]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
fix array_size in child_monitor
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 static unsigned long long read_resync_start(int fd)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, fd);
75 if (n <= 0)
76 return 0;
77 if (strncmp(buf, "none", 4) == 0)
78 return MaxSector;
79 else
80 return strtoull(buf, NULL, 10);
81 }
82
83 static unsigned long long read_sync_completed(int fd)
84 {
85 unsigned long long val;
86 char buf[50];
87 int n;
88 char *ep;
89
90 n = read_attr(buf, 50, fd);
91
92 if (n <= 0)
93 return 0;
94 buf[n] = 0;
95 val = strtoull(buf, &ep, 0);
96 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
97 return 0;
98 return val;
99 }
100
101 static enum array_state read_state(int fd)
102 {
103 char buf[20];
104 int n = read_attr(buf, 20, fd);
105
106 if (n <= 0)
107 return bad_word;
108 return (enum array_state) sysfs_match_word(buf, array_states);
109 }
110
111 static enum sync_action read_action( int fd)
112 {
113 char buf[20];
114 int n = read_attr(buf, 20, fd);
115
116 if (n <= 0)
117 return bad_action;
118 return (enum sync_action) sysfs_match_word(buf, sync_actions);
119 }
120
121 int read_dev_state(int fd)
122 {
123 char buf[60];
124 int n = read_attr(buf, 60, fd);
125 char *cp;
126 int rv = 0;
127
128 if (n <= 0)
129 return 0;
130
131 cp = buf;
132 while (cp) {
133 if (sysfs_attr_match(cp, "faulty"))
134 rv |= DS_FAULTY;
135 if (sysfs_attr_match(cp, "in_sync"))
136 rv |= DS_INSYNC;
137 if (sysfs_attr_match(cp, "write_mostly"))
138 rv |= DS_WRITE_MOSTLY;
139 if (sysfs_attr_match(cp, "spare"))
140 rv |= DS_SPARE;
141 if (sysfs_attr_match(cp, "blocked"))
142 rv |= DS_BLOCKED;
143 cp = strchr(cp, ',');
144 if (cp)
145 cp++;
146 }
147 return rv;
148 }
149
150 static void signal_manager(void)
151 {
152 /* tgkill(getpid(), mon_tid, SIGUSR1); */
153 int pid = getpid();
154 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
155 }
156
157 /* Monitor a set of active md arrays - all of which share the
158 * same metadata - and respond to events that require
159 * metadata update.
160 *
161 * New arrays are detected by another thread which allocates
162 * required memory and attaches the data structure to our list.
163 *
164 * Events:
165 * Array stops.
166 * This is detected by array_state going to 'clear' or 'inactive'.
167 * while we thought it was active.
168 * Response is to mark metadata as clean and 'clear' the array(??)
169 * write-pending
170 * array_state if 'write-pending'
171 * We mark metadata as 'dirty' then set array to 'active'.
172 * active_idle
173 * Either ignore, or mark clean, then mark metadata as clean.
174 *
175 * device fails
176 * detected by rd-N/state reporting "faulty"
177 * mark device as 'failed' in metadata, let the kernel release the
178 * device by writing '-blocked' to rd/state, and finally write 'remove' to
179 * rd/state. Before a disk can be replaced it must be failed and removed
180 * from all container members, this will be preemptive for the other
181 * arrays... safe?
182 *
183 * sync completes
184 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
185 * MaxSector
186 * Notify metadata that sync is complete.
187 *
188 * recovery completes
189 * sync_action changes from 'recover' to 'idle'
190 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
191 *
192 * deal with resync
193 * This only happens on finding a new array... mdadm will have set
194 * 'resync_start' to the correct value. If 'resync_start' indicates that an
195 * resync needs to occur set the array to the 'active' state rather than the
196 * initial read-auto state.
197 *
198 *
199 *
200 * We wait for a change (poll/select) on array_state, sync_action, and
201 * each rd-X/state file.
202 * When we get any change, we check everything. So read each state file,
203 * then decide what to do.
204 *
205 * The core action is to write new metadata to all devices in the array.
206 * This is done at most once on any wakeup.
207 * After that we might:
208 * - update the array_state
209 * - set the role of some devices.
