]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
ddf: set Rebuilding flag when adding devices to a degraded array
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 static unsigned long long read_resync_start(int fd)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, fd);
75 if (n <= 0)
76 return 0;
77 if (strncmp(buf, "none", 4) == 0)
78 return MaxSector;
79 else
80 return strtoull(buf, NULL, 10);
81 }
82
83 static unsigned long long read_sync_completed(int fd)
84 {
85 unsigned long long val;
86 char buf[50];
87 int n;
88 char *ep;
89
90 n = read_attr(buf, 50, fd);
91
92 if (n <= 0)
93 return 0;
94 buf[n] = 0;
95 val = strtoull(buf, &ep, 0);
96 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
97 return 0;
98 return val;
99 }
100
101 static enum array_state read_state(int fd)
102 {
103 char buf[20];
104 int n = read_attr(buf, 20, fd);
105
106 if (n <= 0)
107 return bad_word;
108 return (enum array_state) sysfs_match_word(buf, array_states);
109 }
110
111 static enum sync_action read_action( int fd)
112 {
113 char buf[20];
114 int n = read_attr(buf, 20, fd);
115
116 if (n <= 0)
117 return bad_action;
118 return (enum sync_action) sysfs_match_word(buf, sync_actions);
119 }
120
121 int read_dev_state(int fd)
122 {
123 char buf[60];
124 int n = read_attr(buf, 60, fd);
125 char *cp;
126 int rv = 0;
127
128 if (n <= 0)
129 return 0;
130
131 cp = buf;
132 while (cp) {
133 if (sysfs_attr_match(cp, "faulty"))
134 rv |= DS_FAULTY;
135 if (sysfs_attr_match(cp, "in_sync"))
136 rv |= DS_INSYNC;
137 if (sysfs_attr_match(cp, "write_mostly"))
138 rv |= DS_WRITE_MOSTLY;
139 if (sysfs_attr_match(cp, "spare"))
140 rv |= DS_SPARE;
141 if (sysfs_attr_match(cp, "blocked"))
142 rv |= DS_BLOCKED;
143 cp = strchr(cp, ',');
144 if (cp)
145 cp++;
146 }
147 return rv;
148 }
149
150 static void signal_manager(void)
151 {
152 /* tgkill(getpid(), mon_tid, SIGUSR1); */
153 int pid = getpid();
154 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
155 }
156
157 /* Monitor a set of active md arrays - all of which share the
158 * same metadata - and respond to events that require
159 * metadata update.
160 *
161 * New arrays are detected by another thread which allocates
162 * required memory and attaches the data structure to our list.
163 *
164 * Events:
165 * Array stops.
166 * This is detected by array_state going to 'clear' or 'inactive'.
167 * while we thought it was active.
168 * Response is to mark metadata as clean and 'clear' the array(??)
169 * write-pending
170 * array_state if 'write-pending'
171 * We mark metadata as 'dirty' then set array to 'active'.
172 * active_idle
173 * Either ignore, or mark clean, then mark metadata as clean.
174 *
175 * device fails
176 * detected by rd-N/state reporting "faulty"
177 * mark device as 'failed' in metadata, let the kernel release the
178 * device by writing '-blocked' to rd/state, and finally write 'remove' to
179 * rd/state. Before a disk can be replaced it must be failed and removed
180 * from all container members, this will be preemptive for the other
181 * arrays... safe?
182 *
183 * sync completes
184 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
185 * MaxSector
186 * Notify metadata that sync is complete.
187 *
188 * recovery completes
189 * sync_action changes from 'recover' to 'idle'
190 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
191 *
192 * deal with resync
193 * This only happens on finding a new array... mdadm will have set
194 * 'resync_start' to the correct value. If 'resync_start' indicates that an
195 * resync needs to occur set the array to the 'active' state rather than the
196 * initial read-auto state.
197 *
198 *
199 *
200 * We wait for a change (poll/select) on array_state, sync_action, and
201 * each rd-X/state file.
202 * When we get any change, we check everything. So read each state file,
203 * then decide what to do.
204 *
205 * The core action is to write new metadata to all devices in the array.
206 * This is done at most once on any wakeup.
207 * After that we might:
208 * - update the array_state
209 * - set the role of some devices.
