]> git.ipfire.org Git - thirdparty/mdadm.git/blob - mdadm.8
Minor typo in mdadm man page
[thirdparty/mdadm.git] / mdadm.8
1 .\" -*- nroff -*-
2 ''' Copyright Neil Brown and others.
3 ''' This program is free software; you can redistribute it and/or modify
4 ''' it under the terms of the GNU General Public License as published by
5 ''' the Free Software Foundation; either version 2 of the License, or
6 ''' (at your option) any later version.
7 ''' See file COPYING in distribution for details.
8 .TH MDADM 8 "" v2.6.1
9 .SH NAME
10 mdadm \- manage MD devices
11 .I aka
12 Linux Software Raid.
13
14 .SH SYNOPSIS
15
16 .BI mdadm " [mode] <raiddevice> [options] <component-devices>"
17
18 .SH DESCRIPTION
19 RAID devices are virtual devices created from two or more
20 real block devices. This allows multiple devices (typically disk
21 drives or partitions thereof) to be combined into a single device to
22 hold (for example) a single filesystem.
23 Some RAID levels include redundancy and so can survive some degree of
24 device failure.
25
26 Linux Software RAID devices are implemented through the md (Multiple
27 Devices) device driver.
28
29 Currently, Linux supports
30 .B LINEAR
31 md devices,
32 .B RAID0
33 (striping),
34 .B RAID1
35 (mirroring),
36 .BR RAID4 ,
37 .BR RAID5 ,
38 .BR RAID6 ,
39 .BR RAID10 ,
40 .BR MULTIPATH ,
41 and
42 .BR FAULTY .
43
44 .B MULTIPATH
45 is not a Software RAID mechanism, but does involve
46 multiple devices. For
47 .B MULTIPATH
48 each device is a path to one common physical storage device.
49
50 .B FAULTY
51 is also not true RAID, and it only involves one device. It
52 provides a layer over a true device that can be used to inject faults.
53
54 '''.B mdadm
55 '''is a program that can be used to create, manage, and monitor
56 '''MD devices. As
57 '''such it provides a similar set of functionality to the
58 '''.B raidtools
59 '''packages.
60 '''The key differences between
61 '''.B mdadm
62 '''and
63 '''.B raidtools
64 '''are:
65 '''.IP \(bu 4
66 '''.B mdadm
67 '''is a single program and not a collection of programs.
68 '''.IP \(bu 4
69 '''.B mdadm
70 '''can perform (almost) all of its functions without having a
71 '''configuration file and does not use one by default. Also
72 '''.B mdadm
73 '''helps with management of the configuration
74 '''file.
75 '''.IP \(bu 4
76 '''.B mdadm
77 '''can provide information about your arrays (through Query, Detail, and Examine)
78 '''that
79 '''.B raidtools
80 '''cannot.
81 '''.P
82 '''.I mdadm
83 '''does not use
84 '''.IR /etc/raidtab ,
85 '''the
86 '''.B raidtools
87 '''configuration file, at all. It has a different configuration file
88 '''with a different format and a different purpose.
89
90 .SH MODES
91 mdadm has several major modes of operation:
92 .TP
93 .B Assemble
94 Assemble the parts of a previously created
95 array into an active array. Components can be explicitly given
96 or can be searched for.
97 .B mdadm
98 checks that the components
99 do form a bona fide array, and can, on request, fiddle superblock
100 information so as to assemble a faulty array.
101
102 .TP
103 .B Build
104 Build an array that doesn't have per-device superblocks. For these
105 sorts of arrays,
106 .I mdadm
107 cannot differentiate between initial creation and subsequent assembly
108 of an array. It also cannot perform any checks that appropriate
109 devices have been requested. Because of this, the
110 .B Build
111 mode should only be used together with a complete understanding of
112 what you are doing.
113
114 .TP
115 .B Create
116 Create a new array with per-device superblocks.
117 '''It can progress
118 '''in several step create-add-add-run or it can all happen with one command.
119
120 .TP
121 .B "Follow or Monitor"
122 Monitor one or more md devices and act on any state changes. This is
123 only meaningful for raid1, 4, 5, 6, 10 or multipath arrays as
124 only these have interesting state. raid0 or linear never have
125 missing, spare, or failed drives, so there is nothing to monitor.
126
127 .TP
128 .B "Grow"
129 Grow (or shrink) an array, or otherwise reshape it in some way.
130 Currently supported growth options including changing the active size
131 of component devices in RAID level 1/4/5/6 and changing the number of
132 active devices in RAID1/5/6.
133
134 .TP
135 .B "Incremental Assembly"
136 Add a single device to an appropriate array. If the addition of the
137 device makes the array runnable, the array will be started.
138 This provides a convenient interface to a
139 .I hot-plug
140 system. As each device is detected,
141 .I mdadm
142 has a chance to include it in some array as appropriate.
143
144 .TP
145 .B Manage
146 This is for doing things to specific components of an array such as
147 adding new spares and removing faulty devices.
148
149 .TP
150 .B Misc
151 This is an 'everything else' mode that supports operations on active
152 arrays, operations on component devices such as erasing old superblocks, and
153 information gathering operations.
154 '''This mode allows operations on independent devices such as examine MD
155 '''superblocks, erasing old superblocks and stopping active arrays.
156
157 .SH OPTIONS
158
159 .SH Options for selecting a mode are:
160
161 .TP
162 .BR \-A ", " \-\-assemble
163 Assemble a pre-existing array.
164
165 .TP
166 .BR \-B ", " \-\-build
167 Build a legacy array without superblocks.
168
169 .TP
170 .BR \-C ", " \-\-create
171 Create a new array.
172
173 .TP
174 .BR \-F ", " \-\-follow ", " \-\-monitor
175 Select
176 .B Monitor
177 mode.
178
179 .TP
180 .BR \-G ", " \-\-grow
181 Change the size or shape of an active array.
182
183 .TP
184 .BE \-I ", " \-\-incremental
185 Add a single device into an appropriate array, and possibly start the array.
186
187 .P
188 If a device is given before any options, or if the first option is
189 .BR \-\-add ,
190 .BR \-\-fail ,
191 or
192 .BR \-\-remove ,
193 then the MANAGE mode is assume.
194 Anything other than these will cause the
195 .B Misc
196 mode to be assumed.
197
198 .SH Options that are not mode-specific are:
199
200 .TP
201 .BR \-h ", " \-\-help
202 Display general help message or, after one of the above options, a
203 mode specific help message.
204
205 .TP
206 .B \-\-help\-options
207 Display more detailed help about command line parsing and some commonly
208 used options.
209
210 .TP
211 .BR \-V ", " \-\-version
212 Print version information for mdadm.
213
214 .TP
215 .BR \-v ", " \-\-verbose
216 Be more verbose about what is happening. This can be used twice to be
217 extra-verbose.
218 The extra verbosity currently only affects
219 .B \-\-detail \-\-scan
220 and
221 .BR "\-\-examine \-\-scan" .
222
223 .TP
224 .BR \-q ", " \-\-quiet
225 Avoid printing purely informative messages. With this,
226 .B mdadm
227 will be silent unless there is something really important to report.
228
229 .TP
230 .BR \-b ", " \-\-brief
231 Be less verbose. This is used with
232 .B \-\-detail
233 and
234 .BR \-\-examine .
235 Using
236 .B \-\-brief
237 with
238 .B \-\-verbose
239 gives an intermediate level of verbosity.
240
241 .TP
242 .BR \-f ", " \-\-force
243 Be more forceful about certain operations. See the various modes of
244 the exact meaning of this option in different contexts.
245
246 .TP
247 .BR \-c ", " \-\-config=
248 Specify the config file. Default is to use
249 .BR /etc/mdadm.conf ,
250 or if that is missing, then
251 .BR /etc/mdadm/mdadm.conf .
252 If the config file given is
253 .B partitions
254 then nothing will be read, but
255 .I mdadm
256 will act as though the config file contained exactly
257 .B "DEVICE partitions"
258 and will read
259 .B /proc/partitions
260 to find a list of devices to scan.
261 If the word
262 .B none
263 is given for the config file, then
264 .I mdadm
265 will act as though the config file were empty.
266
267 .TP
268 .BR \-s ", " \-\-scan
269 scan config file or
270 .B /proc/mdstat
271 for missing information.
272 In general, this option gives
273 .B mdadm
274 permission to get any missing information, like component devices,
275 array devices, array identities, and alert destination from the
276 configuration file:
277 .BR /etc/mdadm.conf .