210 * - request a sync_action
211 *
212 */
213
214 static int read_and_act(struct active_array *a)
215 {
216 unsigned long long sync_completed;
217 int check_degraded = 0;
218 int check_reshape = 0;
219 int deactivate = 0;
220 struct mdinfo *mdi;
221 int dirty = 0;
222
223 a->next_state = bad_word;
224 a->next_action = bad_action;
225
226 a->curr_state = read_state(a->info.state_fd);
227 a->curr_action = read_action(a->action_fd);
228 a->info.resync_start = read_resync_start(a->resync_start_fd);
229 sync_completed = read_sync_completed(a->sync_completed_fd);
230 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
231 mdi->next_state = 0;
232 if (mdi->state_fd >= 0) {
233 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
234 mdi->curr_state = read_dev_state(mdi->state_fd);
235 }
236 }
237
238 if (a->curr_state > inactive &&
239 a->prev_state == inactive) {
240 /* array has been started
241 * possible that container operation has to be completed
242 */
243 a->container->ss->set_array_state(a, 0);
244 }
245 if (a->curr_state <= inactive &&
246 a->prev_state > inactive) {
247 /* array has been stopped */
248 a->container->ss->set_array_state(a, 1);
249 a->next_state = clear;
250 deactivate = 1;
251 }
252 if (a->curr_state == write_pending) {
253 a->container->ss->set_array_state(a, 0);
254 a->next_state = active;
255 dirty = 1;
256 }
257 if (a->curr_state == active_idle) {
258 /* Set array to 'clean' FIRST, then mark clean
259 * in the metadata
260 */
261 a->next_state = clean;
262 dirty = 1;
263 }
264 if (a->curr_state == clean) {
265 a->container->ss->set_array_state(a, 1);
266 }
267 if (a->curr_state == active ||
268 a->curr_state == suspended ||
269 a->curr_state == bad_word)
270 dirty = 1;
271 if (a->curr_state == readonly) {
272 /* Well, I'm ready to handle things. If readonly
273 * wasn't requested, transition to read-auto.
274 */
275 char buf[64];
276 read_attr(buf, sizeof(buf), a->metadata_fd);
277 if (strncmp(buf, "external:-", 10) == 0) {
278 /* explicit request for readonly array. Leave it alone */
279 ;
280 } else {
281 if (a->container->ss->set_array_state(a, 2))
282 a->next_state = read_auto; /* array is clean */
283 else {
284 a->next_state = active; /* Now active for recovery etc */
285 dirty = 1;
286 }
287 }
288 }
289
290 if (!deactivate &&
291 a->curr_action == idle &&
292 a->prev_action == resync) {
293 /* A resync has finished. The endpoint is recorded in
294 * 'sync_start'. We don't update the metadata
295 * until the array goes inactive or readonly though.
296 * Just check if we need to fiddle spares.
297 */
298 a->container->ss->set_array_state(a, a->curr_state <= clean);
299 check_degraded = 1;
300 }
301
302 if (!deactivate &&
303 a->curr_action == idle &&
304 a->prev_action == recover) {
305 /* A recovery has finished. Some disks may be in sync now,
306 * and the array may no longer be degraded
307 */
308 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
309 a->container->ss->set_disk(a, mdi->disk.raid_disk,
310 mdi->curr_state);
311 if (! (mdi->curr_state & DS_INSYNC))
312 check_degraded = 1;
313 }
314 }
315
316 if (!deactivate &&
317 a->curr_action == reshape &&
318 a->prev_action != reshape)
319 /* reshape was requested by mdadm. Need to see if
320 * new devices have been added. Manager does that
321 * when it sees check_reshape
322 */
323 check_reshape = 1;
324
325 /* Check for failures and if found:
326 * 1/ Record the failure in the metadata and unblock the device.
327 * FIXME update the kernel to stop notifying on failed drives when
328 * the array is readonly and we have cleared 'blocked'
329 * 2/ Try to remove the device if the array is writable, or can be
330 * made writable.
331 */
332 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
333 if (mdi->curr_state & DS_FAULTY) {
334 a->container->ss->set_disk(a, mdi->disk.raid_disk,
335 mdi->curr_state);
336 check_degraded = 1;
337 mdi->next_state |= DS_UNBLOCK;
338 if (a->curr_state == read_auto) {
339 a->container->ss->set_array_state(a, 0);
340 a->next_state = active;
341 }
342 if (a->curr_state > readonly)
343 mdi->next_state |= DS_REMOVE;
344 }
345 }
346
347 /* Check for recovery checkpoint notifications. We need to be a
348 * minimum distance away from the last checkpoint to prevent
349 * over checkpointing. Note reshape checkpointing is handled
350 * in the second branch.
