]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Print error message if failing to write super for 1.x metadata
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static unsigned int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 unsigned int i;
646 unsigned int confsec;
647 int vnum;
648 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
649 unsigned long long dsize;
650
651 /* First the local disk info */
652 if (posix_memalign((void**)&dl, 512,
653 sizeof(*dl) +
654 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
655 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
656 __func__);
657 return 1;
658 }
659
660 load_section(fd, super, &dl->disk,
661 super->active->data_section_offset,
662 super->active->data_section_length,
663 0);
664 dl->devname = devname ? strdup(devname) : NULL;
665
666 fstat(fd, &stb);
667 dl->major = major(stb.st_rdev);
668 dl->minor = minor(stb.st_rdev);
669 dl->next = super->dlist;
670 dl->fd = keep ? fd : -1;
671
672 dl->size = 0;
673 if (get_dev_size(fd, devname, &dsize))
674 dl->size = dsize >> 9;
675 dl->spare = NULL;
676 for (i = 0 ; i < super->max_part ; i++)
677 dl->vlist[i] = NULL;
678 super->dlist = dl;
679 dl->pdnum = -1;
680 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
681 if (memcmp(super->phys->entries[i].guid,
682 dl->disk.guid, DDF_GUID_LEN) == 0)
683 dl->pdnum = i;
684
685 /* Now the config list. */
686 /* 'conf' is an array of config entries, some of which are
687 * probably invalid. Those which are good need to be copied into
688 * the conflist
689 */
690
691 conf = load_section(fd, super, NULL,
692 super->active->config_section_offset,
693 super->active->config_section_length,
694 0);
695
696 vnum = 0;
697 for (confsec = 0;
698 confsec < __be32_to_cpu(super->active->config_section_length);
699 confsec += super->conf_rec_len) {
700 struct vd_config *vd =
701 (struct vd_config *)((char*)conf + confsec*512);
702 struct vcl *vcl;
703
704 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
705 if (dl->spare)
706 continue;
707 if (posix_memalign((void**)&dl->spare, 512,
708 super->conf_rec_len*512) != 0) {
709 fprintf(stderr, Name
710 ": %s could not allocate spare info buf\n",
711 __func__);
712 return 1;
713 }
714
715 memcpy(dl->spare, vd, super->conf_rec_len*512);
716 continue;
717 }
718 if (vd->magic != DDF_VD_CONF_MAGIC)
719 continue;
720 for (vcl = super->conflist; vcl; vcl = vcl->next) {
721 if (memcmp(vcl->conf.guid,
722 vd->guid, DDF_GUID_LEN) == 0)
723 break;
724 }
725
726 if (vcl) {
727 dl->vlist[vnum++] = vcl;
728 if (__be32_to_cpu(vd->seqnum) <=
729 __be32_to_cpu(vcl->conf.seqnum))
730 continue;
731 } else {
732 if (posix_memalign((void**)&vcl, 512,
733 (super->conf_rec_len*512 +
734 offsetof(struct vcl, conf))) != 0) {
735 fprintf(stderr, Name
736 ": %s could not allocate vcl buf\n",
737 __func__);
738 return 1;
739 }
740 vcl->next = super->conflist;
741 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
742 super->conflist = vcl;
743 dl->vlist[vnum++] = vcl;
744 }
745 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
746 vcl->lba_offset = (__u64*)
747 &vcl->conf.phys_refnum[super->mppe];
748
749 for (i=0; i < max_virt_disks ; i++)
750 if (memcmp(super->virt->entries[i].guid,
751 vcl->conf.guid, DDF_GUID_LEN)==0)
752 break;
753 if (i < max_virt_disks)
754 vcl->vcnum = i;
755 }
756 free(conf);
757
758 return 0;
759 }
760
761 #ifndef MDASSEMBLE
762 static int load_super_ddf_all(struct supertype *st, int fd,
763 void **sbp, char *devname);
764 #endif
765
766 static void free_super_ddf(struct supertype *st);
767
768 static int load_super_ddf(struct supertype *st, int fd,
769 char *devname)
770 {
771 unsigned long long dsize;
772 struct ddf_super *super;
773 int rv;
774
775 if (get_dev_size(fd, devname, &dsize) == 0)
776 return 1;
777
778 if (test_partition(fd))
779 /* DDF is not allowed on partitions */
780 return 1;
781
782 /* 32M is a lower bound */
783 if (dsize <= 32*1024*1024) {
784 if (devname)
785 fprintf(stderr,
786 Name ": %s is too small for ddf: "
787 "size is %llu sectors.\n",
788 devname, dsize>>9);
789 return 1;
790 }
791 if (dsize & 511) {
792 if (devname)
793 fprintf(stderr,
794 Name ": %s is an odd size for ddf: "
795 "size is %llu bytes.\n",
796 devname, dsize);
797 return 1;
798 }
799
800 free_super_ddf(st);
801
802 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
803 fprintf(stderr, Name ": malloc of %zu failed.\n",
804 sizeof(*super));
805 return 1;
806 }
807 memset(super, 0, sizeof(*super));
808
809 rv = load_ddf_headers(fd, super, devname);
810 if (rv) {
811 free(super);
812 return rv;
813 }
814
815 /* Have valid headers and have chosen the best. Let's read in the rest*/
816
817 rv = load_ddf_global(fd, super, devname);
818
819 if (rv) {
820 if (devname)
821 fprintf(stderr,
822 Name ": Failed to load all information "
823 "sections on %s\n", devname);
824 free(super);
825 return rv;
826 }
827
828 rv = load_ddf_local(fd, super, devname, 0);
829
830 if (rv) {
831 if (devname)
832 fprintf(stderr,
833 Name ": Failed to load all information "
834 "sections on %s\n", devname);
835 free(super);
836 return rv;
837 }
838
839 /* Should possibly check the sections .... */
840
841 st->sb = super;
842 if (st->ss == NULL) {
843 st->ss = &super_ddf;
844 st->minor_version = 0;
845 st->max_devs = 512;
846 }
847 return 0;
848
849 }
850
851 static void free_super_ddf(struct supertype *st)
852 {
853 struct ddf_super *ddf = st->sb;
854 if (ddf == NULL)
855 return;
856 free(ddf->phys);
857 free(ddf->virt);
858 while (ddf->conflist) {
859 struct vcl *v = ddf->conflist;
860 ddf->conflist = v->next;
861 if (v->block_sizes)
862 free(v->block_sizes);
863 free(v);
864 }
865 while (ddf->dlist) {
866 struct dl *d = ddf->dlist;
867 ddf->dlist = d->next;
868 if (d->fd >= 0)
869 close(d->fd);
870 if (d->spare)
871 free(d->spare);
872 free(d);
873 }
874 while (ddf->add_list) {
875 struct dl *d = ddf->add_list;
876 ddf->add_list = d->next;
877 if (d->fd >= 0)
878 close(d->fd);
879 if (d->spare)
880 free(d->spare);
881 free(d);
882 }
883 free(ddf);
884 st->sb = NULL;
885 }
886
887 static struct supertype *match_metadata_desc_ddf(char *arg)
888 {
889 /* 'ddf' only support containers */
890 struct supertype *st;
891 if (strcmp(arg, "ddf") != 0 &&
892 strcmp(arg, "default") != 0
893 )
894 return NULL;
895
896 st = malloc(sizeof(*st));
897 memset(st, 0, sizeof(*st));
898 st->container_dev = NoMdDev;
899 st->ss = &super_ddf;
900 st->max_devs = 512;
901 st->minor_version = 0;
902 st->sb = NULL;
903 return st;
904 }
905
906
907 #ifndef MDASSEMBLE
908
909 static mapping_t ddf_state[] = {
910 { "Optimal", 0},
911 { "Degraded", 1},
912 { "Deleted", 2},
913 { "Missing", 3},
914 { "Failed", 4},
915 { "Partially Optimal", 5},
916 { "-reserved-", 6},
917 { "-reserved-", 7},
918 { NULL, 0}
919 };
920
921 static mapping_t ddf_init_state[] = {
922 { "Not Initialised", 0},
923 { "QuickInit in Progress", 1},
924 { "Fully Initialised", 2},
925 { "*UNKNOWN*", 3},
926 { NULL, 0}
927 };
928 static mapping_t ddf_access[] = {
929 { "Read/Write", 0},
930 { "Reserved", 1},
931 { "Read Only", 2},
932 { "Blocked (no access)", 3},
933 { NULL ,0}
934 };
935
936 static mapping_t ddf_level[] = {
937 { "RAID0", DDF_RAID0},
938 { "RAID1", DDF_RAID1},
939 { "RAID3", DDF_RAID3},
940 { "RAID4", DDF_RAID4},
941 { "RAID5", DDF_RAID5},
942 { "RAID1E",DDF_RAID1E},
943 { "JBOD", DDF_JBOD},
944 { "CONCAT",DDF_CONCAT},
945 { "RAID5E",DDF_RAID5E},
946 { "RAID5EE",DDF_RAID5EE},
947 { "RAID6", DDF_RAID6},
948 { NULL, 0}
949 };
950 static mapping_t ddf_sec_level[] = {
951 { "Striped", DDF_2STRIPED},
952 { "Mirrored", DDF_2MIRRORED},
953 { "Concat", DDF_2CONCAT},
954 { "Spanned", DDF_2SPANNED},
955 { NULL, 0}
956 };
957 #endif
958
959 struct num_mapping {
960 int num1, num2;
961 };
962 static struct num_mapping ddf_level_num[] = {
963 { DDF_RAID0, 0 },
964 { DDF_RAID1, 1 },
965 { DDF_RAID3, LEVEL_UNSUPPORTED },
966 { DDF_RAID4, 4 },
967 { DDF_RAID5, 5 },
968 { DDF_RAID1E, LEVEL_UNSUPPORTED },
969 { DDF_JBOD, LEVEL_UNSUPPORTED },
970 { DDF_CONCAT, LEVEL_LINEAR },
971 { DDF_RAID5E, LEVEL_UNSUPPORTED },
972 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
973 { DDF_RAID6, 6},
974 { MAXINT, MAXINT }
975 };
976
977 static int map_num1(struct num_mapping *map, int num)
978 {
979 int i;
980 for (i=0 ; map[i].num1 != MAXINT; i++)
981 if (map[i].num1 == num)
982 break;
983 return map[i].num2;
984 }
985
986 static int all_ff(char *guid)
987 {
988 int i;
989 for (i = 0; i < DDF_GUID_LEN; i++)
990 if (guid[i] != (char)0xff)
991 return 0;
992 return 1;
993 }
994
995 #ifndef MDASSEMBLE
996 static void print_guid(char *guid, int tstamp)
997 {
998 /* A GUIDs are part (or all) ASCII and part binary.
999 * They tend to be space padded.
