]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Fix some compiler warnings.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static unsigned int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 unsigned int i;
646 unsigned int confsec;
647 int vnum;
648 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
649 unsigned long long dsize;
650
651 /* First the local disk info */
652 if (posix_memalign((void**)&dl, 512,
653 sizeof(*dl) +
654 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
655 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
656 __func__);
657 return 1;
658 }
659
660 load_section(fd, super, &dl->disk,
661 super->active->data_section_offset,
662 super->active->data_section_length,
663 0);
664 dl->devname = devname ? strdup(devname) : NULL;
665
666 fstat(fd, &stb);
667 dl->major = major(stb.st_rdev);
668 dl->minor = minor(stb.st_rdev);
669 dl->next = super->dlist;
670 dl->fd = keep ? fd : -1;
671
672 dl->size = 0;
673 if (get_dev_size(fd, devname, &dsize))
674 dl->size = dsize >> 9;
675 dl->spare = NULL;
676 for (i = 0 ; i < super->max_part ; i++)
677 dl->vlist[i] = NULL;
678 super->dlist = dl;
679 dl->pdnum = -1;
680 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
681 if (memcmp(super->phys->entries[i].guid,
682 dl->disk.guid, DDF_GUID_LEN) == 0)
683 dl->pdnum = i;
684
685 /* Now the config list. */
686 /* 'conf' is an array of config entries, some of which are
687 * probably invalid. Those which are good need to be copied into
688 * the conflist
689 */
690
691 conf = load_section(fd, super, NULL,
692 super->active->config_section_offset,
693 super->active->config_section_length,
694 0);
695
696 vnum = 0;
697 for (confsec = 0;
698 confsec < __be32_to_cpu(super->active->config_section_length);
699 confsec += super->conf_rec_len) {
700 struct vd_config *vd =
701 (struct vd_config *)((char*)conf + confsec*512);
702 struct vcl *vcl;
703
704 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
705 if (dl->spare)
706 continue;
707 if (posix_memalign((void**)&dl->spare, 512,
708 super->conf_rec_len*512) != 0) {
709 fprintf(stderr, Name
710 ": %s could not allocate spare info buf\n",
711 __func__);
712 return 1;
713 }
714
715 memcpy(dl->spare, vd, super->conf_rec_len*512);
716 continue;
717 }
718 if (vd->magic != DDF_VD_CONF_MAGIC)
719 continue;
720 for (vcl = super->conflist; vcl; vcl = vcl->next) {
721 if (memcmp(vcl->conf.guid,
722 vd->guid, DDF_GUID_LEN) == 0)
723 break;
724 }
725
726 if (vcl) {
727 dl->vlist[vnum++] = vcl;
728 if (__be32_to_cpu(vd->seqnum) <=
729 __be32_to_cpu(vcl->conf.seqnum))
730 continue;
731 } else {
732 if (posix_memalign((void**)&vcl, 512,
733 (super->conf_rec_len*512 +
734 offsetof(struct vcl, conf))) != 0) {
735 fprintf(stderr, Name
736 ": %s could not allocate vcl buf\n",
737 __func__);
738 return 1;
739 }
740 vcl->next = super->conflist;
741 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
742 super->conflist = vcl;
743 dl->vlist[vnum++] = vcl;
744 }
745 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
746 vcl->lba_offset = (__u64*)
747 &vcl->conf.phys_refnum[super->mppe];
748
749 for (i=0; i < max_virt_disks ; i++)
750 if (memcmp(super->virt->entries[i].guid,
751 vcl->conf.guid, DDF_GUID_LEN)==0)
752 break;
753 if (i < max_virt_disks)
754 vcl->vcnum = i;
755 }
756 free(conf);
757
758 return 0;
759 }
760
761 #ifndef MDASSEMBLE
762 static int load_super_ddf_all(struct supertype *st, int fd,
763 void **sbp, char *devname);
764 #endif
765
766 static void free_super_ddf(struct supertype *st);
767
768 static int load_super_ddf(struct supertype *st, int fd,
769 char *devname)
770 {
771 unsigned long long dsize;
772 struct ddf_super *super;
773 int rv;
774
775 if (get_dev_size(fd, devname, &dsize) == 0)
776 return 1;
777
778 if (test_partition(fd))
779 /* DDF is not allowed on partitions */
780 return 1;
781
782 /* 32M is a lower bound */
783 if (dsize <= 32*1024*1024) {
784 if (devname)
785 fprintf(stderr,
786 Name ": %s is too small for ddf: "
787 "size is %llu sectors.\n",
788 devname, dsize>>9);
789 return 1;
790 }
791 if (dsize & 511) {
792 if (devname)
793 fprintf(stderr,
794 Name ": %s is an odd size for ddf: "
795 "size is %llu bytes.\n",
796 devname, dsize);
797 return 1;
798 }
799
800 free_super_ddf(st);
801
802 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
803 fprintf(stderr, Name ": malloc of %zu failed.\n",
804 sizeof(*super));
805 return 1;
806 }
807 memset(super, 0, sizeof(*super));
808
809 rv = load_ddf_headers(fd, super, devname);
810 if (rv) {
811 free(super);
812 return rv;
813 }
814
815 /* Have valid headers and have chosen the best. Let's read in the rest*/
816
817 rv = load_ddf_global(fd, super, devname);
818
819 if (rv) {
820 if (devname)
821 fprintf(stderr,
822 Name ": Failed to load all information "
823 "sections on %s\n", devname);
824 free(super);
825 return rv;
826 }
827
828 rv = load_ddf_local(fd, super, devname, 0);
829
830 if (rv) {
831 if (devname)
832 fprintf(stderr,
833 Name ": Failed to load all information "
834 "sections on %s\n", devname);
835 free(super);
836 return rv;
837 }
838
839 /* Should possibly check the sections .... */
840
841 st->sb = super;
842 if (st->ss == NULL) {
843 st->ss = &super_ddf;
844 st->minor_version = 0;
845 st->max_devs = 512;
846 }
847 return 0;
848
849 }
850
851 static void free_super_ddf(struct supertype *st)
852 {
853 struct ddf_super *ddf = st->sb;
854 if (ddf == NULL)
855 return;
856 free(ddf->phys);
857 free(ddf->virt);
858 while (ddf->conflist) {
859 struct vcl *v = ddf->conflist;
860 ddf->conflist = v->next;
861 if (v->block_sizes)
862 free(v->block_sizes);
863 free(v);
864 }
865 while (ddf->dlist) {
866 struct dl *d = ddf->dlist;
867 ddf->dlist = d->next;
868 if (d->fd >= 0)
869 close(d->fd);
870 if (d->spare)
871 free(d->spare);
872 free(d);
873 }
874 while (ddf->add_list) {
875 struct dl *d = ddf->add_list;
876 ddf->add_list = d->next;
877 if (d->fd >= 0)
878 close(d->fd);
879 if (d->spare)
880 free(d->spare);
881 free(d);
882 }
883 free(ddf);
884 st->sb = NULL;
885 }
886
887 static struct supertype *match_metadata_desc_ddf(char *arg)
888 {
889 /* 'ddf' only support containers */
890 struct supertype *st;
891 if (strcmp(arg, "ddf") != 0 &&
892 strcmp(arg, "default") != 0
893 )
894 return NULL;
895
896 st = malloc(sizeof(*st));
897 memset(st, 0, sizeof(*st));
898 st->container_dev = NoMdDev;
899 st->ss = &super_ddf;
900 st->max_devs = 512;
901 st->minor_version = 0;
902 st->sb = NULL;
903 return st;
904 }
905
906
907 #ifndef MDASSEMBLE
908
909 static mapping_t ddf_state[] = {
910 { "Optimal", 0},
911 { "Degraded", 1},
912 { "Deleted", 2},
913 { "Missing", 3},
914 { "Failed", 4},
915 { "Partially Optimal", 5},
916 { "-reserved-", 6},
917 { "-reserved-", 7},
918 { NULL, 0}
919 };
920
921 static mapping_t ddf_init_state[] = {
922 { "Not Initialised", 0},
923 { "QuickInit in Progress", 1},
924 { "Fully Initialised", 2},
925 { "*UNKNOWN*", 3},
926 { NULL, 0}
927 };
928 static mapping_t ddf_access[] = {
929 { "Read/Write", 0},
930 { "Reserved", 1},
931 { "Read Only", 2},
932 { "Blocked (no access)", 3},
933 { NULL ,0}
934 };
935
936 static mapping_t ddf_level[] = {
937 { "RAID0", DDF_RAID0},
938 { "RAID1", DDF_RAID1},
939 { "RAID3", DDF_RAID3},
940 { "RAID4", DDF_RAID4},
941 { "RAID5", DDF_RAID5},
942 { "RAID1E",DDF_RAID1E},
943 { "JBOD", DDF_JBOD},
944 { "CONCAT",DDF_CONCAT},
945 { "RAID5E",DDF_RAID5E},
946 { "RAID5EE",DDF_RAID5EE},
947 { "RAID6", DDF_RAID6},
948 { NULL, 0}
949 };
950 static mapping_t ddf_sec_level[] = {
951 { "Striped", DDF_2STRIPED},
952 { "Mirrored", DDF_2MIRRORED},
953 { "Concat", DDF_2CONCAT},
954 { "Spanned", DDF_2SPANNED},
955 { NULL, 0}
956 };
957 #endif
958
959 struct num_mapping {
960 int num1, num2;
961 };
962 static struct num_mapping ddf_level_num[] = {
963 { DDF_RAID0, 0 },
964 { DDF_RAID1, 1 },
965 { DDF_RAID3, LEVEL_UNSUPPORTED },
966 { DDF_RAID4, 4 },
967 { DDF_RAID5, 5 },
968 { DDF_RAID1E, LEVEL_UNSUPPORTED },
969 { DDF_JBOD, LEVEL_UNSUPPORTED },
970 { DDF_CONCAT, LEVEL_LINEAR },
971 { DDF_RAID5E, LEVEL_UNSUPPORTED },
972 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
973 { DDF_RAID6, 6},
974 { MAXINT, MAXINT }
975 };
976
977 static int map_num1(struct num_mapping *map, int num)
978 {
979 int i;
980 for (i=0 ; map[i].num1 != MAXINT; i++)
981 if (map[i].num1 == num)
982 break;
983 return map[i].num2;
984 }
985
986 static int all_ff(char *guid)
987 {
988 int i;
989 for (i = 0; i < DDF_GUID_LEN; i++)
990 if (guid[i] != (char)0xff)
991 return 0;
992 return 1;
993 }
994
995 #ifndef MDASSEMBLE
996 static void print_guid(char *guid, int tstamp)
997 {
998 /* A GUIDs are part (or all) ASCII and part binary.
999 * They tend to be space padded.