278 One exception is MISC mode when using
279 .B \-\-detail
280 or
281 .B \-\-stop
282 in which case
283 .B \-\-scan
284 says to get a list of array devices from
285 .BR /proc/mdstat .
286
287 .TP
288 .B \-e ", " \-\-metadata=
289 Declare the style of superblock (raid metadata) to be used. The
290 default is 0.90 for
291 .BR \-\-create ,
292 and to guess for other operations.
293 The default can be overridden by setting the
294 .B metadata
295 value for the
296 .B CREATE
297 keyword in
298 .BR mdadm.conf .
299
300 Options are:
301 .RS
302 .IP "0, 0.90, default"
303 Use the original 0.90 format superblock. This format limits arrays to
304 28 componenet devices and limits component devices of levels 1 and
305 greater to 2 terabytes.
306 .IP "1, 1.0, 1.1, 1.2"
307 Use the new version-1 format superblock. This has few restrictions.
308 The different subversion store the superblock at different locations
309 on the device, either at the end (for 1.0), at the start (for 1.1) or
310 4K from the start (for 1.2).
311 .RE
312
313 .TP
314 .B \-\-homehost=
315 This will override any
316 .B HOMEHOST
317 setting in the config file and provides the identify of the host which
318 should be considered the home for any arrays.
319
320 When creating an array, the
321 .B homehost
322 will be recorded in the superblock. For version-1 superblocks, it will
323 be prefixed to the array name. For version-0.90 superblocks part of
324 the SHA1 hash of the hostname will be stored in the later half of the
325 UUID.
326
327 When reporting information about an array, any array which is tagged
328 for the given homehost will be reported as such.
329
330 When using Auto-Assemble, only arrays tagged for the given homehost
331 will be assembled.
332
333 .SH For create, build, or grow:
334
335 .TP
336 .BR \-n ", " \-\-raid\-devices=
337 Specify the number of active devices in the array. This, plus the
338 number of spare devices (see below) must equal the number of
339 .I component-devices
340 (including "\fBmissing\fP" devices)
341 that are listed on the command line for
342 .BR \-\-create .
343 Setting a value of 1 is probably
344 a mistake and so requires that
345 .B \-\-force
346 be specified first. A value of 1 will then be allowed for linear,
347 multipath, raid0 and raid1. It is never allowed for raid4 or raid5.
348 .br
349 This number can only be changed using
350 .B \-\-grow
351 for RAID1, RAID5 and RAID6 arrays, and only on kernels which provide
352 necessary support.
353
354 .TP
355 .BR \-x ", " \-\-spare\-devices=
356 Specify the number of spare (eXtra) devices in the initial array.
357 Spares can also be added
358 and removed later. The number of component devices listed
359 on the command line must equal the number of raid devices plus the
360 number of spare devices.
361
362
363 .TP
364 .BR \-z ", " \-\-size=
365 Amount (in Kibibytes) of space to use from each drive in RAID1/4/5/6.
366 This must be a multiple of the chunk size, and must leave about 128Kb
367 of space at the end of the drive for the RAID superblock.
368 If this is not specified
369 (as it normally is not) the smallest drive (or partition) sets the
370 size, though if there is a variance among the drives of greater than 1%, a warning is
371 issued.
372
373 This value can be set with
374 .B \-\-grow
375 for RAID level 1/4/5/6. If the array was created with a size smaller
376 than the currently active drives, the extra space can be accessed
377 using
378 .BR \-\-grow .
379 The size can be given as
380 .B max
381 which means to choose the largest size that fits on all current drives.
382
383 .TP
384 .BR \-c ", " \-\-chunk=
385 Specify chunk size of kibibytes. The default is 64.
386
387 .TP
388 .BR \-\-rounding=
389 Specify rounding factor for linear array (==chunk size)
390
391 .TP
392 .BR \-l ", " \-\-level=
393 Set raid level. When used with
394 .BR \-\-create ,
395 options are: linear, raid0, 0, stripe, raid1, 1, mirror, raid4, 4,
396 raid5, 5, raid6, 6, raid10, 10, multipath, mp, faulty. Obviously some of these are synonymous.
397
398 When used with
399 .BR \-\-build ,
400 only linear, stripe, raid0, 0, raid1, multipath, mp, and faulty are valid.
401
402 Not yet supported with
403 .BR \-\-grow .
404
405 .TP
406 .BR \-p ", " \-\-layout=
407 This option configures the fine details of data layout for raid5,
408 and raid10 arrays, and controls the failure modes for
409 .IR faulty .
410
411 The layout of the raid5 parity block can be one of
412 .BR left\-asymmetric ,
413 .BR left\-symmetric ,
414 .BR right\-asymmetric ,
415 .BR right\-symmetric ,
416 .BR la ", " ra ", " ls ", " rs .
417 The default is
418 .BR left\-symmetric .
419
420 When setting the failure mode for
421 .I faulty
422 the options are:
423 .BR write\-transient ", " wt ,
424 .BR read\-transient ", " rt ,
425 .BR write\-persistent ", " wp ,
426 .BR read\-persistent ", " rp ,
427 .BR write\-all ,
428 .BR read\-fixable ", " rf ,
429 .BR clear ", " flush ", " none .
430
431 Each mode can be followed by a number which is used as a period
432 between fault generation. Without a number, the fault is generated
433 once on the first relevant request. With a number, the fault will be
434 generated after that many request, and will continue to be generated
435 every time the period elapses.
436
437 Multiple failure modes can be current simultaneously by using the
438 .B \-\-grow
439 option to set subsequent failure modes.
440
441 "clear" or "none" will remove any pending or periodic failure modes,
442 and "flush" will clear any persistent faults.
443
444 To set the parity with
445 .BR \-\-grow ,
446 the level of the array ("faulty")
447 must be specified before the fault mode is specified.
448
449 Finally, the layout options for RAID10 are one of 'n', 'o' or 'f' followed
450 by a small number. The default is 'n2'.
451
452 .I n
453 signals 'near' copies. Multiple copies of one data block are at
454 similar offsets in different devices.
455
456 .I o
457 signals 'offset' copies. Rather than the chunks being duplicated
458 within a stripe, whole stripes are duplicated but are rotated by one
459 device so duplicate blocks are on different devices. Thus subsequent
460 copies of a block are in the next drive, and are one chunk further
461 down.
462
463 .I f
464 signals 'far' copies
465 (multiple copies have very different offsets). See md(4) for more
466 detail about 'near' and 'far'.
467
468 The number is the number of copies of each datablock. 2 is normal, 3
469 can be useful. This number can be at most equal to the number of
470 devices in the array. It does not need to divide evenly into that
471 number (e.g. it is perfectly legal to have an 'n2' layout for an array
472 with an odd number of devices).
473
474 .TP
475 .BR \-\-parity=
476 same as
477 .B \-\-layout
478 (thus explaining the p of
479 .BR \-p ).
480
481 .TP
482 .BR \-b ", " \-\-bitmap=
483 Specify a file to store a write-intent bitmap in. The file should not
484 exist unless
485 .B \-\-force
486 is also given. The same file should be provided
487 when assembling the array. If the word
488 .B internal
489 is given, then the bitmap is stored with the metadata on the array,
490 and so is replicated on all devices. If the word
491 .B none
492 is given with
493 .B \-\-grow
494 mode, then any bitmap that is present is removed.
495
496 To help catch typing errors, the filename must contain at least one
497 slash ('/') if it is a real file (not 'internal' or 'none').
498
499 Note: external bitmaps are only known to work on ext2 and ext3.
500 Storing bitmap files on other filesystems may result in serious problems.
501
502 .TP
503 .BR \-\-bitmap\-chunk=
504 Set the chunksize of the bitmap. Each bit corresponds to that many
505 Kilobytes of storage.
506 When using a file based bitmap, the default is to use the smallest
507 size that is atleast 4 and requires no more than 2^21 chunks.
508 When using an
509 .B internal
510 bitmap, the chunksize is automatically determined to make best use of
511 available space.
512
513
514 .TP
515 .BR \-W ", " \-\-write\-mostly
516 subsequent devices lists in a
517 .BR \-\-build ,
518 .BR \-\-create ,
519 or
520 .B \-\-add
521 command will be flagged as 'write-mostly'. This is valid for RAID1
522 only and means that the 'md' driver will avoid reading from these
523 devices if at all possible. This can be useful if mirroring over a
524 slow link.
525
526 .TP
527 .BR \-\-write\-behind=
528 Specify that write-behind mode should be enabled (valid for RAID1
529 only). If an argument is specified, it will set the maximum number
530 of outstanding writes allowed. The default value is 256.
