]> git.ipfire.org Git - thirdparty/mdadm.git/blob - mdadm.8.in
ddf: set vcnum correctly when creating a new virtual device in conflist
[thirdparty/mdadm.git] / mdadm.8.in
1 .\" -*- nroff -*-
2 .\" Copyright Neil Brown and others.
3 .\" This program is free software; you can redistribute it and/or modify
4 .\" it under the terms of the GNU General Public License as published by
5 .\" the Free Software Foundation; either version 2 of the License, or
6 .\" (at your option) any later version.
7 .\" See file COPYING in distribution for details.
8 .TH MDADM 8 "" v3.1.4
9 .SH NAME
10 mdadm \- manage MD devices
11 .I aka
12 Linux Software RAID
13
14 .SH SYNOPSIS
15
16 .BI mdadm " [mode] <raiddevice> [options] <component-devices>"
17
18 .SH DESCRIPTION
19 RAID devices are virtual devices created from two or more
20 real block devices. This allows multiple devices (typically disk
21 drives or partitions thereof) to be combined into a single device to
22 hold (for example) a single filesystem.
23 Some RAID levels include redundancy and so can survive some degree of
24 device failure.
25
26 Linux Software RAID devices are implemented through the md (Multiple
27 Devices) device driver.
28
29 Currently, Linux supports
30 .B LINEAR
31 md devices,
32 .B RAID0
33 (striping),
34 .B RAID1
35 (mirroring),
36 .BR RAID4 ,
37 .BR RAID5 ,
38 .BR RAID6 ,
39 .BR RAID10 ,
40 .BR MULTIPATH ,
41 .BR FAULTY ,
42 and
43 .BR CONTAINER .
44
45 .B MULTIPATH
46 is not a Software RAID mechanism, but does involve
47 multiple devices:
48 each device is a path to one common physical storage device.
49 New installations should not use md/multipath as it is not well
50 supported and has no ongoing development. Use the Device Mapper based
51 multipath-tools instead.
52
53 .B FAULTY
54 is also not true RAID, and it only involves one device. It
55 provides a layer over a true device that can be used to inject faults.
56
57 .B CONTAINER
58 is different again. A
59 .B CONTAINER
60 is a collection of devices that are
61 managed as a set. This is similar to the set of devices connected to
62 a hardware RAID controller. The set of devices may contain a number
63 of different RAID arrays each utilising some (or all) of the blocks from a
64 number of the devices in the set. For example, two devices in a 5-device set
65 might form a RAID1 using the whole devices. The remaining three might
66 have a RAID5 over the first half of each device, and a RAID0 over the
67 second half.
68
69 With a
70 .BR CONTAINER ,
71 there is one set of metadata that describes all of
72 the arrays in the container. So when
73 .I mdadm
74 creates a
75 .B CONTAINER
76 device, the device just represents the metadata. Other normal arrays (RAID1
77 etc) can be created inside the container.
78
79 .SH MODES
80 mdadm has several major modes of operation:
81 .TP
82 .B Assemble
83 Assemble the components of a previously created
84 array into an active array. Components can be explicitly given
85 or can be searched for.
86 .I mdadm
87 checks that the components
88 do form a bona fide array, and can, on request, fiddle superblock
89 information so as to assemble a faulty array.
90
91 .TP
92 .B Build
93 Build an array that doesn't have per-device metadata (superblocks). For these
94 sorts of arrays,
95 .I mdadm
96 cannot differentiate between initial creation and subsequent assembly
97 of an array. It also cannot perform any checks that appropriate
98 components have been requested. Because of this, the
99 .B Build
100 mode should only be used together with a complete understanding of
101 what you are doing.
102
103 .TP
104 .B Create
105 Create a new array with per-device metadata (superblocks).
106 Appropriate metadata is written to each device, and then the array
107 comprising those devices is activated. A 'resync' process is started
108 to make sure that the array is consistent (e.g. both sides of a mirror
109 contain the same data) but the content of the device is left otherwise
110 untouched.
111 The array can be used as soon as it has been created. There is no
112 need to wait for the initial resync to finish.
113
114 .TP
115 .B "Follow or Monitor"
116 Monitor one or more md devices and act on any state changes. This is
117 only meaningful for RAID1, 4, 5, 6, 10 or multipath arrays, as
118 only these have interesting state. RAID0 or Linear never have
119 missing, spare, or failed drives, so there is nothing to monitor.
120
121 .TP
122 .B "Grow"
123 Grow (or shrink) an array, or otherwise reshape it in some way.
124 Currently supported growth options including changing the active size
125 of component devices and changing the number of active devices in RAID
126 levels 1/4/5/6, changing the RAID level between 1, 5, and 6, changing
127 the chunk size and layout for RAID5 and RAID5, as well as adding or
128 removing a write-intent bitmap.
129
130 .TP
131 .B "Incremental Assembly"
132 Add a single device to an appropriate array. If the addition of the
133 device makes the array runnable, the array will be started.
134 This provides a convenient interface to a
135 .I hot-plug
136 system. As each device is detected,
137 .I mdadm
138 has a chance to include it in some array as appropriate.
139 Optionally, when the
140 .I \-\-fail
141 flag is passed in we will remove the device from any active array
142 instead of adding it.
143
144 If a
145 .B CONTAINER
146 is passed to
147 .I mdadm
148 in this mode, then any arrays within that container will be assembled
149 and started.
150
151 .TP
152 .B Manage
153 This is for doing things to specific components of an array such as
154 adding new spares and removing faulty devices.
155
156 .TP
157 .B Misc
158 This is an 'everything else' mode that supports operations on active
159 arrays, operations on component devices such as erasing old superblocks, and
160 information gathering operations.
161 .\"This mode allows operations on independent devices such as examine MD
162 .\"superblocks, erasing old superblocks and stopping active arrays.
163
164 .TP
165 .B Auto-detect
166 This mode does not act on a specific device or array, but rather it
167 requests the Linux Kernel to activate any auto-detected arrays.
168 .SH OPTIONS
169
170 .SH Options for selecting a mode are:
171
172 .TP
173 .BR \-A ", " \-\-assemble
174 Assemble a pre-existing array.
175
176 .TP
177 .BR \-B ", " \-\-build
178 Build a legacy array without superblocks.
179
180 .TP
181 .BR \-C ", " \-\-create
182 Create a new array.
183
184 .TP
185 .BR \-F ", " \-\-follow ", " \-\-monitor
186 Select
187 .B Monitor
188 mode.
189
190 .TP
191 .BR \-G ", " \-\-grow
192 Change the size or shape of an active array.
193
194 .TP
195 .BR \-I ", " \-\-incremental
196 Add/remove a single device to/from an appropriate array, and possibly start the array.
197
198 .TP
199 .B \-\-auto-detect
200 Request that the kernel starts any auto-detected arrays. This can only
201 work if
202 .I md
203 is compiled into the kernel \(em not if it is a module.
204 Arrays can be auto-detected by the kernel if all the components are in
205 primary MS-DOS partitions with partition type
206 .BR FD ,
207 and all use v0.90 metadata.
208 In-kernel autodetect is not recommended for new installations. Using
209 .I mdadm
210 to detect and assemble arrays \(em possibly in an
211 .I initrd
212 \(em is substantially more flexible and should be preferred.
213
214 .P
215 If a device is given before any options, or if the first option is
216 .BR \-\-add ,
217 .BR \-\-fail ,
218 or
219 .BR \-\-remove ,
220 then the MANAGE mode is assumed.
221 Anything other than these will cause the
222 .B Misc
223 mode to be assumed.
224
225 .SH Options that are not mode-specific are:
226
227 .TP
228 .BR \-h ", " \-\-help
229 Display general help message or, after one of the above options, a
230 mode-specific help message.
231
232 .TP
233 .B \-\-help\-options
234 Display more detailed help about command line parsing and some commonly
235 used options.
236
237 .TP
238 .BR \-V ", " \-\-version
239 Print version information for mdadm.
240
241 .TP
242 .BR \-v ", " \-\-verbose
243 Be more verbose about what is happening. This can be used twice to be
244 extra-verbose.
245 The extra verbosity currently only affects
246 .B \-\-detail \-\-scan
247 and
248 .BR "\-\-examine \-\-scan" .
249
250 .TP
251 .BR \-q ", " \-\-quiet
252 Avoid printing purely informative messages. With this,
253 .I mdadm
254 will be silent unless there is something really important to report.
255
256 .TP
257 .BR \-f ", " \-\-force
258 Be more forceful about certain operations. See the various modes for
259 the exact meaning of this option in different contexts.
260
261 .TP
262 .BR \-c ", " \-\-config=
263 Specify the config file. Default is to use
264 .BR /etc/mdadm.conf ,
265 or if that is missing then
266 .BR /etc/mdadm/mdadm.conf .
267 If the config file given is
268 .B "partitions"
269 then nothing will be read, but
270 .I mdadm
271 will act as though the config file contained exactly
272 .B "DEVICE partitions containers"
273 and will read
274 .B /proc/partitions
275 to find a list of devices to scan, and
276 .B /proc/mdstat
277 to find a list of containers to examine.
278 If the word
279 .B "none"
280 is given for the config file, then
281 .I mdadm
282 will act as though the config file were empty.
283
284 .TP
285 .BR \-s ", " \-\-scan
286 Scan config file or
287 .B /proc/mdstat
288 for missing information.
289 In general, this option gives
290 .I mdadm
291 permission to get any missing information (like component devices,
292 array devices, array identities, and alert destination) from the
293 configuration file (see previous option);
294 one exception is MISC mode when using
295 .B \-\-detail
296 or
297 .B \-\-stop,
298 in which case
299 .B \-\-scan
300 says to get a list of array devices from
301 .BR /proc/mdstat .
302
303 .TP
304 .BR \-e ", " \-\-metadata=
305 Declare the style of RAID metadata (superblock) to be used. The
306 default is {DEFAULT_METADATA} for
307 .BR \-\-create ,
308 and to guess for other operations.
309 The default can be overridden by setting the
310 .B metadata
311 value for the
312 .B CREATE
313 keyword in
314 .BR mdadm.conf .
315
316 Options are:
317 .RS
318 .ie '{DEFAULT_METADATA}'0.90'
319 .IP "0, 0.90, default"
320 .el
321 .IP "0, 0.90"
322 ..
323 Use the original 0.90 format superblock. This format limits arrays to
324 28 component devices and limits component devices of levels 1 and
325 greater to 2 terabytes. It is also possible for there to be confusion
326 about whether the superblock applies to a whole device or just the
327 last partition, if that partition starts on a 64K boundary.
328 .ie '{DEFAULT_METADATA}'0.90'
329 .IP "1, 1.0, 1.1, 1.2"
330 .el
331 .IP "1, 1.0, 1.1, 1.2 default"
332 ..
333 Use the new version-1 format superblock. This has fewer restrictions.
334 It can easily be moved between hosts with different endian-ness, and a
335 recovery operation can be checkpointed and restarted. The different
336 sub-versions store the superblock at different locations on the
337 device, either at the end (for 1.0), at the start (for 1.1) or 4K from
338 the start (for 1.2). "1" is equivalent to "1.0".
339 'if '{DEFAULT_METADATA}'1.2' "default" is equivalent to "1.2".
340 .IP ddf
341 Use the "Industry Standard" DDF (Disk Data Format) format defined by
342 SNIA.
343 When creating a DDF array a
344 .B CONTAINER
345 will be created, and normal arrays can be created in that container.