210 * - request a sync_action
211 *
212 */
213
214 static int read_and_act(struct active_array *a)
215 {
216 unsigned long long sync_completed;
217 int check_degraded = 0;
218 int deactivate = 0;
219 struct mdinfo *mdi;
220 int dirty = 0;
221
222 a->next_state = bad_word;
223 a->next_action = bad_action;
224
225 a->curr_state = read_state(a->info.state_fd);
226 a->curr_action = read_action(a->action_fd);
227 a->info.resync_start = read_resync_start(a->resync_start_fd);
228 sync_completed = read_sync_completed(a->sync_completed_fd);
229 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
230 mdi->next_state = 0;
231 mdi->curr_state = 0;
232 if (mdi->state_fd >= 0) {
233 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
234 mdi->curr_state = read_dev_state(mdi->state_fd);
235 }
236 }
237
238 if (a->curr_state <= inactive &&
239 a->prev_state > inactive) {
240 /* array has been stopped */
241 a->container->ss->set_array_state(a, 1);
242 a->next_state = clear;
243 deactivate = 1;
244 }
245 if (a->curr_state == write_pending) {
246 a->container->ss->set_array_state(a, 0);
247 a->next_state = active;
248 dirty = 1;
249 }
250 if (a->curr_state == active_idle) {
251 /* Set array to 'clean' FIRST, then mark clean
252 * in the metadata
253 */
254 a->next_state = clean;
255 dirty = 1;
256 }
257 if (a->curr_state == clean) {
258 a->container->ss->set_array_state(a, 1);
259 }
260 if (a->curr_state == active ||
261 a->curr_state == suspended ||
262 a->curr_state == bad_word)
263 dirty = 1;
264 if (a->curr_state == readonly) {
265 /* Well, I'm ready to handle things. If readonly
266 * wasn't requested, transition to read-auto.
267 */
268 char buf[64];
269 read_attr(buf, sizeof(buf), a->metadata_fd);
270 if (strncmp(buf, "external:-", 10) == 0) {
271 /* explicit request for readonly array. Leave it alone */
272 ;
273 } else {
274 if (a->container->ss->set_array_state(a, 2))
275 a->next_state = read_auto; /* array is clean */
276 else {
277 a->next_state = active; /* Now active for recovery etc */
278 dirty = 1;
279 }
280 }
281 }
282
283 if (!deactivate &&
284 a->curr_action == idle &&
285 a->prev_action == resync) {
286 /* A resync has finished. The endpoint is recorded in
287 * 'sync_start'. We don't update the metadata
288 * until the array goes inactive or readonly though.
289 * Just check if we need to fiddle spares.
290 */
291 a->container->ss->set_array_state(a, a->curr_state <= clean);
292 check_degraded = 1;
293 }
294
295 if (!deactivate &&
296 a->curr_action == idle &&
297 a->prev_action == recover) {
298 /* A recovery has finished. Some disks may be in sync now,
299 * and the array may no longer be degraded
300 */
301 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
302 a->container->ss->set_disk(a, mdi->disk.raid_disk,
303 mdi->curr_state);
304 if (! (mdi->curr_state & DS_INSYNC))
305 check_degraded = 1;
306 }
307 }
308
309 /* Check for failures and if found:
310 * 1/ Record the failure in the metadata and unblock the device.
311 * FIXME update the kernel to stop notifying on failed drives when
312 * the array is readonly and we have cleared 'blocked'
313 * 2/ Try to remove the device if the array is writable, or can be
314 * made writable.
315 */
316 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
317 if (mdi->curr_state & DS_FAULTY) {
318 a->container->ss->set_disk(a, mdi->disk.raid_disk,
319 mdi->curr_state);
320 check_degraded = 1;
321 mdi->next_state |= DS_UNBLOCK;
322 if (a->curr_state == read_auto) {
323 a->container->ss->set_array_state(a, 0);
324 a->next_state = active;
325 }
326 if (a->curr_state > readonly)
327 mdi->next_state |= DS_REMOVE;
328 }
329 }
330
331 /* Check for recovery checkpoint notifications. We need to be a
332 * minimum distance away from the last checkpoint to prevent
333 * over checkpointing. Note reshape checkpointing is not
334 * handled here.