531 A write-intent bitmap is required in order to use write-behind
532 mode, and write-behind is only attempted on drives marked as
533 .IR write-mostly .
534
535 .TP
536 .BR \-\-assume\-clean
537 Tell
538 .I mdadm
539 that the array pre-existed and is known to be clean. It can be useful
540 when trying to recover from a major failure as you can be sure that no
541 data will be affected unless you actually write to the array. It can
542 also be used when creating a RAID1 or RAID10 if you want to avoid the
543 initial resync, however this practice \(em while normally safe \(em is not
544 recommended. Use this ony if you really know what you are doing.
545
546 .TP
547 .BR \-\-backup\-file=
548 This is needed when
549 .B \-\-grow
550 is used to increase the number of
551 raid-devices in a RAID5 if there are no spare devices available.
552 See the section below on RAID_DEVICE CHANGES. The file should be
553 stored on a separate device, not on the raid array being reshaped.
554
555 .TP
556 .BR \-N ", " \-\-name=
557 Set a
558 .B name
559 for the array. This is currently only effective when creating an
560 array with a version-1 superblock. The name is a simple textual
561 string that can be used to identify array components when assembling.
562
563 .TP
564 .BR \-R ", " \-\-run
565 Insist that
566 .I mdadm
567 run the array, even if some of the components
568 appear to be active in another array or filesystem. Normally
569 .I mdadm
570 will ask for confirmation before including such components in an
571 array. This option causes that question to be suppressed.
572
573 .TP
574 .BR \-f ", " \-\-force
575 Insist that
576 .I mdadm
577 accept the geometry and layout specified without question. Normally
578 .I mdadm
579 will not allow creation of an array with only one device, and will try
580 to create a raid5 array with one missing drive (as this makes the
581 initial resync work faster). With
582 .BR \-\-force ,
583 .I mdadm
584 will not try to be so clever.
585
586 .TP
587 .BR \-a ", " "\-\-auto{=no,yes,md,mdp,part,p}{NN}"
588 Instruct mdadm to create the device file if needed, possibly allocating
589 an unused minor number. "md" causes a non-partitionable array
590 to be used. "mdp", "part" or "p" causes a partitionable array (2.6 and
591 later) to be used. "yes" requires the named md device to have
592 a 'standard' format, and the type and minor number will be determined
593 from this. See DEVICE NAMES below.
594
595 The argument can also come immediately after
596 "\-a". e.g. "\-ap".
597
598 If
599 .B \-\-auto
600 is not given on the command line or in the config file, then
601 the default will be
602 .BR \-\-auto=yes .
603
604 If
605 .B \-\-scan
606 is also given, then any
607 .I auto=
608 entries in the config file will override the
609 .B \-\-auto
610 instruction given on the command line.
611
612 For partitionable arrays,
613 .I mdadm
614 will create the device file for the whole array and for the first 4
615 partitions. A different number of partitions can be specified at the
616 end of this option (e.g.
617 .BR \-\-auto=p7 ).
618 If the device name ends with a digit, the partition names add a 'p',
619 and a number, e.g. "/dev/home1p3". If there is no
620 trailing digit, then the partition names just have a number added,
621 e.g. "/dev/scratch3".
622
623 If the md device name is in a 'standard' format as described in DEVICE
624 NAMES, then it will be created, if necessary, with the appropriate
625 number based on that name. If the device name is not in one of these
626 formats, then a unused minor number will be allocated. The minor
627 number will be considered unused if there is no active array for that
628 number, and there is no entry in /dev for that number and with a
629 non-standard name.
630
631 .TP
632 .BR \-\-symlink = no
633 Normally when
634 .B \-\-auto
635 causes
636 .I mdadm
637 to create devices in
638 .B /dev/md/
639 it will also create symlinks from
640 .B /dev/
641 with names starting with
642 .B md
643 or
644 .BR md_ .
645 Use
646 .B \-\-symlink=no
647 to suppress this, or
648 .B \-\-symlink=yes
649 to enforce this even if it is suppressing
650 .IR mdadm.conf .
651
652
653 .SH For assemble:
654
655 .TP
656 .BR \-u ", " \-\-uuid=
657 uuid of array to assemble. Devices which don't have this uuid are
658 excluded
659
660 .TP
661 .BR \-m ", " \-\-super\-minor=
662 Minor number of device that array was created for. Devices which
663 don't have this minor number are excluded. If you create an array as
664 /dev/md1, then all superblocks will contain the minor number 1, even if
665 the array is later assembled as /dev/md2.
666
667 Giving the literal word "dev" for
668 .B \-\-super\-minor
669 will cause
670 .I mdadm
671 to use the minor number of the md device that is being assembled.
672 e.g. when assembling
673 .BR /dev/md0 ,
674 .M \-\-super\-minor=dev
675 will look for super blocks with a minor number of 0.
676
677 .TP
678 .BR \-N ", " \-\-name=
679 Specify the name of the array to assemble. This must be the name
680 that was specified when creating the array. It must either match
681 then name stored in the superblock exactly, or it must match
682 with the current
683 .I homehost
684 is added to the start of the given name.
685
686 .TP
687 .BR \-f ", " \-\-force
688 Assemble the array even if some superblocks appear out-of-date
689
690 .TP
691 .BR \-R ", " \-\-run
692 Attempt to start the array even if fewer drives were given than were
693 present last time the array was active. Normally if not all the
694 expected drives are found and
695 .B \-\-scan
696 is not used, then the array will be assembled but not started.
697 With
698 .B \-\-run
699 an attempt will be made to start it anyway.
700
701 .TP
702 .B \-\-no\-degraded
703 This is the reverse of
704 .B \-\-run
705 in that it inhibits the started if array unless all expected drives
706 are present. This is only needed with
707 .B \-\-scan
708 and can be used if you physical connections to devices are
709 not as reliable as you would like.
710
711 .TP
712 .BR \-a ", " "\-\-auto{=no,yes,md,mdp,part}"
713 See this option under Create and Build options.
714
715 .TP
716 .BR \-b ", " \-\-bitmap=
717 Specify the bitmap file that was given when the array was created. If
718 an array has an
719 .B internal
720 bitmap, there is no need to specify this when assembling the array.
721
722 .TP
723 .BR \-\-backup\-file=
724 If
725 .B \-\-backup\-file
726 was used to grow the number of raid-devices in a RAID5, and the system
727 crashed during the critical section, then the same
728 .B \-\-backup\-file
729 must be presented to
730 .B \-\-assemble
731 to allow possibly corrupted data to be restored.
732
733 .TP
734 .BR \-U ", " \-\-update=
735 Update the superblock on each device while assembling the array. The
736 argument given to this flag can be one of
737 .BR sparc2.2 ,
738 .BR summaries ,
739 .BR uuid ,
740 .BR name ,
741 .BR homehost ,
742 .BR resync ,
743 .BR byteorder ,
744 .BR devicesize ,
745 or
746 .BR super\-minor .
747
748 The
749 .B sparc2.2
750 option will adjust the superblock of an array what was created on a Sparc
751 machine running a patched 2.2 Linux kernel. This kernel got the
752 alignment of part of the superblock wrong. You can use the
753 .B "\-\-examine \-\-sparc2.2"
754 option to
755 .I mdadm
756 to see what effect this would have.
757
758 The
759 .B super\-minor
760 option will update the
761 .B "preferred minor"
762 field on each superblock to match the minor number of the array being
763 assembled.
764 This can be useful if
765 .B \-\-examine
766 reports a different "Preferred Minor" to
767 .BR \-\-detail .
768 In some cases this update will be performed automatically
769 by the kernel driver. In particular the update happens automatically
770 at the first write to an array with redundancy (RAID level 1 or
771 greater) on a 2.6 (or later) kernel.
772
773 The
774 .B uuid
775 option will change the uuid of the array. If a UUID is given with the
776 .B \-\-uuid
777 option that UUID will be used as a new UUID and will
778 .B NOT
779 be used to help identify the devices in the array.
780 If no
781 .B \-\-uuid
782 is given, a random UUID is chosen.
783
784 The
785 .B name
786 option will change the
787 .I name
788 of the array as stored in the superblock. This is only supported for
789 version-1 superblocks.
790
791 The
792 .B homehost
793 option will change the
794 .I homehost
795 as recorded in the superblock. For version-0 superblocks, this is the
796 same as updating the UUID.
797 For version-1 superblocks, this involves updating the name.
798
799 The
800 .B resync
801 option will cause the array to be marked
802 .I dirty
803 meaning that any redundancy in the array (e.g. parity for raid5,
804 copies for raid1) may be incorrect. This will cause the raid system
805 to perform a "resync" pass to make sure that all redundant information
806 is correct.