1000 * We print the GUID in HEX, then in parentheses add
1001 * any initial ASCII sequence, and a possible
1002 * time stamp from bytes 16-19
1003 */
1004 int l = DDF_GUID_LEN;
1005 int i;
1006
1007 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1008 if ((i&3)==0 && i != 0) printf(":");
1009 printf("%02X", guid[i]&255);
1010 }
1011
1012 printf("\n (");
1013 while (l && guid[l-1] == ' ')
1014 l--;
1015 for (i=0 ; i<l ; i++) {
1016 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1017 fputc(guid[i], stdout);
1018 else
1019 break;
1020 }
1021 if (tstamp) {
1022 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1023 char tbuf[100];
1024 struct tm *tm;
1025 tm = localtime(&then);
1026 strftime(tbuf, 100, " %D %T",tm);
1027 fputs(tbuf, stdout);
1028 }
1029 printf(")");
1030 }
1031
1032 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1033 {
1034 int crl = sb->conf_rec_len;
1035 struct vcl *vcl;
1036
1037 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1038 unsigned int i;
1039 struct vd_config *vc = &vcl->conf;
1040
1041 if (calc_crc(vc, crl*512) != vc->crc)
1042 continue;
1043 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1044 continue;
1045
1046 /* Ok, we know about this VD, let's give more details */
1047 printf(" Raid Devices[%d] : %d (", n,
1048 __be16_to_cpu(vc->prim_elmnt_count));
1049 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1050 int j;
1051 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1052 for (j=0; j<cnt; j++)
1053 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1054 break;
1055 if (i) printf(" ");
1056 if (j < cnt)
1057 printf("%d", j);
1058 else
1059 printf("--");
1060 }
1061 printf(")\n");
1062 if (vc->chunk_shift != 255)
1063 printf(" Chunk Size[%d] : %d sectors\n", n,
1064 1 << vc->chunk_shift);
1065 printf(" Raid Level[%d] : %s\n", n,
1066 map_num(ddf_level, vc->prl)?:"-unknown-");
1067 if (vc->sec_elmnt_count != 1) {
1068 printf(" Secondary Position[%d] : %d of %d\n", n,
1069 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1070 printf(" Secondary Level[%d] : %s\n", n,
1071 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1072 }
1073 printf(" Device Size[%d] : %llu\n", n,
1074 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1075 printf(" Array Size[%d] : %llu\n", n,
1076 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1077 }
1078 }
1079
1080 static void examine_vds(struct ddf_super *sb)
1081 {
1082 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1083 int i;
1084 printf(" Virtual Disks : %d\n", cnt);
1085
1086 for (i=0; i<cnt; i++) {
1087 struct virtual_entry *ve = &sb->virt->entries[i];
1088 printf("\n");
1089 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1090 printf("\n");
1091 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1092 printf(" state[%d] : %s, %s%s\n", i,
1093 map_num(ddf_state, ve->state & 7),
1094 (ve->state & 8) ? "Morphing, ": "",
1095 (ve->state & 16)? "Not Consistent" : "Consistent");
1096 printf(" init state[%d] : %s\n", i,
1097 map_num(ddf_init_state, ve->init_state&3));
1098 printf(" access[%d] : %s\n", i,
1099 map_num(ddf_access, (ve->init_state>>6) & 3));
1100 printf(" Name[%d] : %.16s\n", i, ve->name);
1101 examine_vd(i, sb, ve->guid);
1102 }
1103 if (cnt) printf("\n");
1104 }
1105
1106 static void examine_pds(struct ddf_super *sb)
1107 {
1108 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1109 int i;
1110 struct dl *dl;
1111 printf(" Physical Disks : %d\n", cnt);
1112 printf(" Number RefNo Size Device Type/State\n");
1113
1114 for (i=0 ; i<cnt ; i++) {
1115 struct phys_disk_entry *pd = &sb->phys->entries[i];
1116 int type = __be16_to_cpu(pd->type);
1117 int state = __be16_to_cpu(pd->state);
1118
1119 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1120 //printf("\n");
1121 printf(" %3d %08x ", i,
1122 __be32_to_cpu(pd->refnum));
1123 printf("%8lluK ",
1124 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1125 for (dl = sb->dlist; dl ; dl = dl->next) {
1126 if (dl->disk.refnum == pd->refnum) {
1127 char *dv = map_dev(dl->major, dl->minor, 0);
1128 if (dv) {
1129 printf("%-15s", dv);
1130 break;
1131 }
1132 }
1133 }
1134 if (!dl)
1135 printf("%15s","");
1136 printf(" %s%s%s%s%s",
1137 (type&2) ? "active":"",
1138 (type&4) ? "Global-Spare":"",
1139 (type&8) ? "spare" : "",
1140 (type&16)? ", foreign" : "",
1141 (type&32)? "pass-through" : "");
1142 if (state & DDF_Failed)
1143 /* This over-rides these three */
1144 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1145 printf("/%s%s%s%s%s%s%s",
1146 (state&1)? "Online": "Offline",
1147 (state&2)? ", Failed": "",
1148 (state&4)? ", Rebuilding": "",
1149 (state&8)? ", in-transition": "",
1150 (state&16)? ", SMART-errors": "",
1151 (state&32)? ", Unrecovered-Read-Errors": "",
1152 (state&64)? ", Missing" : "");
1153 printf("\n");
1154 }
1155 }
1156
1157 static void examine_super_ddf(struct supertype *st, char *homehost)
1158 {
1159 struct ddf_super *sb = st->sb;
1160
1161 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1162 printf(" Version : %.8s\n", sb->anchor.revision);
1163 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1164 printf("\n");
1165 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1166 printf("\n");
1167 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1168 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1169 ?"yes" : "no");
1170 examine_vds(sb);
1171 examine_pds(sb);
1172 }
1173
1174 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1175
1176 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1177
1178 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1179 {
1180 /* We just write a generic DDF ARRAY entry
1181 */
1182 struct mdinfo info;
1183 char nbuf[64];
1184 getinfo_super_ddf(st, &info, NULL);
1185 fname_from_uuid(st, &info, nbuf, ':');
1186
1187 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1188 }
1189
1190 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1191 {
1192 /* We just write a generic DDF ARRAY entry
1193 */
1194 struct ddf_super *ddf = st->sb;
1195 struct mdinfo info;
1196 unsigned int i;
1197 char nbuf[64];
1198 getinfo_super_ddf(st, &info, NULL);
1199 fname_from_uuid(st, &info, nbuf, ':');
1200
1201 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1202 struct virtual_entry *ve = &ddf->virt->entries[i];
1203 struct vcl vcl;
1204 char nbuf1[64];
1205 if (all_ff(ve->guid))
1206 continue;
1207 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1208 ddf->currentconf =&vcl;
1209 uuid_from_super_ddf(st, info.uuid);
1210 fname_from_uuid(st, &info, nbuf1, ':');
1211 printf("ARRAY container=%s member=%d UUID=%s\n",
1212 nbuf+5, i, nbuf1+5);
1213 }
1214 }
1215
1216 static void export_examine_super_ddf(struct supertype *st)
1217 {
1218 struct mdinfo info;
1219 char nbuf[64];
1220 getinfo_super_ddf(st, &info, NULL);
1221 fname_from_uuid(st, &info, nbuf, ':');
1222 printf("MD_METADATA=ddf\n");
1223 printf("MD_LEVEL=container\n");
1224 printf("MD_UUID=%s\n", nbuf+5);
1225 }
1226
1227
1228 static void detail_super_ddf(struct supertype *st, char *homehost)
1229 {
1230 /* FIXME later
1231 * Could print DDF GUID
1232 * Need to find which array
1233 * If whole, briefly list all arrays
1234 * If one, give name
1235 */
1236 }
1237
1238 static void brief_detail_super_ddf(struct supertype *st)
1239 {
1240 /* FIXME I really need to know which array we are detailing.
1241 * Can that be stored in ddf_super??
1242 */
1243 // struct ddf_super *ddf = st->sb;
1244 struct mdinfo info;
1245 char nbuf[64];
1246 getinfo_super_ddf(st, &info, NULL);
1247 fname_from_uuid(st, &info, nbuf,':');
1248 printf(" UUID=%s", nbuf + 5);
1249 }
1250 #endif
1251
1252 static int match_home_ddf(struct supertype *st, char *homehost)
1253 {
1254 /* It matches 'this' host if the controller is a
1255 * Linux-MD controller with vendor_data matching
1256 * the hostname
1257 */
1258 struct ddf_super *ddf = st->sb;
1259 unsigned int len;
1260
1261 if (!homehost)
1262 return 0;
1263 len = strlen(homehost);
1264
1265 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1266 len < sizeof(ddf->controller.vendor_data) &&
1267 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1268 ddf->controller.vendor_data[len] == 0);
1269 }
1270
1271 #ifndef MDASSEMBLE
1272 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1273 {
1274 struct vcl *v;
1275
1276 for (v = ddf->conflist; v; v = v->next)
1277 if (inst == v->vcnum)
1278 return &v->conf;
1279 return NULL;
1280 }
1281 #endif
1282
1283 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1284 {
1285 /* Find the entry in phys_disk which has the given refnum
1286 * and return it's index
1287 */
1288 unsigned int i;
1289 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1290 if (ddf->phys->entries[i].refnum == phys_refnum)
1291 return i;
1292 return -1;
1293 }
1294
1295 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1296 {
1297 /* The uuid returned here is used for:
1298 * uuid to put into bitmap file (Create, Grow)
1299 * uuid for backup header when saving critical section (Grow)
1300 * comparing uuids when re-adding a device into an array
1301 * In these cases the uuid required is that of the data-array,
1302 * not the device-set.
1303 * uuid to recognise same set when adding a missing device back
1304 * to an array. This is a uuid for the device-set.
1305 *
1306 * For each of these we can make do with a truncated
1307 * or hashed uuid rather than the original, as long as
1308 * everyone agrees.
1309 * In the case of SVD we assume the BVD is of interest,
1310 * though that might be the case if a bitmap were made for
1311 * a mirrored SVD - worry about that later.
1312 * So we need to find the VD configuration record for the
1313 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1314 * The first 16 bytes of the sha1 of these is used.
1315 */
1316 struct ddf_super *ddf = st->sb;
1317 struct vcl *vcl = ddf->currentconf;
1318 char *guid;
1319 char buf[20];
1320 struct sha1_ctx ctx;
1321
1322 if (vcl)
1323 guid = vcl->conf.guid;
1324 else
1325 guid = ddf->anchor.guid;
1326
1327 sha1_init_ctx(&ctx);
1328 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1329 sha1_finish_ctx(&ctx, buf);
1330 memcpy(uuid, buf, 4*4);
1331 }
1332
1333 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1334
1335 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1336 {
1337 struct ddf_super *ddf = st->sb;
1338 int map_disks = info->array.raid_disks;
1339
1340 if (ddf->currentconf) {
1341 getinfo_super_ddf_bvd(st, info, map);
1342 return;
1343 }
1344 memset(info, 0, sizeof(*info));
1345
1346 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1347 info->array.level = LEVEL_CONTAINER;
1348 info->array.layout = 0;
1349 info->array.md_minor = -1;
1350 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1351 (ddf->anchor.guid+16));
1352 info->array.utime = 0;
1353 info->array.chunk_size = 0;
1354 info->container_enough = 1;
1355
1356
1357 info->disk.major = 0;
1358 info->disk.minor = 0;
1359 if (ddf->dlist) {
1360 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1361 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1362
1363 info->data_offset = __be64_to_cpu(ddf->phys->
1364 entries[info->disk.raid_disk].
1365 config_size);
1366 info->component_size = ddf->dlist->size - info->data_offset;
1367 } else {
1368 info->disk.number = -1;
1369 info->disk.raid_disk = -1;
1370 // info->disk.raid_disk = find refnum in the table and use index;
1371 }
1372 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1373
1374
1375 info->recovery_start = MaxSector;
1376 info->reshape_active = 0;
1377 info->name[0] = 0;
1378
1379 info->array.major_version = -1;
1380 info->array.minor_version = -2;
1381 strcpy(info->text_version, "ddf");
1382 info->safe_mode_delay = 0;
1383
1384 uuid_from_super_ddf(st, info->uuid);
1385
1386 if (map) {
1387 int i;
1388 for (i = 0 ; i < map_disks; i++) {
1389 if (i < info->array.raid_disks &&
1390 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1391 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1392 map[i] = 1;
1393 else
1394 map[i] = 0;
1395 }
1396 }
1397 }
1398
1399 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1400
1401 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1402 {
1403 struct ddf_super *ddf = st->sb;
1404 struct vcl *vc = ddf->currentconf;
1405 int cd = ddf->currentdev;
1406 int j;
1407 struct dl *dl;
1408 int map_disks = info->array.raid_disks;
1409
1410 memset(info, 0, sizeof(*info));
1411 /* FIXME this returns BVD info - what if we want SVD ?? */
1412
1413 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1414 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1415 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1416 info->array.raid_disks);
1417 info->array.md_minor = -1;
1418 info->array.ctime = DECADE +
1419 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1420 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1421 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1422 info->custom_array_size = 0;
1423
1424 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1425 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1426 if (vc->block_sizes)
1427 info->component_size = vc->block_sizes[cd];
1428 else
1429 info->component_size = __be64_to_cpu(vc->conf.blocks);
1430 }
1431
1432 for (dl = ddf->dlist; dl ; dl = dl->next)
1433 if (dl->raiddisk == ddf->currentdev)
1434 break;
1435
1436 info->disk.major = 0;
1437 info->disk.minor = 0;
1438 info->disk.state = 0;
1439 if (dl) {
1440 info->disk.major = dl->major;
1441 info->disk.minor = dl->minor;
1442 info->disk.raid_disk = dl->raiddisk;
1443 info->disk.number = dl->pdnum;
1444 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1445 }
1446
1447 info->container_member = ddf->currentconf->vcnum;
1448
1449 info->recovery_start = MaxSector;
1450 info->resync_start = 0;
1451 info->reshape_active = 0;
1452 if (!(ddf->virt->entries[info->container_member].state
1453 & DDF_state_inconsistent) &&
1454 (ddf->virt->entries[info->container_member].init_state
1455 & DDF_initstate_mask)
1456 == DDF_init_full)
1457 info->resync_start = MaxSector;
1458
1459 uuid_from_super_ddf(st, info->uuid);
1460
1461 info->array.major_version = -1;
1462 info->array.minor_version = -2;
1463 sprintf(info->text_version, "/%s/%d",
1464 devnum2devname(st->container_dev),
1465 info->container_member);
1466 info->safe_mode_delay = 200;
1467
1468 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1469 info->name[16]=0;
1470 for(j=0; j<16; j++)
1471 if (info->name[j] == ' ')
1472 info->name[j] = 0;
1473
1474 if (map)
1475 for (j = 0; j < map_disks; j++) {
1476 map[j] = 0;
1477 if (j < info->array.raid_disks) {
1478 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1479 if (i >= 0 &&
1480 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1481 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1482 map[i] = 1;
1483 }
1484 }
1485 }
1486
1487
1488 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1489 char *update,
1490 char *devname, int verbose,
1491 int uuid_set, char *homehost)
1492 {
1493 /* For 'assemble' and 'force' we need to return non-zero if any
1494 * change was made. For others, the return value is ignored.
