]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
Having single function to read mdmon pid file.
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 static unsigned long long read_resync_start(int fd)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, fd);
75 if (n <= 0)
76 return 0;
77 if (strncmp(buf, "none", 4) == 0)
78 return MaxSector;
79 else
80 return strtoull(buf, NULL, 10);
81 }
82
83 static enum array_state read_state(int fd)
84 {
85 char buf[20];
86 int n = read_attr(buf, 20, fd);
87
88 if (n <= 0)
89 return bad_word;
90 return (enum array_state) sysfs_match_word(buf, array_states);
91 }
92
93 static enum sync_action read_action( int fd)
94 {
95 char buf[20];
96 int n = read_attr(buf, 20, fd);
97
98 if (n <= 0)
99 return bad_action;
100 return (enum sync_action) sysfs_match_word(buf, sync_actions);
101 }
102
103 int read_dev_state(int fd)
104 {
105 char buf[60];
106 int n = read_attr(buf, 60, fd);
107 char *cp;
108 int rv = 0;
109
110 if (n <= 0)
111 return 0;
112
113 cp = buf;
114 while (cp) {
115 if (sysfs_attr_match(cp, "faulty"))
116 rv |= DS_FAULTY;
117 if (sysfs_attr_match(cp, "in_sync"))
118 rv |= DS_INSYNC;
119 if (sysfs_attr_match(cp, "write_mostly"))
120 rv |= DS_WRITE_MOSTLY;
121 if (sysfs_attr_match(cp, "spare"))
122 rv |= DS_SPARE;
123 if (sysfs_attr_match(cp, "blocked"))
124 rv |= DS_BLOCKED;
125 cp = strchr(cp, ',');
126 if (cp)
127 cp++;
128 }
129 return rv;
130 }
131
132 static void signal_manager(void)
133 {
134 /* tgkill(getpid(), mon_tid, SIGUSR1); */
135 int pid = getpid();
136 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
137 }
138
139 /* Monitor a set of active md arrays - all of which share the
140 * same metadata - and respond to events that require
141 * metadata update.
142 *
143 * New arrays are detected by another thread which allocates
144 * required memory and attaches the data structure to our list.
145 *
146 * Events:
147 * Array stops.
148 * This is detected by array_state going to 'clear' or 'inactive'.
149 * while we thought it was active.
150 * Response is to mark metadata as clean and 'clear' the array(??)
151 * write-pending
152 * array_state if 'write-pending'
153 * We mark metadata as 'dirty' then set array to 'active'.
154 * active_idle
155 * Either ignore, or mark clean, then mark metadata as clean.
156 *
157 * device fails
158 * detected by rd-N/state reporting "faulty"
159 * mark device as 'failed' in metadata, let the kernel release the
160 * device by writing '-blocked' to rd/state, and finally write 'remove' to
161 * rd/state. Before a disk can be replaced it must be failed and removed
162 * from all container members, this will be preemptive for the other
163 * arrays... safe?
164 *
165 * sync completes
166 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
167 * MaxSector
168 * Notify metadata that sync is complete.
169 *
170 * recovery completes
171 * sync_action changes from 'recover' to 'idle'
172 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
173 *
174 * deal with resync
175 * This only happens on finding a new array... mdadm will have set
176 * 'resync_start' to the correct value. If 'resync_start' indicates that an
177 * resync needs to occur set the array to the 'active' state rather than the
178 * initial read-auto state.
179 *
180 *
181 *
182 * We wait for a change (poll/select) on array_state, sync_action, and
183 * each rd-X/state file.
184 * When we get any change, we check everything. So read each state file,
185 * then decide what to do.
186 *
187 * The core action is to write new metadata to all devices in the array.
188 * This is done at most once on any wakeup.
189 * After that we might:
190 * - update the array_state
191 * - set the role of some devices.
192 * - request a sync_action
193 *
194 */
195
196 static int read_and_act(struct active_array *a)
197 {
198 int check_degraded = 0;
199 int deactivate = 0;
200 struct mdinfo *mdi;
201 int dirty = 0;
202
203 a->next_state = bad_word;
204 a->next_action = bad_action;
205
206 a->curr_state = read_state(a->info.state_fd);
207 a->curr_action = read_action(a->action_fd);
208 a->info.resync_start = read_resync_start(a->resync_start_fd);
209 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
210 mdi->next_state = 0;
211 if (mdi->state_fd >= 0) {
212 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
213 mdi->curr_state = read_dev_state(mdi->state_fd);
214 }
215 }
216
217 if (a->curr_state <= inactive &&
218 a->prev_state > inactive) {
219 /* array has been stopped */
220 a->container->ss->set_array_state(a, 1);
221 a->next_state = clear;
222 deactivate = 1;
223 }
224 if (a->curr_state == write_pending) {
225 a->container->ss->set_array_state(a, 0);
226 a->next_state = active;
227 dirty = 1;
228 }
229 if (a->curr_state == active_idle) {
230 /* Set array to 'clean' FIRST, then mark clean
231 * in the metadata
232 */
233 a->next_state = clean;
234 dirty = 1;
235 }
236 if (a->curr_state == clean) {
237 a->container->ss->set_array_state(a, 1);
238 }
239 if (a->curr_state == active ||
240 a->curr_state == suspended ||
241 a->curr_state == bad_word)
242 dirty = 1;
243 if (a->curr_state == readonly) {
244 /* Well, I'm ready to handle things. If readonly
245 * wasn't requested, transition to read-auto.