1000 * We print the GUID in HEX, then in parentheses add
1001 * any initial ASCII sequence, and a possible
1002 * time stamp from bytes 16-19
1003 */
1004 int l = DDF_GUID_LEN;
1005 int i;
1006
1007 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1008 if ((i&3)==0 && i != 0) printf(":");
1009 printf("%02X", guid[i]&255);
1010 }
1011
1012 printf("\n (");
1013 while (l && guid[l-1] == ' ')
1014 l--;
1015 for (i=0 ; i<l ; i++) {
1016 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1017 fputc(guid[i], stdout);
1018 else
1019 break;
1020 }
1021 if (tstamp) {
1022 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1023 char tbuf[100];
1024 struct tm *tm;
1025 tm = localtime(&then);
1026 strftime(tbuf, 100, " %D %T",tm);
1027 fputs(tbuf, stdout);
1028 }
1029 printf(")");
1030 }
1031
1032 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1033 {
1034 int crl = sb->conf_rec_len;
1035 struct vcl *vcl;
1036
1037 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1038 unsigned int i;
1039 struct vd_config *vc = &vcl->conf;
1040
1041 if (calc_crc(vc, crl*512) != vc->crc)
1042 continue;
1043 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1044 continue;
1045
1046 /* Ok, we know about this VD, let's give more details */
1047 printf(" Raid Devices[%d] : %d (", n,
1048 __be16_to_cpu(vc->prim_elmnt_count));
1049 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1050 int j;
1051 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1052 for (j=0; j<cnt; j++)
1053 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1054 break;
1055 if (i) printf(" ");
1056 if (j < cnt)
1057 printf("%d", j);
1058 else
1059 printf("--");
1060 }
1061 printf(")\n");
1062 if (vc->chunk_shift != 255)
1063 printf(" Chunk Size[%d] : %d sectors\n", n,
1064 1 << vc->chunk_shift);
1065 printf(" Raid Level[%d] : %s\n", n,
1066 map_num(ddf_level, vc->prl)?:"-unknown-");
1067 if (vc->sec_elmnt_count != 1) {
1068 printf(" Secondary Position[%d] : %d of %d\n", n,
1069 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1070 printf(" Secondary Level[%d] : %s\n", n,
1071 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1072 }
1073 printf(" Device Size[%d] : %llu\n", n,
1074 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1075 printf(" Array Size[%d] : %llu\n", n,
1076 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1077 }
1078 }
1079
1080 static void examine_vds(struct ddf_super *sb)
1081 {
1082 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1083 int i;
1084 printf(" Virtual Disks : %d\n", cnt);
1085
1086 for (i=0; i<cnt; i++) {
1087 struct virtual_entry *ve = &sb->virt->entries[i];
1088 printf("\n");
1089 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1090 printf("\n");
1091 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1092 printf(" state[%d] : %s, %s%s\n", i,
1093 map_num(ddf_state, ve->state & 7),
1094 (ve->state & 8) ? "Morphing, ": "",
1095 (ve->state & 16)? "Not Consistent" : "Consistent");
1096 printf(" init state[%d] : %s\n", i,
1097 map_num(ddf_init_state, ve->init_state&3));
1098 printf(" access[%d] : %s\n", i,
1099 map_num(ddf_access, (ve->init_state>>6) & 3));
1100 printf(" Name[%d] : %.16s\n", i, ve->name);
1101 examine_vd(i, sb, ve->guid);
1102 }
1103 if (cnt) printf("\n");
1104 }
1105
1106 static void examine_pds(struct ddf_super *sb)
1107 {
1108 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1109 int i;
1110 struct dl *dl;
1111 printf(" Physical Disks : %d\n", cnt);
1112 printf(" Number RefNo Size Device Type/State\n");
1113
1114 for (i=0 ; i<cnt ; i++) {
1115 struct phys_disk_entry *pd = &sb->phys->entries[i];
1116 int type = __be16_to_cpu(pd->type);
1117 int state = __be16_to_cpu(pd->state);
1118
1119 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1120 //printf("\n");
1121 printf(" %3d %08x ", i,
1122 __be32_to_cpu(pd->refnum));
1123 printf("%8lluK ",
1124 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1125 for (dl = sb->dlist; dl ; dl = dl->next) {
1126 if (dl->disk.refnum == pd->refnum) {
1127 char *dv = map_dev(dl->major, dl->minor, 0);
1128 if (dv) {
1129 printf("%-15s", dv);
1130 break;
1131 }
1132 }
1133 }
1134 if (!dl)
1135 printf("%15s","");
1136 printf(" %s%s%s%s%s",
1137 (type&2) ? "active":"",
1138 (type&4) ? "Global-Spare":"",
1139 (type&8) ? "spare" : "",
1140 (type&16)? ", foreign" : "",
1141 (type&32)? "pass-through" : "");
1142 if (state & DDF_Failed)
1143 /* This over-rides these three */
1144 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1145 printf("/%s%s%s%s%s%s%s",
1146 (state&1)? "Online": "Offline",
1147 (state&2)? ", Failed": "",
1148 (state&4)? ", Rebuilding": "",
1149 (state&8)? ", in-transition": "",
1150 (state&16)? ", SMART-errors": "",
1151 (state&32)? ", Unrecovered-Read-Errors": "",
1152 (state&64)? ", Missing" : "");
1153 printf("\n");
1154 }
1155 }
1156
1157 static void examine_super_ddf(struct supertype *st, char *homehost)
1158 {
1159 struct ddf_super *sb = st->sb;
1160
1161 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1162 printf(" Version : %.8s\n", sb->anchor.revision);
1163 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1164 printf("\n");
1165 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1166 printf("\n");
1167 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1168 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1169 ?"yes" : "no");
1170 examine_vds(sb);
1171 examine_pds(sb);
1172 }
1173
1174 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1175
1176 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1177
1178 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1179 {
1180 /* We just write a generic DDF ARRAY entry
1181 */
1182 struct mdinfo info;
1183 char nbuf[64];
1184 getinfo_super_ddf(st, &info, NULL);
1185 fname_from_uuid(st, &info, nbuf, ':');
1186
1187 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1188 }
1189
1190 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1191 {
1192 /* We just write a generic DDF ARRAY entry
1193 */
1194 struct ddf_super *ddf = st->sb;
1195 struct mdinfo info;
1196 unsigned int i;
1197 char nbuf[64];
1198 getinfo_super_ddf(st, &info, NULL);
1199 fname_from_uuid(st, &info, nbuf, ':');
1200
1201 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1202 struct virtual_entry *ve = &ddf->virt->entries[i];
1203 struct vcl vcl;
1204 char nbuf1[64];
1205 if (all_ff(ve->guid))
1206 continue;
1207 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1208 ddf->currentconf =&vcl;
1209 uuid_from_super_ddf(st, info.uuid);
1210 fname_from_uuid(st, &info, nbuf1, ':');
1211 printf("ARRAY container=%s member=%d UUID=%s\n",
1212 nbuf+5, i, nbuf1+5);
1213 }
1214 }
1215
1216 static void export_examine_super_ddf(struct supertype *st)
1217 {
1218 struct mdinfo info;
1219 char nbuf[64];
1220 getinfo_super_ddf(st, &info, NULL);
1221 fname_from_uuid(st, &info, nbuf, ':');
1222 printf("MD_METADATA=ddf\n");
1223 printf("MD_LEVEL=container\n");
1224 printf("MD_UUID=%s\n", nbuf+5);
1225 }
1226
1227
1228 static void detail_super_ddf(struct supertype *st, char *homehost)
1229 {
1230 /* FIXME later
1231 * Could print DDF GUID
1232 * Need to find which array
1233 * If whole, briefly list all arrays
1234 * If one, give name
1235 */
1236 }
1237
1238 static void brief_detail_super_ddf(struct supertype *st)
1239 {
1240 /* FIXME I really need to know which array we are detailing.
1241 * Can that be stored in ddf_super??
1242 */
1243 // struct ddf_super *ddf = st->sb;
1244 struct mdinfo info;
1245 char nbuf[64];
1246 getinfo_super_ddf(st, &info, NULL);
1247 fname_from_uuid(st, &info, nbuf,':');
1248 printf(" UUID=%s", nbuf + 5);
1249 }
1250 #endif
1251
1252 static int match_home_ddf(struct supertype *st, char *homehost)
1253 {
1254 /* It matches 'this' host if the controller is a
1255 * Linux-MD controller with vendor_data matching
1256 * the hostname
1257 */
1258 struct ddf_super *ddf = st->sb;
1259 unsigned int len;
1260
1261 if (!homehost)
1262 return 0;
1263 len = strlen(homehost);
1264
1265 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1266 len < sizeof(ddf->controller.vendor_data) &&
1267 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1268 ddf->controller.vendor_data[len] == 0);
1269 }
1270
1271 #ifndef MDASSEMBLE
1272 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1273 {
1274 struct vcl *v;
1275
1276 for (v = ddf->conflist; v; v = v->next)
1277 if (inst == v->vcnum)
1278 return &v->conf;
1279 return NULL;
1280 }
1281 #endif
1282
1283 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1284 {
1285 /* Find the entry in phys_disk which has the given refnum
1286 * and return it's index
1287 */
1288 unsigned int i;
1289 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1290 if (ddf->phys->entries[i].refnum == phys_refnum)
1291 return i;
1292 return -1;
1293 }
1294
1295 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1296 {
1297 /* The uuid returned here is used for:
1298 * uuid to put into bitmap file (Create, Grow)
1299 * uuid for backup header when saving critical section (Grow)
1300 * comparing uuids when re-adding a device into an array
1301 * In these cases the uuid required is that of the data-array,
1302 * not the device-set.
1303 * uuid to recognise same set when adding a missing device back
1304 * to an array. This is a uuid for the device-set.
1305 *
1306 * For each of these we can make do with a truncated
1307 * or hashed uuid rather than the original, as long as
1308 * everyone agrees.
1309 * In the case of SVD we assume the BVD is of interest,
1310 * though that might be the case if a bitmap were made for
1311 * a mirrored SVD - worry about that later.
1312 * So we need to find the VD configuration record for the
1313 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1314 * The first 16 bytes of the sha1 of these is used.
1315 */
1316 struct ddf_super *ddf = st->sb;
1317 struct vcl *vcl = ddf->currentconf;
1318 char *guid;
1319 char buf[20];
1320 struct sha1_ctx ctx;
1321
1322 if (vcl)
1323 guid = vcl->conf.guid;
1324 else
1325 guid = ddf->anchor.guid;
1326
1327 sha1_init_ctx(&ctx);
1328 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1329 sha1_finish_ctx(&ctx, buf);
1330 memcpy(uuid, buf, 4*4);
1331 }
1332
1333 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1334
1335 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1336 {
1337 struct ddf_super *ddf = st->sb;
1338 int map_disks = info->array.raid_disks;
1339 __u32 *cptr;
1340
1341 if (ddf->currentconf) {
1342 getinfo_super_ddf_bvd(st, info, map);
1343 return;
1344 }
1345 memset(info, 0, sizeof(*info));
1346
1347 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1348 info->array.level = LEVEL_CONTAINER;
1349 info->array.layout = 0;
1350 info->array.md_minor = -1;
1351 cptr = (__u32 *)(ddf->anchor.guid + 16);
1352 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1353
1354 info->array.utime = 0;
1355 info->array.chunk_size = 0;
1356 info->container_enough = 1;
1357
1358
1359 info->disk.major = 0;
1360 info->disk.minor = 0;
1361 if (ddf->dlist) {
1362 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1363 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1364
1365 info->data_offset = __be64_to_cpu(ddf->phys->
1366 entries[info->disk.raid_disk].
1367 config_size);
1368 info->component_size = ddf->dlist->size - info->data_offset;
1369 } else {
1370 info->disk.number = -1;
1371 info->disk.raid_disk = -1;
1372 // info->disk.raid_disk = find refnum in the table and use index;
1373 }
1374 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1375
1376
1377 info->recovery_start = MaxSector;
1378 info->reshape_active = 0;
1379 info->recovery_blocked = 0;
1380 info->name[0] = 0;
1381
1382 info->array.major_version = -1;
1383 info->array.minor_version = -2;
1384 strcpy(info->text_version, "ddf");
1385 info->safe_mode_delay = 0;
1386
1387 uuid_from_super_ddf(st, info->uuid);
1388
1389 if (map) {
1390 int i;
1391 for (i = 0 ; i < map_disks; i++) {
1392 if (i < info->array.raid_disks &&
1393 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1394 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1395 map[i] = 1;
1396 else
1397 map[i] = 0;
1398 }
1399 }
1400 }
1401
1402 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1403
1404 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1405 {
1406 struct ddf_super *ddf = st->sb;
1407 struct vcl *vc = ddf->currentconf;
1408 int cd = ddf->currentdev;
1409 int j;
1410 struct dl *dl;
1411 int map_disks = info->array.raid_disks;
1412 __u32 *cptr;
1413
1414 memset(info, 0, sizeof(*info));
1415 /* FIXME this returns BVD info - what if we want SVD ?? */
1416
1417 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1418 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1419 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1420 info->array.raid_disks);
1421 info->array.md_minor = -1;
1422 cptr = (__u32 *)(vc->conf.guid + 16);
1423 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1424 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1425 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1426 info->custom_array_size = 0;
1427
1428 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1429 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1430 if (vc->block_sizes)
1431 info->component_size = vc->block_sizes[cd];
1432 else
1433 info->component_size = __be64_to_cpu(vc->conf.blocks);
1434 }
1435
1436 for (dl = ddf->dlist; dl ; dl = dl->next)
1437 if (dl->raiddisk == ddf->currentdev)
1438 break;
1439
1440 info->disk.major = 0;
1441 info->disk.minor = 0;
1442 info->disk.state = 0;
1443 if (dl) {
1444 info->disk.major = dl->major;
1445 info->disk.minor = dl->minor;
1446 info->disk.raid_disk = dl->raiddisk;
1447 info->disk.number = dl->pdnum;
1448 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1449 }
1450
1451 info->container_member = ddf->currentconf->vcnum;
1452
1453 info->recovery_start = MaxSector;
1454 info->resync_start = 0;
1455 info->reshape_active = 0;
1456 info->recovery_blocked = 0;
1457 if (!(ddf->virt->entries[info->container_member].state
1458 & DDF_state_inconsistent) &&
1459 (ddf->virt->entries[info->container_member].init_state
1460 & DDF_initstate_mask)
1461 == DDF_init_full)
1462 info->resync_start = MaxSector;
1463
1464 uuid_from_super_ddf(st, info->uuid);
1465
1466 info->array.major_version = -1;
1467 info->array.minor_version = -2;
1468 sprintf(info->text_version, "/%s/%d",
1469 devnum2devname(st->container_dev),
1470 info->container_member);
1471 info->safe_mode_delay = 200;
1472
1473 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1474 info->name[16]=0;
1475 for(j=0; j<16; j++)
1476 if (info->name[j] == ' ')
1477 info->name[j] = 0;
1478
1479 if (map)
1480 for (j = 0; j < map_disks; j++) {
1481 map[j] = 0;
1482 if (j < info->array.raid_disks) {
1483 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1484 if (i >= 0 &&
1485 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1486 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1487 map[i] = 1;
1488 }
1489 }
1490 }
1491
1492
1493 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1494 char *update,
1495 char *devname, int verbose,
1496 int uuid_set, char *homehost)
1497 {
1498 /* For 'assemble' and 'force' we need to return non-zero if any
1499 * change was made. For others, the return value is ignored.