1495 * Update options are:
1496 * force-one : This device looks a bit old but needs to be included,
1497 * update age info appropriately.
1498 * assemble: clear any 'faulty' flag to allow this device to
1499 * be assembled.
1500 * force-array: Array is degraded but being forced, mark it clean
1501 * if that will be needed to assemble it.
1502 *
1503 * newdev: not used ????
1504 * grow: Array has gained a new device - this is currently for
1505 * linear only
1506 * resync: mark as dirty so a resync will happen.
1507 * uuid: Change the uuid of the array to match what is given
1508 * homehost: update the recorded homehost
1509 * name: update the name - preserving the homehost
1510 * _reshape_progress: record new reshape_progress position.
1511 *
1512 * Following are not relevant for this version:
1513 * sparc2.2 : update from old dodgey metadata
1514 * super-minor: change the preferred_minor number
1515 * summaries: update redundant counters.
1516 */
1517 int rv = 0;
1518 // struct ddf_super *ddf = st->sb;
1519 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1520 // struct virtual_entry *ve = find_ve(ddf);
1521
1522 /* we don't need to handle "force-*" or "assemble" as
1523 * there is no need to 'trick' the kernel. We the metadata is
1524 * first updated to activate the array, all the implied modifications
1525 * will just happen.
1526 */
1527
1528 if (strcmp(update, "grow") == 0) {
1529 /* FIXME */
1530 } else if (strcmp(update, "resync") == 0) {
1531 // info->resync_checkpoint = 0;
1532 } else if (strcmp(update, "homehost") == 0) {
1533 /* homehost is stored in controller->vendor_data,
1534 * or it is when we are the vendor
1535 */
1536 // if (info->vendor_is_local)
1537 // strcpy(ddf->controller.vendor_data, homehost);
1538 rv = -1;
1539 } else if (strcmp(update, "name") == 0) {
1540 /* name is stored in virtual_entry->name */
1541 // memset(ve->name, ' ', 16);
1542 // strncpy(ve->name, info->name, 16);
1543 rv = -1;
1544 } else if (strcmp(update, "_reshape_progress") == 0) {
1545 /* We don't support reshape yet */
1546 } else if (strcmp(update, "assemble") == 0 ) {
1547 /* Do nothing, just succeed */
1548 rv = 0;
1549 } else
1550 rv = -1;
1551
1552 // update_all_csum(ddf);
1553
1554 return rv;
1555 }
1556
1557 static void make_header_guid(char *guid)
1558 {
1559 __u32 stamp;
1560 /* Create a DDF Header of Virtual Disk GUID */
1561
1562 /* 24 bytes of fiction required.
1563 * first 8 are a 'vendor-id' - "Linux-MD"
1564 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1565 * Remaining 8 random number plus timestamp
1566 */
1567 memcpy(guid, T10, sizeof(T10));
1568 stamp = __cpu_to_be32(0xdeadbeef);
1569 memcpy(guid+8, &stamp, 4);
1570 stamp = __cpu_to_be32(0);
1571 memcpy(guid+12, &stamp, 4);
1572 stamp = __cpu_to_be32(time(0) - DECADE);
1573 memcpy(guid+16, &stamp, 4);
1574 stamp = random32();
1575 memcpy(guid+20, &stamp, 4);
1576 }
1577
1578 static int init_super_ddf_bvd(struct supertype *st,
1579 mdu_array_info_t *info,
1580 unsigned long long size,
1581 char *name, char *homehost,
1582 int *uuid);
1583
1584 static int init_super_ddf(struct supertype *st,
1585 mdu_array_info_t *info,
1586 unsigned long long size, char *name, char *homehost,
1587 int *uuid)
1588 {
1589 /* This is primarily called by Create when creating a new array.
1590 * We will then get add_to_super called for each component, and then
1591 * write_init_super called to write it out to each device.
1592 * For DDF, Create can create on fresh devices or on a pre-existing
1593 * array.
1594 * To create on a pre-existing array a different method will be called.
1595 * This one is just for fresh drives.
1596 *
1597 * We need to create the entire 'ddf' structure which includes:
1598 * DDF headers - these are easy.
1599 * Controller data - a Sector describing this controller .. not that
1600 * this is a controller exactly.
1601 * Physical Disk Record - one entry per device, so
1602 * leave plenty of space.
1603 * Virtual Disk Records - again, just leave plenty of space.
1604 * This just lists VDs, doesn't give details
1605 * Config records - describes the VDs that use this disk
1606 * DiskData - describes 'this' device.
1607 * BadBlockManagement - empty
1608 * Diag Space - empty
1609 * Vendor Logs - Could we put bitmaps here?
1610 *
1611 */
1612 struct ddf_super *ddf;
1613 char hostname[17];
1614 int hostlen;
1615 int max_phys_disks, max_virt_disks;
1616 unsigned long long sector;
1617 int clen;
1618 int i;
1619 int pdsize, vdsize;
1620 struct phys_disk *pd;
1621 struct virtual_disk *vd;
1622
1623 if (st->sb)
1624 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1625
1626 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1627 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1628 return 0;
1629 }
1630 memset(ddf, 0, sizeof(*ddf));
1631 ddf->dlist = NULL; /* no physical disks yet */
1632 ddf->conflist = NULL; /* No virtual disks yet */
1633 st->sb = ddf;
1634
1635 if (info == NULL) {
1636 /* zeroing superblock */
1637 return 0;
1638 }
1639
1640 /* At least 32MB *must* be reserved for the ddf. So let's just
1641 * start 32MB from the end, and put the primary header there.
1642 * Don't do secondary for now.
1643 * We don't know exactly where that will be yet as it could be
1644 * different on each device. To just set up the lengths.
1645 *
1646 */
1647
1648 ddf->anchor.magic = DDF_HEADER_MAGIC;
1649 make_header_guid(ddf->anchor.guid);
1650
1651 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1652 ddf->anchor.seq = __cpu_to_be32(1);
1653 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1654 ddf->anchor.openflag = 0xFF;
1655 ddf->anchor.foreignflag = 0;
1656 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1657 ddf->anchor.pad0 = 0xff;
1658 memset(ddf->anchor.pad1, 0xff, 12);
1659 memset(ddf->anchor.header_ext, 0xff, 32);
1660 ddf->anchor.primary_lba = ~(__u64)0;
1661 ddf->anchor.secondary_lba = ~(__u64)0;
1662 ddf->anchor.type = DDF_HEADER_ANCHOR;
1663 memset(ddf->anchor.pad2, 0xff, 3);
1664 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1665 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1666 of 32M reserved.. */
1667 max_phys_disks = 1023; /* Should be enough */
1668 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1669 max_virt_disks = 255;
1670 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1671 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1672 ddf->max_part = 64;
1673 ddf->mppe = 256;
1674 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1675 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1676 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1677 memset(ddf->anchor.pad3, 0xff, 54);
1678 /* controller sections is one sector long immediately
1679 * after the ddf header */
1680 sector = 1;
1681 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1682 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1683 sector += 1;
1684
1685 /* phys is 8 sectors after that */
1686 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1687 sizeof(struct phys_disk_entry)*max_phys_disks,
1688 512);
1689 switch(pdsize/512) {
1690 case 2: case 8: case 32: case 128: case 512: break;
1691 default: abort();
1692 }
1693 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1694 ddf->anchor.phys_section_length =
1695 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1696 sector += pdsize/512;
1697
1698 /* virt is another 32 sectors */
1699 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1700 sizeof(struct virtual_entry) * max_virt_disks,
1701 512);
1702 switch(vdsize/512) {
1703 case 2: case 8: case 32: case 128: case 512: break;
1704 default: abort();
1705 }
1706 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1707 ddf->anchor.virt_section_length =
1708 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1709 sector += vdsize/512;
1710
1711 clen = ddf->conf_rec_len * (ddf->max_part+1);
1712 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1713 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1714 sector += clen;
1715
1716 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1717 ddf->anchor.data_section_length = __cpu_to_be32(1);
1718 sector += 1;
1719
1720 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1721 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1722 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1723 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1724 ddf->anchor.vendor_length = __cpu_to_be32(0);
1725 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1726
1727 memset(ddf->anchor.pad4, 0xff, 256);
1728
1729 memcpy(&ddf->primary, &ddf->anchor, 512);
1730 memcpy(&ddf->secondary, &ddf->anchor, 512);
1731
1732 ddf->primary.openflag = 1; /* I guess.. */
1733 ddf->primary.type = DDF_HEADER_PRIMARY;
1734
1735 ddf->secondary.openflag = 1; /* I guess.. */
1736 ddf->secondary.type = DDF_HEADER_SECONDARY;
1737
1738 ddf->active = &ddf->primary;
1739
1740 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1741
1742 /* 24 more bytes of fiction required.
1743 * first 8 are a 'vendor-id' - "Linux-MD"
1744 * Remaining 16 are serial number.... maybe a hostname would do?
1745 */
1746 memcpy(ddf->controller.guid, T10, sizeof(T10));
1747 gethostname(hostname, sizeof(hostname));
1748 hostname[sizeof(hostname) - 1] = 0;
1749 hostlen = strlen(hostname);
1750 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1751 for (i = strlen(T10) ; i+hostlen < 24; i++)
1752 ddf->controller.guid[i] = ' ';
1753
1754 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1755 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1756 ddf->controller.type.sub_vendor_id = 0;
1757 ddf->controller.type.sub_device_id = 0;
1758 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1759 memset(ddf->controller.pad, 0xff, 8);
1760 memset(ddf->controller.vendor_data, 0xff, 448);
1761 if (homehost && strlen(homehost) < 440)
1762 strcpy((char*)ddf->controller.vendor_data, homehost);
1763
1764 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1765 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1766 return 0;
1767 }
1768 ddf->phys = pd;
1769 ddf->pdsize = pdsize;
1770
1771 memset(pd, 0xff, pdsize);
1772 memset(pd, 0, sizeof(*pd));
1773 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1774 pd->used_pdes = __cpu_to_be16(0);
1775 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1776 memset(pd->pad, 0xff, 52);
1777
1778 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1779 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1780 return 0;
1781 }
1782 ddf->virt = vd;
1783 ddf->vdsize = vdsize;
1784 memset(vd, 0, vdsize);
1785 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1786 vd->populated_vdes = __cpu_to_be16(0);
1787 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1788 memset(vd->pad, 0xff, 52);
1789
1790 for (i=0; i<max_virt_disks; i++)
1791 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1792
1793 st->sb = ddf;
1794 ddf->updates_pending = 1;
1795 return 1;
1796 }
1797
1798 static int chunk_to_shift(int chunksize)
1799 {
1800 return ffs(chunksize/512)-1;
1801 }
1802
1803 static int level_to_prl(int level)
1804 {
1805 switch (level) {
1806 case LEVEL_LINEAR: return DDF_CONCAT;
1807 case 0: return DDF_RAID0;
1808 case 1: return DDF_RAID1;
1809 case 4: return DDF_RAID4;
1810 case 5: return DDF_RAID5;
1811 case 6: return DDF_RAID6;
1812 default: return -1;
1813 }
1814 }
1815 static int layout_to_rlq(int level, int layout, int raiddisks)
1816 {
1817 switch(level) {
1818 case 0:
1819 return DDF_RAID0_SIMPLE;
1820 case 1:
1821 switch(raiddisks) {
1822 case 2: return DDF_RAID1_SIMPLE;
1823 case 3: return DDF_RAID1_MULTI;
1824 default: return -1;
1825 }
1826 case 4:
1827 switch(layout) {
1828 case 0: return DDF_RAID4_N;
1829 }
1830 break;
1831 case 5:
1832 switch(layout) {
1833 case ALGORITHM_LEFT_ASYMMETRIC:
1834 return DDF_RAID5_N_RESTART;
1835 case ALGORITHM_RIGHT_ASYMMETRIC:
1836 return DDF_RAID5_0_RESTART;
1837 case ALGORITHM_LEFT_SYMMETRIC:
1838 return DDF_RAID5_N_CONTINUE;
1839 case ALGORITHM_RIGHT_SYMMETRIC:
1840 return -1; /* not mentioned in standard */
1841 }
1842 case 6:
1843 switch(layout) {
1844 case ALGORITHM_ROTATING_N_RESTART:
1845 return DDF_RAID5_N_RESTART;
1846 case ALGORITHM_ROTATING_ZERO_RESTART:
1847 return DDF_RAID6_0_RESTART;
1848 case ALGORITHM_ROTATING_N_CONTINUE:
1849 return DDF_RAID5_N_CONTINUE;
1850 }
1851 }
1852 return -1;
1853 }
1854
1855 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1856 {
1857 switch(prl) {
1858 case DDF_RAID0:
1859 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1860 case DDF_RAID1:
1861 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1862 on raiddisks*/
1863 case DDF_RAID4:
1864 switch(rlq) {
1865 case DDF_RAID4_N:
1866 return 0;
1867 default:
1868 /* not supported */
1869 return -1; /* FIXME this isn't checked */
1870 }
1871 case DDF_RAID5:
1872 switch(rlq) {
1873 case DDF_RAID5_N_RESTART:
1874 return ALGORITHM_LEFT_ASYMMETRIC;
1875 case DDF_RAID5_0_RESTART:
1876 return ALGORITHM_RIGHT_ASYMMETRIC;
1877 case DDF_RAID5_N_CONTINUE:
1878 return ALGORITHM_LEFT_SYMMETRIC;
1879 default:
1880 return -1;
1881 }
1882 case DDF_RAID6:
1883 switch(rlq) {
1884 case DDF_RAID5_N_RESTART:
1885 return ALGORITHM_ROTATING_N_RESTART;
1886 case DDF_RAID6_0_RESTART:
1887 return ALGORITHM_ROTATING_ZERO_RESTART;
1888 case DDF_RAID5_N_CONTINUE:
1889 return ALGORITHM_ROTATING_N_CONTINUE;
1890 default:
1891 return -1;
1892 }
1893 }
1894 return -1;
1895 }
1896
1897 #ifndef MDASSEMBLE
1898 struct extent {
1899 unsigned long long start, size;
1900 };
1901 static int cmp_extent(const void *av, const void *bv)
1902 {
1903 const struct extent *a = av;
1904 const struct extent *b = bv;
1905 if (a->start < b->start)
1906 return -1;
1907 if (a->start > b->start)
1908 return 1;
1909 return 0;
1910 }
1911
1912 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1913 {
1914 /* find a list of used extents on the give physical device
1915 * (dnum) of the given ddf.
