u8 *s1, __u8 *s2)
1675{
1676 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1677}
1678
1679static void serialcpy(__u8 *dest, __u8 *src)
1680{
1681 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1682}
1683
1799c9e8 1684#ifndef MDASSEMBLE
54c2c1ea
DW
1685static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1686{
1687 struct dl *dl;
1688
1689 for (dl = super->disks; dl; dl = dl->next)
1690 if (serialcmp(dl->serial, serial) == 0)
1691 break;
1692
1693 return dl;
1694}
1799c9e8 1695#endif
54c2c1ea 1696
a2b97981
DW
1697static struct imsm_disk *
1698__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1699{
1700 int i;
1701
1702 for (i = 0; i < mpb->num_disks; i++) {
1703 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1704
1705 if (serialcmp(disk->serial, serial) == 0) {
1706 if (idx)
1707 *idx = i;
1708 return disk;
1709 }
1710 }
1711
1712 return NULL;
1713}
1714
cdddbdbc
DW
1715static int
1716load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1717{
a2b97981 1718 struct imsm_disk *disk;
cdddbdbc
DW
1719 struct dl *dl;
1720 struct stat stb;
cdddbdbc 1721 int rv;
a2b97981 1722 char name[40];
d23fe947
DW
1723 __u8 serial[MAX_RAID_SERIAL_LEN];
1724
1725 rv = imsm_read_serial(fd, devname, serial);
1726
1727 if (rv != 0)
1728 return 2;
1729
a2b97981 1730 dl = calloc(1, sizeof(*dl));
b9f594fe 1731 if (!dl) {
cdddbdbc
DW
1732 if (devname)
1733 fprintf(stderr,
1734 Name ": failed to allocate disk buffer for %s\n",
1735 devname);
1736 return 2;
1737 }
cdddbdbc 1738
a2b97981
DW
1739 fstat(fd, &stb);
1740 dl->major = major(stb.st_rdev);
1741 dl->minor = minor(stb.st_rdev);
1742 dl->next = super->disks;
1743 dl->fd = keep_fd ? fd : -1;
1744 assert(super->disks == NULL);
1745 super->disks = dl;
1746 serialcpy(dl->serial, serial);
1747 dl->index = -2;
1748 dl->e = NULL;
1749 fd2devname(fd, name);
1750 if (devname)
1751 dl->devname = strdup(devname);
1752 else
1753 dl->devname = strdup(name);
cdddbdbc 1754
d23fe947 1755 /* look up this disk's index in the current anchor */
a2b97981
DW
1756 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1757 if (disk) {
1758 dl->disk = *disk;
1759 /* only set index on disks that are a member of a
1760 * populated contianer, i.e. one with raid_devs
1761 */
1762 if (is_failed(&dl->disk))
3f6efecc 1763 dl->index = -2;
a2b97981
DW
1764 else if (is_spare(&dl->disk))
1765 dl->index = -1;
3f6efecc
DW
1766 }
1767
949c47a0
DW
1768 return 0;
1769}
1770
0e600426 1771#ifndef MDASSEMBLE
0c046afd
DW
1772/* When migrating map0 contains the 'destination' state while map1
1773 * contains the current state. When not migrating map0 contains the
1774 * current state. This routine assumes that map[0].map_state is set to
1775 * the current array state before being called.
1776 *
1777 * Migration is indicated by one of the following states
1778 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 1779 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 1780 * map1state=unitialized)
1484e727 1781 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 1782 * map1state=normal)
e3bba0e0 1783 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd
DW
1784 * map1state=degraded)
1785 */
0556e1a2 1786static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
3393c6af 1787{
0c046afd 1788 struct imsm_map *dest;
3393c6af
DW
1789 struct imsm_map *src = get_imsm_map(dev, 0);
1790
0c046afd 1791 dev->vol.migr_state = 1;
1484e727 1792 set_migr_type(dev, migr_type);
f8f603f1 1793 dev->vol.curr_migr_unit = 0;
0c046afd
DW
1794 dest = get_imsm_map(dev, 1);
1795
0556e1a2 1796 /* duplicate and then set the target end state in map[0] */
3393c6af 1797 memcpy(dest, src, sizeof_imsm_map(src));
0556e1a2
DW
1798 if (migr_type == MIGR_REBUILD) {
1799 __u32 ord;
1800 int i;
1801
1802 for (i = 0; i < src->num_members; i++) {
1803 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1804 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1805 }
1806 }
1807
0c046afd 1808 src->map_state = to_state;
949c47a0 1809}
f8f603f1
DW
1810
1811static void end_migration(struct imsm_dev *dev, __u8 map_state)
1812{
1813 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
1814 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1815 int i;
1816
1817 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1818 * completed in the last migration.
1819 *
1820 * FIXME add support for online capacity expansion and
1821 * raid-level-migration
1822 */
1823 for (i = 0; i < prev->num_members; i++)
1824 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
f8f603f1
DW
1825
1826 dev->vol.migr_state = 0;
1827 dev->vol.curr_migr_unit = 0;
1828 map->map_state = map_state;
1829}
0e600426 1830#endif
949c47a0
DW
1831
1832static int parse_raid_devices(struct intel_super *super)
1833{
1834 int i;
1835 struct imsm_dev *dev_new;
4d7b1503
DW
1836 size_t len, len_migr;
1837 size_t space_needed = 0;
1838 struct imsm_super *mpb = super->anchor;
949c47a0
DW
1839
1840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1841 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 1842 struct intel_dev *dv;
949c47a0 1843
4d7b1503
DW
1844 len = sizeof_imsm_dev(dev_iter, 0);
1845 len_migr = sizeof_imsm_dev(dev_iter, 1);
1846 if (len_migr > len)
1847 space_needed += len_migr - len;
1848
ba2de7ba
DW
1849 dv = malloc(sizeof(*dv));
1850 if (!dv)
1851 return 1;
4d7b1503 1852 dev_new = malloc(len_migr);
ba2de7ba
DW
1853 if (!dev_new) {
1854 free(dv);
949c47a0 1855 return 1;
ba2de7ba 1856 }
949c47a0 1857 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
1858 dv->dev = dev_new;
1859 dv->index = i;
1860 dv->next = super->devlist;
1861 super->devlist = dv;
949c47a0 1862 }
cdddbdbc 1863
4d7b1503
DW
1864 /* ensure that super->buf is large enough when all raid devices
1865 * are migrating
1866 */
1867 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1868 void *buf;
1869
1870 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1871 if (posix_memalign(&buf, 512, len) != 0)
1872 return 1;
1873
1f45a8ad
DW
1874 memcpy(buf, super->buf, super->len);
1875 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
1876 free(super->buf);
1877 super->buf = buf;
1878 super->len = len;
1879 }
1880
cdddbdbc
DW
1881 return 0;
1882}
1883
604b746f
JD
1884/* retrieve a pointer to the bbm log which starts after all raid devices */
1885struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1886{
1887 void *ptr = NULL;
1888
1889 if (__le32_to_cpu(mpb->bbm_log_size)) {
1890 ptr = mpb;
