]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Manage: fix test for 'is array failed'.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2014 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF taken from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33 #include <stddef.h>
34
35 /* a non-official T10 name for creation GUIDs */
36 static char T10[] = "Linux-MD";
37
38 /* DDF timestamps are 1980 based, so we need to add
39 * second-in-decade-of-seventies to convert to linux timestamps.
40 * 10 years with 2 leap years.
41 */
42 #define DECADE (3600*24*(365*10+2))
43 unsigned long crc32(
44 unsigned long crc,
45 const unsigned char *buf,
46 unsigned len);
47
48 #define DDF_NOTFOUND (~0U)
49 #define DDF_CONTAINER (DDF_NOTFOUND-1)
50
51 /* Default for safe_mode_delay. Same value as for IMSM.
52 */
53 static const int DDF_SAFE_MODE_DELAY = 4000;
54
55 /* The DDF metadata handling.
56 * DDF metadata lives at the end of the device.
57 * The last 512 byte block provides an 'anchor' which is used to locate
58 * the rest of the metadata which usually lives immediately behind the anchor.
59 *
60 * Note:
61 * - all multibyte numeric fields are bigendian.
62 * - all strings are space padded.
63 *
64 */
65
66 typedef struct __be16 {
67 __u16 _v16;
68 } be16;
69 #define be16_eq(x, y) ((x)._v16 == (y)._v16)
70 #define be16_and(x, y) ((x)._v16 & (y)._v16)
71 #define be16_or(x, y) ((x)._v16 | (y)._v16)
72 #define be16_clear(x, y) ((x)._v16 &= ~(y)._v16)
73 #define be16_set(x, y) ((x)._v16 |= (y)._v16)
74
75 typedef struct __be32 {
76 __u32 _v32;
77 } be32;
78 #define be32_eq(x, y) ((x)._v32 == (y)._v32)
79
80 typedef struct __be64 {
81 __u64 _v64;
82 } be64;
83 #define be64_eq(x, y) ((x)._v64 == (y)._v64)
84
85 #define be16_to_cpu(be) __be16_to_cpu((be)._v16)
86 static inline be16 cpu_to_be16(__u16 x)
87 {
88 be16 be = { ._v16 = __cpu_to_be16(x) };
89 return be;
90 }
91
92 #define be32_to_cpu(be) __be32_to_cpu((be)._v32)
93 static inline be32 cpu_to_be32(__u32 x)
94 {
95 be32 be = { ._v32 = __cpu_to_be32(x) };
96 return be;
97 }
98
99 #define be64_to_cpu(be) __be64_to_cpu((be)._v64)
100 static inline be64 cpu_to_be64(__u64 x)
101 {
102 be64 be = { ._v64 = __cpu_to_be64(x) };
103 return be;
104 }
105
106 /* Primary Raid Level (PRL) */
107 #define DDF_RAID0 0x00
108 #define DDF_RAID1 0x01
109 #define DDF_RAID3 0x03
110 #define DDF_RAID4 0x04
111 #define DDF_RAID5 0x05
112 #define DDF_RAID1E 0x11
113 #define DDF_JBOD 0x0f
114 #define DDF_CONCAT 0x1f
115 #define DDF_RAID5E 0x15
116 #define DDF_RAID5EE 0x25
117 #define DDF_RAID6 0x06
118
119 /* Raid Level Qualifier (RLQ) */
120 #define DDF_RAID0_SIMPLE 0x00
121 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
122 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
123 #define DDF_RAID3_0 0x00 /* parity in first extent */
124 #define DDF_RAID3_N 0x01 /* parity in last extent */
125 #define DDF_RAID4_0 0x00 /* parity in first extent */
126 #define DDF_RAID4_N 0x01 /* parity in last extent */
127 /* these apply to raid5e and raid5ee as well */
128 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
129 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
130 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
131 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
132
133 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
134 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
135
136 /* Secondary RAID Level (SRL) */