1916 * Return a malloced array of 'struct extent'
1917
1918 FIXME ignore DDF_Legacy devices?
1919
1920 */
1921 struct extent *rv;
1922 int n = 0;
1923 unsigned int i, j;
1924
1925 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1926 if (!rv)
1927 return NULL;
1928
1929 for (i = 0; i < ddf->max_part; i++) {
1930 struct vcl *v = dl->vlist[i];
1931 if (v == NULL)
1932 continue;
1933 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1934 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1935 /* This device plays role 'j' in 'v'. */
1936 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1937 rv[n].size = __be64_to_cpu(v->conf.blocks);
1938 n++;
1939 break;
1940 }
1941 }
1942 qsort(rv, n, sizeof(*rv), cmp_extent);
1943
1944 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1945 rv[n].size = 0;
1946 return rv;
1947 }
1948 #endif
1949
1950 static int init_super_ddf_bvd(struct supertype *st,
1951 mdu_array_info_t *info,
1952 unsigned long long size,
1953 char *name, char *homehost,
1954 int *uuid)
1955 {
1956 /* We are creating a BVD inside a pre-existing container.
1957 * so st->sb is already set.
1958 * We need to create a new vd_config and a new virtual_entry
1959 */
1960 struct ddf_super *ddf = st->sb;
1961 unsigned int venum;
1962 struct virtual_entry *ve;
1963 struct vcl *vcl;
1964 struct vd_config *vc;
1965
1966 if (__be16_to_cpu(ddf->virt->populated_vdes)
1967 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1968 fprintf(stderr, Name": This ddf already has the "
1969 "maximum of %d virtual devices\n",
1970 __be16_to_cpu(ddf->virt->max_vdes));
1971 return 0;
1972 }
1973
1974 if (name)
1975 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1976 if (!all_ff(ddf->virt->entries[venum].guid)) {
1977 char *n = ddf->virt->entries[venum].name;
1978
1979 if (strncmp(name, n, 16) == 0) {
1980 fprintf(stderr, Name ": This ddf already"
1981 " has an array called %s\n",
1982 name);
1983 return 0;
1984 }
1985 }
1986
1987 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1988 if (all_ff(ddf->virt->entries[venum].guid))
1989 break;
1990 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1991 fprintf(stderr, Name ": Cannot find spare slot for "
1992 "virtual disk - DDF is corrupt\n");
1993 return 0;
1994 }
1995 ve = &ddf->virt->entries[venum];
1996
1997 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1998 * timestamp, random number
1999 */
2000 make_header_guid(ve->guid);
2001 ve->unit = __cpu_to_be16(info->md_minor);
2002 ve->pad0 = 0xFFFF;
2003 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
2004 ve->type = 0;
2005 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2006 if (info->state & 1) /* clean */
2007 ve->init_state = DDF_init_full;
2008 else
2009 ve->init_state = DDF_init_not;
2010
2011 memset(ve->pad1, 0xff, 14);
2012 memset(ve->name, ' ', 16);
2013 if (name)
2014 strncpy(ve->name, name, 16);
2015 ddf->virt->populated_vdes =
2016 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2017
2018 /* Now create a new vd_config */
2019 if (posix_memalign((void**)&vcl, 512,
2020 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2021 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
2022 return 0;
2023 }
2024 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2025 vcl->vcnum = venum;
2026 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2027
2028 vc = &vcl->conf;
2029
2030 vc->magic = DDF_VD_CONF_MAGIC;
2031 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2032 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2033 vc->seqnum = __cpu_to_be32(1);
2034 memset(vc->pad0, 0xff, 24);
2035 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2036 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2037 vc->prl = level_to_prl(info->level);
2038 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2039 vc->sec_elmnt_count = 1;
2040 vc->sec_elmnt_seq = 0;
2041 vc->srl = 0;
2042 vc->blocks = __cpu_to_be64(info->size * 2);
2043 vc->array_blocks = __cpu_to_be64(
2044 calc_array_size(info->level, info->raid_disks, info->layout,
2045 info->chunk_size, info->size*2));
2046 memset(vc->pad1, 0xff, 8);
2047 vc->spare_refs[0] = 0xffffffff;
2048 vc->spare_refs[1] = 0xffffffff;
2049 vc->spare_refs[2] = 0xffffffff;
2050 vc->spare_refs[3] = 0xffffffff;
2051 vc->spare_refs[4] = 0xffffffff;
2052 vc->spare_refs[5] = 0xffffffff;
2053 vc->spare_refs[6] = 0xffffffff;
2054 vc->spare_refs[7] = 0xffffffff;
2055 memset(vc->cache_pol, 0, 8);
2056 vc->bg_rate = 0x80;
2057 memset(vc->pad2, 0xff, 3);
2058 memset(vc->pad3, 0xff, 52);
2059 memset(vc->pad4, 0xff, 192);
2060 memset(vc->v0, 0xff, 32);
2061 memset(vc->v1, 0xff, 32);
2062 memset(vc->v2, 0xff, 16);
2063 memset(vc->v3, 0xff, 16);
2064 memset(vc->vendor, 0xff, 32);
2065
2066 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2067 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2068
2069 vcl->next = ddf->conflist;
2070 ddf->conflist = vcl;
2071 ddf->currentconf = vcl;
2072 ddf->updates_pending = 1;
2073 return 1;
2074 }
2075
2076 #ifndef MDASSEMBLE
2077 static void add_to_super_ddf_bvd(struct supertype *st,
2078 mdu_disk_info_t *dk, int fd, char *devname)
2079 {
2080 /* fd and devname identify a device with-in the ddf container (st).
2081 * dk identifies a location in the new BVD.
2082 * We need to find suitable free space in that device and update
2083 * the phys_refnum and lba_offset for the newly created vd_config.
2084 * We might also want to update the type in the phys_disk
2085 * section.
2086 *
2087 * Alternately: fd == -1 and we have already chosen which device to
2088 * use and recorded in dlist->raid_disk;
2089 */
2090 struct dl *dl;
2091 struct ddf_super *ddf = st->sb;
2092 struct vd_config *vc;
2093 __u64 *lba_offset;
2094 unsigned int working;
2095 unsigned int i;
2096 unsigned long long blocks, pos, esize;
2097 struct extent *ex;
2098
2099 if (fd == -1) {
2100 for (dl = ddf->dlist; dl ; dl = dl->next)
2101 if (dl->raiddisk == dk->raid_disk)
2102 break;
2103 } else {
2104 for (dl = ddf->dlist; dl ; dl = dl->next)
2105 if (dl->major == dk->major &&
2106 dl->minor == dk->minor)
2107 break;
2108 }
2109 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2110 return;
2111
2112 vc = &ddf->currentconf->conf;
2113 lba_offset = ddf->currentconf->lba_offset;
2114
2115 ex = get_extents(ddf, dl);
2116 if (!ex)
2117 return;
2118
2119 i = 0; pos = 0;
2120 blocks = __be64_to_cpu(vc->blocks);
2121 if (ddf->currentconf->block_sizes)
2122 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2123
2124 do {
2125 esize = ex[i].start - pos;
2126 if (esize >= blocks)
2127 break;
2128 pos = ex[i].start + ex[i].size;
2129 i++;
2130 } while (ex[i-1].size);
2131
2132 free(ex);
2133 if (esize < blocks)
2134 return;
2135
2136 ddf->currentdev = dk->raid_disk;
2137 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2138 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2139
2140 for (i = 0; i < ddf->max_part ; i++)
2141 if (dl->vlist[i] == NULL)
2142 break;
2143 if (i == ddf->max_part)
2144 return;
2145 dl->vlist[i] = ddf->currentconf;
2146
2147 if (fd >= 0)
2148 dl->fd = fd;
2149 if (devname)
2150 dl->devname = devname;
2151
2152 /* Check how many working raid_disks, and if we can mark
2153 * array as optimal yet
2154 */
2155 working = 0;
2156
2157 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2158 if (vc->phys_refnum[i] != 0xffffffff)
2159 working++;
2160
2161 /* Find which virtual_entry */
2162 i = ddf->currentconf->vcnum;
2163 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2164 ddf->virt->entries[i].state =
2165 (ddf->virt->entries[i].state & ~DDF_state_mask)
2166 | DDF_state_optimal;
2167
2168 if (vc->prl == DDF_RAID6 &&
2169 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2170 ddf->virt->entries[i].state =
2171 (ddf->virt->entries[i].state & ~DDF_state_mask)
2172 | DDF_state_part_optimal;
2173
2174 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2175 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2176 ddf->updates_pending = 1;
2177 }
2178
2179 /* add a device to a container, either while creating it or while
2180 * expanding a pre-existing container
2181 */
2182 static int add_to_super_ddf(struct supertype *st,
2183 mdu_disk_info_t *dk, int fd, char *devname)
2184 {
2185 struct ddf_super *ddf = st->sb;
2186 struct dl *dd;
2187 time_t now;
2188 struct tm *tm;
2189 unsigned long long size;
2190 struct phys_disk_entry *pde;
2191 unsigned int n, i;
2192 struct stat stb;
2193
2194 if (ddf->currentconf) {
2195 add_to_super_ddf_bvd(st, dk, fd, devname);
2196 return 0;
2197 }
2198
2199 /* This is device numbered dk->number. We need to create
2200 * a phys_disk entry and a more detailed disk_data entry.
2201 */
2202 fstat(fd, &stb);
2203 if (posix_memalign((void**)&dd, 512,
2204 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2205 fprintf(stderr, Name
2206 ": %s could allocate buffer for new disk, aborting\n",
2207 __func__);
2208 return 1;
2209 }
2210 dd->major = major(stb.st_rdev);
2211 dd->minor = minor(stb.st_rdev);
2212 dd->devname = devname;
2213 dd->fd = fd;
2214 dd->spare = NULL;
2215
2216 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2217 now = time(0);
2218 tm = localtime(&now);
2219 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2220 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2221 *(__u32*)(dd->disk.guid + 16) = random32();
2222 *(__u32*)(dd->disk.guid + 20) = random32();
2223
2224 do {
2225 /* Cannot be bothered finding a CRC of some irrelevant details*/
2226 dd->disk.refnum = random32();
2227 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2228 i > 0; i--)
2229 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2230 break;
2231 } while (i > 0);
2232
2233 dd->disk.forced_ref = 1;
2234 dd->disk.forced_guid = 1;
2235 memset(dd->disk.vendor, ' ', 32);
2236 memcpy(dd->disk.vendor, "Linux", 5);
2237 memset(dd->disk.pad, 0xff, 442);
2238 for (i = 0; i < ddf->max_part ; i++)
2239 dd->vlist[i] = NULL;
2240
2241 n = __be16_to_cpu(ddf->phys->used_pdes);
2242 pde = &ddf->phys->entries[n];
2243 dd->pdnum = n;
2244
2245 if (st->update_tail) {
2246 int len = (sizeof(struct phys_disk) +
2247 sizeof(struct phys_disk_entry));
2248 struct phys_disk *pd;
2249
2250 pd = malloc(len);
2251 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2252 pd->used_pdes = __cpu_to_be16(n);
2253 pde = &pd->entries[0];
2254 dd->mdupdate = pd;
2255 } else {
2256 n++;
2257 ddf->phys->used_pdes = __cpu_to_be16(n);
2258 }
2259
2260 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2261 pde->refnum = dd->disk.refnum;
2262 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2263 pde->state = __cpu_to_be16(DDF_Online);
2264 get_dev_size(fd, NULL, &size);
2265 /* We are required to reserve 32Meg, and record the size in sectors */
2266 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2267 sprintf(pde->path, "%17.17s","Information: nil") ;
2268 memset(pde->pad, 0xff, 6);
2269
2270 dd->size = size >> 9;
2271 if (st->update_tail) {
2272 dd->next = ddf->add_list;
2273 ddf->add_list = dd;
2274 } else {
2275 dd->next = ddf->dlist;
2276 ddf->dlist = dd;
2277 ddf->updates_pending = 1;
2278 }
2279
2280 return 0;
2281 }
2282
2283 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2284 {
2285 struct ddf_super *ddf = st->sb;
2286 struct dl *dl;
2287
2288 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2289 * disappeared from the container.