1891 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1892 }
1893
1894 return ptr;
1895}
1896
d23fe947 1897static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 1898
cdddbdbc
DW
1899/* load_imsm_mpb - read matrix metadata
1900 * allocates super->mpb to be freed by free_super
1901 */
1902static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1903{
1904 unsigned long long dsize;
cdddbdbc
DW
1905 unsigned long long sectors;
1906 struct stat;
6416d527 1907 struct imsm_super *anchor;
cdddbdbc
DW
1908 __u32 check_sum;
1909
cdddbdbc
DW
1910 get_dev_size(fd, NULL, &dsize);
1911
1912 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1913 if (devname)
1914 fprintf(stderr,
1915 Name ": Cannot seek to anchor block on %s: %s\n",
1916 devname, strerror(errno));
1917 return 1;
1918 }
1919
949c47a0 1920 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
1921 if (devname)
1922 fprintf(stderr,
1923 Name ": Failed to allocate imsm anchor buffer"
1924 " on %s\n", devname);
1925 return 1;
1926 }
949c47a0 1927 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
1928 if (devname)
1929 fprintf(stderr,
1930 Name ": Cannot read anchor block on %s: %s\n",
1931 devname, strerror(errno));
6416d527 1932 free(anchor);
cdddbdbc
DW
1933 return 1;
1934 }
1935
6416d527 1936 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
1937 if (devname)
1938 fprintf(stderr,
1939 Name ": no IMSM anchor on %s\n", devname);
6416d527 1940 free(anchor);
cdddbdbc
DW
1941 return 2;
1942 }
1943
d23fe947 1944 __free_imsm(super, 0);
949c47a0
DW
1945 super->len = ROUND_UP(anchor->mpb_size, 512);
1946 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
1947 if (devname)
1948 fprintf(stderr,
1949 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 1950 super->len);
6416d527 1951 free(anchor);
cdddbdbc
DW
1952 return 2;
1953 }
949c47a0 1954 memcpy(super->buf, anchor, 512);
cdddbdbc 1955
6416d527
NB
1956 sectors = mpb_sectors(anchor) - 1;
1957 free(anchor);
949c47a0 1958 if (!sectors) {
ecf45690
DW
1959 check_sum = __gen_imsm_checksum(super->anchor);
1960 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1961 if (devname)
1962 fprintf(stderr,
1963 Name ": IMSM checksum %x != %x on %s\n",
1964 check_sum,
1965 __le32_to_cpu(super->anchor->check_sum),
1966 devname);
1967 return 2;
1968 }
1969
a2b97981 1970 return 0;
949c47a0 1971 }
cdddbdbc
DW
1972
1973 /* read the extended mpb */
1974 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1975 if (devname)
1976 fprintf(stderr,
1977 Name ": Cannot seek to extended mpb on %s: %s\n",
1978 devname, strerror(errno));
1979 return 1;
1980 }
1981
949c47a0 1982 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
1983 if (devname)
1984 fprintf(stderr,
1985 Name ": Cannot read extended mpb on %s: %s\n",
1986 devname, strerror(errno));
1987 return 2;
1988 }
1989
949c47a0
DW
1990 check_sum = __gen_imsm_checksum(super->anchor);
1991 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
1992 if (devname)
1993 fprintf(stderr,
1994 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 1995 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 1996 devname);
db575f3b 1997 return 3;
cdddbdbc
DW
1998 }
1999
604b746f
JD
2000 /* FIXME the BBM log is disk specific so we cannot use this global
2001 * buffer for all disks. Ok for now since we only look at the global
2002 * bbm_log_size parameter to gate assembly
2003 */
2004 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2005
a2b97981
DW
2006 return 0;
2007}
2008
2009static int
2010load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2011{
2012 int err;
2013
2014 err = load_imsm_mpb(fd, super, devname);
2015 if (err)
2016 return err;
2017 err = load_imsm_disk(fd, super, devname, keep_fd);
2018 if (err)
2019 return err;
2020 err = parse_raid_devices(super);
4d7b1503 2021
a2b97981 2022 return err;
cdddbdbc
DW
2023}
2024
ae6aad82
DW
2025static void __free_imsm_disk(struct dl *d)
2026{
2027 if (d->fd >= 0)
2028 close(d->fd);
2029 if (d->devname)
2030 free(d->devname);
0dcecb2e
DW
2031 if (d->e)
2032 free(d->e);
ae6aad82
DW
2033 free(d);
2034
2035}
cdddbdbc
DW
2036static void free_imsm_disks(struct intel_super *super)
2037{
47ee5a45 2038 struct dl *d;
cdddbdbc 2039
47ee5a45
DW
2040 while (super->disks) {
2041 d = super->disks;
cdddbdbc 2042 super->disks = d->next;
ae6aad82 2043 __free_imsm_disk(d);
cdddbdbc 2044 }
47ee5a45
DW
2045 while (super->missing) {
2046 d = super->missing;
2047 super->missing = d->next;
2048 __free_imsm_disk(d);
2049 }
2050
cdddbdbc
DW
2051}
2052
9ca2c81c 2053/* free all the pieces hanging off of a super pointer */
d23fe947 2054static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 2055{
9ca2c81c 2056 if (super->buf) {
949c47a0 2057 free(super->buf);
9ca2c81c
DW
2058 super->buf = NULL;
2059 }
d23fe947
DW
2060 if (free_disks)
2061 free_imsm_disks(super);
ba2de7ba 2062 free_devlist(super);
88c32bb1
DW
2063 if (super->hba) {
2064 free((void *) super->hba);
2065 super->hba = NULL;
2066 }
cdddbdbc
DW
2067}
2068
9ca2c81c
DW
2069static void free_imsm(struct intel_super *super)
2070{
d23fe947 2071 __free_imsm(super, 1);
9ca2c81c
DW
2072 free(super);
2073}
cdddbdbc
DW
2074
2075static void free_super_imsm(struct supertype *st)
2076{
2077 struct intel_super *super = st->sb;
2078
2079 if (!super)
2080 return;
2081
2082 free_imsm(super);
2083 st->sb = NULL;
2084}
2085
c2c087e6
DW
2086static struct intel_super *alloc_super(int creating_imsm)
2087{
2088 struct intel_super *super = malloc(sizeof(*super));
2089
2090 if (super) {
2091 memset(super, 0, sizeof(*super));
2092 super->creating_imsm = creating_imsm;
bf5a934a 2093 super->current_vol = -1;
0dcecb2e 2094 super->create_offset = ~((__u32 ) 0);
88c32bb1
DW
2095 if (!check_env("IMSM_NO_PLATFORM"))
2096 super->orom = find_imsm_orom();
cceebc67 2097 if (super->orom && !check_env("IMSM_TEST_OROM")) {
88c32bb1
DW
2098 struct sys_dev *list, *ent;
2099
2100 /* find the first intel ahci controller */
2101 list = find_driver_devices("pci", "ahci");
2102 for (ent = list; ent; ent = ent->next)
2103 if (devpath_to_vendor(ent->path) == 0x8086)
2104 break;
2105 if (ent) {
2106 super->hba = ent->path;
2107 ent->path = NULL;
2108 }
2109 free_sys_dev(&list);
2110 }
c2c087e6
DW
2111 }
2112
2113 return super;
2114}
2115
cdddbdbc 2116#ifndef MDASSEMBLE
47ee5a45
DW
2117/* find_missing - helper routine for load_super_imsm_all that identifies
2118 * disks that have disappeared from the system. This routine relies on
2119 * the mpb being uptodate, which it is at load time.