807
808 The
809 .B byteorder
810 option allows arrays to be moved between machines with different
811 byte-order.
812 When assembling such an array for the first time after a move, giving
813 .B "\-\-update=byteorder"
814 will cause
815 .I mdadm
816 to expect superblocks to have their byteorder reversed, and will
817 correct that order before assembling the array. This is only valid
818 with original (Version 0.90) superblocks.
819
820 The
821 .B summaries
822 option will correct the summaries in the superblock. That is the
823 counts of total, working, active, failed, and spare devices.
824
825 The
826 .B devicesize
827 will rarely be of use. It applies to version 1.1 and 1.2 metadata
828 only (where the metadata is at the start of the device) and is only
829 useful when the component device has changed size (typically become
830 larger). The version 1 metadata records the amount of the device that
831 can be used to store data, so if a device in a version 1.1 or 1.2
832 array becomes larger, the metadata will still be visible, but the
833 extra space will not. In this case it might be useful to assemble the
834 array with
835 .BR \-\-update=devicesize .
836 This will cause
837 .I mdadm
838 to determine the maximum usable amount of space on each device and
839 update the relevant field in the metadata.
840
841 .TP
842 .B \-\-auto\-update\-homehost
843 This flag is only meaning with auto-assembly (see discussion below).
844 In that situation, if no suitable arrays are found for this homehost,
845 .I mdadm
846 will recan for any arrays at all and will assemble them and update the
847 homehost to match the current host.
848
849 .SH For Manage mode:
850
851 .TP
852 .BR \-a ", " \-\-add
853 hot-add listed devices.
854
855 .TP
856 .BR \-\-re\-add
857 re-add a device that was recently removed from an array.
858
859 .TP
860 .BR \-r ", " \-\-remove
861 remove listed devices. They must not be active. i.e. they should
862 be failed or spare devices.
863
864 .TP
865 .BR \-f ", " \-\-fail
866 mark listed devices as faulty.
867
868 .TP
869 .BR \-\-set\-faulty
870 same as
871 .BR \-\-fail .
872
873 .P
874 Each of these options require that the first device list is the array
875 to be acted upon and the remainder are component devices to be added,
876 removed, or marked as fault. Several different operations can be
877 specified for different devices, e.g.
878 .in +5
879 mdadm /dev/md0 \-\-add /dev/sda1 \-\-fail /dev/sdb1 \-\-remove /dev/sdb1
880 .in -5
881 Each operation applies to all devices listed until the next
882 operations.
883
884 If an array is using a write-intent bitmap, then devices which have
885 been removed can be re-added in a way that avoids a full
886 reconstruction but instead just updated the blocks that have changed
887 since the device was removed. For arrays with persistent metadata
888 (superblocks) this is done automatically. For arrays created with
889 .B \-\-build
890 mdadm needs to be told that this device we removed recently with
891 .BR \-\-re\-add .
892
893 Devices can only be removed from an array if they are not in active
894 use. i.e. that must be spares or failed devices. To remove an active
895 device, it must be marked as
896 .B faulty
897 first.
898
899 .SH For Misc mode:
900
901 .TP
902 .BR \-Q ", " \-\-query
903 Examine a device to see
904 (1) if it is an md device and (2) if it is a component of an md
905 array.
906 Information about what is discovered is presented.
907
908 .TP
909 .BR \-D ", " \-\-detail
910 Print detail of one or more md devices.
911
912 .TP
913 .BR \-Y ", " \-\-export
914 When used with
915 .BR \-\-detail ,
916 output will be formatted as
917 .B key=value
918 pairs for easy import into the environment.
919
920 .TP
921 .BR \-E ", " \-\-examine
922 Print content of md superblock on device(s).
923 .TP
924 .B \-\-sparc2.2
925 If an array was created on a 2.2 Linux kernel patched with RAID
926 support, the superblock will have been created incorrectly, or at
927 least incompatibly with 2.4 and later kernels. Using the
928 .B \-\-sparc2.2
929 flag with
930 .B \-\-examine
931 will fix the superblock before displaying it. If this appears to do
932 the right thing, then the array can be successfully assembled using
933 .BR "\-\-assemble \-\-update=sparc2.2" .
934
935 .TP
936 .BR \-X ", " \-\-examine\-bitmap
937 Report information about a bitmap file.
938
939 .TP
940 .BR \-R ", " \-\-run
941 start a partially built array.
942
943 .TP
944 .BR \-S ", " \-\-stop
945 deactivate array, releasing all resources.
946
947 .TP
948 .BR \-o ", " \-\-readonly
949 mark array as readonly.
950
951 .TP
952 .BR \-w ", " \-\-readwrite
953 mark array as readwrite.
954
955 .TP
956 .B \-\-zero\-superblock
957 If the device contains a valid md superblock, the block is
958 overwritten with zeros. With
959 .B \-\-force
960 the block where the superblock would be is overwritten even if it
961 doesn't appear to be valid.
962
963 .TP
964 .BR \-t ", " \-\-test
965 When used with
966 .BR \-\-detail ,
967 the exit status of
968 .I mdadm
969 is set to reflect the status of the device.
970
971 .TP
972 .BR \-W ", " \-\-wait
973 For each md device given, wait for any resync, recovery, or reshape
974 activity to finish before returning.
975 .I mdadm
976 will return with success if it actually waited for every device
977 listed, otherwise it will return failure.
978
979 .SH For Incremental Assembly mode:
980 .TP
981 .BR \-\-rebuild\-map ", " \-r
982 Rebuild the map file
983 .RB ( /var/run/mdadm/map )
984 that
985 .I mdadm
986 uses to help track which arrays are currently being assembled.
987
988 .TP
989 .BR \-\-run ", " \-R
990 Run any array assembled as soon as a minimal number of devices are
991 available, rather than waiting until all expected devices are present.
992
993 .TP
994 .BR \-\-scan ", " \-s
995 Only meaningful with
996 .B \-R
997 this will scan the
998 .B map
999 file for arrays that are being incrementally assembled and will try to
1000 start any that are not already started. If any such array is listed
1001 in
1002 .B mdadm.conf
1003 as requiring an external bitmap, that bitmap will be attached first.
1004
1005 .SH For Monitor mode:
1006 .TP
1007 .BR \-m ", " \-\-mail
1008 Give a mail address to send alerts to.
1009
1010 .TP
1011 .BR \-p ", " \-\-program ", " \-\-alert
1012 Give a program to be run whenever an event is detected.
1013
1014 .TP
1015 .BR \-y ", " \-\-syslog
1016 Cause all events to be reported through 'syslog'. The messages have
1017 facility of 'daemon' and varying priorities.
1018
1019 .TP
1020 .BR \-d ", " \-\-delay
1021 Give a delay in seconds.
1022 .B mdadm
1023 polls the md arrays and then waits this many seconds before polling
1024 again. The default is 60 seconds.
1025
1026 .TP
1027 .BR \-f ", " \-\-daemonise
1028 Tell
1029 .B mdadm
1030 to run as a background daemon if it decides to monitor anything. This
1031 causes it to fork and run in the child, and to disconnect form the
1032 terminal. The process id of the child is written to stdout.
1033 This is useful with
1034 .B \-\-scan
1035 which will only continue monitoring if a mail address or alert program
1036 is found in the config file.
1037
1038 .TP
1039 .BR \-i ", " \-\-pid\-file
1040 When
1041 .B mdadm
1042 is running in daemon mode, write the pid of the daemon process to
1043 the specified file, instead of printing it on standard output.
1044
1045 .TP
1046 .BR \-1 ", " \-\-oneshot
1047 Check arrays only once. This will generate
1048 .B NewArray
1049 events and more significantly
1050 .B DegradedArray
1051 and
1052 .B SparesMissing
1053 events. Running
1054 .in +5
1055 .B " mdadm \-\-monitor \-\-scan \-1"
1056 .in -5
1057 from a cron script will ensure regular notification of any degraded arrays.
1058
1059 .TP
1060 .BR \-t ", " \-\-test
1061 Generate a
1062 .B TestMessage
1063 alert for every array found at startup. This alert gets mailed and
1064 passed to the alert program. This can be used for testing that alert
1065 message do get through successfully.
1066
1067 .SH ASSEMBLE MODE
1068
1069 .HP 12
1070 Usage:
1071 .B mdadm \-\-assemble
1072 .I md-device options-and-component-devices...
1073 .HP 12
1074 Usage:
1075 .B mdadm \-\-assemble \-\-scan
1076 .I md-devices-and-options...