137 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
138 #define DDF_2MIRRORED 0x01
139 #define DDF_2CONCAT 0x02
140 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
141
142 /* Magic numbers */
143 #define DDF_HEADER_MAGIC cpu_to_be32(0xDE11DE11)
144 #define DDF_CONTROLLER_MAGIC cpu_to_be32(0xAD111111)
145 #define DDF_PHYS_RECORDS_MAGIC cpu_to_be32(0x22222222)
146 #define DDF_PHYS_DATA_MAGIC cpu_to_be32(0x33333333)
147 #define DDF_VIRT_RECORDS_MAGIC cpu_to_be32(0xDDDDDDDD)
148 #define DDF_VD_CONF_MAGIC cpu_to_be32(0xEEEEEEEE)
149 #define DDF_SPARE_ASSIGN_MAGIC cpu_to_be32(0x55555555)
150 #define DDF_VU_CONF_MAGIC cpu_to_be32(0x88888888)
151 #define DDF_VENDOR_LOG_MAGIC cpu_to_be32(0x01dBEEF0)
152 #define DDF_BBM_LOG_MAGIC cpu_to_be32(0xABADB10C)
153
154 #define DDF_GUID_LEN 24
155 #define DDF_REVISION_0 "01.00.00"
156 #define DDF_REVISION_2 "01.02.00"
157
158 struct ddf_header {
159 be32 magic; /* DDF_HEADER_MAGIC */
160 be32 crc;
161 char guid[DDF_GUID_LEN];
162 char revision[8]; /* 01.02.00 */
163 be32 seq; /* starts at '1' */
164 be32 timestamp;
165 __u8 openflag;
166 __u8 foreignflag;
167 __u8 enforcegroups;
168 __u8 pad0; /* 0xff */
169 __u8 pad1[12]; /* 12 * 0xff */
170 /* 64 bytes so far */
171 __u8 header_ext[32]; /* reserved: fill with 0xff */
172 be64 primary_lba;
173 be64 secondary_lba;
174 __u8 type;
175 __u8 pad2[3]; /* 0xff */
176 be32 workspace_len; /* sectors for vendor space -
177 * at least 32768(sectors) */
178 be64 workspace_lba;
179 be16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
180 be16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
181 be16 max_partitions; /* i.e. max num of configuration
182 record entries per disk */
183 be16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
184 *12/512) */
185 be16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
186 __u8 pad3[54]; /* 0xff */
187 /* 192 bytes so far */
188 be32 controller_section_offset;
189 be32 controller_section_length;
190 be32 phys_section_offset;
191 be32 phys_section_length;
192 be32 virt_section_offset;
193 be32 virt_section_length;
194 be32 config_section_offset;
195 be32 config_section_length;
196 be32 data_section_offset;
197 be32 data_section_length;
198 be32 bbm_section_offset;
199 be32 bbm_section_length;
200 be32 diag_space_offset;
201 be32 diag_space_length;
202 be32 vendor_offset;
203 be32 vendor_length;
204 /* 256 bytes so far */
205 __u8 pad4[256]; /* 0xff */
206 };
207
208 /* type field */
209 #define DDF_HEADER_ANCHOR 0x00
210 #define DDF_HEADER_PRIMARY 0x01
211 #define DDF_HEADER_SECONDARY 0x02
212
213 /* The content of the 'controller section' - global scope */
214 struct ddf_controller_data {
215 be32 magic; /* DDF_CONTROLLER_MAGIC */
216 be32 crc;
217 char guid[DDF_GUID_LEN];
218 struct controller_type {
219 be16 vendor_id;
220 be16 device_id;
221 be16 sub_vendor_id;
222 be16 sub_device_id;
223 } type;
224 char product_id[16];
225 __u8 pad[8]; /* 0xff */
226 __u8 vendor_data[448];
227 };
228
229 /* The content of phys_section - global scope */
230 struct phys_disk {
231 be32 magic; /* DDF_PHYS_RECORDS_MAGIC */
232 be32 crc;
233 be16 used_pdes; /* This is a counter, not a max - the list
234 * of used entries may not be dense */
235 be16 max_pdes;
236 __u8 pad[52];
237 struct phys_disk_entry {
238 char guid[DDF_GUID_LEN];
239 be32 refnum;
240 be16 type;
241 be16 state;
242 be64 config_size; /* DDF structures must be after here */