2120 */
2121static int find_missing(struct intel_super *super)
2122{
2123 int i;
2124 struct imsm_super *mpb = super->anchor;
2125 struct dl *dl;
2126 struct imsm_disk *disk;
47ee5a45
DW
2127
2128 for (i = 0; i < mpb->num_disks; i++) {
2129 disk = __get_imsm_disk(mpb, i);
54c2c1ea 2130 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
2131 if (dl)
2132 continue;
47ee5a45
DW
2133
2134 dl = malloc(sizeof(*dl));
2135 if (!dl)
2136 return 1;
2137 dl->major = 0;
2138 dl->minor = 0;
2139 dl->fd = -1;
2140 dl->devname = strdup("missing");
2141 dl->index = i;
2142 serialcpy(dl->serial, disk->serial);
2143 dl->disk = *disk;
689c9bf3 2144 dl->e = NULL;
47ee5a45
DW
2145 dl->next = super->missing;
2146 super->missing = dl;
2147 }
2148
2149 return 0;
2150}
2151
a2b97981
DW
2152static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2153{
2154 struct intel_disk *idisk = disk_list;
2155
2156 while (idisk) {
2157 if (serialcmp(idisk->disk.serial, serial) == 0)
2158 break;
2159 idisk = idisk->next;
2160 }
2161
2162 return idisk;
2163}
2164
2165static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2166 struct intel_super *super,
2167 struct intel_disk **disk_list)
2168{
2169 struct imsm_disk *d = &super->disks->disk;
2170 struct imsm_super *mpb = super->anchor;
2171 int i, j;
2172
2173 for (i = 0; i < tbl_size; i++) {
2174 struct imsm_super *tbl_mpb = table[i]->anchor;
2175 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2176
2177 if (tbl_mpb->family_num == mpb->family_num) {
2178 if (tbl_mpb->check_sum == mpb->check_sum) {
2179 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2180 __func__, super->disks->major,
2181 super->disks->minor,
2182 table[i]->disks->major,
2183 table[i]->disks->minor);
2184 break;
2185 }
2186
2187 if (((is_configured(d) && !is_configured(tbl_d)) ||
2188 is_configured(d) == is_configured(tbl_d)) &&
2189 tbl_mpb->generation_num < mpb->generation_num) {
2190 /* current version of the mpb is a
2191 * better candidate than the one in
2192 * super_table, but copy over "cross
2193 * generational" status
2194 */
2195 struct intel_disk *idisk;
2196
2197 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2198 __func__, super->disks->major,
2199 super->disks->minor,
2200 table[i]->disks->major,
2201 table[i]->disks->minor);
2202
2203 idisk = disk_list_get(tbl_d->serial, *disk_list);
2204 if (idisk && is_failed(&idisk->disk))
2205 tbl_d->status |= FAILED_DISK;
2206 break;
2207 } else {
2208 struct intel_disk *idisk;
2209 struct imsm_disk *disk;
2210
2211 /* tbl_mpb is more up to date, but copy
2212 * over cross generational status before
2213 * returning
2214 */
2215 disk = __serial_to_disk(d->serial, mpb, NULL);
2216 if (disk && is_failed(disk))
2217 d->status |= FAILED_DISK;
2218
2219 idisk = disk_list_get(d->serial, *disk_list);
2220 if (idisk) {
2221 idisk->owner = i;
2222 if (disk && is_configured(disk))
2223 idisk->disk.status |= CONFIGURED_DISK;
2224 }
2225
2226 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2227 __func__, super->disks->major,
2228 super->disks->minor,
2229 table[i]->disks->major,
2230 table[i]->disks->minor);
2231
2232 return tbl_size;
2233 }
2234 }
2235 }
2236
2237 if (i >= tbl_size)
2238 table[tbl_size++] = super;
2239 else
2240 table[i] = super;
2241
2242 /* update/extend the merged list of imsm_disk records */
2243 for (j = 0; j < mpb->num_disks; j++) {
2244 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2245 struct intel_disk *idisk;
2246
2247 idisk = disk_list_get(disk->serial, *disk_list);
2248 if (idisk) {
2249 idisk->disk.status |= disk->status;
2250 if (is_configured(&idisk->disk) ||
2251 is_failed(&idisk->disk))
2252 idisk->disk.status &= ~(SPARE_DISK);
2253 } else {
2254 idisk = calloc(1, sizeof(*idisk));
2255 if (!idisk)
2256 return -1;
2257 idisk->owner = IMSM_UNKNOWN_OWNER;
2258 idisk->disk = *disk;
2259 idisk->next = *disk_list;
2260 *disk_list = idisk;
2261 }
2262
2263 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2264 idisk->owner = i;
2265 }
2266
2267 return tbl_size;
2268}
2269
2270static struct intel_super *
2271validate_members(struct intel_super *super, struct intel_disk *disk_list,
2272 const int owner)
2273{
2274 struct imsm_super *mpb = super->anchor;
2275 int ok_count = 0;
2276 int i;
2277
2278 for (i = 0; i < mpb->num_disks; i++) {
2279 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2280 struct intel_disk *idisk;
2281
2282 idisk = disk_list_get(disk->serial, disk_list);
2283 if (idisk) {
2284 if (idisk->owner == owner ||
2285 idisk->owner == IMSM_UNKNOWN_OWNER)
2286 ok_count++;
2287 else
2288 dprintf("%s: '%.16s' owner %d != %d\n",
2289 __func__, disk->serial, idisk->owner,
2290 owner);
2291 } else {
2292 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2293 __func__, __le32_to_cpu(mpb->family_num), i,
2294 disk->serial);
2295 break;
2296 }
2297 }
2298
2299 if (ok_count == mpb->num_disks)
2300 return super;
2301 return NULL;
2302}
2303
2304static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2305{
2306 struct intel_super *s;
2307
2308 for (s = super_list; s; s = s->next) {
2309 if (family_num != s->anchor->family_num)
2310 continue;
2311 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2312 __le32_to_cpu(family_num), s->disks->devname);
2313 }
2314}
2315
2316static struct intel_super *
2317imsm_thunderdome(struct intel_super **super_list, int len)
2318{
2319 struct intel_super *super_table[len];
2320 struct intel_disk *disk_list = NULL;
2321 struct intel_super *champion, *spare;
2322 struct intel_super *s, **del;
2323 int tbl_size = 0;
2324 int conflict;
2325 int i;
2326
2327 memset(super_table, 0, sizeof(super_table));
2328 for (s = *super_list; s; s = s->next)
2329 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2330
2331 for (i = 0; i < tbl_size; i++) {
2332 struct imsm_disk *d;
2333 struct intel_disk *idisk;
2334 struct imsm_super *mpb = super_table[i]->anchor;
2335
2336 s = super_table[i];
2337 d = &s->disks->disk;
2338
2339 /* 'd' must appear in merged disk list for its
2340 * configuration to be valid
2341 */
2342 idisk = disk_list_get(d->serial, disk_list);
2343 if (idisk && idisk->owner == i)
2344 s = validate_members(s, disk_list, i);
2345 else
2346 s = NULL;
2347
2348 if (!s)
2349 dprintf("%s: marking family: %#x from %d:%d offline\n",
2350 __func__, mpb->family_num,
2351 super_table[i]->disks->major,
2352 super_table[i]->disks->minor);
2353 super_table[i] = s;
2354 }
2355
2356 /* This is where the mdadm implementation differs from the Windows
2357 * driver which has no strict concept of a container. We can only
2358 * assemble one family from a container, so when returning a prodigal
2359 * array member to this system the code will not be able to disambiguate
2360 * the container contents that should be assembled ("foreign" versus
2361 * "local"). It requires user intervention to set the orig_family_num
2362 * to a new value to establish a new container. The Windows driver in
2363 * this situation fixes up the volume name in place and manages the
2364 * foreign array as an independent entity.