346 .IP imsm
347 Use the Intel(R) Matrix Storage Manager metadata format. This creates a
348 .B CONTAINER
349 which is managed in a similar manner to DDF, and is supported by an
350 option-rom on some platforms:
351 .IP
352 .B http://www.intel.com/design/chipsets/matrixstorage_sb.htm
353 .PP
354 .RE
355
356 .TP
357 .B \-\-homehost=
358 This will override any
359 .B HOMEHOST
360 setting in the config file and provides the identity of the host which
361 should be considered the home for any arrays.
362
363 When creating an array, the
364 .B homehost
365 will be recorded in the metadata. For version-1 superblocks, it will
366 be prefixed to the array name. For version-0.90 superblocks, part of
367 the SHA1 hash of the hostname will be stored in the later half of the
368 UUID.
369
370 When reporting information about an array, any array which is tagged
371 for the given homehost will be reported as such.
372
373 When using Auto-Assemble, only arrays tagged for the given homehost
374 will be allowed to use 'local' names (i.e. not ending in '_' followed
375 by a digit string). See below under
376 .BR "Auto Assembly" .
377
378 .SH For create, build, or grow:
379
380 .TP
381 .BR \-n ", " \-\-raid\-devices=
382 Specify the number of active devices in the array. This, plus the
383 number of spare devices (see below) must equal the number of
384 .I component-devices
385 (including "\fBmissing\fP" devices)
386 that are listed on the command line for
387 .BR \-\-create .
388 Setting a value of 1 is probably
389 a mistake and so requires that
390 .B \-\-force
391 be specified first. A value of 1 will then be allowed for linear,
392 multipath, RAID0 and RAID1. It is never allowed for RAID4, RAID5 or RAID6.
393 .br
394 This number can only be changed using
395 .B \-\-grow
396 for RAID1, RAID4, RAID5 and RAID6 arrays, and only on kernels which provide
397 the necessary support.
398
399 .TP
400 .BR \-x ", " \-\-spare\-devices=
401 Specify the number of spare (eXtra) devices in the initial array.
402 Spares can also be added
403 and removed later. The number of component devices listed
404 on the command line must equal the number of RAID devices plus the
405 number of spare devices.
406
407 .TP
408 .BR \-z ", " \-\-size=
409 Amount (in Kibibytes) of space to use from each drive in RAID levels 1/4/5/6.
410 This must be a multiple of the chunk size, and must leave about 128Kb
411 of space at the end of the drive for the RAID superblock.
412 If this is not specified
413 (as it normally is not) the smallest drive (or partition) sets the
414 size, though if there is a variance among the drives of greater than 1%, a warning is
415 issued.
416
417 This value can be set with
418 .B \-\-grow
419 for RAID level 1/4/5/6. If the array was created with a size smaller
420 than the currently active drives, the extra space can be accessed
421 using
422 .BR \-\-grow .
423 The size can be given as
424 .B max
425 which means to choose the largest size that fits on all current drives.
426
427 Before reducing the size of the array (with
428 .BR "\-\-grow \-\-size=" )
429 you should make sure that space isn't needed. If the device holds a
430 filesystem, you would need to resize the filesystem to use less space.
431
432 After reducing the array size you should check that the data stored in
433 the device is still available. If the device holds a filesystem, then
434 an 'fsck' of the filesystem is a minimum requirement. If there are
435 problems the array can be made bigger again with no loss with another
436 .B "\-\-grow \-\-size="
437 command.
438
439 This value can not be used with
440 .B CONTAINER
441 metadata such as DDF and IMSM.
442
443 .TP
444 .BR \-c ", " \-\-chunk=
445 Specify chunk size of kibibytes. The default when creating an
446 array is 512KB. To ensure compatibility with earlier versions, the
447 default when Building and array with no persistent metadata is 64KB.
448 This is only meaningful for RAID0, RAID4, RAID5, RAID6, and RAID10.
449
450 .TP
451 .BR \-\-rounding=
452 Specify rounding factor for a Linear array. The size of each
453 component will be rounded down to a multiple of this size.
454 This is a synonym for
455 .B \-\-chunk
456 but highlights the different meaning for Linear as compared to other
457 RAID levels. The default is 64K if a kernel earlier than 2.6.16 is in
458 use, and is 0K (i.e. no rounding) in later kernels.
459
460 .TP
461 .BR \-l ", " \-\-level=
462 Set RAID level. When used with
463 .BR \-\-create ,
464 options are: linear, raid0, 0, stripe, raid1, 1, mirror, raid4, 4,
465 raid5, 5, raid6, 6, raid10, 10, multipath, mp, faulty, container.
466 Obviously some of these are synonymous.
467
468 When a
469 .B CONTAINER
470 metadata type is requested, only the
471 .B container
472 level is permitted, and it does not need to be explicitly given.
473
474 When used with
475 .BR \-\-build ,
476 only linear, stripe, raid0, 0, raid1, multipath, mp, and faulty are valid.
477
478 Can be used with
479 .B \-\-grow
480 to change the RAID level in some cases. See LEVEL CHANGES below.
481
482 .TP
483 .BR \-p ", " \-\-layout=
484 This option configures the fine details of data layout for RAID5, RAID6,
485 and RAID10 arrays, and controls the failure modes for
486 .IR faulty .
487
488 The layout of the RAID5 parity block can be one of
489 .BR left\-asymmetric ,
490 .BR left\-symmetric ,
491 .BR right\-asymmetric ,
492 .BR right\-symmetric ,
493 .BR la ", " ra ", " ls ", " rs .
494 The default is
495 .BR left\-symmetric .
496
497 It is also possible to cause RAID5 to use a RAID4-like layout by
498 choosing
499 .BR parity\-first ,
500 or
501 .BR parity\-last .
502
503 Finally for RAID5 there are DDF\-compatible layouts,
504 .BR ddf\-zero\-restart ,
505 .BR ddf\-N\-restart ,
506 and
507 .BR ddf\-N\-continue .
508
509 These same layouts are available for RAID6. There are also 4 layouts
510 that will provide an intermediate stage for converting between RAID5
511 and RAID6. These provide a layout which is identical to the
512 corresponding RAID5 layout on the first N\-1 devices, and has the 'Q'
513 syndrome (the second 'parity' block used by RAID6) on the last device.
514 These layouts are:
515 .BR left\-symmetric\-6 ,
516 .BR right\-symmetric\-6 ,
517 .BR left\-asymmetric\-6 ,
518 .BR right\-asymmetric\-6 ,
519 and
520 .BR parity\-first\-6 .
521
522 When setting the failure mode for level
523 .I faulty,
524 the options are:
525 .BR write\-transient ", " wt ,
526 .BR read\-transient ", " rt ,
527 .BR write\-persistent ", " wp ,
528 .BR read\-persistent ", " rp ,
529 .BR write\-all ,
530 .BR read\-fixable ", " rf ,
531 .BR clear ", " flush ", " none .
532
533 Each failure mode can be followed by a number, which is used as a period
534 between fault generation. Without a number, the fault is generated
535 once on the first relevant request. With a number, the fault will be
536 generated after that many requests, and will continue to be generated
537 every time the period elapses.
538
539 Multiple failure modes can be current simultaneously by using the
540 .B \-\-grow
541 option to set subsequent failure modes.
542
543 "clear" or "none" will remove any pending or periodic failure modes,
544 and "flush" will clear any persistent faults.
545
546 Finally, the layout options for RAID10 are one of 'n', 'o' or 'f' followed
547 by a small number. The default is 'n2'. The supported options are:
548
549 .I 'n'
550 signals 'near' copies. Multiple copies of one data block are at
551 similar offsets in different devices.
552
553 .I 'o'
554 signals 'offset' copies. Rather than the chunks being duplicated
555 within a stripe, whole stripes are duplicated but are rotated by one
556 device so duplicate blocks are on different devices. Thus subsequent
557 copies of a block are in the next drive, and are one chunk further
558 down.
559
560 .I 'f'
561 signals 'far' copies
562 (multiple copies have very different offsets).
563 See md(4) for more detail about 'near', 'offset', and 'far'.
564
565 The number is the number of copies of each datablock. 2 is normal, 3
566 can be useful. This number can be at most equal to the number of
567 devices in the array. It does not need to divide evenly into that
568 number (e.g. it is perfectly legal to have an 'n2' layout for an array
569 with an odd number of devices).
570
571 When an array is converted between RAID5 and RAID6 an intermediate
572 RAID6 layout is used in which the second parity block (Q) is always on
573 the last device. To convert a RAID5 to RAID6 and leave it in this new
574 layout (which does not require re-striping) use
575 .BR \-\-layout=preserve .
576 This will try to avoid any restriping.
577
578 The converse of this is
579 .B \-\-layout=normalise
580 which will change a non-standard RAID6 layout into a more standard
581 arrangement.
582
583 .TP
584 .BR \-\-parity=
585 same as
586 .B \-\-layout
587 (thus explaining the p of
588 .BR \-p ).
589
590 .TP
591 .BR \-b ", " \-\-bitmap=
592 Specify a file to store a write-intent bitmap in. The file should not
593 exist unless
594 .B \-\-force
595 is also given. The same file should be provided
596 when assembling the array. If the word
597 .B "internal"
598 is given, then the bitmap is stored with the metadata on the array,
599 and so is replicated on all devices. If the word
600 .B "none"
601 is given with
602 .B \-\-grow
603 mode, then any bitmap that is present is removed.
604
605 To help catch typing errors, the filename must contain at least one
606 slash ('/') if it is a real file (not 'internal' or 'none').
607
608 Note: external bitmaps are only known to work on ext2 and ext3.
609 Storing bitmap files on other filesystems may result in serious problems.
610
611 .TP
612 .BR \-\-bitmap\-chunk=
613 Set the chunksize of the bitmap. Each bit corresponds to that many
614 Kilobytes of storage.
615 When using a file based bitmap, the default is to use the smallest
616 size that is at-least 4 and requires no more than 2^21 chunks.
617 When using an
618 .B internal
619 bitmap, the chunksize defaults to 64Meg, or larger if necessary to
620 fit the bitmap into the available space.
621
622 .TP
623 .BR \-W ", " \-\-write\-mostly
624 subsequent devices listed in a
625 .BR \-\-build ,
626 .BR \-\-create ,
627 or
628 .B \-\-add
629 command will be flagged as 'write-mostly'. This is valid for RAID1
630 only and means that the 'md' driver will avoid reading from these
631 devices if at all possible. This can be useful if mirroring over a
632 slow link.
633
634 .TP
635 .BR \-\-write\-behind=
636 Specify that write-behind mode should be enabled (valid for RAID1
637 only). If an argument is specified, it will set the maximum number
638 of outstanding writes allowed. The default value is 256.
639 A write-intent bitmap is required in order to use write-behind
640 mode, and write-behind is only attempted on drives marked as
641 .IR write-mostly .
642
643 .TP
644 .BR \-\-assume\-clean
645 Tell
646 .I mdadm
647 that the array pre-existed and is known to be clean. It can be useful
648 when trying to recover from a major failure as you can be sure that no
649 data will be affected unless you actually write to the array. It can
650 also be used when creating a RAID1 or RAID10 if you want to avoid the
651 initial resync, however this practice \(em while normally safe \(em is not
652 recommended. Use this only if you really know what you are doing.
653 .IP
654 When the devices that will be part of a new array were filled
655 with zeros before creation the operator knows the array is
656 actually clean. If that is the case, such as after running
657 badblocks, this argument can be used to tell mdadm the
658 facts the operator knows.