335 */
336 if (sync_completed > a->last_checkpoint &&
337 sync_completed - a->last_checkpoint > a->info.component_size >> 4 &&
338 a->curr_action > reshape) {
339 /* A (non-reshape) sync_action has reached a checkpoint.
340 * Record the updated position in the metadata
341 */
342 a->last_checkpoint = sync_completed;
343 a->container->ss->set_array_state(a, a->curr_state <= clean);
344 } else if (sync_completed > a->last_checkpoint)
345 a->last_checkpoint = sync_completed;
346
347 a->container->ss->sync_metadata(a->container);
348 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
349 array_states[a->curr_state], sync_actions[a->curr_action]);
350
351 /* Effect state changes in the array */
352 if (a->next_state != bad_word) {
353 dprintf(" state:%s", array_states[a->next_state]);
354 write_attr(array_states[a->next_state], a->info.state_fd);
355 }
356 if (a->next_action != bad_action) {
357 write_attr(sync_actions[a->next_action], a->action_fd);
358 dprintf(" action:%s", sync_actions[a->next_action]);
359 }
360 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
361 if (mdi->next_state & DS_UNBLOCK) {
362 dprintf(" %d:-blocked", mdi->disk.raid_disk);
363 write_attr("-blocked", mdi->state_fd);
364 }
365
366 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
367 int remove_result;
368
369 /* the kernel may not be able to immediately remove the
370 * disk, we can simply wait until the next event to try
371 * again.
372 */
373 remove_result = write_attr("remove", mdi->state_fd);
374 if (remove_result > 0) {
375 dprintf(" %d:removed", mdi->disk.raid_disk);
376 close(mdi->state_fd);
377 close(mdi->recovery_fd);
378 mdi->state_fd = -1;
379 }
380 }
381 if (mdi->next_state & DS_INSYNC) {
382 write_attr("+in_sync", mdi->state_fd);
383 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
384 }
385 }
386 dprintf(" )\n");
387
388 /* move curr_ to prev_ */
389 a->prev_state = a->curr_state;
390
391 a->prev_action = a->curr_action;
392
393 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
394 mdi->prev_state = mdi->curr_state;
395 mdi->next_state = 0;
396 }
397
398 if (check_degraded) {
399 /* manager will do the actual check */
400 a->check_degraded = 1;
401 signal_manager();
402 }
403
404 if (deactivate)
405 a->container = NULL;
406
407 return dirty;
408 }
409
410 static struct mdinfo *
411 find_device(struct active_array *a, int major, int minor)
412 {
413 struct mdinfo *mdi;
414
415 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
416 if (mdi->disk.major == major && mdi->disk.minor == minor)
417 return mdi;
418
419 return NULL;
420 }
421
422 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
423 {
424 struct active_array *a;
425 struct mdinfo *victim;
426
427 for (a = aa; a; a = a->next) {
428 if (!a->container)
429 continue;
430 victim = find_device(a, failed->disk.major, failed->disk.minor);
431 if (!victim)
432 continue;
433
434 if (!(victim->curr_state & DS_FAULTY))
435 write_attr("faulty", victim->state_fd);
436 }
437 }
438
439 #ifdef DEBUG
440 static void dprint_wake_reasons(fd_set *fds)
441 {
442 int i;
443 char proc_path[256];
444 char link[256];
445 char *basename;
446 int rv;
447
448 fprintf(stderr, "monitor: wake ( ");
449 for (i = 0; i < FD_SETSIZE; i++) {
450 if (FD_ISSET(i, fds)) {
451 sprintf(proc_path, "/proc/%d/fd/%d",
452 (int) getpid(), i);
453
454 rv = readlink(proc_path, link, sizeof(link) - 1);
455 if (rv < 0) {
456 fprintf(stderr, "%d:unknown ", i);
457 continue;
458 }
459 link[rv] = '\0';
460 basename = strrchr(link, '/');
461 fprintf(stderr, "%d:%s ",
462 i, basename ? ++basename : link);
463 }
464 }
465 fprintf(stderr, ")\n");
466 }
467 #endif
468
469 int monitor_loop_cnt;
470
471 static int wait_and_act(struct supertype *container, int nowait)
472 {
473 fd_set rfds;
474 int maxfd = 0;
475 struct active_array **aap = &container->arrays;
476 struct active_array *a, **ap;
477 int rv;
478 struct mdinfo *mdi;
479 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
480
481 FD_ZERO(&rfds);
482
483 for (ap = aap ; *ap ;) {
484 a = *ap;
485 /* once an array has been deactivated we want to
486 * ask the manager to discard it.