2365 */
2366 s = NULL;
2367 spare = NULL;
2368 conflict = 0;
2369 for (i = 0; i < tbl_size; i++) {
2370 struct intel_super *tbl_ent = super_table[i];
2371 int is_spare = 0;
2372
2373 if (!tbl_ent)
2374 continue;
2375
2376 if (tbl_ent->anchor->num_raid_devs == 0) {
2377 spare = tbl_ent;
2378 is_spare = 1;
2379 }
2380
2381 if (s && !is_spare) {
2382 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2383 conflict++;
2384 } else if (!s && !is_spare)
2385 s = tbl_ent;
2386 }
2387
2388 if (!s)
2389 s = spare;
2390 if (!s) {
2391 champion = NULL;
2392 goto out;
2393 }
2394 champion = s;
2395
2396 if (conflict)
2397 fprintf(stderr, "Chose family %#x on '%s', "
2398 "assemble conflicts to new container with '--update=uuid'\n",
2399 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2400
2401 /* collect all dl's onto 'champion', and update them to
2402 * champion's version of the status
2403 */
2404 for (s = *super_list; s; s = s->next) {
2405 struct imsm_super *mpb = champion->anchor;
2406 struct dl *dl = s->disks;
2407
2408 if (s == champion)
2409 continue;
2410
2411 for (i = 0; i < mpb->num_disks; i++) {
2412 struct imsm_disk *disk;
2413
2414 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2415 if (disk) {
2416 dl->disk = *disk;
2417 /* only set index on disks that are a member of
2418 * a populated contianer, i.e. one with
2419 * raid_devs
2420 */
2421 if (is_failed(&dl->disk))
2422 dl->index = -2;
2423 else if (is_spare(&dl->disk))
2424 dl->index = -1;
2425 break;
2426 }
2427 }
2428
2429 if (i >= mpb->num_disks) {
2430 struct intel_disk *idisk;
2431
2432 idisk = disk_list_get(dl->serial, disk_list);
ecf408e9 2433 if (idisk && is_spare(&idisk->disk) &&
a2b97981
DW
2434 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2435 dl->index = -1;
2436 else {
2437 dl->index = -2;
2438 continue;
2439 }
2440 }
2441
2442 dl->next = champion->disks;
2443 champion->disks = dl;
2444 s->disks = NULL;
2445 }
2446
2447 /* delete 'champion' from super_list */
2448 for (del = super_list; *del; ) {
2449 if (*del == champion) {
2450 *del = (*del)->next;
2451 break;
2452 } else
2453 del = &(*del)->next;
2454 }
2455 champion->next = NULL;
2456
2457 out:
2458 while (disk_list) {
2459 struct intel_disk *idisk = disk_list;
2460
2461 disk_list = disk_list->next;
2462 free(idisk);
2463 }
2464
2465 return champion;
2466}
2467
cdddbdbc
DW
2468static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2469 char *devname, int keep_fd)
2470{
2471 struct mdinfo *sra;
a2b97981
DW
2472 struct intel_super *super_list = NULL;
2473 struct intel_super *super = NULL;
db575f3b 2474 int devnum = fd2devnum(fd);
a2b97981 2475 struct mdinfo *sd;
db575f3b 2476 int retry;
a2b97981
DW
2477 int err = 0;
2478 int i;
dab4a513 2479 enum sysfs_read_flags flags;
cdddbdbc 2480
dab4a513
DW
2481 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2482 if (mdmon_running(devnum))
2483 flags |= SKIP_GONE_DEVS;
2484
2485 /* check if 'fd' an opened container */
2486 sra = sysfs_read(fd, 0, flags);
cdddbdbc
DW
2487 if (!sra)
2488 return 1;
2489
2490 if (sra->array.major_version != -1 ||
2491 sra->array.minor_version != -2 ||
2492 strcmp(sra->text_version, "imsm") != 0)
2493 return 1;
2494
a2b97981
DW
2495 /* load all mpbs */
2496 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2497 struct intel_super *s = alloc_super(0);
2498 char nm[20];
2499 int dfd;
2500
2501 err = 1;
2502 if (!s)
2503 goto error;
2504 s->next = super_list;
2505 super_list = s;
cdddbdbc 2506
a2b97981 2507 err = 2;
cdddbdbc
DW
2508 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2509 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
a2b97981
DW
2510 if (dfd < 0)
2511 goto error;
2512
2513 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
db575f3b
DW
2514
2515 /* retry the load if we might have raced against mdmon */
a2b97981 2516 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
2517 for (retry = 0; retry < 3; retry++) {
2518 usleep(3000);
a2b97981
DW
2519 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2520 if (err != 3)
db575f3b
DW
2521 break;
2522 }
cdddbdbc
DW
2523 if (!keep_fd)
2524 close(dfd);
a2b97981
DW
2525 if (err)
2526 goto error;
cdddbdbc
DW
2527 }
2528
a2b97981
DW
2529 /* all mpbs enter, maybe one leaves */
2530 super = imsm_thunderdome(&super_list, i);
2531 if (!super) {
2532 err = 1;
2533 goto error;
cdddbdbc
DW
2534 }
2535
47ee5a45
DW
2536 if (find_missing(super) != 0) {
2537 free_imsm(super);
a2b97981
DW
2538 err = 2;
2539 goto error;
47ee5a45
DW
2540 }
2541
f7e7067b 2542 if (st->subarray[0]) {
949c47a0 2543 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
bf5a934a 2544 super->current_vol = atoi(st->subarray);
af99d9ca
DW
2545 else {
2546 free_imsm(super);
a2b97981
DW
2547 err = 1;
2548 goto error;
af99d9ca 2549 }
f7e7067b 2550 }
a2b97981
DW
2551 err = 0;
2552
2553 error:
2554 while (super_list) {
2555 struct intel_super *s = super_list;
2556
2557 super_list = super_list->next;
2558 free_imsm(s);
2559 }
2560
2561 if (err)
2562 return err;
f7e7067b 2563
cdddbdbc 2564 *sbp = super;
db575f3b 2565 st->container_dev = devnum;
a2b97981 2566 if (err == 0 && st->ss == NULL) {
bf5a934a 2567 st->ss = &super_imsm;
cdddbdbc
DW
2568 st->minor_version = 0;
2569 st->max_devs = IMSM_MAX_DEVICES;
2570 }
352452c3 2571 st->loaded_container = 1;
cdddbdbc
DW
2572
2573 return 0;
2574}
2575#endif
2576
2577static int load_super_imsm(struct supertype *st, int fd, char *devname)
2578{
2579 struct intel_super *super;
2580 int rv;
2581
2582#ifndef MDASSEMBLE
3dbccbcf 2583 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
cdddbdbc
DW
2584 return 0;
2585#endif
2586
37424f13
DW
2587 free_super_imsm(st);
2588
c2c087e6 2589 super = alloc_super(0);
cdddbdbc
DW
2590 if (!super) {
2591 fprintf(stderr,
2592 Name ": malloc of %zu failed.\n",
2593 sizeof(*super));
2594 return 1;
2595 }
2596
a2b97981 2597 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
2598
2599 if (rv) {
2600 if (devname)
2601 fprintf(stderr,
2602 Name ": Failed to load all information "
2603 "sections on %s\n", devname);
2604 free_imsm(super);
2605 return rv;
2606 }
2607
af99d9ca
DW
2608 if (st->subarray[0]) {
2609 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2610 super->current_vol = atoi(st->subarray);
2611 else {
2612 free_imsm(super);
2613 return 1;
2614 }
2615 }
2616
cdddbdbc
DW
2617 st->sb = super;
2618 if (st->ss == NULL) {
2619 st->ss = &super_imsm;
2620 st->minor_version = 0;
2621 st->max_devs = IMSM_MAX_DEVICES;
2622 }
352452c3 2623 st->loaded_container = 0;
cdddbdbc
DW
2624
2625 return 0;
2626}
2627
ef6ffade
DW
2628static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2629{
2630 if (info->level == 1)
2631 return 128;
2632 return info->chunk_size >> 9;
2633}
2634
ff596308 2635static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
2636{
2637 __u32 num_stripes;
2638
2639 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 2640 num_stripes /= num_domains;
ef6ffade
DW
2641
2642 return num_stripes;
2643}
2644
fcfd9599
DW
2645static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2646{
4025c288
DW
2647 if (info->level == 1)
2648 return info->size * 2;
2649 else
2650 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
2651}
2652
4d1313e9
DW
2653static void imsm_update_version_info(struct intel_super *super)
2654{
2655 /* update the version and attributes */
2656 struct imsm_super *mpb = super->anchor;
2657 char *version;
2658 struct imsm_dev *dev;
2659 struct imsm_map *map;
2660 int i;
2661
2662 for (i = 0; i < mpb->num_raid_devs; i++) {
2663 dev = get_imsm_dev(super, i);
2664 map = get_imsm_map(dev, 0);
2665 if (__le32_to_cpu(dev->size_high) > 0)
2666 mpb->attributes |= MPB_ATTRIB_2TB;
2667
2668 /* FIXME detect when an array spans a port multiplier */
2669 #if 0
2670 mpb->attributes |= MPB_ATTRIB_PM;
2671 #endif
2672
2673 if (mpb->num_raid_devs > 1 ||
2674 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2675 version = MPB_VERSION_ATTRIBS;
2676 switch (get_imsm_raid_level(map)) {
2677 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2678 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2679 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2680 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2681 }
2682 } else {
2683 if (map->num_members >= 5)
2684 version = MPB_VERSION_5OR6_DISK_ARRAY;
2685 else if (dev->status == DEV_CLONE_N_GO)
2686 version = MPB_VERSION_CNG;
2687 else if (get_imsm_raid_level(map) == 5)
2688 version = MPB_VERSION_RAID5;
2689 else if (map->num_members >= 3)
2690 version = MPB_VERSION_3OR4_DISK_ARRAY;
2691 else if (get_imsm_raid_level(map) == 1)
2692 version = MPB_VERSION_RAID1;
2693 else
2694 version = MPB_VERSION_RAID0;
2695 }
2696 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2697 }
2698}
2699
8b353278
DW
2700static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2701 unsigned long long size, char *name,
2702 char *homehost, int *uuid)
cdddbdbc 2703{
c2c087e6
DW
2704 /* We are creating a volume inside a pre-existing container.
