]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
monitor: don't call pselect() on deleted sysfs files
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 struct stat st;
42 if (fd < 0)
43 return;
44 if (fstat(fd, &st) == -1) {
45 dprintf("%s: Invalid fd %d\n", __func__, fd);
46 return;
47 }
48 if (st.st_nlink == 0) {
49 dprintf("%s: fd %d was deleted\n", __func__, fd);
50 return;
51 }
52 if (fd > *maxfd)
53 *maxfd = fd;
54 FD_SET(fd, fds);
55 }
56
57 static int read_attr(char *buf, int len, int fd)
58 {
59 int n;
60
61 if (fd < 0) {
62 buf[0] = 0;
63 return 0;
64 }
65 lseek(fd, 0, 0);
66 n = read(fd, buf, len - 1);
67
68 if (n <= 0) {
69 buf[0] = 0;
70 return 0;
71 }
72 buf[n] = 0;
73 if (buf[n-1] == '\n')
74 buf[n-1] = 0;
75 return n;
76 }
77
78 static unsigned long long read_resync_start(int fd)
79 {
80 char buf[30];
81 int n;
82
83 n = read_attr(buf, 30, fd);
84 if (n <= 0)
85 return 0;
86 if (strncmp(buf, "none", 4) == 0)
87 return MaxSector;
88 else
89 return strtoull(buf, NULL, 10);
90 }
91
92 static unsigned long long read_sync_completed(int fd)
93 {
94 unsigned long long val;
95 char buf[50];
96 int n;
97 char *ep;
98
99 n = read_attr(buf, 50, fd);
100
101 if (n <= 0)
102 return 0;
103 buf[n] = 0;
104 val = strtoull(buf, &ep, 0);
105 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
106 return 0;
107 return val;
108 }
109
110 static enum array_state read_state(int fd)
111 {
112 char buf[20];
113 int n = read_attr(buf, 20, fd);
114
115 if (n <= 0)
116 return bad_word;
117 return (enum array_state) sysfs_match_word(buf, array_states);
118 }
119
120 static enum sync_action read_action( int fd)
121 {
122 char buf[20];
123 int n = read_attr(buf, 20, fd);
124
125 if (n <= 0)
126 return bad_action;
127 return (enum sync_action) sysfs_match_word(buf, sync_actions);
128 }
129
130 int read_dev_state(int fd)
131 {
132 char buf[60];
133 int n = read_attr(buf, 60, fd);
134 char *cp;
135 int rv = 0;
136
137 if (n <= 0)
138 return 0;
139
140 cp = buf;
141 while (cp) {
142 if (sysfs_attr_match(cp, "faulty"))
143 rv |= DS_FAULTY;
144 if (sysfs_attr_match(cp, "in_sync"))
145 rv |= DS_INSYNC;
146 if (sysfs_attr_match(cp, "write_mostly"))
147 rv |= DS_WRITE_MOSTLY;
148 if (sysfs_attr_match(cp, "spare"))
149 rv |= DS_SPARE;
150 if (sysfs_attr_match(cp, "blocked"))
151 rv |= DS_BLOCKED;
152 cp = strchr(cp, ',');
153 if (cp)
154 cp++;
155 }
156 return rv;
157 }
158
159 static void signal_manager(void)
160 {
161 /* tgkill(getpid(), mon_tid, SIGUSR1); */
162 int pid = getpid();
163 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
164 }
165
166 /* Monitor a set of active md arrays - all of which share the
167 * same metadata - and respond to events that require
168 * metadata update.
169 *
170 * New arrays are detected by another thread which allocates
171 * required memory and attaches the data structure to our list.
172 *
173 * Events:
174 * Array stops.
175 * This is detected by array_state going to 'clear' or 'inactive'.
176 * while we thought it was active.
177 * Response is to mark metadata as clean and 'clear' the array(??)
178 * write-pending
179 * array_state if 'write-pending'
180 * We mark metadata as 'dirty' then set array to 'active'.
181 * active_idle
182 * Either ignore, or mark clean, then mark metadata as clean.