246 */
247 char buf[64];
248 read_attr(buf, sizeof(buf), a->metadata_fd);
249 if (strncmp(buf, "external:-", 10) == 0) {
250 /* explicit request for readonly array. Leave it alone */
251 ;
252 } else {
253 if (a->container->ss->set_array_state(a, 2))
254 a->next_state = read_auto; /* array is clean */
255 else {
256 a->next_state = active; /* Now active for recovery etc */
257 dirty = 1;
258 }
259 }
260 }
261
262 if (!deactivate &&
263 a->curr_action == idle &&
264 a->prev_action == resync) {
265 /* A resync has finished. The endpoint is recorded in
266 * 'sync_start'. We don't update the metadata
267 * until the array goes inactive or readonly though.
268 * Just check if we need to fiddle spares.
269 */
270 a->container->ss->set_array_state(a, a->curr_state <= clean);
271 check_degraded = 1;
272 }
273
274 if (!deactivate &&
275 a->curr_action == idle &&
276 a->prev_action == recover) {
277 /* A recovery has finished. Some disks may be in sync now,
278 * and the array may no longer be degraded
279 */
280 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
281 a->container->ss->set_disk(a, mdi->disk.raid_disk,
282 mdi->curr_state);
283 if (! (mdi->curr_state & DS_INSYNC))
284 check_degraded = 1;
285 }
286 }
287
288 /* Check for failures and if found:
289 * 1/ Record the failure in the metadata and unblock the device.
290 * FIXME update the kernel to stop notifying on failed drives when
291 * the array is readonly and we have cleared 'blocked'
292 * 2/ Try to remove the device if the array is writable, or can be
293 * made writable.
294 */
295 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
296 if (mdi->curr_state & DS_FAULTY) {
297 a->container->ss->set_disk(a, mdi->disk.raid_disk,
298 mdi->curr_state);
299 check_degraded = 1;
300 mdi->next_state |= DS_UNBLOCK;
301 if (a->curr_state == read_auto) {
302 a->container->ss->set_array_state(a, 0);
303 a->next_state = active;
304 }
305 if (a->curr_state > readonly)
306 mdi->next_state |= DS_REMOVE;
307 }
308 }
309
310 a->container->ss->sync_metadata(a->container);
311 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
312 array_states[a->curr_state], sync_actions[a->curr_action]);
313
314 /* Effect state changes in the array */
315 if (a->next_state != bad_word) {
316 dprintf(" state:%s", array_states[a->next_state]);
317 write_attr(array_states[a->next_state], a->info.state_fd);
318 }
319 if (a->next_action != bad_action) {
320 write_attr(sync_actions[a->next_action], a->action_fd);
321 dprintf(" action:%s", sync_actions[a->next_action]);
322 }
323 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
324 if (mdi->next_state & DS_UNBLOCK) {
325 dprintf(" %d:-blocked", mdi->disk.raid_disk);
326 write_attr("-blocked", mdi->state_fd);
327 }
328
329 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
330 int remove_result;
331
332 /* the kernel may not be able to immediately remove the
333 * disk, we can simply wait until the next event to try
334 * again.
335 */
336 remove_result = write_attr("remove", mdi->state_fd);
337 if (remove_result > 0) {
338 dprintf(" %d:removed", mdi->disk.raid_disk);
339 close(mdi->state_fd);
340 mdi->state_fd = -1;
341 }
342 }
343 if (mdi->next_state & DS_INSYNC) {
344 write_attr("+in_sync", mdi->state_fd);
345 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
346 }
347 }
348 dprintf(" )\n");
349
350 /* move curr_ to prev_ */
351 a->prev_state = a->curr_state;
352
353 a->prev_action = a->curr_action;
354
355 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
356 mdi->prev_state = mdi->curr_state;
357 mdi->next_state = 0;
358 }
359
360 if (check_degraded) {
361 /* manager will do the actual check */
362 a->check_degraded = 1;
363 signal_manager();
364 }
365
366 if (deactivate)
367 a->container = NULL;
368
369 return dirty;
370 }
371
372 static struct mdinfo *
373 find_device(struct active_array *a, int major, int minor)
374 {
375 struct mdinfo *mdi;
376
377 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
378 if (mdi->disk.major == major && mdi->disk.minor == minor)
379 return mdi;
380
381 return NULL;
382 }
383
384 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
385 {
386 struct active_array *a;
387 struct mdinfo *victim;
388
389 for (a = aa; a; a = a->next) {
390 if (!a->container)
391 continue;
392 victim = find_device(a, failed->disk.major, failed->disk.minor);
393 if (!victim)
394 continue;
395
396 if (!(victim->curr_state & DS_FAULTY))
397 write_attr("faulty", victim->state_fd);
398 }
399 }
400
401 #ifdef DEBUG
402 static void dprint_wake_reasons(fd_set *fds)
403 {
404 int i;
405 char proc_path[256];
406 char link[256];
407 char *basename;
408 int rv;
409
410 fprintf(stderr, "monitor: wake ( ");
411 for (i = 0; i < FD_SETSIZE; i++) {
412 if (FD_ISSET(i, fds)) {
413 sprintf(proc_path, "/proc/%d/fd/%d",
414 (int) getpid(), i);
415
416 rv = readlink(proc_path, link, sizeof(link) - 1);
417 if (rv < 0) {
418 fprintf(stderr, "%d:unknown ", i);
419 continue;
420 }
421 link[rv] = '\0';
422 basename = strrchr(link, '/');
423 fprintf(stderr, "%d:%s ",
424 i, basename ? ++basename : link);
425 }
426 }
427 fprintf(stderr, ")\n");
428 }
429 #endif
430
431 int monitor_loop_cnt;
432
433 static int wait_and_act(struct supertype *container, int nowait)
434 {
435 fd_set rfds;
436 int maxfd = 0;
437 struct active_array **aap = &container->arrays;
438 struct active_array *a, **ap;
439 int rv;
440 struct mdinfo *mdi;
441 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
442
443 FD_ZERO(&rfds);
444
445 for (ap = aap ; *ap ;) {
446 a = *ap;
447 /* once an array has been deactivated we want to
448 * ask the manager to discard it.