2290 * We need to arrange that it disappears from the metadata and
2291 * internal data structures too.
2292 * Most of the work is done by ddf_process_update which edits
2293 * the metadata and closes the file handle and attaches the memory
2294 * where free_updates will free it.
2295 */
2296 for (dl = ddf->dlist; dl ; dl = dl->next)
2297 if (dl->major == dk->major &&
2298 dl->minor == dk->minor)
2299 break;
2300 if (!dl)
2301 return -1;
2302
2303 if (st->update_tail) {
2304 int len = (sizeof(struct phys_disk) +
2305 sizeof(struct phys_disk_entry));
2306 struct phys_disk *pd;
2307
2308 pd = malloc(len);
2309 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2310 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2311 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2312 append_metadata_update(st, pd, len);
2313 }
2314 return 0;
2315 }
2316
2317 /*
2318 * This is the write_init_super method for a ddf container. It is
2319 * called when creating a container or adding another device to a
2320 * container.
2321 */
2322
2323 static unsigned char null_conf[4096+512];
2324
2325 static int __write_init_super_ddf(struct supertype *st)
2326 {
2327
2328 struct ddf_super *ddf = st->sb;
2329 int i;
2330 struct dl *d;
2331 int n_config;
2332 int conf_size;
2333 int attempts = 0;
2334 int successes = 0;
2335 unsigned long long size, sector;
2336
2337 /* try to write updated metadata,
2338 * if we catch a failure move on to the next disk
2339 */
2340 for (d = ddf->dlist; d; d=d->next) {
2341 int fd = d->fd;
2342
2343 if (fd < 0)
2344 continue;
2345
2346 attempts++;
2347 /* We need to fill in the primary, (secondary) and workspace
2348 * lba's in the headers, set their checksums,
2349 * Also checksum phys, virt....
2350 *
2351 * Then write everything out, finally the anchor is written.
2352 */
2353 get_dev_size(fd, NULL, &size);
2354 size /= 512;
2355 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2356 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2357 ddf->anchor.seq = __cpu_to_be32(1);
2358 memcpy(&ddf->primary, &ddf->anchor, 512);
2359 memcpy(&ddf->secondary, &ddf->anchor, 512);
2360
2361 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2362 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2363 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2364
2365 ddf->primary.openflag = 0;
2366 ddf->primary.type = DDF_HEADER_PRIMARY;
2367
2368 ddf->secondary.openflag = 0;
2369 ddf->secondary.type = DDF_HEADER_SECONDARY;
2370
2371 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2372 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2373
2374 sector = size - 16*1024*2;
2375 lseek64(fd, sector<<9, 0);
2376 if (write(fd, &ddf->primary, 512) < 0)
2377 continue;
2378
2379 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2380 if (write(fd, &ddf->controller, 512) < 0)
2381 continue;
2382
2383 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2384
2385 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2386 continue;
2387
2388 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2389 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2390 continue;
2391
2392 /* Now write lots of config records. */
2393 n_config = ddf->max_part;
2394 conf_size = ddf->conf_rec_len * 512;
2395 for (i = 0 ; i <= n_config ; i++) {
2396 struct vcl *c = d->vlist[i];
2397 if (i == n_config)
2398 c = (struct vcl*)d->spare;
2399
2400 if (c) {
2401 c->conf.crc = calc_crc(&c->conf, conf_size);
2402 if (write(fd, &c->conf, conf_size) < 0)
2403 break;
2404 } else {
2405 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2406 if (null_conf[0] != 0xff)
2407 memset(null_conf, 0xff, sizeof(null_conf));
2408 unsigned int togo = conf_size;
2409 while (togo > sizeof(null_conf)-512) {
2410 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2411 break;
2412 togo -= sizeof(null_conf)-512;
2413 }
2414 if (write(fd, null_aligned, togo) < 0)
2415 break;
2416 }
2417 }
2418 if (i <= n_config)
2419 continue;
2420 d->disk.crc = calc_crc(&d->disk, 512);
2421 if (write(fd, &d->disk, 512) < 0)
2422 continue;
2423
2424 /* Maybe do the same for secondary */
2425
2426 lseek64(fd, (size-1)*512, SEEK_SET);
2427 if (write(fd, &ddf->anchor, 512) < 0)
2428 continue;
2429 successes++;
2430 }
2431
2432 return attempts != successes;
2433 }
2434
2435 static int write_init_super_ddf(struct supertype *st)
2436 {
2437 struct ddf_super *ddf = st->sb;
2438 struct vcl *currentconf = ddf->currentconf;
2439
2440 /* we are done with currentconf reset it to point st at the container */
2441 ddf->currentconf = NULL;
2442
2443 if (st->update_tail) {
2444 /* queue the virtual_disk and vd_config as metadata updates */
2445 struct virtual_disk *vd;
2446 struct vd_config *vc;
2447 int len;
2448
2449 if (!currentconf) {
2450 int len = (sizeof(struct phys_disk) +
2451 sizeof(struct phys_disk_entry));
2452
2453 /* adding a disk to the container. */
2454 if (!ddf->add_list)
2455 return 0;
2456
2457 append_metadata_update(st, ddf->add_list->mdupdate, len);
2458 ddf->add_list->mdupdate = NULL;
2459 return 0;
2460 }
2461
2462 /* Newly created VD */
2463
2464 /* First the virtual disk. We have a slightly fake header */
2465 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2466 vd = malloc(len);
2467 *vd = *ddf->virt;
2468 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2469 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2470 append_metadata_update(st, vd, len);
2471
2472 /* Then the vd_config */
2473 len = ddf->conf_rec_len * 512;
2474 vc = malloc(len);
2475 memcpy(vc, &currentconf->conf, len);
2476 append_metadata_update(st, vc, len);
2477
2478 /* FIXME I need to close the fds! */
2479 return 0;
2480 } else {
2481 struct dl *d;
2482 for (d = ddf->dlist; d; d=d->next)
2483 while (Kill(d->devname, NULL, 0, 1, 1) == 0);
2484 return __write_init_super_ddf(st);
2485 }
2486 }
2487
2488 #endif
2489
2490 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2491 {
2492 /* We must reserve the last 32Meg */
2493 if (devsize <= 32*1024*2)
2494 return 0;
2495 return devsize - 32*1024*2;
2496 }
2497
2498 #ifndef MDASSEMBLE
2499
2500 static int reserve_space(struct supertype *st, int raiddisks,
2501 unsigned long long size, int chunk,
2502 unsigned long long *freesize)
2503 {
2504 /* Find 'raiddisks' spare extents at least 'size' big (but
2505 * only caring about multiples of 'chunk') and remember
2506 * them.
2507 * If the cannot be found, fail.
2508 */
2509 struct dl *dl;
2510 struct ddf_super *ddf = st->sb;
2511 int cnt = 0;
2512
2513 for (dl = ddf->dlist; dl ; dl=dl->next) {
2514 dl->raiddisk = -1;
2515 dl->esize = 0;
2516 }
2517 /* Now find largest extent on each device */
2518 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2519 struct extent *e = get_extents(ddf, dl);
2520 unsigned long long pos = 0;
2521 int i = 0;
2522 int found = 0;
2523 unsigned long long minsize = size;
2524
2525 if (size == 0)
2526 minsize = chunk;
2527
2528 if (!e)
2529 continue;
2530 do {
2531 unsigned long long esize;
2532 esize = e[i].start - pos;
2533 if (esize >= minsize) {
2534 found = 1;
2535 minsize = esize;
2536 }
2537 pos = e[i].start + e[i].size;
2538 i++;
2539 } while (e[i-1].size);
2540 if (found) {
2541 cnt++;
2542 dl->esize = minsize;
2543 }
2544 free(e);
2545 }
2546 if (cnt < raiddisks) {
2547 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2548 return 0; /* No enough free spaces large enough */
2549 }
2550 if (size == 0) {
2551 /* choose the largest size of which there are at least 'raiddisk' */
2552 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2553 struct dl *dl2;
2554 if (dl->esize <= size)
2555 continue;
2556 /* This is bigger than 'size', see if there are enough */
2557 cnt = 0;
2558 for (dl2 = dl; dl2 ; dl2=dl2->next)
2559 if (dl2->esize >= dl->esize)
2560 cnt++;
2561 if (cnt >= raiddisks)
2562 size = dl->esize;
2563 }
2564 if (chunk) {
2565 size = size / chunk;
2566 size *= chunk;
2567 }
2568 *freesize = size;
2569 if (size < 32) {
2570 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2571 return 0;
2572 }
2573 }
2574 /* We have a 'size' of which there are enough spaces.
2575 * We simply do a first-fit */
2576 cnt = 0;
2577 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2578 if (dl->esize < size)
2579 continue;
2580
2581 dl->raiddisk = cnt;
2582 cnt++;
2583 }
2584 return 1;
2585 }
2586
2587
2588
2589 static int
2590 validate_geometry_ddf_container(struct supertype *st,
2591 int level, int layout, int raiddisks,
2592 int chunk, unsigned long long size,
2593 char *dev, unsigned long long *freesize,
2594 int verbose);
2595
2596 static int validate_geometry_ddf_bvd(struct supertype *st,
2597 int level, int layout, int raiddisks,
2598 int *chunk, unsigned long long size,
2599 char *dev, unsigned long long *freesize,
2600 int verbose);
2601
2602 static int validate_geometry_ddf(struct supertype *st,
2603 int level, int layout, int raiddisks,
2604 int *chunk, unsigned long long size,
2605 char *dev, unsigned long long *freesize,
2606 int verbose)
2607 {
2608 int fd;
2609 struct mdinfo *sra;
2610 int cfd;
2611
2612 /* ddf potentially supports lots of things, but it depends on
2613 * what devices are offered (and maybe kernel version?)
2614 * If given unused devices, we will make a container.
2615 * If given devices in a container, we will make a BVD.
2616 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2617 */
2618
2619 if (chunk && *chunk == UnSet)
2620 *chunk = DEFAULT_CHUNK;
2621
2622
2623 if (level == LEVEL_CONTAINER) {
2624 /* Must be a fresh device to add to a container */
2625 return validate_geometry_ddf_container(st, level, layout,
2626 raiddisks, chunk?*chunk:0,
2627 size, dev, freesize,
2628 verbose);
2629 }
2630
2631 if (!dev) {
2632 /* Initial sanity check. Exclude illegal levels. */
2633 int i;
2634 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2635 if (ddf_level_num[i].num2 == level)
2636 break;
2637 if (ddf_level_num[i].num1 == MAXINT) {
2638 if (verbose)
2639 fprintf(stderr, Name ": DDF does not support level %d arrays\n",
2640 level);
2641 return 0;
2642 }
2643 /* Should check layout? etc */
2644
2645 if (st->sb && freesize) {
2646 /* --create was given a container to create in.
2647 * So we need to check that there are enough
2648 * free spaces and return the amount of space.
2649 * We may as well remember which drives were
2650 * chosen so that add_to_super/getinfo_super
2651 * can return them.
2652 */
2653 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2654 }
2655 return 1;
2656 }
2657
2658 if (st->sb) {
2659 /* A container has already been opened, so we are
2660 * creating in there. Maybe a BVD, maybe an SVD.
2661 * Should make a distinction one day.
2662 */
2663 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2664 chunk, size, dev, freesize,
2665 verbose);
2666 }
2667 /* This is the first device for the array.
2668 * If it is a container, we read it in and do automagic allocations,
2669 * no other devices should be given.
2670 * Otherwise it must be a member device of a container, and we
2671 * do manual allocation.
2672 * Later we should check for a BVD and make an SVD.