2705 * so st->sb is already set.
2706 */
2707 struct intel_super *super = st->sb;
949c47a0 2708 struct imsm_super *mpb = super->anchor;
ba2de7ba 2709 struct intel_dev *dv;
c2c087e6
DW
2710 struct imsm_dev *dev;
2711 struct imsm_vol *vol;
2712 struct imsm_map *map;
2713 int idx = mpb->num_raid_devs;
2714 int i;
2715 unsigned long long array_blocks;
2c092cad 2716 size_t size_old, size_new;
ff596308 2717 __u32 num_data_stripes;
cdddbdbc 2718
88c32bb1 2719 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 2720 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 2721 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
2722 return 0;
2723 }
2724
2c092cad
DW
2725 /* ensure the mpb is large enough for the new data */
2726 size_old = __le32_to_cpu(mpb->mpb_size);
2727 size_new = disks_to_mpb_size(info->nr_disks);
2728 if (size_new > size_old) {
2729 void *mpb_new;
2730 size_t size_round = ROUND_UP(size_new, 512);
2731
2732 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2733 fprintf(stderr, Name": could not allocate new mpb\n");
2734 return 0;
2735 }
2736 memcpy(mpb_new, mpb, size_old);
2737 free(mpb);
2738 mpb = mpb_new;
949c47a0 2739 super->anchor = mpb_new;
2c092cad
DW
2740 mpb->mpb_size = __cpu_to_le32(size_new);
2741 memset(mpb_new + size_old, 0, size_round - size_old);
2742 }
bf5a934a 2743 super->current_vol = idx;
d23fe947
DW
2744 /* when creating the first raid device in this container set num_disks
2745 * to zero, i.e. delete this spare and add raid member devices in
2746 * add_to_super_imsm_volume()
2747 */
2748 if (super->current_vol == 0)
2749 mpb->num_disks = 0;
5a038140
DW
2750
2751 for (i = 0; i < super->current_vol; i++) {
2752 dev = get_imsm_dev(super, i);
2753 if (strncmp((char *) dev->volume, name,
2754 MAX_RAID_SERIAL_LEN) == 0) {
2755 fprintf(stderr, Name": '%s' is already defined for this container\n",
2756 name);
2757 return 0;
2758 }
2759 }
2760
bf5a934a 2761 sprintf(st->subarray, "%d", idx);
ba2de7ba
DW
2762 dv = malloc(sizeof(*dv));
2763 if (!dv) {
2764 fprintf(stderr, Name ": failed to allocate device list entry\n");
2765 return 0;
2766 }
949c47a0
DW
2767 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2768 if (!dev) {
ba2de7ba 2769 free(dv);
949c47a0
DW
2770 fprintf(stderr, Name": could not allocate raid device\n");
2771 return 0;
2772 }
c2c087e6 2773 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
2774 if (info->level == 1)
2775 array_blocks = info_to_blocks_per_member(info);
2776 else
2777 array_blocks = calc_array_size(info->level, info->raid_disks,
2778 info->layout, info->chunk_size,
2779 info->size*2);
979d38be
DW
2780 /* round array size down to closest MB */
2781 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2782
c2c087e6
DW
2783 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2784 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2785 dev->status = __cpu_to_le32(0);
2786 dev->reserved_blocks = __cpu_to_le32(0);
2787 vol = &dev->vol;
2788 vol->migr_state = 0;
1484e727 2789 set_migr_type(dev, MIGR_INIT);
c2c087e6 2790 vol->dirty = 0;
f8f603f1 2791 vol->curr_migr_unit = 0;
a965f303 2792 map = get_imsm_map(dev, 0);
0dcecb2e 2793 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 2794 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 2795 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 2796 map->failed_disk_num = ~0;
c2c087e6
DW
2797 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2798 IMSM_T_STATE_NORMAL;
252d23c0 2799 map->ddf = 1;
ef6ffade
DW
2800
2801 if (info->level == 1 && info->raid_disks > 2) {
2802 fprintf(stderr, Name": imsm does not support more than 2 disks"
2803 "in a raid1 volume\n");
2804 return 0;
2805 }
81062a36
DW
2806
2807 map->raid_level = info->level;
4d1313e9 2808 if (info->level == 10) {
c2c087e6 2809 map->raid_level = 1;
4d1313e9 2810 map->num_domains = info->raid_disks / 2;
81062a36
DW
2811 } else if (info->level == 1)
2812 map->num_domains = info->raid_disks;
2813 else
ff596308 2814 map->num_domains = 1;
81062a36 2815
ff596308
DW
2816 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2817 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 2818
c2c087e6
DW
2819 map->num_members = info->raid_disks;
2820 for (i = 0; i < map->num_members; i++) {
2821 /* initialized in add_to_super */
be73972f 2822 set_imsm_ord_tbl_ent(map, i, 0);
c2c087e6 2823 }
949c47a0 2824 mpb->num_raid_devs++;
ba2de7ba
DW
2825
2826 dv->dev = dev;
2827 dv->index = super->current_vol;
2828 dv->next = super->devlist;
2829 super->devlist = dv;
c2c087e6 2830
4d1313e9
DW
2831 imsm_update_version_info(super);
2832
c2c087e6 2833 return 1;
cdddbdbc
DW
2834}
2835
bf5a934a
DW
2836static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2837 unsigned long long size, char *name,
2838 char *homehost, int *uuid)
2839{
2840 /* This is primarily called by Create when creating a new array.
2841 * We will then get add_to_super called for each component, and then
2842 * write_init_super called to write it out to each device.
2843 * For IMSM, Create can create on fresh devices or on a pre-existing
2844 * array.
2845 * To create on a pre-existing array a different method will be called.
2846 * This one is just for fresh drives.