449 */
450 if (!a->container) {
451 if (discard_this) {
452 ap = &(*ap)->next;
453 continue;
454 }
455 *ap = a->next;
456 a->next = NULL;
457 discard_this = a;
458 signal_manager();
459 continue;
460 }
461
462 add_fd(&rfds, &maxfd, a->info.state_fd);
463 add_fd(&rfds, &maxfd, a->action_fd);
464 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
465 add_fd(&rfds, &maxfd, mdi->state_fd);
466
467 ap = &(*ap)->next;
468 }
469
470 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
471 /* No interesting arrays, or we have been told to
472 * terminate and everything is clean. Lets see about
473 * exiting. Note that blocking at this point is not a
474 * problem as there are no active arrays, there is
475 * nothing that we need to be ready to do.
476 */
477 int fd = open_dev_excl(container->devnum);
478 if (fd >= 0 || errno != EBUSY) {
479 /* OK, we are safe to leave */
480 if (sigterm && !dirty_arrays)
481 dprintf("caught sigterm, all clean... exiting\n");
482 else
483 dprintf("no arrays to monitor... exiting\n");
484 remove_pidfile(container->devname);
485 exit_now = 1;
486 signal_manager();
487 exit(0);
488 }
489 }
490
491 if (!nowait) {
492 sigset_t set;
493 sigprocmask(SIG_UNBLOCK, NULL, &set);
494 sigdelset(&set, SIGUSR1);
495 monitor_loop_cnt |= 1;
496 rv = pselect(maxfd+1, NULL, NULL, &rfds, NULL, &set);
497 monitor_loop_cnt += 1;
498 if (rv == -1 && errno == EINTR)
499 rv = 0;
500 #ifdef DEBUG
501 dprint_wake_reasons(&rfds);
502 #endif
503
504 }
505
506 if (update_queue) {
507 struct metadata_update *this;
508
509 for (this = update_queue; this ; this = this->next)
510 container->ss->process_update(container, this);
511
512 update_queue_handled = update_queue;
513 update_queue = NULL;
514 signal_manager();
515 container->ss->sync_metadata(container);
516 }
517
518 rv = 0;
519 dirty_arrays = 0;
520 for (a = *aap; a ; a = a->next) {
521 int is_dirty;
522
523 if (a->replaces && !discard_this) {
524 struct active_array **ap;
525 for (ap = &a->next; *ap && *ap != a->replaces;
526 ap = & (*ap)->next)
527 ;
528 if (*ap)
529 *ap = (*ap)->next;
530 discard_this = a->replaces;
531 a->replaces = NULL;
532 /* FIXME check if device->state_fd need to be cleared?*/
533 signal_manager();
534 }
535 if (a->container) {
536 is_dirty = read_and_act(a);
537 rv |= 1;
538 dirty_arrays += is_dirty;
539 /* when terminating stop manipulating the array after it
540 * is clean, but make sure read_and_act() is given a
541 * chance to handle 'active_idle'
542 */
543 if (sigterm && !is_dirty)
544 a->container = NULL; /* stop touching this array */
545 }
546 }
547
548 /* propagate failures across container members */
549 for (a = *aap; a ; a = a->next) {
550 if (!a->container)
551 continue;
552 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
553 if (mdi->curr_state & DS_FAULTY)
554 reconcile_failed(*aap, mdi);
555 }
556
557 return rv;
558 }
559
560 void do_monitor(struct supertype *container)
561 {
562 int rv;
563 int first = 1;
564 do {
565 rv = wait_and_act(container, first);
566 first = 0;
567 } while (rv >= 0);
568 }