2673 */
2674 fd = open(dev, O_RDONLY|O_EXCL, 0);
2675 if (fd >= 0) {
2676 sra = sysfs_read(fd, 0, GET_VERSION);
2677 close(fd);
2678 if (sra && sra->array.major_version == -1 &&
2679 strcmp(sra->text_version, "ddf") == 0) {
2680
2681 /* load super */
2682 /* find space for 'n' devices. */
2683 /* remember the devices */
2684 /* Somehow return the fact that we have enough */
2685 }
2686
2687 if (verbose)
2688 fprintf(stderr,
2689 Name ": ddf: Cannot create this array "
2690 "on device %s - a container is required.\n",
2691 dev);
2692 return 0;
2693 }
2694 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2695 if (verbose)
2696 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2697 dev, strerror(errno));
2698 return 0;
2699 }
2700 /* Well, it is in use by someone, maybe a 'ddf' container. */
2701 cfd = open_container(fd);
2702 if (cfd < 0) {
2703 close(fd);
2704 if (verbose)
2705 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2706 dev, strerror(EBUSY));
2707 return 0;
2708 }
2709 sra = sysfs_read(cfd, 0, GET_VERSION);
2710 close(fd);
2711 if (sra && sra->array.major_version == -1 &&
2712 strcmp(sra->text_version, "ddf") == 0) {
2713 /* This is a member of a ddf container. Load the container
2714 * and try to create a bvd
2715 */
2716 struct ddf_super *ddf;
2717 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2718 st->sb = ddf;
2719 st->container_dev = fd2devnum(cfd);
2720 close(cfd);
2721 return validate_geometry_ddf_bvd(st, level, layout,
2722 raiddisks, chunk, size,
2723 dev, freesize,
2724 verbose);
2725 }
2726 close(cfd);
2727 } else /* device may belong to a different container */
2728 return 0;
2729
2730 return 1;
2731 }
2732
2733 static int
2734 validate_geometry_ddf_container(struct supertype *st,
2735 int level, int layout, int raiddisks,
2736 int chunk, unsigned long long size,
2737 char *dev, unsigned long long *freesize,
2738 int verbose)
2739 {
2740 int fd;
2741 unsigned long long ldsize;
2742
2743 if (level != LEVEL_CONTAINER)
2744 return 0;
2745 if (!dev)
2746 return 1;
2747
2748 fd = open(dev, O_RDONLY|O_EXCL, 0);
2749 if (fd < 0) {
2750 if (verbose)
2751 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2752 dev, strerror(errno));
2753 return 0;
2754 }
2755 if (!get_dev_size(fd, dev, &ldsize)) {
2756 close(fd);
2757 return 0;
2758 }
2759 close(fd);
2760
2761 *freesize = avail_size_ddf(st, ldsize >> 9);
2762 if (*freesize == 0)
2763 return 0;
2764
2765 return 1;
2766 }
2767
2768 static int validate_geometry_ddf_bvd(struct supertype *st,
2769 int level, int layout, int raiddisks,
2770 int *chunk, unsigned long long size,
2771 char *dev, unsigned long long *freesize,
2772 int verbose)
2773 {
2774 struct stat stb;
2775 struct ddf_super *ddf = st->sb;
2776 struct dl *dl;
2777 unsigned long long pos = 0;
2778 unsigned long long maxsize;
2779 struct extent *e;
2780 int i;
2781 /* ddf/bvd supports lots of things, but not containers */
2782 if (level == LEVEL_CONTAINER) {
2783 if (verbose)
2784 fprintf(stderr, Name ": DDF cannot create a container within an container\n");
2785 return 0;
2786 }
2787 /* We must have the container info already read in. */
2788 if (!ddf)
2789 return 0;
2790
2791 if (!dev) {
2792 /* General test: make sure there is space for
2793 * 'raiddisks' device extents of size 'size'.
2794 */
2795 unsigned long long minsize = size;
2796 int dcnt = 0;
2797 if (minsize == 0)
2798 minsize = 8;
2799 for (dl = ddf->dlist; dl ; dl = dl->next)
2800 {
2801 int found = 0;
2802 pos = 0;
2803
2804 i = 0;
2805 e = get_extents(ddf, dl);
2806 if (!e) continue;
2807 do {
2808 unsigned long long esize;
2809 esize = e[i].start - pos;
2810 if (esize >= minsize)
2811 found = 1;
2812 pos = e[i].start + e[i].size;
2813 i++;
2814 } while (e[i-1].size);
2815 if (found)
2816 dcnt++;
2817 free(e);
2818 }
2819 if (dcnt < raiddisks) {
2820 if (verbose)
2821 fprintf(stderr,
2822 Name ": ddf: Not enough devices with "
2823 "space for this array (%d < %d)\n",
2824 dcnt, raiddisks);
2825 return 0;
2826 }
2827 return 1;
2828 }
2829 /* This device must be a member of the set */
2830 if (stat(dev, &stb) < 0)
2831 return 0;
2832 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2833 return 0;
2834 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2835 if (dl->major == (int)major(stb.st_rdev) &&
2836 dl->minor == (int)minor(stb.st_rdev))
2837 break;
2838 }
2839 if (!dl) {
2840 if (verbose)
2841 fprintf(stderr, Name ": ddf: %s is not in the "
2842 "same DDF set\n",
2843 dev);
2844 return 0;
2845 }
2846 e = get_extents(ddf, dl);
2847 maxsize = 0;
2848 i = 0;
2849 if (e) do {
2850 unsigned long long esize;
2851 esize = e[i].start - pos;
2852 if (esize >= maxsize)
2853 maxsize = esize;
2854 pos = e[i].start + e[i].size;
2855 i++;
2856 } while (e[i-1].size);
2857 *freesize = maxsize;
2858 // FIXME here I am
2859
2860 return 1;
2861 }
2862
2863 static int load_super_ddf_all(struct supertype *st, int fd,
2864 void **sbp, char *devname)
2865 {
2866 struct mdinfo *sra;
2867 struct ddf_super *super;
2868 struct mdinfo *sd, *best = NULL;
2869 int bestseq = 0;
2870 int seq;
2871 char nm[20];
2872 int dfd;
2873
2874 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2875 if (!sra)
2876 return 1;
2877 if (sra->array.major_version != -1 ||
2878 sra->array.minor_version != -2 ||
2879 strcmp(sra->text_version, "ddf") != 0)
2880 return 1;
2881
2882 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2883 return 1;
2884 memset(super, 0, sizeof(*super));
2885
2886 /* first, try each device, and choose the best ddf */
2887 for (sd = sra->devs ; sd ; sd = sd->next) {
2888 int rv;
2889 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2890 dfd = dev_open(nm, O_RDONLY);
2891 if (dfd < 0)
2892 return 2;
2893 rv = load_ddf_headers(dfd, super, NULL);
2894 close(dfd);
2895 if (rv == 0) {
2896 seq = __be32_to_cpu(super->active->seq);
2897 if (super->active->openflag)
2898 seq--;
2899 if (!best || seq > bestseq) {
2900 bestseq = seq;
2901 best = sd;
2902 }
2903 }
2904 }
2905 if (!best)
2906 return 1;
2907 /* OK, load this ddf */
2908 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2909 dfd = dev_open(nm, O_RDONLY);
2910 if (dfd < 0)
2911 return 1;
2912 load_ddf_headers(dfd, super, NULL);
2913 load_ddf_global(dfd, super, NULL);
2914 close(dfd);
2915 /* Now we need the device-local bits */
2916 for (sd = sra->devs ; sd ; sd = sd->next) {
2917 int rv;
2918
2919 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2920 dfd = dev_open(nm, O_RDWR);
2921 if (dfd < 0)
2922 return 2;
2923 rv = load_ddf_headers(dfd, super, NULL);
2924 if (rv == 0)
2925 rv = load_ddf_local(dfd, super, NULL, 1);
2926 if (rv)
2927 return 1;
2928 }
2929
2930 *sbp = super;
2931 if (st->ss == NULL) {
2932 st->ss = &super_ddf;
2933 st->minor_version = 0;
2934 st->max_devs = 512;
2935 }
2936 st->container_dev = fd2devnum(fd);
2937 return 0;
2938 }
2939
2940 static int load_container_ddf(struct supertype *st, int fd,
2941 char *devname)
2942 {
2943 return load_super_ddf_all(st, fd, &st->sb, devname);
2944 }
2945
2946 #endif /* MDASSEMBLE */
2947
2948 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2949 {
2950 /* Given a container loaded by load_super_ddf_all,
2951 * extract information about all the arrays into
2952 * an mdinfo tree.
2953 *
2954 * For each vcl in conflist: create an mdinfo, fill it in,
2955 * then look for matching devices (phys_refnum) in dlist
2956 * and create appropriate device mdinfo.
2957 */
2958 struct ddf_super *ddf = st->sb;
2959 struct mdinfo *rest = NULL;
2960 struct vcl *vc;
2961
2962 for (vc = ddf->conflist ; vc ; vc=vc->next)
2963 {
2964 unsigned int i;
2965 unsigned int j;
2966 struct mdinfo *this;
2967 char *ep;
2968
2969 if (subarray &&
2970 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2971 *ep != '\0'))
2972 continue;
2973
2974 this = malloc(sizeof(*this));
2975 memset(this, 0, sizeof(*this));
2976 this->next = rest;
2977 rest = this;
2978
2979 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2980 this->array.raid_disks =
2981 __be16_to_cpu(vc->conf.prim_elmnt_count);
2982 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2983 this->array.raid_disks);
2984 this->array.md_minor = -1;
2985 this->array.major_version = -1;
2986 this->array.minor_version = -2;
2987 this->array.ctime = DECADE +
2988 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2989 this->array.utime = DECADE +
2990 __be32_to_cpu(vc->conf.timestamp);
2991 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2992
2993 i = vc->vcnum;
2994 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2995 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2996 DDF_init_full) {
2997 this->array.state = 0;
2998 this->resync_start = 0;
2999 } else {
3000 this->array.state = 1;
3001 this->resync_start = MaxSector;
3002 }
3003 memcpy(this->name, ddf->virt->entries[i].name, 16);
3004 this->name[16]=0;
3005 for(j=0; j<16; j++)
3006 if (this->name[j] == ' ')
3007 this->name[j] = 0;
3008
3009 memset(this->uuid, 0, sizeof(this->uuid));
3010 this->component_size = __be64_to_cpu(vc->conf.blocks);
3011 this->array.size = this->component_size / 2;
3012 this->container_member = i;
3013
3014 ddf->currentconf = vc;
3015 uuid_from_super_ddf(st, this->uuid);
3016 ddf->currentconf = NULL;
3017
3018 sprintf(this->text_version, "/%s/%d",
3019 devnum2devname(st->container_dev),
3020 this->container_member);
3021
3022 for (i = 0 ; i < ddf->mppe ; i++) {
3023 struct mdinfo *dev;
3024 struct dl *d;
3025 int stt;
3026 int pd;
3027
3028 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3029 continue;
3030
3031 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3032 pd--;)
3033 if (ddf->phys->entries[pd].refnum
3034 == vc->conf.phys_refnum[i])
3035 break;
3036 if (pd < 0)
3037 continue;
3038
3039 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3040 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3041 != DDF_Online)
3042 continue;
3043
3044 this->array.working_disks++;
3045
3046 for (d = ddf->dlist; d ; d=d->next)
3047 if (d->disk.refnum == vc->conf.phys_refnum[i])
3048 break;
3049 if (d == NULL)
3050 /* Haven't found that one yet, maybe there are others */
3051 continue;
3052
3053 dev = malloc(sizeof(*dev));
3054 memset(dev, 0, sizeof(*dev));
3055 dev->next = this->devs;
3056 this->devs = dev;
3057
3058 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3059 dev->disk.major = d->major;
3060 dev->disk.minor = d->minor;
3061 dev->disk.raid_disk = i;
3062 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3063 dev->recovery_start = MaxSector;
3064
3065 dev->events = __be32_to_cpu(ddf->primary.seq);
3066 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3067 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3068 if (d->devname)
3069 strcpy(dev->name, d->devname);
3070 }
3071 }
3072 return rest;
3073 }
3074
3075 static int store_super_ddf(struct supertype *st, int fd)
3076 {
3077 struct ddf_super *ddf = st->sb;
3078 unsigned long long dsize;
3079 void *buf;
3080 int rc;
3081
3082 if (!ddf)
3083 return 1;
3084
3085 /* ->dlist and ->conflist will be set for updates, currently not
3086 * supported
3087 */
3088 if (ddf->dlist || ddf->conflist)
3089 return 1;
3090
3091 if (!get_dev_size(fd, NULL, &dsize))
3092 return 1;
3093
3094 if (posix_memalign(&buf, 512, 512) != 0)
3095 return 1;
3096 memset(buf, 0, 512);
3097
3098 lseek64(fd, dsize-512, 0);
3099 rc = write(fd, buf, 512);
3100 free(buf);
3101 if (rc < 0)
3102 return 1;
3103 return 0;
3104 }
3105
3106 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3107 {
3108 /*
3109 * return:
3110 * 0 same, or first was empty, and second was copied
3111 * 1 second had wrong number
3112 * 2 wrong uuid
3113 * 3 wrong other info
3114 */
3115 struct ddf_super *first = st->sb;
3116 struct ddf_super *second = tst->sb;
3117
3118 if (!first) {
3119 st->sb = tst->sb;
3120 tst->sb = NULL;
3121 return 0;
3122 }
3123
3124 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3125 return 2;
3126
3127 /* FIXME should I look at anything else? */
3128 return 0;
3129 }
3130
3131 #ifndef MDASSEMBLE
3132 /*
3133 * A new array 'a' has been started which claims to be instance 'inst'
3134 * within container 'c'.