183 *
184 * device fails
185 * detected by rd-N/state reporting "faulty"
186 * mark device as 'failed' in metadata, let the kernel release the
187 * device by writing '-blocked' to rd/state, and finally write 'remove' to
188 * rd/state. Before a disk can be replaced it must be failed and removed
189 * from all container members, this will be preemptive for the other
190 * arrays... safe?
191 *
192 * sync completes
193 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
194 * MaxSector
195 * Notify metadata that sync is complete.
196 *
197 * recovery completes
198 * sync_action changes from 'recover' to 'idle'
199 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
200 *
201 * deal with resync
202 * This only happens on finding a new array... mdadm will have set
203 * 'resync_start' to the correct value. If 'resync_start' indicates that an
204 * resync needs to occur set the array to the 'active' state rather than the
205 * initial read-auto state.
206 *
207 *
208 *
209 * We wait for a change (poll/select) on array_state, sync_action, and
210 * each rd-X/state file.
211 * When we get any change, we check everything. So read each state file,
212 * then decide what to do.
213 *
214 * The core action is to write new metadata to all devices in the array.
215 * This is done at most once on any wakeup.
216 * After that we might:
217 * - update the array_state
218 * - set the role of some devices.
219 * - request a sync_action
220 *
221 */
222
223 #define ARRAY_DIRTY 1
224 #define ARRAY_BUSY 2
225 static int read_and_act(struct active_array *a)
226 {
227 unsigned long long sync_completed;
228 int check_degraded = 0;
229 int check_reshape = 0;
230 int deactivate = 0;
231 struct mdinfo *mdi;
232 int ret = 0;
233 int count = 0;
234
235 a->next_state = bad_word;
236 a->next_action = bad_action;
237
238 a->curr_state = read_state(a->info.state_fd);
239 a->curr_action = read_action(a->action_fd);
240 a->info.resync_start = read_resync_start(a->resync_start_fd);
241 sync_completed = read_sync_completed(a->sync_completed_fd);
242 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
243 mdi->next_state = 0;
244 mdi->curr_state = 0;
245 if (mdi->state_fd >= 0) {
246 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
247 mdi->curr_state = read_dev_state(mdi->state_fd);
248 }
249 }
250
251 if (a->curr_state > inactive &&
252 a->prev_state == inactive) {
253 /* array has been started
254 * possible that container operation has to be completed
255 */
256 a->container->ss->set_array_state(a, 0);
257 }
258 if (a->curr_state <= inactive &&
259 a->prev_state > inactive) {
260 /* array has been stopped */
261 a->container->ss->set_array_state(a, 1);
262 a->next_state = clear;
263 deactivate = 1;
264 }
265 if (a->curr_state == write_pending) {
266 a->container->ss->set_array_state(a, 0);
267 a->next_state = active;
268 ret |= ARRAY_DIRTY;
269 }
270 if (a->curr_state == active_idle) {
271 /* Set array to 'clean' FIRST, then mark clean
272 * in the metadata
273 */
274 a->next_state = clean;
275 ret |= ARRAY_DIRTY;
276 }
277 if (a->curr_state == clean) {
278 a->container->ss->set_array_state(a, 1);
279 }
280 if (a->curr_state == active ||
281 a->curr_state == suspended ||
282 a->curr_state == bad_word)
283 ret |= ARRAY_DIRTY;
284 if (a->curr_state == readonly) {
285 /* Well, I'm ready to handle things. If readonly
286 * wasn't requested, transition to read-auto.
287 */
288 char buf[64];
289 read_attr(buf, sizeof(buf), a->metadata_fd);
290 if (strncmp(buf, "external:-", 10) == 0) {
291 /* explicit request for readonly array. Leave it alone */
292 ;
293 } else {
294 if (a->container->ss->set_array_state(a, 2))
295 a->next_state = read_auto; /* array is clean */
296 else {
297 a->next_state = active; /* Now active for recovery etc */
298 ret |= ARRAY_DIRTY;
299 }
300 }
301 }
302
303 if (!deactivate &&
304 a->curr_action == idle &&
305 a->prev_action == resync) {
306 /* A resync has finished. The endpoint is recorded in
307 * 'sync_start'. We don't update the metadata
308 * until the array goes inactive or readonly though.