487 */
488 if (!a->container) {
489 if (discard_this) {
490 ap = &(*ap)->next;
491 continue;
492 }
493 *ap = a->next;
494 a->next = NULL;
495 discard_this = a;
496 signal_manager();
497 continue;
498 }
499
500 add_fd(&rfds, &maxfd, a->info.state_fd);
501 add_fd(&rfds, &maxfd, a->action_fd);
502 add_fd(&rfds, &maxfd, a->sync_completed_fd);
503 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
504 add_fd(&rfds, &maxfd, mdi->state_fd);
505
506 ap = &(*ap)->next;
507 }
508
509 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
510 /* No interesting arrays, or we have been told to
511 * terminate and everything is clean. Lets see about
512 * exiting. Note that blocking at this point is not a
513 * problem as there are no active arrays, there is
514 * nothing that we need to be ready to do.
515 */
516 int fd = open_dev_excl(container->devnum);
517 if (fd >= 0 || errno != EBUSY) {
518 /* OK, we are safe to leave */
519 if (sigterm && !dirty_arrays)
520 dprintf("caught sigterm, all clean... exiting\n");
521 else
522 dprintf("no arrays to monitor... exiting\n");
523 if (!sigterm)
524 /* On SIGTERM, someone (the take-over mdmon) will
525 * clean up
526 */
527 remove_pidfile(container->devname);
528 exit_now = 1;
529 signal_manager();
530 exit(0);
531 }
532 }
533
534 if (!nowait) {
535 sigset_t set;
536 sigprocmask(SIG_UNBLOCK, NULL, &set);
537 sigdelset(&set, SIGUSR1);
538 monitor_loop_cnt |= 1;
539 rv = pselect(maxfd+1, NULL, NULL, &rfds, NULL, &set);
540 monitor_loop_cnt += 1;
541 if (rv == -1 && errno == EINTR)
542 rv = 0;
543 #ifdef DEBUG
544 dprint_wake_reasons(&rfds);
545 #endif
546
547 }
548
549 if (update_queue) {
550 struct metadata_update *this;
551
552 for (this = update_queue; this ; this = this->next)
553 container->ss->process_update(container, this);
554
555 update_queue_handled = update_queue;
556 update_queue = NULL;
557 signal_manager();
558 container->ss->sync_metadata(container);
559 }
560
561 rv = 0;
562 dirty_arrays = 0;
563 for (a = *aap; a ; a = a->next) {
564 int is_dirty;
565
566 if (a->replaces && !discard_this) {
567 struct active_array **ap;
568 for (ap = &a->next; *ap && *ap != a->replaces;
569 ap = & (*ap)->next)
570 ;
571 if (*ap)
572 *ap = (*ap)->next;
573 discard_this = a->replaces;
574 a->replaces = NULL;
575 /* FIXME check if device->state_fd need to be cleared?*/
576 signal_manager();
577 }
578 if (a->container) {
579 is_dirty = read_and_act(a);
580 rv |= 1;
581 dirty_arrays += is_dirty;
582 /* when terminating stop manipulating the array after it
583 * is clean, but make sure read_and_act() is given a
584 * chance to handle 'active_idle'
585 */
586 if (sigterm && !is_dirty)
587 a->container = NULL; /* stop touching this array */
588 }
589 }
590
591 /* propagate failures across container members */
592 for (a = *aap; a ; a = a->next) {
593 if (!a->container)
594 continue;
595 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
596 if (mdi->curr_state & DS_FAULTY)
597 reconcile_failed(*aap, mdi);
598 }
599
600 return rv;
601 }
602
603 void do_monitor(struct supertype *container)
604 {
605 int rv;
606 int first = 1;
607 do {
608 rv = wait_and_act(container, first);
609 first = 0;
610 } while (rv >= 0);
611 }