1500 * Update options are:
1501 * force-one : This device looks a bit old but needs to be included,
1502 * update age info appropriately.
1503 * assemble: clear any 'faulty' flag to allow this device to
1504 * be assembled.
1505 * force-array: Array is degraded but being forced, mark it clean
1506 * if that will be needed to assemble it.
1507 *
1508 * newdev: not used ????
1509 * grow: Array has gained a new device - this is currently for
1510 * linear only
1511 * resync: mark as dirty so a resync will happen.
1512 * uuid: Change the uuid of the array to match what is given
1513 * homehost: update the recorded homehost
1514 * name: update the name - preserving the homehost
1515 * _reshape_progress: record new reshape_progress position.
1516 *
1517 * Following are not relevant for this version:
1518 * sparc2.2 : update from old dodgey metadata
1519 * super-minor: change the preferred_minor number
1520 * summaries: update redundant counters.
1521 */
1522 int rv = 0;
1523 // struct ddf_super *ddf = st->sb;
1524 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1525 // struct virtual_entry *ve = find_ve(ddf);
1526
1527 /* we don't need to handle "force-*" or "assemble" as
1528 * there is no need to 'trick' the kernel. We the metadata is
1529 * first updated to activate the array, all the implied modifications
1530 * will just happen.
1531 */
1532
1533 if (strcmp(update, "grow") == 0) {
1534 /* FIXME */
1535 } else if (strcmp(update, "resync") == 0) {
1536 // info->resync_checkpoint = 0;
1537 } else if (strcmp(update, "homehost") == 0) {
1538 /* homehost is stored in controller->vendor_data,
1539 * or it is when we are the vendor
1540 */
1541 // if (info->vendor_is_local)
1542 // strcpy(ddf->controller.vendor_data, homehost);
1543 rv = -1;
1544 } else if (strcmp(update, "name") == 0) {
1545 /* name is stored in virtual_entry->name */
1546 // memset(ve->name, ' ', 16);
1547 // strncpy(ve->name, info->name, 16);
1548 rv = -1;
1549 } else if (strcmp(update, "_reshape_progress") == 0) {
1550 /* We don't support reshape yet */
1551 } else if (strcmp(update, "assemble") == 0 ) {
1552 /* Do nothing, just succeed */
1553 rv = 0;
1554 } else
1555 rv = -1;
1556
1557 // update_all_csum(ddf);
1558
1559 return rv;
1560 }
1561
1562 static void make_header_guid(char *guid)
1563 {
1564 __u32 stamp;
1565 /* Create a DDF Header of Virtual Disk GUID */
1566
1567 /* 24 bytes of fiction required.
1568 * first 8 are a 'vendor-id' - "Linux-MD"
1569 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1570 * Remaining 8 random number plus timestamp
1571 */
1572 memcpy(guid, T10, sizeof(T10));
1573 stamp = __cpu_to_be32(0xdeadbeef);
1574 memcpy(guid+8, &stamp, 4);
1575 stamp = __cpu_to_be32(0);
1576 memcpy(guid+12, &stamp, 4);
1577 stamp = __cpu_to_be32(time(0) - DECADE);
1578 memcpy(guid+16, &stamp, 4);
1579 stamp = random32();
1580 memcpy(guid+20, &stamp, 4);
1581 }
1582
1583 static int init_super_ddf_bvd(struct supertype *st,
1584 mdu_array_info_t *info,
1585 unsigned long long size,
1586 char *name, char *homehost,
1587 int *uuid);
1588
1589 static int init_super_ddf(struct supertype *st,
1590 mdu_array_info_t *info,
1591 unsigned long long size, char *name, char *homehost,
1592 int *uuid)
1593 {
1594 /* This is primarily called by Create when creating a new array.
1595 * We will then get add_to_super called for each component, and then
1596 * write_init_super called to write it out to each device.
1597 * For DDF, Create can create on fresh devices or on a pre-existing
1598 * array.
1599 * To create on a pre-existing array a different method will be called.
1600 * This one is just for fresh drives.
1601 *
1602 * We need to create the entire 'ddf' structure which includes:
1603 * DDF headers - these are easy.
1604 * Controller data - a Sector describing this controller .. not that
1605 * this is a controller exactly.
1606 * Physical Disk Record - one entry per device, so
1607 * leave plenty of space.
1608 * Virtual Disk Records - again, just leave plenty of space.
1609 * This just lists VDs, doesn't give details
1610 * Config records - describes the VDs that use this disk
1611 * DiskData - describes 'this' device.
1612 * BadBlockManagement - empty
1613 * Diag Space - empty
1614 * Vendor Logs - Could we put bitmaps here?
1615 *
1616 */
1617 struct ddf_super *ddf;
1618 char hostname[17];
1619 int hostlen;
1620 int max_phys_disks, max_virt_disks;
1621 unsigned long long sector;
1622 int clen;
1623 int i;
1624 int pdsize, vdsize;
1625 struct phys_disk *pd;
1626 struct virtual_disk *vd;
1627
1628 if (st->sb)
1629 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1630
1631 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1632 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1633 return 0;
1634 }
1635 memset(ddf, 0, sizeof(*ddf));
1636 ddf->dlist = NULL; /* no physical disks yet */
1637 ddf->conflist = NULL; /* No virtual disks yet */
1638 st->sb = ddf;
1639
1640 if (info == NULL) {
1641 /* zeroing superblock */
1642 return 0;
1643 }
1644
1645 /* At least 32MB *must* be reserved for the ddf. So let's just
1646 * start 32MB from the end, and put the primary header there.
1647 * Don't do secondary for now.
1648 * We don't know exactly where that will be yet as it could be
1649 * different on each device. To just set up the lengths.
1650 *
1651 */
1652
1653 ddf->anchor.magic = DDF_HEADER_MAGIC;
1654 make_header_guid(ddf->anchor.guid);
1655
1656 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1657 ddf->anchor.seq = __cpu_to_be32(1);
1658 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1659 ddf->anchor.openflag = 0xFF;
1660 ddf->anchor.foreignflag = 0;
1661 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1662 ddf->anchor.pad0 = 0xff;
1663 memset(ddf->anchor.pad1, 0xff, 12);
1664 memset(ddf->anchor.header_ext, 0xff, 32);
1665 ddf->anchor.primary_lba = ~(__u64)0;
1666 ddf->anchor.secondary_lba = ~(__u64)0;
1667 ddf->anchor.type = DDF_HEADER_ANCHOR;
1668 memset(ddf->anchor.pad2, 0xff, 3);
1669 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1670 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1671 of 32M reserved.. */
1672 max_phys_disks = 1023; /* Should be enough */
1673 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1674 max_virt_disks = 255;
1675 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1676 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1677 ddf->max_part = 64;
1678 ddf->mppe = 256;
1679 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1680 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1681 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1682 memset(ddf->anchor.pad3, 0xff, 54);
1683 /* controller sections is one sector long immediately
1684 * after the ddf header */
1685 sector = 1;
1686 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1687 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1688 sector += 1;
1689
1690 /* phys is 8 sectors after that */
1691 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1692 sizeof(struct phys_disk_entry)*max_phys_disks,
1693 512);
1694 switch(pdsize/512) {
1695 case 2: case 8: case 32: case 128: case 512: break;
1696 default: abort();
1697 }
1698 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1699 ddf->anchor.phys_section_length =
1700 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1701 sector += pdsize/512;
1702
1703 /* virt is another 32 sectors */
1704 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1705 sizeof(struct virtual_entry) * max_virt_disks,
1706 512);
1707 switch(vdsize/512) {
1708 case 2: case 8: case 32: case 128: case 512: break;
1709 default: abort();
1710 }
1711 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1712 ddf->anchor.virt_section_length =
1713 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1714 sector += vdsize/512;
1715
1716 clen = ddf->conf_rec_len * (ddf->max_part+1);
1717 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1718 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1719 sector += clen;
1720
1721 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1722 ddf->anchor.data_section_length = __cpu_to_be32(1);
1723 sector += 1;
1724
1725 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1726 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1727 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1728 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1729 ddf->anchor.vendor_length = __cpu_to_be32(0);
1730 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1731
1732 memset(ddf->anchor.pad4, 0xff, 256);
1733
1734 memcpy(&ddf->primary, &ddf->anchor, 512);
1735 memcpy(&ddf->secondary, &ddf->anchor, 512);
1736
1737 ddf->primary.openflag = 1; /* I guess.. */
1738 ddf->primary.type = DDF_HEADER_PRIMARY;
1739
1740 ddf->secondary.openflag = 1; /* I guess.. */
1741 ddf->secondary.type = DDF_HEADER_SECONDARY;
1742
1743 ddf->active = &ddf->primary;
1744
1745 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1746
1747 /* 24 more bytes of fiction required.
1748 * first 8 are a 'vendor-id' - "Linux-MD"
1749 * Remaining 16 are serial number.... maybe a hostname would do?
1750 */
1751 memcpy(ddf->controller.guid, T10, sizeof(T10));
1752 gethostname(hostname, sizeof(hostname));
1753 hostname[sizeof(hostname) - 1] = 0;
1754 hostlen = strlen(hostname);
1755 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1756 for (i = strlen(T10) ; i+hostlen < 24; i++)
1757 ddf->controller.guid[i] = ' ';
1758
1759 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1760 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1761 ddf->controller.type.sub_vendor_id = 0;
1762 ddf->controller.type.sub_device_id = 0;
1763 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1764 memset(ddf->controller.pad, 0xff, 8);
1765 memset(ddf->controller.vendor_data, 0xff, 448);
1766 if (homehost && strlen(homehost) < 440)
1767 strcpy((char*)ddf->controller.vendor_data, homehost);
1768
1769 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1770 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1771 return 0;
1772 }
1773 ddf->phys = pd;
1774 ddf->pdsize = pdsize;
1775
1776 memset(pd, 0xff, pdsize);
1777 memset(pd, 0, sizeof(*pd));
1778 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1779 pd->used_pdes = __cpu_to_be16(0);
1780 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1781 memset(pd->pad, 0xff, 52);
1782
1783 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1784 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1785 return 0;
1786 }
1787 ddf->virt = vd;
1788 ddf->vdsize = vdsize;
1789 memset(vd, 0, vdsize);
1790 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1791 vd->populated_vdes = __cpu_to_be16(0);
1792 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1793 memset(vd->pad, 0xff, 52);
1794
1795 for (i=0; i<max_virt_disks; i++)
1796 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1797
1798 st->sb = ddf;
1799 ddf->updates_pending = 1;
1800 return 1;
1801 }
1802
1803 static int chunk_to_shift(int chunksize)
1804 {
1805 return ffs(chunksize/512)-1;
1806 }
1807
1808 static int level_to_prl(int level)
1809 {
1810 switch (level) {
1811 case LEVEL_LINEAR: return DDF_CONCAT;
1812 case 0: return DDF_RAID0;
1813 case 1: return DDF_RAID1;
1814 case 4: return DDF_RAID4;
1815 case 5: return DDF_RAID5;
1816 case 6: return DDF_RAID6;
1817 default: return -1;
1818 }
1819 }
1820 static int layout_to_rlq(int level, int layout, int raiddisks)
1821 {
1822 switch(level) {
1823 case 0:
1824 return DDF_RAID0_SIMPLE;
1825 case 1:
1826 switch(raiddisks) {
1827 case 2: return DDF_RAID1_SIMPLE;
1828 case 3: return DDF_RAID1_MULTI;
1829 default: return -1;
1830 }
1831 case 4:
1832 switch(layout) {
1833 case 0: return DDF_RAID4_N;
1834 }
1835 break;
1836 case 5:
1837 switch(layout) {
1838 case ALGORITHM_LEFT_ASYMMETRIC:
1839 return DDF_RAID5_N_RESTART;
1840 case ALGORITHM_RIGHT_ASYMMETRIC:
1841 return DDF_RAID5_0_RESTART;
1842 case ALGORITHM_LEFT_SYMMETRIC:
1843 return DDF_RAID5_N_CONTINUE;
1844 case ALGORITHM_RIGHT_SYMMETRIC:
1845 return -1; /* not mentioned in standard */
1846 }
1847 case 6:
1848 switch(layout) {
1849 case ALGORITHM_ROTATING_N_RESTART:
1850 return DDF_RAID5_N_RESTART;
1851 case ALGORITHM_ROTATING_ZERO_RESTART:
1852 return DDF_RAID6_0_RESTART;
1853 case ALGORITHM_ROTATING_N_CONTINUE:
1854 return DDF_RAID5_N_CONTINUE;
1855 }
1856 }
1857 return -1;
1858 }
1859
1860 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1861 {
1862 switch(prl) {
1863 case DDF_RAID0:
1864 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1865 case DDF_RAID1:
1866 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1867 on raiddisks*/
1868 case DDF_RAID4:
1869 switch(rlq) {
1870 case DDF_RAID4_N:
1871 return 0;
1872 default:
1873 /* not supported */
1874 return -1; /* FIXME this isn't checked */
1875 }
1876 case DDF_RAID5:
1877 switch(rlq) {
1878 case DDF_RAID5_N_RESTART:
1879 return ALGORITHM_LEFT_ASYMMETRIC;
1880 case DDF_RAID5_0_RESTART:
1881 return ALGORITHM_RIGHT_ASYMMETRIC;
1882 case DDF_RAID5_N_CONTINUE:
1883 return ALGORITHM_LEFT_SYMMETRIC;
1884 default:
1885 return -1;
1886 }
1887 case DDF_RAID6:
1888 switch(rlq) {
1889 case DDF_RAID5_N_RESTART:
1890 return ALGORITHM_ROTATING_N_RESTART;
1891 case DDF_RAID6_0_RESTART:
1892 return ALGORITHM_ROTATING_ZERO_RESTART;
1893 case DDF_RAID5_N_CONTINUE:
1894 return ALGORITHM_ROTATING_N_CONTINUE;
1895 default:
1896 return -1;
1897 }
1898 }
1899 return -1;
1900 }
1901
1902 #ifndef MDASSEMBLE
1903 struct extent {
1904 unsigned long long start, size;
1905 };
1906 static int cmp_extent(const void *av, const void *bv)
1907 {
1908 const struct extent *a = av;
1909 const struct extent *b = bv;
1910 if (a->start < b->start)
1911 return -1;
1912 if (a->start > b->start)
1913 return 1;
1914 return 0;
1915 }
1916
1917 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1918 {
1919 /* find a list of used extents on the give physical device
1920 * (dnum) of the given ddf.