309 * Just check if we need to fiddle spares.
310 */
311 a->container->ss->set_array_state(a, a->curr_state <= clean);
312 check_degraded = 1;
313 }
314
315 if (!deactivate &&
316 a->curr_action == idle &&
317 a->prev_action == recover) {
318 /* A recovery has finished. Some disks may be in sync now,
319 * and the array may no longer be degraded
320 */
321 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
322 a->container->ss->set_disk(a, mdi->disk.raid_disk,
323 mdi->curr_state);
324 if (! (mdi->curr_state & DS_INSYNC))
325 check_degraded = 1;
326 count++;
327 }
328 if (count != a->info.array.raid_disks)
329 check_degraded = 1;
330 }
331
332 if (!deactivate &&
333 a->curr_action == reshape &&
334 a->prev_action != reshape)
335 /* reshape was requested by mdadm. Need to see if
336 * new devices have been added. Manager does that
337 * when it sees check_reshape
338 */
339 check_reshape = 1;
340
341 /* Check for failures and if found:
342 * 1/ Record the failure in the metadata and unblock the device.
343 * FIXME update the kernel to stop notifying on failed drives when
344 * the array is readonly and we have cleared 'blocked'
345 * 2/ Try to remove the device if the array is writable, or can be
346 * made writable.
347 */
348 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
349 if (mdi->curr_state & DS_FAULTY) {
350 a->container->ss->set_disk(a, mdi->disk.raid_disk,
351 mdi->curr_state);
352 check_degraded = 1;
353 if (mdi->curr_state & DS_BLOCKED)
354 mdi->next_state |= DS_UNBLOCK;
355 if (a->curr_state == read_auto) {
356 a->container->ss->set_array_state(a, 0);
357 a->next_state = active;
358 }
359 if (a->curr_state > readonly)
360 mdi->next_state |= DS_REMOVE;
361 }
362 }
363
364 /* Check for recovery checkpoint notifications. We need to be a
365 * minimum distance away from the last checkpoint to prevent
366 * over checkpointing. Note reshape checkpointing is handled
367 * in the second branch.
368 */
369 if (sync_completed > a->last_checkpoint &&
370 sync_completed - a->last_checkpoint > a->info.component_size >> 4 &&
371 a->curr_action > reshape) {
372 /* A (non-reshape) sync_action has reached a checkpoint.
373 * Record the updated position in the metadata
374 */
375 a->last_checkpoint = sync_completed;
376 a->container->ss->set_array_state(a, a->curr_state <= clean);
377 } else if ((a->curr_action == idle && a->prev_action == reshape) ||
378 (a->curr_action == reshape
379 && sync_completed > a->last_checkpoint) ) {
380 /* Reshape has progressed or completed so we need to
381 * update the array state - and possibly the array size
382 */
383 if (sync_completed != 0)
384 a->last_checkpoint = sync_completed;
385 /* We might need to update last_checkpoint depending on
386 * the reason that reshape finished.
387 * if array reshape is really finished:
388 * set check point to the end, this allows
389 * set_array_state() to finalize reshape in metadata
390 * if reshape if broken: do not set checkpoint to the end
391 * this allows for reshape restart from checkpoint
392 */
393 if ((a->curr_action != reshape) &&
394 (a->prev_action == reshape)) {
395 char buf[40];
396 if ((sysfs_get_str(&a->info, NULL,
397 "reshape_position",
398 buf,
399 sizeof(buf)) >= 0) &&
400 strncmp(buf, "none", 4) == 0)
401 a->last_checkpoint = a->info.component_size;
402 }
403 a->container->ss->set_array_state(a, a->curr_state <= clean);
404 a->last_checkpoint = sync_completed;
405 }
406
407 if (sync_completed > a->last_checkpoint)
408 a->last_checkpoint = sync_completed;
409
410 a->container->ss->sync_metadata(a->container);
411 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
412 array_states[a->curr_state], sync_actions[a->curr_action]);
413
414 /* Effect state changes in the array */
415 if (a->next_state != bad_word) {
416 dprintf(" state:%s", array_states[a->next_state]);
417 write_attr(array_states[a->next_state], a->info.state_fd);
418 }
419 if (a->next_action != bad_action) {
420 write_attr(sync_actions[a->next_action], a->action_fd);
421 dprintf(" action:%s", sync_actions[a->next_action]);
422 }
423 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
424 if (mdi->next_state & DS_UNBLOCK) {
425 dprintf(" %d:-blocked", mdi->disk.raid_disk);
426 write_attr("-blocked", mdi->state_fd);
427 }
428
429 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
430 int remove_result;
431
432 /* The kernel may not be able to immediately remove the
433 * disk. In that case we wait a little while and
434 * try again.