351 */
352 if (sync_completed > a->last_checkpoint &&
353 sync_completed - a->last_checkpoint > a->info.component_size >> 4 &&
354 a->curr_action > reshape) {
355 /* A (non-reshape) sync_action has reached a checkpoint.
356 * Record the updated position in the metadata
357 */
358 a->last_checkpoint = sync_completed;
359 a->container->ss->set_array_state(a, a->curr_state <= clean);
360 } else if ((a->curr_action == idle && a->prev_action == reshape) ||
361 (a->curr_action == reshape
362 && sync_completed > a->last_checkpoint) ) {
363 /* Reshape has progressed or completed so we need to
364 * update the array state - and possibly the array size
365 */
366 a->last_checkpoint = sync_completed;
367 a->container->ss->set_array_state(a, a->curr_state <= clean);
368 }
369
370 if (sync_completed > a->last_checkpoint)
371 a->last_checkpoint = sync_completed;
372
373 a->container->ss->sync_metadata(a->container);
374 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
375 array_states[a->curr_state], sync_actions[a->curr_action]);
376
377 /* Effect state changes in the array */
378 if (a->next_state != bad_word) {
379 dprintf(" state:%s", array_states[a->next_state]);
380 write_attr(array_states[a->next_state], a->info.state_fd);
381 }
382 if (a->next_action != bad_action) {
383 write_attr(sync_actions[a->next_action], a->action_fd);
384 dprintf(" action:%s", sync_actions[a->next_action]);
385 }
386 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
387 if (mdi->next_state & DS_UNBLOCK) {
388 dprintf(" %d:-blocked", mdi->disk.raid_disk);
389 write_attr("-blocked", mdi->state_fd);
390 }
391
392 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
393 int remove_result;
394
395 /* the kernel may not be able to immediately remove the
396 * disk, we can simply wait until the next event to try
397 * again.
398 */
399 remove_result = write_attr("remove", mdi->state_fd);
400 if (remove_result > 0) {
401 dprintf(" %d:removed", mdi->disk.raid_disk);
402 close(mdi->state_fd);
403 mdi->state_fd = -1;
404 }
405 }
406 if (mdi->next_state & DS_INSYNC) {
407 write_attr("+in_sync", mdi->state_fd);
408 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
409 }
410 }
411 dprintf(" )\n");
412
413 /* move curr_ to prev_ */
414 a->prev_state = a->curr_state;
415
416 a->prev_action = a->curr_action;
417
418 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
419 mdi->prev_state = mdi->curr_state;
420 mdi->next_state = 0;
421 }
422
423 if (check_degraded || check_reshape) {
424 /* manager will do the actual check */
425 if (check_degraded)
426 a->check_degraded = 1;
427 if (check_reshape)
428 a->check_reshape = 1;
429 signal_manager();
430 }
431
432 if (deactivate)
433 a->container = NULL;
434
435 return dirty;
436 }
437
438 static struct mdinfo *
439 find_device(struct active_array *a, int major, int minor)
440 {
441 struct mdinfo *mdi;
442
443 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
444 if (mdi->disk.major == major && mdi->disk.minor == minor)
445 return mdi;
446
447 return NULL;
448 }
449
450 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
451 {
452 struct active_array *a;
453 struct mdinfo *victim;
454
455 for (a = aa; a; a = a->next) {
456 if (!a->container)
457 continue;
458 victim = find_device(a, failed->disk.major, failed->disk.minor);
459 if (!victim)
460 continue;
461
462 if (!(victim->curr_state & DS_FAULTY))
463 write_attr("faulty", victim->state_fd);
464 }
465 }
466
467 #ifdef DEBUG
468 static void dprint_wake_reasons(fd_set *fds)
469 {
470 int i;
471 char proc_path[256];
472 char link[256];
473 char *basename;
474 int rv;
475
476 fprintf(stderr, "monitor: wake ( ");
477 for (i = 0; i < FD_SETSIZE; i++) {
478 if (FD_ISSET(i, fds)) {
479 sprintf(proc_path, "/proc/%d/fd/%d",
480 (int) getpid(), i);
481
482 rv = readlink(proc_path, link, sizeof(link) - 1);
483 if (rv < 0) {
484 fprintf(stderr, "%d:unknown ", i);
485 continue;
486 }
487 link[rv] = '\0';
488 basename = strrchr(link, '/');
489 fprintf(stderr, "%d:%s ",
490 i, basename ? ++basename : link);
491 }
492 }
493 fprintf(stderr, ")\n");
494 }
495 #endif
496
497 int monitor_loop_cnt;
498
499 static int wait_and_act(struct supertype *container, int nowait)
500 {
501 fd_set rfds;
502 int maxfd = 0;
503 struct active_array **aap = &container->arrays;
504 struct active_array *a, **ap;
505 int rv;
506 struct mdinfo *mdi;
507 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
508
509 FD_ZERO(&rfds);
510
511 for (ap = aap ; *ap ;) {
512 a = *ap;
513 /* once an array has been deactivated we want to
514 * ask the manager to discard it.
