]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Fix parallel make problem.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2014 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF taken from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33 #include <stddef.h>
34
35 /* a non-official T10 name for creation GUIDs */
36 static char T10[] = "Linux-MD";
37
38 /* DDF timestamps are 1980 based, so we need to add
39 * second-in-decade-of-seventies to convert to linux timestamps.
40 * 10 years with 2 leap years.
41 */
42 #define DECADE (3600*24*(365*10+2))
43 unsigned long crc32(
44 unsigned long crc,
45 const unsigned char *buf,
46 unsigned len);
47
48 #define DDF_NOTFOUND (~0U)
49 #define DDF_CONTAINER (DDF_NOTFOUND-1)
50
51 /* Default for safe_mode_delay. Same value as for IMSM.
52 */
53 static const int DDF_SAFE_MODE_DELAY = 4000;
54
55 /* The DDF metadata handling.
56 * DDF metadata lives at the end of the device.
57 * The last 512 byte block provides an 'anchor' which is used to locate
58 * the rest of the metadata which usually lives immediately behind the anchor.
59 *
60 * Note:
61 * - all multibyte numeric fields are bigendian.
62 * - all strings are space padded.
63 *
64 */
65
66 typedef struct __be16 {
67 __u16 _v16;
68 } be16;
69 #define be16_eq(x, y) ((x)._v16 == (y)._v16)
70 #define be16_and(x, y) ((x)._v16 & (y)._v16)
71 #define be16_or(x, y) ((x)._v16 | (y)._v16)
72 #define be16_clear(x, y) ((x)._v16 &= ~(y)._v16)
73 #define be16_set(x, y) ((x)._v16 |= (y)._v16)
74
75 typedef struct __be32 {
76 __u32 _v32;
77 } be32;
78 #define be32_eq(x, y) ((x)._v32 == (y)._v32)
79
80 typedef struct __be64 {
81 __u64 _v64;
82 } be64;
83 #define be64_eq(x, y) ((x)._v64 == (y)._v64)
84
85 #define be16_to_cpu(be) __be16_to_cpu((be)._v16)
86 static inline be16 cpu_to_be16(__u16 x)
87 {
88 be16 be = { ._v16 = __cpu_to_be16(x) };
89 return be;
90 }
91
92 #define be32_to_cpu(be) __be32_to_cpu((be)._v32)
93 static inline be32 cpu_to_be32(__u32 x)
94 {
95 be32 be = { ._v32 = __cpu_to_be32(x) };
96 return be;
97 }
98
99 #define be64_to_cpu(be) __be64_to_cpu((be)._v64)
100 static inline be64 cpu_to_be64(__u64 x)
101 {
102 be64 be = { ._v64 = __cpu_to_be64(x) };
103 return be;
104 }
105
106 /* Primary Raid Level (PRL) */
107 #define DDF_RAID0 0x00
108 #define DDF_RAID1 0x01
109 #define DDF_RAID3 0x03
110 #define DDF_RAID4 0x04
111 #define DDF_RAID5 0x05
112 #define DDF_RAID1E 0x11
113 #define DDF_JBOD 0x0f
114 #define DDF_CONCAT 0x1f
115 #define DDF_RAID5E 0x15
116 #define DDF_RAID5EE 0x25
117 #define DDF_RAID6 0x06
118
119 /* Raid Level Qualifier (RLQ) */
120 #define DDF_RAID0_SIMPLE 0x00
121 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
122 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
123 #define DDF_RAID3_0 0x00 /* parity in first extent */
124 #define DDF_RAID3_N 0x01 /* parity in last extent */
125 #define DDF_RAID4_0 0x00 /* parity in first extent */
126 #define DDF_RAID4_N 0x01 /* parity in last extent */
127 /* these apply to raid5e and raid5ee as well */
128 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
129 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
130 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
131 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
132
133 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
134 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
135
136 /* Secondary RAID Level (SRL) */
137 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
138 #define DDF_2MIRRORED 0x01
139 #define DDF_2CONCAT 0x02
140 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
141
142 /* Magic numbers */
143 #define DDF_HEADER_MAGIC cpu_to_be32(0xDE11DE11)
144 #define DDF_CONTROLLER_MAGIC cpu_to_be32(0xAD111111)
145 #define DDF_PHYS_RECORDS_MAGIC cpu_to_be32(0x22222222)
146 #define DDF_PHYS_DATA_MAGIC cpu_to_be32(0x33333333)
147 #define DDF_VIRT_RECORDS_MAGIC cpu_to_be32(0xDDDDDDDD)
148 #define DDF_VD_CONF_MAGIC cpu_to_be32(0xEEEEEEEE)
149 #define DDF_SPARE_ASSIGN_MAGIC cpu_to_be32(0x55555555)
150 #define DDF_VU_CONF_MAGIC cpu_to_be32(0x88888888)
151 #define DDF_VENDOR_LOG_MAGIC cpu_to_be32(0x01dBEEF0)
152 #define DDF_BBM_LOG_MAGIC cpu_to_be32(0xABADB10C)
153
154 #define DDF_GUID_LEN 24
155 #define DDF_REVISION_0 "01.00.00"
156 #define DDF_REVISION_2 "01.02.00"
157
158 struct ddf_header {
159 be32 magic; /* DDF_HEADER_MAGIC */
160 be32 crc;
161 char guid[DDF_GUID_LEN];
162 char revision[8]; /* 01.02.00 */
163 be32 seq; /* starts at '1' */
164 be32 timestamp;
165 __u8 openflag;
166 __u8 foreignflag;
167 __u8 enforcegroups;
168 __u8 pad0; /* 0xff */
169 __u8 pad1[12]; /* 12 * 0xff */
170 /* 64 bytes so far */
171 __u8 header_ext[32]; /* reserved: fill with 0xff */
172 be64 primary_lba;
173 be64 secondary_lba;
174 __u8 type;
175 __u8 pad2[3]; /* 0xff */
176 be32 workspace_len; /* sectors for vendor space -
177 * at least 32768(sectors) */
178 be64 workspace_lba;
179 be16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
180 be16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
181 be16 max_partitions; /* i.e. max num of configuration
182 record entries per disk */
183 be16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
184 *12/512) */
185 be16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
186 __u8 pad3[54]; /* 0xff */
187 /* 192 bytes so far */
188 be32 controller_section_offset;
189 be32 controller_section_length;
190 be32 phys_section_offset;
191 be32 phys_section_length;
192 be32 virt_section_offset;
193 be32 virt_section_length;
194 be32 config_section_offset;
195 be32 config_section_length;
196 be32 data_section_offset;
197 be32 data_section_length;
198 be32 bbm_section_offset;
199 be32 bbm_section_length;
200 be32 diag_space_offset;
201 be32 diag_space_length;
202 be32 vendor_offset;
203 be32 vendor_length;
204 /* 256 bytes so far */
205 __u8 pad4[256]; /* 0xff */
206 };
207
208 /* type field */
209 #define DDF_HEADER_ANCHOR 0x00
210 #define DDF_HEADER_PRIMARY 0x01
211 #define DDF_HEADER_SECONDARY 0x02
212
213 /* The content of the 'controller section' - global scope */
214 struct ddf_controller_data {
215 be32 magic; /* DDF_CONTROLLER_MAGIC */
216 be32 crc;
217 char guid[DDF_GUID_LEN];
218 struct controller_type {
219 be16 vendor_id;
220 be16 device_id;
221 be16 sub_vendor_id;
222 be16 sub_device_id;
223 } type;
224 char product_id[16];
225 __u8 pad[8]; /* 0xff */
226 __u8 vendor_data[448];
227 };
228
229 /* The content of phys_section - global scope */
230 struct phys_disk {
231 be32 magic; /* DDF_PHYS_RECORDS_MAGIC */
232 be32 crc;
233 be16 used_pdes; /* This is a counter, not a max - the list
234 * of used entries may not be dense */
235 be16 max_pdes;
236 __u8 pad[52];
237 struct phys_disk_entry {
238 char guid[DDF_GUID_LEN];
239 be32 refnum;
240 be16 type;
241 be16 state;
242 be64 config_size; /* DDF structures must be after here */
243 char path[18]; /* Another horrible structure really
244 * but is "used for information
245 * purposes only" */
246 __u8 pad[6];
247 } entries[0];
248 };
249
250 /* phys_disk_entry.type is a bitmap - bigendian remember */
251 #define DDF_Forced_PD_GUID 1
252 #define DDF_Active_in_VD 2
253 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
254 #define DDF_Spare 8 /* overrides Global_spare */
255 #define DDF_Foreign 16
256 #define DDF_Legacy 32 /* no DDF on this device */
257
258 #define DDF_Interface_mask 0xf00
259 #define DDF_Interface_SCSI 0x100
260 #define DDF_Interface_SAS 0x200
261 #define DDF_Interface_SATA 0x300
262 #define DDF_Interface_FC 0x400
263
264 /* phys_disk_entry.state is a bigendian bitmap */
265 #define DDF_Online 1
266 #define DDF_Failed 2 /* overrides 1,4,8 */
267 #define DDF_Rebuilding 4
268 #define DDF_Transition 8
269 #define DDF_SMART 16
270 #define DDF_ReadErrors 32
271 #define DDF_Missing 64
272
273 /* The content of the virt_section global scope */
274 struct virtual_disk {
275 be32 magic; /* DDF_VIRT_RECORDS_MAGIC */
276 be32 crc;
277 be16 populated_vdes;
278 be16 max_vdes;
279 __u8 pad[52];
280 struct virtual_entry {
281 char guid[DDF_GUID_LEN];
282 be16 unit;
283 __u16 pad0; /* 0xffff */
284 be16 guid_crc;
285 be16 type;
286 __u8 state;
287 __u8 init_state;
288 __u8 pad1[14];
289 char name[16];
290 } entries[0];
291 };
292
293 /* virtual_entry.type is a bitmap - bigendian */
294 #define DDF_Shared 1
295 #define DDF_Enforce_Groups 2
296 #define DDF_Unicode 4
297 #define DDF_Owner_Valid 8
298
299 /* virtual_entry.state is a bigendian bitmap */
300 #define DDF_state_mask 0x7
301 #define DDF_state_optimal 0x0
302 #define DDF_state_degraded 0x1
303 #define DDF_state_deleted 0x2
304 #define DDF_state_missing 0x3
305 #define DDF_state_failed 0x4
306 #define DDF_state_part_optimal 0x5
307
308 #define DDF_state_morphing 0x8
309 #define DDF_state_inconsistent 0x10
310
311 /* virtual_entry.init_state is a bigendian bitmap */
312 #define DDF_initstate_mask 0x03
313 #define DDF_init_not 0x00
314 #define DDF_init_quick 0x01 /* initialisation is progress.
315 * i.e. 'state_inconsistent' */
316 #define DDF_init_full 0x02
317
318 #define DDF_access_mask 0xc0
319 #define DDF_access_rw 0x00
320 #define DDF_access_ro 0x80
321 #define DDF_access_blocked 0xc0
322
323 /* The content of the config_section - local scope
324 * It has multiple records each config_record_len sectors
325 * They can be vd_config or spare_assign
326 */
327
328 struct vd_config {
329 be32 magic; /* DDF_VD_CONF_MAGIC */
330 be32 crc;
331 char guid[DDF_GUID_LEN];
332 be32 timestamp;
333 be32 seqnum;
334 __u8 pad0[24];
335 be16 prim_elmnt_count;
336 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
337 __u8 prl;
338 __u8 rlq;
339 __u8 sec_elmnt_count;
340 __u8 sec_elmnt_seq;
341 __u8 srl;
342 be64 blocks; /* blocks per component could be different
343 * on different component devices...(only
344 * for concat I hope) */
345 be64 array_blocks; /* blocks in array */
346 __u8 pad1[8];
347 be32 spare_refs[8]; /* This is used to detect missing spares.
348 * As we don't have an interface for that
349 * the values are ignored.
350 */
351 __u8 cache_pol[8];
352 __u8 bg_rate;
353 __u8 pad2[3];
354 __u8 pad3[52];
355 __u8 pad4[192];
356 __u8 v0[32]; /* reserved- 0xff */
357 __u8 v1[32]; /* reserved- 0xff */
358 __u8 v2[16]; /* reserved- 0xff */
359 __u8 v3[16]; /* reserved- 0xff */
360 __u8 vendor[32];
361 be32 phys_refnum[0]; /* refnum of each disk in sequence */
362 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
363 bvd are always the same size */
364 };
365 #define LBA_OFFSET(ddf, vd) ((be64 *) &(vd)->phys_refnum[(ddf)->mppe])
366
367 /* vd_config.cache_pol[7] is a bitmap */
368 #define DDF_cache_writeback 1 /* else writethrough */
369 #define DDF_cache_wadaptive 2 /* only applies if writeback */
370 #define DDF_cache_readahead 4
371 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
372 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
373 #define DDF_cache_wallowed 32 /* enable write caching */
374 #define DDF_cache_rallowed 64 /* enable read caching */
375
376 struct spare_assign {
377 be32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
378 be32 crc;
379 be32 timestamp;
380 __u8 reserved[7];
381 __u8 type;
382 be16 populated; /* SAEs used */
383 be16 max; /* max SAEs */
384 __u8 pad[8];
385 struct spare_assign_entry {
386 char guid[DDF_GUID_LEN];
387 be16 secondary_element;
388 __u8 pad[6];
389 } spare_ents[0];
390 };
391 /* spare_assign.type is a bitmap */
392 #define DDF_spare_dedicated 0x1 /* else global */
393 #define DDF_spare_revertible 0x2 /* else committable */
394 #define DDF_spare_active 0x4 /* else not active */
395 #define DDF_spare_affinity 0x8 /* enclosure affinity */
396
397 /* The data_section contents - local scope */
398 struct disk_data {
399 be32 magic; /* DDF_PHYS_DATA_MAGIC */
400 be32 crc;
401 char guid[DDF_GUID_LEN];
402 be32 refnum; /* crc of some magic drive data ... */
403 __u8 forced_ref; /* set when above was not result of magic */
404 __u8 forced_guid; /* set if guid was forced rather than magic */
405 __u8 vendor[32];
406 __u8 pad[442];
407 };
408
409 /* bbm_section content */
410 struct bad_block_log {
411 be32 magic;
412 be32 crc;
413 be16 entry_count;
414 be32 spare_count;
415 __u8 pad[10];
416 be64 first_spare;
417 struct mapped_block {
418 be64 defective_start;
419 be32 replacement_start;
420 be16 remap_count;
421 __u8 pad[2];
422 } entries[0];
423 };
424
425 /* Struct for internally holding ddf structures */
426 /* The DDF structure stored on each device is potentially
427 * quite different, as some data is global and some is local.
428 * The global data is:
429 * - ddf header
430 * - controller_data
431 * - Physical disk records
432 * - Virtual disk records
433 * The local data is:
434 * - Configuration records
435 * - Physical Disk data section
436 * ( and Bad block and vendor which I don't care about yet).
437 *
438 * The local data is parsed into separate lists as it is read
439 * and reconstructed for writing. This means that we only need
440 * to make config changes once and they are automatically
441 * propagated to all devices.
442 * The global (config and disk data) records are each in a list
443 * of separate data structures. When writing we find the entry
444 * or entries applicable to the particular device.
445 */
446 struct ddf_super {
447 struct ddf_header anchor, primary, secondary;
448 struct ddf_controller_data controller;
449 struct ddf_header *active;
450 struct phys_disk *phys;
451 struct virtual_disk *virt;
452 char *conf;
453 int pdsize, vdsize;
454 unsigned int max_part, mppe, conf_rec_len;
455 int currentdev;
456 int updates_pending;
457 struct vcl {
458 union {
459 char space[512];
460 struct {
461 struct vcl *next;
462 unsigned int vcnum; /* index into ->virt */
463 /* For an array with a secondary level there are
464 * multiple vd_config structures, all with the same
465 * guid but with different sec_elmnt_seq.
466 * One of these structures is in 'conf' below.
467 * The others are in other_bvds, not in any
468 * particular order.
469 */
470 struct vd_config **other_bvds;
471 __u64 *block_sizes; /* NULL if all the same */
472 };
473 };
474 struct vd_config conf;
475 } *conflist, *currentconf;
476 struct dl {
477 union {
478 char space[512];
479 struct {
480 struct dl *next;
481 int major, minor;
482 char *devname;
483 int fd;
484 unsigned long long size; /* sectors */
485 be64 primary_lba; /* sectors */
486 be64 secondary_lba; /* sectors */
487 be64 workspace_lba; /* sectors */
488 int pdnum; /* index in ->phys */
489 struct spare_assign *spare;
490 void *mdupdate; /* hold metadata update */
491
492 /* These fields used by auto-layout */
493 int raiddisk; /* slot to fill in autolayout */
494 __u64 esize;
495 int displayed;
496 };
497 };
498 struct disk_data disk;
499 struct vcl *vlist[0]; /* max_part in size */
500 } *dlist, *add_list;
501 };
502
503 #ifndef MDASSEMBLE
504 static int load_super_ddf_all(struct supertype *st, int fd,
505 void **sbp, char *devname);
506 static int get_svd_state(const struct ddf_super *, const struct vcl *);
507 static int
508 validate_geometry_ddf_container(struct supertype *st,
509 int level, int layout, int raiddisks,
510 int chunk, unsigned long long size,
511 unsigned long long data_offset,
512 char *dev, unsigned long long *freesize,
513 int verbose);
514
515 static int validate_geometry_ddf_bvd(struct supertype *st,
516 int level, int layout, int raiddisks,
517 int *chunk, unsigned long long size,
518 unsigned long long data_offset,
519 char *dev, unsigned long long *freesize,
520 int verbose);
521 #endif
522
523 static void free_super_ddf(struct supertype *st);
524 static int all_ff(const char *guid);
525 static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
526 be32 refnum, unsigned int nmax,
527 const struct vd_config **bvd,
528 unsigned int *idx);
529 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
530 static void uuid_from_ddf_guid(const char *guid, int uuid[4]);
531 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
532 static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i);
533 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
534 static int init_super_ddf_bvd(struct supertype *st,
535 mdu_array_info_t *info,
536 unsigned long long size,
537 char *name, char *homehost,
538 int *uuid, unsigned long long data_offset);
539
540 #if DEBUG
541 static void pr_state(struct ddf_super *ddf, const char *msg)
542 {
543 unsigned int i;
544 dprintf("%s/%s: ", __func__, msg);
545 for (i = 0; i < be16_to_cpu(ddf->active->max_vd_entries); i++) {
546 if (all_ff(ddf->virt->entries[i].guid))
547 continue;
548 dprintf("%u(s=%02x i=%02x) ", i,
549 ddf->virt->entries[i].state,
550 ddf->virt->entries[i].init_state);
551 }
552 dprintf("\n");
553 }
554 #else
555 static void pr_state(const struct ddf_super *ddf, const char *msg) {}
556 #endif
557
558 static void _ddf_set_updates_pending(struct ddf_super *ddf, struct vd_config *vc,
559 const char *func)
560 {
561 if (vc) {
562 vc->timestamp = cpu_to_be32(time(0)-DECADE);
563 vc->seqnum = cpu_to_be32(be32_to_cpu(vc->seqnum) + 1);
564 }
565 if (ddf->updates_pending)
566 return;
567 ddf->updates_pending = 1;
568 ddf->active->seq = cpu_to_be32((be32_to_cpu(ddf->active->seq)+1));
569 pr_state(ddf, func);
570 }
571
572 #define ddf_set_updates_pending(x,v) _ddf_set_updates_pending((x), (v), __func__)
573
574 static be32 calc_crc(void *buf, int len)
575 {
576 /* crcs are always at the same place as in the ddf_header */
577 struct ddf_header *ddf = buf;
578 be32 oldcrc = ddf->crc;
579 __u32 newcrc;
580 ddf->crc = cpu_to_be32(0xffffffff);
581
582 newcrc = crc32(0, buf, len);
583 ddf->crc = oldcrc;
584 /* The crc is stored (like everything) bigendian, so convert
585 * here for simplicity
586 */
587 return cpu_to_be32(newcrc);
588 }
589
590 #define DDF_INVALID_LEVEL 0xff
591 #define DDF_NO_SECONDARY 0xff
592 static int err_bad_md_layout(const mdu_array_info_t *array)
593 {
594 pr_err("RAID%d layout %x with %d disks is unsupported for DDF\n",
595 array->level, array->layout, array->raid_disks);
596 return -1;
597 }
598
599 static int layout_md2ddf(const mdu_array_info_t *array,
600 struct vd_config *conf)
601 {
602 be16 prim_elmnt_count = cpu_to_be16(array->raid_disks);
603 __u8 prl = DDF_INVALID_LEVEL, rlq = 0;
604 __u8 sec_elmnt_count = 1;
605 __u8 srl = DDF_NO_SECONDARY;
606
607 switch (array->level) {
608 case LEVEL_LINEAR:
609 prl = DDF_CONCAT;
610 break;
611 case 0:
612 rlq = DDF_RAID0_SIMPLE;
613 prl = DDF_RAID0;
614 break;
615 case 1:
616 switch (array->raid_disks) {
617 case 2:
618 rlq = DDF_RAID1_SIMPLE;
619 break;
620 case 3:
621 rlq = DDF_RAID1_MULTI;
622 break;
623 default:
624 return err_bad_md_layout(array);
625 }
626 prl = DDF_RAID1;
627 break;
628 case 4:
629 if (array->layout != 0)
630 return err_bad_md_layout(array);
631 rlq = DDF_RAID4_N;
632 prl = DDF_RAID4;
633 break;
634 case 5:
635 switch (array->layout) {
636 case ALGORITHM_LEFT_ASYMMETRIC:
637 rlq = DDF_RAID5_N_RESTART;
638 break;
639 case ALGORITHM_RIGHT_ASYMMETRIC:
640 rlq = DDF_RAID5_0_RESTART;
641 break;
642 case ALGORITHM_LEFT_SYMMETRIC:
643 rlq = DDF_RAID5_N_CONTINUE;
644 break;
645 case ALGORITHM_RIGHT_SYMMETRIC:
646 /* not mentioned in standard */
647 default:
648 return err_bad_md_layout(array);
649 }
650 prl = DDF_RAID5;
651 break;
652 case 6:
653 switch (array->layout) {
654 case ALGORITHM_ROTATING_N_RESTART:
655 rlq = DDF_RAID5_N_RESTART;
656 break;
657 case ALGORITHM_ROTATING_ZERO_RESTART:
658 rlq = DDF_RAID6_0_RESTART;
659 break;
660 case ALGORITHM_ROTATING_N_CONTINUE:
661 rlq = DDF_RAID5_N_CONTINUE;
662 break;
663 default:
664 return err_bad_md_layout(array);
665 }
666 prl = DDF_RAID6;
667 break;
668 case 10:
669 if (array->raid_disks % 2 == 0 && array->layout == 0x102) {
670 rlq = DDF_RAID1_SIMPLE;
671 prim_elmnt_count = cpu_to_be16(2);
672 sec_elmnt_count = array->raid_disks / 2;
673 srl = DDF_2SPANNED;
674 prl = DDF_RAID1;
675 } else if (array->raid_disks % 3 == 0
676 && array->layout == 0x103) {
677 rlq = DDF_RAID1_MULTI;
678 prim_elmnt_count = cpu_to_be16(3);
679 sec_elmnt_count = array->raid_disks / 3;
680 srl = DDF_2SPANNED;
681 prl = DDF_RAID1;
682 } else if (array->layout == 0x201) {
683 prl = DDF_RAID1E;
684 rlq = DDF_RAID1E_OFFSET;
685 } else if (array->layout == 0x102) {
686 prl = DDF_RAID1E;
687 rlq = DDF_RAID1E_ADJACENT;
688 } else
689 return err_bad_md_layout(array);
690 break;
691 default:
692 return err_bad_md_layout(array);
693 }
694 conf->prl = prl;
695 conf->prim_elmnt_count = prim_elmnt_count;
696 conf->rlq = rlq;
697 conf->srl = srl;
698 conf->sec_elmnt_count = sec_elmnt_count;
699 return 0;
700 }
701
702 static int err_bad_ddf_layout(const struct vd_config *conf)
703 {
704 pr_err("DDF RAID %u qualifier %u with %u disks is unsupported\n",
705 conf->prl, conf->rlq, be16_to_cpu(conf->prim_elmnt_count));
706 return -1;
707 }
708
709 static int layout_ddf2md(const struct vd_config *conf,
710 mdu_array_info_t *array)
711 {
712 int level = LEVEL_UNSUPPORTED;
713 int layout = 0;
714 int raiddisks = be16_to_cpu(conf->prim_elmnt_count);
715
716 if (conf->sec_elmnt_count > 1) {
717 /* see also check_secondary() */
718 if (conf->prl != DDF_RAID1 ||
719 (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED)) {
720 pr_err("Unsupported secondary RAID level %u/%u\n",
721 conf->prl, conf->srl);
722 return -1;
723 }
724 if (raiddisks == 2 && conf->rlq == DDF_RAID1_SIMPLE)
725 layout = 0x102;
726 else if (raiddisks == 3 && conf->rlq == DDF_RAID1_MULTI)
727 layout = 0x103;
728 else
729 return err_bad_ddf_layout(conf);
730 raiddisks *= conf->sec_elmnt_count;
731 level = 10;
732 goto good;
733 }
734
735 switch (conf->prl) {
736 case DDF_CONCAT:
737 level = LEVEL_LINEAR;
738 break;
739 case DDF_RAID0:
740 if (conf->rlq != DDF_RAID0_SIMPLE)
741 return err_bad_ddf_layout(conf);
742 level = 0;
743 break;
744 case DDF_RAID1:
745 if (!((conf->rlq == DDF_RAID1_SIMPLE && raiddisks == 2) ||
746 (conf->rlq == DDF_RAID1_MULTI && raiddisks == 3)))
747 return err_bad_ddf_layout(conf);
748 level = 1;
749 break;
750 case DDF_RAID1E:
751 if (conf->rlq == DDF_RAID1E_ADJACENT)
752 layout = 0x102;
753 else if (conf->rlq == DDF_RAID1E_OFFSET)
754 layout = 0x201;
755 else
756 return err_bad_ddf_layout(conf);
757 level = 10;
758 break;
759 case DDF_RAID4:
760 if (conf->rlq != DDF_RAID4_N)
761 return err_bad_ddf_layout(conf);
762 level = 4;
763 break;
764 case DDF_RAID5:
765 switch (conf->rlq) {
766 case DDF_RAID5_N_RESTART:
767 layout = ALGORITHM_LEFT_ASYMMETRIC;
768 break;
769 case DDF_RAID5_0_RESTART:
770 layout = ALGORITHM_RIGHT_ASYMMETRIC;
771 break;
772 case DDF_RAID5_N_CONTINUE:
773 layout = ALGORITHM_LEFT_SYMMETRIC;
774 break;
775 default:
776 return err_bad_ddf_layout(conf);
777 }
778 level = 5;
779 break;
780 case DDF_RAID6:
781 switch (conf->rlq) {
782 case DDF_RAID5_N_RESTART:
783 layout = ALGORITHM_ROTATING_N_RESTART;
784 break;
785 case DDF_RAID6_0_RESTART:
786 layout = ALGORITHM_ROTATING_ZERO_RESTART;
787 break;
788 case DDF_RAID5_N_CONTINUE:
789 layout = ALGORITHM_ROTATING_N_CONTINUE;
790 break;
791 default:
792 return err_bad_ddf_layout(conf);
793 }
794 level = 6;
795 break;
796 default:
797 return err_bad_ddf_layout(conf);
798 };
799
800 good:
801 array->level = level;
802 array->layout = layout;
803 array->raid_disks = raiddisks;
804 return 0;
805 }
806
807 static int load_ddf_header(int fd, unsigned long long lba,
808 unsigned long long size,
809 int type,
810 struct ddf_header *hdr, struct ddf_header *anchor)
811 {
812 /* read a ddf header (primary or secondary) from fd/lba
813 * and check that it is consistent with anchor
814 * Need to check:
815 * magic, crc, guid, rev, and LBA's header_type, and
816 * everything after header_type must be the same
817 */
818 if (lba >= size-1)
819 return 0;
820
821 if (lseek64(fd, lba<<9, 0) < 0)
822 return 0;
823
824 if (read(fd, hdr, 512) != 512)
825 return 0;
826
827 if (!be32_eq(hdr->magic, DDF_HEADER_MAGIC)) {
828 pr_err("%s: bad header magic\n", __func__);
829 return 0;
830 }
831 if (!be32_eq(calc_crc(hdr, 512), hdr->crc)) {
832 pr_err("%s: bad CRC\n", __func__);
833 return 0;
834 }
835 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
836 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
837 !be64_eq(anchor->primary_lba, hdr->primary_lba) ||
838 !be64_eq(anchor->secondary_lba, hdr->secondary_lba) ||
839 hdr->type != type ||
840 memcmp(anchor->pad2, hdr->pad2, 512 -
841 offsetof(struct ddf_header, pad2)) != 0) {
842 pr_err("%s: header mismatch\n", __func__);
843 return 0;
844 }
845
846 /* Looks good enough to me... */
847 return 1;
848 }
849
850 static void *load_section(int fd, struct ddf_super *super, void *buf,
851 be32 offset_be, be32 len_be, int check)
852 {
853 unsigned long long offset = be32_to_cpu(offset_be);
854 unsigned long long len = be32_to_cpu(len_be);
855 int dofree = (buf == NULL);
856
857 if (check)
858 if (len != 2 && len != 8 && len != 32
859 && len != 128 && len != 512)
860 return NULL;
861
862 if (len > 1024)
863 return NULL;
864 if (!buf && posix_memalign(&buf, 512, len<<9) != 0)
865 buf = NULL;
866
867 if (!buf)
868 return NULL;
869
870 if (super->active->type == 1)
871 offset += be64_to_cpu(super->active->primary_lba);
872 else
873 offset += be64_to_cpu(super->active->secondary_lba);
874
875 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
876 if (dofree)
877 free(buf);
878 return NULL;
879 }
880 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
881 if (dofree)
882 free(buf);
883 return NULL;
884 }
885 return buf;
886 }
887
888 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
889 {
890 unsigned long long dsize;
891
892 get_dev_size(fd, NULL, &dsize);
893
894 if (lseek64(fd, dsize-512, 0) < 0) {
895 if (devname)
896 pr_err("Cannot seek to anchor block on %s: %s\n",
897 devname, strerror(errno));
898 return 1;
899 }
900 if (read(fd, &super->anchor, 512) != 512) {
901 if (devname)
902 pr_err("Cannot read anchor block on %s: %s\n",
903 devname, strerror(errno));
904 return 1;
905 }
906 if (!be32_eq(super->anchor.magic, DDF_HEADER_MAGIC)) {
907 if (devname)
908 pr_err("no DDF anchor found on %s\n",
909 devname);
910 return 2;
911 }
912 if (!be32_eq(calc_crc(&super->anchor, 512), super->anchor.crc)) {
913 if (devname)
914 pr_err("bad CRC on anchor on %s\n",
915 devname);
916 return 2;
917 }
918 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
919 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
920 if (devname)
921 pr_err("can only support super revision"
922 " %.8s and earlier, not %.8s on %s\n",
923 DDF_REVISION_2, super->anchor.revision,devname);
924 return 2;
925 }
926 super->active = NULL;
927 if (load_ddf_header(fd, be64_to_cpu(super->anchor.primary_lba),
928 dsize >> 9, 1,
929 &super->primary, &super->anchor) == 0) {
930 if (devname)
931 pr_err("Failed to load primary DDF header "
932 "on %s\n", devname);
933 } else
934 super->active = &super->primary;
935
936 if (load_ddf_header(fd, be64_to_cpu(super->anchor.secondary_lba),
937 dsize >> 9, 2,
938 &super->secondary, &super->anchor)) {
939 if (super->active == NULL
940 || (be32_to_cpu(super->primary.seq)
941 < be32_to_cpu(super->secondary.seq) &&
942 !super->secondary.openflag)
943 || (be32_to_cpu(super->primary.seq)
944 == be32_to_cpu(super->secondary.seq) &&
945 super->primary.openflag && !super->secondary.openflag)
946 )
947 super->active = &super->secondary;
948 } else if (devname &&
949 be64_to_cpu(super->anchor.secondary_lba) != ~(__u64)0)
950 pr_err("Failed to load secondary DDF header on %s\n",
951 devname);
952 if (super->active == NULL)
953 return 2;
954 return 0;
955 }
956
957 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
958 {
959 void *ok;
960 ok = load_section(fd, super, &super->controller,
961 super->active->controller_section_offset,
962 super->active->controller_section_length,
963 0);
964 super->phys = load_section(fd, super, NULL,
965 super->active->phys_section_offset,
966 super->active->phys_section_length,
967 1);
968 super->pdsize = be32_to_cpu(super->active->phys_section_length) * 512;
969
970 super->virt = load_section(fd, super, NULL,
971 super->active->virt_section_offset,
972 super->active->virt_section_length,
973 1);
974 super->vdsize = be32_to_cpu(super->active->virt_section_length) * 512;
975 if (!ok ||
976 !super->phys ||
977 !super->virt) {
978 free(super->phys);
979 free(super->virt);
980 super->phys = NULL;
981 super->virt = NULL;
982 return 2;
983 }
984 super->conflist = NULL;
985 super->dlist = NULL;
986
987 super->max_part = be16_to_cpu(super->active->max_partitions);
988 super->mppe = be16_to_cpu(super->active->max_primary_element_entries);
989 super->conf_rec_len = be16_to_cpu(super->active->config_record_len);
990 return 0;
991 }
992
993 #define DDF_UNUSED_BVD 0xff
994 static int alloc_other_bvds(const struct ddf_super *ddf, struct vcl *vcl)
995 {
996 unsigned int n_vds = vcl->conf.sec_elmnt_count - 1;
997 unsigned int i, vdsize;
998 void *p;
999 if (n_vds == 0) {
1000 vcl->other_bvds = NULL;
1001 return 0;
1002 }
1003 vdsize = ddf->conf_rec_len * 512;
1004 if (posix_memalign(&p, 512, n_vds *
1005 (vdsize + sizeof(struct vd_config *))) != 0)
1006 return -1;
1007 vcl->other_bvds = (struct vd_config **) (p + n_vds * vdsize);
1008 for (i = 0; i < n_vds; i++) {
1009 vcl->other_bvds[i] = p + i * vdsize;
1010 memset(vcl->other_bvds[i], 0, vdsize);
1011 vcl->other_bvds[i]->sec_elmnt_seq = DDF_UNUSED_BVD;
1012 }
1013 return 0;
1014 }
1015
1016 static void add_other_bvd(struct vcl *vcl, struct vd_config *vd,
1017 unsigned int len)
1018 {
1019 int i;
1020 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
1021 if (vcl->other_bvds[i]->sec_elmnt_seq == vd->sec_elmnt_seq)
1022 break;
1023
1024 if (i < vcl->conf.sec_elmnt_count-1) {
1025 if (be32_to_cpu(vd->seqnum) <=
1026 be32_to_cpu(vcl->other_bvds[i]->seqnum))
1027 return;
1028 } else {
1029 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
1030 if (vcl->other_bvds[i]->sec_elmnt_seq == DDF_UNUSED_BVD)
1031 break;
1032 if (i == vcl->conf.sec_elmnt_count-1) {
1033 pr_err("no space for sec level config %u, count is %u\n",
1034 vd->sec_elmnt_seq, vcl->conf.sec_elmnt_count);
1035 return;
1036 }
1037 }
1038 memcpy(vcl->other_bvds[i], vd, len);
1039 }
1040
1041 static int load_ddf_local(int fd, struct ddf_super *super,
1042 char *devname, int keep)
1043 {
1044 struct dl *dl;
1045 struct stat stb;
1046 char *conf;
1047 unsigned int i;
1048 unsigned int confsec;
1049 int vnum;
1050 unsigned int max_virt_disks =
1051 be16_to_cpu(super->active->max_vd_entries);
1052 unsigned long long dsize;
1053
1054 /* First the local disk info */
1055 if (posix_memalign((void**)&dl, 512,
1056 sizeof(*dl) +
1057 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
1058 pr_err("%s could not allocate disk info buffer\n",
1059 __func__);
1060 return 1;
1061 }
1062
1063 load_section(fd, super, &dl->disk,
1064 super->active->data_section_offset,
1065 super->active->data_section_length,
1066 0);
1067 dl->devname = devname ? xstrdup(devname) : NULL;
1068
1069 fstat(fd, &stb);
1070 dl->major = major(stb.st_rdev);
1071 dl->minor = minor(stb.st_rdev);
1072 dl->next = super->dlist;
1073 dl->fd = keep ? fd : -1;
1074
1075 dl->size = 0;
1076 if (get_dev_size(fd, devname, &dsize))
1077 dl->size = dsize >> 9;
1078 /* If the disks have different sizes, the LBAs will differ
1079 * between phys disks.
1080 * At this point here, the values in super->active must be valid
1081 * for this phys disk. */
1082 dl->primary_lba = super->active->primary_lba;
1083 dl->secondary_lba = super->active->secondary_lba;
1084 dl->workspace_lba = super->active->workspace_lba;
1085 dl->spare = NULL;
1086 for (i = 0 ; i < super->max_part ; i++)
1087 dl->vlist[i] = NULL;
1088 super->dlist = dl;
1089 dl->pdnum = -1;
1090 for (i = 0; i < be16_to_cpu(super->active->max_pd_entries); i++)
1091 if (memcmp(super->phys->entries[i].guid,
1092 dl->disk.guid, DDF_GUID_LEN) == 0)
1093 dl->pdnum = i;
1094
1095 /* Now the config list. */
1096 /* 'conf' is an array of config entries, some of which are
1097 * probably invalid. Those which are good need to be copied into
1098 * the conflist
1099 */
1100
1101 conf = load_section(fd, super, super->conf,
1102 super->active->config_section_offset,
1103 super->active->config_section_length,
1104 0);
1105 super->conf = conf;
1106 vnum = 0;
1107 for (confsec = 0;
1108 confsec < be32_to_cpu(super->active->config_section_length);
1109 confsec += super->conf_rec_len) {
1110 struct vd_config *vd =
1111 (struct vd_config *)((char*)conf + confsec*512);
1112 struct vcl *vcl;
1113
1114 if (be32_eq(vd->magic, DDF_SPARE_ASSIGN_MAGIC)) {
1115 if (dl->spare)
1116 continue;
1117 if (posix_memalign((void**)&dl->spare, 512,
1118 super->conf_rec_len*512) != 0) {
1119 pr_err("%s could not allocate spare info buf\n",
1120 __func__);
1121 return 1;
1122 }
1123
1124 memcpy(dl->spare, vd, super->conf_rec_len*512);
1125 continue;
1126 }
1127 if (!be32_eq(vd->magic, DDF_VD_CONF_MAGIC))
1128 /* Must be vendor-unique - I cannot handle those */
1129 continue;
1130
1131 for (vcl = super->conflist; vcl; vcl = vcl->next) {
1132 if (memcmp(vcl->conf.guid,
1133 vd->guid, DDF_GUID_LEN) == 0)
1134 break;
1135 }
1136
1137 if (vcl) {
1138 dl->vlist[vnum++] = vcl;
1139 if (vcl->other_bvds != NULL &&
1140 vcl->conf.sec_elmnt_seq != vd->sec_elmnt_seq) {
1141 add_other_bvd(vcl, vd, super->conf_rec_len*512);
1142 continue;
1143 }
1144 if (be32_to_cpu(vd->seqnum) <=
1145 be32_to_cpu(vcl->conf.seqnum))
1146 continue;
1147 } else {
1148 if (posix_memalign((void**)&vcl, 512,
1149 (super->conf_rec_len*512 +
1150 offsetof(struct vcl, conf))) != 0) {
1151 pr_err("%s could not allocate vcl buf\n",
1152 __func__);
1153 return 1;
1154 }
1155 vcl->next = super->conflist;
1156 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1157 vcl->conf.sec_elmnt_count = vd->sec_elmnt_count;
1158 if (alloc_other_bvds(super, vcl) != 0) {
1159 pr_err("%s could not allocate other bvds\n",
1160 __func__);
1161 free(vcl);
1162 return 1;
1163 };
1164 super->conflist = vcl;
1165 dl->vlist[vnum++] = vcl;
1166 }
1167 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
1168 for (i=0; i < max_virt_disks ; i++)
1169 if (memcmp(super->virt->entries[i].guid,
1170 vcl->conf.guid, DDF_GUID_LEN)==0)
1171 break;
1172 if (i < max_virt_disks)
1173 vcl->vcnum = i;
1174 }
1175
1176 return 0;
1177 }
1178
1179 static int load_super_ddf(struct supertype *st, int fd,
1180 char *devname)
1181 {
1182 unsigned long long dsize;
1183 struct ddf_super *super;
1184 int rv;
1185
1186 if (get_dev_size(fd, devname, &dsize) == 0)
1187 return 1;
1188
1189 if (test_partition(fd))
1190 /* DDF is not allowed on partitions */
1191 return 1;
1192
1193 /* 32M is a lower bound */
1194 if (dsize <= 32*1024*1024) {
1195 if (devname)
1196 pr_err("%s is too small for ddf: "
1197 "size is %llu sectors.\n",
1198 devname, dsize>>9);
1199 return 1;
1200 }
1201 if (dsize & 511) {
1202 if (devname)
1203 pr_err("%s is an odd size for ddf: "
1204 "size is %llu bytes.\n",
1205 devname, dsize);
1206 return 1;
1207 }
1208
1209 free_super_ddf(st);
1210
1211 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
1212 pr_err("malloc of %zu failed.\n",
1213 sizeof(*super));
1214 return 1;
1215 }
1216 memset(super, 0, sizeof(*super));
1217
1218 rv = load_ddf_headers(fd, super, devname);
1219 if (rv) {
1220 free(super);
1221 return rv;
1222 }
1223
1224 /* Have valid headers and have chosen the best. Let's read in the rest*/
1225
1226 rv = load_ddf_global(fd, super, devname);
1227
1228 if (rv) {
1229 if (devname)
1230 pr_err("Failed to load all information "
1231 "sections on %s\n", devname);
1232 free(super);
1233 return rv;
1234 }
1235
1236 rv = load_ddf_local(fd, super, devname, 0);
1237
1238 if (rv) {
1239 if (devname)
1240 pr_err("Failed to load all information "
1241 "sections on %s\n", devname);
1242 free(super);
1243 return rv;
1244 }
1245
1246 /* Should possibly check the sections .... */
1247
1248 st->sb = super;
1249 if (st->ss == NULL) {
1250 st->ss = &super_ddf;
1251 st->minor_version = 0;
1252 st->max_devs = 512;
1253 }
1254 return 0;
1255
1256 }
1257
1258 static void free_super_ddf(struct supertype *st)
1259 {
1260 struct ddf_super *ddf = st->sb;
1261 if (ddf == NULL)
1262 return;
1263 free(ddf->phys);
1264 free(ddf->virt);
1265 free(ddf->conf);
1266 while (ddf->conflist) {
1267 struct vcl *v = ddf->conflist;
1268 ddf->conflist = v->next;
1269 if (v->block_sizes)
1270 free(v->block_sizes);
1271 if (v->other_bvds)
1272 /*
1273 v->other_bvds[0] points to beginning of buffer,
1274 see alloc_other_bvds()
1275 */
1276 free(v->other_bvds[0]);
1277 free(v);
1278 }
1279 while (ddf->dlist) {
1280 struct dl *d = ddf->dlist;
1281 ddf->dlist = d->next;
1282 if (d->fd >= 0)
1283 close(d->fd);
1284 if (d->spare)
1285 free(d->spare);
1286 free(d);
1287 }
1288 while (ddf->add_list) {
1289 struct dl *d = ddf->add_list;
1290 ddf->add_list = d->next;
1291 if (d->fd >= 0)
1292 close(d->fd);
1293 if (d->spare)
1294 free(d->spare);
1295 free(d);
1296 }
1297 free(ddf);
1298 st->sb = NULL;
1299 }
1300
1301 static struct supertype *match_metadata_desc_ddf(char *arg)
1302 {
1303 /* 'ddf' only supports containers */
1304 struct supertype *st;
1305 if (strcmp(arg, "ddf") != 0 &&
1306 strcmp(arg, "default") != 0
1307 )
1308 return NULL;
1309
1310 st = xcalloc(1, sizeof(*st));
1311 st->ss = &super_ddf;
1312 st->max_devs = 512;
1313 st->minor_version = 0;
1314 st->sb = NULL;
1315 return st;
1316 }
1317
1318 #ifndef MDASSEMBLE
1319
1320 static mapping_t ddf_state[] = {
1321 { "Optimal", 0},
1322 { "Degraded", 1},
1323 { "Deleted", 2},
1324 { "Missing", 3},
1325 { "Failed", 4},
1326 { "Partially Optimal", 5},
1327 { "-reserved-", 6},
1328 { "-reserved-", 7},
1329 { NULL, 0}
1330 };
1331
1332 static mapping_t ddf_init_state[] = {
1333 { "Not Initialised", 0},
1334 { "QuickInit in Progress", 1},
1335 { "Fully Initialised", 2},
1336 { "*UNKNOWN*", 3},
1337 { NULL, 0}
1338 };
1339 static mapping_t ddf_access[] = {
1340 { "Read/Write", 0},
1341 { "Reserved", 1},
1342 { "Read Only", 2},
1343 { "Blocked (no access)", 3},
1344 { NULL ,0}
1345 };
1346
1347 static mapping_t ddf_level[] = {
1348 { "RAID0", DDF_RAID0},
1349 { "RAID1", DDF_RAID1},
1350 { "RAID3", DDF_RAID3},
1351 { "RAID4", DDF_RAID4},
1352 { "RAID5", DDF_RAID5},
1353 { "RAID1E",DDF_RAID1E},
1354 { "JBOD", DDF_JBOD},
1355 { "CONCAT",DDF_CONCAT},
1356 { "RAID5E",DDF_RAID5E},
1357 { "RAID5EE",DDF_RAID5EE},
1358 { "RAID6", DDF_RAID6},
1359 { NULL, 0}
1360 };
1361 static mapping_t ddf_sec_level[] = {
1362 { "Striped", DDF_2STRIPED},
1363 { "Mirrored", DDF_2MIRRORED},
1364 { "Concat", DDF_2CONCAT},
1365 { "Spanned", DDF_2SPANNED},
1366 { NULL, 0}
1367 };
1368 #endif
1369
1370 static int all_ff(const char *guid)
1371 {
1372 int i;
1373 for (i = 0; i < DDF_GUID_LEN; i++)
1374 if (guid[i] != (char)0xff)
1375 return 0;
1376 return 1;
1377 }
1378
1379 static const char *guid_str(const char *guid)
1380 {
1381 static char buf[DDF_GUID_LEN*2+1];
1382 int i;
1383 char *p = buf;
1384 for (i = 0; i < DDF_GUID_LEN; i++) {
1385 unsigned char c = guid[i];
1386 if (c >= 32 && c < 127)
1387 p += sprintf(p, "%c", c);
1388 else
1389 p += sprintf(p, "%02x", c);
1390 }
1391 *p = '\0';
1392 return (const char *) buf;
1393 }
1394
1395 #ifndef MDASSEMBLE
1396 static void print_guid(char *guid, int tstamp)
1397 {
1398 /* A GUIDs are part (or all) ASCII and part binary.
1399 * They tend to be space padded.