1921 * Return a malloced array of 'struct extent'
1922
1923 FIXME ignore DDF_Legacy devices?
1924
1925 */
1926 struct extent *rv;
1927 int n = 0;
1928 unsigned int i, j;
1929
1930 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1931 if (!rv)
1932 return NULL;
1933
1934 for (i = 0; i < ddf->max_part; i++) {
1935 struct vcl *v = dl->vlist[i];
1936 if (v == NULL)
1937 continue;
1938 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1939 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1940 /* This device plays role 'j' in 'v'. */
1941 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1942 rv[n].size = __be64_to_cpu(v->conf.blocks);
1943 n++;
1944 break;
1945 }
1946 }
1947 qsort(rv, n, sizeof(*rv), cmp_extent);
1948
1949 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1950 rv[n].size = 0;
1951 return rv;
1952 }
1953 #endif
1954
1955 static int init_super_ddf_bvd(struct supertype *st,
1956 mdu_array_info_t *info,
1957 unsigned long long size,
1958 char *name, char *homehost,
1959 int *uuid)
1960 {
1961 /* We are creating a BVD inside a pre-existing container.
1962 * so st->sb is already set.
1963 * We need to create a new vd_config and a new virtual_entry
1964 */
1965 struct ddf_super *ddf = st->sb;
1966 unsigned int venum;
1967 struct virtual_entry *ve;
1968 struct vcl *vcl;
1969 struct vd_config *vc;
1970
1971 if (__be16_to_cpu(ddf->virt->populated_vdes)
1972 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1973 fprintf(stderr, Name": This ddf already has the "
1974 "maximum of %d virtual devices\n",
1975 __be16_to_cpu(ddf->virt->max_vdes));
1976 return 0;
1977 }
1978
1979 if (name)
1980 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1981 if (!all_ff(ddf->virt->entries[venum].guid)) {
1982 char *n = ddf->virt->entries[venum].name;
1983
1984 if (strncmp(name, n, 16) == 0) {
1985 fprintf(stderr, Name ": This ddf already"
1986 " has an array called %s\n",
1987 name);
1988 return 0;
1989 }
1990 }
1991
1992 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1993 if (all_ff(ddf->virt->entries[venum].guid))
1994 break;
1995 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1996 fprintf(stderr, Name ": Cannot find spare slot for "
1997 "virtual disk - DDF is corrupt\n");
1998 return 0;
1999 }
2000 ve = &ddf->virt->entries[venum];
2001
2002 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
2003 * timestamp, random number
2004 */
2005 make_header_guid(ve->guid);
2006 ve->unit = __cpu_to_be16(info->md_minor);
2007 ve->pad0 = 0xFFFF;
2008 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
2009 ve->type = 0;
2010 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2011 if (info->state & 1) /* clean */
2012 ve->init_state = DDF_init_full;
2013 else
2014 ve->init_state = DDF_init_not;
2015
2016 memset(ve->pad1, 0xff, 14);
2017 memset(ve->name, ' ', 16);
2018 if (name)
2019 strncpy(ve->name, name, 16);
2020 ddf->virt->populated_vdes =
2021 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2022
2023 /* Now create a new vd_config */
2024 if (posix_memalign((void**)&vcl, 512,
2025 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2026 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
2027 return 0;
2028 }
2029 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2030 vcl->vcnum = venum;
2031 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2032
2033 vc = &vcl->conf;
2034
2035 vc->magic = DDF_VD_CONF_MAGIC;
2036 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2037 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2038 vc->seqnum = __cpu_to_be32(1);
2039 memset(vc->pad0, 0xff, 24);
2040 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2041 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2042 vc->prl = level_to_prl(info->level);
2043 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2044 vc->sec_elmnt_count = 1;
2045 vc->sec_elmnt_seq = 0;
2046 vc->srl = 0;
2047 vc->blocks = __cpu_to_be64(info->size * 2);
2048 vc->array_blocks = __cpu_to_be64(
2049 calc_array_size(info->level, info->raid_disks, info->layout,
2050 info->chunk_size, info->size*2));
2051 memset(vc->pad1, 0xff, 8);
2052 vc->spare_refs[0] = 0xffffffff;
2053 vc->spare_refs[1] = 0xffffffff;
2054 vc->spare_refs[2] = 0xffffffff;
2055 vc->spare_refs[3] = 0xffffffff;
2056 vc->spare_refs[4] = 0xffffffff;
2057 vc->spare_refs[5] = 0xffffffff;
2058 vc->spare_refs[6] = 0xffffffff;
2059 vc->spare_refs[7] = 0xffffffff;
2060 memset(vc->cache_pol, 0, 8);
2061 vc->bg_rate = 0x80;
2062 memset(vc->pad2, 0xff, 3);
2063 memset(vc->pad3, 0xff, 52);
2064 memset(vc->pad4, 0xff, 192);
2065 memset(vc->v0, 0xff, 32);
2066 memset(vc->v1, 0xff, 32);
2067 memset(vc->v2, 0xff, 16);
2068 memset(vc->v3, 0xff, 16);
2069 memset(vc->vendor, 0xff, 32);
2070
2071 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2072 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2073
2074 vcl->next = ddf->conflist;
2075 ddf->conflist = vcl;
2076 ddf->currentconf = vcl;
2077 ddf->updates_pending = 1;
2078 return 1;
2079 }
2080
2081 #ifndef MDASSEMBLE
2082 static void add_to_super_ddf_bvd(struct supertype *st,
2083 mdu_disk_info_t *dk, int fd, char *devname)
2084 {
2085 /* fd and devname identify a device with-in the ddf container (st).
2086 * dk identifies a location in the new BVD.
2087 * We need to find suitable free space in that device and update
2088 * the phys_refnum and lba_offset for the newly created vd_config.
2089 * We might also want to update the type in the phys_disk
2090 * section.
2091 *
2092 * Alternately: fd == -1 and we have already chosen which device to
2093 * use and recorded in dlist->raid_disk;
2094 */
2095 struct dl *dl;
2096 struct ddf_super *ddf = st->sb;
2097 struct vd_config *vc;
2098 __u64 *lba_offset;
2099 unsigned int working;
2100 unsigned int i;
2101 unsigned long long blocks, pos, esize;
2102 struct extent *ex;
2103
2104 if (fd == -1) {
2105 for (dl = ddf->dlist; dl ; dl = dl->next)
2106 if (dl->raiddisk == dk->raid_disk)
2107 break;
2108 } else {
2109 for (dl = ddf->dlist; dl ; dl = dl->next)
2110 if (dl->major == dk->major &&
2111 dl->minor == dk->minor)
2112 break;
2113 }
2114 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2115 return;
2116
2117 vc = &ddf->currentconf->conf;
2118 lba_offset = ddf->currentconf->lba_offset;
2119
2120 ex = get_extents(ddf, dl);
2121 if (!ex)
2122 return;
2123
2124 i = 0; pos = 0;
2125 blocks = __be64_to_cpu(vc->blocks);
2126 if (ddf->currentconf->block_sizes)
2127 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2128
2129 do {
2130 esize = ex[i].start - pos;
2131 if (esize >= blocks)
2132 break;
2133 pos = ex[i].start + ex[i].size;
2134 i++;
2135 } while (ex[i-1].size);
2136
2137 free(ex);
2138 if (esize < blocks)
2139 return;
2140
2141 ddf->currentdev = dk->raid_disk;
2142 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2143 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2144
2145 for (i = 0; i < ddf->max_part ; i++)
2146 if (dl->vlist[i] == NULL)
2147 break;
2148 if (i == ddf->max_part)
2149 return;
2150 dl->vlist[i] = ddf->currentconf;
2151
2152 if (fd >= 0)
2153 dl->fd = fd;
2154 if (devname)
2155 dl->devname = devname;
2156
2157 /* Check how many working raid_disks, and if we can mark
2158 * array as optimal yet
2159 */
2160 working = 0;
2161
2162 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2163 if (vc->phys_refnum[i] != 0xffffffff)
2164 working++;
2165
2166 /* Find which virtual_entry */
2167 i = ddf->currentconf->vcnum;
2168 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2169 ddf->virt->entries[i].state =
2170 (ddf->virt->entries[i].state & ~DDF_state_mask)
2171 | DDF_state_optimal;
2172
2173 if (vc->prl == DDF_RAID6 &&
2174 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2175 ddf->virt->entries[i].state =
2176 (ddf->virt->entries[i].state & ~DDF_state_mask)
2177 | DDF_state_part_optimal;
2178
2179 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2180 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2181 ddf->updates_pending = 1;
2182 }
2183
2184 /* add a device to a container, either while creating it or while
2185 * expanding a pre-existing container
2186 */
2187 static int add_to_super_ddf(struct supertype *st,
2188 mdu_disk_info_t *dk, int fd, char *devname)
2189 {
2190 struct ddf_super *ddf = st->sb;
2191 struct dl *dd;
2192 time_t now;
2193 struct tm *tm;
2194 unsigned long long size;
2195 struct phys_disk_entry *pde;
2196 unsigned int n, i;
2197 struct stat stb;
2198 __u32 *tptr;
2199
2200 if (ddf->currentconf) {
2201 add_to_super_ddf_bvd(st, dk, fd, devname);
2202 return 0;
2203 }
2204
2205 /* This is device numbered dk->number. We need to create
2206 * a phys_disk entry and a more detailed disk_data entry.
2207 */
2208 fstat(fd, &stb);
2209 if (posix_memalign((void**)&dd, 512,
2210 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2211 fprintf(stderr, Name
2212 ": %s could allocate buffer for new disk, aborting\n",
2213 __func__);
2214 return 1;
2215 }
2216 dd->major = major(stb.st_rdev);
2217 dd->minor = minor(stb.st_rdev);
2218 dd->devname = devname;
2219 dd->fd = fd;
2220 dd->spare = NULL;
2221
2222 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2223 now = time(0);
2224 tm = localtime(&now);
2225 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2226 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2227 tptr = (__u32 *)(dd->disk.guid + 16);
2228 *tptr++ = random32();
2229 *tptr = random32();
2230
2231 do {
2232 /* Cannot be bothered finding a CRC of some irrelevant details*/
2233 dd->disk.refnum = random32();
2234 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2235 i > 0; i--)
2236 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2237 break;
2238 } while (i > 0);
2239
2240 dd->disk.forced_ref = 1;
2241 dd->disk.forced_guid = 1;
2242 memset(dd->disk.vendor, ' ', 32);
2243 memcpy(dd->disk.vendor, "Linux", 5);
2244 memset(dd->disk.pad, 0xff, 442);
2245 for (i = 0; i < ddf->max_part ; i++)
2246 dd->vlist[i] = NULL;
2247
2248 n = __be16_to_cpu(ddf->phys->used_pdes);
2249 pde = &ddf->phys->entries[n];
2250 dd->pdnum = n;
2251
2252 if (st->update_tail) {
2253 int len = (sizeof(struct phys_disk) +
2254 sizeof(struct phys_disk_entry));
2255 struct phys_disk *pd;
2256
2257 pd = malloc(len);
2258 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2259 pd->used_pdes = __cpu_to_be16(n);
2260 pde = &pd->entries[0];
2261 dd->mdupdate = pd;
2262 } else {
2263 n++;
2264 ddf->phys->used_pdes = __cpu_to_be16(n);
2265 }
2266
2267 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2268 pde->refnum = dd->disk.refnum;
2269 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2270 pde->state = __cpu_to_be16(DDF_Online);
2271 get_dev_size(fd, NULL, &size);
2272 /* We are required to reserve 32Meg, and record the size in sectors */
2273 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2274 sprintf(pde->path, "%17.17s","Information: nil") ;
2275 memset(pde->pad, 0xff, 6);
2276
2277 dd->size = size >> 9;
2278 if (st->update_tail) {
2279 dd->next = ddf->add_list;
2280 ddf->add_list = dd;
2281 } else {
2282 dd->next = ddf->dlist;
2283 ddf->dlist = dd;
2284 ddf->updates_pending = 1;
2285 }
2286
2287 return 0;
2288 }
2289
2290 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2291 {
2292 struct ddf_super *ddf = st->sb;
2293 struct dl *dl;
2294
2295 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2296 * disappeared from the container.