1077 .HP 12
1078 Usage:
1079 .B mdadm \-\-assemble \-\-scan
1080 .I options...
1081
1082 .PP
1083 This usage assembles one or more raid arrays from pre-existing components.
1084 For each array, mdadm needs to know the md device, the identity of the
1085 array, and a number of component-devices. These can be found in a number of ways.
1086
1087 In the first usage example (without the
1088 .BR \-\-scan )
1089 the first device given is the md device.
1090 In the second usage example, all devices listed are treated as md
1091 devices and assembly is attempted.
1092 In the third (where no devices are listed) all md devices that are
1093 listed in the configuration file are assembled.
1094
1095 If precisely one device is listed, but
1096 .B \-\-scan
1097 is not given, then
1098 .I mdadm
1099 acts as though
1100 .B \-\-scan
1101 was given and identify information is extracted from the configuration file.
1102
1103 The identity can be given with the
1104 .B \-\-uuid
1105 option, with the
1106 .B \-\-super\-minor
1107 option, can be found in the config file, or will be taken from the
1108 super block on the first component-device listed on the command line.
1109
1110 Devices can be given on the
1111 .B \-\-assemble
1112 command line or in the config file. Only devices which have an md
1113 superblock which contains the right identity will be considered for
1114 any array.
1115
1116 The config file is only used if explicitly named with
1117 .B \-\-config
1118 or requested with (a possibly implicit)
1119 .BR \-\-scan .
1120 In the later case,
1121 .B /etc/mdadm.conf
1122 is used.
1123
1124 If
1125 .B \-\-scan
1126 is not given, then the config file will only be used to find the
1127 identity of md arrays.
1128
1129 Normally the array will be started after it is assembled. However if
1130 .B \-\-scan
1131 is not given and insufficient drives were listed to start a complete
1132 (non-degraded) array, then the array is not started (to guard against
1133 usage errors). To insist that the array be started in this case (as
1134 may work for RAID1, 4, 5, 6, or 10), give the
1135 .B \-\-run
1136 flag.
1137
1138 If the md device does not exist, then it will be created providing the
1139 intent is clear. i.e. the name must be in a standard form, or the
1140 .B \-\-auto
1141 option must be given to clarify how and whether the device should be
1142 created.
1143
1144 This can be useful for handling partitioned devices (which don't have
1145 a stable device number \(em it can change after a reboot) and when using
1146 "udev" to manage your
1147 .B /dev
1148 tree (udev cannot handle md devices because of the unusual device
1149 initialisation conventions).
1150
1151 If the option to "auto" is "mdp" or "part" or (on the command line
1152 only) "p", then mdadm will create a partitionable array, using the
1153 first free one that is not in use, and does not already have an entry
1154 in /dev (apart from numeric /dev/md* entries).
1155
1156 If the option to "auto" is "yes" or "md" or (on the command line)
1157 nothing, then mdadm will create a traditional, non-partitionable md
1158 array.
1159
1160 It is expected that the "auto" functionality will be used to create
1161 device entries with meaningful names such as "/dev/md/home" or
1162 "/dev/md/root", rather than names based on the numerical array number.
1163
1164 When using this option to create a partitionable array, the device
1165 files for the first 4 partitions are also created. If a different
1166 number is required it can be simply appended to the auto option.
1167 e.g. "auto=part8". Partition names are created by appending a digit
1168 string to the device name, with an intervening "p" if the device name
1169 ends with a digit.
1170
1171 The
1172 .B \-\-auto
1173 option is also available in Build and Create modes. As those modes do
1174 not use a config file, the "auto=" config option does not apply to
1175 these modes.
1176
1177 .SS Auto Assembly
1178 When
1179 .B \-\-assemble
1180 is used with
1181 .B \-\-scan
1182 and no devices are listed,
1183 .I mdadm
1184 will first attempt to assemble all the arrays listed in the config
1185 file.
1186
1187 If a
1188 .B homehost
1189 has been specified (either in the config file or on the command line),
1190 .I mdadm
1191 will look further for possible arrays and will try to assemble
1192 anything that it finds which is tagged as belonging to the given
1193 homehost. This is the only situation where
1194 .I mdadm
1195 will assemble arrays without being given specific device name or
1196 identify information for the array.
1197
1198 If
1199 .I mdadm
1200 finds a consistent set of devices that look like they should comprise
1201 an array, and if the superblock is tagged as belonging to the given
1202 home host, it will automatically choose a device name and try to
1203 assemble the array. If the array uses version-0.90 metadata, then the
1204 .B minor
1205 number as recorded in the superblock is used to create a name in
1206 .B /dev/md/
1207 so for example
1208 .BR /dev/md/3 .
1209 If the array uses version-1 metadata, then the
1210 .B name
1211 from the superblock is used to similarly create a name in
1212 .BR /dev/md .
1213 The name will have any 'host' prefix stripped first.
1214
1215 If
1216 .I mdadm
1217 cannot find any array for the given host at all, and if
1218 .B \-\-auto\-update\-homehost
1219 is given, then
1220 .I mdadm
1221 will search again for any array (not just an array created for this
1222 host) and will assemble each assuming
1223 .BR \-\-update=homehost .
1224 This will change the host tag in the superblock so that on the next run,
1225 these arrays will be found without the second pass. The intention of
1226 this feature is to support transitioning a set of md arrays to using
1227 homehost tagging.
1228
1229 The reason for requiring arrays to be tagged with the homehost for
1230 auto assembly is to guard against problems that can arise when moving
1231 devices from one host to another.
1232
1233 .SH BUILD MODE
1234
1235 .HP 12
1236 Usage:
1237 .B mdadm \-\-build
1238 .I device
1239 .BI \-\-chunk= X
1240 .BI \-\-level= Y
1241 .BI \-\-raid\-devices= Z
1242 .I devices
1243
1244 .PP
1245 This usage is similar to
1246 .BR \-\-create .
1247 The difference is that it creates an array without a superblock. With
1248 these arrays there is no difference between initially creating the array and
1249 subsequently assembling the array, except that hopefully there is useful
1250 data there in the second case.
1251
1252 The level may raid0, linear, multipath, or faulty, or one of their
1253 synonyms. All devices must be listed and the array will be started
1254 once complete.
1255
1256 .SH CREATE MODE
1257
1258 .HP 12
1259 Usage:
1260 .B mdadm \-\-create
1261 .I device
1262 .BI \-\-chunk= X
1263 .BI \-\-level= Y
1264 .br
1265 .BI \-\-raid\-devices= Z
1266 .I devices
1267
1268 .PP
1269 This usage will initialise a new md array, associate some devices with
1270 it, and activate the array.
1271
1272 If the
1273 .B \-\-auto
1274 option is given (as described in more detail in the section on
1275 Assemble mode), then the md device will be created with a suitable
1276 device number if necessary.
1277
1278 As devices are added, they are checked to see if they contain raid
1279 superblocks or filesystems. They are also checked to see if the variance in
1280 device size exceeds 1%.
1281
1282 If any discrepancy is found, the array will not automatically be run, though
1283 the presence of a
1284 .B \-\-run
1285 can override this caution.
1286
1287 To create a "degraded" array in which some devices are missing, simply
1288 give the word "\fBmissing\fP"
1289 in place of a device name. This will cause
1290 .B mdadm
1291 to leave the corresponding slot in the array empty.
1292 For a RAID4 or RAID5 array at most one slot can be
1293 "\fBmissing\fP"; for a RAID6 array at most two slots.
1294 For a RAID1 array, only one real device needs to be given. All of the
1295 others can be
1296 "\fBmissing\fP".
1297
1298 When creating a RAID5 array,
1299 .B mdadm
1300 will automatically create a degraded array with an extra spare drive.
1301 This is because building the spare into a degraded array is in general faster than resyncing
1302 the parity on a non-degraded, but not clean, array. This feature can
1303 be overridden with the
1304 .B \-\-force
1305 option.
1306
1307 When creating an array with version-1 metadata a name for the host is
1308 required.
1309 If this is not given with the
1310 .B \-\-name
1311 option,
1312 .I mdadm
1313 will chose a name based on the last component of the name of the
1314 device being created. So if
1315 .B /dev/md3
1316 is being created, then the name
1317 .B 3
1318 will be chosen.
1319 If
1320 .B /dev/md/home
1321 is being created, then the name
1322 .B home
1323 will be used.
1324
1325 A new array will normally get a randomly assigned 128bit UUID which is
1326 very likely to be unique. If you have a specific need, you can choose
1327 a UUID for the array by giving the
1328 .B \-\-uuid=
1329 option. Be warned that creating two arrays with the same UUID is a
1330 recipe for disaster. Also, using
1331 .B \-\-uuid=
1332 when creating a v0.90 array will silently override any
1333 .B \-\-homehost=
1334 setting.