2847 */
2848 struct intel_super *super;
2849 struct imsm_super *mpb;
2850 size_t mpb_size;
4d1313e9 2851 char *version;
bf5a934a 2852
bf5a934a 2853 if (st->sb)
e683ca88
DW
2854 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
2855
2856 if (info)
2857 mpb_size = disks_to_mpb_size(info->nr_disks);
2858 else
2859 mpb_size = 512;
bf5a934a
DW
2860
2861 super = alloc_super(1);
e683ca88 2862 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a 2863 free(super);
e683ca88
DW
2864 super = NULL;
2865 }
2866 if (!super) {
2867 fprintf(stderr, Name
2868 ": %s could not allocate superblock\n", __func__);
bf5a934a
DW
2869 return 0;
2870 }
e683ca88 2871 memset(super->buf, 0, mpb_size);
ef649044 2872 mpb = super->buf;
e683ca88
DW
2873 mpb->mpb_size = __cpu_to_le32(mpb_size);
2874 st->sb = super;
2875
2876 if (info == NULL) {
2877 /* zeroing superblock */
2878 return 0;
2879 }
bf5a934a 2880
4d1313e9
DW
2881 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2882
2883 version = (char *) mpb->sig;
2884 strcpy(version, MPB_SIGNATURE);
2885 version += strlen(MPB_SIGNATURE);
2886 strcpy(version, MPB_VERSION_RAID0);
bf5a934a 2887
bf5a934a
DW
2888 return 1;
2889}
2890
0e600426 2891#ifndef MDASSEMBLE
f20c3968 2892static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
2893 int fd, char *devname)
2894{
2895 struct intel_super *super = st->sb;
d23fe947 2896 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
2897 struct dl *dl;
2898 struct imsm_dev *dev;
2899 struct imsm_map *map;
bf5a934a 2900
949c47a0 2901 dev = get_imsm_dev(super, super->current_vol);
a965f303 2902 map = get_imsm_map(dev, 0);
bf5a934a 2903
208933a7
N
2904 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2905 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2906 devname);
2907 return 1;
2908 }
2909
efb30e7f
DW
2910 if (fd == -1) {
2911 /* we're doing autolayout so grab the pre-marked (in
2912 * validate_geometry) raid_disk
2913 */
2914 for (dl = super->disks; dl; dl = dl->next)
2915 if (dl->raiddisk == dk->raid_disk)
2916 break;
2917 } else {
2918 for (dl = super->disks; dl ; dl = dl->next)
2919 if (dl->major == dk->major &&
2920 dl->minor == dk->minor)
2921 break;
2922 }
d23fe947 2923
208933a7
N
2924 if (!dl) {
2925 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 2926 return 1;
208933a7 2927 }
bf5a934a 2928
d23fe947
DW
2929 /* add a pristine spare to the metadata */
2930 if (dl->index < 0) {
2931 dl->index = super->anchor->num_disks;
2932 super->anchor->num_disks++;
2933 }
be73972f 2934 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 2935 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
2936
2937 /* if we are creating the first raid device update the family number */
2938 if (super->current_vol == 0) {
2939 __u32 sum;
2940 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2941 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2942
2943 *_dev = *dev;
2944 *_disk = dl->disk;
148acb7b
DW
2945 sum = random32();
2946 sum += __gen_imsm_checksum(mpb);
d23fe947 2947 mpb->family_num = __cpu_to_le32(sum);
148acb7b 2948 mpb->orig_family_num = mpb->family_num;
d23fe947 2949 }
f20c3968
DW
2950
2951 return 0;
bf5a934a
DW
2952}
2953
f20c3968 2954static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
cdddbdbc
DW
2955 int fd, char *devname)
2956{
c2c087e6 2957 struct intel_super *super = st->sb;
c2c087e6
DW
2958 struct dl *dd;
2959 unsigned long long size;
f2f27e63 2960 __u32 id;
c2c087e6
DW
2961 int rv;
2962 struct stat stb;
2963
88c32bb1
DW
2964 /* if we are on an RAID enabled platform check that the disk is
2965 * attached to the raid controller
2966 */
2967 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2968 fprintf(stderr,
2969 Name ": %s is not attached to the raid controller: %s\n",
2970 devname ? : "disk", super->hba);
2971 return 1;
2972 }
2973
f20c3968
DW
2974 if (super->current_vol >= 0)
2975 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 2976
c2c087e6
DW
2977 fstat(fd, &stb);
2978 dd = malloc(sizeof(*dd));
b9f594fe 2979 if (!dd) {
c2c087e6
DW
2980 fprintf(stderr,
2981 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 2982 return 1;
c2c087e6
DW
2983 }
2984 memset(dd, 0, sizeof(*dd));
2985 dd->major = major(stb.st_rdev);
2986 dd->minor = minor(stb.st_rdev);
b9f594fe 2987 dd->index = -1;
c2c087e6 2988 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 2989 dd->fd = fd;
689c9bf3 2990 dd->e = NULL;
c2c087e6
DW
2991 rv = imsm_read_serial(fd, devname, dd->serial);
2992 if (rv) {
2993 fprintf(stderr,
0030e8d6 2994 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 2995 free(dd);
0030e8d6 2996 abort();
c2c087e6
DW
2997 }
2998
c2c087e6
DW
2999 get_dev_size(fd, NULL, &size);
3000 size /= 512;
1f24f035 3001 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 3002 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 3003 dd->disk.status = SPARE_DISK;
c2c087e6 3004 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 3005 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 3006 else
b9f594fe 3007 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
3008
3009 if (st->update_tail) {
3010 dd->next = super->add;
3011 super->add = dd;
3012 } else {
3013 dd->next = super->disks;
3014 super->disks = dd;
3015 }
f20c3968
DW
3016
3017 return 0;
cdddbdbc
DW
3018}
3019
f796af5d
DW
3020static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3021
3022static union {
3023 char buf[512];
3024 struct imsm_super anchor;
3025} spare_record __attribute__ ((aligned(512)));
c2c087e6 3026
d23fe947
DW
3027/* spare records have their own family number and do not have any defined raid
3028 * devices
3029 */
3030static int write_super_imsm_spares(struct intel_super *super, int doclose)
3031{
d23fe947 3032 struct imsm_super *mpb = super->anchor;
f796af5d 3033 struct imsm_super *spare = &spare_record.anchor;
d23fe947
DW
3034 __u32 sum;
3035 struct dl *d;
3036
f796af5d
DW
3037 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3038 spare->generation_num = __cpu_to_le32(1UL),
3039 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3040 spare->num_disks = 1,
3041 spare->num_raid_devs = 0,
3042 spare->cache_size = mpb->cache_size,
3043 spare->pwr_cycle_count = __cpu_to_le32(1),
3044
3045 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3046 MPB_SIGNATURE MPB_VERSION_RAID0);
d23fe947
DW
3047
3048 for (d = super->disks; d; d = d->next) {
8796fdc4 3049 if (d->index != -1)
d23fe947
DW
3050 continue;
3051
f796af5d
DW
3052 spare->disk[0] = d->disk;
3053 sum = __gen_imsm_checksum(spare);
3054 spare->family_num = __cpu_to_le32(sum);
3055 spare->orig_family_num = 0;
3056 sum = __gen_imsm_checksum(spare);
3057 spare->check_sum = __cpu_to_le32(sum);
d23fe947 3058
f796af5d 3059 if (store_imsm_mpb(d->fd, spare)) {
d23fe947
DW
3060 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3061 __func__, d->major, d->minor, strerror(errno));
e74255d9 3062 return 1;
d23fe947
DW
3063 }
3064 if (doclose) {
3065 close(d->fd);
3066 d->fd = -1;
3067 }
3068 }
3069