2297 * We need to arrange that it disappears from the metadata and
2298 * internal data structures too.
2299 * Most of the work is done by ddf_process_update which edits
2300 * the metadata and closes the file handle and attaches the memory
2301 * where free_updates will free it.
2302 */
2303 for (dl = ddf->dlist; dl ; dl = dl->next)
2304 if (dl->major == dk->major &&
2305 dl->minor == dk->minor)
2306 break;
2307 if (!dl)
2308 return -1;
2309
2310 if (st->update_tail) {
2311 int len = (sizeof(struct phys_disk) +
2312 sizeof(struct phys_disk_entry));
2313 struct phys_disk *pd;
2314
2315 pd = malloc(len);
2316 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2317 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2318 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2319 append_metadata_update(st, pd, len);
2320 }
2321 return 0;
2322 }
2323
2324 /*
2325 * This is the write_init_super method for a ddf container. It is
2326 * called when creating a container or adding another device to a
2327 * container.
2328 */
2329
2330 static unsigned char null_conf[4096+512];
2331
2332 static int __write_init_super_ddf(struct supertype *st)
2333 {
2334
2335 struct ddf_super *ddf = st->sb;
2336 int i;
2337 struct dl *d;
2338 int n_config;
2339 int conf_size;
2340 int attempts = 0;
2341 int successes = 0;
2342 unsigned long long size, sector;
2343
2344 /* try to write updated metadata,
2345 * if we catch a failure move on to the next disk
2346 */
2347 for (d = ddf->dlist; d; d=d->next) {
2348 int fd = d->fd;
2349
2350 if (fd < 0)
2351 continue;
2352
2353 attempts++;
2354 /* We need to fill in the primary, (secondary) and workspace
2355 * lba's in the headers, set their checksums,
2356 * Also checksum phys, virt....
2357 *
2358 * Then write everything out, finally the anchor is written.
2359 */
2360 get_dev_size(fd, NULL, &size);
2361 size /= 512;
2362 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2363 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2364 ddf->anchor.seq = __cpu_to_be32(1);
2365 memcpy(&ddf->primary, &ddf->anchor, 512);
2366 memcpy(&ddf->secondary, &ddf->anchor, 512);
2367
2368 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2369 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2370 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2371
2372 ddf->primary.openflag = 0;
2373 ddf->primary.type = DDF_HEADER_PRIMARY;
2374
2375 ddf->secondary.openflag = 0;
2376 ddf->secondary.type = DDF_HEADER_SECONDARY;
2377
2378 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2379 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2380
2381 sector = size - 16*1024*2;
2382 lseek64(fd, sector<<9, 0);
2383 if (write(fd, &ddf->primary, 512) < 0)
2384 continue;
2385
2386 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2387 if (write(fd, &ddf->controller, 512) < 0)
2388 continue;
2389
2390 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2391
2392 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2393 continue;
2394
2395 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2396 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2397 continue;
2398
2399 /* Now write lots of config records. */
2400 n_config = ddf->max_part;
2401 conf_size = ddf->conf_rec_len * 512;
2402 for (i = 0 ; i <= n_config ; i++) {
2403 struct vcl *c = d->vlist[i];
2404 if (i == n_config)
2405 c = (struct vcl*)d->spare;
2406
2407 if (c) {
2408 c->conf.crc = calc_crc(&c->conf, conf_size);
2409 if (write(fd, &c->conf, conf_size) < 0)
2410 break;
2411 } else {
2412 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2413 if (null_conf[0] != 0xff)
2414 memset(null_conf, 0xff, sizeof(null_conf));
2415 unsigned int togo = conf_size;
2416 while (togo > sizeof(null_conf)-512) {
2417 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2418 break;
2419 togo -= sizeof(null_conf)-512;
2420 }
2421 if (write(fd, null_aligned, togo) < 0)
2422 break;
2423 }
2424 }
2425 if (i <= n_config)
2426 continue;
2427 d->disk.crc = calc_crc(&d->disk, 512);
2428 if (write(fd, &d->disk, 512) < 0)
2429 continue;
2430
2431 /* Maybe do the same for secondary */
2432
2433 lseek64(fd, (size-1)*512, SEEK_SET);
2434 if (write(fd, &ddf->anchor, 512) < 0)
2435 continue;
2436 successes++;
2437 }
2438
2439 return attempts != successes;
2440 }
2441
2442 static int write_init_super_ddf(struct supertype *st)
2443 {
2444 struct ddf_super *ddf = st->sb;
2445 struct vcl *currentconf = ddf->currentconf;
2446
2447 /* we are done with currentconf reset it to point st at the container */
2448 ddf->currentconf = NULL;
2449
2450 if (st->update_tail) {
2451 /* queue the virtual_disk and vd_config as metadata updates */
2452 struct virtual_disk *vd;
2453 struct vd_config *vc;
2454 int len;
2455
2456 if (!currentconf) {
2457 int len = (sizeof(struct phys_disk) +
2458 sizeof(struct phys_disk_entry));
2459
2460 /* adding a disk to the container. */
2461 if (!ddf->add_list)
2462 return 0;
2463
2464 append_metadata_update(st, ddf->add_list->mdupdate, len);
2465 ddf->add_list->mdupdate = NULL;
2466 return 0;
2467 }
2468
2469 /* Newly created VD */
2470
2471 /* First the virtual disk. We have a slightly fake header */
2472 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2473 vd = malloc(len);
2474 *vd = *ddf->virt;
2475 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2476 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2477 append_metadata_update(st, vd, len);
2478
2479 /* Then the vd_config */
2480 len = ddf->conf_rec_len * 512;
2481 vc = malloc(len);
2482 memcpy(vc, &currentconf->conf, len);
2483 append_metadata_update(st, vc, len);
2484
2485 /* FIXME I need to close the fds! */
2486 return 0;
2487 } else {
2488 struct dl *d;
2489 for (d = ddf->dlist; d; d=d->next)
2490 while (Kill(d->devname, NULL, 0, 1, 1) == 0);
2491 return __write_init_super_ddf(st);
2492 }
2493 }
2494
2495 #endif
2496
2497 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2498 {
2499 /* We must reserve the last 32Meg */
2500 if (devsize <= 32*1024*2)
2501 return 0;
2502 return devsize - 32*1024*2;
2503 }
2504
2505 #ifndef MDASSEMBLE
2506
2507 static int reserve_space(struct supertype *st, int raiddisks,
2508 unsigned long long size, int chunk,
2509 unsigned long long *freesize)
2510 {
2511 /* Find 'raiddisks' spare extents at least 'size' big (but
2512 * only caring about multiples of 'chunk') and remember
2513 * them.
2514 * If the cannot be found, fail.
2515 */
2516 struct dl *dl;
2517 struct ddf_super *ddf = st->sb;
2518 int cnt = 0;
2519
2520 for (dl = ddf->dlist; dl ; dl=dl->next) {
2521 dl->raiddisk = -1;
2522 dl->esize = 0;
2523 }
2524 /* Now find largest extent on each device */
2525 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2526 struct extent *e = get_extents(ddf, dl);
2527 unsigned long long pos = 0;
2528 int i = 0;
2529 int found = 0;
2530 unsigned long long minsize = size;
2531
2532 if (size == 0)
2533 minsize = chunk;
2534
2535 if (!e)
2536 continue;
2537 do {
2538 unsigned long long esize;
2539 esize = e[i].start - pos;
2540 if (esize >= minsize) {
2541 found = 1;
2542 minsize = esize;
2543 }
2544 pos = e[i].start + e[i].size;
2545 i++;
2546 } while (e[i-1].size);
2547 if (found) {
2548 cnt++;
2549 dl->esize = minsize;
2550 }
2551 free(e);
2552 }
2553 if (cnt < raiddisks) {
2554 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2555 return 0; /* No enough free spaces large enough */
2556 }
2557 if (size == 0) {
2558 /* choose the largest size of which there are at least 'raiddisk' */
2559 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2560 struct dl *dl2;
2561 if (dl->esize <= size)
2562 continue;
2563 /* This is bigger than 'size', see if there are enough */
2564 cnt = 0;
2565 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
2566 if (dl2->esize >= dl->esize)
2567 cnt++;
2568 if (cnt >= raiddisks)
2569 size = dl->esize;
2570 }
2571 if (chunk) {
2572 size = size / chunk;
2573 size *= chunk;
2574 }
2575 *freesize = size;
2576 if (size < 32) {
2577 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2578 return 0;
2579 }
2580 }
2581 /* We have a 'size' of which there are enough spaces.
2582 * We simply do a first-fit */
2583 cnt = 0;
2584 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2585 if (dl->esize < size)
2586 continue;
2587
2588 dl->raiddisk = cnt;
2589 cnt++;
2590 }
2591 return 1;
2592 }
2593
2594
2595
2596 static int
2597 validate_geometry_ddf_container(struct supertype *st,
2598 int level, int layout, int raiddisks,
2599 int chunk, unsigned long long size,
2600 char *dev, unsigned long long *freesize,
2601 int verbose);
2602
2603 static int validate_geometry_ddf_bvd(struct supertype *st,
2604 int level, int layout, int raiddisks,
2605 int *chunk, unsigned long long size,
2606 char *dev, unsigned long long *freesize,
2607 int verbose);
2608
2609 static int validate_geometry_ddf(struct supertype *st,
2610 int level, int layout, int raiddisks,
2611 int *chunk, unsigned long long size,
2612 char *dev, unsigned long long *freesize,
2613 int verbose)
2614 {
2615 int fd;
2616 struct mdinfo *sra;
2617 int cfd;
2618
2619 /* ddf potentially supports lots of things, but it depends on
2620 * what devices are offered (and maybe kernel version?)
2621 * If given unused devices, we will make a container.
2622 * If given devices in a container, we will make a BVD.
2623 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2624 */
2625
2626 if (chunk && *chunk == UnSet)
2627 *chunk = DEFAULT_CHUNK;
2628
2629
2630 if (level == LEVEL_CONTAINER) {
2631 /* Must be a fresh device to add to a container */
2632 return validate_geometry_ddf_container(st, level, layout,
2633 raiddisks, chunk?*chunk:0,
2634 size, dev, freesize,
2635 verbose);
2636 }
2637
2638 if (!dev) {
2639 /* Initial sanity check. Exclude illegal levels. */
2640 int i;
2641 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2642 if (ddf_level_num[i].num2 == level)
2643 break;
2644 if (ddf_level_num[i].num1 == MAXINT) {
2645 if (verbose)
2646 fprintf(stderr, Name ": DDF does not support level %d arrays\n",
2647 level);
2648 return 0;
2649 }
2650 /* Should check layout? etc */
2651
2652 if (st->sb && freesize) {
2653 /* --create was given a container to create in.
2654 * So we need to check that there are enough
2655 * free spaces and return the amount of space.
2656 * We may as well remember which drives were
2657 * chosen so that add_to_super/getinfo_super
2658 * can return them.
2659 */
2660 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2661 }
2662 return 1;
2663 }
2664
2665 if (st->sb) {
2666 /* A container has already been opened, so we are
2667 * creating in there. Maybe a BVD, maybe an SVD.
2668 * Should make a distinction one day.
2669 */
2670 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2671 chunk, size, dev, freesize,
2672 verbose);
2673 }
2674 /* This is the first device for the array.
2675 * If it is a container, we read it in and do automagic allocations,
2676 * no other devices should be given.
2677 * Otherwise it must be a member device of a container, and we
2678 * do manual allocation.
2679 * Later we should check for a BVD and make an SVD.