3135 * We need to confirm that the array matches the metadata in 'c' so
3136 * that we don't corrupt any metadata.
3137 */
3138 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3139 {
3140 dprintf("ddf: open_new %s\n", inst);
3141 a->info.container_member = atoi(inst);
3142 return 0;
3143 }
3144
3145 /*
3146 * The array 'a' is to be marked clean in the metadata.
3147 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3148 * clean up to the point (in sectors). If that cannot be recorded in the
3149 * metadata, then leave it as dirty.
3150 *
3151 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3152 * !global! virtual_disk.virtual_entry structure.
3153 */
3154 static int ddf_set_array_state(struct active_array *a, int consistent)
3155 {
3156 struct ddf_super *ddf = a->container->sb;
3157 int inst = a->info.container_member;
3158 int old = ddf->virt->entries[inst].state;
3159 if (consistent == 2) {
3160 /* Should check if a recovery should be started FIXME */
3161 consistent = 1;
3162 if (!is_resync_complete(&a->info))
3163 consistent = 0;
3164 }
3165 if (consistent)
3166 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3167 else
3168 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3169 if (old != ddf->virt->entries[inst].state)
3170 ddf->updates_pending = 1;
3171
3172 old = ddf->virt->entries[inst].init_state;
3173 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3174 if (is_resync_complete(&a->info))
3175 ddf->virt->entries[inst].init_state |= DDF_init_full;
3176 else if (a->info.resync_start == 0)
3177 ddf->virt->entries[inst].init_state |= DDF_init_not;
3178 else
3179 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3180 if (old != ddf->virt->entries[inst].init_state)
3181 ddf->updates_pending = 1;
3182
3183 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3184 a->info.resync_start);
3185 return consistent;
3186 }
3187
3188 #define container_of(ptr, type, member) ({ \
3189 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3190 (type *)( (char *)__mptr - offsetof(type,member) );})
3191 /*
3192 * The state of each disk is stored in the global phys_disk structure
3193 * in phys_disk.entries[n].state.
3194 * This makes various combinations awkward.
3195 * - When a device fails in any array, it must be failed in all arrays
3196 * that include a part of this device.
3197 * - When a component is rebuilding, we cannot include it officially in the
3198 * array unless this is the only array that uses the device.
3199 *
3200 * So: when transitioning:
3201 * Online -> failed, just set failed flag. monitor will propagate
3202 * spare -> online, the device might need to be added to the array.
3203 * spare -> failed, just set failed. Don't worry if in array or not.
3204 */
3205 static void ddf_set_disk(struct active_array *a, int n, int state)
3206 {
3207 struct ddf_super *ddf = a->container->sb;
3208 unsigned int inst = a->info.container_member;
3209 struct vd_config *vc = find_vdcr(ddf, inst);
3210 int pd = find_phys(ddf, vc->phys_refnum[n]);
3211 int i, st, working;
3212 struct mdinfo *mdi;
3213 struct dl *dl;
3214
3215 if (vc == NULL) {
3216 dprintf("ddf: cannot find instance %d!!\n", inst);
3217 return;
3218 }
3219 /* Find the matching slot in 'info'. */
3220 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3221 if (mdi->disk.raid_disk == n)
3222 break;
3223 if (!mdi)
3224 return;
3225
3226 /* and find the 'dl' entry corresponding to that. */
3227 for (dl = ddf->dlist; dl; dl = dl->next)
3228 if (mdi->state_fd >= 0 &&
3229 mdi->disk.major == dl->major &&
3230 mdi->disk.minor == dl->minor)
3231 break;
3232 if (!dl)
3233 return;
3234
3235 if (pd < 0 || pd != dl->pdnum) {
3236 /* disk doesn't currently exist or has changed.
3237 * If it is now in_sync, insert it. */
3238 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3239 struct vcl *vcl;
3240 pd = dl->pdnum;
3241 vc->phys_refnum[n] = dl->disk.refnum;
3242 vcl = container_of(vc, struct vcl, conf);
3243 vcl->lba_offset[n] = mdi->data_offset;
3244 ddf->phys->entries[pd].type &=
3245 ~__cpu_to_be16(DDF_Global_Spare);
3246 ddf->phys->entries[pd].type |=
3247 __cpu_to_be16(DDF_Active_in_VD);
3248 ddf->updates_pending = 1;
3249 }
3250 } else {
3251 int old = ddf->phys->entries[pd].state;
3252 if (state & DS_FAULTY)
3253 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3254 if (state & DS_INSYNC) {
3255 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3256 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3257 }
3258 if (old != ddf->phys->entries[pd].state)
3259 ddf->updates_pending = 1;
3260 }
3261
3262 dprintf("ddf: set_disk %d to %x\n", n, state);
3263
3264 /* Now we need to check the state of the array and update
3265 * virtual_disk.entries[n].state.
3266 * It needs to be one of "optimal", "degraded", "failed".
3267 * I don't understand 'deleted' or 'missing'.
3268 */
3269 working = 0;
3270 for (i=0; i < a->info.array.raid_disks; i++) {
3271 pd = find_phys(ddf, vc->phys_refnum[i]);
3272 if (pd < 0)
3273 continue;
3274 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3275 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3276 == DDF_Online)
3277 working++;
3278 }
3279 state = DDF_state_degraded;
3280 if (working == a->info.array.raid_disks)
3281 state = DDF_state_optimal;
3282 else switch(vc->prl) {
3283 case DDF_RAID0:
3284 case DDF_CONCAT:
3285 case DDF_JBOD:
3286 state = DDF_state_failed;
3287 break;
3288 case DDF_RAID1:
3289 if (working == 0)
3290 state = DDF_state_failed;
3291 else if (working == 2 && state == DDF_state_degraded)
3292 state = DDF_state_part_optimal;
3293 break;
3294 case DDF_RAID4:
3295 case DDF_RAID5:
3296 if (working < a->info.array.raid_disks-1)
3297 state = DDF_state_failed;
3298 break;
3299 case DDF_RAID6:
3300 if (working < a->info.array.raid_disks-2)
3301 state = DDF_state_failed;
3302 else if (working == a->info.array.raid_disks-1)
3303 state = DDF_state_part_optimal;
3304 break;
3305 }
3306
3307 if (ddf->virt->entries[inst].state !=
3308 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3309 | state)) {
3310
3311 ddf->virt->entries[inst].state =
3312 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3313 | state;
3314 ddf->updates_pending = 1;
3315 }
3316
3317 }
3318
3319 static void ddf_sync_metadata(struct supertype *st)
3320 {
3321
3322 /*
3323 * Write all data to all devices.
3324 * Later, we might be able to track whether only local changes
3325 * have been made, or whether any global data has been changed,
3326 * but ddf is sufficiently weird that it probably always
3327 * changes global data ....
3328 */
3329 struct ddf_super *ddf = st->sb;
3330 if (!ddf->updates_pending)
3331 return;
3332 ddf->updates_pending = 0;
3333 __write_init_super_ddf(st);
3334 dprintf("ddf: sync_metadata\n");
3335 }
3336
3337 static void ddf_process_update(struct supertype *st,
3338 struct metadata_update *update)
3339 {
3340 /* Apply this update to the metadata.
3341 * The first 4 bytes are a DDF_*_MAGIC which guides
3342 * our actions.
3343 * Possible update are:
3344 * DDF_PHYS_RECORDS_MAGIC
3345 * Add a new physical device or remove an old one.
3346 * Changes to this record only happen implicitly.
3347 * used_pdes is the device number.
3348 * DDF_VIRT_RECORDS_MAGIC
3349 * Add a new VD. Possibly also change the 'access' bits.
3350 * populated_vdes is the entry number.
3351 * DDF_VD_CONF_MAGIC
3352 * New or updated VD. the VIRT_RECORD must already
3353 * exist. For an update, phys_refnum and lba_offset
3354 * (at least) are updated, and the VD_CONF must
3355 * be written to precisely those devices listed with
3356 * a phys_refnum.
3357 * DDF_SPARE_ASSIGN_MAGIC
3358 * replacement Spare Assignment Record... but for which device?
3359 *
3360 * So, e.g.:
3361 * - to create a new array, we send a VIRT_RECORD and
3362 * a VD_CONF. Then assemble and start the array.
3363 * - to activate a spare we send a VD_CONF to add the phys_refnum
3364 * and offset. This will also mark the spare as active with
3365 * a spare-assignment record.
3366 */
3367 struct ddf_super *ddf = st->sb;
3368 __u32 *magic = (__u32*)update->buf;
3369 struct phys_disk *pd;
3370 struct virtual_disk *vd;
3371 struct vd_config *vc;
3372 struct vcl *vcl;
3373 struct dl *dl;
3374 unsigned int mppe;
3375 unsigned int ent;
3376 unsigned int pdnum, pd2;
3377
3378 dprintf("Process update %x\n", *magic);
3379
3380 switch (*magic) {
3381 case DDF_PHYS_RECORDS_MAGIC:
3382
3383 if (update->len != (sizeof(struct phys_disk) +
3384 sizeof(struct phys_disk_entry)))
3385 return;
3386 pd = (struct phys_disk*)update->buf;
3387
3388 ent = __be16_to_cpu(pd->used_pdes);
3389 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3390 return;
3391 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3392 struct dl **dlp;
3393 /* removing this disk. */
3394 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3395 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3396 struct dl *dl = *dlp;
3397 if (dl->pdnum == (signed)ent) {
3398 close(dl->fd);
3399 dl->fd = -1;
3400 /* FIXME this doesn't free
3401 * dl->devname */
3402 update->space = dl;
3403 *dlp = dl->next;
3404 break;
3405 }
3406 }
3407 ddf->updates_pending = 1;
3408 return;
3409 }
3410 if (!all_ff(ddf->phys->entries[ent].guid))
3411 return;
3412 ddf->phys->entries[ent] = pd->entries[0];
3413 ddf->phys->used_pdes = __cpu_to_be16(1 +
3414 __be16_to_cpu(ddf->phys->used_pdes));
3415 ddf->updates_pending = 1;
3416 if (ddf->add_list) {
3417 struct active_array *a;
3418 struct dl *al = ddf->add_list;
3419 ddf->add_list = al->next;
3420
3421 al->next = ddf->dlist;
3422 ddf->dlist = al;
3423
3424 /* As a device has been added, we should check
3425 * for any degraded devices that might make
3426 * use of this spare */
3427 for (a = st->arrays ; a; a=a->next)
3428 a->check_degraded = 1;
3429 }
3430 break;
3431
3432 case DDF_VIRT_RECORDS_MAGIC:
3433
3434 if (update->len != (sizeof(struct virtual_disk) +
3435 sizeof(struct virtual_entry)))
3436 return;
3437 vd = (struct virtual_disk*)update->buf;
3438
3439 ent = __be16_to_cpu(vd->populated_vdes);
3440 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3441 return;
3442 if (!all_ff(ddf->virt->entries[ent].guid))
3443 return;
3444 ddf->virt->entries[ent] = vd->entries[0];
3445 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3446 __be16_to_cpu(ddf->virt->populated_vdes));
3447 ddf->updates_pending = 1;
3448 break;
3449
3450 case DDF_VD_CONF_MAGIC:
3451 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3452
3453 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3454 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3455 return;
3456 vc = (struct vd_config*)update->buf;
3457 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3458 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3459 break;
3460 dprintf("vcl = %p\n", vcl);
3461 if (vcl) {
3462 /* An update, just copy the phys_refnum and lba_offset
3463 * fields
3464 */
3465 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3466 mppe * (sizeof(__u32) + sizeof(__u64)));
3467 } else {
3468 /* A new VD_CONF */
3469 if (!update->space)
3470 return;
3471 vcl = update->space;
3472 update->space = NULL;
3473 vcl->next = ddf->conflist;
3474 memcpy(&vcl->conf, vc, update->len);
3475 vcl->lba_offset = (__u64*)
3476 &vcl->conf.phys_refnum[mppe];
3477 for (ent = 0;
3478 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3479 ent++)
3480 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3481 DDF_GUID_LEN) == 0) {
3482 vcl->vcnum = ent;
3483 break;
3484 }
3485 ddf->conflist = vcl;
3486 }
3487 /* Set DDF_Transition on all Failed devices - to help
3488 * us detect those that are no longer in use
3489 */
3490 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3491 if (ddf->phys->entries[pdnum].state
3492 & __be16_to_cpu(DDF_Failed))
3493 ddf->phys->entries[pdnum].state
3494 |= __be16_to_cpu(DDF_Transition);
3495 /* Now make sure vlist is correct for each dl. */
3496 for (dl = ddf->dlist; dl; dl = dl->next) {
3497 unsigned int dn;
3498 unsigned int vn = 0;
3499 int in_degraded = 0;
3500 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3501 for (dn=0; dn < ddf->mppe ; dn++)
3502 if (vcl->conf.phys_refnum[dn] ==
3503 dl->disk.refnum) {
3504 int vstate;
3505 dprintf("dev %d has %p at %d\n",
3506 dl->pdnum, vcl, vn);
3507 /* Clear the Transition flag */
3508 if (ddf->phys->entries[dl->pdnum].state
3509 & __be16_to_cpu(DDF_Failed))
3510 ddf->phys->entries[dl->pdnum].state &=
3511 ~__be16_to_cpu(DDF_Transition);
3512
3513 dl->vlist[vn++] = vcl;
3514 vstate = ddf->virt->entries[vcl->vcnum].state
3515 & DDF_state_mask;
3516 if (vstate == DDF_state_degraded ||
3517 vstate == DDF_state_part_optimal)
3518 in_degraded = 1;
3519 break;
3520 }
3521 while (vn < ddf->max_part)
3522 dl->vlist[vn++] = NULL;
3523 if (dl->vlist[0]) {
3524 ddf->phys->entries[dl->pdnum].type &=
3525 ~__cpu_to_be16(DDF_Global_Spare);
3526 if (!(ddf->phys->entries[dl->pdnum].type &
3527 __cpu_to_be16(DDF_Active_in_VD))) {
3528 ddf->phys->entries[dl->pdnum].type |=
3529 __cpu_to_be16(DDF_Active_in_VD);
3530 if (in_degraded)
3531 ddf->phys->entries[dl->pdnum].state |=
3532 __cpu_to_be16(DDF_Rebuilding);
3533 }
3534 }
3535 if (dl->spare) {
3536 ddf->phys->entries[dl->pdnum].type &=
3537 ~__cpu_to_be16(DDF_Global_Spare);
3538 ddf->phys->entries[dl->pdnum].type |=
3539 __cpu_to_be16(DDF_Spare);
3540 }
3541 if (!dl->vlist[0] && !dl->spare) {
3542 ddf->phys->entries[dl->pdnum].type |=
3543 __cpu_to_be16(DDF_Global_Spare);
3544 ddf->phys->entries[dl->pdnum].type &=
3545 ~__cpu_to_be16(DDF_Spare |
3546 DDF_Active_in_VD);
3547 }
3548 }
3549
3550 /* Now remove any 'Failed' devices that are not part
3551 * of any VD. They will have the Transition flag set.