435 */
436 remove_result = write_attr("remove", mdi->state_fd);
437 if (remove_result > 0) {
438 dprintf(" %d:removed", mdi->disk.raid_disk);
439 close(mdi->state_fd);
440 close(mdi->recovery_fd);
441 mdi->state_fd = -1;
442 } else
443 ret |= ARRAY_BUSY;
444 }
445 if (mdi->next_state & DS_INSYNC) {
446 write_attr("+in_sync", mdi->state_fd);
447 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
448 }
449 }
450 dprintf(" )\n");
451
452 /* move curr_ to prev_ */
453 a->prev_state = a->curr_state;
454
455 a->prev_action = a->curr_action;
456
457 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
458 mdi->prev_state = mdi->curr_state;
459 mdi->next_state = 0;
460 }
461
462 if (check_degraded || check_reshape) {
463 /* manager will do the actual check */
464 if (check_degraded)
465 a->check_degraded = 1;
466 if (check_reshape)
467 a->check_reshape = 1;
468 signal_manager();
469 }
470
471 if (deactivate)
472 a->container = NULL;
473
474 return ret;
475 }
476
477 static struct mdinfo *
478 find_device(struct active_array *a, int major, int minor)
479 {
480 struct mdinfo *mdi;
481
482 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
483 if (mdi->disk.major == major && mdi->disk.minor == minor)
484 return mdi;
485
486 return NULL;
487 }
488
489 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
490 {
491 struct active_array *a;
492 struct mdinfo *victim;
493
494 for (a = aa; a; a = a->next) {
495 if (!a->container || a->to_remove)
496 continue;
497 victim = find_device(a, failed->disk.major, failed->disk.minor);
498 if (!victim)
499 continue;
500
501 if (!(victim->curr_state & DS_FAULTY))
502 write_attr("faulty", victim->state_fd);
503 }
504 }
505
506 #ifdef DEBUG
507 static void dprint_wake_reasons(fd_set *fds)
508 {
509 int i;
510 char proc_path[256];
511 char link[256];
512 char *basename;
513 int rv;
514
515 fprintf(stderr, "monitor: wake ( ");
516 for (i = 0; i < FD_SETSIZE; i++) {
517 if (FD_ISSET(i, fds)) {
518 sprintf(proc_path, "/proc/%d/fd/%d",
519 (int) getpid(), i);
520
521 rv = readlink(proc_path, link, sizeof(link) - 1);
522 if (rv < 0) {
523 fprintf(stderr, "%d:unknown ", i);
524 continue;
525 }
526 link[rv] = '\0';
527 basename = strrchr(link, '/');
528 fprintf(stderr, "%d:%s ",
529 i, basename ? ++basename : link);
530 }
531 }
532 fprintf(stderr, ")\n");
533 }
534 #endif
535
536 int monitor_loop_cnt;
537
538 static int wait_and_act(struct supertype *container, int nowait)
539 {
540 fd_set rfds;
541 int maxfd = 0;
542 struct active_array **aap = &container->arrays;
543 struct active_array *a, **ap;
544 int rv;
545 struct mdinfo *mdi;
546 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
547
548 FD_ZERO(&rfds);
549
550 for (ap = aap ; *ap ;) {
551 a = *ap;
552 /* once an array has been deactivated we want to
553 * ask the manager to discard it.