659
660 .TP
661 .BR \-\-backup\-file=
662 This is needed when
663 .B \-\-grow
664 is used to increase the number of raid-devices in a RAID5 or RAID6 if
665 there are no spare devices available, or to shrink, change RAID level
666 or layout. See the GROW MODE section below on RAID\-DEVICES CHANGES.
667 The file must be stored on a separate device, not on the RAID array
668 being reshaped.
669
670 .TP
671 .BR \-\-array-size= ", " \-Z
672 This is only meaningful with
673 .B \-\-grow
674 and its effect is not persistent: when the array is stopped an
675 restarted the default array size will be restored.
676
677 Setting the array-size causes the array to appear smaller to programs
678 that access the data. This is particularly needed before reshaping an
679 array so that it will be smaller. As the reshape is not reversible,
680 but setting the size with
681 .B \-\-array-size
682 is, it is required that the array size is reduced as appropriate
683 before the number of devices in the array is reduced.
684
685 A value of
686 .B max
687 restores the apparent size of the array to be whatever the real
688 amount of available space is.
689
690 Before reducing the size of the array you should make sure that space
691 isn't needed. If the device holds a filesystem, you would need to
692 resize the filesystem to use less space.
693
694 After reducing the array size you should check that the data stored in
695 the device is still available. If the device holds a filesystem, then
696 an 'fsck' of the filesystem is a minimum requirement. If there are
697 problems the array can be made bigger again with no loss with another
698 .B "\-\-grow \-\-array\-size="
699 command.
700
701 .TP
702 .BR \-N ", " \-\-name=
703 Set a
704 .B name
705 for the array. This is currently only effective when creating an
706 array with a version-1 superblock, or an array in a DDF container.
707 The name is a simple textual string that can be used to identify array
708 components when assembling. If name is needed but not specified, it
709 is taken from the basename of the device that is being created.
710 e.g. when creating
711 .I /dev/md/home
712 the
713 .B name
714 will default to
715 .IR home .
716
717 .TP
718 .BR \-R ", " \-\-run
719 Insist that
720 .I mdadm
721 run the array, even if some of the components
722 appear to be active in another array or filesystem. Normally
723 .I mdadm
724 will ask for confirmation before including such components in an
725 array. This option causes that question to be suppressed.
726
727 .TP
728 .BR \-f ", " \-\-force
729 Insist that
730 .I mdadm
731 accept the geometry and layout specified without question. Normally
732 .I mdadm
733 will not allow creation of an array with only one device, and will try
734 to create a RAID5 array with one missing drive (as this makes the
735 initial resync work faster). With
736 .BR \-\-force ,
737 .I mdadm
738 will not try to be so clever.
739
740 .TP
741 .BR \-a ", " "\-\-auto{=yes,md,mdp,part,p}{NN}"
742 Instruct mdadm how to create the device file if needed, possibly allocating
743 an unused minor number. "md" causes a non-partitionable array
744 to be used (though since Linux 2.6.28, these array devices are in fact
745 partitionable). "mdp", "part" or "p" causes a partitionable array (2.6 and
746 later) to be used. "yes" requires the named md device to have
747 a 'standard' format, and the type and minor number will be determined
748 from this. With mdadm 3.0, device creation is normally left up to
749 .I udev
750 so this option is unlikely to be needed.
751 See DEVICE NAMES below.
752
753 The argument can also come immediately after
754 "\-a". e.g. "\-ap".
755
756 If
757 .B \-\-auto
758 is not given on the command line or in the config file, then
759 the default will be
760 .BR \-\-auto=yes .
761
762 If
763 .B \-\-scan
764 is also given, then any
765 .I auto=
766 entries in the config file will override the
767 .B \-\-auto
768 instruction given on the command line.
769
770 For partitionable arrays,
771 .I mdadm
772 will create the device file for the whole array and for the first 4
773 partitions. A different number of partitions can be specified at the
774 end of this option (e.g.
775 .BR \-\-auto=p7 ).
776 If the device name ends with a digit, the partition names add a 'p',
777 and a number, e.g.
778 .IR /dev/md/home1p3 .
779 If there is no trailing digit, then the partition names just have a
780 number added, e.g.
781 .IR /dev/md/scratch3 .
782
783 If the md device name is in a 'standard' format as described in DEVICE
784 NAMES, then it will be created, if necessary, with the appropriate
785 device number based on that name. If the device name is not in one of these
786 formats, then a unused device number will be allocated. The device
787 number will be considered unused if there is no active array for that
788 number, and there is no entry in /dev for that number and with a
789 non-standard name. Names that are not in 'standard' format are only
790 allowed in "/dev/md/".
791
792 .ig XX
793 .\".TP
794 .\".BR \-\-symlink = no
795 .\"Normally when
796 .\".B \-\-auto
797 .\"causes
798 .\".I mdadm
799 .\"to create devices in
800 .\".B /dev/md/
801 .\"it will also create symlinks from
802 .\".B /dev/
803 .\"with names starting with
804 .\".B md
805 .\"or
806 .\".BR md_ .
807 .\"Use
808 .\".B \-\-symlink=no
809 .\"to suppress this, or
810 .\".B \-\-symlink=yes
811 .\"to enforce this even if it is suppressing
812 .\".IR mdadm.conf .
813 .\"
814 .XX
815
816 .SH For assemble:
817
818 .TP
819 .BR \-u ", " \-\-uuid=
820 uuid of array to assemble. Devices which don't have this uuid are
821 excluded
822
823 .TP
824 .BR \-m ", " \-\-super\-minor=
825 Minor number of device that array was created for. Devices which
826 don't have this minor number are excluded. If you create an array as
827 /dev/md1, then all superblocks will contain the minor number 1, even if
828 the array is later assembled as /dev/md2.
829
830 Giving the literal word "dev" for
831 .B \-\-super\-minor
832 will cause
833 .I mdadm
834 to use the minor number of the md device that is being assembled.
835 e.g. when assembling
836 .BR /dev/md0 ,
837 .B \-\-super\-minor=dev
838 will look for super blocks with a minor number of 0.
839
840 .B \-\-super\-minor
841 is only relevant for v0.90 metadata, and should not normally be used.
842 Using
843 .B \-\-uuid
844 is much safer.
845
846 .TP
847 .BR \-N ", " \-\-name=
848 Specify the name of the array to assemble. This must be the name
849 that was specified when creating the array. It must either match
850 the name stored in the superblock exactly, or it must match
851 with the current
852 .I homehost
853 prefixed to the start of the given name.
854
855 .TP
856 .BR \-f ", " \-\-force
857 Assemble the array even if the metadata on some devices appears to be
858 out-of-date. If
859 .I mdadm
860 cannot find enough working devices to start the array, but can find
861 some devices that are recorded as having failed, then it will mark
862 those devices as working so that the array can be started.
863 An array which requires
864 .B \-\-force
865 to be started may contain data corruption. Use it carefully.
866
867 .TP
868 .BR \-R ", " \-\-run
869 Attempt to start the array even if fewer drives were given than were
870 present last time the array was active. Normally if not all the
871 expected drives are found and
872 .B \-\-scan
873 is not used, then the array will be assembled but not started.
874 With
875 .B \-\-run
876 an attempt will be made to start it anyway.
877
878 .TP
879 .B \-\-no\-degraded
880 This is the reverse of
881 .B \-\-run
882 in that it inhibits the startup of array unless all expected drives
883 are present. This is only needed with
884 .B \-\-scan,
885 and can be used if the physical connections to devices are
886 not as reliable as you would like.
887
888 .TP
889 .BR \-a ", " "\-\-auto{=no,yes,md,mdp,part}"
890 See this option under Create and Build options.
891
892 .TP
893 .BR \-b ", " \-\-bitmap=
894 Specify the bitmap file that was given when the array was created. If
895 an array has an
896 .B internal
897 bitmap, there is no need to specify this when assembling the array.
898
899 .TP
900 .BR \-\-backup\-file=
901 If
902 .B \-\-backup\-file
903 was used when requesting a grow, shrink, RAID level change or other
904 reshape, and the system crashed during the critical section, then the
905 same
906 .B \-\-backup\-file
907 must be presented to
908 .B \-\-assemble
909 to allow possibly corrupted data to be restored, and the reshape
910 to be completed.
911
912 .TP
913 .BR \-U ", " \-\-update=
914 Update the superblock on each device while assembling the array. The
915 argument given to this flag can be one of
916 .BR sparc2.2 ,
917 .BR summaries ,
918 .BR uuid ,
919 .BR name ,
920 .BR homehost ,
921 .BR resync ,
922 .BR byteorder ,
923 .BR devicesize ,
924 .BR no\-bitmap ,
925 or
926 .BR super\-minor .
927
928 The
929 .B sparc2.2
930 option will adjust the superblock of an array what was created on a Sparc
931 machine running a patched 2.2 Linux kernel. This kernel got the
932 alignment of part of the superblock wrong. You can use the
933 .B "\-\-examine \-\-sparc2.2"
934 option to
935 .I mdadm
936 to see what effect this would have.
937
938 The
939 .B super\-minor
940 option will update the
941 .B "preferred minor"
942 field on each superblock to match the minor number of the array being
943 assembled.
944 This can be useful if
945 .B \-\-examine
946 reports a different "Preferred Minor" to
947 .BR \-\-detail .
948 In some cases this update will be performed automatically
949 by the kernel driver. In particular the update happens automatically
950 at the first write to an array with redundancy (RAID level 1 or
951 greater) on a 2.6 (or later) kernel.
952
953 The
954 .B uuid
955 option will change the uuid of the array. If a UUID is given with the
956 .B \-\-uuid
957 option that UUID will be used as a new UUID and will
958 .B NOT
959 be used to help identify the devices in the array.
960 If no
961 .B \-\-uuid
962 is given, a random UUID is chosen.
963
964 The
965 .B name
966 option will change the
967 .I name
968 of the array as stored in the superblock. This is only supported for
969 version-1 superblocks.
970
971 The
972 .B homehost
973 option will change the
974 .I homehost
975 as recorded in the superblock. For version-0 superblocks, this is the
976 same as updating the UUID.
977 For version-1 superblocks, this involves updating the name.
978
979 The
980 .B resync
981 option will cause the array to be marked
982 .I dirty
983 meaning that any redundancy in the array (e.g. parity for RAID5,
984 copies for RAID1) may be incorrect. This will cause the RAID system
985 to perform a "resync" pass to make sure that all redundant information
986 is correct.
987
988 The
989 .B byteorder
990 option allows arrays to be moved between machines with different
991 byte-order.
992 When assembling such an array for the first time after a move, giving
993 .B "\-\-update=byteorder"
994 will cause
995 .I mdadm
996 to expect superblocks to have their byteorder reversed, and will
997 correct that order before assembling the array. This is only valid
998 with original (Version 0.90) superblocks.
999
1000 The
1001 .B summaries
1002 option will correct the summaries in the superblock. That is the
1003 counts of total, working, active, failed, and spare devices.
1004
1005 The
1006 .B devicesize
1007 option will rarely be of use. It applies to version 1.1 and 1.2 metadata
1008 only (where the metadata is at the start of the device) and is only
1009 useful when the component device has changed size (typically become
1010 larger). The version 1 metadata records the amount of the device that
1011 can be used to store data, so if a device in a version 1.1 or 1.2
1012 array becomes larger, the metadata will still be visible, but the
1013 extra space will not. In this case it might be useful to assemble the
1014 array with
1015 .BR \-\-update=devicesize .
1016 This will cause
1017 .I mdadm
1018 to determine the maximum usable amount of space on each device and
1019 update the relevant field in the metadata.
1020
1021 The
1022 .B no\-bitmap
1023 option can be used when an array has an internal bitmap which is
1024 corrupt in some way so that assembling the array normally fails. It
1025 will cause any internal bitmap to be ignored.