1335 '''If the
1336 '''.B \-\-size
1337 '''option is given, it is not necessary to list any component-devices in this command.
1338 '''They can be added later, before a
1339 '''.B \-\-run.
1340 '''If no
1341 '''.B \-\-size
1342 '''is given, the apparent size of the smallest drive given is used.
1343
1344 The General Management options that are valid with
1345 .B \-\-create
1346 are:
1347 .TP
1348 .B \-\-run
1349 insist on running the array even if some devices look like they might
1350 be in use.
1351
1352 .TP
1353 .B \-\-readonly
1354 start the array readonly \(em not supported yet.
1355
1356
1357 .SH MANAGE MODE
1358 .HP 12
1359 Usage:
1360 .B mdadm
1361 .I device
1362 .I options... devices...
1363 .PP
1364
1365 This usage will allow individual devices in an array to be failed,
1366 removed or added. It is possible to perform multiple operations with
1367 on command. For example:
1368 .br
1369 .B " mdadm /dev/md0 \-f /dev/hda1 \-r /dev/hda1 \-a /dev/hda1"
1370 .br
1371 will firstly mark
1372 .B /dev/hda1
1373 as faulty in
1374 .B /dev/md0
1375 and will then remove it from the array and finally add it back
1376 in as a spare. However only one md array can be affected by a single
1377 command.
1378
1379 .SH MISC MODE
1380 .HP 12
1381 Usage:
1382 .B mdadm
1383 .I options ...
1384 .I devices ...
1385 .PP
1386
1387 MISC mode includes a number of distinct operations that
1388 operate on distinct devices. The operations are:
1389 .TP
1390 \-\-query
1391 The device is examined to see if it is
1392 (1) an active md array, or
1393 (2) a component of an md array.
1394 The information discovered is reported.
1395
1396 .TP
1397 \-\-detail
1398 The device should be an active md device.
1399 .B mdadm
1400 will display a detailed description of the array.
1401 .B \-\-brief
1402 or
1403 .B \-\-scan
1404 will cause the output to be less detailed and the format to be
1405 suitable for inclusion in
1406 .BR /etc/mdadm.conf .
1407 The exit status of
1408 .I mdadm
1409 will normally be 0 unless
1410 .I mdadm
1411 failed to get useful information about the device(s). However if the
1412 .B \-\-test
1413 option is given, then the exit status will be:
1414 .RS
1415 .TP
1416 0
1417 The array is functioning normally.
1418 .TP
1419 1
1420 The array has at least one failed device.
1421 .TP
1422 2
1423 The array has multiple failed devices and hence is unusable (raid4 or
1424 raid5).
1425 .TP
1426 4
1427 There was an error while trying to get information about the device.
1428 .RE
1429
1430 .TP
1431 \-\-examine
1432 The device should be a component of an md array.
1433 .B mdadm
1434 will read the md superblock of the device and display the contents.
1435 If
1436 .B \-\-brief
1437 is given, or
1438 .B \-\-scan
1439 then multiple devices that are components of the one array
1440 are grouped together and reported in a single entry suitable
1441 for inclusion in
1442 .BR /etc/mdadm.conf .
1443
1444 Having
1445 .B \-\-scan
1446 without listing any devices will cause all devices listed in the
1447 config file to be examined.
1448
1449 .TP
1450 \-\-stop
1451 The devices should be active md arrays which will be deactivated, as
1452 long as they are not currently in use.
1453
1454 .TP
1455 \-\-run
1456 This will fully activate a partially assembled md array.
1457
1458 .TP
1459 \-\-readonly
1460 This will mark an active array as read-only, providing that it is
1461 not currently being used.
1462
1463 .TP
1464 \-\-readwrite
1465 This will change a
1466 .B readonly
1467 array back to being read/write.
1468
1469 .TP
1470 \-\-scan
1471 For all operations except
1472 .BR \-\-examine ,
1473 .B \-\-scan
1474 will cause the operation to be applied to all arrays listed in
1475 .BR /proc/mdstat .
1476 For
1477 .BR \-\-examine,
1478 .B \-\-scan
1479 causes all devices listed in the config file to be examined.
1480
1481
1482 .SH MONITOR MODE
1483
1484 .HP 12
1485 Usage:
1486 .B mdadm \-\-monitor
1487 .I options... devices...
1488
1489 .PP
1490 This usage causes
1491 .B mdadm
1492 to periodically poll a number of md arrays and to report on any events
1493 noticed.
1494 .B mdadm
1495 will never exit once it decides that there are arrays to be checked,
1496 so it should normally be run in the background.
1497
1498 As well as reporting events,
1499 .B mdadm
1500 may move a spare drive from one array to another if they are in the
1501 same
1502 .B spare-group
1503 and if the destination array has a failed drive but no spares.
1504
1505 If any devices are listed on the command line,
1506 .B mdadm
1507 will only monitor those devices. Otherwise all arrays listed in the
1508 configuration file will be monitored. Further, if
1509 .B \-\-scan
1510 is given, then any other md devices that appear in
1511 .B /proc/mdstat
1512 will also be monitored.
1513
1514 The result of monitoring the arrays is the generation of events.
1515 These events are passed to a separate program (if specified) and may
1516 be mailed to a given E-mail address.
1517
1518 When passing event to program, the program is run once for each event
1519 and is given 2 or 3 command-line arguments. The first is the
1520 name of the event (see below). The second is the name of the
1521 md device which is affected, and the third is the name of a related
1522 device if relevant, such as a component device that has failed.
1523
1524 If
1525 .B \-\-scan
1526 is given, then a program or an E-mail address must be specified on the
1527 command line or in the config file. If neither are available, then
1528 .B mdadm
1529 will not monitor anything.
1530 Without
1531 .B \-\-scan
1532 .B mdadm
1533 will continue monitoring as long as something was found to monitor. If
1534 no program or email is given, then each event is reported to
1535 .BR stdout .
1536
1537 The different events are:
1538
1539 .RS 4
1540 .TP
1541 .B DeviceDisappeared
1542 An md array which previously was configured appears to no longer be
1543 configured. (syslog priority: Critical)
1544
1545 If
1546 .I mdadm
1547 was told to monitor an array which is RAID0 or Linear, then it will
1548 report
1549 .B DeviceDisappeared
1550 with the extra information
1551 .BR Wrong-Level .
1552 This is because RAID0 and Linear do not support the device-failed,
1553 hot-spare and resync operations which are monitored.
1554
1555 .TP
1556 .B RebuildStarted
1557 An md array started reconstruction. (syslog priority: Warning)
1558
1559 .TP
1560 .BI Rebuild NN
1561 Where
1562 .I NN
1563 is 20, 40, 60, or 80, this indicates that rebuild has passed that many
1564 percentage of the total. (syslog priority: Warning)
1565
1566 .TP
1567 .B RebuildFinished
1568 An md array that was rebuilding, isn't any more, either because it
1569 finished normally or was aborted. (syslog priority: Warning)
1570
1571 .TP
1572 .B Fail
1573 An active component device of an array has been marked as
1574 faulty. (syslog priority: Critical)
1575
1576 .TP
1577 .B FailSpare
1578 A spare component device which was being rebuilt to replace a faulty
1579 device has failed. (syslog priority: Critial)
1580
1581 .TP
1582 .B SpareActive
1583 A spare component device which was being rebuilt to replace a faulty
1584 device has been successfully rebuilt and has been made active.
1585 (syslog priority: Info)
1586
1587 .TP
1588 .B NewArray
1589 A new md array has been detected in the
1590 .B /proc/mdstat
1591 file. (syslog priority: Info)
1592
1593 .TP
1594 .B DegradedArray
1595 A newly noticed array appears to be degraded. This message is not
1596 generated when
1597 .I mdadm
1598 notices a drive failure which causes degradation, but only when
1599 .I mdadm
1600 notices that an array is degraded when it first sees the array.
1601 (syslog priority: Critial)
1602
1603 .TP
1604 .B MoveSpare
1605 A spare drive has been moved from one array in a
1606 .B spare-group
1607 to another to allow a failed drive to be replaced.
1608 (syslog priority: Info)
1609
1610 .TP
1611 .B SparesMissing
1612 If
1613 .I mdadm
1614 has been told, via the config file, that an array should have a certain
1615 number of spare devices, and
1616 .I mdadm
1617 detects that it has fewer that this number when it first sees the
1618 array, it will report a
1619 .B SparesMissing
1620 message.