1400 * We print the GUID in HEX, then in parentheses add
1401 * any initial ASCII sequence, and a possible
1402 * time stamp from bytes 16-19
1403 */
1404 int l = DDF_GUID_LEN;
1405 int i;
1406
1407 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1408 if ((i&3)==0 && i != 0) printf(":");
1409 printf("%02X", guid[i]&255);
1410 }
1411
1412 printf("\n (");
1413 while (l && guid[l-1] == ' ')
1414 l--;
1415 for (i=0 ; i<l ; i++) {
1416 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1417 fputc(guid[i], stdout);
1418 else
1419 break;
1420 }
1421 if (tstamp) {
1422 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1423 char tbuf[100];
1424 struct tm *tm;
1425 tm = localtime(&then);
1426 strftime(tbuf, 100, " %D %T",tm);
1427 fputs(tbuf, stdout);
1428 }
1429 printf(")");
1430 }
1431
1432 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1433 {
1434 int crl = sb->conf_rec_len;
1435 struct vcl *vcl;
1436
1437 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1438 unsigned int i;
1439 struct vd_config *vc = &vcl->conf;
1440
1441 if (!be32_eq(calc_crc(vc, crl*512), vc->crc))
1442 continue;
1443 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1444 continue;
1445
1446 /* Ok, we know about this VD, let's give more details */
1447 printf(" Raid Devices[%d] : %d (", n,
1448 be16_to_cpu(vc->prim_elmnt_count));
1449 for (i = 0; i < be16_to_cpu(vc->prim_elmnt_count); i++) {
1450 int j;
1451 int cnt = be16_to_cpu(sb->phys->max_pdes);
1452 for (j=0; j<cnt; j++)
1453 if (be32_eq(vc->phys_refnum[i],
1454 sb->phys->entries[j].refnum))
1455 break;
1456 if (i) printf(" ");
1457 if (j < cnt)
1458 printf("%d", j);
1459 else
1460 printf("--");
1461 printf("@%lluK", (unsigned long long) be64_to_cpu(LBA_OFFSET(sb, vc)[i])/2);
1462 }
1463 printf(")\n");
1464 if (vc->chunk_shift != 255)
1465 printf(" Chunk Size[%d] : %d sectors\n", n,
1466 1 << vc->chunk_shift);
1467 printf(" Raid Level[%d] : %s\n", n,
1468 map_num(ddf_level, vc->prl)?:"-unknown-");
1469 if (vc->sec_elmnt_count != 1) {
1470 printf(" Secondary Position[%d] : %d of %d\n", n,
1471 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1472 printf(" Secondary Level[%d] : %s\n", n,
1473 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1474 }
1475 printf(" Device Size[%d] : %llu\n", n,
1476 be64_to_cpu(vc->blocks)/2);
1477 printf(" Array Size[%d] : %llu\n", n,
1478 be64_to_cpu(vc->array_blocks)/2);
1479 }
1480 }
1481
1482 static void examine_vds(struct ddf_super *sb)
1483 {
1484 int cnt = be16_to_cpu(sb->virt->populated_vdes);
1485 unsigned int i;
1486 printf(" Virtual Disks : %d\n", cnt);
1487
1488 for (i = 0; i < be16_to_cpu(sb->virt->max_vdes); i++) {
1489 struct virtual_entry *ve = &sb->virt->entries[i];
1490 if (all_ff(ve->guid))
1491 continue;
1492 printf("\n");
1493 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1494 printf("\n");
1495 printf(" unit[%d] : %d\n", i, be16_to_cpu(ve->unit));
1496 printf(" state[%d] : %s, %s%s\n", i,
1497 map_num(ddf_state, ve->state & 7),
1498 (ve->state & DDF_state_morphing) ? "Morphing, ": "",
1499 (ve->state & DDF_state_inconsistent)? "Not Consistent" : "Consistent");
1500 printf(" init state[%d] : %s\n", i,
1501 map_num(ddf_init_state, ve->init_state&DDF_initstate_mask));
1502 printf(" access[%d] : %s\n", i,
1503 map_num(ddf_access, (ve->init_state & DDF_access_mask) >> 6));
1504 printf(" Name[%d] : %.16s\n", i, ve->name);
1505 examine_vd(i, sb, ve->guid);
1506 }
1507 if (cnt) printf("\n");
1508 }
1509
1510 static void examine_pds(struct ddf_super *sb)
1511 {
1512 int cnt = be16_to_cpu(sb->phys->max_pdes);
1513 int i;
1514 struct dl *dl;
1515 int unlisted = 0;
1516 printf(" Physical Disks : %d\n", cnt);
1517 printf(" Number RefNo Size Device Type/State\n");
1518
1519 for (dl = sb->dlist; dl; dl = dl->next)
1520 dl->displayed = 0;
1521
1522 for (i=0 ; i<cnt ; i++) {
1523 struct phys_disk_entry *pd = &sb->phys->entries[i];
1524 int type = be16_to_cpu(pd->type);
1525 int state = be16_to_cpu(pd->state);
1526
1527 if (be32_to_cpu(pd->refnum) == 0xffffffff)
1528 /* Not in use */
1529 continue;
1530 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1531 //printf("\n");
1532 printf(" %3d %08x ", i,
1533 be32_to_cpu(pd->refnum));
1534 printf("%8lluK ",
1535 be64_to_cpu(pd->config_size)>>1);
1536 for (dl = sb->dlist; dl ; dl = dl->next) {
1537 if (be32_eq(dl->disk.refnum, pd->refnum)) {
1538 char *dv = map_dev(dl->major, dl->minor, 0);
1539 if (dv) {
1540 printf("%-15s", dv);
1541 break;
1542 }
1543 }
1544 }
1545 if (!dl)
1546 printf("%15s","");
1547 else
1548 dl->displayed = 1;
1549 printf(" %s%s%s%s%s",
1550 (type&2) ? "active":"",
1551 (type&4) ? "Global-Spare":"",
1552 (type&8) ? "spare" : "",
1553 (type&16)? ", foreign" : "",
1554 (type&32)? "pass-through" : "");
1555 if (state & DDF_Failed)
1556 /* This over-rides these three */
1557 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1558 printf("/%s%s%s%s%s%s%s",
1559 (state&1)? "Online": "Offline",
1560 (state&2)? ", Failed": "",
1561 (state&4)? ", Rebuilding": "",
1562 (state&8)? ", in-transition": "",
1563 (state&16)? ", SMART-errors": "",
1564 (state&32)? ", Unrecovered-Read-Errors": "",
1565 (state&64)? ", Missing" : "");
1566 printf("\n");
1567 }
1568 for (dl = sb->dlist; dl; dl = dl->next) {
1569 char *dv;
1570 if (dl->displayed)
1571 continue;
1572 if (!unlisted)
1573 printf(" Physical disks not in metadata!:\n");
1574 unlisted = 1;
1575 dv = map_dev(dl->major, dl->minor, 0);
1576 printf(" %08x %s\n", be32_to_cpu(dl->disk.refnum),
1577 dv ? dv : "-unknown-");
1578 }
1579 if (unlisted)
1580 printf("\n");
1581 }
1582
1583 static void examine_super_ddf(struct supertype *st, char *homehost)
1584 {
1585 struct ddf_super *sb = st->sb;
1586
1587 printf(" Magic : %08x\n", be32_to_cpu(sb->anchor.magic));
1588 printf(" Version : %.8s\n", sb->anchor.revision);
1589 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1590 printf("\n");
1591 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1592 printf("\n");
1593 printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
1594 printf(" Redundant hdr : %s\n", (be32_eq(sb->secondary.magic,
1595 DDF_HEADER_MAGIC)
1596 ?"yes" : "no"));
1597 examine_vds(sb);
1598 examine_pds(sb);
1599 }
1600
1601 static unsigned int get_vd_num_of_subarray(struct supertype *st)
1602 {
1603 /*
1604 * Figure out the VD number for this supertype.
1605 * Returns DDF_CONTAINER for the container itself,
1606 * and DDF_NOTFOUND on error.
1607 */
1608 struct ddf_super *ddf = st->sb;
1609 struct mdinfo *sra;
1610 char *sub, *end;
1611 unsigned int vcnum;
1612
1613 if (*st->container_devnm == '\0')
1614 return DDF_CONTAINER;
1615
1616 sra = sysfs_read(-1, st->devnm, GET_VERSION);
1617 if (!sra || sra->array.major_version != -1 ||
1618 sra->array.minor_version != -2 ||
1619 !is_subarray(sra->text_version))
1620 return DDF_NOTFOUND;
1621
1622 sub = strchr(sra->text_version + 1, '/');
1623 if (sub != NULL)
1624 vcnum = strtoul(sub + 1, &end, 10);
1625 if (sub == NULL || *sub == '\0' || *end != '\0' ||
1626 vcnum >= be16_to_cpu(ddf->active->max_vd_entries))
1627 return DDF_NOTFOUND;
1628
1629 return vcnum;
1630 }
1631
1632 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1633 {
1634 /* We just write a generic DDF ARRAY entry
1635 */
1636 struct mdinfo info;
1637 char nbuf[64];
1638 getinfo_super_ddf(st, &info, NULL);
1639 fname_from_uuid(st, &info, nbuf, ':');
1640
1641 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1642 }
1643
1644 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1645 {
1646 /* We write a DDF ARRAY member entry for each vd, identifying container
1647 * by uuid and member by unit number and uuid.
1648 */
1649 struct ddf_super *ddf = st->sb;
1650 struct mdinfo info;
1651 unsigned int i;
1652 char nbuf[64];
1653 getinfo_super_ddf(st, &info, NULL);
1654 fname_from_uuid(st, &info, nbuf, ':');
1655
1656 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
1657 struct virtual_entry *ve = &ddf->virt->entries[i];
1658 struct vcl vcl;
1659 char nbuf1[64];
1660 char namebuf[17];
1661 if (all_ff(ve->guid))
1662 continue;
1663 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1664 ddf->currentconf =&vcl;
1665 vcl.vcnum = i;
1666 uuid_from_super_ddf(st, info.uuid);
1667 fname_from_uuid(st, &info, nbuf1, ':');
1668 _ddf_array_name(namebuf, ddf, i);
1669 printf("ARRAY%s%s container=%s member=%d UUID=%s\n",
1670 namebuf[0] == '\0' ? "" : " /dev/md/", namebuf,
1671 nbuf+5, i, nbuf1+5);
1672 }
1673 }
1674
1675 static void export_examine_super_ddf(struct supertype *st)
1676 {
1677 struct mdinfo info;
1678 char nbuf[64];
1679 getinfo_super_ddf(st, &info, NULL);
1680 fname_from_uuid(st, &info, nbuf, ':');
1681 printf("MD_METADATA=ddf\n");
1682 printf("MD_LEVEL=container\n");
1683 printf("MD_UUID=%s\n", nbuf+5);
1684 printf("MD_DEVICES=%u\n",
1685 be16_to_cpu(((struct ddf_super *)st->sb)->phys->used_pdes));
1686 }
1687
1688 static int copy_metadata_ddf(struct supertype *st, int from, int to)
1689 {
1690 void *buf;
1691 unsigned long long dsize, offset;
1692 int bytes;
1693 struct ddf_header *ddf;
1694 int written = 0;
1695
1696 /* The meta consists of an anchor, a primary, and a secondary.
1697 * This all lives at the end of the device.
1698 * So it is easiest to find the earliest of primary and
1699 * secondary, and copy everything from there.
1700 *
1701 * Anchor is 512 from end. It contains primary_lba and secondary_lba
1702 * we choose one of those
1703 */
1704
1705 if (posix_memalign(&buf, 4096, 4096) != 0)
1706 return 1;
1707
1708 if (!get_dev_size(from, NULL, &dsize))
1709 goto err;
1710
1711 if (lseek64(from, dsize-512, 0) < 0)
1712 goto err;
1713 if (read(from, buf, 512) != 512)
1714 goto err;
1715 ddf = buf;
1716 if (!be32_eq(ddf->magic, DDF_HEADER_MAGIC) ||
1717 !be32_eq(calc_crc(ddf, 512), ddf->crc) ||
1718 (memcmp(ddf->revision, DDF_REVISION_0, 8) != 0 &&
1719 memcmp(ddf->revision, DDF_REVISION_2, 8) != 0))
1720 goto err;
1721
1722 offset = dsize - 512;
1723 if ((be64_to_cpu(ddf->primary_lba) << 9) < offset)
1724 offset = be64_to_cpu(ddf->primary_lba) << 9;
1725 if ((be64_to_cpu(ddf->secondary_lba) << 9) < offset)
1726 offset = be64_to_cpu(ddf->secondary_lba) << 9;
1727
1728 bytes = dsize - offset;
1729
1730 if (lseek64(from, offset, 0) < 0 ||
1731 lseek64(to, offset, 0) < 0)
1732 goto err;
1733 while (written < bytes) {
1734 int n = bytes - written;
1735 if (n > 4096)
1736 n = 4096;
1737 if (read(from, buf, n) != n)
1738 goto err;
1739 if (write(to, buf, n) != n)
1740 goto err;
1741 written += n;
1742 }
1743 free(buf);
1744 return 0;
1745 err:
1746 free(buf);
1747 return 1;
1748 }
1749
1750 static void detail_super_ddf(struct supertype *st, char *homehost)
1751 {
1752 struct ddf_super *sb = st->sb;
1753 int cnt = be16_to_cpu(sb->virt->populated_vdes);
1754
1755 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1756 printf("\n");
1757 printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
1758 printf(" Virtual Disks : %d\n", cnt);
1759 printf("\n");
1760 }
1761 #endif
1762
1763 static const char *vendors_with_variable_volume_UUID[] = {
1764 "LSI ",
1765 };
1766
1767 static int volume_id_is_reliable(const struct ddf_super *ddf)
1768 {
1769 int n = ARRAY_SIZE(vendors_with_variable_volume_UUID);
1770 int i;
1771 for (i = 0; i < n; i++)
1772 if (!memcmp(ddf->controller.guid,
1773 vendors_with_variable_volume_UUID[i], 8))
1774 return 0;
1775 return 1;
1776 }
1777
1778 static void uuid_of_ddf_subarray(const struct ddf_super *ddf,
1779 unsigned int vcnum, int uuid[4])
1780 {
1781 char buf[DDF_GUID_LEN+18], sha[20], *p;
1782 struct sha1_ctx ctx;
1783 if (volume_id_is_reliable(ddf)) {
1784 uuid_from_ddf_guid(ddf->virt->entries[vcnum].guid, uuid);
1785 return;
1786 }
1787 /*
1788 * Some fake RAID BIOSes (in particular, LSI ones) change the
1789 * VD GUID at every boot. These GUIDs are not suitable for
1790 * identifying an array. Luckily the header GUID appears to
1791 * remain constant.
1792 * We construct a pseudo-UUID from the header GUID and those
1793 * properties of the subarray that we expect to remain constant.
1794 */
1795 memset(buf, 0, sizeof(buf));
1796 p = buf;
1797 memcpy(p, ddf->anchor.guid, DDF_GUID_LEN);
1798 p += DDF_GUID_LEN;
1799 memcpy(p, ddf->virt->entries[vcnum].name, 16);
1800 p += 16;
1801 *((__u16 *) p) = vcnum;
1802 sha1_init_ctx(&ctx);
1803 sha1_process_bytes(buf, sizeof(buf), &ctx);
1804 sha1_finish_ctx(&ctx, sha);
1805 memcpy(uuid, sha, 4*4);
1806 }
1807
1808 #ifndef MDASSEMBLE
1809 static void brief_detail_super_ddf(struct supertype *st)
1810 {
1811 struct mdinfo info;
1812 char nbuf[64];
1813 struct ddf_super *ddf = st->sb;
1814 unsigned int vcnum = get_vd_num_of_subarray(st);
1815 if (vcnum == DDF_CONTAINER)
1816 uuid_from_super_ddf(st, info.uuid);
1817 else if (vcnum == DDF_NOTFOUND)
1818 return;
1819 else
1820 uuid_of_ddf_subarray(ddf, vcnum, info.uuid);
1821 fname_from_uuid(st, &info, nbuf,':');
1822 printf(" UUID=%s", nbuf + 5);
1823 }
1824 #endif
1825
1826 static int match_home_ddf(struct supertype *st, char *homehost)
1827 {
1828 /* It matches 'this' host if the controller is a
1829 * Linux-MD controller with vendor_data matching
1830 * the hostname. It would be nice if we could
1831 * test against controller found in /sys or somewhere...
1832 */
1833 struct ddf_super *ddf = st->sb;
1834 unsigned int len;
1835
1836 if (!homehost)
1837 return 0;
1838 len = strlen(homehost);
1839
1840 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1841 len < sizeof(ddf->controller.vendor_data) &&
1842 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1843 ddf->controller.vendor_data[len] == 0);
1844 }
1845
1846 #ifndef MDASSEMBLE
1847 static int find_index_in_bvd(const struct ddf_super *ddf,
1848 const struct vd_config *conf, unsigned int n,
1849 unsigned int *n_bvd)
1850 {
1851 /*
1852 * Find the index of the n-th valid physical disk in this BVD.
1853 * Unused entries can be sprinkled in with the used entries,
1854 * but don't count.
1855 */
1856 unsigned int i, j;
1857 for (i = 0, j = 0;
1858 i < ddf->mppe && j < be16_to_cpu(conf->prim_elmnt_count);
1859 i++) {
1860 if (be32_to_cpu(conf->phys_refnum[i]) != 0xffffffff) {
1861 if (n == j) {
1862 *n_bvd = i;
1863 return 1;
1864 }
1865 j++;
1866 }
1867 }
1868 dprintf("%s: couldn't find BVD member %u (total %u)\n",
1869 __func__, n, be16_to_cpu(conf->prim_elmnt_count));
1870 return 0;
1871 }
1872
1873 /* Given a member array instance number, and a raid disk within that instance,
1874 * find the vd_config structure. The offset of the given disk in the phys_refnum
1875 * table is returned in n_bvd.
1876 * For two-level members with a secondary raid level the vd_config for
1877 * the appropriate BVD is returned.
1878 * The return value is always &vlc->conf, where vlc is returned in last pointer.
1879 */
1880 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst,
1881 unsigned int n,
1882 unsigned int *n_bvd, struct vcl **vcl)
1883 {
1884 struct vcl *v;
1885
1886 for (v = ddf->conflist; v; v = v->next) {
1887 unsigned int nsec, ibvd = 0;
1888 struct vd_config *conf;
1889 if (inst != v->vcnum)
1890 continue;
1891 conf = &v->conf;
1892 if (conf->sec_elmnt_count == 1) {
1893 if (find_index_in_bvd(ddf, conf, n, n_bvd)) {
1894 *vcl = v;
1895 return conf;
1896 } else
1897 goto bad;
1898 }
1899 if (v->other_bvds == NULL) {
1900 pr_err("%s: BUG: other_bvds is NULL, nsec=%u\n",
1901 __func__, conf->sec_elmnt_count);
1902 goto bad;
1903 }
1904 nsec = n / be16_to_cpu(conf->prim_elmnt_count);
1905 if (conf->sec_elmnt_seq != nsec) {
1906 for (ibvd = 1; ibvd < conf->sec_elmnt_count; ibvd++) {
1907 if (v->other_bvds[ibvd-1]->sec_elmnt_seq
1908 == nsec)
1909 break;
1910 }
1911 if (ibvd == conf->sec_elmnt_count)
1912 goto bad;
1913 conf = v->other_bvds[ibvd-1];
1914 }
1915 if (!find_index_in_bvd(ddf, conf,
1916 n - nsec*conf->sec_elmnt_count, n_bvd))
1917 goto bad;
1918 dprintf("%s: found disk %u as member %u in bvd %d of array %u\n"
1919 , __func__, n, *n_bvd, ibvd, inst);
1920 *vcl = v;
1921 return conf;
1922 }
1923 bad:
1924 pr_err("%s: Could't find disk %d in array %u\n", __func__, n, inst);
1925 return NULL;
1926 }
1927 #endif
1928
1929 static int find_phys(const struct ddf_super *ddf, be32 phys_refnum)
1930 {
1931 /* Find the entry in phys_disk which has the given refnum
1932 * and return it's index
1933 */
1934 unsigned int i;
1935 for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++)
1936 if (be32_eq(ddf->phys->entries[i].refnum, phys_refnum))
1937 return i;
1938 return -1;
1939 }
1940
1941 static void uuid_from_ddf_guid(const char *guid, int uuid[4])
1942 {
1943 char buf[20];
1944 struct sha1_ctx ctx;
1945 sha1_init_ctx(&ctx);
1946 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1947 sha1_finish_ctx(&ctx, buf);
1948 memcpy(uuid, buf, 4*4);
1949 }
1950
1951 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1952 {
1953 /* The uuid returned here is used for:
1954 * uuid to put into bitmap file (Create, Grow)
1955 * uuid for backup header when saving critical section (Grow)
1956 * comparing uuids when re-adding a device into an array
1957 * In these cases the uuid required is that of the data-array,
1958 * not the device-set.
1959 * uuid to recognise same set when adding a missing device back
1960 * to an array. This is a uuid for the device-set.
1961 *
1962 * For each of these we can make do with a truncated
1963 * or hashed uuid rather than the original, as long as
1964 * everyone agrees.
1965 * In the case of SVD we assume the BVD is of interest,
1966 * though that might be the case if a bitmap were made for
1967 * a mirrored SVD - worry about that later.
1968 * So we need to find the VD configuration record for the
1969 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1970 * The first 16 bytes of the sha1 of these is used.
1971 */
1972 struct ddf_super *ddf = st->sb;
1973 struct vcl *vcl = ddf->currentconf;
1974
1975 if (vcl)
1976 uuid_of_ddf_subarray(ddf, vcl->vcnum, uuid);
1977 else
1978 uuid_from_ddf_guid(ddf->anchor.guid, uuid);
1979 }
1980
1981 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1982 {
1983 struct ddf_super *ddf = st->sb;
1984 int map_disks = info->array.raid_disks;
1985 __u32 *cptr;
1986
1987 if (ddf->currentconf) {
1988 getinfo_super_ddf_bvd(st, info, map);
1989 return;
1990 }
1991 memset(info, 0, sizeof(*info));
1992
1993 info->array.raid_disks = be16_to_cpu(ddf->phys->used_pdes);
1994 info->array.level = LEVEL_CONTAINER;
1995 info->array.layout = 0;
1996 info->array.md_minor = -1;
1997 cptr = (__u32 *)(ddf->anchor.guid + 16);
1998 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1999
2000 info->array.chunk_size = 0;
2001 info->container_enough = 1;
2002
2003 info->disk.major = 0;
2004 info->disk.minor = 0;
2005 if (ddf->dlist) {
2006 struct phys_disk_entry *pde = NULL;
2007 info->disk.number = be32_to_cpu(ddf->dlist->disk.refnum);
2008 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
2009
2010 info->data_offset = be64_to_cpu(ddf->phys->
2011 entries[info->disk.raid_disk].