1026
1027 .ig
1028 .TP
1029 .B \-\-auto\-update\-homehost
1030 This flag is only meaningful with auto-assembly (see discussion below).
1031 In that situation, if no suitable arrays are found for this homehost,
1032 .I mdadm
1033 will rescan for any arrays at all and will assemble them and update the
1034 homehost to match the current host.
1035 ..
1036
1037 .SH For Manage mode:
1038
1039 .TP
1040 .BR \-t ", " \-\-test
1041 Unless a more serious error occurred,
1042 .I mdadm
1043 will exit with a status of 2 if no changes were made to the array and
1044 0 if at least one change was made.
1045 This can be useful when an indirect specifier such as
1046 .BR missing ,
1047 .B detached
1048 or
1049 .B faulty
1050 is used in requesting an operation on the array.
1051 .B \-\-test
1052 will report failure if these specifiers didn't find any match.
1053
1054 .TP
1055 .BR \-a ", " \-\-add
1056 hot-add listed devices.
1057 If a device appears to have recently been part of the array
1058 (possibly it failed or was removed) the device is re-added as describe
1059 in the next point.
1060 If that fails or the device was never part of the array, the device is
1061 added as a hot-spare.
1062 If the array is degraded, it will immediately start to rebuild data
1063 onto that spare.
1064
1065 Note that this and the following options are only meaningful on array
1066 with redundancy. They don't apply to RAID0 or Linear.
1067
1068 .TP
1069 .BR \-\-re\-add
1070 re\-add a device that was previous removed from an array.
1071 If the metadata on the device reports that it is a member of the
1072 array, and the slot that it used is still vacant, then the device will
1073 be added back to the array in the same position. This will normally
1074 cause the data for that device to be recovered. However based on the
1075 event count on the device, the recovery may only require sections that
1076 are flagged a write-intent bitmap to be recovered or may not require
1077 any recovery at all.
1078
1079 When used on an array that has no metadata (i.e. it was built with
1080 .BR \-\-build)
1081 it will be assumed that bitmap-based recovery is enough to make the
1082 device fully consistent with the array.
1083
1084 If the device name given is
1085 .B missing
1086 then mdadm will try to find any device that looks like it should be
1087 part of the array but isn't and will try to re\-add all such devices.
1088
1089 .TP
1090 .BR \-r ", " \-\-remove
1091 remove listed devices. They must not be active. i.e. they should
1092 be failed or spare devices. As well as the name of a device file
1093 (e.g.
1094 .BR /dev/sda1 )
1095 the words
1096 .B failed
1097 and
1098 .B detached
1099 can be given to
1100 .BR \-\-remove .
1101 The first causes all failed device to be removed. The second causes
1102 any device which is no longer connected to the system (i.e an 'open'
1103 returns
1104 .BR ENXIO )
1105 to be removed. This will only succeed for devices that are spares or
1106 have already been marked as failed.
1107
1108 .TP
1109 .BR \-f ", " \-\-fail
1110 mark listed devices as faulty.
1111 As well as the name of a device file, the word
1112 .B detached
1113 can be given. This will cause any device that has been detached from
1114 the system to be marked as failed. It can then be removed.
1115
1116 .TP
1117 .BR \-\-set\-faulty
1118 same as
1119 .BR \-\-fail .
1120
1121 .TP
1122 .BR \-\-write\-mostly
1123 Subsequent devices that are added or re\-added will have the 'write-mostly'
1124 flag set. This is only valid for RAID1 and means that the 'md' driver
1125 will avoid reading from these devices if possible.
1126 .TP
1127 .BR \-\-readwrite
1128 Subsequent devices that are added or re\-added will have the 'write-mostly'
1129 flag cleared.
1130
1131 .P
1132 Each of these options requires that the first device listed is the array
1133 to be acted upon, and the remainder are component devices to be added,
1134 removed, marked as faulty, etc. Several different operations can be
1135 specified for different devices, e.g.
1136 .in +5
1137 mdadm /dev/md0 \-\-add /dev/sda1 \-\-fail /dev/sdb1 \-\-remove /dev/sdb1
1138 .in -5
1139 Each operation applies to all devices listed until the next
1140 operation.
1141
1142 If an array is using a write-intent bitmap, then devices which have
1143 been removed can be re\-added in a way that avoids a full
1144 reconstruction but instead just updates the blocks that have changed
1145 since the device was removed. For arrays with persistent metadata
1146 (superblocks) this is done automatically. For arrays created with
1147 .B \-\-build
1148 mdadm needs to be told that this device we removed recently with
1149 .BR \-\-re\-add .
1150
1151 Devices can only be removed from an array if they are not in active
1152 use, i.e. that must be spares or failed devices. To remove an active
1153 device, it must first be marked as
1154 .B faulty.
1155
1156 .SH For Misc mode:
1157
1158 .TP
1159 .BR \-Q ", " \-\-query
1160 Examine a device to see
1161 (1) if it is an md device and (2) if it is a component of an md
1162 array.
1163 Information about what is discovered is presented.
1164
1165 .TP
1166 .BR \-D ", " \-\-detail
1167 Print details of one or more md devices.
1168
1169 .TP
1170 .BR \-\-detail\-platform
1171 Print details of the platform's RAID capabilities (firmware / hardware
1172 topology) for a given metadata format.
1173
1174 .TP
1175 .BR \-Y ", " \-\-export
1176 When used with
1177 .B \-\-detail
1178 or
1179 .BR \-\-examine ,
1180 output will be formatted as
1181 .B key=value
1182 pairs for easy import into the environment.
1183
1184 .TP
1185 .BR \-E ", " \-\-examine
1186 Print contents of the metadata stored on the named device(s).
1187 Note the contrast between
1188 .B \-\-examine
1189 and
1190 .BR \-\-detail .
1191 .B \-\-examine
1192 applies to devices which are components of an array, while
1193 .B \-\-detail
1194 applies to a whole array which is currently active.
1195 .TP
1196 .B \-\-sparc2.2
1197 If an array was created on a SPARC machine with a 2.2 Linux kernel
1198 patched with RAID support, the superblock will have been created
1199 incorrectly, or at least incompatibly with 2.4 and later kernels.
1200 Using the
1201 .B \-\-sparc2.2
1202 flag with
1203 .B \-\-examine
1204 will fix the superblock before displaying it. If this appears to do
1205 the right thing, then the array can be successfully assembled using
1206 .BR "\-\-assemble \-\-update=sparc2.2" .
1207
1208 .TP
1209 .BR \-X ", " \-\-examine\-bitmap
1210 Report information about a bitmap file.
1211 The argument is either an external bitmap file or an array component
1212 in case of an internal bitmap. Note that running this on an array
1213 device (e.g.
1214 .BR /dev/md0 )
1215 does not report the bitmap for that array.
1216
1217 .TP
1218 .BR \-R ", " \-\-run
1219 start a partially assembled array. If
1220 .B \-\-assemble
1221 did not find enough devices to fully start the array, it might leaving
1222 it partially assembled. If you wish, you can then use
1223 .B \-\-run
1224 to start the array in degraded mode.
1225
1226 .TP
1227 .BR \-S ", " \-\-stop
1228 deactivate array, releasing all resources.
1229
1230 .TP
1231 .BR \-o ", " \-\-readonly
1232 mark array as readonly.
1233
1234 .TP
1235 .BR \-w ", " \-\-readwrite
1236 mark array as readwrite.
1237
1238 .TP
1239 .B \-\-zero\-superblock
1240 If the device contains a valid md superblock, the block is
1241 overwritten with zeros. With
1242 .B \-\-force
1243 the block where the superblock would be is overwritten even if it
1244 doesn't appear to be valid.
1245
1246 .TP
1247 .B \-\-kill\-subarray=
1248 If the device is a container and the argument to \-\-kill\-subarray
1249 specifies an inactive subarray in the container, then the subarray is
1250 deleted. Deleting all subarrays will leave an 'empty-container' or
1251 spare superblock on the drives. See \-\-zero\-superblock for completely
1252 removing a superblock. Note that some formats depend on the subarray
1253 index for generating a UUID, this command will fail if it would change
1254 the UUID of an active subarray.
1255
1256 .TP
1257 .B \-\-update\-subarray=
1258 If the device is a container and the argument to \-\-update\-subarray
1259 specifies a subarray in the container, then attempt to update the given
1260 superblock field in the subarray. See below in
1261 .B MISC MODE
1262 for details.
1263
1264 .TP
1265 .BR \-t ", " \-\-test
1266 When used with
1267 .BR \-\-detail ,
1268 the exit status of
1269 .I mdadm
1270 is set to reflect the status of the device. See below in
1271 .B MISC MODE
1272 for details.
1273
1274 .TP
1275 .BR \-W ", " \-\-wait
1276 For each md device given, wait for any resync, recovery, or reshape
1277 activity to finish before returning.
1278 .I mdadm
1279 will return with success if it actually waited for every device
1280 listed, otherwise it will return failure.
1281
1282 .TP
1283 .BR \-\-wait\-clean
1284 For each md device given, or each device in /proc/mdstat if
1285 .B \-\-scan
1286 is given, arrange for the array to be marked clean as soon as possible.
1287 .I mdadm
1288 will return with success if the array uses external metadata and we
1289 successfully waited. For native arrays this returns immediately as the
1290 kernel handles dirty-clean transitions at shutdown. No action is taken
1291 if safe-mode handling is disabled.
1292
1293 .SH For Incremental Assembly mode:
1294 .TP
1295 .BR \-\-rebuild\-map ", " \-r
1296 Rebuild the map file
1297 .RB ( /var/run/mdadm/map )
1298 that
1299 .I mdadm
1300 uses to help track which arrays are currently being assembled.
1301
1302 .TP
1303 .BR \-\-run ", " \-R
1304 Run any array assembled as soon as a minimal number of devices are
1305 available, rather than waiting until all expected devices are present.
1306
1307 .TP
1308 .BR \-\-scan ", " \-s
1309 Only meaningful with
1310 .B \-R
1311 this will scan the
1312 .B map
1313 file for arrays that are being incrementally assembled and will try to
1314 start any that are not already started. If any such array is listed
1315 in
1316 .B mdadm.conf
1317 as requiring an external bitmap, that bitmap will be attached first.
1318
1319 .TP
1320 .BR \-\-fail ", " \-f
1321 This allows the hot-plug system to remove devices that have fully disappeared
1322 from the kernel. It will first fail and then remove the device from any
1323 array it belongs to.
1324 The device name given should be a kernel device name such as "sda",
1325 not a name in
1326 .IR /dev .
1327
1328 .SH For Monitor mode:
1329 .TP
1330 .BR \-m ", " \-\-mail
1331 Give a mail address to send alerts to.
1332
1333 .TP
1334 .BR \-p ", " \-\-program ", " \-\-alert
1335 Give a program to be run whenever an event is detected.
1336
1337 .TP
1338 .BR \-y ", " \-\-syslog
1339 Cause all events to be reported through 'syslog'. The messages have
1340 facility of 'daemon' and varying priorities.
1341
1342 .TP
1343 .BR \-d ", " \-\-delay
1344 Give a delay in seconds.
1345 .I mdadm
1346 polls the md arrays and then waits this many seconds before polling
1347 again. The default is 60 seconds. Since 2.6.16, there is no need to
1348 reduce this as the kernel alerts
1349 .I mdadm
1350 immediately when there is any change.
1351
1352 .TP
1353 .BR \-r ", " \-\-increment
1354 Give a percentage increment.
1355 .I mdadm
1356 will generate RebuildNN events with the given percentage increment.