2680 */
2681 fd = open(dev, O_RDONLY|O_EXCL, 0);
2682 if (fd >= 0) {
2683 sra = sysfs_read(fd, 0, GET_VERSION);
2684 close(fd);
2685 if (sra && sra->array.major_version == -1 &&
2686 strcmp(sra->text_version, "ddf") == 0) {
2687
2688 /* load super */
2689 /* find space for 'n' devices. */
2690 /* remember the devices */
2691 /* Somehow return the fact that we have enough */
2692 }
2693
2694 if (verbose)
2695 fprintf(stderr,
2696 Name ": ddf: Cannot create this array "
2697 "on device %s - a container is required.\n",
2698 dev);
2699 return 0;
2700 }
2701 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2702 if (verbose)
2703 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2704 dev, strerror(errno));
2705 return 0;
2706 }
2707 /* Well, it is in use by someone, maybe a 'ddf' container. */
2708 cfd = open_container(fd);
2709 if (cfd < 0) {
2710 close(fd);
2711 if (verbose)
2712 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2713 dev, strerror(EBUSY));
2714 return 0;
2715 }
2716 sra = sysfs_read(cfd, 0, GET_VERSION);
2717 close(fd);
2718 if (sra && sra->array.major_version == -1 &&
2719 strcmp(sra->text_version, "ddf") == 0) {
2720 /* This is a member of a ddf container. Load the container
2721 * and try to create a bvd
2722 */
2723 struct ddf_super *ddf;
2724 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2725 st->sb = ddf;
2726 st->container_dev = fd2devnum(cfd);
2727 close(cfd);
2728 return validate_geometry_ddf_bvd(st, level, layout,
2729 raiddisks, chunk, size,
2730 dev, freesize,
2731 verbose);
2732 }
2733 close(cfd);
2734 } else /* device may belong to a different container */
2735 return 0;
2736
2737 return 1;
2738 }
2739
2740 static int
2741 validate_geometry_ddf_container(struct supertype *st,
2742 int level, int layout, int raiddisks,
2743 int chunk, unsigned long long size,
2744 char *dev, unsigned long long *freesize,
2745 int verbose)
2746 {
2747 int fd;
2748 unsigned long long ldsize;
2749
2750 if (level != LEVEL_CONTAINER)
2751 return 0;
2752 if (!dev)
2753 return 1;
2754
2755 fd = open(dev, O_RDONLY|O_EXCL, 0);
2756 if (fd < 0) {
2757 if (verbose)
2758 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2759 dev, strerror(errno));
2760 return 0;
2761 }
2762 if (!get_dev_size(fd, dev, &ldsize)) {
2763 close(fd);
2764 return 0;
2765 }
2766 close(fd);
2767
2768 *freesize = avail_size_ddf(st, ldsize >> 9);
2769 if (*freesize == 0)
2770 return 0;
2771
2772 return 1;
2773 }
2774
2775 static int validate_geometry_ddf_bvd(struct supertype *st,
2776 int level, int layout, int raiddisks,
2777 int *chunk, unsigned long long size,
2778 char *dev, unsigned long long *freesize,
2779 int verbose)
2780 {
2781 struct stat stb;
2782 struct ddf_super *ddf = st->sb;
2783 struct dl *dl;
2784 unsigned long long pos = 0;
2785 unsigned long long maxsize;
2786 struct extent *e;
2787 int i;
2788 /* ddf/bvd supports lots of things, but not containers */
2789 if (level == LEVEL_CONTAINER) {
2790 if (verbose)
2791 fprintf(stderr, Name ": DDF cannot create a container within an container\n");
2792 return 0;
2793 }
2794 /* We must have the container info already read in. */
2795 if (!ddf)
2796 return 0;
2797
2798 if (!dev) {
2799 /* General test: make sure there is space for
2800 * 'raiddisks' device extents of size 'size'.
2801 */
2802 unsigned long long minsize = size;
2803 int dcnt = 0;
2804 if (minsize == 0)
2805 minsize = 8;
2806 for (dl = ddf->dlist; dl ; dl = dl->next)
2807 {
2808 int found = 0;
2809 pos = 0;
2810
2811 i = 0;
2812 e = get_extents(ddf, dl);
2813 if (!e) continue;
2814 do {
2815 unsigned long long esize;
2816 esize = e[i].start - pos;
2817 if (esize >= minsize)
2818 found = 1;
2819 pos = e[i].start + e[i].size;
2820 i++;
2821 } while (e[i-1].size);
2822 if (found)
2823 dcnt++;
2824 free(e);
2825 }
2826 if (dcnt < raiddisks) {
2827 if (verbose)
2828 fprintf(stderr,
2829 Name ": ddf: Not enough devices with "
2830 "space for this array (%d < %d)\n",
2831 dcnt, raiddisks);
2832 return 0;
2833 }
2834 return 1;
2835 }
2836 /* This device must be a member of the set */
2837 if (stat(dev, &stb) < 0)
2838 return 0;
2839 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2840 return 0;
2841 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2842 if (dl->major == (int)major(stb.st_rdev) &&
2843 dl->minor == (int)minor(stb.st_rdev))
2844 break;
2845 }
2846 if (!dl) {
2847 if (verbose)
2848 fprintf(stderr, Name ": ddf: %s is not in the "
2849 "same DDF set\n",
2850 dev);
2851 return 0;
2852 }
2853 e = get_extents(ddf, dl);
2854 maxsize = 0;
2855 i = 0;
2856 if (e) do {
2857 unsigned long long esize;
2858 esize = e[i].start - pos;
2859 if (esize >= maxsize)
2860 maxsize = esize;
2861 pos = e[i].start + e[i].size;
2862 i++;
2863 } while (e[i-1].size);
2864 *freesize = maxsize;
2865 // FIXME here I am
2866
2867 return 1;
2868 }
2869
2870 static int load_super_ddf_all(struct supertype *st, int fd,
2871 void **sbp, char *devname)
2872 {
2873 struct mdinfo *sra;
2874 struct ddf_super *super;
2875 struct mdinfo *sd, *best = NULL;
2876 int bestseq = 0;
2877 int seq;
2878 char nm[20];
2879 int dfd;
2880
2881 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2882 if (!sra)
2883 return 1;
2884 if (sra->array.major_version != -1 ||
2885 sra->array.minor_version != -2 ||
2886 strcmp(sra->text_version, "ddf") != 0)
2887 return 1;
2888
2889 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2890 return 1;
2891 memset(super, 0, sizeof(*super));
2892
2893 /* first, try each device, and choose the best ddf */
2894 for (sd = sra->devs ; sd ; sd = sd->next) {
2895 int rv;
2896 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2897 dfd = dev_open(nm, O_RDONLY);
2898 if (dfd < 0)
2899 return 2;
2900 rv = load_ddf_headers(dfd, super, NULL);
2901 close(dfd);
2902 if (rv == 0) {
2903 seq = __be32_to_cpu(super->active->seq);
2904 if (super->active->openflag)
2905 seq--;
2906 if (!best || seq > bestseq) {
2907 bestseq = seq;
2908 best = sd;
2909 }
2910 }
2911 }
2912 if (!best)
2913 return 1;
2914 /* OK, load this ddf */
2915 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2916 dfd = dev_open(nm, O_RDONLY);
2917 if (dfd < 0)
2918 return 1;
2919 load_ddf_headers(dfd, super, NULL);
2920 load_ddf_global(dfd, super, NULL);
2921 close(dfd);
2922 /* Now we need the device-local bits */
2923 for (sd = sra->devs ; sd ; sd = sd->next) {
2924 int rv;
2925
2926 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2927 dfd = dev_open(nm, O_RDWR);
2928 if (dfd < 0)
2929 return 2;
2930 rv = load_ddf_headers(dfd, super, NULL);
2931 if (rv == 0)
2932 rv = load_ddf_local(dfd, super, NULL, 1);
2933 if (rv)
2934 return 1;
2935 }
2936
2937 *sbp = super;
2938 if (st->ss == NULL) {
2939 st->ss = &super_ddf;
2940 st->minor_version = 0;
2941 st->max_devs = 512;
2942 }
2943 st->container_dev = fd2devnum(fd);
2944 return 0;
2945 }
2946
2947 static int load_container_ddf(struct supertype *st, int fd,
2948 char *devname)
2949 {
2950 return load_super_ddf_all(st, fd, &st->sb, devname);
2951 }
2952
2953 #endif /* MDASSEMBLE */
2954
2955 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2956 {
2957 /* Given a container loaded by load_super_ddf_all,
2958 * extract information about all the arrays into
2959 * an mdinfo tree.
2960 *
2961 * For each vcl in conflist: create an mdinfo, fill it in,
2962 * then look for matching devices (phys_refnum) in dlist
2963 * and create appropriate device mdinfo.
2964 */
2965 struct ddf_super *ddf = st->sb;
2966 struct mdinfo *rest = NULL;
2967 struct vcl *vc;
2968
2969 for (vc = ddf->conflist ; vc ; vc=vc->next)
2970 {
2971 unsigned int i;
2972 unsigned int j;
2973 struct mdinfo *this;
2974 char *ep;
2975 __u32 *cptr;
2976
2977 if (subarray &&
2978 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2979 *ep != '\0'))
2980 continue;
2981
2982 this = malloc(sizeof(*this));
2983 memset(this, 0, sizeof(*this));
2984 this->next = rest;
2985 rest = this;
2986
2987 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2988 this->array.raid_disks =
2989 __be16_to_cpu(vc->conf.prim_elmnt_count);
2990 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2991 this->array.raid_disks);
2992 this->array.md_minor = -1;
2993 this->array.major_version = -1;
2994 this->array.minor_version = -2;
2995 cptr = (__u32 *)(vc->conf.guid + 16);
2996 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
2997 this->array.utime = DECADE +
2998 __be32_to_cpu(vc->conf.timestamp);
2999 this->array.chunk_size = 512 << vc->conf.chunk_shift;
3000
3001 i = vc->vcnum;
3002 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
3003 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
3004 DDF_init_full) {
3005 this->array.state = 0;
3006 this->resync_start = 0;
3007 } else {
3008 this->array.state = 1;
3009 this->resync_start = MaxSector;
3010 }
3011 memcpy(this->name, ddf->virt->entries[i].name, 16);
3012 this->name[16]=0;
3013 for(j=0; j<16; j++)
3014 if (this->name[j] == ' ')
3015 this->name[j] = 0;
3016
3017 memset(this->uuid, 0, sizeof(this->uuid));
3018 this->component_size = __be64_to_cpu(vc->conf.blocks);
3019 this->array.size = this->component_size / 2;
3020 this->container_member = i;
3021
3022 ddf->currentconf = vc;
3023 uuid_from_super_ddf(st, this->uuid);
3024 ddf->currentconf = NULL;
3025
3026 sprintf(this->text_version, "/%s/%d",
3027 devnum2devname(st->container_dev),
3028 this->container_member);
3029
3030 for (i = 0 ; i < ddf->mppe ; i++) {
3031 struct mdinfo *dev;
3032 struct dl *d;
3033 int stt;
3034 int pd;
3035
3036 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3037 continue;
3038
3039 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3040 pd--;)
3041 if (ddf->phys->entries[pd].refnum
3042 == vc->conf.phys_refnum[i])
3043 break;
3044 if (pd < 0)
3045 continue;
3046
3047 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3048 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3049 != DDF_Online)
3050 continue;
3051
3052 this->array.working_disks++;
3053
3054 for (d = ddf->dlist; d ; d=d->next)
3055 if (d->disk.refnum == vc->conf.phys_refnum[i])
3056 break;
3057 if (d == NULL)
3058 /* Haven't found that one yet, maybe there are others */
3059 continue;
3060
3061 dev = malloc(sizeof(*dev));
3062 memset(dev, 0, sizeof(*dev));
3063 dev->next = this->devs;
3064 this->devs = dev;
3065
3066 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3067 dev->disk.major = d->major;
3068 dev->disk.minor = d->minor;
3069 dev->disk.raid_disk = i;
3070 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3071 dev->recovery_start = MaxSector;
3072
3073 dev->events = __be32_to_cpu(ddf->primary.seq);
3074 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3075 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3076 if (d->devname)
3077 strcpy(dev->name, d->devname);
3078 }
3079 }
3080 return rest;
3081 }
3082
3083 static int store_super_ddf(struct supertype *st, int fd)
3084 {
3085 struct ddf_super *ddf = st->sb;
3086 unsigned long long dsize;
3087 void *buf;
3088 int rc;
3089
3090 if (!ddf)
3091 return 1;
3092
3093 /* ->dlist and ->conflist will be set for updates, currently not
3094 * supported
3095 */
3096 if (ddf->dlist || ddf->conflist)
3097 return 1;
3098
3099 if (!get_dev_size(fd, NULL, &dsize))
3100 return 1;
3101
3102 if (posix_memalign(&buf, 512, 512) != 0)
3103 return 1;
3104 memset(buf, 0, 512);
3105
3106 lseek64(fd, dsize-512, 0);
3107 rc = write(fd, buf, 512);
3108 free(buf);
3109 if (rc < 0)
3110 return 1;
3111 return 0;
3112 }
3113
3114 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3115 {
3116 /*
3117 * return:
3118 * 0 same, or first was empty, and second was copied
3119 * 1 second had wrong number
3120 * 2 wrong uuid
3121 * 3 wrong other info
3122 */
3123 struct ddf_super *first = st->sb;
3124 struct ddf_super *second = tst->sb;
3125
3126 if (!first) {
3127 st->sb = tst->sb;
3128 tst->sb = NULL;
3129 return 0;
3130 }
3131
3132 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3133 return 2;
3134
3135 /* FIXME should I look at anything else? */
3136 return 0;
3137 }
3138
3139 #ifndef MDASSEMBLE
3140 /*
3141 * A new array 'a' has been started which claims to be instance 'inst'
3142 * within container 'c'.