554 */
555 if (!a->container || a->to_remove) {
556 if (discard_this) {
557 ap = &(*ap)->next;
558 continue;
559 }
560 *ap = a->next;
561 a->next = NULL;
562 discard_this = a;
563 signal_manager();
564 continue;
565 }
566
567 add_fd(&rfds, &maxfd, a->info.state_fd);
568 add_fd(&rfds, &maxfd, a->action_fd);
569 add_fd(&rfds, &maxfd, a->sync_completed_fd);
570 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
571 add_fd(&rfds, &maxfd, mdi->state_fd);
572
573 ap = &(*ap)->next;
574 }
575
576 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
577 /* No interesting arrays, or we have been told to
578 * terminate and everything is clean. Lets see about
579 * exiting. Note that blocking at this point is not a
580 * problem as there are no active arrays, there is
581 * nothing that we need to be ready to do.
582 */
583 int fd;
584 if (sigterm)
585 fd = open_dev_excl(container->devnm);
586 else
587 fd = open_dev_flags(container->devnm, O_RDONLY|O_EXCL);
588 if (fd >= 0 || errno != EBUSY) {
589 /* OK, we are safe to leave */
590 if (sigterm && !dirty_arrays)
591 dprintf("caught sigterm, all clean... exiting\n");
592 else
593 dprintf("no arrays to monitor... exiting\n");
594 if (!sigterm)
595 /* On SIGTERM, someone (the take-over mdmon) will
596 * clean up
597 */
598 remove_pidfile(container->devnm);
599 exit_now = 1;
600 signal_manager();
601 close(fd);
602 exit(0);
603 }
604 }
605
606 if (!nowait) {
607 sigset_t set;
608 struct timespec ts;
609 ts.tv_sec = 24*3600;
610 ts.tv_nsec = 0;
611 if (*aap == NULL || container->retry_soon) {
612 /* just waiting to get O_EXCL access */
613 ts.tv_sec = 0;
614 ts.tv_nsec = 20000000ULL;
615 }
616 sigprocmask(SIG_UNBLOCK, NULL, &set);
617 sigdelset(&set, SIGUSR1);
618 monitor_loop_cnt |= 1;
619 rv = pselect(maxfd+1, NULL, NULL, &rfds, &ts, &set);
620 monitor_loop_cnt += 1;
621 if (rv == -1 && errno == EINTR)
622 rv = 0;
623 #ifdef DEBUG
624 dprint_wake_reasons(&rfds);
625 #endif
626 container->retry_soon = 0;
627 }
628
629 if (update_queue) {
630 struct metadata_update *this;
631
632 for (this = update_queue; this ; this = this->next)
633 container->ss->process_update(container, this);
634
635 update_queue_handled = update_queue;
636 update_queue = NULL;
637 signal_manager();
638 container->ss->sync_metadata(container);
639 }
640
641 rv = 0;
642 dirty_arrays = 0;
643 for (a = *aap; a ; a = a->next) {
644
645 if (a->replaces && !discard_this) {
646 struct active_array **ap;
647 for (ap = &a->next; *ap && *ap != a->replaces;
648 ap = & (*ap)->next)
649 ;
650 if (*ap)
651 *ap = (*ap)->next;
652 discard_this = a->replaces;
653 a->replaces = NULL;
654 /* FIXME check if device->state_fd need to be cleared?*/
655 signal_manager();
656 }
657 if (a->container && !a->to_remove) {
658 int ret = read_and_act(a);
659 rv |= 1;
660 dirty_arrays += !!(ret & ARRAY_DIRTY);
661 /* when terminating stop manipulating the array after it
662 * is clean, but make sure read_and_act() is given a
663 * chance to handle 'active_idle'
664 */
665 if (sigterm && !(ret & ARRAY_DIRTY))
666 a->container = NULL; /* stop touching this array */
667 if (ret & ARRAY_BUSY)
668 container->retry_soon = 1;
669 }
670 }
671
672 /* propagate failures across container members */
673 for (a = *aap; a ; a = a->next) {
674 if (!a->container || a->to_remove)
675 continue;
676 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
677 if (mdi->curr_state & DS_FAULTY)
678 reconcile_failed(*aap, mdi);
679 }
680
681 return rv;
682 }
683
684 void do_monitor(struct supertype *container)
685 {
686 int rv;
687 int first = 1;
688 do {
689 rv = wait_and_act(container, first);
690 first = 0;
691 } while (rv >= 0);
692 }