1357
1358 .TP
1359 .BR \-f ", " \-\-daemonise
1360 Tell
1361 .I mdadm
1362 to run as a background daemon if it decides to monitor anything. This
1363 causes it to fork and run in the child, and to disconnect from the
1364 terminal. The process id of the child is written to stdout.
1365 This is useful with
1366 .B \-\-scan
1367 which will only continue monitoring if a mail address or alert program
1368 is found in the config file.
1369
1370 .TP
1371 .BR \-i ", " \-\-pid\-file
1372 When
1373 .I mdadm
1374 is running in daemon mode, write the pid of the daemon process to
1375 the specified file, instead of printing it on standard output.
1376
1377 .TP
1378 .BR \-1 ", " \-\-oneshot
1379 Check arrays only once. This will generate
1380 .B NewArray
1381 events and more significantly
1382 .B DegradedArray
1383 and
1384 .B SparesMissing
1385 events. Running
1386 .in +5
1387 .B " mdadm \-\-monitor \-\-scan \-1"
1388 .in -5
1389 from a cron script will ensure regular notification of any degraded arrays.
1390
1391 .TP
1392 .BR \-t ", " \-\-test
1393 Generate a
1394 .B TestMessage
1395 alert for every array found at startup. This alert gets mailed and
1396 passed to the alert program. This can be used for testing that alert
1397 message do get through successfully.
1398
1399 .SH ASSEMBLE MODE
1400
1401 .HP 12
1402 Usage:
1403 .B mdadm \-\-assemble
1404 .I md-device options-and-component-devices...
1405 .HP 12
1406 Usage:
1407 .B mdadm \-\-assemble \-\-scan
1408 .I md-devices-and-options...
1409 .HP 12
1410 Usage:
1411 .B mdadm \-\-assemble \-\-scan
1412 .I options...
1413
1414 .PP
1415 This usage assembles one or more RAID arrays from pre-existing components.
1416 For each array, mdadm needs to know the md device, the identity of the
1417 array, and a number of component-devices. These can be found in a number of ways.
1418
1419 In the first usage example (without the
1420 .BR \-\-scan )
1421 the first device given is the md device.
1422 In the second usage example, all devices listed are treated as md
1423 devices and assembly is attempted.
1424 In the third (where no devices are listed) all md devices that are
1425 listed in the configuration file are assembled. If not arrays are
1426 described by the configuration file, then any arrays that
1427 can be found on unused devices will be assembled.
1428
1429 If precisely one device is listed, but
1430 .B \-\-scan
1431 is not given, then
1432 .I mdadm
1433 acts as though
1434 .B \-\-scan
1435 was given and identity information is extracted from the configuration file.
1436
1437 The identity can be given with the
1438 .B \-\-uuid
1439 option, the
1440 .B \-\-name
1441 option, or the
1442 .B \-\-super\-minor
1443 option, will be taken from the md-device record in the config file, or
1444 will be taken from the super block of the first component-device
1445 listed on the command line.
1446
1447 Devices can be given on the
1448 .B \-\-assemble
1449 command line or in the config file. Only devices which have an md
1450 superblock which contains the right identity will be considered for
1451 any array.
1452
1453 The config file is only used if explicitly named with
1454 .B \-\-config
1455 or requested with (a possibly implicit)
1456 .BR \-\-scan .
1457 In the later case,
1458 .B /etc/mdadm.conf
1459 or
1460 .B /etc/mdadm/mdadm.conf
1461 is used.
1462
1463 If
1464 .B \-\-scan
1465 is not given, then the config file will only be used to find the
1466 identity of md arrays.
1467
1468 Normally the array will be started after it is assembled. However if
1469 .B \-\-scan
1470 is not given and not all expected drives were listed, then the array
1471 is not started (to guard against usage errors). To insist that the
1472 array be started in this case (as may work for RAID1, 4, 5, 6, or 10),
1473 give the
1474 .B \-\-run
1475 flag.
1476
1477 If
1478 .I udev
1479 is active,
1480 .I mdadm
1481 does not create any entries in
1482 .B /dev
1483 but leaves that to
1484 .IR udev .
1485 It does record information in
1486 .B /var/run/mdadm/map
1487 which will allow
1488 .I udev
1489 to choose the correct name.
1490
1491 If
1492 .I mdadm
1493 detects that udev is not configured, it will create the devices in
1494 .B /dev
1495 itself.
1496
1497 In Linux kernels prior to version 2.6.28 there were two distinctly
1498 different types of md devices that could be created: one that could be
1499 partitioned using standard partitioning tools and one that could not.
1500 Since 2.6.28 that distinction is no longer relevant as both type of
1501 devices can be partitioned.
1502 .I mdadm
1503 will normally create the type that originally could not be partitioned
1504 as it has a well defined major number (9).
1505
1506 Prior to 2.6.28, it is important that mdadm chooses the correct type
1507 of array device to use. This can be controlled with the
1508 .B \-\-auto
1509 option. In particular, a value of "mdp" or "part" or "p" tells mdadm
1510 to use a partitionable device rather than the default.
1511
1512 In the no-udev case, the value given to
1513 .B \-\-auto
1514 can be suffixed by a number. This tells
1515 .I mdadm
1516 to create that number of partition devices rather than the default of 4.
1517
1518 The value given to
1519 .B \-\-auto
1520 can also be given in the configuration file as a word starting
1521 .B auto=
1522 on the ARRAY line for the relevant array.
1523
1524 .SS Auto Assembly
1525 When
1526 .B \-\-assemble
1527 is used with
1528 .B \-\-scan
1529 and no devices are listed,
1530 .I mdadm
1531 will first attempt to assemble all the arrays listed in the config
1532 file.
1533
1534 In no array at listed in the config (other than those marked
1535 .BR <ignore> )
1536 it will look through the available devices for possible arrays and
1537 will try to assemble anything that it finds. Arrays which are tagged
1538 as belonging to the given homehost will be assembled and started
1539 normally. Arrays which do not obviously belong to this host are given
1540 names that are expected not to conflict with anything local, and are
1541 started "read-auto" so that nothing is written to any device until the
1542 array is written to. i.e. automatic resync etc is delayed.
1543
1544 If
1545 .I mdadm
1546 finds a consistent set of devices that look like they should comprise
1547 an array, and if the superblock is tagged as belonging to the given
1548 home host, it will automatically choose a device name and try to
1549 assemble the array. If the array uses version-0.90 metadata, then the
1550 .B minor
1551 number as recorded in the superblock is used to create a name in
1552 .B /dev/md/
1553 so for example
1554 .BR /dev/md/3 .
1555 If the array uses version-1 metadata, then the
1556 .B name
1557 from the superblock is used to similarly create a name in
1558 .B /dev/md/
1559 (the name will have any 'host' prefix stripped first).
1560
1561 This behaviour can be modified by the
1562 .I AUTO
1563 line in the
1564 .I mdadm.conf
1565 configuration file. This line can indicate that specific metadata
1566 type should, or should not, be automatically assembled. If an array
1567 is found which is not listed in
1568 .I mdadm.conf
1569 and has a metadata format that is denied by the
1570 .I AUTO
1571 line, then it will not be assembled.
1572 The
1573 .I AUTO
1574 line can also request that all arrays identified as being for this
1575 homehost should be assembled regardless of their metadata type.
1576 See
1577 .IR mdadm.conf (5)
1578 for further details.
1579
1580 .ig
1581 If
1582 .I mdadm
1583 cannot find any array for the given host at all, and if
1584 .B \-\-auto\-update\-homehost
1585 is given, then
1586 .I mdadm
1587 will search again for any array (not just an array created for this
1588 host) and will assemble each assuming
1589 .BR \-\-update=homehost .
1590 This will change the host tag in the superblock so that on the next run,
1591 these arrays will be found without the second pass. The intention of
1592 this feature is to support transitioning a set of md arrays to using
1593 homehost tagging.
1594
1595 The reason for requiring arrays to be tagged with the homehost for
1596 auto assembly is to guard against problems that can arise when moving
1597 devices from one host to another.
1598 ..
1599
1600 .SH BUILD MODE
1601
1602 .HP 12
1603 Usage:
1604 .B mdadm \-\-build
1605 .I md-device
1606 .BI \-\-chunk= X
1607 .BI \-\-level= Y
1608 .BI \-\-raid\-devices= Z
1609 .I devices
1610
1611 .PP
1612 This usage is similar to
1613 .BR \-\-create .
1614 The difference is that it creates an array without a superblock. With
1615 these arrays there is no difference between initially creating the array and
1616 subsequently assembling the array, except that hopefully there is useful
1617 data there in the second case.
1618
1619 The level may raid0, linear, raid1, raid10, multipath, or faulty, or
1620 one of their synonyms. All devices must be listed and the array will
1621 be started once complete. It will often be appropriate to use
1622 .B \-\-assume\-clean
1623 with levels raid1 or raid10.
1624
1625 .SH CREATE MODE
1626
1627 .HP 12
1628 Usage:
1629 .B mdadm \-\-create
1630 .I md-device
1631 .BI \-\-chunk= X
1632 .BI \-\-level= Y
1633 .br
1634 .BI \-\-raid\-devices= Z
1635 .I devices
1636
1637 .PP
1638 This usage will initialise a new md array, associate some devices with
1639 it, and activate the array.
1640
1641 The named device will normally not exist when
1642 .I "mdadm \-\-create"
1643 is run, but will be created by
1644 .I udev
1645 once the array becomes active.
1646
1647 As devices are added, they are checked to see if they contain RAID
1648 superblocks or filesystems. They are also checked to see if the variance in
1649 device size exceeds 1%.
1650
1651 If any discrepancy is found, the array will not automatically be run, though
1652 the presence of a
1653 .B \-\-run
1654 can override this caution.
1655
1656 To create a "degraded" array in which some devices are missing, simply
1657 give the word "\fBmissing\fP"
1658 in place of a device name. This will cause
1659 .I mdadm
1660 to leave the corresponding slot in the array empty.
1661 For a RAID4 or RAID5 array at most one slot can be
1662 "\fBmissing\fP"; for a RAID6 array at most two slots.
1663 For a RAID1 array, only one real device needs to be given. All of the
1664 others can be
1665 "\fBmissing\fP".
1666
1667 When creating a RAID5 array,
1668 .I mdadm
1669 will automatically create a degraded array with an extra spare drive.
1670 This is because building the spare into a degraded array is in general
1671 faster than resyncing the parity on a non-degraded, but not clean,
1672 array. This feature can be overridden with the
1673 .B \-\-force
1674 option.
1675
1676 When creating an array with version-1 metadata a name for the array is
1677 required.
1678 If this is not given with the
1679 .B \-\-name
1680 option,
1681 .I mdadm
1682 will choose a name based on the last component of the name of the
1683 device being created. So if
1684 .B /dev/md3
1685 is being created, then the name
1686 .B 3
1687 will be chosen.
1688 If
1689 .B /dev/md/home
1690 is being created, then the name
1691 .B home
1692 will be used.
1693
1694 When creating a partition based array, using
1695 .I mdadm
1696 with version-1.x metadata, the partition type should be set to
1697 .B 0xDA
1698 (non fs-data). This type selection allows for greater precision since
1699 using any other [RAID auto-detect (0xFD) or a GNU/Linux partition (0x83)],
1700 might create problems in the event of array recovery through a live cdrom.