1621 (syslog priority: Warning)
1622
1623 .TP
1624 .B TestMessage
1625 An array was found at startup, and the
1626 .B \-\-test
1627 flag was given.
1628 (syslog priority: Info)
1629 .RE
1630
1631 Only
1632 .B Fail ,
1633 .B FailSpare ,
1634 .B DegradedArray ,
1635 .B SparesMissing ,
1636 and
1637 .B TestMessage
1638 cause Email to be sent. All events cause the program to be run.
1639 The program is run with two or three arguments, they being the event
1640 name, the array device and possibly a second device.
1641
1642 Each event has an associated array device (e.g.
1643 .BR /dev/md1 )
1644 and possibly a second device. For
1645 .BR Fail ,
1646 .BR FailSpare ,
1647 and
1648 .B SpareActive
1649 the second device is the relevant component device.
1650 For
1651 .B MoveSpare
1652 the second device is the array that the spare was moved from.
1653
1654 For
1655 .B mdadm
1656 to move spares from one array to another, the different arrays need to
1657 be labelled with the same
1658 .B spare-group
1659 in the configuration file. The
1660 .B spare-group
1661 name can be any string. It is only necessary that different spare
1662 groups use different names.
1663
1664 When
1665 .B mdadm
1666 detects that an array which is in a spare group has fewer active
1667 devices than necessary for the complete array, and has no spare
1668 devices, it will look for another array in the same spare group that
1669 has a full complement of working drive and a spare. It will then
1670 attempt to remove the spare from the second drive and add it to the
1671 first.
1672 If the removal succeeds but the adding fails, then it is added back to
1673 the original array.
1674
1675 .SH GROW MODE
1676 The GROW mode is used for changing the size or shape of an active
1677 array.
1678 For this to work, the kernel must support the necessary change.
1679 Various types of growth are being added during 2.6 development,
1680 including restructuring a raid5 array to have more active devices.
1681
1682 Currently the only support available is to
1683 .IP \(bu 4
1684 change the "size" attribute
1685 for RAID1, RAID5 and RAID6.
1686 .IP \(bu 4
1687 increase the "raid-disks" attribute of RAID1, RAID5, and RAID6.
1688 .IP \(bu 4
1689 add a write-intent bitmap to any array which support these bitmaps, or
1690 remove a write-intent bitmap from such an array.
1691 .PP
1692
1693 .SS SIZE CHANGES
1694 Normally when an array is built the "size" it taken from the smallest
1695 of the drives. If all the small drives in an arrays are, one at a
1696 time, removed and replaced with larger drives, then you could have an
1697 array of large drives with only a small amount used. In this
1698 situation, changing the "size" with "GROW" mode will allow the extra
1699 space to start being used. If the size is increased in this way, a
1700 "resync" process will start to make sure the new parts of the array
1701 are synchronised.
1702
1703 Note that when an array changes size, any filesystem that may be
1704 stored in the array will not automatically grow to use the space. The
1705 filesystem will need to be explicitly told to use the extra space.
1706
1707 .SS RAID-DEVICES CHANGES
1708
1709 A RAID1 array can work with any number of devices from 1 upwards
1710 (though 1 is not very useful). There may be times which you want to
1711 increase or decrease the number of active devices. Note that this is
1712 different to hot-add or hot-remove which changes the number of
1713 inactive devices.
1714
1715 When reducing the number of devices in a RAID1 array, the slots which
1716 are to be removed from the array must already be vacant. That is, the
1717 devices that which were in those slots must be failed and removed.
1718
1719 When the number of devices is increased, any hot spares that are
1720 present will be activated immediately.
1721
1722 Increasing the number of active devices in a RAID5 is much more
1723 effort. Every block in the array will need to be read and written
1724 back to a new location. From 2.6.17, the Linux Kernel is able to do
1725 this safely, including restart and interrupted "reshape".
1726
1727 When relocating the first few stripes on a raid5, it is not possible
1728 to keep the data on disk completely consistent and crash-proof. To
1729 provide the required safety, mdadm disables writes to the array while
1730 this "critical section" is reshaped, and takes a backup of the data
1731 that is in that section. This backup is normally stored in any spare
1732 devices that the array has, however it can also be stored in a
1733 separate file specified with the
1734 .B \-\-backup\-file
1735 option. If this option is used, and the system does crash during the
1736 critical period, the same file must be passed to
1737 .B \-\-assemble
1738 to restore the backup and reassemble the array.
1739
1740 .SS BITMAP CHANGES
1741
1742 A write-intent bitmap can be added to, or removed from, an active
1743 array. Either internal bitmaps, or bitmaps stored in a separate file
1744 can be added. Note that if you add a bitmap stored in a file which is
1745 in a filesystem that is on the raid array being affected, the system
1746 will deadlock. The bitmap must be on a separate filesystem.
1747
1748 .SH INCREMENTAL MODE
1749
1750 .HP 12
1751 Usage:
1752 .B mdadm \-\-incremental
1753 .RB [ \-\-run ]
1754 .RB [ \-\-quiet ]
1755 .I component-device
1756 .HP 12
1757 Usage:
1758 .B mdadm \-\-incremental \-\-rebuild
1759 .HP 12
1760 Usage:
1761 .B mdadm \-\-incremental \-\-run \-\-scan
1762
1763
1764 .PP
1765 This mode is designed to be used in conjunction with a device
1766 discovery system. As devices are found in a system, they can be
1767 passed to
1768 .B "mdadm \-\-incremental"
1769 to be conditionally added to an appropriate array.
1770
1771 .I mdadm
1772 performs a number of tests to determine if the device is part of an
1773 array, and which array is should be part of. If an appropriate array
1774 is found, or can be created,
1775 .I mdadm
1776 adds the device to the array and conditionally starts the array.
1777
1778 Note that
1779 .I mdadm
1780 will only add devices to an array which were previously working
1781 (active or spare) parts of that array. It does not currently support
1782 automatic inclusion of a new drive as a spare in some array.
1783
1784 .B "mdadm \-\-incremental"
1785 requires a bug present in all kernels through 2.6.19, to be fixed.
1786 Hopefully this will be fixed in 2.6.20. Alternately apply the patch
1787 which is included with the mdadm source distribution. If
1788 .I mdadm
1789 detects that this bug is present, it will abort any attempt to use
1790 .BR \-\-incremental .
1791
1792 The tests that
1793 .I mdadm
1794 makes are as follow:
1795 .IP +
1796 Is the device permitted by
1797 .BR mdadm.conf ?
1798 That is, is it listed in a
1799 .B DEVICES
1800 line in that file. If
1801 .B DEVICES
1802 is absent then the default it to allow any device. Similar if
1803 .B DEVICES
1804 contains the special word
1805 .B partitions
1806 then any device is allowed. Otherwise the device name given to
1807 .I mdadm
1808 must match one of the names or patterns in a
1809 .B DEVICES
1810 line.
1811
1812 .IP +
1813 Does the device have a valid md superblock. If a specific metadata
1814 version is request with
1815 .B \-\-metadata
1816 or
1817 .B \-e
1818 then only that style of metadata is accepted, otherwise
1819 .I mdadm
1820 finds any known version of metadata. If no
1821 .I md
1822 metadata is found, the device is rejected.
1823
1824 .IP +
1825 Does the metadata match an expected array?
1826 The metadata can match in two ways. Either there is an array listed
1827 in
1828 .B mdadm.conf
1829 which identifies the array (either by UUID, by name, by device list,
1830 or by minor-number), the array was created with a
1831 .B homehost
1832 specified, and that
1833 .B homehost
1834 matches that which is given in
1835 .B mdadm.conf
1836 or on the command line.
1837 If
1838 .I mdadm
1839 is not able to positively identify the array as belonging to the
1840 current host, the device will be rejected.
1841
1842 .IP +
1843 .I mdadm
1844 keeps a list of arrays that is has partly assembled in
1845 .B /var/run/mdadm/map
1846 (or
1847 .B /var/run/mdadm.map
1848 if the directory doesn't exist). If no array exists which matches
1849 the metadata on the new device,
1850 .I mdadm
1851 must choose a device name and unit number. It does this based on any
1852 name given in
1853 .B mdadm.conf
1854 or any name information stored in the metadata. If this name
1855 suggests a unit number, that number will be used, otherwise a free
1856 unit number will be chosen. Normally
1857 .I mdadm
1858 will prefer to create a partitionable array, however if the
1859 .B CREATE
1860 line in
1861 .B mdadm.conf
1862 suggests that a non-partitionable array is preferred, that will be
1863 honoured.