2012 config_size);
2013 info->component_size = ddf->dlist->size - info->data_offset;
2014 if (info->disk.raid_disk >= 0)
2015 pde = ddf->phys->entries + info->disk.raid_disk;
2016 if (pde &&
2017 !(be16_to_cpu(pde->state) & DDF_Failed) &&
2018 !(be16_to_cpu(pde->state) & DDF_Missing))
2019 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
2020 else
2021 info->disk.state = 1 << MD_DISK_FAULTY;
2022
2023 } else {
2024 /* There should always be a dlist, but just in case...*/
2025 info->disk.number = -1;
2026 info->disk.raid_disk = -1;
2027 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
2028 }
2029 info->events = be32_to_cpu(ddf->active->seq);
2030 info->array.utime = DECADE + be32_to_cpu(ddf->active->timestamp);
2031
2032 info->recovery_start = MaxSector;
2033 info->reshape_active = 0;
2034 info->recovery_blocked = 0;
2035 info->name[0] = 0;
2036
2037 info->array.major_version = -1;
2038 info->array.minor_version = -2;
2039 strcpy(info->text_version, "ddf");
2040 info->safe_mode_delay = 0;
2041
2042 uuid_from_super_ddf(st, info->uuid);
2043
2044 if (map) {
2045 int i, e = 0;
2046 int max = be16_to_cpu(ddf->phys->max_pdes);
2047 for (i = e = 0 ; i < map_disks ; i++, e++) {
2048 while (e < max &&
2049 be32_to_cpu(ddf->phys->entries[e].refnum) == 0xffffffff)
2050 e++;
2051 if (i < info->array.raid_disks && e < max &&
2052 !(be16_to_cpu(ddf->phys->entries[e].state)
2053 & DDF_Failed))
2054 map[i] = 1;
2055 else
2056 map[i] = 0;
2057 }
2058 }
2059 }
2060
2061 /* size of name must be at least 17 bytes! */
2062 static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i)
2063 {
2064 int j;
2065 memcpy(name, ddf->virt->entries[i].name, 16);
2066 name[16] = 0;
2067 for(j = 0; j < 16; j++)
2068 if (name[j] == ' ')
2069 name[j] = 0;
2070 }
2071
2072 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
2073 {
2074 struct ddf_super *ddf = st->sb;
2075 struct vcl *vc = ddf->currentconf;
2076 int cd = ddf->currentdev;
2077 int n_prim;
2078 int j;
2079 struct dl *dl = NULL;
2080 int map_disks = info->array.raid_disks;
2081 __u32 *cptr;
2082 struct vd_config *conf;
2083
2084 memset(info, 0, sizeof(*info));
2085 if (layout_ddf2md(&vc->conf, &info->array) == -1)
2086 return;
2087 info->array.md_minor = -1;
2088 cptr = (__u32 *)(vc->conf.guid + 16);
2089 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
2090 info->array.utime = DECADE + be32_to_cpu(vc->conf.timestamp);
2091 info->array.chunk_size = 512 << vc->conf.chunk_shift;
2092 info->custom_array_size = be64_to_cpu(vc->conf.array_blocks);
2093
2094 conf = &vc->conf;
2095 n_prim = be16_to_cpu(conf->prim_elmnt_count);
2096 if (conf->sec_elmnt_count > 1 && cd >= n_prim) {
2097 int ibvd = cd / n_prim - 1;
2098 cd %= n_prim;
2099 conf = vc->other_bvds[ibvd];
2100 }
2101
2102 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
2103 info->data_offset =
2104 be64_to_cpu(LBA_OFFSET(ddf, conf)[cd]);
2105 if (vc->block_sizes)
2106 info->component_size = vc->block_sizes[cd];
2107 else
2108 info->component_size = be64_to_cpu(conf->blocks);
2109
2110 for (dl = ddf->dlist; dl ; dl = dl->next)
2111 if (be32_eq(dl->disk.refnum, conf->phys_refnum[cd]))
2112 break;
2113 }
2114
2115 info->disk.major = 0;
2116 info->disk.minor = 0;
2117 info->disk.state = 0;
2118 if (dl && dl->pdnum >= 0) {
2119 info->disk.major = dl->major;
2120 info->disk.minor = dl->minor;
2121 info->disk.raid_disk = cd + conf->sec_elmnt_seq
2122 * be16_to_cpu(conf->prim_elmnt_count);
2123 info->disk.number = dl->pdnum;
2124 info->disk.state = 0;
2125 if (info->disk.number >= 0 &&
2126 (be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Online) &&
2127 !(be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Failed))
2128 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2129 info->events = be32_to_cpu(ddf->active->seq);
2130 }
2131
2132 info->container_member = ddf->currentconf->vcnum;
2133
2134 info->recovery_start = MaxSector;
2135 info->resync_start = 0;
2136 info->reshape_active = 0;
2137 info->recovery_blocked = 0;
2138 if (!(ddf->virt->entries[info->container_member].state
2139 & DDF_state_inconsistent) &&
2140 (ddf->virt->entries[info->container_member].init_state
2141 & DDF_initstate_mask)
2142 == DDF_init_full)
2143 info->resync_start = MaxSector;
2144
2145 uuid_from_super_ddf(st, info->uuid);
2146
2147 info->array.major_version = -1;
2148 info->array.minor_version = -2;
2149 sprintf(info->text_version, "/%s/%d",
2150 st->container_devnm,
2151 info->container_member);
2152 info->safe_mode_delay = DDF_SAFE_MODE_DELAY;
2153
2154 _ddf_array_name(info->name, ddf, info->container_member);
2155
2156 if (map)
2157 for (j = 0; j < map_disks; j++) {
2158 map[j] = 0;
2159 if (j < info->array.raid_disks) {
2160 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
2161 if (i >= 0 &&
2162 (be16_to_cpu(ddf->phys->entries[i].state)
2163 & DDF_Online) &&
2164 !(be16_to_cpu(ddf->phys->entries[i].state)
2165 & DDF_Failed))
2166 map[i] = 1;
2167 }
2168 }
2169 }
2170
2171 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
2172 char *update,
2173 char *devname, int verbose,
2174 int uuid_set, char *homehost)
2175 {
2176 /* For 'assemble' and 'force' we need to return non-zero if any
2177 * change was made. For others, the return value is ignored.
2178 * Update options are:
2179 * force-one : This device looks a bit old but needs to be included,
2180 * update age info appropriately.
2181 * assemble: clear any 'faulty' flag to allow this device to
2182 * be assembled.
2183 * force-array: Array is degraded but being forced, mark it clean
2184 * if that will be needed to assemble it.
2185 *
2186 * newdev: not used ????
2187 * grow: Array has gained a new device - this is currently for
2188 * linear only
2189 * resync: mark as dirty so a resync will happen.
2190 * uuid: Change the uuid of the array to match what is given
2191 * homehost: update the recorded homehost
2192 * name: update the name - preserving the homehost
2193 * _reshape_progress: record new reshape_progress position.
2194 *
2195 * Following are not relevant for this version:
2196 * sparc2.2 : update from old dodgey metadata
2197 * super-minor: change the preferred_minor number
2198 * summaries: update redundant counters.
2199 */
2200 int rv = 0;
2201 // struct ddf_super *ddf = st->sb;
2202 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
2203 // struct virtual_entry *ve = find_ve(ddf);
2204
2205 /* we don't need to handle "force-*" or "assemble" as
2206 * there is no need to 'trick' the kernel. When the metadata is
2207 * first updated to activate the array, all the implied modifications
2208 * will just happen.
2209 */
2210
2211 if (strcmp(update, "grow") == 0) {
2212 /* FIXME */
2213 } else if (strcmp(update, "resync") == 0) {
2214 // info->resync_checkpoint = 0;
2215 } else if (strcmp(update, "homehost") == 0) {
2216 /* homehost is stored in controller->vendor_data,
2217 * or it is when we are the vendor
2218 */
2219 // if (info->vendor_is_local)
2220 // strcpy(ddf->controller.vendor_data, homehost);
2221 rv = -1;
2222 } else if (strcmp(update, "name") == 0) {
2223 /* name is stored in virtual_entry->name */
2224 // memset(ve->name, ' ', 16);
2225 // strncpy(ve->name, info->name, 16);
2226 rv = -1;
2227 } else if (strcmp(update, "_reshape_progress") == 0) {
2228 /* We don't support reshape yet */
2229 } else if (strcmp(update, "assemble") == 0 ) {
2230 /* Do nothing, just succeed */
2231 rv = 0;
2232 } else
2233 rv = -1;
2234
2235 // update_all_csum(ddf);
2236
2237 return rv;
2238 }
2239
2240 static void make_header_guid(char *guid)
2241 {
2242 be32 stamp;
2243 /* Create a DDF Header of Virtual Disk GUID */
2244
2245 /* 24 bytes of fiction required.
2246 * first 8 are a 'vendor-id' - "Linux-MD"
2247 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
2248 * Remaining 8 random number plus timestamp
2249 */
2250 memcpy(guid, T10, sizeof(T10));
2251 stamp = cpu_to_be32(0xdeadbeef);
2252 memcpy(guid+8, &stamp, 4);
2253 stamp = cpu_to_be32(0);
2254 memcpy(guid+12, &stamp, 4);
2255 stamp = cpu_to_be32(time(0) - DECADE);
2256 memcpy(guid+16, &stamp, 4);
2257 stamp._v32 = random32();
2258 memcpy(guid+20, &stamp, 4);
2259 }
2260
2261 static unsigned int find_unused_vde(const struct ddf_super *ddf)
2262 {
2263 unsigned int i;
2264 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
2265 if (all_ff(ddf->virt->entries[i].guid))
2266 return i;
2267 }
2268 return DDF_NOTFOUND;
2269 }
2270
2271 static unsigned int find_vde_by_name(const struct ddf_super *ddf,
2272 const char *name)
2273 {
2274 unsigned int i;
2275 if (name == NULL)
2276 return DDF_NOTFOUND;
2277 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
2278 if (all_ff(ddf->virt->entries[i].guid))
2279 continue;
2280 if (!strncmp(name, ddf->virt->entries[i].name,
2281 sizeof(ddf->virt->entries[i].name)))
2282 return i;
2283 }
2284 return DDF_NOTFOUND;
2285 }
2286
2287 #ifndef MDASSEMBLE
2288 static unsigned int find_vde_by_guid(const struct ddf_super *ddf,
2289 const char *guid)
2290 {
2291 unsigned int i;
2292 if (guid == NULL || all_ff(guid))
2293 return DDF_NOTFOUND;
2294 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++)
2295 if (!memcmp(ddf->virt->entries[i].guid, guid, DDF_GUID_LEN))
2296 return i;
2297 return DDF_NOTFOUND;
2298 }
2299 #endif
2300
2301 static int init_super_ddf(struct supertype *st,
2302 mdu_array_info_t *info,
2303 unsigned long long size, char *name, char *homehost,
2304 int *uuid, unsigned long long data_offset)
2305 {
2306 /* This is primarily called by Create when creating a new array.
2307 * We will then get add_to_super called for each component, and then
2308 * write_init_super called to write it out to each device.
2309 * For DDF, Create can create on fresh devices or on a pre-existing
2310 * array.
2311 * To create on a pre-existing array a different method will be called.
2312 * This one is just for fresh drives.
2313 *
2314 * We need to create the entire 'ddf' structure which includes:
2315 * DDF headers - these are easy.
2316 * Controller data - a Sector describing this controller .. not that
2317 * this is a controller exactly.
2318 * Physical Disk Record - one entry per device, so
2319 * leave plenty of space.
2320 * Virtual Disk Records - again, just leave plenty of space.
2321 * This just lists VDs, doesn't give details.
2322 * Config records - describe the VDs that use this disk
2323 * DiskData - describes 'this' device.
2324 * BadBlockManagement - empty
2325 * Diag Space - empty
2326 * Vendor Logs - Could we put bitmaps here?
2327 *
2328 */
2329 struct ddf_super *ddf;
2330 char hostname[17];
2331 int hostlen;
2332 int max_phys_disks, max_virt_disks;
2333 unsigned long long sector;
2334 int clen;
2335 int i;
2336 int pdsize, vdsize;
2337 struct phys_disk *pd;
2338 struct virtual_disk *vd;
2339
2340 if (st->sb)
2341 return init_super_ddf_bvd(st, info, size, name, homehost, uuid,
2342 data_offset);
2343
2344 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
2345 pr_err("%s could not allocate superblock\n", __func__);
2346 return 0;
2347 }
2348 memset(ddf, 0, sizeof(*ddf));
2349 st->sb = ddf;
2350
2351 if (info == NULL) {
2352 /* zeroing superblock */
2353 return 0;
2354 }
2355
2356 /* At least 32MB *must* be reserved for the ddf. So let's just
2357 * start 32MB from the end, and put the primary header there.
2358 * Don't do secondary for now.
2359 * We don't know exactly where that will be yet as it could be
2360 * different on each device. So just set up the lengths.
2361 */
2362
2363 ddf->anchor.magic = DDF_HEADER_MAGIC;
2364 make_header_guid(ddf->anchor.guid);
2365
2366 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
2367 ddf->anchor.seq = cpu_to_be32(1);
2368 ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
2369 ddf->anchor.openflag = 0xFF;
2370 ddf->anchor.foreignflag = 0;
2371 ddf->anchor.enforcegroups = 0; /* Is this best?? */
2372 ddf->anchor.pad0 = 0xff;
2373 memset(ddf->anchor.pad1, 0xff, 12);
2374 memset(ddf->anchor.header_ext, 0xff, 32);
2375 ddf->anchor.primary_lba = cpu_to_be64(~(__u64)0);
2376 ddf->anchor.secondary_lba = cpu_to_be64(~(__u64)0);
2377 ddf->anchor.type = DDF_HEADER_ANCHOR;
2378 memset(ddf->anchor.pad2, 0xff, 3);
2379 ddf->anchor.workspace_len = cpu_to_be32(32768); /* Must be reserved */
2380 /* Put this at bottom of 32M reserved.. */
2381 ddf->anchor.workspace_lba = cpu_to_be64(~(__u64)0);
2382 max_phys_disks = 1023; /* Should be enough, 4095 is also allowed */
2383 ddf->anchor.max_pd_entries = cpu_to_be16(max_phys_disks);
2384 max_virt_disks = 255; /* 15, 63, 255, 1024, 4095 are all allowed */
2385 ddf->anchor.max_vd_entries = cpu_to_be16(max_virt_disks);
2386 ddf->max_part = 64;
2387 ddf->anchor.max_partitions = cpu_to_be16(ddf->max_part);
2388 ddf->mppe = 256; /* 16, 64, 256, 1024, 4096 are all allowed */
2389 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
2390 ddf->anchor.config_record_len = cpu_to_be16(ddf->conf_rec_len);
2391 ddf->anchor.max_primary_element_entries = cpu_to_be16(ddf->mppe);
2392 memset(ddf->anchor.pad3, 0xff, 54);
2393 /* Controller section is one sector long immediately
2394 * after the ddf header */
2395 sector = 1;
2396 ddf->anchor.controller_section_offset = cpu_to_be32(sector);
2397 ddf->anchor.controller_section_length = cpu_to_be32(1);
2398 sector += 1;
2399
2400 /* phys is 8 sectors after that */
2401 pdsize = ROUND_UP(sizeof(struct phys_disk) +
2402 sizeof(struct phys_disk_entry)*max_phys_disks,
2403 512);
2404 switch(pdsize/512) {
2405 case 2: case 8: case 32: case 128: case 512: break;
2406 default: abort();
2407 }
2408 ddf->anchor.phys_section_offset = cpu_to_be32(sector);
2409 ddf->anchor.phys_section_length =
2410 cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
2411 sector += pdsize/512;
2412
2413 /* virt is another 32 sectors */
2414 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
2415 sizeof(struct virtual_entry) * max_virt_disks,
2416 512);
2417 switch(vdsize/512) {
2418 case 2: case 8: case 32: case 128: case 512: break;
2419 default: abort();
2420 }
2421 ddf->anchor.virt_section_offset = cpu_to_be32(sector);
2422 ddf->anchor.virt_section_length =
2423 cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
2424 sector += vdsize/512;
2425
2426 clen = ddf->conf_rec_len * (ddf->max_part+1);
2427 ddf->anchor.config_section_offset = cpu_to_be32(sector);
2428 ddf->anchor.config_section_length = cpu_to_be32(clen);
2429 sector += clen;
2430
2431 ddf->anchor.data_section_offset = cpu_to_be32(sector);
2432 ddf->anchor.data_section_length = cpu_to_be32(1);
2433 sector += 1;
2434
2435 ddf->anchor.bbm_section_length = cpu_to_be32(0);
2436 ddf->anchor.bbm_section_offset = cpu_to_be32(0xFFFFFFFF);
2437 ddf->anchor.diag_space_length = cpu_to_be32(0);
2438 ddf->anchor.diag_space_offset = cpu_to_be32(0xFFFFFFFF);
2439 ddf->anchor.vendor_length = cpu_to_be32(0);
2440 ddf->anchor.vendor_offset = cpu_to_be32(0xFFFFFFFF);
2441
2442 memset(ddf->anchor.pad4, 0xff, 256);
2443
2444 memcpy(&ddf->primary, &ddf->anchor, 512);
2445 memcpy(&ddf->secondary, &ddf->anchor, 512);
2446
2447 ddf->primary.openflag = 1; /* I guess.. */
2448 ddf->primary.type = DDF_HEADER_PRIMARY;
2449
2450 ddf->secondary.openflag = 1; /* I guess.. */
2451 ddf->secondary.type = DDF_HEADER_SECONDARY;
2452
2453 ddf->active = &ddf->primary;
2454
2455 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
2456
2457 /* 24 more bytes of fiction required.
2458 * first 8 are a 'vendor-id' - "Linux-MD"
2459 * Remaining 16 are serial number.... maybe a hostname would do?
2460 */
2461 memcpy(ddf->controller.guid, T10, sizeof(T10));
2462 gethostname(hostname, sizeof(hostname));
2463 hostname[sizeof(hostname) - 1] = 0;
2464 hostlen = strlen(hostname);
2465 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
2466 for (i = strlen(T10) ; i+hostlen < 24; i++)
2467 ddf->controller.guid[i] = ' ';
2468
2469 ddf->controller.type.vendor_id = cpu_to_be16(0xDEAD);
2470 ddf->controller.type.device_id = cpu_to_be16(0xBEEF);
2471 ddf->controller.type.sub_vendor_id = cpu_to_be16(0);
2472 ddf->controller.type.sub_device_id = cpu_to_be16(0);
2473 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
2474 memset(ddf->controller.pad, 0xff, 8);
2475 memset(ddf->controller.vendor_data, 0xff, 448);
2476 if (homehost && strlen(homehost) < 440)
2477 strcpy((char*)ddf->controller.vendor_data, homehost);
2478
2479 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
2480 pr_err("%s could not allocate pd\n", __func__);
2481 return 0;
2482 }
2483 ddf->phys = pd;
2484 ddf->pdsize = pdsize;
2485
2486 memset(pd, 0xff, pdsize);
2487 memset(pd, 0, sizeof(*pd));
2488 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2489 pd->used_pdes = cpu_to_be16(0);
2490 pd->max_pdes = cpu_to_be16(max_phys_disks);
2491 memset(pd->pad, 0xff, 52);
2492 for (i = 0; i < max_phys_disks; i++)
2493 memset(pd->entries[i].guid, 0xff, DDF_GUID_LEN);
2494
2495 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
2496 pr_err("%s could not allocate vd\n", __func__);
2497 return 0;
2498 }
2499 ddf->virt = vd;
2500 ddf->vdsize = vdsize;
2501 memset(vd, 0, vdsize);
2502 vd->magic = DDF_VIRT_RECORDS_MAGIC;
2503 vd->populated_vdes = cpu_to_be16(0);
2504 vd->max_vdes = cpu_to_be16(max_virt_disks);
2505 memset(vd->pad, 0xff, 52);
2506
2507 for (i=0; i<max_virt_disks; i++)
2508 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
2509
2510 st->sb = ddf;
2511 ddf_set_updates_pending(ddf, NULL);
2512 return 1;
2513 }
2514
2515 static int chunk_to_shift(int chunksize)
2516 {
2517 return ffs(chunksize/512)-1;
2518 }
2519
2520 #ifndef MDASSEMBLE
2521 struct extent {
2522 unsigned long long start, size;
2523 };
2524 static int cmp_extent(const void *av, const void *bv)
2525 {
2526 const struct extent *a = av;
2527 const struct extent *b = bv;
2528 if (a->start < b->start)
2529 return -1;
2530 if (a->start > b->start)
2531 return 1;
2532 return 0;
2533 }
2534
2535 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
2536 {
2537 /* Find a list of used extents on the given physical device
2538 * (dnum) of the given ddf.
2539 * Return a malloced array of 'struct extent'
2540 */
2541 struct extent *rv;
2542 int n = 0;
2543 unsigned int i;
2544 __u16 state;
2545
2546 if (dl->pdnum < 0)
2547 return NULL;
2548 state = be16_to_cpu(ddf->phys->entries[dl->pdnum].state);
2549
2550 if ((state & (DDF_Online|DDF_Failed|DDF_Missing)) != DDF_Online)
2551 return NULL;
2552
2553 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
2554
2555 for (i = 0; i < ddf->max_part; i++) {
2556 const struct vd_config *bvd;
2557 unsigned int ibvd;
2558 struct vcl *v = dl->vlist[i];
2559 if (v == NULL ||
2560 get_pd_index_from_refnum(v, dl->disk.refnum, ddf->mppe,
2561 &bvd, &ibvd) == DDF_NOTFOUND)
2562 continue;
2563 rv[n].start = be64_to_cpu(LBA_OFFSET(ddf, bvd)[ibvd]);
2564 rv[n].size = be64_to_cpu(bvd->blocks);
2565 n++;
2566 }
2567 qsort(rv, n, sizeof(*rv), cmp_extent);
2568
2569 rv[n].start = be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
2570 rv[n].size = 0;
2571 return rv;
2572 }
2573
2574 static unsigned long long find_space(
2575 struct ddf_super *ddf, struct dl *dl,
2576 unsigned long long data_offset,
2577 unsigned long long *size)
2578 {
2579 /* Find if the requested amount of space is available.
2580 * If it is, return start.
2581 * If not, set *size to largest space.
2582 * If data_offset != INVALID_SECTORS, then the space must start
2583 * at this location.
2584 */
2585 struct extent *e = get_extents(ddf, dl);
2586 int i = 0;
2587 unsigned long long pos = 0;
2588 unsigned long long max_size = 0;
2589
2590 if (!e) {
2591 *size = 0;
2592 return INVALID_SECTORS;
2593 }
2594 do {
2595 unsigned long long esize = e[i].start - pos;
2596 if (data_offset != INVALID_SECTORS &&
2597 pos <= data_offset &&
2598 e[i].start > data_offset) {
2599 pos = data_offset;
2600 esize = e[i].start - pos;
2601 }
2602 if (data_offset != INVALID_SECTORS &&
2603 pos != data_offset) {
2604 i++;
2605 continue;
2606 }
2607 if (esize >= *size) {
2608 /* Found! */
2609 free(e);
2610 return pos;
2611 }
2612 if (esize > max_size)
2613 max_size = esize;
2614 pos = e[i].start + e[i].size;
2615 i++;
2616 } while (e[i-1].size);
2617 *size = max_size;
2618 free(e);
2619 return INVALID_SECTORS;
2620 }
2621 #endif
2622
2623 static int init_super_ddf_bvd(struct supertype *st,
2624 mdu_array_info_t *info,
2625 unsigned long long size,
2626 char *name, char *homehost,
2627 int *uuid, unsigned long long data_offset)
2628 {
2629 /* We are creating a BVD inside a pre-existing container.
2630 * so st->sb is already set.
2631 * We need to create a new vd_config and a new virtual_entry
2632 */
2633 struct ddf_super *ddf = st->sb;
2634 unsigned int venum, i;
2635 struct virtual_entry *ve;
2636 struct vcl *vcl;
2637 struct vd_config *vc;
2638
2639 if (find_vde_by_name(ddf, name) != DDF_NOTFOUND) {
2640 pr_err("This ddf already has an array called %s\n", name);
2641 return 0;
2642 }
2643 venum = find_unused_vde(ddf);
2644 if (venum == DDF_NOTFOUND) {
2645 pr_err("Cannot find spare slot for virtual disk\n");
2646 return 0;
2647 }
2648 ve = &ddf->virt->entries[venum];
2649
2650 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
2651 * timestamp, random number
2652 */
2653 make_header_guid(ve->guid);
2654 ve->unit = cpu_to_be16(info->md_minor);
2655 ve->pad0 = 0xFFFF;
2656 ve->guid_crc._v16 = crc32(0, (unsigned char *)ddf->anchor.guid,
2657 DDF_GUID_LEN);
2658 ve->type = cpu_to_be16(0);
2659 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2660 if (info->state & 1) /* clean */
2661 ve->init_state = DDF_init_full;
2662 else
2663 ve->init_state = DDF_init_not;
2664
2665 memset(ve->pad1, 0xff, 14);
2666 memset(ve->name, ' ', 16);
2667 if (name)
2668 strncpy(ve->name, name, 16);
2669 ddf->virt->populated_vdes =
2670 cpu_to_be16(be16_to_cpu(ddf->virt->populated_vdes)+1);
2671
2672 /* Now create a new vd_config */
2673 if (posix_memalign((void**)&vcl, 512,
2674 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2675 pr_err("%s could not allocate vd_config\n", __func__);
2676 return 0;
2677 }
2678 vcl->vcnum = venum;
2679 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2680 vc = &vcl->conf;
2681
2682 vc->magic = DDF_VD_CONF_MAGIC;
2683 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2684 vc->timestamp = cpu_to_be32(time(0)-DECADE);
2685 vc->seqnum = cpu_to_be32(1);
2686 memset(vc->pad0, 0xff, 24);
2687 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2688 if (layout_md2ddf(info, vc) == -1 ||
2689 be16_to_cpu(vc->prim_elmnt_count) > ddf->mppe) {
2690 pr_err("%s: unsupported RAID level/layout %d/%d with %d disks\n",
2691 __func__, info->level, info->layout, info->raid_disks);
2692 free(vcl);
2693 return 0;
2694 }
2695 vc->sec_elmnt_seq = 0;
2696 if (alloc_other_bvds(ddf, vcl) != 0) {
2697 pr_err("%s could not allocate other bvds\n",
2698 __func__);
2699 free(vcl);
2700 return 0;
2701 }
2702 vc->blocks = cpu_to_be64(info->size * 2);
2703 vc->array_blocks = cpu_to_be64(
2704 calc_array_size(info->level, info->raid_disks, info->layout,
2705 info->chunk_size, info->size*2));
2706 memset(vc->pad1, 0xff, 8);
2707 vc->spare_refs[0] = cpu_to_be32(0xffffffff);
2708 vc->spare_refs[1] = cpu_to_be32(0xffffffff);
2709 vc->spare_refs[2] = cpu_to_be32(0xffffffff);
2710 vc->spare_refs[3] = cpu_to_be32(0xffffffff);
2711 vc->spare_refs[4] = cpu_to_be32(0xffffffff);
2712 vc->spare_refs[5] = cpu_to_be32(0xffffffff);
2713 vc->spare_refs[6] = cpu_to_be32(0xffffffff);
2714 vc->spare_refs[7] = cpu_to_be32(0xffffffff);
2715 memset(vc->cache_pol, 0, 8);
2716 vc->bg_rate = 0x80;
2717 memset(vc->pad2, 0xff, 3);
2718 memset(vc->pad3, 0xff, 52);
2719 memset(vc->pad4, 0xff, 192);
2720 memset(vc->v0, 0xff, 32);
2721 memset(vc->v1, 0xff, 32);
2722 memset(vc->v2, 0xff, 16);
2723 memset(vc->v3, 0xff, 16);
2724 memset(vc->vendor, 0xff, 32);
2725
2726 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2727 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2728
2729 for (i = 1; i < vc->sec_elmnt_count; i++) {
2730 memcpy(vcl->other_bvds[i-1], vc, ddf->conf_rec_len * 512);
2731 vcl->other_bvds[i-1]->sec_elmnt_seq = i;
2732 }
2733
2734 vcl->next = ddf->conflist;
2735 ddf->conflist = vcl;
2736 ddf->currentconf = vcl;
2737 ddf_set_updates_pending(ddf, NULL);
2738 return 1;
2739 }
2740
2741 #ifndef MDASSEMBLE
2742 static void add_to_super_ddf_bvd(struct supertype *st,
2743 mdu_disk_info_t *dk, int fd, char *devname,
2744 unsigned long long data_offset)
2745 {
2746 /* fd and devname identify a device within the ddf container (st).