1701
1702 A new array will normally get a randomly assigned 128bit UUID which is
1703 very likely to be unique. If you have a specific need, you can choose
1704 a UUID for the array by giving the
1705 .B \-\-uuid=
1706 option. Be warned that creating two arrays with the same UUID is a
1707 recipe for disaster. Also, using
1708 .B \-\-uuid=
1709 when creating a v0.90 array will silently override any
1710 .B \-\-homehost=
1711 setting.
1712 .\"If the
1713 .\".B \-\-size
1714 .\"option is given, it is not necessary to list any component-devices in this command.
1715 .\"They can be added later, before a
1716 .\".B \-\-run.
1717 .\"If no
1718 .\".B \-\-size
1719 .\"is given, the apparent size of the smallest drive given is used.
1720
1721 When creating an array within a
1722 .B CONTAINER
1723 .I mdadm
1724 can be given either the list of devices to use, or simply the name of
1725 the container. The former case gives control over which devices in
1726 the container will be used for the array. The latter case allows
1727 .I mdadm
1728 to automatically choose which devices to use based on how much spare
1729 space is available.
1730
1731 The General Management options that are valid with
1732 .B \-\-create
1733 are:
1734 .TP
1735 .B \-\-run
1736 insist on running the array even if some devices look like they might
1737 be in use.
1738
1739 .TP
1740 .B \-\-readonly
1741 start the array readonly \(em not supported yet.
1742
1743 .SH MANAGE MODE
1744 .HP 12
1745 Usage:
1746 .B mdadm
1747 .I device
1748 .I options... devices...
1749 .PP
1750
1751 This usage will allow individual devices in an array to be failed,
1752 removed or added. It is possible to perform multiple operations with
1753 on command. For example:
1754 .br
1755 .B " mdadm /dev/md0 \-f /dev/hda1 \-r /dev/hda1 \-a /dev/hda1"
1756 .br
1757 will firstly mark
1758 .B /dev/hda1
1759 as faulty in
1760 .B /dev/md0
1761 and will then remove it from the array and finally add it back
1762 in as a spare. However only one md array can be affected by a single
1763 command.
1764
1765 When a device is added to an active array, mdadm checks to see if it
1766 has metadata on it which suggests that it was recently a member of the
1767 array. If it does, it tries to "re\-add" the device. If there have
1768 been no changes since the device was removed, or if the array has a
1769 write-intent bitmap which has recorded whatever changes there were,
1770 then the device will immediately become a full member of the array and
1771 those differences recorded in the bitmap will be resolved.
1772
1773 .SH MISC MODE
1774 .HP 12
1775 Usage:
1776 .B mdadm
1777 .I options ...
1778 .I devices ...
1779 .PP
1780
1781 MISC mode includes a number of distinct operations that
1782 operate on distinct devices. The operations are:
1783 .TP
1784 .B \-\-query
1785 The device is examined to see if it is
1786 (1) an active md array, or
1787 (2) a component of an md array.
1788 The information discovered is reported.
1789
1790 .TP
1791 .B \-\-detail
1792 The device should be an active md device.
1793 .B mdadm
1794 will display a detailed description of the array.
1795 .B \-\-brief
1796 or
1797 .B \-\-scan
1798 will cause the output to be less detailed and the format to be
1799 suitable for inclusion in
1800 .BR /etc/mdadm.conf .
1801 The exit status of
1802 .I mdadm
1803 will normally be 0 unless
1804 .I mdadm
1805 failed to get useful information about the device(s); however, if the
1806 .B \-\-test
1807 option is given, then the exit status will be:
1808 .RS
1809 .TP
1810 0
1811 The array is functioning normally.
1812 .TP
1813 1
1814 The array has at least one failed device.
1815 .TP
1816 2
1817 The array has multiple failed devices such that it is unusable.
1818 .TP
1819 4
1820 There was an error while trying to get information about the device.
1821 .RE
1822
1823 .TP
1824 .B \-\-detail\-platform
1825 Print detail of the platform's RAID capabilities (firmware / hardware
1826 topology). If the metadata is specified with
1827 .B \-e
1828 or
1829 .B \-\-metadata=
1830 then the return status will be:
1831 .RS
1832 .TP
1833 0
1834 metadata successfully enumerated its platform components on this system
1835 .TP
1836 1
1837 metadata is platform independent
1838 .TP
1839 2
1840 metadata failed to find its platform components on this system
1841 .RE
1842
1843 .TP
1844 .B \-\-update\-subarray=
1845 If the device is a container and the argument to \-\-update\-subarray
1846 specifies a subarray in the container, then attempt to update the given
1847 superblock field in the subarray. Similar to updating an array in
1848 "assemble" mode, the field to update is selected by
1849 .B \-U
1850 or
1851 .B \-\-update=
1852 option. Currently only
1853 .B name
1854 is supported.
1855
1856 The
1857 .B name
1858 option updates the subarray name in the metadata, it may not affect the
1859 device node name or the device node symlink until the subarray is
1860 re\-assembled. If updating
1861 .B name
1862 would change the UUID of an active subarray this operation is blocked,
1863 and the command will end in an error.
1864
1865 .TP
1866 .B \-\-examine
1867 The device should be a component of an md array.
1868 .I mdadm
1869 will read the md superblock of the device and display the contents.
1870 If
1871 .B \-\-brief
1872 or
1873 .B \-\-scan
1874 is given, then multiple devices that are components of the one array
1875 are grouped together and reported in a single entry suitable
1876 for inclusion in
1877 .BR /etc/mdadm.conf .
1878
1879 Having
1880 .B \-\-scan
1881 without listing any devices will cause all devices listed in the
1882 config file to be examined.
1883
1884 .TP
1885 .B \-\-stop
1886 The devices should be active md arrays which will be deactivated, as
1887 long as they are not currently in use.
1888
1889 .TP
1890 .B \-\-run
1891 This will fully activate a partially assembled md array.
1892
1893 .TP
1894 .B \-\-readonly
1895 This will mark an active array as read-only, providing that it is
1896 not currently being used.
1897
1898 .TP
1899 .B \-\-readwrite
1900 This will change a
1901 .B readonly
1902 array back to being read/write.
1903
1904 .TP
1905 .B \-\-scan
1906 For all operations except
1907 .BR \-\-examine ,
1908 .B \-\-scan
1909 will cause the operation to be applied to all arrays listed in
1910 .BR /proc/mdstat .
1911 For
1912 .BR \-\-examine,
1913 .B \-\-scan
1914 causes all devices listed in the config file to be examined.
1915
1916 .TP
1917 .BR \-b ", " \-\-brief
1918 Be less verbose. This is used with
1919 .B \-\-detail
1920 and
1921 .BR \-\-examine .
1922 Using
1923 .B \-\-brief
1924 with
1925 .B \-\-verbose
1926 gives an intermediate level of verbosity.
1927
1928 .SH MONITOR MODE
1929
1930 .HP 12
1931 Usage:
1932 .B mdadm \-\-monitor
1933 .I options... devices...
1934
1935 .PP
1936 This usage causes
1937 .I mdadm
1938 to periodically poll a number of md arrays and to report on any events
1939 noticed.
1940 .I mdadm
1941 will never exit once it decides that there are arrays to be checked,
1942 so it should normally be run in the background.
1943
1944 As well as reporting events,
1945 .I mdadm
1946 may move a spare drive from one array to another if they are in the
1947 same
1948 .B spare-group
1949 and if the destination array has a failed drive but no spares.
1950
1951 If any devices are listed on the command line,
1952 .I mdadm
1953 will only monitor those devices. Otherwise all arrays listed in the
1954 configuration file will be monitored. Further, if
1955 .B \-\-scan
1956 is given, then any other md devices that appear in
1957 .B /proc/mdstat
1958 will also be monitored.
1959
1960 The result of monitoring the arrays is the generation of events.
1961 These events are passed to a separate program (if specified) and may
1962 be mailed to a given E-mail address.
1963
1964 When passing events to a program, the program is run once for each event,
1965 and is given 2 or 3 command-line arguments: the first is the
1966 name of the event (see below), the second is the name of the
1967 md device which is affected, and the third is the name of a related
1968 device if relevant (such as a component device that has failed).
1969
1970 If
1971 .B \-\-scan
1972 is given, then a program or an E-mail address must be specified on the
1973 command line or in the config file. If neither are available, then
1974 .I mdadm
1975 will not monitor anything.
1976 Without
1977 .B \-\-scan,
1978 .I mdadm
1979 will continue monitoring as long as something was found to monitor. If
1980 no program or email is given, then each event is reported to
1981 .BR stdout .
1982
1983 The different events are:
1984
1985 .RS 4
1986 .TP
1987 .B DeviceDisappeared
1988 An md array which previously was configured appears to no longer be
1989 configured. (syslog priority: Critical)
1990
1991 If
1992 .I mdadm
1993 was told to monitor an array which is RAID0 or Linear, then it will
1994 report
1995 .B DeviceDisappeared
1996 with the extra information
1997 .BR Wrong-Level .
1998 This is because RAID0 and Linear do not support the device-failed,
1999 hot-spare and resync operations which are monitored.
2000
2001 .TP
2002 .B RebuildStarted
2003 An md array started reconstruction. (syslog priority: Warning)
2004
2005 .TP
2006 .BI Rebuild NN
2007 Where
2008 .I NN
2009 is a two-digit number (ie. 05, 48). This indicates that rebuild
2010 has passed that many percent of the total. The events are generated
2011 with fixed increment since 0. Increment size may be specified with
2012 a commandline option (default is 20). (syslog priority: Warning)
2013
2014 .TP
2015 .B RebuildFinished
2016 An md array that was rebuilding, isn't any more, either because it
2017 finished normally or was aborted. (syslog priority: Warning)
2018
2019 .TP
2020 .B Fail
2021 An active component device of an array has been marked as
2022 faulty. (syslog priority: Critical)
2023
2024 .TP
2025 .B FailSpare
2026 A spare component device which was being rebuilt to replace a faulty
2027 device has failed. (syslog priority: Critical)
2028
2029 .TP
2030 .B SpareActive
2031 A spare component device which was being rebuilt to replace a faulty
2032 device has been successfully rebuilt and has been made active.
2033 (syslog priority: Info)
2034
2035 .TP
2036 .B NewArray
2037 A new md array has been detected in the
2038 .B /proc/mdstat
2039 file. (syslog priority: Info)
2040
2041 .TP
2042 .B DegradedArray
2043 A newly noticed array appears to be degraded. This message is not
2044 generated when
2045 .I mdadm
2046 notices a drive failure which causes degradation, but only when
2047 .I mdadm
2048 notices that an array is degraded when it first sees the array.
2049 (syslog priority: Critical)
2050
2051 .TP
2052 .B MoveSpare
2053 A spare drive has been moved from one array in a
2054 .B spare-group
2055 to another to allow a failed drive to be replaced.
2056 (syslog priority: Info)
2057
2058 .TP
2059 .B SparesMissing
2060 If
2061 .I mdadm
2062 has been told, via the config file, that an array should have a certain
2063 number of spare devices, and
2064 .I mdadm
2065 detects that it has fewer than this number when it first sees the
2066 array, it will report a
2067 .B SparesMissing
2068 message.
2069 (syslog priority: Warning)
2070
2071 .TP
2072 .B TestMessage
2073 An array was found at startup, and the
2074 .B \-\-test
2075 flag was given.
2076 (syslog priority: Info)
2077 .RE
2078
2079 Only
2080 .B Fail,
2081 .B FailSpare,
2082 .B DegradedArray,
2083 .B SparesMissing
2084 and
2085 .B TestMessage
2086 cause Email to be sent. All events cause the program to be run.