e74255d9 3070 return 0;
d23fe947
DW
3071}
3072
c2c087e6 3073static int write_super_imsm(struct intel_super *super, int doclose)
cdddbdbc 3074{
949c47a0 3075 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3076 struct dl *d;
3077 __u32 generation;
3078 __u32 sum;
d23fe947 3079 int spares = 0;
949c47a0 3080 int i;
a48ac0a8 3081 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
cdddbdbc 3082
c2c087e6
DW
3083 /* 'generation' is incremented everytime the metadata is written */
3084 generation = __le32_to_cpu(mpb->generation_num);
3085 generation++;
3086 mpb->generation_num = __cpu_to_le32(generation);
3087
148acb7b
DW
3088 /* fix up cases where previous mdadm releases failed to set
3089 * orig_family_num
3090 */
3091 if (mpb->orig_family_num == 0)
3092 mpb->orig_family_num = mpb->family_num;
3093
1ee1e9fc 3094 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
d23fe947 3095 for (d = super->disks; d; d = d->next) {
8796fdc4 3096 if (d->index == -1)
d23fe947 3097 spares++;
1ee1e9fc 3098 else
d23fe947 3099 mpb->disk[d->index] = d->disk;
d23fe947 3100 }
47ee5a45
DW
3101 for (d = super->missing; d; d = d->next)
3102 mpb->disk[d->index] = d->disk;
b9f594fe 3103
949c47a0
DW
3104 for (i = 0; i < mpb->num_raid_devs; i++) {
3105 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3106
ba2de7ba 3107 imsm_copy_dev(dev, get_imsm_dev(super, i));
a48ac0a8 3108 mpb_size += sizeof_imsm_dev(dev, 0);
949c47a0 3109 }
a48ac0a8
DW
3110 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3111 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 3112
c2c087e6 3113 /* recalculate checksum */
949c47a0 3114 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
3115 mpb->check_sum = __cpu_to_le32(sum);
3116
d23fe947 3117 /* write the mpb for disks that compose raid devices */
c2c087e6 3118 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
3119 if (d->index < 0)
3120 continue;
f796af5d 3121 if (store_imsm_mpb(d->fd, mpb))
c2c087e6
DW
3122 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3123 __func__, d->major, d->minor, strerror(errno));
c2c087e6
DW
3124 if (doclose) {
3125 close(d->fd);
3126 d->fd = -1;
3127 }
3128 }
3129
d23fe947
DW
3130 if (spares)
3131 return write_super_imsm_spares(super, doclose);
3132
e74255d9 3133 return 0;
c2c087e6
DW
3134}
3135
0e600426 3136
9b1fb677 3137static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
3138{
3139 size_t len;
3140 struct imsm_update_create_array *u;
3141 struct intel_super *super = st->sb;
9b1fb677 3142 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
3143 struct imsm_map *map = get_imsm_map(dev, 0);
3144 struct disk_info *inf;
3145 struct imsm_disk *disk;
3146 int i;
43dad3d6 3147
54c2c1ea
DW
3148 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3149 sizeof(*inf) * map->num_members;
43dad3d6
DW
3150 u = malloc(len);
3151 if (!u) {
3152 fprintf(stderr, "%s: failed to allocate update buffer\n",
3153 __func__);
3154 return 1;
3155 }
3156
3157 u->type = update_create_array;
9b1fb677 3158 u->dev_idx = dev_idx;
43dad3d6 3159 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
3160 inf = get_disk_info(u);
3161 for (i = 0; i < map->num_members; i++) {
9b1fb677
DW
3162 int idx = get_imsm_disk_idx(dev, i);
3163
54c2c1ea
DW
3164 disk = get_imsm_disk(super, idx);
3165 serialcpy(inf[i].serial, disk->serial);
3166 }
43dad3d6
DW
3167 append_metadata_update(st, u, len);
3168
3169 return 0;
3170}
3171
7801ac20 3172static int _add_disk(struct supertype *st)
43dad3d6
DW
3173{
3174 struct intel_super *super = st->sb;
3175 size_t len;
3176 struct imsm_update_add_disk *u;
3177
3178 if (!super->add)
3179 return 0;
3180
3181 len = sizeof(*u);
3182 u = malloc(len);
3183 if (!u) {
3184 fprintf(stderr, "%s: failed to allocate update buffer\n",
3185 __func__);
3186 return 1;
3187 }
3188
3189 u->type = update_add_disk;
3190 append_metadata_update(st, u, len);
3191
3192 return 0;
3193}
3194
c2c087e6
DW
3195static int write_init_super_imsm(struct supertype *st)
3196{
9b1fb677
DW
3197 struct intel_super *super = st->sb;
3198 int current_vol = super->current_vol;
3199
3200 /* we are done with current_vol reset it to point st at the container */
3201 super->current_vol = -1;
3202
8273f55e 3203 if (st->update_tail) {
43dad3d6
DW
3204 /* queue the recently created array / added disk
3205 * as a metadata update */
8273f55e 3206 struct dl *d;
43dad3d6 3207 int rv;
8273f55e 3208
43dad3d6 3209 /* determine if we are creating a volume or adding a disk */
9b1fb677 3210 if (current_vol < 0) {
43dad3d6
DW
3211 /* in the add disk case we are running in mdmon
3212 * context, so don't close fd's
3213 */
7801ac20 3214 return _add_disk(st);
43dad3d6 3215 } else
9b1fb677 3216 rv = create_array(st, current_vol);
8273f55e
DW
3217
3218 for (d = super->disks; d ; d = d->next) {
3219 close(d->fd);
3220 d->fd = -1;
3221 }
3222
43dad3d6 3223 return rv;
8273f55e
DW
3224 } else
3225 return write_super_imsm(st->sb, 1);
cdddbdbc 3226}
0e600426 3227#endif
cdddbdbc 3228
e683ca88 3229static int store_super_imsm(struct supertype *st, int fd)
cdddbdbc 3230{
e683ca88
DW
3231 struct intel_super *super = st->sb;
3232 struct imsm_super *mpb = super ? super->anchor : NULL;
551c80c1 3233
e683ca88 3234 if (!mpb)
ad97895e
DW
3235 return 1;
3236
1799c9e8 3237#ifndef MDASSEMBLE
e683ca88 3238 return store_imsm_mpb(fd, mpb);
1799c9e8
N
3239#else
3240 return 1;
3241#endif
cdddbdbc
DW
3242}
3243
0e600426
N
3244static int imsm_bbm_log_size(struct imsm_super *mpb)
3245{
3246 return __le32_to_cpu(mpb->bbm_log_size);
3247}
3248
3249#ifndef MDASSEMBLE
cdddbdbc
DW
3250static int validate_geometry_imsm_container(struct supertype *st, int level,
3251 int layout, int raiddisks, int chunk,
c2c087e6 3252 unsigned long long size, char *dev,
2c514b71
NB
3253 unsigned long long *freesize,
3254 int verbose)
cdddbdbc 3255{
c2c087e6
DW
3256 int fd;
3257 unsigned long long ldsize;
88c32bb1 3258 const struct imsm_orom *orom;
cdddbdbc 3259
c2c087e6
DW
3260 if (level != LEVEL_CONTAINER)
3261 return 0;
3262 if (!dev)
3263 return 1;
3264
88c32bb1
DW
3265 if (check_env("IMSM_NO_PLATFORM"))
3266 orom = NULL;
3267 else
3268 orom = find_imsm_orom();
3269 if (orom && raiddisks > orom->tds) {
3270 if (verbose)
3271 fprintf(stderr, Name ": %d exceeds maximum number of"
3272 " platform supported disks: %d\n",
3273 raiddisks, orom->tds);
3274 return 0;
3275 }
3276
c2c087e6
DW
3277 fd = open(dev, O_RDONLY|O_EXCL, 0);
3278 if (fd < 0) {
2c514b71
NB
3279 if (verbose)
3280 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3281 dev, strerror(errno));
c2c087e6
DW
3282 return 0;
3283 }
3284 if (!get_dev_size(fd, dev, &ldsize)) {
3285 close(fd);
3286 return 0;
3287 }
3288 close(fd);
3289
3290 *freesize = avail_size_imsm(st, ldsize >> 9);
3291
3292 return 1;
cdddbdbc
DW
3293}
3294
0dcecb2e
DW
3295static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3296{
3297 const unsigned long long base_start = e[*idx].start;
3298 unsigned long long end = base_start + e[*idx].size;
3299 int i;