2747 * dk identifies a location in the new BVD.
2748 * We need to find suitable free space in that device and update
2749 * the phys_refnum and lba_offset for the newly created vd_config.
2750 * We might also want to update the type in the phys_disk
2751 * section.
2752 *
2753 * Alternately: fd == -1 and we have already chosen which device to
2754 * use and recorded in dlist->raid_disk;
2755 */
2756 struct dl *dl;
2757 struct ddf_super *ddf = st->sb;
2758 struct vd_config *vc;
2759 unsigned int i;
2760 unsigned long long blocks, pos;
2761 unsigned int raid_disk = dk->raid_disk;
2762
2763 if (fd == -1) {
2764 for (dl = ddf->dlist; dl ; dl = dl->next)
2765 if (dl->raiddisk == dk->raid_disk)
2766 break;
2767 } else {
2768 for (dl = ddf->dlist; dl ; dl = dl->next)
2769 if (dl->major == dk->major &&
2770 dl->minor == dk->minor)
2771 break;
2772 }
2773 if (!dl || dl->pdnum < 0 || ! (dk->state & (1<<MD_DISK_SYNC)))
2774 return;
2775
2776 vc = &ddf->currentconf->conf;
2777 if (vc->sec_elmnt_count > 1) {
2778 unsigned int n = be16_to_cpu(vc->prim_elmnt_count);
2779 if (raid_disk >= n)
2780 vc = ddf->currentconf->other_bvds[raid_disk / n - 1];
2781 raid_disk %= n;
2782 }
2783
2784 blocks = be64_to_cpu(vc->blocks);
2785 if (ddf->currentconf->block_sizes)
2786 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2787
2788 pos = find_space(ddf, dl, data_offset, &blocks);
2789 if (pos == INVALID_SECTORS)
2790 return;
2791
2792 ddf->currentdev = dk->raid_disk;
2793 vc->phys_refnum[raid_disk] = dl->disk.refnum;
2794 LBA_OFFSET(ddf, vc)[raid_disk] = cpu_to_be64(pos);
2795
2796 for (i = 0; i < ddf->max_part ; i++)
2797 if (dl->vlist[i] == NULL)
2798 break;
2799 if (i == ddf->max_part)
2800 return;
2801 dl->vlist[i] = ddf->currentconf;
2802
2803 if (fd >= 0)
2804 dl->fd = fd;
2805 if (devname)
2806 dl->devname = devname;
2807
2808 /* Check if we can mark array as optimal yet */
2809 i = ddf->currentconf->vcnum;
2810 ddf->virt->entries[i].state =
2811 (ddf->virt->entries[i].state & ~DDF_state_mask)
2812 | get_svd_state(ddf, ddf->currentconf);
2813 be16_clear(ddf->phys->entries[dl->pdnum].type,
2814 cpu_to_be16(DDF_Global_Spare));
2815 be16_set(ddf->phys->entries[dl->pdnum].type,
2816 cpu_to_be16(DDF_Active_in_VD));
2817 dprintf("%s: added disk %d/%08x to VD %d/%s as disk %d\n",
2818 __func__, dl->pdnum, be32_to_cpu(dl->disk.refnum),
2819 ddf->currentconf->vcnum, guid_str(vc->guid),
2820 dk->raid_disk);
2821 ddf_set_updates_pending(ddf, vc);
2822 }
2823
2824 static unsigned int find_unused_pde(const struct ddf_super *ddf)
2825 {
2826 unsigned int i;
2827 for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++) {
2828 if (all_ff(ddf->phys->entries[i].guid))
2829 return i;
2830 }
2831 return DDF_NOTFOUND;
2832 }
2833
2834 static void _set_config_size(struct phys_disk_entry *pde, const struct dl *dl)
2835 {
2836 __u64 cfs, t;
2837 cfs = min(dl->size - 32*1024*2ULL, be64_to_cpu(dl->primary_lba));
2838 t = be64_to_cpu(dl->secondary_lba);
2839 if (t != ~(__u64)0)
2840 cfs = min(cfs, t);
2841 /*
2842 * Some vendor DDF structures interpret workspace_lba
2843 * very differently than we do: Make a sanity check on the value.
2844 */
2845 t = be64_to_cpu(dl->workspace_lba);
2846 if (t < cfs) {
2847 __u64 wsp = cfs - t;
2848 if (wsp > 1024*1024*2ULL && wsp > dl->size / 16) {
2849 pr_err("%s: %x:%x: workspace size 0x%llx too big, ignoring\n",
2850 __func__, dl->major, dl->minor,
2851 (unsigned long long)wsp);
2852 } else
2853 cfs = t;
2854 }
2855 pde->config_size = cpu_to_be64(cfs);
2856 dprintf("%s: %x:%x config_size %llx, DDF structure is %llx blocks\n",
2857 __func__, dl->major, dl->minor,
2858 (unsigned long long)cfs, (unsigned long long)(dl->size-cfs));
2859 }
2860
2861 /* Add a device to a container, either while creating it or while
2862 * expanding a pre-existing container
2863 */
2864 static int add_to_super_ddf(struct supertype *st,
2865 mdu_disk_info_t *dk, int fd, char *devname,
2866 unsigned long long data_offset)
2867 {
2868 struct ddf_super *ddf = st->sb;
2869 struct dl *dd;
2870 time_t now;
2871 struct tm *tm;
2872 unsigned long long size;
2873 struct phys_disk_entry *pde;
2874 unsigned int n, i;
2875 struct stat stb;
2876 __u32 *tptr;
2877
2878 if (ddf->currentconf) {
2879 add_to_super_ddf_bvd(st, dk, fd, devname, data_offset);
2880 return 0;
2881 }
2882
2883 /* This is device numbered dk->number. We need to create
2884 * a phys_disk entry and a more detailed disk_data entry.
2885 */
2886 fstat(fd, &stb);
2887 n = find_unused_pde(ddf);
2888 if (n == DDF_NOTFOUND) {
2889 pr_err("%s: No free slot in array, cannot add disk\n",
2890 __func__);
2891 return 1;
2892 }
2893 pde = &ddf->phys->entries[n];
2894 get_dev_size(fd, NULL, &size);
2895 if (size <= 32*1024*1024) {
2896 pr_err("%s: device size must be at least 32MB\n",
2897 __func__);
2898 return 1;
2899 }
2900 size >>= 9;
2901
2902 if (posix_memalign((void**)&dd, 512,
2903 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2904 pr_err("%s could allocate buffer for new disk, aborting\n",
2905 __func__);
2906 return 1;
2907 }
2908 dd->major = major(stb.st_rdev);
2909 dd->minor = minor(stb.st_rdev);
2910 dd->devname = devname;
2911 dd->fd = fd;
2912 dd->spare = NULL;
2913
2914 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2915 now = time(0);
2916 tm = localtime(&now);
2917 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2918 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2919 tptr = (__u32 *)(dd->disk.guid + 16);
2920 *tptr++ = random32();
2921 *tptr = random32();
2922
2923 do {
2924 /* Cannot be bothered finding a CRC of some irrelevant details*/
2925 dd->disk.refnum._v32 = random32();
2926 for (i = be16_to_cpu(ddf->active->max_pd_entries);
2927 i > 0; i--)
2928 if (be32_eq(ddf->phys->entries[i-1].refnum,
2929 dd->disk.refnum))
2930 break;
2931 } while (i > 0);
2932
2933 dd->disk.forced_ref = 1;
2934 dd->disk.forced_guid = 1;
2935 memset(dd->disk.vendor, ' ', 32);
2936 memcpy(dd->disk.vendor, "Linux", 5);
2937 memset(dd->disk.pad, 0xff, 442);
2938 for (i = 0; i < ddf->max_part ; i++)
2939 dd->vlist[i] = NULL;
2940
2941 dd->pdnum = n;
2942
2943 if (st->update_tail) {
2944 int len = (sizeof(struct phys_disk) +
2945 sizeof(struct phys_disk_entry));
2946 struct phys_disk *pd;
2947
2948 pd = xmalloc(len);
2949 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2950 pd->used_pdes = cpu_to_be16(n);
2951 pde = &pd->entries[0];
2952 dd->mdupdate = pd;
2953 } else
2954 ddf->phys->used_pdes = cpu_to_be16(
2955 1 + be16_to_cpu(ddf->phys->used_pdes));
2956
2957 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2958 pde->refnum = dd->disk.refnum;
2959 pde->type = cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2960 pde->state = cpu_to_be16(DDF_Online);
2961 dd->size = size;
2962 /*
2963 * If there is already a device in dlist, try to reserve the same
2964 * amount of workspace. Otherwise, use 32MB.
2965 * We checked disk size above already.
2966 */
2967 #define __calc_lba(new, old, lba, mb) do { \
2968 unsigned long long dif; \
2969 if ((old) != NULL) \
2970 dif = (old)->size - be64_to_cpu((old)->lba); \
2971 else \
2972 dif = (new)->size; \
2973 if ((new)->size > dif) \
2974 (new)->lba = cpu_to_be64((new)->size - dif); \
2975 else \
2976 (new)->lba = cpu_to_be64((new)->size - (mb*1024*2)); \
2977 } while (0)
2978 __calc_lba(dd, ddf->dlist, workspace_lba, 32);
2979 __calc_lba(dd, ddf->dlist, primary_lba, 16);
2980 if (ddf->dlist == NULL ||
2981 be64_to_cpu(ddf->dlist->secondary_lba) != ~(__u64)0)
2982 __calc_lba(dd, ddf->dlist, secondary_lba, 32);
2983 _set_config_size(pde, dd);
2984
2985 sprintf(pde->path, "%17.17s","Information: nil") ;
2986 memset(pde->pad, 0xff, 6);
2987
2988 if (st->update_tail) {
2989 dd->next = ddf->add_list;
2990 ddf->add_list = dd;
2991 } else {
2992 dd->next = ddf->dlist;
2993 ddf->dlist = dd;
2994 ddf_set_updates_pending(ddf, NULL);
2995 }
2996
2997 return 0;
2998 }
2999
3000 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
3001 {
3002 struct ddf_super *ddf = st->sb;
3003 struct dl *dl;
3004
3005 /* mdmon has noticed that this disk (dk->major/dk->minor) has
3006 * disappeared from the container.
3007 * We need to arrange that it disappears from the metadata and
3008 * internal data structures too.
3009 * Most of the work is done by ddf_process_update which edits
3010 * the metadata and closes the file handle and attaches the memory
3011 * where free_updates will free it.
3012 */
3013 for (dl = ddf->dlist; dl ; dl = dl->next)
3014 if (dl->major == dk->major &&
3015 dl->minor == dk->minor)
3016 break;
3017 if (!dl || dl->pdnum < 0)
3018 return -1;
3019
3020 if (st->update_tail) {
3021 int len = (sizeof(struct phys_disk) +
3022 sizeof(struct phys_disk_entry));
3023 struct phys_disk *pd;
3024
3025 pd = xmalloc(len);
3026 pd->magic = DDF_PHYS_RECORDS_MAGIC;
3027 pd->used_pdes = cpu_to_be16(dl->pdnum);
3028 pd->entries[0].state = cpu_to_be16(DDF_Missing);
3029 append_metadata_update(st, pd, len);
3030 }
3031 return 0;
3032 }
3033 #endif
3034
3035 /*
3036 * This is the write_init_super method for a ddf container. It is
3037 * called when creating a container or adding another device to a
3038 * container.
3039 */
3040
3041 static int __write_ddf_structure(struct dl *d, struct ddf_super *ddf, __u8 type)
3042 {
3043 unsigned long long sector;
3044 struct ddf_header *header;
3045 int fd, i, n_config, conf_size, buf_size;
3046 int ret = 0;
3047 char *conf;
3048
3049 fd = d->fd;
3050
3051 switch (type) {
3052 case DDF_HEADER_PRIMARY:
3053 header = &ddf->primary;
3054 sector = be64_to_cpu(header->primary_lba);
3055 break;
3056 case DDF_HEADER_SECONDARY:
3057 header = &ddf->secondary;
3058 sector = be64_to_cpu(header->secondary_lba);
3059 break;
3060 default:
3061 return 0;
3062 }
3063 if (sector == ~(__u64)0)
3064 return 0;
3065
3066 header->type = type;
3067 header->openflag = 1;
3068 header->crc = calc_crc(header, 512);
3069
3070 lseek64(fd, sector<<9, 0);
3071 if (write(fd, header, 512) < 0)
3072 goto out;
3073
3074 ddf->controller.crc = calc_crc(&ddf->controller, 512);
3075 if (write(fd, &ddf->controller, 512) < 0)
3076 goto out;
3077
3078 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
3079 if (write(fd, ddf->phys, ddf->pdsize) < 0)
3080 goto out;
3081 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
3082 if (write(fd, ddf->virt, ddf->vdsize) < 0)
3083 goto out;
3084
3085 /* Now write lots of config records. */
3086 n_config = ddf->max_part;
3087 conf_size = ddf->conf_rec_len * 512;
3088 conf = ddf->conf;
3089 buf_size = conf_size * (n_config + 1);
3090 if (!conf) {
3091 if (posix_memalign((void**)&conf, 512, buf_size) != 0)
3092 goto out;
3093 ddf->conf = conf;
3094 }
3095 for (i = 0 ; i <= n_config ; i++) {
3096 struct vcl *c;
3097 struct vd_config *vdc = NULL;
3098 if (i == n_config) {
3099 c = (struct vcl *)d->spare;
3100 if (c)
3101 vdc = &c->conf;
3102 } else {
3103 unsigned int dummy;
3104 c = d->vlist[i];
3105 if (c)
3106 get_pd_index_from_refnum(
3107 c, d->disk.refnum,
3108 ddf->mppe,
3109 (const struct vd_config **)&vdc,
3110 &dummy);
3111 }
3112 if (vdc) {
3113 dprintf("writing conf record %i on disk %08x for %s/%u\n",
3114 i, be32_to_cpu(d->disk.refnum),
3115 guid_str(vdc->guid),
3116 vdc->sec_elmnt_seq);
3117 vdc->crc = calc_crc(vdc, conf_size);
3118 memcpy(conf + i*conf_size, vdc, conf_size);
3119 } else
3120 memset(conf + i*conf_size, 0xff, conf_size);
3121 }
3122 if (write(fd, conf, buf_size) != buf_size)
3123 goto out;
3124
3125 d->disk.crc = calc_crc(&d->disk, 512);
3126 if (write(fd, &d->disk, 512) < 0)
3127 goto out;
3128
3129 ret = 1;
3130 out:
3131 header->openflag = 0;
3132 header->crc = calc_crc(header, 512);
3133
3134 lseek64(fd, sector<<9, 0);
3135 if (write(fd, header, 512) < 0)
3136 ret = 0;
3137
3138 return ret;
3139 }
3140
3141 static int _write_super_to_disk(struct ddf_super *ddf, struct dl *d)
3142 {
3143 unsigned long long size;
3144 int fd = d->fd;
3145 if (fd < 0)
3146 return 0;
3147
3148 /* We need to fill in the primary, (secondary) and workspace
3149 * lba's in the headers, set their checksums,
3150 * Also checksum phys, virt....
3151 *
3152 * Then write everything out, finally the anchor is written.
3153 */
3154 get_dev_size(fd, NULL, &size);
3155 size /= 512;
3156 memcpy(&ddf->anchor, ddf->active, 512);
3157 if (be64_to_cpu(d->workspace_lba) != 0ULL)
3158 ddf->anchor.workspace_lba = d->workspace_lba;
3159 else
3160 ddf->anchor.workspace_lba =
3161 cpu_to_be64(size - 32*1024*2);
3162 if (be64_to_cpu(d->primary_lba) != 0ULL)
3163 ddf->anchor.primary_lba = d->primary_lba;
3164 else
3165 ddf->anchor.primary_lba =
3166 cpu_to_be64(size - 16*1024*2);
3167 if (be64_to_cpu(d->secondary_lba) != 0ULL)
3168 ddf->anchor.secondary_lba = d->secondary_lba;
3169 else
3170 ddf->anchor.secondary_lba =
3171 cpu_to_be64(size - 32*1024*2);
3172 ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
3173 memcpy(&ddf->primary, &ddf->anchor, 512);
3174 memcpy(&ddf->secondary, &ddf->anchor, 512);
3175
3176 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
3177 ddf->anchor.seq = cpu_to_be32(0xFFFFFFFF); /* no sequencing in anchor */
3178 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
3179
3180 if (!__write_ddf_structure(d, ddf, DDF_HEADER_PRIMARY))
3181 return 0;
3182
3183 if (!__write_ddf_structure(d, ddf, DDF_HEADER_SECONDARY))
3184 return 0;
3185
3186 lseek64(fd, (size-1)*512, SEEK_SET);
3187 if (write(fd, &ddf->anchor, 512) < 0)
3188 return 0;
3189
3190 return 1;
3191 }
3192
3193 #ifndef MDASSEMBLE
3194 static int __write_init_super_ddf(struct supertype *st)
3195 {
3196 struct ddf_super *ddf = st->sb;
3197 struct dl *d;
3198 int attempts = 0;
3199 int successes = 0;
3200
3201 pr_state(ddf, __func__);
3202
3203 /* try to write updated metadata,
3204 * if we catch a failure move on to the next disk
3205 */
3206 for (d = ddf->dlist; d; d=d->next) {
3207 attempts++;
3208 successes += _write_super_to_disk(ddf, d);
3209 }
3210
3211 return attempts != successes;
3212 }
3213
3214 static int write_init_super_ddf(struct supertype *st)
3215 {
3216 struct ddf_super *ddf = st->sb;
3217 struct vcl *currentconf = ddf->currentconf;
3218
3219 /* We are done with currentconf - reset it so st refers to the container */
3220 ddf->currentconf = NULL;
3221
3222 if (st->update_tail) {
3223 /* queue the virtual_disk and vd_config as metadata updates */
3224 struct virtual_disk *vd;
3225 struct vd_config *vc;
3226 int len, tlen;
3227 unsigned int i;
3228
3229 if (!currentconf) {
3230 /* Must be adding a physical disk to the container */
3231 int len = (sizeof(struct phys_disk) +
3232 sizeof(struct phys_disk_entry));
3233
3234 /* adding a disk to the container. */
3235 if (!ddf->add_list)
3236 return 0;
3237
3238 append_metadata_update(st, ddf->add_list->mdupdate, len);
3239 ddf->add_list->mdupdate = NULL;
3240 return 0;
3241 }
3242
3243 /* Newly created VD */
3244
3245 /* First the virtual disk. We have a slightly fake header */
3246 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
3247 vd = xmalloc(len);
3248 *vd = *ddf->virt;
3249 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
3250 vd->populated_vdes = cpu_to_be16(currentconf->vcnum);
3251 append_metadata_update(st, vd, len);
3252
3253 /* Then the vd_config */
3254 len = ddf->conf_rec_len * 512;
3255 tlen = len * currentconf->conf.sec_elmnt_count;
3256 vc = xmalloc(tlen);
3257 memcpy(vc, &currentconf->conf, len);
3258 for (i = 1; i < currentconf->conf.sec_elmnt_count; i++)
3259 memcpy((char *)vc + i*len, currentconf->other_bvds[i-1],
3260 len);
3261 append_metadata_update(st, vc, tlen);
3262
3263 return 0;
3264 } else {
3265 struct dl *d;
3266 if (!currentconf)
3267 for (d = ddf->dlist; d; d=d->next)
3268 while (Kill(d->devname, NULL, 0, -1, 1) == 0);
3269 /* Note: we don't close the fd's now, but a subsequent
3270 * ->free_super() will
3271 */
3272 return __write_init_super_ddf(st);
3273 }
3274 }
3275
3276 #endif
3277
3278 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize,
3279 unsigned long long data_offset)
3280 {
3281 /* We must reserve the last 32Meg */
3282 if (devsize <= 32*1024*2)
3283 return 0;
3284 return devsize - 32*1024*2;
3285 }
3286
3287 #ifndef MDASSEMBLE
3288
3289 static int reserve_space(struct supertype *st, int raiddisks,
3290 unsigned long long size, int chunk,
3291 unsigned long long data_offset,
3292 unsigned long long *freesize)
3293 {
3294 /* Find 'raiddisks' spare extents at least 'size' big (but
3295 * only caring about multiples of 'chunk') and remember
3296 * them. If size==0, find the largest size possible.
3297 * Report available size in *freesize
3298 * If space cannot be found, fail.
3299 */
3300 struct dl *dl;
3301 struct ddf_super *ddf = st->sb;
3302 int cnt = 0;
3303
3304 for (dl = ddf->dlist; dl ; dl=dl->next) {
3305 dl->raiddisk = -1;
3306 dl->esize = 0;
3307 }
3308 /* Now find largest extent on each device */
3309 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3310 unsigned long long minsize = ULLONG_MAX;
3311
3312 find_space(ddf, dl, data_offset, &minsize);
3313 if (minsize >= size && minsize >= (unsigned)chunk) {
3314 cnt++;
3315 dl->esize = minsize;
3316 }
3317 }
3318 if (cnt < raiddisks) {
3319 pr_err("not enough devices with space to create array.\n");
3320 return 0; /* No enough free spaces large enough */
3321 }
3322 if (size == 0) {
3323 /* choose the largest size of which there are at least 'raiddisk' */
3324 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3325 struct dl *dl2;
3326 if (dl->esize <= size)
3327 continue;
3328 /* This is bigger than 'size', see if there are enough */
3329 cnt = 0;
3330 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
3331 if (dl2->esize >= dl->esize)
3332 cnt++;
3333 if (cnt >= raiddisks)
3334 size = dl->esize;
3335 }
3336 if (chunk) {
3337 size = size / chunk;
3338 size *= chunk;
3339 }
3340 *freesize = size;
3341 if (size < 32) {
3342 pr_err("not enough spare devices to create array.\n");
3343 return 0;
3344 }
3345 }
3346 /* We have a 'size' of which there are enough spaces.