1864
1865 .IP +
1866 Once an appropriate array is found or created and the device is added,
1867 .I mdadm
1868 must decide if the array is ready to be started. It will
1869 normally compare the number of available (non-spare) devices to the
1870 number of devices that the metadata suggests need to be active. If
1871 there are at least that many, the array will be started. This means
1872 that if any devices are missing the array will not be restarted.
1873
1874 As an alternative,
1875 .B \-\-run
1876 may be passed to
1877 .B mdadm
1878 in which case the array will be run as soon as there are enough
1879 devices present for the data to be accessible. For a raid1, that
1880 means one device will start the array. For a clean raid5, the array
1881 will be started as soon as all but one drive is present.
1882
1883 Note that neither of these approaches is really ideal. If it is can
1884 be known that all device discovery has completed, then
1885 .br
1886 .B " mdadm \-IRs"
1887 .br
1888 can be run which will try to start all arrays that are being
1889 incrementally assembled. They are started in "read-auto" mode in
1890 which they are read-only until the first write request. This means
1891 that no metadata updates are made and no attempt at resync or recovery
1892 happens. Further devices that are found before the first write can
1893 still be added safely.
1894
1895 .SH EXAMPLES
1896
1897 .B " mdadm \-\-query /dev/name-of-device"
1898 .br
1899 This will find out if a given device is a raid array, or is part of
1900 one, and will provide brief information about the device.
1901
1902 .B " mdadm \-\-assemble \-\-scan"
1903 .br
1904 This will assemble and start all arrays listed in the standard config file
1905 file. This command will typically go in a system startup file.
1906
1907 .B " mdadm \-\-stop \-\-scan"
1908 .br
1909 This will shut down all array that can be shut down (i.e. are not
1910 currently in use). This will typically go in a system shutdown script.
1911
1912 .B " mdadm \-\-follow \-\-scan \-\-delay=120"
1913 .br
1914 If (and only if) there is an Email address or program given in the
1915 standard config file, then
1916 monitor the status of all arrays listed in that file by
1917 polling them ever 2 minutes.
1918
1919 .B " mdadm \-\-create /dev/md0 \-\-level=1 \-\-raid\-devices=2 /dev/hd[ac]1"
1920 .br
1921 Create /dev/md0 as a RAID1 array consisting of /dev/hda1 and /dev/hdc1.
1922
1923 .br
1924 .B " echo 'DEVICE /dev/hd*[0\-9] /dev/sd*[0\-9]' > mdadm.conf"
1925 .br
1926 .B " mdadm \-\-detail \-\-scan >> mdadm.conf"
1927 .br
1928 This will create a prototype config file that describes currently
1929 active arrays that are known to be made from partitions of IDE or SCSI drives.
1930 This file should be reviewed before being used as it may
1931 contain unwanted detail.
1932
1933 .B " echo 'DEVICE /dev/hd[a\-z] /dev/sd*[a\-z]' > mdadm.conf"
1934 .br
1935 .B " mdadm \-\-examine \-\-scan \-\-config=mdadm.conf >> mdadm.conf"
1936 .ber
1937 This will find what arrays could be assembled from existing IDE and
1938 SCSI whole drives (not partitions) and store the information is the
1939 format of a config file.
1940 This file is very likely to contain unwanted detail, particularly
1941 the
1942 .B devices=
1943 entries. It should be reviewed and edited before being used as an
1944 actual config file.
1945
1946 .B " mdadm \-\-examine \-\-brief \-\-scan \-\-config=partitions"
1947 .br
1948 .B " mdadm \-Ebsc partitions"
1949 .br
1950 Create a list of devices by reading
1951 .BR /proc/partitions ,
1952 scan these for RAID superblocks, and printout a brief listing of all
1953 that was found.
1954
1955 .B " mdadm \-Ac partitions \-m 0 /dev/md0"
1956 .br
1957 Scan all partitions and devices listed in
1958 .BR /proc/partitions
1959 and assemble
1960 .B /dev/md0
1961 out of all such devices with a RAID superblock with a minor number of 0.
1962
1963 .B " mdadm \-\-monitor \-\-scan \-\-daemonise > /var/run/mdadm"
1964 .br
1965 If config file contains a mail address or alert program, run mdadm in
1966 the background in monitor mode monitoring all md devices. Also write
1967 pid of mdadm daemon to
1968 .BR /var/run/mdadm .
1969
1970 .B " mdadm \-Iq /dev/somedevice"
1971 .br
1972 Try to incorporate newly discovered device into some array as
1973 appropriate.
1974
1975 .B " mdadm \-\-incremental \-\-rebuild \-\-run \-\-scan"
1976 .br
1977 Rebuild the array map from any current arrays, and then start any that
1978 can be started.
1979
1980 .B " mdadm \-\-create \-\-help"
1981 .br
1982 Provide help about the Create mode.
1983
1984 .B " mdadm \-\-config \-\-help"
1985 .br
1986 Provide help about the format of the config file.
1987
1988 .B " mdadm \-\-help"
1989 .br
1990 Provide general help.
1991
1992
1993 .SH FILES
1994
1995 .SS /proc/mdstat
1996
1997 If you're using the
1998 .B /proc
1999 filesystem,
2000 .B /proc/mdstat
2001 lists all active md devices with information about them.
2002 .B mdadm
2003 uses this to find arrays when
2004 .B \-\-scan
2005 is given in Misc mode, and to monitor array reconstruction
2006 on Monitor mode.
2007
2008
2009 .SS /etc/mdadm.conf
2010
2011 The config file lists which devices may be scanned to see if
2012 they contain MD super block, and gives identifying information
2013 (e.g. UUID) about known MD arrays. See
2014 .BR mdadm.conf (5)
2015 for more details.
2016
2017 .SS /var/run/mdadm/map
2018 When
2019 .B \-\-incremental
2020 mode is used. this file gets a list of arrays currently being created.
2021 If
2022 .B /var/run/mdadm
2023 does not exist as a directory, then
2024 .B /var/run/mdadm.map
2025 is used instead.
2026
2027 .SH DEVICE NAMES
2028
2029 While entries in the /dev directory can have any format you like,
2030 .I mdadm
2031 has an understanding of 'standard' formats which it uses to guide its
2032 behaviour when creating device files via the
2033 .B \-\-auto
2034 option.
2035
2036 The standard names for non-partitioned arrays (the only sort of md
2037 array available in 2.4 and earlier) either of
2038 .IP
2039 /dev/mdNN
2040 .br
2041 /dev/md/NN
2042 .PP
2043 where NN is a number.
2044 The standard names for partitionable arrays (as available from 2.6
2045 onwards) is one of
2046 .IP
2047 /dev/md/dNN
2048 .br
2049 /dev/md_dNN
2050 .PP
2051 Partition numbers should be indicated by added "pMM" to these, thus "/dev/md/d1p2".
2052
2053 .SH NOTE
2054 .B mdadm
2055 was previously known as
2056 .BR mdctl .
2057 .P
2058 .B mdadm
2059 is completely separate from the
2060 .B raidtools
2061 package, and does not use the
2062 .I /etc/raidtab
2063 configuration file at all.
2064
2065 .SH SEE ALSO
2066 For information on the various levels of
2067 RAID, check out:
2068
2069 .IP
2070 .UR http://ostenfeld.dk/~jakob/Software\-RAID.HOWTO/
2071 http://ostenfeld.dk/~jakob/Software\-RAID.HOWTO/
2072 .UE
2073 '''.PP
2074 '''for new releases of the RAID driver check out:
2075 '''
2076 '''.IP
2077 '''.UR ftp://ftp.kernel.org/pub/linux/kernel/people/mingo/raid-patches
2078 '''ftp://ftp.kernel.org/pub/linux/kernel/people/mingo/raid-patches
2079 '''.UE
2080 '''.PP
2081 '''or
2082 '''.IP
2083 '''.UR http://www.cse.unsw.edu.au/~neilb/patches/linux-stable/
2084 '''http://www.cse.unsw.edu.au/~neilb/patches/linux-stable/
2085 '''.UE
2086 .PP
2087 The latest version of
2088 .I mdadm
2089 should always be available from
2090 .IP
2091 .UR http://www.kernel.org/pub/linux/utils/raid/mdadm/
2092 http://www.kernel.org/pub/linux/utils/raid/mdadm/
2093 .UE
2094 .PP
2095 .IR mdadm.conf (5),
2096 .IR md (4).
2097 .PP
2098 .IR raidtab (5),
2099 .IR raid0run (8),
2100 .IR raidstop (8),
2101 .IR mkraid (8).