515 */
516 if (!a->container || (a->info.array.level == 0)) {
517 if (discard_this) {
518 ap = &(*ap)->next;
519 continue;
520 }
521 *ap = a->next;
522 a->next = NULL;
523 discard_this = a;
524 signal_manager();
525 continue;
526 }
527
528 add_fd(&rfds, &maxfd, a->info.state_fd);
529 add_fd(&rfds, &maxfd, a->action_fd);
530 add_fd(&rfds, &maxfd, a->sync_completed_fd);
531 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
532 add_fd(&rfds, &maxfd, mdi->state_fd);
533
534 ap = &(*ap)->next;
535 }
536
537 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
538 /* No interesting arrays, or we have been told to
539 * terminate and everything is clean. Lets see about
540 * exiting. Note that blocking at this point is not a
541 * problem as there are no active arrays, there is
542 * nothing that we need to be ready to do.
543 */
544 int fd = open_dev_excl(container->devnum);
545 if (fd >= 0 || errno != EBUSY) {
546 /* OK, we are safe to leave */
547 if (sigterm && !dirty_arrays)
548 dprintf("caught sigterm, all clean... exiting\n");
549 else
550 dprintf("no arrays to monitor... exiting\n");
551 if (!sigterm)
552 /* On SIGTERM, someone (the take-over mdmon) will
553 * clean up
554 */
555 remove_pidfile(container->devname);
556 exit_now = 1;
557 signal_manager();
558 close(fd);
559 exit(0);
560 }
561 }
562
563 if (!nowait) {
564 sigset_t set;
565 sigprocmask(SIG_UNBLOCK, NULL, &set);
566 sigdelset(&set, SIGUSR1);
567 monitor_loop_cnt |= 1;
568 rv = pselect(maxfd+1, NULL, NULL, &rfds, NULL, &set);
569 monitor_loop_cnt += 1;
570 if (rv == -1 && errno == EINTR)
571 rv = 0;
572 #ifdef DEBUG
573 dprint_wake_reasons(&rfds);
574 #endif
575
576 }
577
578 if (update_queue) {
579 struct metadata_update *this;
580
581 for (this = update_queue; this ; this = this->next)
582 container->ss->process_update(container, this);
583
584 update_queue_handled = update_queue;
585 update_queue = NULL;
586 signal_manager();
587 container->ss->sync_metadata(container);
588 }
589
590 rv = 0;
591 dirty_arrays = 0;
592 for (a = *aap; a ; a = a->next) {
593 int is_dirty;
594
595 if (a->replaces && !discard_this) {
596 struct active_array **ap;
597 for (ap = &a->next; *ap && *ap != a->replaces;
598 ap = & (*ap)->next)
599 ;
600 if (*ap)
601 *ap = (*ap)->next;
602 discard_this = a->replaces;
603 a->replaces = NULL;
604 /* FIXME check if device->state_fd need to be cleared?*/
605 signal_manager();
606 }
607 if (a->container) {
608 is_dirty = read_and_act(a);
609 rv |= 1;
610 dirty_arrays += is_dirty;
611 /* when terminating stop manipulating the array after it
612 * is clean, but make sure read_and_act() is given a
613 * chance to handle 'active_idle'
614 */
615 if (sigterm && !is_dirty)
616 a->container = NULL; /* stop touching this array */
617 }
618 }
619
620 /* propagate failures across container members */
621 for (a = *aap; a ; a = a->next) {
622 if (!a->container)
623 continue;
624 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
625 if (mdi->curr_state & DS_FAULTY)
626 reconcile_failed(*aap, mdi);
627 }
628
629 return rv;
630 }
631
632 void do_monitor(struct supertype *container)
633 {
634 int rv;
635 int first = 1;
636 do {
637 rv = wait_and_act(container, first);
638 first = 0;
639 } while (rv >= 0);
640 }