3347 * We simply do a first-fit */
3348 cnt = 0;
3349 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
3350 if (dl->esize < size)
3351 continue;
3352
3353 dl->raiddisk = cnt;
3354 cnt++;
3355 }
3356 return 1;
3357 }
3358
3359 static int validate_geometry_ddf(struct supertype *st,
3360 int level, int layout, int raiddisks,
3361 int *chunk, unsigned long long size,
3362 unsigned long long data_offset,
3363 char *dev, unsigned long long *freesize,
3364 int verbose)
3365 {
3366 int fd;
3367 struct mdinfo *sra;
3368 int cfd;
3369
3370 /* ddf potentially supports lots of things, but it depends on
3371 * what devices are offered (and maybe kernel version?)
3372 * If given unused devices, we will make a container.
3373 * If given devices in a container, we will make a BVD.
3374 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
3375 */
3376
3377 if (*chunk == UnSet)
3378 *chunk = DEFAULT_CHUNK;
3379
3380 if (level == LEVEL_NONE)
3381 level = LEVEL_CONTAINER;
3382 if (level == LEVEL_CONTAINER) {
3383 /* Must be a fresh device to add to a container */
3384 return validate_geometry_ddf_container(st, level, layout,
3385 raiddisks, *chunk,
3386 size, data_offset, dev,
3387 freesize,
3388 verbose);
3389 }
3390
3391 if (!dev) {
3392 mdu_array_info_t array = {
3393 .level = level,
3394 .layout = layout,
3395 .raid_disks = raiddisks
3396 };
3397 struct vd_config conf;
3398 if (layout_md2ddf(&array, &conf) == -1) {
3399 if (verbose)
3400 pr_err("DDF does not support level %d /layout %d arrays with %d disks\n",
3401 level, layout, raiddisks);
3402 return 0;
3403 }
3404 /* Should check layout? etc */
3405
3406 if (st->sb && freesize) {
3407 /* --create was given a container to create in.
3408 * So we need to check that there are enough
3409 * free spaces and return the amount of space.
3410 * We may as well remember which drives were
3411 * chosen so that add_to_super/getinfo_super
3412 * can return them.
3413 */
3414 return reserve_space(st, raiddisks, size, *chunk,
3415 data_offset, freesize);
3416 }
3417 return 1;
3418 }
3419
3420 if (st->sb) {
3421 /* A container has already been opened, so we are
3422 * creating in there. Maybe a BVD, maybe an SVD.
3423 * Should make a distinction one day.
3424 */
3425 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
3426 chunk, size, data_offset, dev,
3427 freesize,
3428 verbose);
3429 }
3430 /* This is the first device for the array.
3431 * If it is a container, we read it in and do automagic allocations,
3432 * no other devices should be given.
3433 * Otherwise it must be a member device of a container, and we
3434 * do manual allocation.
3435 * Later we should check for a BVD and make an SVD.
3436 */
3437 fd = open(dev, O_RDONLY|O_EXCL, 0);
3438 if (fd >= 0) {
3439 close(fd);
3440 /* Just a bare device, no good to us */
3441 if (verbose)
3442 pr_err("ddf: Cannot create this array "
3443 "on device %s - a container is required.\n",
3444 dev);
3445 return 0;
3446 }
3447 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3448 if (verbose)
3449 pr_err("ddf: Cannot open %s: %s\n",
3450 dev, strerror(errno));
3451 return 0;
3452 }
3453 /* Well, it is in use by someone, maybe a 'ddf' container. */
3454 cfd = open_container(fd);
3455 if (cfd < 0) {
3456 close(fd);
3457 if (verbose)
3458 pr_err("ddf: Cannot use %s: %s\n",
3459 dev, strerror(EBUSY));
3460 return 0;
3461 }
3462 sra = sysfs_read(cfd, NULL, GET_VERSION);
3463 close(fd);
3464 if (sra && sra->array.major_version == -1 &&
3465 strcmp(sra->text_version, "ddf") == 0) {
3466 /* This is a member of a ddf container. Load the container
3467 * and try to create a bvd
3468 */
3469 struct ddf_super *ddf;
3470 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
3471 st->sb = ddf;
3472 strcpy(st->container_devnm, fd2devnm(cfd));
3473 close(cfd);
3474 return validate_geometry_ddf_bvd(st, level, layout,
3475 raiddisks, chunk, size,
3476 data_offset,
3477 dev, freesize,
3478 verbose);
3479 }
3480 close(cfd);
3481 } else /* device may belong to a different container */
3482 return 0;
3483
3484 return 1;
3485 }
3486
3487 static int
3488 validate_geometry_ddf_container(struct supertype *st,
3489 int level, int layout, int raiddisks,
3490 int chunk, unsigned long long size,
3491 unsigned long long data_offset,
3492 char *dev, unsigned long long *freesize,
3493 int verbose)
3494 {
3495 int fd;
3496 unsigned long long ldsize;
3497
3498 if (level != LEVEL_CONTAINER)
3499 return 0;
3500 if (!dev)
3501 return 1;
3502
3503 fd = open(dev, O_RDONLY|O_EXCL, 0);
3504 if (fd < 0) {
3505 if (verbose)
3506 pr_err("ddf: Cannot open %s: %s\n",
3507 dev, strerror(errno));
3508 return 0;
3509 }
3510 if (!get_dev_size(fd, dev, &ldsize)) {
3511 close(fd);
3512 return 0;
3513 }
3514 close(fd);
3515
3516 *freesize = avail_size_ddf(st, ldsize >> 9, INVALID_SECTORS);
3517 if (*freesize == 0)
3518 return 0;
3519
3520 return 1;
3521 }
3522
3523 static int validate_geometry_ddf_bvd(struct supertype *st,
3524 int level, int layout, int raiddisks,
3525 int *chunk, unsigned long long size,
3526 unsigned long long data_offset,
3527 char *dev, unsigned long long *freesize,
3528 int verbose)
3529 {
3530 struct stat stb;
3531 struct ddf_super *ddf = st->sb;
3532 struct dl *dl;
3533 unsigned long long maxsize;
3534 /* ddf/bvd supports lots of things, but not containers */
3535 if (level == LEVEL_CONTAINER) {
3536 if (verbose)
3537 pr_err("DDF cannot create a container within an container\n");
3538 return 0;
3539 }
3540 /* We must have the container info already read in. */
3541 if (!ddf)
3542 return 0;
3543
3544 if (!dev) {
3545 /* General test: make sure there is space for
3546 * 'raiddisks' device extents of size 'size'.
3547 */
3548 unsigned long long minsize = size;
3549 int dcnt = 0;
3550 if (minsize == 0)
3551 minsize = 8;
3552 for (dl = ddf->dlist; dl ; dl = dl->next) {
3553 if (find_space(ddf, dl, data_offset, &minsize)
3554 != INVALID_SECTORS)
3555 dcnt++;
3556 }
3557 if (dcnt < raiddisks) {
3558 if (verbose)
3559 pr_err("ddf: Not enough devices with "
3560 "space for this array (%d < %d)\n",
3561 dcnt, raiddisks);
3562 return 0;
3563 }
3564 return 1;
3565 }
3566 /* This device must be a member of the set */
3567 if (stat(dev, &stb) < 0)
3568 return 0;
3569 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3570 return 0;
3571 for (dl = ddf->dlist ; dl ; dl = dl->next) {
3572 if (dl->major == (int)major(stb.st_rdev) &&
3573 dl->minor == (int)minor(stb.st_rdev))
3574 break;
3575 }
3576 if (!dl) {
3577 if (verbose)
3578 pr_err("ddf: %s is not in the "
3579 "same DDF set\n",
3580 dev);
3581 return 0;
3582 }
3583 maxsize = ULLONG_MAX;
3584 find_space(ddf, dl, data_offset, &maxsize);
3585 *freesize = maxsize;
3586
3587 return 1;
3588 }
3589
3590 static int load_super_ddf_all(struct supertype *st, int fd,
3591 void **sbp, char *devname)
3592 {
3593 struct mdinfo *sra;
3594 struct ddf_super *super;
3595 struct mdinfo *sd, *best = NULL;
3596 int bestseq = 0;
3597 int seq;
3598 char nm[20];
3599 int dfd;
3600
3601 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3602 if (!sra)
3603 return 1;
3604 if (sra->array.major_version != -1 ||
3605 sra->array.minor_version != -2 ||
3606 strcmp(sra->text_version, "ddf") != 0)
3607 return 1;
3608
3609 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
3610 return 1;
3611 memset(super, 0, sizeof(*super));
3612
3613 /* first, try each device, and choose the best ddf */
3614 for (sd = sra->devs ; sd ; sd = sd->next) {
3615 int rv;
3616 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3617 dfd = dev_open(nm, O_RDONLY);
3618 if (dfd < 0)
3619 return 2;
3620 rv = load_ddf_headers(dfd, super, NULL);
3621 close(dfd);
3622 if (rv == 0) {
3623 seq = be32_to_cpu(super->active->seq);
3624 if (super->active->openflag)
3625 seq--;
3626 if (!best || seq > bestseq) {
3627 bestseq = seq;
3628 best = sd;
3629 }
3630 }
3631 }
3632 if (!best)
3633 return 1;
3634 /* OK, load this ddf */
3635 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
3636 dfd = dev_open(nm, O_RDONLY);
3637 if (dfd < 0)
3638 return 1;
3639 load_ddf_headers(dfd, super, NULL);
3640 load_ddf_global(dfd, super, NULL);
3641 close(dfd);
3642 /* Now we need the device-local bits */
3643 for (sd = sra->devs ; sd ; sd = sd->next) {
3644 int rv;
3645
3646 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3647 dfd = dev_open(nm, O_RDWR);
3648 if (dfd < 0)
3649 return 2;
3650 rv = load_ddf_headers(dfd, super, NULL);
3651 if (rv == 0)
3652 rv = load_ddf_local(dfd, super, NULL, 1);
3653 if (rv)
3654 return 1;
3655 }
3656
3657 *sbp = super;
3658 if (st->ss == NULL) {
3659 st->ss = &super_ddf;
3660 st->minor_version = 0;
3661 st->max_devs = 512;
3662 }
3663 strcpy(st->container_devnm, fd2devnm(fd));
3664 return 0;
3665 }
3666
3667 static int load_container_ddf(struct supertype *st, int fd,
3668 char *devname)
3669 {
3670 return load_super_ddf_all(st, fd, &st->sb, devname);
3671 }
3672
3673 #endif /* MDASSEMBLE */
3674
3675 static int check_secondary(const struct vcl *vc)
3676 {
3677 const struct vd_config *conf = &vc->conf;
3678 int i;
3679
3680 /* The only DDF secondary RAID level md can support is
3681 * RAID 10, if the stripe sizes and Basic volume sizes
3682 * are all equal.
3683 * Other configurations could in theory be supported by exposing
3684 * the BVDs to user space and using device mapper for the secondary
3685 * mapping. So far we don't support that.
3686 */
3687
3688 __u64 sec_elements[4] = {0, 0, 0, 0};
3689 #define __set_sec_seen(n) (sec_elements[(n)>>6] |= (1<<((n)&63)))
3690 #define __was_sec_seen(n) ((sec_elements[(n)>>6] & (1<<((n)&63))) != 0)
3691
3692 if (vc->other_bvds == NULL) {
3693 pr_err("No BVDs for secondary RAID found\n");
3694 return -1;
3695 }
3696 if (conf->prl != DDF_RAID1) {
3697 pr_err("Secondary RAID level only supported for mirrored BVD\n");
3698 return -1;
3699 }
3700 if (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED) {
3701 pr_err("Secondary RAID level %d is unsupported\n",
3702 conf->srl);
3703 return -1;
3704 }
3705 __set_sec_seen(conf->sec_elmnt_seq);
3706 for (i = 0; i < conf->sec_elmnt_count-1; i++) {
3707 const struct vd_config *bvd = vc->other_bvds[i];
3708 if (bvd->sec_elmnt_seq == DDF_UNUSED_BVD)
3709 continue;
3710 if (bvd->srl != conf->srl) {
3711 pr_err("Inconsistent secondary RAID level across BVDs\n");
3712 return -1;
3713 }
3714 if (bvd->prl != conf->prl) {
3715 pr_err("Different RAID levels for BVDs are unsupported\n");
3716 return -1;
3717 }
3718 if (!be16_eq(bvd->prim_elmnt_count, conf->prim_elmnt_count)) {
3719 pr_err("All BVDs must have the same number of primary elements\n");
3720 return -1;
3721 }
3722 if (bvd->chunk_shift != conf->chunk_shift) {
3723 pr_err("Different strip sizes for BVDs are unsupported\n");
3724 return -1;
3725 }
3726 if (!be64_eq(bvd->array_blocks, conf->array_blocks)) {
3727 pr_err("Different BVD sizes are unsupported\n");
3728 return -1;
3729 }
3730 __set_sec_seen(bvd->sec_elmnt_seq);
3731 }
3732 for (i = 0; i < conf->sec_elmnt_count; i++) {
3733 if (!__was_sec_seen(i)) {
3734 /* pr_err("BVD %d is missing\n", i); */
3735 return -1;
3736 }
3737 }
3738 return 0;
3739 }
3740
3741 static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
3742 be32 refnum, unsigned int nmax,
3743 const struct vd_config **bvd,
3744 unsigned int *idx)
3745 {
3746 unsigned int i, j, n, sec, cnt;
3747
3748 cnt = be16_to_cpu(vc->conf.prim_elmnt_count);
3749 sec = (vc->conf.sec_elmnt_count == 1 ? 0 : vc->conf.sec_elmnt_seq);
3750
3751 for (i = 0, j = 0 ; i < nmax ; i++) {
3752 /* j counts valid entries for this BVD */
3753 if (be32_eq(vc->conf.phys_refnum[i], refnum)) {
3754 *bvd = &vc->conf;
3755 *idx = i;
3756 return sec * cnt + j;
3757 }
3758 if (be32_to_cpu(vc->conf.phys_refnum[i]) != 0xffffffff)
3759 j++;
3760 }
3761 if (vc->other_bvds == NULL)
3762 goto bad;
3763
3764 for (n = 1; n < vc->conf.sec_elmnt_count; n++) {
3765 struct vd_config *vd = vc->other_bvds[n-1];
3766 sec = vd->sec_elmnt_seq;
3767 if (sec == DDF_UNUSED_BVD)
3768 continue;
3769 for (i = 0, j = 0 ; i < nmax ; i++) {
3770 if (be32_eq(vd->phys_refnum[i], refnum)) {
3771 *bvd = vd;
3772 *idx = i;
3773 return sec * cnt + j;
3774 }
3775 if (be32_to_cpu(vd->phys_refnum[i]) != 0xffffffff)
3776 j++;
3777 }
3778 }
3779 bad:
3780 *bvd = NULL;
3781 return DDF_NOTFOUND;
3782 }
3783
3784 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
3785 {
3786 /* Given a container loaded by load_super_ddf_all,
3787 * extract information about all the arrays into
3788 * an mdinfo tree.
3789 *
3790 * For each vcl in conflist: create an mdinfo, fill it in,
3791 * then look for matching devices (phys_refnum) in dlist
3792 * and create appropriate device mdinfo.
3793 */
3794 struct ddf_super *ddf = st->sb;
3795 struct mdinfo *rest = NULL;
3796 struct vcl *vc;
3797
3798 for (vc = ddf->conflist ; vc ; vc=vc->next) {
3799 unsigned int i;
3800 struct mdinfo *this;
3801 char *ep;
3802 __u32 *cptr;
3803 unsigned int pd;
3804
3805 if (subarray &&
3806 (strtoul(subarray, &ep, 10) != vc->vcnum ||
3807 *ep != '\0'))
3808 continue;
3809
3810 if (vc->conf.sec_elmnt_count > 1) {
3811 if (check_secondary(vc) != 0)
3812 continue;
3813 }
3814
3815 this = xcalloc(1, sizeof(*this));
3816 this->next = rest;
3817 rest = this;
3818
3819 if (layout_ddf2md(&vc->conf, &this->array))
3820 continue;
3821 this->array.md_minor = -1;
3822 this->array.major_version = -1;
3823 this->array.minor_version = -2;
3824 this->safe_mode_delay = DDF_SAFE_MODE_DELAY;
3825 cptr = (__u32 *)(vc->conf.guid + 16);
3826 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
3827 this->array.utime = DECADE +
3828 be32_to_cpu(vc->conf.timestamp);
3829 this->array.chunk_size = 512 << vc->conf.chunk_shift;
3830
3831 i = vc->vcnum;
3832 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
3833 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
3834 DDF_init_full) {
3835 this->array.state = 0;
3836 this->resync_start = 0;
3837 } else {
3838 this->array.state = 1;
3839 this->resync_start = MaxSector;
3840 }
3841 _ddf_array_name(this->name, ddf, i);
3842 memset(this->uuid, 0, sizeof(this->uuid));
3843 this->component_size = be64_to_cpu(vc->conf.blocks);
3844 this->array.size = this->component_size / 2;
3845 this->container_member = i;
3846
3847 ddf->currentconf = vc;
3848 uuid_from_super_ddf(st, this->uuid);
3849 if (!subarray)
3850 ddf->currentconf = NULL;
3851
3852 sprintf(this->text_version, "/%s/%d",
3853 st->container_devnm, this->container_member);
3854
3855 for (pd = 0; pd < be16_to_cpu(ddf->phys->max_pdes); pd++) {
3856 struct mdinfo *dev;
3857 struct dl *d;
3858 const struct vd_config *bvd;
3859 unsigned int iphys;
3860 int stt;
3861
3862 if (be32_to_cpu(ddf->phys->entries[pd].refnum)
3863 == 0xFFFFFFFF)
3864 continue;
3865
3866 stt = be16_to_cpu(ddf->phys->entries[pd].state);
3867 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3868 != DDF_Online)
3869 continue;
3870
3871 i = get_pd_index_from_refnum(
3872 vc, ddf->phys->entries[pd].refnum,
3873 ddf->mppe, &bvd, &iphys);
3874 if (i == DDF_NOTFOUND)
3875 continue;
3876
3877 this->array.working_disks++;
3878
3879 for (d = ddf->dlist; d ; d=d->next)
3880 if (be32_eq(d->disk.refnum,
3881 ddf->phys->entries[pd].refnum))
3882 break;
3883 if (d == NULL)
3884 /* Haven't found that one yet, maybe there are others */
3885 continue;
3886
3887 dev = xcalloc(1, sizeof(*dev));
3888 dev->next = this->devs;
3889 this->devs = dev;
3890
3891 dev->disk.number = be32_to_cpu(d->disk.refnum);
3892 dev->disk.major = d->major;
3893 dev->disk.minor = d->minor;
3894 dev->disk.raid_disk = i;
3895 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3896 dev->recovery_start = MaxSector;
3897
3898 dev->events = be32_to_cpu(ddf->active->seq);
3899 dev->data_offset =
3900 be64_to_cpu(LBA_OFFSET(ddf, bvd)[iphys]);
3901 dev->component_size = be64_to_cpu(bvd->blocks);
3902 if (d->devname)
3903 strcpy(dev->name, d->devname);
3904 }
3905 }
3906 return rest;
3907 }
3908
3909 static int store_super_ddf(struct supertype *st, int fd)
3910 {
3911 struct ddf_super *ddf = st->sb;
3912 unsigned long long dsize;
3913 void *buf;
3914 int rc;
3915
3916 if (!ddf)
3917 return 1;
3918
3919 if (!get_dev_size(fd, NULL, &dsize))
3920 return 1;
3921
3922 if (ddf->dlist || ddf->conflist) {
3923 struct stat sta;
3924 struct dl *dl;
3925 int ofd, ret;
3926
3927 if (fstat(fd, &sta) == -1 || !S_ISBLK(sta.st_mode)) {
3928 pr_err("%s: file descriptor for invalid device\n",
3929 __func__);
3930 return 1;
3931 }
3932 for (dl = ddf->dlist; dl; dl = dl->next)
3933 if (dl->major == (int)major(sta.st_rdev) &&
3934 dl->minor == (int)minor(sta.st_rdev))
3935 break;
3936 if (!dl) {
3937 pr_err("%s: couldn't find disk %d/%d\n", __func__,
3938 (int)major(sta.st_rdev),
3939 (int)minor(sta.st_rdev));
3940 return 1;
3941 }
3942 ofd = dl->fd;
3943 dl->fd = fd;
3944 ret = (_write_super_to_disk(ddf, dl) != 1);
3945 dl->fd = ofd;
3946 return ret;
3947 }
3948
3949 if (posix_memalign(&buf, 512, 512) != 0)
3950 return 1;
3951 memset(buf, 0, 512);
3952
3953 lseek64(fd, dsize-512, 0);
3954 rc = write(fd, buf, 512);
3955 free(buf);
3956 if (rc < 0)
3957 return 1;
3958 return 0;
3959 }
3960
3961 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3962 {
3963 /*
3964 * return:
3965 * 0 same, or first was empty, and second was copied
3966 * 1 second had wrong magic number - but that isn't possible
3967 * 2 wrong uuid
3968 * 3 wrong other info
3969 */
3970 struct ddf_super *first = st->sb;
3971 struct ddf_super *second = tst->sb;
3972 struct dl *dl1, *dl2;
3973 struct vcl *vl1, *vl2;
3974 unsigned int max_vds, max_pds, pd, vd;
3975
3976 if (!first) {
3977 st->sb = tst->sb;
3978 tst->sb = NULL;
3979 return 0;
3980 }
3981
3982 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3983 return 2;
3984
3985 /* It is only OK to compare info in the anchor. Anything else
3986 * could be changing due to a reconfig so must be ignored.
3987 * guid really should be enough anyway.
3988 */
3989
3990 if (!be32_eq(first->active->seq, second->active->seq)) {
3991 dprintf("%s: sequence number mismatch %u<->%u\n", __func__,
3992 be32_to_cpu(first->active->seq),
3993 be32_to_cpu(second->active->seq));
3994 return 0;
3995 }
3996
3997 /*
3998 * At this point we are fairly sure that the meta data matches.
3999 * But the new disk may contain additional local data.
4000 * Add it to the super block.
4001 */
4002 max_vds = be16_to_cpu(first->active->max_vd_entries);
4003 max_pds = be16_to_cpu(first->phys->max_pdes);
4004 for (vl2 = second->conflist; vl2; vl2 = vl2->next) {
4005 for (vl1 = first->conflist; vl1; vl1 = vl1->next)
4006 if (!memcmp(vl1->conf.guid, vl2->conf.guid,
4007 DDF_GUID_LEN))
4008 break;
4009 if (vl1) {
4010 if (vl1->other_bvds != NULL &&
4011 vl1->conf.sec_elmnt_seq !=
4012 vl2->conf.sec_elmnt_seq) {
4013 dprintf("%s: adding BVD %u\n", __func__,
4014 vl2->conf.sec_elmnt_seq);
4015 add_other_bvd(vl1, &vl2->conf,
4016 first->conf_rec_len*512);
4017 }
4018 continue;
4019 }
4020
4021 if (posix_memalign((void **)&vl1, 512,
4022 (first->conf_rec_len*512 +
4023 offsetof(struct vcl, conf))) != 0) {
4024 pr_err("%s could not allocate vcl buf\n",
4025 __func__);
4026 return 3;
4027 }
4028
4029 vl1->next = first->conflist;
4030 vl1->block_sizes = NULL;
4031 memcpy(&vl1->conf, &vl2->conf, first->conf_rec_len*512);
4032 if (alloc_other_bvds(first, vl1) != 0) {
4033 pr_err("%s could not allocate other bvds\n",
4034 __func__);
4035 free(vl1);
4036 return 3;
4037 }
4038 for (vd = 0; vd < max_vds; vd++)
4039 if (!memcmp(first->virt->entries[vd].guid,
4040 vl1->conf.guid, DDF_GUID_LEN))
4041 break;
4042 vl1->vcnum = vd;
4043 dprintf("%s: added config for VD %u\n", __func__, vl1->vcnum);
4044 first->conflist = vl1;
4045 }
4046
4047 for (dl2 = second->dlist; dl2; dl2 = dl2->next) {
4048 for (dl1 = first->dlist; dl1; dl1 = dl1->next)
4049 if (be32_eq(dl1->disk.refnum, dl2->disk.refnum))
4050 break;
4051 if (dl1)
4052 continue;
4053
4054 if (posix_memalign((void **)&dl1, 512,
4055 sizeof(*dl1) + (first->max_part) * sizeof(dl1->vlist[0]))
4056 != 0) {
4057 pr_err("%s could not allocate disk info buffer\n",
4058 __func__);
4059 return 3;
4060 }
4061 memcpy(dl1, dl2, sizeof(*dl1));
4062 dl1->mdupdate = NULL;
4063 dl1->next = first->dlist;
4064 dl1->fd = -1;
4065 for (pd = 0; pd < max_pds; pd++)
4066 if (be32_eq(first->phys->entries[pd].refnum,
4067 dl1->disk.refnum))
4068 break;
4069 dl1->pdnum = pd < max_pds ? (int)pd : -1;
4070 if (dl2->spare) {
4071 if (posix_memalign((void **)&dl1->spare, 512,
4072 first->conf_rec_len*512) != 0) {
4073 pr_err("%s could not allocate spare info buf\n",
4074 __func__);
4075 return 3;
4076 }
4077 memcpy(dl1->spare, dl2->spare, first->conf_rec_len*512);
4078 }
4079 for (vd = 0 ; vd < first->max_part ; vd++) {
4080 if (!dl2->vlist[vd]) {
4081 dl1->vlist[vd] = NULL;
4082 continue;
4083 }
4084 for (vl1 = first->conflist; vl1; vl1 = vl1->next) {
4085 if (!memcmp(vl1->conf.guid,
4086 dl2->vlist[vd]->conf.guid,
4087 DDF_GUID_LEN))
4088 break;
4089 dl1->vlist[vd] = vl1;
4090 }
4091 }
4092 first->dlist = dl1;
4093 dprintf("%s: added disk %d: %08x\n", __func__, dl1->pdnum,
4094 be32_to_cpu(dl1->disk.refnum));
4095 }
4096
4097 return 0;
4098 }
4099
4100 #ifndef MDASSEMBLE
4101 /*
4102 * A new array 'a' has been started which claims to be instance 'inst'
4103 * within container 'c'.