2087 The program is run with two or three arguments: the event
2088 name, the array device and possibly a second device.
2089
2090 Each event has an associated array device (e.g.
2091 .BR /dev/md1 )
2092 and possibly a second device. For
2093 .BR Fail ,
2094 .BR FailSpare ,
2095 and
2096 .B SpareActive
2097 the second device is the relevant component device.
2098 For
2099 .B MoveSpare
2100 the second device is the array that the spare was moved from.
2101
2102 For
2103 .I mdadm
2104 to move spares from one array to another, the different arrays need to
2105 be labeled with the same
2106 .B spare-group
2107 in the configuration file. The
2108 .B spare-group
2109 name can be any string; it is only necessary that different spare
2110 groups use different names.
2111
2112 When
2113 .I mdadm
2114 detects that an array in a spare group has fewer active
2115 devices than necessary for the complete array, and has no spare
2116 devices, it will look for another array in the same spare group that
2117 has a full complement of working drive and a spare. It will then
2118 attempt to remove the spare from the second drive and add it to the
2119 first.
2120 If the removal succeeds but the adding fails, then it is added back to
2121 the original array.
2122
2123 .SH GROW MODE
2124 The GROW mode is used for changing the size or shape of an active
2125 array.
2126 For this to work, the kernel must support the necessary change.
2127 Various types of growth are being added during 2.6 development,
2128 including restructuring a RAID5 array to have more active devices.
2129
2130 Currently the only support available is to
2131 .IP \(bu 4
2132 change the "size" attribute
2133 for RAID1, RAID5 and RAID6.
2134 .IP \(bu 4
2135 increase or decrease the "raid\-devices" attribute of RAID1, RAID5,
2136 and RAID6.
2137 .IP \bu 4
2138 change the chunk-size and layout of RAID5 and RAID6.
2139 .IP \bu 4
2140 convert between RAID1 and RAID5, and between RAID5 and RAID6.
2141 .IP \(bu 4
2142 add a write-intent bitmap to any array which supports these bitmaps, or
2143 remove a write-intent bitmap from such an array.
2144 .PP
2145
2146 GROW mode is not currently supported for
2147 .B CONTAINERS
2148 or arrays inside containers.
2149
2150 .SS SIZE CHANGES
2151 Normally when an array is built the "size" it taken from the smallest
2152 of the drives. If all the small drives in an arrays are, one at a
2153 time, removed and replaced with larger drives, then you could have an
2154 array of large drives with only a small amount used. In this
2155 situation, changing the "size" with "GROW" mode will allow the extra
2156 space to start being used. If the size is increased in this way, a
2157 "resync" process will start to make sure the new parts of the array
2158 are synchronised.
2159
2160 Note that when an array changes size, any filesystem that may be
2161 stored in the array will not automatically grow to use the space. The
2162 filesystem will need to be explicitly told to use the extra space.
2163
2164 Also the size of an array cannot be changed while it has an active
2165 bitmap. If an array has a bitmap, it must be removed before the size
2166 can be changed. Once the change it complete a new bitmap can be created.
2167
2168 .SS RAID\-DEVICES CHANGES
2169
2170 A RAID1 array can work with any number of devices from 1 upwards
2171 (though 1 is not very useful). There may be times which you want to
2172 increase or decrease the number of active devices. Note that this is
2173 different to hot-add or hot-remove which changes the number of
2174 inactive devices.
2175
2176 When reducing the number of devices in a RAID1 array, the slots which
2177 are to be removed from the array must already be vacant. That is, the
2178 devices which were in those slots must be failed and removed.
2179
2180 When the number of devices is increased, any hot spares that are
2181 present will be activated immediately.
2182
2183 Changing the number of active devices in a RAID5 or RAID6 is much more
2184 effort. Every block in the array will need to be read and written
2185 back to a new location. From 2.6.17, the Linux Kernel is able to
2186 increase the number of devices in a RAID5 safely, including restarting
2187 an interrupted "reshape". From 2.6.31, the Linux Kernel is able to
2188 increase or decrease the number of devices in a RAID5 or RAID6.
2189
2190 When decreasing the number of devices, the size of the array will also
2191 decrease. If there was data in the array, it could get destroyed and
2192 this is not reversible. To help prevent accidents,
2193 .I mdadm
2194 requires that the size of the array be decreased first with
2195 .BR "mdadm --grow --array-size" .
2196 This is a reversible change which simply makes the end of the array
2197 inaccessible. The integrity of any data can then be checked before
2198 the non-reversible reduction in the number of devices is request.
2199
2200 When relocating the first few stripes on a RAID5 or RAID6, it is not
2201 possible to keep the data on disk completely consistent and
2202 crash-proof. To provide the required safety, mdadm disables writes to
2203 the array while this "critical section" is reshaped, and takes a
2204 backup of the data that is in that section. For grows, this backup may be
2205 stored in any spare devices that the array has, however it can also be
2206 stored in a separate file specified with the
2207 .B \-\-backup\-file
2208 option, and is required to be specified for shrinks, RAID level
2209 changes and layout changes. If this option is used, and the system
2210 does crash during the critical period, the same file must be passed to
2211 .B \-\-assemble
2212 to restore the backup and reassemble the array. When shrinking rather
2213 than growing the array, the reshape is done from the end towards the
2214 beginning, so the "critical section" is at the end of the reshape.
2215
2216 .SS LEVEL CHANGES
2217
2218 Changing the RAID level of any array happens instantaneously. However
2219 in the RAID5 to RAID6 case this requires a non-standard layout of the
2220 RAID6 data, and in the RAID6 to RAID5 case that non-standard layout is
2221 required before the change can be accomplished. So while the level
2222 change is instant, the accompanying layout change can take quite a
2223 long time. A
2224 .B \-\-backup\-file
2225 is required. If the array is not simultaneously being grown or
2226 shrunk, so that the array size will remain the same - for example,
2227 reshaping a 3-drive RAID5 into a 4-drive RAID6 - the backup file will
2228 be used not just for a "cricital section" but throughout the reshape
2229 operation, as described below under LAYOUT CHANGES.
2230
2231 .SS CHUNK-SIZE AND LAYOUT CHANGES
2232
2233 Changing the chunk-size of layout without also changing the number of
2234 devices as the same time will involve re-writing all blocks in-place.
2235 To ensure against data loss in the case of a crash, a
2236 .B --backup-file
2237 must be provided for these changes. Small sections of the array will
2238 be copied to the backup file while they are being rearranged. This
2239 means that all the data is copied twice, once to the backup and once
2240 to the new layout on the array, so this type of reshape will go very
2241 slowly.
2242
2243 If the reshape is interrupted for any reason, this backup file must be
2244 made available to
2245 .B "mdadm --assemble"
2246 so the array can be reassembled. Consequently the file cannot be
2247 stored on the device being reshaped.
2248
2249
2250 .SS BITMAP CHANGES
2251
2252 A write-intent bitmap can be added to, or removed from, an active
2253 array. Either internal bitmaps, or bitmaps stored in a separate file,
2254 can be added. Note that if you add a bitmap stored in a file which is
2255 in a filesystem that is on the RAID array being affected, the system
2256 will deadlock. The bitmap must be on a separate filesystem.
2257
2258 .SH INCREMENTAL MODE
2259
2260 .HP 12
2261 Usage:
2262 .B mdadm \-\-incremental
2263 .RB [ \-\-run ]
2264 .RB [ \-\-quiet ]
2265 .I component-device
2266 .HP 12
2267 Usage:
2268 .B mdadm \-\-incremental \-\-fail
2269 .I component-device
2270 .HP 12
2271 Usage:
2272 .B mdadm \-\-incremental \-\-rebuild\-map
2273 .HP 12
2274 Usage:
2275 .B mdadm \-\-incremental \-\-run \-\-scan
2276
2277 .PP
2278 This mode is designed to be used in conjunction with a device
2279 discovery system. As devices are found in a system, they can be
2280 passed to
2281 .B "mdadm \-\-incremental"
2282 to be conditionally added to an appropriate array.
2283
2284 Conversely, it can also be used with the
2285 .B \-\-fail
2286 flag to do just the opposite and find whatever array a particular device
2287 is part of and remove the device from that array.
2288
2289 If the device passed is a
2290 .B CONTAINER
2291 device created by a previous call to
2292 .IR mdadm ,
2293 then rather than trying to add that device to an array, all the arrays
2294 described by the metadata of the container will be started.
2295
2296 .I mdadm
2297 performs a number of tests to determine if the device is part of an
2298 array, and which array it should be part of. If an appropriate array
2299 is found, or can be created,
2300 .I mdadm
2301 adds the device to the array and conditionally starts the array.
2302
2303 Note that
2304 .I mdadm
2305 will only add devices to an array which were previously working
2306 (active or spare) parts of that array. It does not currently support
2307 automatic inclusion of a new drive as a spare in some array.
2308
2309 The tests that
2310 .I mdadm
2311 makes are as follow:
2312 .IP +
2313 Is the device permitted by
2314 .BR mdadm.conf ?
2315 That is, is it listed in a
2316 .B DEVICES
2317 line in that file. If
2318 .B DEVICES
2319 is absent then the default it to allow any device. Similar if
2320 .B DEVICES
2321 contains the special word
2322 .B partitions
2323 then any device is allowed. Otherwise the device name given to
2324 .I mdadm
2325 must match one of the names or patterns in a
2326 .B DEVICES
2327 line.
2328
2329 .IP +
2330 Does the device have a valid md superblock. If a specific metadata
2331 version is request with
2332 .B \-\-metadata
2333 or
2334 .B \-e
2335 then only that style of metadata is accepted, otherwise
2336 .I mdadm
2337 finds any known version of metadata. If no
2338 .I md
2339 metadata is found, the device is rejected.
2340
2341 .ig
2342 .IP +
2343 Does the metadata match an expected array?
2344 The metadata can match in two ways. Either there is an array listed
2345 in
2346 .B mdadm.conf
2347 which identifies the array (either by UUID, by name, by device list,
2348 or by minor-number), or the array was created with a
2349 .B homehost
2350 specified and that
2351 .B homehost
2352 matches the one in
2353 .B mdadm.conf
2354 or on the command line.
2355 If
2356 .I mdadm
2357 is not able to positively identify the array as belonging to the
2358 current host, the device will be rejected.
2359 ..
2360
2361 .I mdadm
2362 keeps a list of arrays that it has partially assembled in
2363 .B /var/run/mdadm/map
2364 (or
2365 .B /var/run/mdadm.map
2366 if the directory doesn't exist. Or maybe even
2367 .BR /dev/.mdadm.map ).
2368 If no array exists which matches
2369 the metadata on the new device,
2370 .I mdadm
2371 must choose a device name and unit number. It does this based on any
2372 name given in
2373 .B mdadm.conf
2374 or any name information stored in the metadata. If this name
2375 suggests a unit number, that number will be used, otherwise a free
2376 unit number will be chosen. Normally
2377 .I mdadm
2378 will prefer to create a partitionable array, however if the
2379 .B CREATE
2380 line in
2381 .B mdadm.conf
2382 suggests that a non-partitionable array is preferred, that will be
2383 honoured.
2384
2385 If the array is not found in the config file and its metadata does not
2386 identify it as belonging to the "homehost", then
2387 .I mdadm
2388 will choose a name for the array which is certain not to conflict with
2389 any array which does belong to this host. It does this be adding an
2390 underscore and a small number to the name preferred by the metadata.
2391
2392 Once an appropriate array is found or created and the device is added,
2393 .I mdadm
2394 must decide if the array is ready to be started. It will
2395 normally compare the number of available (non-spare) devices to the
2396 number of devices that the metadata suggests need to be active. If
2397 there are at least that many, the array will be started. This means
2398 that if any devices are missing the array will not be restarted.