3300
3301 if (base_start == end)
3302 return 0;
3303
3304 *idx = *idx + 1;
3305 for (i = *idx; i < num_extents; i++) {
3306 /* extend overlapping extents */
3307 if (e[i].start >= base_start &&
3308 e[i].start <= end) {
3309 if (e[i].size == 0)
3310 return 0;
3311 if (e[i].start + e[i].size > end)
3312 end = e[i].start + e[i].size;
3313 } else if (e[i].start > end) {
3314 *idx = i;
3315 break;
3316 }
3317 }
3318
3319 return end - base_start;
3320}
3321
3322static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3323{
3324 /* build a composite disk with all known extents and generate a new
3325 * 'maxsize' given the "all disks in an array must share a common start
3326 * offset" constraint
3327 */
3328 struct extent *e = calloc(sum_extents, sizeof(*e));
3329 struct dl *dl;
3330 int i, j;
3331 int start_extent;
3332 unsigned long long pos;
b9d77223 3333 unsigned long long start = 0;
0dcecb2e
DW
3334 unsigned long long maxsize;
3335 unsigned long reserve;
3336
3337 if (!e)
a7dd165b 3338 return 0;
0dcecb2e
DW
3339
3340 /* coalesce and sort all extents. also, check to see if we need to
3341 * reserve space between member arrays
3342 */
3343 j = 0;
3344 for (dl = super->disks; dl; dl = dl->next) {
3345 if (!dl->e)
3346 continue;
3347 for (i = 0; i < dl->extent_cnt; i++)
3348 e[j++] = dl->e[i];
3349 }
3350 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3351
3352 /* merge extents */
3353 i = 0;
3354 j = 0;
3355 while (i < sum_extents) {
3356 e[j].start = e[i].start;
3357 e[j].size = find_size(e, &i, sum_extents);
3358 j++;
3359 if (e[j-1].size == 0)
3360 break;
3361 }
3362
3363 pos = 0;
3364 maxsize = 0;
3365 start_extent = 0;
3366 i = 0;
3367 do {
3368 unsigned long long esize;
3369
3370 esize = e[i].start - pos;
3371 if (esize >= maxsize) {
3372 maxsize = esize;
3373 start = pos;
3374 start_extent = i;
3375 }
3376 pos = e[i].start + e[i].size;
3377 i++;
3378 } while (e[i-1].size);
3379 free(e);
3380
a7dd165b
DW
3381 if (maxsize == 0)
3382 return 0;
3383
3384 /* FIXME assumes volume at offset 0 is the first volume in a
3385 * container
3386 */
0dcecb2e
DW
3387 if (start_extent > 0)
3388 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3389 else
3390 reserve = 0;
3391
3392 if (maxsize < reserve)
a7dd165b 3393 return 0;
0dcecb2e
DW
3394
3395 super->create_offset = ~((__u32) 0);
3396 if (start + reserve > super->create_offset)
a7dd165b 3397 return 0; /* start overflows create_offset */
0dcecb2e
DW
3398 super->create_offset = start + reserve;
3399
3400 return maxsize - reserve;
3401}
3402
88c32bb1
DW
3403static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3404{
3405 if (level < 0 || level == 6 || level == 4)
3406 return 0;
3407
3408 /* if we have an orom prevent invalid raid levels */
3409 if (orom)
3410 switch (level) {
3411 case 0: return imsm_orom_has_raid0(orom);
3412 case 1:
3413 if (raiddisks > 2)
3414 return imsm_orom_has_raid1e(orom);
1c556e92
DW
3415 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3416 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3417 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
3418 }
3419 else
3420 return 1; /* not on an Intel RAID platform so anything goes */
3421
3422 return 0;
3423}
3424
35f81cbb 3425#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
6592ce37
DW
3426static int
3427validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3428 int raiddisks, int chunk, int verbose)
3429{
3430 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3431 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3432 level, raiddisks, raiddisks > 1 ? "s" : "");
3433 return 0;
3434 }
3435 if (super->orom && level != 1 &&
3436 !imsm_orom_has_chunk(super->orom, chunk)) {
3437 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3438 return 0;
3439 }
3440 if (layout != imsm_level_to_layout(level)) {
3441 if (level == 5)
3442 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3443 else if (level == 10)
3444 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3445 else
3446 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3447 layout, level);
3448 return 0;
3449 }
3450
3451 return 1;
3452}
3453
c2c087e6
DW
3454/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3455 * FIX ME add ahci details
3456 */
8b353278
DW
3457static int validate_geometry_imsm_volume(struct supertype *st, int level,
3458 int layout, int raiddisks, int chunk,
c2c087e6 3459 unsigned long long size, char *dev,
2c514b71
NB
3460 unsigned long long *freesize,
3461 int verbose)
cdddbdbc 3462{
c2c087e6
DW
3463 struct stat stb;
3464 struct intel_super *super = st->sb;
a20d2ba5 3465 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3466 struct dl *dl;
3467 unsigned long long pos = 0;
3468 unsigned long long maxsize;
3469 struct extent *e;
3470 int i;
cdddbdbc 3471
88c32bb1
DW
3472 /* We must have the container info already read in. */
3473 if (!super)
c2c087e6
DW
3474 return 0;
3475
6592ce37 3476 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
c2c087e6 3477 return 0;
c2c087e6
DW
3478
3479 if (!dev) {
3480 /* General test: make sure there is space for
2da8544a
DW
3481 * 'raiddisks' device extents of size 'size' at a given
3482 * offset
c2c087e6 3483 */
e46273eb 3484 unsigned long long minsize = size;
b7528a20 3485 unsigned long long start_offset = MaxSector;
c2c087e6
DW
3486 int dcnt = 0;
3487 if (minsize == 0)
3488 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3489 for (dl = super->disks; dl ; dl = dl->next) {
3490 int found = 0;
3491
bf5a934a 3492 pos = 0;
c2c087e6
DW
3493 i = 0;
3494 e = get_extents(super, dl);
3495 if (!e) continue;
3496 do {
3497 unsigned long long esize;
3498 esize = e[i].start - pos;
3499 if (esize >= minsize)
3500 found = 1;
b7528a20 3501 if (found && start_offset == MaxSector) {
2da8544a
DW
3502 start_offset = pos;
3503 break;
3504 } else if (found && pos != start_offset) {
3505 found = 0;
3506 break;
3507 }
c2c087e6
DW
3508 pos = e[i].start + e[i].size;
3509 i++;
3510 } while (e[i-1].size);
3511 if (found)
3512 dcnt++;
3513 free(e);
3514 }
3515 if (dcnt < raiddisks) {
2c514b71
NB
3516 if (verbose)
3517 fprintf(stderr, Name ": imsm: Not enough "
3518 "devices with space for this array "
3519 "(%d < %d)\n",
3520 dcnt, raiddisks);
c2c087e6
DW
3521 return 0;
3522 }
3523 return 1;
3524 }
0dcecb2e 3525
c2c087e6
DW
3526 /* This device must be a member of the set */
3527 if (stat(dev, &stb) < 0)
3528 return 0;
3529 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3530 return 0;
3531 for (dl = super->disks ; dl ; dl = dl->next) {
3532 if (dl->major == major(stb.st_rdev) &&
3533 dl->minor == minor(stb.st_rdev))
3534 break;
3535 }
3536 if (!dl) {
2c514b71
NB
3537 if (verbose)
3538 fprintf(stderr, Name ": %s is not in the "
3539 "same imsm set\n", dev);
c2c087e6 3540 return 0;
a20d2ba5
DW
3541 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3542 /* If a volume is present then the current creation attempt
3543 * cannot incorporate new spares because the orom may not