3143 * We need to confirm that the array matches the metadata in 'c' so
3144 * that we don't corrupt any metadata.
3145 */
3146 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3147 {
3148 dprintf("ddf: open_new %s\n", inst);
3149 a->info.container_member = atoi(inst);
3150 return 0;
3151 }
3152
3153 /*
3154 * The array 'a' is to be marked clean in the metadata.
3155 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3156 * clean up to the point (in sectors). If that cannot be recorded in the
3157 * metadata, then leave it as dirty.
3158 *
3159 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3160 * !global! virtual_disk.virtual_entry structure.
3161 */
3162 static int ddf_set_array_state(struct active_array *a, int consistent)
3163 {
3164 struct ddf_super *ddf = a->container->sb;
3165 int inst = a->info.container_member;
3166 int old = ddf->virt->entries[inst].state;
3167 if (consistent == 2) {
3168 /* Should check if a recovery should be started FIXME */
3169 consistent = 1;
3170 if (!is_resync_complete(&a->info))
3171 consistent = 0;
3172 }
3173 if (consistent)
3174 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3175 else
3176 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3177 if (old != ddf->virt->entries[inst].state)
3178 ddf->updates_pending = 1;
3179
3180 old = ddf->virt->entries[inst].init_state;
3181 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3182 if (is_resync_complete(&a->info))
3183 ddf->virt->entries[inst].init_state |= DDF_init_full;
3184 else if (a->info.resync_start == 0)
3185 ddf->virt->entries[inst].init_state |= DDF_init_not;
3186 else
3187 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3188 if (old != ddf->virt->entries[inst].init_state)
3189 ddf->updates_pending = 1;
3190
3191 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3192 a->info.resync_start);
3193 return consistent;
3194 }
3195
3196 #define container_of(ptr, type, member) ({ \
3197 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3198 (type *)( (char *)__mptr - offsetof(type,member) );})
3199 /*
3200 * The state of each disk is stored in the global phys_disk structure
3201 * in phys_disk.entries[n].state.
3202 * This makes various combinations awkward.
3203 * - When a device fails in any array, it must be failed in all arrays
3204 * that include a part of this device.
3205 * - When a component is rebuilding, we cannot include it officially in the
3206 * array unless this is the only array that uses the device.
3207 *
3208 * So: when transitioning:
3209 * Online -> failed, just set failed flag. monitor will propagate
3210 * spare -> online, the device might need to be added to the array.
3211 * spare -> failed, just set failed. Don't worry if in array or not.
3212 */
3213 static void ddf_set_disk(struct active_array *a, int n, int state)
3214 {
3215 struct ddf_super *ddf = a->container->sb;
3216 unsigned int inst = a->info.container_member;
3217 struct vd_config *vc = find_vdcr(ddf, inst);
3218 int pd = find_phys(ddf, vc->phys_refnum[n]);
3219 int i, st, working;
3220 struct mdinfo *mdi;
3221 struct dl *dl;
3222
3223 if (vc == NULL) {
3224 dprintf("ddf: cannot find instance %d!!\n", inst);
3225 return;
3226 }
3227 /* Find the matching slot in 'info'. */
3228 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3229 if (mdi->disk.raid_disk == n)
3230 break;
3231 if (!mdi)
3232 return;
3233
3234 /* and find the 'dl' entry corresponding to that. */
3235 for (dl = ddf->dlist; dl; dl = dl->next)
3236 if (mdi->state_fd >= 0 &&
3237 mdi->disk.major == dl->major &&
3238 mdi->disk.minor == dl->minor)
3239 break;
3240 if (!dl)
3241 return;
3242
3243 if (pd < 0 || pd != dl->pdnum) {
3244 /* disk doesn't currently exist or has changed.
3245 * If it is now in_sync, insert it. */
3246 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3247 struct vcl *vcl;
3248 pd = dl->pdnum;
3249 vc->phys_refnum[n] = dl->disk.refnum;
3250 vcl = container_of(vc, struct vcl, conf);
3251 vcl->lba_offset[n] = mdi->data_offset;
3252 ddf->phys->entries[pd].type &=
3253 ~__cpu_to_be16(DDF_Global_Spare);
3254 ddf->phys->entries[pd].type |=
3255 __cpu_to_be16(DDF_Active_in_VD);
3256 ddf->updates_pending = 1;
3257 }
3258 } else {
3259 int old = ddf->phys->entries[pd].state;
3260 if (state & DS_FAULTY)
3261 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3262 if (state & DS_INSYNC) {
3263 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3264 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3265 }
3266 if (old != ddf->phys->entries[pd].state)
3267 ddf->updates_pending = 1;
3268 }
3269
3270 dprintf("ddf: set_disk %d to %x\n", n, state);
3271
3272 /* Now we need to check the state of the array and update
3273 * virtual_disk.entries[n].state.
3274 * It needs to be one of "optimal", "degraded", "failed".
3275 * I don't understand 'deleted' or 'missing'.
3276 */
3277 working = 0;
3278 for (i=0; i < a->info.array.raid_disks; i++) {
3279 pd = find_phys(ddf, vc->phys_refnum[i]);
3280 if (pd < 0)
3281 continue;
3282 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3283 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3284 == DDF_Online)
3285 working++;
3286 }
3287 state = DDF_state_degraded;
3288 if (working == a->info.array.raid_disks)
3289 state = DDF_state_optimal;
3290 else switch(vc->prl) {
3291 case DDF_RAID0:
3292 case DDF_CONCAT:
3293 case DDF_JBOD:
3294 state = DDF_state_failed;
3295 break;
3296 case DDF_RAID1:
3297 if (working == 0)
3298 state = DDF_state_failed;
3299 else if (working == 2 && state == DDF_state_degraded)
3300 state = DDF_state_part_optimal;
3301 break;
3302 case DDF_RAID4:
3303 case DDF_RAID5:
3304 if (working < a->info.array.raid_disks-1)
3305 state = DDF_state_failed;
3306 break;
3307 case DDF_RAID6:
3308 if (working < a->info.array.raid_disks-2)
3309 state = DDF_state_failed;
3310 else if (working == a->info.array.raid_disks-1)
3311 state = DDF_state_part_optimal;
3312 break;
3313 }
3314
3315 if (ddf->virt->entries[inst].state !=
3316 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3317 | state)) {
3318
3319 ddf->virt->entries[inst].state =
3320 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3321 | state;
3322 ddf->updates_pending = 1;
3323 }
3324
3325 }
3326
3327 static void ddf_sync_metadata(struct supertype *st)
3328 {
3329
3330 /*
3331 * Write all data to all devices.
3332 * Later, we might be able to track whether only local changes
3333 * have been made, or whether any global data has been changed,
3334 * but ddf is sufficiently weird that it probably always
3335 * changes global data ....
3336 */
3337 struct ddf_super *ddf = st->sb;
3338 if (!ddf->updates_pending)
3339 return;
3340 ddf->updates_pending = 0;
3341 __write_init_super_ddf(st);
3342 dprintf("ddf: sync_metadata\n");
3343 }
3344
3345 static void ddf_process_update(struct supertype *st,
3346 struct metadata_update *update)
3347 {
3348 /* Apply this update to the metadata.
3349 * The first 4 bytes are a DDF_*_MAGIC which guides
3350 * our actions.
3351 * Possible update are:
3352 * DDF_PHYS_RECORDS_MAGIC
3353 * Add a new physical device or remove an old one.
3354 * Changes to this record only happen implicitly.
3355 * used_pdes is the device number.
3356 * DDF_VIRT_RECORDS_MAGIC
3357 * Add a new VD. Possibly also change the 'access' bits.
3358 * populated_vdes is the entry number.
3359 * DDF_VD_CONF_MAGIC
3360 * New or updated VD. the VIRT_RECORD must already
3361 * exist. For an update, phys_refnum and lba_offset
3362 * (at least) are updated, and the VD_CONF must
3363 * be written to precisely those devices listed with
3364 * a phys_refnum.
3365 * DDF_SPARE_ASSIGN_MAGIC
3366 * replacement Spare Assignment Record... but for which device?
3367 *
3368 * So, e.g.:
3369 * - to create a new array, we send a VIRT_RECORD and
3370 * a VD_CONF. Then assemble and start the array.
3371 * - to activate a spare we send a VD_CONF to add the phys_refnum
3372 * and offset. This will also mark the spare as active with
3373 * a spare-assignment record.
3374 */
3375 struct ddf_super *ddf = st->sb;
3376 __u32 *magic = (__u32*)update->buf;
3377 struct phys_disk *pd;
3378 struct virtual_disk *vd;
3379 struct vd_config *vc;
3380 struct vcl *vcl;
3381 struct dl *dl;
3382 unsigned int mppe;
3383 unsigned int ent;
3384 unsigned int pdnum, pd2;
3385
3386 dprintf("Process update %x\n", *magic);
3387
3388 switch (*magic) {
3389 case DDF_PHYS_RECORDS_MAGIC:
3390
3391 if (update->len != (sizeof(struct phys_disk) +
3392 sizeof(struct phys_disk_entry)))
3393 return;
3394 pd = (struct phys_disk*)update->buf;
3395
3396 ent = __be16_to_cpu(pd->used_pdes);
3397 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3398 return;
3399 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3400 struct dl **dlp;
3401 /* removing this disk. */
3402 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3403 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3404 struct dl *dl = *dlp;
3405 if (dl->pdnum == (signed)ent) {
3406 close(dl->fd);
3407 dl->fd = -1;
3408 /* FIXME this doesn't free
3409 * dl->devname */
3410 update->space = dl;
3411 *dlp = dl->next;
3412 break;
3413 }
3414 }
3415 ddf->updates_pending = 1;
3416 return;
3417 }
3418 if (!all_ff(ddf->phys->entries[ent].guid))
3419 return;
3420 ddf->phys->entries[ent] = pd->entries[0];
3421 ddf->phys->used_pdes = __cpu_to_be16(1 +
3422 __be16_to_cpu(ddf->phys->used_pdes));
3423 ddf->updates_pending = 1;
3424 if (ddf->add_list) {
3425 struct active_array *a;
3426 struct dl *al = ddf->add_list;
3427 ddf->add_list = al->next;
3428
3429 al->next = ddf->dlist;
3430 ddf->dlist = al;
3431
3432 /* As a device has been added, we should check
3433 * for any degraded devices that might make
3434 * use of this spare */
3435 for (a = st->arrays ; a; a=a->next)
3436 a->check_degraded = 1;
3437 }
3438 break;
3439
3440 case DDF_VIRT_RECORDS_MAGIC:
3441
3442 if (update->len != (sizeof(struct virtual_disk) +
3443 sizeof(struct virtual_entry)))
3444 return;
3445 vd = (struct virtual_disk*)update->buf;
3446
3447 ent = __be16_to_cpu(vd->populated_vdes);
3448 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3449 return;
3450 if (!all_ff(ddf->virt->entries[ent].guid))
3451 return;
3452 ddf->virt->entries[ent] = vd->entries[0];
3453 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3454 __be16_to_cpu(ddf->virt->populated_vdes));
3455 ddf->updates_pending = 1;
3456 break;
3457
3458 case DDF_VD_CONF_MAGIC:
3459 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3460
3461 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3462 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3463 return;
3464 vc = (struct vd_config*)update->buf;
3465 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3466 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3467 break;
3468 dprintf("vcl = %p\n", vcl);
3469 if (vcl) {
3470 /* An update, just copy the phys_refnum and lba_offset
3471 * fields
3472 */
3473 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3474 mppe * (sizeof(__u32) + sizeof(__u64)));
3475 } else {
3476 /* A new VD_CONF */
3477 if (!update->space)
3478 return;
3479 vcl = update->space;
3480 update->space = NULL;
3481 vcl->next = ddf->conflist;
3482 memcpy(&vcl->conf, vc, update->len);
3483 vcl->lba_offset = (__u64*)
3484 &vcl->conf.phys_refnum[mppe];
3485 for (ent = 0;
3486 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3487 ent++)
3488 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3489 DDF_GUID_LEN) == 0) {
3490 vcl->vcnum = ent;
3491 break;
3492 }
3493 ddf->conflist = vcl;
3494 }
3495 /* Set DDF_Transition on all Failed devices - to help
3496 * us detect those that are no longer in use
3497 */
3498 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3499 if (ddf->phys->entries[pdnum].state
3500 & __be16_to_cpu(DDF_Failed))
3501 ddf->phys->entries[pdnum].state
3502 |= __be16_to_cpu(DDF_Transition);
3503 /* Now make sure vlist is correct for each dl. */
3504 for (dl = ddf->dlist; dl; dl = dl->next) {
3505 unsigned int dn;
3506 unsigned int vn = 0;
3507 int in_degraded = 0;
3508 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3509 for (dn=0; dn < ddf->mppe ; dn++)
3510 if (vcl->conf.phys_refnum[dn] ==
3511 dl->disk.refnum) {
3512 int vstate;
3513 dprintf("dev %d has %p at %d\n",
3514 dl->pdnum, vcl, vn);
3515 /* Clear the Transition flag */
3516 if (ddf->phys->entries[dl->pdnum].state
3517 & __be16_to_cpu(DDF_Failed))
3518 ddf->phys->entries[dl->pdnum].state &=
3519 ~__be16_to_cpu(DDF_Transition);
3520
3521 dl->vlist[vn++] = vcl;
3522 vstate = ddf->virt->entries[vcl->vcnum].state
3523 & DDF_state_mask;
3524 if (vstate == DDF_state_degraded ||
3525 vstate == DDF_state_part_optimal)
3526 in_degraded = 1;
3527 break;
3528 }
3529 while (vn < ddf->max_part)
3530 dl->vlist[vn++] = NULL;
3531 if (dl->vlist[0]) {
3532 ddf->phys->entries[dl->pdnum].type &=
3533 ~__cpu_to_be16(DDF_Global_Spare);
3534 if (!(ddf->phys->entries[dl->pdnum].type &
3535 __cpu_to_be16(DDF_Active_in_VD))) {
3536 ddf->phys->entries[dl->pdnum].type |=
3537 __cpu_to_be16(DDF_Active_in_VD);
3538 if (in_degraded)
3539 ddf->phys->entries[dl->pdnum].state |=
3540 __cpu_to_be16(DDF_Rebuilding);
3541 }
3542 }
3543 if (dl->spare) {
3544 ddf->phys->entries[dl->pdnum].type &=
3545 ~__cpu_to_be16(DDF_Global_Spare);
3546 ddf->phys->entries[dl->pdnum].type |=
3547 __cpu_to_be16(DDF_Spare);
3548 }
3549 if (!dl->vlist[0] && !dl->spare) {
3550 ddf->phys->entries[dl->pdnum].type |=
3551 __cpu_to_be16(DDF_Global_Spare);
3552 ddf->phys->entries[dl->pdnum].type &=
3553 ~__cpu_to_be16(DDF_Spare |
3554 DDF_Active_in_VD);
3555 }
3556 }
3557
3558 /* Now remove any 'Failed' devices that are not part
3559 * of any VD. They will have the Transition flag set.