3552 * Once done, we need to update all dl->pdnum numbers.
3553 */
3554 pd2 = 0;
3555 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3556 if ((ddf->phys->entries[pdnum].state
3557 & __be16_to_cpu(DDF_Failed))
3558 && (ddf->phys->entries[pdnum].state
3559 & __be16_to_cpu(DDF_Transition)))
3560 /* skip this one */;
3561 else if (pdnum == pd2)
3562 pd2++;
3563 else {
3564 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3565 for (dl = ddf->dlist; dl; dl = dl->next)
3566 if (dl->pdnum == (int)pdnum)
3567 dl->pdnum = pd2;
3568 pd2++;
3569 }
3570 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3571 while (pd2 < pdnum) {
3572 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3573 pd2++;
3574 }
3575
3576 ddf->updates_pending = 1;
3577 break;
3578 case DDF_SPARE_ASSIGN_MAGIC:
3579 default: break;
3580 }
3581 }
3582
3583 static void ddf_prepare_update(struct supertype *st,
3584 struct metadata_update *update)
3585 {
3586 /* This update arrived at managemon.
3587 * We are about to pass it to monitor.
3588 * If a malloc is needed, do it here.
3589 */
3590 struct ddf_super *ddf = st->sb;
3591 __u32 *magic = (__u32*)update->buf;
3592 if (*magic == DDF_VD_CONF_MAGIC)
3593 if (posix_memalign(&update->space, 512,
3594 offsetof(struct vcl, conf)
3595 + ddf->conf_rec_len * 512) != 0)
3596 update->space = NULL;
3597 }
3598
3599 /*
3600 * Check if the array 'a' is degraded but not failed.
3601 * If it is, find as many spares as are available and needed and
3602 * arrange for their inclusion.
3603 * We only choose devices which are not already in the array,
3604 * and prefer those with a spare-assignment to this array.
3605 * otherwise we choose global spares - assuming always that
3606 * there is enough room.
3607 * For each spare that we assign, we return an 'mdinfo' which
3608 * describes the position for the device in the array.
3609 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3610 * the new phys_refnum and lba_offset values.
3611 *
3612 * Only worry about BVDs at the moment.
3613 */
3614 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3615 struct metadata_update **updates)
3616 {
3617 int working = 0;
3618 struct mdinfo *d;
3619 struct ddf_super *ddf = a->container->sb;
3620 int global_ok = 0;
3621 struct mdinfo *rv = NULL;
3622 struct mdinfo *di;
3623 struct metadata_update *mu;
3624 struct dl *dl;
3625 int i;
3626 struct vd_config *vc;
3627 __u64 *lba;
3628
3629 for (d = a->info.devs ; d ; d = d->next) {
3630 if ((d->curr_state & DS_FAULTY) &&
3631 d->state_fd >= 0)
3632 /* wait for Removal to happen */
3633 return NULL;
3634 if (d->state_fd >= 0)
3635 working ++;
3636 }
3637
3638 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3639 a->info.array.level);
3640 if (working == a->info.array.raid_disks)
3641 return NULL; /* array not degraded */
3642 switch (a->info.array.level) {
3643 case 1:
3644 if (working == 0)
3645 return NULL; /* failed */
3646 break;
3647 case 4:
3648 case 5:
3649 if (working < a->info.array.raid_disks - 1)
3650 return NULL; /* failed */
3651 break;
3652 case 6:
3653 if (working < a->info.array.raid_disks - 2)
3654 return NULL; /* failed */
3655 break;
3656 default: /* concat or stripe */
3657 return NULL; /* failed */
3658 }
3659
3660 /* For each slot, if it is not working, find a spare */
3661 dl = ddf->dlist;
3662 for (i = 0; i < a->info.array.raid_disks; i++) {
3663 for (d = a->info.devs ; d ; d = d->next)
3664 if (d->disk.raid_disk == i)
3665 break;
3666 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3667 if (d && (d->state_fd >= 0))
3668 continue;
3669
3670 /* OK, this device needs recovery. Find a spare */
3671 again:
3672 for ( ; dl ; dl = dl->next) {
3673 unsigned long long esize;
3674 unsigned long long pos;
3675 struct mdinfo *d2;
3676 int is_global = 0;
3677 int is_dedicated = 0;
3678 struct extent *ex;
3679 unsigned int j;
3680 /* If in this array, skip */
3681 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3682 if (d2->state_fd >= 0 &&
3683 d2->disk.major == dl->major &&
3684 d2->disk.minor == dl->minor) {
3685 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3686 break;
3687 }
3688 if (d2)
3689 continue;
3690 if (ddf->phys->entries[dl->pdnum].type &
3691 __cpu_to_be16(DDF_Spare)) {
3692 /* Check spare assign record */
3693 if (dl->spare) {
3694 if (dl->spare->type & DDF_spare_dedicated) {
3695 /* check spare_ents for guid */
3696 for (j = 0 ;
3697 j < __be16_to_cpu(dl->spare->populated);
3698 j++) {
3699 if (memcmp(dl->spare->spare_ents[j].guid,
3700 ddf->virt->entries[a->info.container_member].guid,
3701 DDF_GUID_LEN) == 0)
3702 is_dedicated = 1;
3703 }
3704 } else
3705 is_global = 1;
3706 }
3707 } else if (ddf->phys->entries[dl->pdnum].type &
3708 __cpu_to_be16(DDF_Global_Spare)) {
3709 is_global = 1;
3710 }
3711 if ( ! (is_dedicated ||
3712 (is_global && global_ok))) {
3713 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3714 is_dedicated, is_global);
3715 continue;
3716 }
3717
3718 /* We are allowed to use this device - is there space?
3719 * We need a->info.component_size sectors */
3720 ex = get_extents(ddf, dl);
3721 if (!ex) {
3722 dprintf("cannot get extents\n");
3723 continue;
3724 }
3725 j = 0; pos = 0;
3726 esize = 0;
3727
3728 do {
3729 esize = ex[j].start - pos;
3730 if (esize >= a->info.component_size)
3731 break;
3732 pos = ex[j].start + ex[j].size;
3733 j++;
3734 } while (ex[j-1].size);
3735
3736 free(ex);
3737 if (esize < a->info.component_size) {
3738 dprintf("%x:%x has no room: %llu %llu\n",
3739 dl->major, dl->minor,
3740 esize, a->info.component_size);
3741 /* No room */
3742 continue;
3743 }
3744
3745 /* Cool, we have a device with some space at pos */
3746 di = malloc(sizeof(*di));
3747 if (!di)
3748 continue;
3749 memset(di, 0, sizeof(*di));
3750 di->disk.number = i;
3751 di->disk.raid_disk = i;
3752 di->disk.major = dl->major;
3753 di->disk.minor = dl->minor;
3754 di->disk.state = 0;
3755 di->recovery_start = 0;
3756 di->data_offset = pos;
3757 di->component_size = a->info.component_size;
3758 di->container_member = dl->pdnum;
3759 di->next = rv;
3760 rv = di;
3761 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3762 i, pos);
3763
3764 break;
3765 }
3766 if (!dl && ! global_ok) {
3767 /* not enough dedicated spares, try global */
3768 global_ok = 1;
3769 dl = ddf->dlist;
3770 goto again;
3771 }
3772 }
3773
3774 if (!rv)
3775 /* No spares found */
3776 return rv;
3777 /* Now 'rv' has a list of devices to return.
3778 * Create a metadata_update record to update the
3779 * phys_refnum and lba_offset values
3780 */
3781 mu = malloc(sizeof(*mu));
3782 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3783 free(mu);
3784 mu = NULL;
3785 }
3786 if (!mu) {
3787 while (rv) {
3788 struct mdinfo *n = rv->next;
3789
3790 free(rv);
3791 rv = n;
3792 }
3793 return NULL;
3794 }
3795
3796 mu->buf = malloc(ddf->conf_rec_len * 512);
3797 mu->len = ddf->conf_rec_len * 512;
3798 mu->space = NULL;
3799 mu->space_list = NULL;
3800 mu->next = *updates;
3801 vc = find_vdcr(ddf, a->info.container_member);
3802 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3803
3804 vc = (struct vd_config*)mu->buf;
3805 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3806 for (di = rv ; di ; di = di->next) {
3807 vc->phys_refnum[di->disk.raid_disk] =
3808 ddf->phys->entries[dl->pdnum].refnum;
3809 lba[di->disk.raid_disk] = di->data_offset;
3810 }
3811 *updates = mu;
3812 return rv;
3813 }
3814 #endif /* MDASSEMBLE */
3815
3816 static int ddf_level_to_layout(int level)
3817 {
3818 switch(level) {
3819 case 0:
3820 case 1:
3821 return 0;
3822 case 5:
3823 return ALGORITHM_LEFT_SYMMETRIC;
3824 case 6:
3825 return ALGORITHM_ROTATING_N_CONTINUE;
3826 case 10:
3827 return 0x102;
3828 default:
3829 return UnSet;
3830 }
3831 }
3832
3833 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3834 {
3835 if (level && *level == UnSet)
3836 *level = LEVEL_CONTAINER;
3837
3838 if (level && layout && *layout == UnSet)
3839 *layout = ddf_level_to_layout(*level);
3840 }
3841
3842 struct superswitch super_ddf = {
3843 #ifndef MDASSEMBLE
3844 .examine_super = examine_super_ddf,
3845 .brief_examine_super = brief_examine_super_ddf,
3846 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3847 .export_examine_super = export_examine_super_ddf,
3848 .detail_super = detail_super_ddf,
3849 .brief_detail_super = brief_detail_super_ddf,
3850 .validate_geometry = validate_geometry_ddf,
3851 .write_init_super = write_init_super_ddf,
3852 .add_to_super = add_to_super_ddf,
3853 .remove_from_super = remove_from_super_ddf,
3854 .load_container = load_container_ddf,
3855 #endif
3856 .match_home = match_home_ddf,
3857 .uuid_from_super= uuid_from_super_ddf,
3858 .getinfo_super = getinfo_super_ddf,
3859 .update_super = update_super_ddf,
3860
3861 .avail_size = avail_size_ddf,
3862
3863 .compare_super = compare_super_ddf,
3864
3865 .load_super = load_super_ddf,
3866 .init_super = init_super_ddf,
3867 .store_super = store_super_ddf,
3868 .free_super = free_super_ddf,
3869 .match_metadata_desc = match_metadata_desc_ddf,
3870 .container_content = container_content_ddf,
3871 .default_geometry = default_geometry_ddf,
3872
3873 .external = 1,
3874
3875 #ifndef MDASSEMBLE
3876 /* for mdmon */
3877 .open_new = ddf_open_new,
3878 .set_array_state= ddf_set_array_state,
3879 .set_disk = ddf_set_disk,
3880 .sync_metadata = ddf_sync_metadata,
3881 .process_update = ddf_process_update,
3882 .prepare_update = ddf_prepare_update,
3883 .activate_spare = ddf_activate_spare,
3884 #endif
3885 .name = "ddf",
3886 };