4104 * We need to confirm that the array matches the metadata in 'c' so
4105 * that we don't corrupt any metadata.
4106 */
4107 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
4108 {
4109 struct ddf_super *ddf = c->sb;
4110 int n = atoi(inst);
4111 struct mdinfo *dev;
4112 struct dl *dl;
4113 static const char faulty[] = "faulty";
4114
4115 if (all_ff(ddf->virt->entries[n].guid)) {
4116 pr_err("%s: subarray %d doesn't exist\n", __func__, n);
4117 return -ENODEV;
4118 }
4119 dprintf("%s: new subarray %d, GUID: %s\n", __func__, n,
4120 guid_str(ddf->virt->entries[n].guid));
4121 for (dev = a->info.devs; dev; dev = dev->next) {
4122 for (dl = ddf->dlist; dl; dl = dl->next)
4123 if (dl->major == dev->disk.major &&
4124 dl->minor == dev->disk.minor)
4125 break;
4126 if (!dl || dl->pdnum < 0) {
4127 pr_err("%s: device %d/%d of subarray %d not found in meta data\n",
4128 __func__, dev->disk.major, dev->disk.minor, n);
4129 return -1;
4130 }
4131 if ((be16_to_cpu(ddf->phys->entries[dl->pdnum].state) &
4132 (DDF_Online|DDF_Missing|DDF_Failed)) != DDF_Online) {
4133 pr_err("%s: new subarray %d contains broken device %d/%d (%02x)\n",
4134 __func__, n, dl->major, dl->minor,
4135 be16_to_cpu(
4136 ddf->phys->entries[dl->pdnum].state));
4137 if (write(dev->state_fd, faulty, sizeof(faulty)-1) !=
4138 sizeof(faulty) - 1)
4139 pr_err("Write to state_fd failed\n");
4140 dev->curr_state = DS_FAULTY;
4141 }
4142 }
4143 a->info.container_member = n;
4144 return 0;
4145 }
4146
4147 static void handle_missing(struct ddf_super *ddf, struct active_array *a, int inst)
4148 {
4149 /* This member array is being activated. If any devices
4150 * are missing they must now be marked as failed.
4151 */
4152 struct vd_config *vc;
4153 unsigned int n_bvd;
4154 struct vcl *vcl;
4155 struct dl *dl;
4156 int pd;
4157 int n;
4158 int state;
4159
4160 for (n = 0; ; n++) {
4161 vc = find_vdcr(ddf, inst, n, &n_bvd, &vcl);
4162 if (!vc)
4163 break;
4164 for (dl = ddf->dlist; dl; dl = dl->next)
4165 if (be32_eq(dl->disk.refnum, vc->phys_refnum[n_bvd]))
4166 break;
4167 if (dl)
4168 /* Found this disk, so not missing */
4169 continue;
4170
4171 /* Mark the device as failed/missing. */
4172 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4173 if (pd >= 0 && be16_and(ddf->phys->entries[pd].state,
4174 cpu_to_be16(DDF_Online))) {
4175 be16_clear(ddf->phys->entries[pd].state,
4176 cpu_to_be16(DDF_Online));
4177 be16_set(ddf->phys->entries[pd].state,
4178 cpu_to_be16(DDF_Failed|DDF_Missing));
4179 vc->phys_refnum[n_bvd] = cpu_to_be32(0);
4180 ddf_set_updates_pending(ddf, vc);
4181 }
4182
4183 /* Mark the array as Degraded */
4184 state = get_svd_state(ddf, vcl);
4185 if (ddf->virt->entries[inst].state !=
4186 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
4187 | state)) {
4188 ddf->virt->entries[inst].state =
4189 (ddf->virt->entries[inst].state & ~DDF_state_mask)
4190 | state;
4191 a->check_degraded = 1;
4192 ddf_set_updates_pending(ddf, vc);
4193 }
4194 }
4195 }
4196
4197 /*
4198 * The array 'a' is to be marked clean in the metadata.
4199 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
4200 * clean up to the point (in sectors). If that cannot be recorded in the
4201 * metadata, then leave it as dirty.
4202 *
4203 * For DDF, we need to clear the DDF_state_inconsistent bit in the
4204 * !global! virtual_disk.virtual_entry structure.
4205 */
4206 static int ddf_set_array_state(struct active_array *a, int consistent)
4207 {
4208 struct ddf_super *ddf = a->container->sb;
4209 int inst = a->info.container_member;
4210 int old = ddf->virt->entries[inst].state;
4211 if (consistent == 2) {
4212 handle_missing(ddf, a, inst);
4213 consistent = 1;
4214 if (!is_resync_complete(&a->info))
4215 consistent = 0;
4216 }
4217 if (consistent)
4218 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
4219 else
4220 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
4221 if (old != ddf->virt->entries[inst].state)
4222 ddf_set_updates_pending(ddf, NULL);
4223
4224 old = ddf->virt->entries[inst].init_state;
4225 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
4226 if (is_resync_complete(&a->info))
4227 ddf->virt->entries[inst].init_state |= DDF_init_full;
4228 else if (a->info.resync_start == 0)
4229 ddf->virt->entries[inst].init_state |= DDF_init_not;
4230 else
4231 ddf->virt->entries[inst].init_state |= DDF_init_quick;
4232 if (old != ddf->virt->entries[inst].init_state)
4233 ddf_set_updates_pending(ddf, NULL);
4234
4235 dprintf("ddf mark %d/%s (%d) %s %llu\n", inst,
4236 guid_str(ddf->virt->entries[inst].guid), a->curr_state,
4237 consistent?"clean":"dirty",
4238 a->info.resync_start);
4239 return consistent;
4240 }
4241
4242 static int get_bvd_state(const struct ddf_super *ddf,
4243 const struct vd_config *vc)
4244 {
4245 unsigned int i, n_bvd, working = 0;
4246 unsigned int n_prim = be16_to_cpu(vc->prim_elmnt_count);
4247 int pd, st, state;
4248 char *avail = xcalloc(1, n_prim);
4249 mdu_array_info_t array;
4250
4251 layout_ddf2md(vc, &array);
4252
4253 for (i = 0; i < n_prim; i++) {
4254 if (!find_index_in_bvd(ddf, vc, i, &n_bvd))
4255 continue;
4256 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4257 if (pd < 0)
4258 continue;
4259 st = be16_to_cpu(ddf->phys->entries[pd].state);
4260 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
4261 == DDF_Online) {
4262 working++;
4263 avail[i] = 1;
4264 }
4265 }
4266
4267 state = DDF_state_degraded;
4268 if (working == n_prim)
4269 state = DDF_state_optimal;
4270 else
4271 switch (vc->prl) {
4272 case DDF_RAID0:
4273 case DDF_CONCAT:
4274 case DDF_JBOD:
4275 state = DDF_state_failed;
4276 break;
4277 case DDF_RAID1:
4278 if (working == 0)
4279 state = DDF_state_failed;
4280 else if (working >= 2)
4281 state = DDF_state_part_optimal;
4282 break;
4283 case DDF_RAID1E:
4284 if (!enough(10, n_prim, array.layout, 1, avail))
4285 state = DDF_state_failed;
4286 break;
4287 case DDF_RAID4:
4288 case DDF_RAID5:
4289 if (working < n_prim - 1)
4290 state = DDF_state_failed;
4291 break;
4292 case DDF_RAID6:
4293 if (working < n_prim - 2)
4294 state = DDF_state_failed;
4295 else if (working == n_prim - 1)
4296 state = DDF_state_part_optimal;
4297 break;
4298 }
4299 return state;
4300 }
4301
4302 static int secondary_state(int state, int other, int seclevel)
4303 {
4304 if (state == DDF_state_optimal && other == DDF_state_optimal)
4305 return DDF_state_optimal;
4306 if (seclevel == DDF_2MIRRORED) {
4307 if (state == DDF_state_optimal || other == DDF_state_optimal)
4308 return DDF_state_part_optimal;
4309 if (state == DDF_state_failed && other == DDF_state_failed)
4310 return DDF_state_failed;
4311 return DDF_state_degraded;
4312 } else {
4313 if (state == DDF_state_failed || other == DDF_state_failed)
4314 return DDF_state_failed;
4315 if (state == DDF_state_degraded || other == DDF_state_degraded)
4316 return DDF_state_degraded;
4317 return DDF_state_part_optimal;
4318 }
4319 }
4320
4321 static int get_svd_state(const struct ddf_super *ddf, const struct vcl *vcl)
4322 {
4323 int state = get_bvd_state(ddf, &vcl->conf);
4324 unsigned int i;
4325 for (i = 1; i < vcl->conf.sec_elmnt_count; i++) {
4326 state = secondary_state(
4327 state,
4328 get_bvd_state(ddf, vcl->other_bvds[i-1]),
4329 vcl->conf.srl);
4330 }
4331 return state;
4332 }
4333
4334 /*
4335 * The state of each disk is stored in the global phys_disk structure
4336 * in phys_disk.entries[n].state.
4337 * This makes various combinations awkward.
4338 * - When a device fails in any array, it must be failed in all arrays
4339 * that include a part of this device.
4340 * - When a component is rebuilding, we cannot include it officially in the
4341 * array unless this is the only array that uses the device.
4342 *
4343 * So: when transitioning:
4344 * Online -> failed, just set failed flag. monitor will propagate
4345 * spare -> online, the device might need to be added to the array.
4346 * spare -> failed, just set failed. Don't worry if in array or not.
4347 */
4348 static void ddf_set_disk(struct active_array *a, int n, int state)
4349 {
4350 struct ddf_super *ddf = a->container->sb;
4351 unsigned int inst = a->info.container_member, n_bvd;
4352 struct vcl *vcl;
4353 struct vd_config *vc = find_vdcr(ddf, inst, (unsigned int)n,
4354 &n_bvd, &vcl);
4355 int pd;
4356 struct mdinfo *mdi;
4357 struct dl *dl;
4358 int update = 0;
4359
4360 dprintf("%s: %d to %x\n", __func__, n, state);
4361 if (vc == NULL) {
4362 dprintf("ddf: cannot find instance %d!!\n", inst);
4363 return;
4364 }
4365 /* Find the matching slot in 'info'. */
4366 for (mdi = a->info.devs; mdi; mdi = mdi->next)
4367 if (mdi->disk.raid_disk == n)
4368 break;
4369 if (!mdi) {
4370 pr_err("%s: cannot find raid disk %d\n",
4371 __func__, n);
4372 return;
4373 }
4374
4375 /* and find the 'dl' entry corresponding to that. */
4376 for (dl = ddf->dlist; dl; dl = dl->next)
4377 if (mdi->state_fd >= 0 &&
4378 mdi->disk.major == dl->major &&
4379 mdi->disk.minor == dl->minor)
4380 break;
4381 if (!dl) {
4382 pr_err("%s: cannot find raid disk %d (%d/%d)\n",
4383 __func__, n,
4384 mdi->disk.major, mdi->disk.minor);
4385 return;
4386 }
4387
4388 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4389 if (pd < 0 || pd != dl->pdnum) {
4390 /* disk doesn't currently exist or has changed.
4391 * If it is now in_sync, insert it. */
4392 dprintf("%s: phys disk not found for %d: %d/%d ref %08x\n",
4393 __func__, dl->pdnum, dl->major, dl->minor,
4394 be32_to_cpu(dl->disk.refnum));
4395 dprintf("%s: array %u disk %u ref %08x pd %d\n",
4396 __func__, inst, n_bvd,
4397 be32_to_cpu(vc->phys_refnum[n_bvd]), pd);
4398 if ((state & DS_INSYNC) && ! (state & DS_FAULTY) &&
4399 dl->pdnum >= 0) {
4400 pd = dl->pdnum;
4401 vc->phys_refnum[n_bvd] = dl->disk.refnum;
4402 LBA_OFFSET(ddf, vc)[n_bvd] =
4403 cpu_to_be64(mdi->data_offset);
4404 be16_clear(ddf->phys->entries[pd].type,
4405 cpu_to_be16(DDF_Global_Spare));
4406 be16_set(ddf->phys->entries[pd].type,
4407 cpu_to_be16(DDF_Active_in_VD));
4408 update = 1;
4409 }
4410 } else {
4411 be16 old = ddf->phys->entries[pd].state;
4412 if (state & DS_FAULTY)
4413 be16_set(ddf->phys->entries[pd].state,
4414 cpu_to_be16(DDF_Failed));
4415 if (state & DS_INSYNC) {
4416 be16_set(ddf->phys->entries[pd].state,
4417 cpu_to_be16(DDF_Online));
4418 be16_clear(ddf->phys->entries[pd].state,
4419 cpu_to_be16(DDF_Rebuilding));
4420 }
4421 if (!be16_eq(old, ddf->phys->entries[pd].state))
4422 update = 1;
4423 }
4424
4425 dprintf("ddf: set_disk %d (%08x) to %x->%02x\n", n,
4426 be32_to_cpu(dl->disk.refnum), state,
4427 be16_to_cpu(ddf->phys->entries[pd].state));
4428
4429 /* Now we need to check the state of the array and update
4430 * virtual_disk.entries[n].state.
4431 * It needs to be one of "optimal", "degraded", "failed".
4432 * I don't understand 'deleted' or 'missing'.
4433 */
4434 state = get_svd_state(ddf, vcl);
4435
4436 if (ddf->virt->entries[inst].state !=
4437 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
4438 | state)) {
4439 ddf->virt->entries[inst].state =
4440 (ddf->virt->entries[inst].state & ~DDF_state_mask)
4441 | state;
4442 update = 1;
4443 }
4444 if (update)
4445 ddf_set_updates_pending(ddf, vc);
4446 }
4447
4448 static void ddf_sync_metadata(struct supertype *st)
4449 {
4450 /*
4451 * Write all data to all devices.
4452 * Later, we might be able to track whether only local changes
4453 * have been made, or whether any global data has been changed,
4454 * but ddf is sufficiently weird that it probably always
4455 * changes global data ....
4456 */
4457 struct ddf_super *ddf = st->sb;
4458 if (!ddf->updates_pending)
4459 return;
4460 ddf->updates_pending = 0;
4461 __write_init_super_ddf(st);
4462 dprintf("ddf: sync_metadata\n");
4463 }
4464
4465 static int del_from_conflist(struct vcl **list, const char *guid)
4466 {
4467 struct vcl **p;
4468 int found = 0;
4469 for (p = list; p && *p; p = &((*p)->next))
4470 if (!memcmp((*p)->conf.guid, guid, DDF_GUID_LEN)) {
4471 found = 1;
4472 *p = (*p)->next;
4473 }
4474 return found;
4475 }
4476
4477 static int _kill_subarray_ddf(struct ddf_super *ddf, const char *guid)
4478 {
4479 struct dl *dl;
4480 unsigned int vdnum, i;
4481 vdnum = find_vde_by_guid(ddf, guid);
4482 if (vdnum == DDF_NOTFOUND) {
4483 pr_err("%s: could not find VD %s\n", __func__,
4484 guid_str(guid));
4485 return -1;
4486 }
4487 if (del_from_conflist(&ddf->conflist, guid) == 0) {
4488 pr_err("%s: could not find conf %s\n", __func__,
4489 guid_str(guid));
4490 return -1;
4491 }
4492 for (dl = ddf->dlist; dl; dl = dl->next)
4493 for (i = 0; i < ddf->max_part; i++)
4494 if (dl->vlist[i] != NULL &&
4495 !memcmp(dl->vlist[i]->conf.guid, guid,
4496 DDF_GUID_LEN))
4497 dl->vlist[i] = NULL;
4498 memset(ddf->virt->entries[vdnum].guid, 0xff, DDF_GUID_LEN);
4499 dprintf("%s: deleted %s\n", __func__, guid_str(guid));
4500 return 0;
4501 }
4502
4503 static int kill_subarray_ddf(struct supertype *st)
4504 {
4505 struct ddf_super *ddf = st->sb;
4506 /*
4507 * currentconf is set in container_content_ddf,
4508 * called with subarray arg
4509 */
4510 struct vcl *victim = ddf->currentconf;
4511 struct vd_config *conf;
4512 unsigned int vdnum;
4513
4514 ddf->currentconf = NULL;
4515 if (!victim) {
4516 pr_err("%s: nothing to kill\n", __func__);
4517 return -1;
4518 }
4519 conf = &victim->conf;
4520 vdnum = find_vde_by_guid(ddf, conf->guid);
4521 if (vdnum == DDF_NOTFOUND) {
4522 pr_err("%s: could not find VD %s\n", __func__,
4523 guid_str(conf->guid));
4524 return -1;
4525 }
4526 if (st->update_tail) {
4527 struct virtual_disk *vd;
4528 int len = sizeof(struct virtual_disk)
4529 + sizeof(struct virtual_entry);
4530 vd = xmalloc(len);
4531 if (vd == NULL) {
4532 pr_err("%s: failed to allocate %d bytes\n", __func__,
4533 len);
4534 return -1;
4535 }
4536 memset(vd, 0 , len);
4537 vd->magic = DDF_VIRT_RECORDS_MAGIC;
4538 vd->populated_vdes = cpu_to_be16(0);
4539 memcpy(vd->entries[0].guid, conf->guid, DDF_GUID_LEN);
4540 /* we use DDF_state_deleted as marker */
4541 vd->entries[0].state = DDF_state_deleted;
4542 append_metadata_update(st, vd, len);
4543 } else {
4544 _kill_subarray_ddf(ddf, conf->guid);
4545 ddf_set_updates_pending(ddf, NULL);
4546 ddf_sync_metadata(st);
4547 }
4548 return 0;
4549 }
4550
4551 static void copy_matching_bvd(struct ddf_super *ddf,
4552 struct vd_config *conf,
4553 const struct metadata_update *update)
4554 {
4555 unsigned int mppe =
4556 be16_to_cpu(ddf->anchor.max_primary_element_entries);
4557 unsigned int len = ddf->conf_rec_len * 512;
4558 char *p;
4559 struct vd_config *vc;
4560 for (p = update->buf; p < update->buf + update->len; p += len) {
4561 vc = (struct vd_config *) p;
4562 if (vc->sec_elmnt_seq == conf->sec_elmnt_seq) {
4563 memcpy(conf->phys_refnum, vc->phys_refnum,
4564 mppe * (sizeof(__u32) + sizeof(__u64)));
4565 return;
4566 }
4567 }
4568 pr_err("%s: no match for BVD %d of %s in update\n", __func__,
4569 conf->sec_elmnt_seq, guid_str(conf->guid));
4570 }
4571
4572 static void ddf_process_phys_update(struct supertype *st,
4573 struct metadata_update *update)
4574 {
4575 struct ddf_super *ddf = st->sb;
4576 struct phys_disk *pd;
4577 unsigned int ent;
4578
4579 pd = (struct phys_disk*)update->buf;
4580 ent = be16_to_cpu(pd->used_pdes);
4581 if (ent >= be16_to_cpu(ddf->phys->max_pdes))
4582 return;
4583 if (be16_and(pd->entries[0].state, cpu_to_be16(DDF_Missing))) {
4584 struct dl **dlp;
4585 /* removing this disk. */
4586 be16_set(ddf->phys->entries[ent].state,
4587 cpu_to_be16(DDF_Missing));
4588 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
4589 struct dl *dl = *dlp;
4590 if (dl->pdnum == (signed)ent) {
4591 close(dl->fd);
4592 dl->fd = -1;
4593 *dlp = dl->next;
4594 update->space = dl->devname;
4595 *(void**)dl = update->space_list;
4596 update->space_list = (void**)dl;
4597 break;
4598 }
4599 }
4600 ddf_set_updates_pending(ddf, NULL);
4601 return;
4602 }
4603 if (!all_ff(ddf->phys->entries[ent].guid))
4604 return;
4605 ddf->phys->entries[ent] = pd->entries[0];
4606 ddf->phys->used_pdes = cpu_to_be16
4607 (1 + be16_to_cpu(ddf->phys->used_pdes));
4608 ddf_set_updates_pending(ddf, NULL);
4609 if (ddf->add_list) {
4610 struct active_array *a;
4611 struct dl *al = ddf->add_list;
4612 ddf->add_list = al->next;
4613
4614 al->next = ddf->dlist;
4615 ddf->dlist = al;
4616
4617 /* As a device has been added, we should check
4618 * for any degraded devices that might make
4619 * use of this spare */
4620 for (a = st->arrays ; a; a=a->next)
4621 a->check_degraded = 1;
4622 }
4623 }
4624
4625 static void ddf_process_virt_update(struct supertype *st,
4626 struct metadata_update *update)
4627 {
4628 struct ddf_super *ddf = st->sb;
4629 struct virtual_disk *vd;
4630 unsigned int ent;
4631
4632 vd = (struct virtual_disk*)update->buf;
4633
4634 if (vd->entries[0].state == DDF_state_deleted) {
4635 if (_kill_subarray_ddf(ddf, vd->entries[0].guid))
4636 return;
4637 } else {
4638 ent = find_vde_by_guid(ddf, vd->entries[0].guid);
4639 if (ent != DDF_NOTFOUND) {
4640 dprintf("%s: VD %s exists already in slot %d\n",
4641 __func__, guid_str(vd->entries[0].guid),
4642 ent);
4643 return;
4644 }
4645 ent = find_unused_vde(ddf);
4646 if (ent == DDF_NOTFOUND)
4647 return;
4648 ddf->virt->entries[ent] = vd->entries[0];
4649 ddf->virt->populated_vdes =
4650 cpu_to_be16(
4651 1 + be16_to_cpu(
4652 ddf->virt->populated_vdes));
4653 dprintf("%s: added VD %s in slot %d(s=%02x i=%02x)\n",
4654 __func__, guid_str(vd->entries[0].guid), ent,
4655 ddf->virt->entries[ent].state,
4656 ddf->virt->entries[ent].init_state);
4657 }
4658 ddf_set_updates_pending(ddf, NULL);
4659 }
4660
4661 static void ddf_remove_failed(struct ddf_super *ddf)
4662 {
4663 /* Now remove any 'Failed' devices that are not part
4664 * of any VD. They will have the Transition flag set.
4665 * Once done, we need to update all dl->pdnum numbers.