3560 * Once done, we need to update all dl->pdnum numbers.
3561 */
3562 pd2 = 0;
3563 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3564 if ((ddf->phys->entries[pdnum].state
3565 & __be16_to_cpu(DDF_Failed))
3566 && (ddf->phys->entries[pdnum].state
3567 & __be16_to_cpu(DDF_Transition)))
3568 /* skip this one */;
3569 else if (pdnum == pd2)
3570 pd2++;
3571 else {
3572 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3573 for (dl = ddf->dlist; dl; dl = dl->next)
3574 if (dl->pdnum == (int)pdnum)
3575 dl->pdnum = pd2;
3576 pd2++;
3577 }
3578 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3579 while (pd2 < pdnum) {
3580 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3581 pd2++;
3582 }
3583
3584 ddf->updates_pending = 1;
3585 break;
3586 case DDF_SPARE_ASSIGN_MAGIC:
3587 default: break;
3588 }
3589 }
3590
3591 static void ddf_prepare_update(struct supertype *st,
3592 struct metadata_update *update)
3593 {
3594 /* This update arrived at managemon.
3595 * We are about to pass it to monitor.
3596 * If a malloc is needed, do it here.
3597 */
3598 struct ddf_super *ddf = st->sb;
3599 __u32 *magic = (__u32*)update->buf;
3600 if (*magic == DDF_VD_CONF_MAGIC)
3601 if (posix_memalign(&update->space, 512,
3602 offsetof(struct vcl, conf)
3603 + ddf->conf_rec_len * 512) != 0)
3604 update->space = NULL;
3605 }
3606
3607 /*
3608 * Check if the array 'a' is degraded but not failed.
3609 * If it is, find as many spares as are available and needed and
3610 * arrange for their inclusion.
3611 * We only choose devices which are not already in the array,
3612 * and prefer those with a spare-assignment to this array.
3613 * otherwise we choose global spares - assuming always that
3614 * there is enough room.
3615 * For each spare that we assign, we return an 'mdinfo' which
3616 * describes the position for the device in the array.
3617 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3618 * the new phys_refnum and lba_offset values.
3619 *
3620 * Only worry about BVDs at the moment.
3621 */
3622 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3623 struct metadata_update **updates)
3624 {
3625 int working = 0;
3626 struct mdinfo *d;
3627 struct ddf_super *ddf = a->container->sb;
3628 int global_ok = 0;
3629 struct mdinfo *rv = NULL;
3630 struct mdinfo *di;
3631 struct metadata_update *mu;
3632 struct dl *dl;
3633 int i;
3634 struct vd_config *vc;
3635 __u64 *lba;
3636
3637 for (d = a->info.devs ; d ; d = d->next) {
3638 if ((d->curr_state & DS_FAULTY) &&
3639 d->state_fd >= 0)
3640 /* wait for Removal to happen */
3641 return NULL;
3642 if (d->state_fd >= 0)
3643 working ++;
3644 }
3645
3646 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3647 a->info.array.level);
3648 if (working == a->info.array.raid_disks)
3649 return NULL; /* array not degraded */
3650 switch (a->info.array.level) {
3651 case 1:
3652 if (working == 0)
3653 return NULL; /* failed */
3654 break;
3655 case 4:
3656 case 5:
3657 if (working < a->info.array.raid_disks - 1)
3658 return NULL; /* failed */
3659 break;
3660 case 6:
3661 if (working < a->info.array.raid_disks - 2)
3662 return NULL; /* failed */
3663 break;
3664 default: /* concat or stripe */
3665 return NULL; /* failed */
3666 }
3667
3668 /* For each slot, if it is not working, find a spare */
3669 dl = ddf->dlist;
3670 for (i = 0; i < a->info.array.raid_disks; i++) {
3671 for (d = a->info.devs ; d ; d = d->next)
3672 if (d->disk.raid_disk == i)
3673 break;
3674 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3675 if (d && (d->state_fd >= 0))
3676 continue;
3677
3678 /* OK, this device needs recovery. Find a spare */
3679 again:
3680 for ( ; dl ; dl = dl->next) {
3681 unsigned long long esize;
3682 unsigned long long pos;
3683 struct mdinfo *d2;
3684 int is_global = 0;
3685 int is_dedicated = 0;
3686 struct extent *ex;
3687 unsigned int j;
3688 /* If in this array, skip */
3689 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3690 if (d2->state_fd >= 0 &&
3691 d2->disk.major == dl->major &&
3692 d2->disk.minor == dl->minor) {
3693 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3694 break;
3695 }
3696 if (d2)
3697 continue;
3698 if (ddf->phys->entries[dl->pdnum].type &
3699 __cpu_to_be16(DDF_Spare)) {
3700 /* Check spare assign record */
3701 if (dl->spare) {
3702 if (dl->spare->type & DDF_spare_dedicated) {
3703 /* check spare_ents for guid */
3704 for (j = 0 ;
3705 j < __be16_to_cpu(dl->spare->populated);
3706 j++) {
3707 if (memcmp(dl->spare->spare_ents[j].guid,
3708 ddf->virt->entries[a->info.container_member].guid,
3709 DDF_GUID_LEN) == 0)
3710 is_dedicated = 1;
3711 }
3712 } else
3713 is_global = 1;
3714 }
3715 } else if (ddf->phys->entries[dl->pdnum].type &
3716 __cpu_to_be16(DDF_Global_Spare)) {
3717 is_global = 1;
3718 }
3719 if ( ! (is_dedicated ||
3720 (is_global && global_ok))) {
3721 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3722 is_dedicated, is_global);
3723 continue;
3724 }
3725
3726 /* We are allowed to use this device - is there space?
3727 * We need a->info.component_size sectors */
3728 ex = get_extents(ddf, dl);
3729 if (!ex) {
3730 dprintf("cannot get extents\n");
3731 continue;
3732 }
3733 j = 0; pos = 0;
3734 esize = 0;
3735
3736 do {
3737 esize = ex[j].start - pos;
3738 if (esize >= a->info.component_size)
3739 break;
3740 pos = ex[j].start + ex[j].size;
3741 j++;
3742 } while (ex[j-1].size);
3743
3744 free(ex);
3745 if (esize < a->info.component_size) {
3746 dprintf("%x:%x has no room: %llu %llu\n",
3747 dl->major, dl->minor,
3748 esize, a->info.component_size);
3749 /* No room */
3750 continue;
3751 }
3752
3753 /* Cool, we have a device with some space at pos */
3754 di = malloc(sizeof(*di));
3755 if (!di)
3756 continue;
3757 memset(di, 0, sizeof(*di));
3758 di->disk.number = i;
3759 di->disk.raid_disk = i;
3760 di->disk.major = dl->major;
3761 di->disk.minor = dl->minor;
3762 di->disk.state = 0;
3763 di->recovery_start = 0;
3764 di->data_offset = pos;
3765 di->component_size = a->info.component_size;
3766 di->container_member = dl->pdnum;
3767 di->next = rv;
3768 rv = di;
3769 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3770 i, pos);
3771
3772 break;
3773 }
3774 if (!dl && ! global_ok) {
3775 /* not enough dedicated spares, try global */
3776 global_ok = 1;
3777 dl = ddf->dlist;
3778 goto again;
3779 }
3780 }
3781
3782 if (!rv)
3783 /* No spares found */
3784 return rv;
3785 /* Now 'rv' has a list of devices to return.
3786 * Create a metadata_update record to update the
3787 * phys_refnum and lba_offset values
3788 */
3789 mu = malloc(sizeof(*mu));
3790 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3791 free(mu);
3792 mu = NULL;
3793 }
3794 if (!mu) {
3795 while (rv) {
3796 struct mdinfo *n = rv->next;
3797
3798 free(rv);
3799 rv = n;
3800 }
3801 return NULL;
3802 }
3803
3804 mu->buf = malloc(ddf->conf_rec_len * 512);
3805 mu->len = ddf->conf_rec_len * 512;
3806 mu->space = NULL;
3807 mu->space_list = NULL;
3808 mu->next = *updates;
3809 vc = find_vdcr(ddf, a->info.container_member);
3810 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3811
3812 vc = (struct vd_config*)mu->buf;
3813 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3814 for (di = rv ; di ; di = di->next) {
3815 vc->phys_refnum[di->disk.raid_disk] =
3816 ddf->phys->entries[dl->pdnum].refnum;
3817 lba[di->disk.raid_disk] = di->data_offset;
3818 }
3819 *updates = mu;
3820 return rv;
3821 }
3822 #endif /* MDASSEMBLE */
3823
3824 static int ddf_level_to_layout(int level)
3825 {
3826 switch(level) {
3827 case 0:
3828 case 1:
3829 return 0;
3830 case 5:
3831 return ALGORITHM_LEFT_SYMMETRIC;
3832 case 6:
3833 return ALGORITHM_ROTATING_N_CONTINUE;
3834 case 10:
3835 return 0x102;
3836 default:
3837 return UnSet;
3838 }
3839 }
3840
3841 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3842 {
3843 if (level && *level == UnSet)
3844 *level = LEVEL_CONTAINER;
3845
3846 if (level && layout && *layout == UnSet)
3847 *layout = ddf_level_to_layout(*level);
3848 }
3849
3850 struct superswitch super_ddf = {
3851 #ifndef MDASSEMBLE
3852 .examine_super = examine_super_ddf,
3853 .brief_examine_super = brief_examine_super_ddf,
3854 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3855 .export_examine_super = export_examine_super_ddf,
3856 .detail_super = detail_super_ddf,
3857 .brief_detail_super = brief_detail_super_ddf,
3858 .validate_geometry = validate_geometry_ddf,
3859 .write_init_super = write_init_super_ddf,
3860 .add_to_super = add_to_super_ddf,
3861 .remove_from_super = remove_from_super_ddf,
3862 .load_container = load_container_ddf,
3863 #endif
3864 .match_home = match_home_ddf,
3865 .uuid_from_super= uuid_from_super_ddf,
3866 .getinfo_super = getinfo_super_ddf,
3867 .update_super = update_super_ddf,
3868
3869 .avail_size = avail_size_ddf,
3870
3871 .compare_super = compare_super_ddf,
3872
3873 .load_super = load_super_ddf,
3874 .init_super = init_super_ddf,
3875 .store_super = store_super_ddf,
3876 .free_super = free_super_ddf,
3877 .match_metadata_desc = match_metadata_desc_ddf,
3878 .container_content = container_content_ddf,
3879 .default_geometry = default_geometry_ddf,
3880
3881 .external = 1,
3882
3883 #ifndef MDASSEMBLE
3884 /* for mdmon */
3885 .open_new = ddf_open_new,
3886 .set_array_state= ddf_set_array_state,
3887 .set_disk = ddf_set_disk,
3888 .sync_metadata = ddf_sync_metadata,
3889 .process_update = ddf_process_update,
3890 .prepare_update = ddf_prepare_update,
3891 .activate_spare = ddf_activate_spare,
3892 #endif
3893 .name = "ddf",
3894 };