2399
2400 As an alternative,
2401 .B \-\-run
2402 may be passed to
2403 .I mdadm
2404 in which case the array will be run as soon as there are enough
2405 devices present for the data to be accessible. For a RAID1, that
2406 means one device will start the array. For a clean RAID5, the array
2407 will be started as soon as all but one drive is present.
2408
2409 Note that neither of these approaches is really ideal. If it can
2410 be known that all device discovery has completed, then
2411 .br
2412 .B " mdadm \-IRs"
2413 .br
2414 can be run which will try to start all arrays that are being
2415 incrementally assembled. They are started in "read-auto" mode in
2416 which they are read-only until the first write request. This means
2417 that no metadata updates are made and no attempt at resync or recovery
2418 happens. Further devices that are found before the first write can
2419 still be added safely.
2420
2421 .SH ENVIRONMENT
2422 This section describes environment variables that affect how mdadm
2423 operates.
2424
2425 .TP
2426 .B MDADM_NO_MDMON
2427 Setting this value to 1 will prevent mdadm from automatically launching
2428 mdmon. This variable is intended primarily for debugging mdadm/mdmon.
2429
2430 .TP
2431 .B MDADM_NO_UDEV
2432 Normally,
2433 .I mdadm
2434 does not create any device nodes in /dev, but leaves that task to
2435 .IR udev .
2436 If
2437 .I udev
2438 appears not to be configured, or if this environment variable is set
2439 to '1', the
2440 .I mdadm
2441 will create and devices that are needed.
2442
2443 .SH EXAMPLES
2444
2445 .B " mdadm \-\-query /dev/name-of-device"
2446 .br
2447 This will find out if a given device is a RAID array, or is part of
2448 one, and will provide brief information about the device.
2449
2450 .B " mdadm \-\-assemble \-\-scan"
2451 .br
2452 This will assemble and start all arrays listed in the standard config
2453 file. This command will typically go in a system startup file.
2454
2455 .B " mdadm \-\-stop \-\-scan"
2456 .br
2457 This will shut down all arrays that can be shut down (i.e. are not
2458 currently in use). This will typically go in a system shutdown script.
2459
2460 .B " mdadm \-\-follow \-\-scan \-\-delay=120"
2461 .br
2462 If (and only if) there is an Email address or program given in the
2463 standard config file, then
2464 monitor the status of all arrays listed in that file by
2465 polling them ever 2 minutes.
2466
2467 .B " mdadm \-\-create /dev/md0 \-\-level=1 \-\-raid\-devices=2 /dev/hd[ac]1"
2468 .br
2469 Create /dev/md0 as a RAID1 array consisting of /dev/hda1 and /dev/hdc1.
2470
2471 .br
2472 .B " echo 'DEVICE /dev/hd*[0\-9] /dev/sd*[0\-9]' > mdadm.conf"
2473 .br
2474 .B " mdadm \-\-detail \-\-scan >> mdadm.conf"
2475 .br
2476 This will create a prototype config file that describes currently
2477 active arrays that are known to be made from partitions of IDE or SCSI drives.
2478 This file should be reviewed before being used as it may
2479 contain unwanted detail.
2480
2481 .B " echo 'DEVICE /dev/hd[a\-z] /dev/sd*[a\-z]' > mdadm.conf"
2482 .br
2483 .B " mdadm \-\-examine \-\-scan \-\-config=mdadm.conf >> mdadm.conf"
2484 .br
2485 This will find arrays which could be assembled from existing IDE and
2486 SCSI whole drives (not partitions), and store the information in the
2487 format of a config file.
2488 This file is very likely to contain unwanted detail, particularly
2489 the
2490 .B devices=
2491 entries. It should be reviewed and edited before being used as an
2492 actual config file.
2493
2494 .B " mdadm \-\-examine \-\-brief \-\-scan \-\-config=partitions"
2495 .br
2496 .B " mdadm \-Ebsc partitions"
2497 .br
2498 Create a list of devices by reading
2499 .BR /proc/partitions ,
2500 scan these for RAID superblocks, and printout a brief listing of all
2501 that were found.
2502
2503 .B " mdadm \-Ac partitions \-m 0 /dev/md0"
2504 .br
2505 Scan all partitions and devices listed in
2506 .BR /proc/partitions
2507 and assemble
2508 .B /dev/md0
2509 out of all such devices with a RAID superblock with a minor number of 0.
2510
2511 .B " mdadm \-\-monitor \-\-scan \-\-daemonise > /var/run/mdadm"
2512 .br
2513 If config file contains a mail address or alert program, run mdadm in
2514 the background in monitor mode monitoring all md devices. Also write
2515 pid of mdadm daemon to
2516 .BR /var/run/mdadm .
2517
2518 .B " mdadm \-Iq /dev/somedevice"
2519 .br
2520 Try to incorporate newly discovered device into some array as
2521 appropriate.
2522
2523 .B " mdadm \-\-incremental \-\-rebuild\-map \-\-run \-\-scan"
2524 .br
2525 Rebuild the array map from any current arrays, and then start any that
2526 can be started.
2527
2528 .B " mdadm /dev/md4 --fail detached --remove detached"
2529 .br
2530 Any devices which are components of /dev/md4 will be marked as faulty
2531 and then remove from the array.
2532
2533 .B " mdadm --grow /dev/md4 --level=6 --backup-file=/root/backup-md4
2534 .br
2535 The array
2536 .B /dev/md4
2537 which is currently a RAID5 array will be converted to RAID6. There
2538 should normally already be a spare drive attached to the array as a
2539 RAID6 needs one more drive than a matching RAID5.
2540
2541 .B " mdadm --create /dev/md/ddf --metadata=ddf --raid-disks 6 /dev/sd[a-f]"
2542 .br
2543 Create a DDF array over 6 devices.
2544
2545 .B " mdadm --create /dev/md/home -n3 -l5 -z 30000000 /dev/md/ddf"
2546 .br
2547 Create a RAID5 array over any 3 devices in the given DDF set. Use
2548 only 30 gigabytes of each device.
2549
2550 .B " mdadm -A /dev/md/ddf1 /dev/sd[a-f]"
2551 .br
2552 Assemble a pre-exist ddf array.
2553
2554 .B " mdadm -I /dev/md/ddf1"
2555 .br
2556 Assemble all arrays contained in the ddf array, assigning names as
2557 appropriate.
2558
2559 .B " mdadm \-\-create \-\-help"
2560 .br
2561 Provide help about the Create mode.
2562
2563 .B " mdadm \-\-config \-\-help"
2564 .br
2565 Provide help about the format of the config file.
2566
2567 .B " mdadm \-\-help"
2568 .br
2569 Provide general help.
2570
2571 .SH FILES
2572
2573 .SS /proc/mdstat
2574
2575 If you're using the
2576 .B /proc
2577 filesystem,
2578 .B /proc/mdstat
2579 lists all active md devices with information about them.
2580 .I mdadm
2581 uses this to find arrays when
2582 .B \-\-scan
2583 is given in Misc mode, and to monitor array reconstruction
2584 on Monitor mode.
2585
2586 .SS /etc/mdadm.conf
2587
2588 The config file lists which devices may be scanned to see if
2589 they contain MD super block, and gives identifying information
2590 (e.g. UUID) about known MD arrays. See
2591 .BR mdadm.conf (5)
2592 for more details.
2593
2594 .SS /var/run/mdadm/map
2595 When
2596 .B \-\-incremental
2597 mode is used, this file gets a list of arrays currently being created.
2598 If
2599 .B /var/run/mdadm
2600 does not exist as a directory, then
2601 .B /var/run/mdadm.map
2602 is used instead. If
2603 .B /var/run
2604 is not available (as may be the case during early boot),
2605 .B /dev/.mdadm.map
2606 is used on the basis that
2607 .B /dev
2608 is usually available very early in boot.
2609
2610 .SH DEVICE NAMES
2611
2612 .I mdadm
2613 understand two sorts of names for array devices.
2614
2615 The first is the so-called 'standard' format name, which matches the
2616 names used by the kernel and which appear in
2617 .IR /proc/mdstat .
2618
2619 The second sort can be freely chosen, but must reside in
2620 .IR /dev/md/ .
2621 When giving a device name to
2622 .I mdadm
2623 to create or assemble an array, either full path name such as
2624 .I /dev/md0
2625 or
2626 .I /dev/md/home
2627 can be given, or just the suffix of the second sort of name, such as
2628 .I home
2629 can be given.
2630
2631 When
2632 .I mdadm
2633 chooses device names during auto-assembly or incremental assembly, it
2634 will sometimes add a small sequence number to the end of the name to
2635 avoid conflicted between multiple arrays that have the same name. If
2636 .I mdadm
2637 can reasonably determine that the array really is meant for this host,
2638 either by a hostname in the metadata, or by the presence of the array
2639 in /etc/mdadm.conf, then it will leave off the suffix if possible.
2640 Also if the homehost is specified as
2641 .B <ignore>
2642 .I mdadm
2643 will only use a suffix if a different array of the same name already
2644 exists or is listed in the config file.
2645
2646 The standard names for non-partitioned arrays (the only sort of md
2647 array available in 2.4 and earlier) are of the form
2648 .IP
2649 /dev/mdNN
2650 .PP
2651 where NN is a number.
2652 The standard names for partitionable arrays (as available from 2.6
2653 onwards) are of the form
2654 .IP
2655 /dev/md_dNN
2656 .PP
2657 Partition numbers should be indicated by added "pMM" to these, thus "/dev/md/d1p2".
2658 .PP
2659 From kernel version, 2.6.28 the "non-partitioned array" can actually
2660 be partitioned. So the "md_dNN" names are no longer needed, and
2661 partitions such as "/dev/mdNNpXX" are possible.
2662
2663 .SH NOTE
2664 .I mdadm
2665 was previously known as
2666 .IR mdctl .
2667 .P
2668 .I mdadm
2669 is completely separate from the
2670 .I raidtools
2671 package, and does not use the
2672 .I /etc/raidtab
2673 configuration file at all.
2674
2675 .SH SEE ALSO
2676 For further information on mdadm usage, MD and the various levels of
2677 RAID, see:
2678 .IP
2679 .B http://linux\-raid.osdl.org/
2680 .PP
2681 (based upon Jakob \(/Ostergaard's Software\-RAID.HOWTO)
2682 .\".PP
2683 .\"for new releases of the RAID driver check out:
2684 .\"
2685 .\".IP
2686 .\".UR ftp://ftp.kernel.org/pub/linux/kernel/people/mingo/raid-patches
2687 .\"ftp://ftp.kernel.org/pub/linux/kernel/people/mingo/raid-patches
2688 .\".UE
2689 .\".PP
2690 .\"or
2691 .\".IP
2692 .\".UR http://www.cse.unsw.edu.au/~neilb/patches/linux-stable/
2693 .\"http://www.cse.unsw.edu.au/~neilb/patches/linux-stable/
2694 .\".UE
2695 .PP
2696 The latest version of
2697 .I mdadm
2698 should always be available from
2699 .IP
2700 .B http://www.kernel.org/pub/linux/utils/raid/mdadm/
2701 .PP
2702 Related man pages:
2703 .PP
2704 .IR mdmon (8),
2705 .IR mdadm.conf (5),
2706 .IR md (4).
2707 .PP
2708 .IR raidtab (5),
2709 .IR raid0run (8),
2710 .IR raidstop (8),
2711 .IR mkraid (8).