4666 */
4667 unsigned int pdnum;
4668 unsigned int pd2 = 0;
4669 struct dl *dl;
4670
4671 for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
4672 pdnum++) {
4673 if (be32_to_cpu(ddf->phys->entries[pdnum].refnum) ==
4674 0xFFFFFFFF)
4675 continue;
4676 if (be16_and(ddf->phys->entries[pdnum].state,
4677 cpu_to_be16(DDF_Failed))
4678 && be16_and(ddf->phys->entries[pdnum].state,
4679 cpu_to_be16(DDF_Transition))) {
4680 /* skip this one unless in dlist*/
4681 for (dl = ddf->dlist; dl; dl = dl->next)
4682 if (dl->pdnum == (int)pdnum)
4683 break;
4684 if (!dl)
4685 continue;
4686 }
4687 if (pdnum == pd2)
4688 pd2++;
4689 else {
4690 ddf->phys->entries[pd2] =
4691 ddf->phys->entries[pdnum];
4692 for (dl = ddf->dlist; dl; dl = dl->next)
4693 if (dl->pdnum == (int)pdnum)
4694 dl->pdnum = pd2;
4695 pd2++;
4696 }
4697 }
4698 ddf->phys->used_pdes = cpu_to_be16(pd2);
4699 while (pd2 < pdnum) {
4700 memset(ddf->phys->entries[pd2].guid, 0xff,
4701 DDF_GUID_LEN);
4702 pd2++;
4703 }
4704 }
4705
4706 static void ddf_update_vlist(struct ddf_super *ddf, struct dl *dl)
4707 {
4708 struct vcl *vcl;
4709 unsigned int vn = 0;
4710 int in_degraded = 0;
4711
4712 if (dl->pdnum < 0)
4713 return;
4714 for (vcl = ddf->conflist; vcl ; vcl = vcl->next) {
4715 unsigned int dn, ibvd;
4716 const struct vd_config *conf;
4717 int vstate;
4718 dn = get_pd_index_from_refnum(vcl,
4719 dl->disk.refnum,
4720 ddf->mppe,
4721 &conf, &ibvd);
4722 if (dn == DDF_NOTFOUND)
4723 continue;
4724 dprintf("dev %d/%08x has %s (sec=%u) at %d\n",
4725 dl->pdnum,
4726 be32_to_cpu(dl->disk.refnum),
4727 guid_str(conf->guid),
4728 conf->sec_elmnt_seq, vn);
4729 /* Clear the Transition flag */
4730 if (be16_and
4731 (ddf->phys->entries[dl->pdnum].state,
4732 cpu_to_be16(DDF_Failed)))
4733 be16_clear(ddf->phys
4734 ->entries[dl->pdnum].state,
4735 cpu_to_be16(DDF_Transition));
4736 dl->vlist[vn++] = vcl;
4737 vstate = ddf->virt->entries[vcl->vcnum].state
4738 & DDF_state_mask;
4739 if (vstate == DDF_state_degraded ||
4740 vstate == DDF_state_part_optimal)
4741 in_degraded = 1;
4742 }
4743 while (vn < ddf->max_part)
4744 dl->vlist[vn++] = NULL;
4745 if (dl->vlist[0]) {
4746 be16_clear(ddf->phys->entries[dl->pdnum].type,
4747 cpu_to_be16(DDF_Global_Spare));
4748 if (!be16_and(ddf->phys
4749 ->entries[dl->pdnum].type,
4750 cpu_to_be16(DDF_Active_in_VD))) {
4751 be16_set(ddf->phys
4752 ->entries[dl->pdnum].type,
4753 cpu_to_be16(DDF_Active_in_VD));
4754 if (in_degraded)
4755 be16_set(ddf->phys
4756 ->entries[dl->pdnum]
4757 .state,
4758 cpu_to_be16
4759 (DDF_Rebuilding));
4760 }
4761 }
4762 if (dl->spare) {
4763 be16_clear(ddf->phys->entries[dl->pdnum].type,
4764 cpu_to_be16(DDF_Global_Spare));
4765 be16_set(ddf->phys->entries[dl->pdnum].type,
4766 cpu_to_be16(DDF_Spare));
4767 }
4768 if (!dl->vlist[0] && !dl->spare) {
4769 be16_set(ddf->phys->entries[dl->pdnum].type,
4770 cpu_to_be16(DDF_Global_Spare));
4771 be16_clear(ddf->phys->entries[dl->pdnum].type,
4772 cpu_to_be16(DDF_Spare));
4773 be16_clear(ddf->phys->entries[dl->pdnum].type,
4774 cpu_to_be16(DDF_Active_in_VD));
4775 }
4776 }
4777
4778 static void ddf_process_conf_update(struct supertype *st,
4779 struct metadata_update *update)
4780 {
4781 struct ddf_super *ddf = st->sb;
4782 struct vd_config *vc;
4783 struct vcl *vcl;
4784 struct dl *dl;
4785 unsigned int ent;
4786 unsigned int pdnum, len;
4787
4788 vc = (struct vd_config*)update->buf;
4789 len = ddf->conf_rec_len * 512;
4790 if ((unsigned int)update->len != len * vc->sec_elmnt_count) {
4791 pr_err("%s: %s: insufficient data (%d) for %u BVDs\n",
4792 __func__, guid_str(vc->guid), update->len,
4793 vc->sec_elmnt_count);
4794 return;
4795 }
4796 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
4797 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
4798 break;
4799 dprintf("%s: conf update for %s (%s)\n", __func__,
4800 guid_str(vc->guid), (vcl ? "old" : "new"));
4801 if (vcl) {
4802 /* An update, just copy the phys_refnum and lba_offset
4803 * fields
4804 */
4805 unsigned int i;
4806 unsigned int k;
4807 copy_matching_bvd(ddf, &vcl->conf, update);
4808 for (k = 0; k < be16_to_cpu(vc->prim_elmnt_count); k++)
4809 dprintf("BVD %u has %08x at %llu\n", 0,
4810 be32_to_cpu(vcl->conf.phys_refnum[k]),
4811 be64_to_cpu(LBA_OFFSET(ddf,
4812 &vcl->conf)[k]));
4813 for (i = 1; i < vc->sec_elmnt_count; i++) {
4814 copy_matching_bvd(ddf, vcl->other_bvds[i-1],
4815 update);
4816 for (k = 0; k < be16_to_cpu(
4817 vc->prim_elmnt_count); k++)
4818 dprintf("BVD %u has %08x at %llu\n", i,
4819 be32_to_cpu
4820 (vcl->other_bvds[i-1]->
4821 phys_refnum[k]),
4822 be64_to_cpu
4823 (LBA_OFFSET
4824 (ddf,
4825 vcl->other_bvds[i-1])[k]));
4826 }
4827 } else {
4828 /* A new VD_CONF */
4829 unsigned int i;
4830 if (!update->space)
4831 return;
4832 vcl = update->space;
4833 update->space = NULL;
4834 vcl->next = ddf->conflist;
4835 memcpy(&vcl->conf, vc, len);
4836 ent = find_vde_by_guid(ddf, vc->guid);
4837 if (ent == DDF_NOTFOUND)
4838 return;
4839 vcl->vcnum = ent;
4840 ddf->conflist = vcl;
4841 for (i = 1; i < vc->sec_elmnt_count; i++)
4842 memcpy(vcl->other_bvds[i-1],
4843 update->buf + len * i, len);
4844 }
4845 /* Set DDF_Transition on all Failed devices - to help
4846 * us detect those that are no longer in use
4847 */
4848 for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
4849 pdnum++)
4850 if (be16_and(ddf->phys->entries[pdnum].state,
4851 cpu_to_be16(DDF_Failed)))
4852 be16_set(ddf->phys->entries[pdnum].state,
4853 cpu_to_be16(DDF_Transition));
4854
4855 /* Now make sure vlist is correct for each dl. */
4856 for (dl = ddf->dlist; dl; dl = dl->next)
4857 ddf_update_vlist(ddf, dl);
4858 ddf_remove_failed(ddf);
4859
4860 ddf_set_updates_pending(ddf, vc);
4861 }
4862
4863 static void ddf_process_update(struct supertype *st,
4864 struct metadata_update *update)
4865 {
4866 /* Apply this update to the metadata.
4867 * The first 4 bytes are a DDF_*_MAGIC which guides
4868 * our actions.
4869 * Possible update are:
4870 * DDF_PHYS_RECORDS_MAGIC
4871 * Add a new physical device or remove an old one.
4872 * Changes to this record only happen implicitly.
4873 * used_pdes is the device number.
4874 * DDF_VIRT_RECORDS_MAGIC
4875 * Add a new VD. Possibly also change the 'access' bits.
4876 * populated_vdes is the entry number.
4877 * DDF_VD_CONF_MAGIC
4878 * New or updated VD. the VIRT_RECORD must already
4879 * exist. For an update, phys_refnum and lba_offset
4880 * (at least) are updated, and the VD_CONF must
4881 * be written to precisely those devices listed with
4882 * a phys_refnum.
4883 * DDF_SPARE_ASSIGN_MAGIC
4884 * replacement Spare Assignment Record... but for which device?
4885 *
4886 * So, e.g.:
4887 * - to create a new array, we send a VIRT_RECORD and
4888 * a VD_CONF. Then assemble and start the array.
4889 * - to activate a spare we send a VD_CONF to add the phys_refnum
4890 * and offset. This will also mark the spare as active with
4891 * a spare-assignment record.
4892 */
4893 be32 *magic = (be32 *)update->buf;
4894
4895 dprintf("Process update %x\n", be32_to_cpu(*magic));
4896
4897 if (be32_eq(*magic, DDF_PHYS_RECORDS_MAGIC)) {
4898 if (update->len == (sizeof(struct phys_disk) +
4899 sizeof(struct phys_disk_entry)))
4900 ddf_process_phys_update(st, update);
4901 } else if (be32_eq(*magic, DDF_VIRT_RECORDS_MAGIC)) {
4902 if (update->len == (sizeof(struct virtual_disk) +
4903 sizeof(struct virtual_entry)))
4904 ddf_process_virt_update(st, update);
4905 } else if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
4906 ddf_process_conf_update(st, update);
4907 }
4908 /* case DDF_SPARE_ASSIGN_MAGIC */
4909 }
4910
4911 static int ddf_prepare_update(struct supertype *st,
4912 struct metadata_update *update)
4913 {
4914 /* This update arrived at managemon.
4915 * We are about to pass it to monitor.
4916 * If a malloc is needed, do it here.
4917 */
4918 struct ddf_super *ddf = st->sb;
4919 be32 *magic;
4920 if (update->len < 4)
4921 return 0;
4922 magic = (be32 *)update->buf;
4923 if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
4924 struct vcl *vcl;
4925 struct vd_config *conf;
4926 if (update->len < (int)sizeof(*conf))
4927 return 0;
4928 conf = (struct vd_config *) update->buf;
4929 if (posix_memalign(&update->space, 512,
4930 offsetof(struct vcl, conf)
4931 + ddf->conf_rec_len * 512) != 0) {
4932 update->space = NULL;
4933 return 0;
4934 }
4935 vcl = update->space;
4936 vcl->conf.sec_elmnt_count = conf->sec_elmnt_count;
4937 if (alloc_other_bvds(ddf, vcl) != 0) {
4938 free(update->space);
4939 update->space = NULL;
4940 return 0;
4941 }
4942 }
4943 return 1;
4944 }
4945
4946 /*
4947 * Check degraded state of a RAID10.
4948 * returns 2 for good, 1 for degraded, 0 for failed, and -1 for error
4949 */
4950 static int raid10_degraded(struct mdinfo *info)
4951 {
4952 int n_prim, n_bvds;
4953 int i;
4954 struct mdinfo *d;
4955 char *found;
4956 int ret = -1;
4957
4958 n_prim = info->array.layout & ~0x100;
4959 n_bvds = info->array.raid_disks / n_prim;
4960 found = xmalloc(n_bvds);
4961 if (found == NULL)
4962 return ret;
4963 memset(found, 0, n_bvds);
4964 for (d = info->devs; d; d = d->next) {
4965 i = d->disk.raid_disk / n_prim;
4966 if (i >= n_bvds) {
4967 pr_err("%s: BUG: invalid raid disk\n", __func__);
4968 goto out;
4969 }
4970 if (d->state_fd > 0)
4971 found[i]++;
4972 }
4973 ret = 2;
4974 for (i = 0; i < n_bvds; i++)
4975 if (!found[i]) {
4976 dprintf("%s: BVD %d/%d failed\n", __func__, i, n_bvds);
4977 ret = 0;
4978 goto out;
4979 } else if (found[i] < n_prim) {
4980 dprintf("%s: BVD %d/%d degraded\n", __func__, i,
4981 n_bvds);
4982 ret = 1;
4983 }
4984 out:
4985 free(found);
4986 return ret;
4987 }
4988
4989 /*
4990 * Check if the array 'a' is degraded but not failed.
4991 * If it is, find as many spares as are available and needed and
4992 * arrange for their inclusion.
4993 * We only choose devices which are not already in the array,
4994 * and prefer those with a spare-assignment to this array.
4995 * Otherwise we choose global spares - assuming always that
4996 * there is enough room.
4997 * For each spare that we assign, we return an 'mdinfo' which
4998 * describes the position for the device in the array.
4999 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
5000 * the new phys_refnum and lba_offset values.
5001 *
5002 * Only worry about BVDs at the moment.
5003 */
5004 static struct mdinfo *ddf_activate_spare(struct active_array *a,
5005 struct metadata_update **updates)
5006 {
5007 int working = 0;
5008 struct mdinfo *d;
5009 struct ddf_super *ddf = a->container->sb;
5010 int global_ok = 0;
5011 struct mdinfo *rv = NULL;
5012 struct mdinfo *di;
5013 struct metadata_update *mu;
5014 struct dl *dl;
5015 int i;
5016 unsigned int j;
5017 struct vcl *vcl;
5018 struct vd_config *vc;
5019 unsigned int n_bvd;
5020
5021 for (d = a->info.devs ; d ; d = d->next) {
5022 if ((d->curr_state & DS_FAULTY) &&
5023 d->state_fd >= 0)
5024 /* wait for Removal to happen */
5025 return NULL;
5026 if (d->state_fd >= 0)
5027 working ++;
5028 }
5029
5030 dprintf("%s: working=%d (%d) level=%d\n", __func__, working,
5031 a->info.array.raid_disks,
5032 a->info.array.level);
5033 if (working == a->info.array.raid_disks)
5034 return NULL; /* array not degraded */
5035 switch (a->info.array.level) {
5036 case 1:
5037 if (working == 0)
5038 return NULL; /* failed */
5039 break;
5040 case 4:
5041 case 5:
5042 if (working < a->info.array.raid_disks - 1)
5043 return NULL; /* failed */
5044 break;
5045 case 6:
5046 if (working < a->info.array.raid_disks - 2)
5047 return NULL; /* failed */
5048 break;
5049 case 10:
5050 if (raid10_degraded(&a->info) < 1)
5051 return NULL;
5052 break;
5053 default: /* concat or stripe */
5054 return NULL; /* failed */
5055 }
5056
5057 /* For each slot, if it is not working, find a spare */
5058 dl = ddf->dlist;
5059 for (i = 0; i < a->info.array.raid_disks; i++) {
5060 for (d = a->info.devs ; d ; d = d->next)
5061 if (d->disk.raid_disk == i)
5062 break;
5063 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5064 if (d && (d->state_fd >= 0))
5065 continue;
5066
5067 /* OK, this device needs recovery. Find a spare */
5068 again:
5069 for ( ; dl ; dl = dl->next) {
5070 unsigned long long esize;
5071 unsigned long long pos;
5072 struct mdinfo *d2;
5073 int is_global = 0;
5074 int is_dedicated = 0;
5075 be16 state;
5076
5077 if (dl->pdnum < 0)
5078 continue;
5079 state = ddf->phys->entries[dl->pdnum].state;
5080 if (be16_and(state,
5081 cpu_to_be16(DDF_Failed|DDF_Missing)) ||
5082 !be16_and(state,
5083 cpu_to_be16(DDF_Online)))
5084 continue;
5085
5086 /* If in this array, skip */
5087 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
5088 if (d2->state_fd >= 0 &&
5089 d2->disk.major == dl->major &&
5090 d2->disk.minor == dl->minor) {
5091 dprintf("%x:%x (%08x) already in array\n",
5092 dl->major, dl->minor,
5093 be32_to_cpu(dl->disk.refnum));
5094 break;
5095 }
5096 if (d2)
5097 continue;
5098 if (be16_and(ddf->phys->entries[dl->pdnum].type,
5099 cpu_to_be16(DDF_Spare))) {
5100 /* Check spare assign record */
5101 if (dl->spare) {
5102 if (dl->spare->type & DDF_spare_dedicated) {
5103 /* check spare_ents for guid */
5104 unsigned int j;
5105 for (j = 0 ;
5106 j < be16_to_cpu
5107 (dl->spare
5108 ->populated);
5109 j++) {
5110 if (memcmp(dl->spare->spare_ents[j].guid,
5111 ddf->virt->entries[a->info.container_member].guid,
5112 DDF_GUID_LEN) == 0)
5113 is_dedicated = 1;
5114 }
5115 } else
5116 is_global = 1;
5117 }
5118 } else if (be16_and(ddf->phys->entries[dl->pdnum].type,
5119 cpu_to_be16(DDF_Global_Spare))) {
5120 is_global = 1;
5121 } else if (!be16_and(ddf->phys
5122 ->entries[dl->pdnum].state,
5123 cpu_to_be16(DDF_Failed))) {
5124 /* we can possibly use some of this */
5125 is_global = 1;
5126 }
5127 if ( ! (is_dedicated ||
5128 (is_global && global_ok))) {
5129 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
5130 is_dedicated, is_global);
5131 continue;
5132 }
5133
5134 /* We are allowed to use this device - is there space?
5135 * We need a->info.component_size sectors */
5136 esize = a->info.component_size;
5137 pos = find_space(ddf, dl, INVALID_SECTORS, &esize);
5138
5139 if (esize < a->info.component_size) {
5140 dprintf("%x:%x has no room: %llu %llu\n",
5141 dl->major, dl->minor,
5142 esize, a->info.component_size);
5143 /* No room */
5144 continue;
5145 }
5146
5147 /* Cool, we have a device with some space at pos */
5148 di = xcalloc(1, sizeof(*di));
5149 di->disk.number = i;
5150 di->disk.raid_disk = i;
5151 di->disk.major = dl->major;
5152 di->disk.minor = dl->minor;
5153 di->disk.state = 0;
5154 di->recovery_start = 0;
5155 di->data_offset = pos;
5156 di->component_size = a->info.component_size;
5157 di->next = rv;
5158 rv = di;
5159 dprintf("%x:%x (%08x) to be %d at %llu\n",
5160 dl->major, dl->minor,
5161 be32_to_cpu(dl->disk.refnum), i, pos);
5162
5163 break;
5164 }
5165 if (!dl && ! global_ok) {
5166 /* not enough dedicated spares, try global */
5167 global_ok = 1;
5168 dl = ddf->dlist;
5169 goto again;
5170 }
5171 }
5172
5173 if (!rv)
5174 /* No spares found */
5175 return rv;
5176 /* Now 'rv' has a list of devices to return.
5177 * Create a metadata_update record to update the
5178 * phys_refnum and lba_offset values
5179 */
5180 vc = find_vdcr(ddf, a->info.container_member, rv->disk.raid_disk,
5181 &n_bvd, &vcl);
5182 if (vc == NULL)
5183 return NULL;
5184
5185 mu = xmalloc(sizeof(*mu));
5186 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
5187 free(mu);
5188 mu = NULL;
5189 }
5190
5191 mu->len = ddf->conf_rec_len * 512 * vcl->conf.sec_elmnt_count;
5192 mu->buf = xmalloc(mu->len);
5193 mu->space = NULL;
5194 mu->space_list = NULL;
5195 mu->next = *updates;
5196 memcpy(mu->buf, &vcl->conf, ddf->conf_rec_len * 512);
5197 for (j = 1; j < vcl->conf.sec_elmnt_count; j++)
5198 memcpy(mu->buf + j * ddf->conf_rec_len * 512,
5199 vcl->other_bvds[j-1], ddf->conf_rec_len * 512);
5200
5201 vc = (struct vd_config*)mu->buf;
5202 for (di = rv ; di ; di = di->next) {
5203 unsigned int i_sec, i_prim;
5204 i_sec = di->disk.raid_disk
5205 / be16_to_cpu(vcl->conf.prim_elmnt_count);
5206 i_prim = di->disk.raid_disk
5207 % be16_to_cpu(vcl->conf.prim_elmnt_count);
5208 vc = (struct vd_config *)(mu->buf
5209 + i_sec * ddf->conf_rec_len * 512);
5210 for (dl = ddf->dlist; dl; dl = dl->next)
5211 if (dl->major == di->disk.major
5212 && dl->minor == di->disk.minor)
5213 break;
5214 if (!dl || dl->pdnum < 0) {
5215 pr_err("%s: BUG: can't find disk %d (%d/%d)\n",
5216 __func__, di->disk.raid_disk,
5217 di->disk.major, di->disk.minor);
5218 return NULL;
5219 }
5220 vc->phys_refnum[i_prim] = ddf->phys->entries[dl->pdnum].refnum;
5221 LBA_OFFSET(ddf, vc)[i_prim] = cpu_to_be64(di->data_offset);
5222 dprintf("BVD %u gets %u: %08x at %llu\n", i_sec, i_prim,
5223 be32_to_cpu(vc->phys_refnum[i_prim]),
5224 be64_to_cpu(LBA_OFFSET(ddf, vc)[i_prim]));
5225 }
5226 *updates = mu;
5227 return rv;
5228 }
5229 #endif /* MDASSEMBLE */
5230
5231 static int ddf_level_to_layout(int level)
5232 {
5233 switch(level) {
5234 case 0:
5235 case 1:
5236 return 0;
5237 case 5:
5238 return ALGORITHM_LEFT_SYMMETRIC;
5239 case 6:
5240 return ALGORITHM_ROTATING_N_CONTINUE;
5241 case 10:
5242 return 0x102;
5243 default:
5244 return UnSet;
5245 }
5246 }
5247
5248 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
5249 {
5250 if (level && *level == UnSet)
5251 *level = LEVEL_CONTAINER;
5252
5253 if (level && layout && *layout == UnSet)
5254 *layout = ddf_level_to_layout(*level);
5255 }
5256
5257 struct superswitch super_ddf = {
5258 #ifndef MDASSEMBLE
5259 .examine_super = examine_super_ddf,
5260 .brief_examine_super = brief_examine_super_ddf,
5261 .brief_examine_subarrays = brief_examine_subarrays_ddf,
5262 .export_examine_super = export_examine_super_ddf,
5263 .detail_super = detail_super_ddf,
5264 .brief_detail_super = brief_detail_super_ddf,
5265 .validate_geometry = validate_geometry_ddf,
5266 .write_init_super = write_init_super_ddf,
5267 .add_to_super = add_to_super_ddf,
5268 .remove_from_super = remove_from_super_ddf,
5269 .load_container = load_container_ddf,
5270 .copy_metadata = copy_metadata_ddf,
5271 .kill_subarray = kill_subarray_ddf,
5272 #endif
5273 .match_home = match_home_ddf,
5274 .uuid_from_super= uuid_from_super_ddf,
5275 .getinfo_super = getinfo_super_ddf,
5276 .update_super = update_super_ddf,
5277
5278 .avail_size = avail_size_ddf,
5279
5280 .compare_super = compare_super_ddf,
5281
5282 .load_super = load_super_ddf,
5283 .init_super = init_super_ddf,
5284 .store_super = store_super_ddf,
5285 .free_super = free_super_ddf,
5286 .match_metadata_desc = match_metadata_desc_ddf,
5287 .container_content = container_content_ddf,
5288 .default_geometry = default_geometry_ddf,
5289
5290 .external = 1,
5291
5292 #ifndef MDASSEMBLE
5293 /* for mdmon */
5294 .open_new = ddf_open_new,
5295 .set_array_state= ddf_set_array_state,
5296 .set_disk = ddf_set_disk,
5297 .sync_metadata = ddf_sync_metadata,
5298 .process_update = ddf_process_update,
5299 .prepare_update = ddf_prepare_update,
5300 .activate_spare = ddf_activate_spare,
5301 #endif
5302 .name = "ddf",
5303 };