243 char path[18]; /* Another horrible structure really
244 * but is "used for information
245 * purposes only" */
246 __u8 pad[6];
247 } entries[0];
248 };
249
250 /* phys_disk_entry.type is a bitmap - bigendian remember */
251 #define DDF_Forced_PD_GUID 1
252 #define DDF_Active_in_VD 2
253 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
254 #define DDF_Spare 8 /* overrides Global_spare */
255 #define DDF_Foreign 16
256 #define DDF_Legacy 32 /* no DDF on this device */
257
258 #define DDF_Interface_mask 0xf00
259 #define DDF_Interface_SCSI 0x100
260 #define DDF_Interface_SAS 0x200
261 #define DDF_Interface_SATA 0x300
262 #define DDF_Interface_FC 0x400
263
264 /* phys_disk_entry.state is a bigendian bitmap */
265 #define DDF_Online 1
266 #define DDF_Failed 2 /* overrides 1,4,8 */
267 #define DDF_Rebuilding 4
268 #define DDF_Transition 8
269 #define DDF_SMART 16
270 #define DDF_ReadErrors 32
271 #define DDF_Missing 64
272
273 /* The content of the virt_section global scope */
274 struct virtual_disk {
275 be32 magic; /* DDF_VIRT_RECORDS_MAGIC */
276 be32 crc;
277 be16 populated_vdes;
278 be16 max_vdes;
279 __u8 pad[52];
280 struct virtual_entry {
281 char guid[DDF_GUID_LEN];
282 be16 unit;
283 __u16 pad0; /* 0xffff */
284 be16 guid_crc;
285 be16 type;
286 __u8 state;
287 __u8 init_state;
288 __u8 pad1[14];
289 char name[16];
290 } entries[0];
291 };
292
293 /* virtual_entry.type is a bitmap - bigendian */
294 #define DDF_Shared 1
295 #define DDF_Enforce_Groups 2
296 #define DDF_Unicode 4
297 #define DDF_Owner_Valid 8
298
299 /* virtual_entry.state is a bigendian bitmap */
300 #define DDF_state_mask 0x7
301 #define DDF_state_optimal 0x0
302 #define DDF_state_degraded 0x1
303 #define DDF_state_deleted 0x2
304 #define DDF_state_missing 0x3
305 #define DDF_state_failed 0x4
306 #define DDF_state_part_optimal 0x5
307
308 #define DDF_state_morphing 0x8
309 #define DDF_state_inconsistent 0x10
310
311 /* virtual_entry.init_state is a bigendian bitmap */
312 #define DDF_initstate_mask 0x03
313 #define DDF_init_not 0x00
314 #define DDF_init_quick 0x01 /* initialisation is progress.
315 * i.e. 'state_inconsistent' */
316 #define DDF_init_full 0x02
317
318 #define DDF_access_mask 0xc0
319 #define DDF_access_rw 0x00
320 #define DDF_access_ro 0x80
321 #define DDF_access_blocked 0xc0
322
323 /* The content of the config_section - local scope
324 * It has multiple records each config_record_len sectors
325 * They can be vd_config or spare_assign
326 */
327
328 struct vd_config {
329 be32 magic; /* DDF_VD_CONF_MAGIC */
330 be32 crc;
331 char guid[DDF_GUID_LEN];
332 be32 timestamp;
333 be32 seqnum;
334 __u8 pad0[24];
335 be16 prim_elmnt_count;
336 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
337 __u8 prl;
338 __u8 rlq;
339 __u8 sec_elmnt_count;
340 __u8 sec_elmnt_seq;
341 __u8 srl;
342 be64 blocks; /* blocks per component could be different
343 * on different component devices...(only
344 * for concat I hope) */
345 be64 array_blocks; /* blocks in array */
346 __u8 pad1[8];
347 be32 spare_refs[8]; /* This is used to detect missing spares.
348 * As we don't have an interface for that
349 * the values are ignored.
350 */
351 __u8 cache_pol[8];
352 __u8 bg_rate;
353 __u8 pad2[3];
354 __u8 pad3[52];
355 __u8 pad4[192];
356 __u8 v0[32]; /* reserved- 0xff */
357 __u8 v1[32]; /* reserved- 0xff */
358 __u8 v2[16]; /* reserved- 0xff */
359 __u8 v3[16]; /* reserved- 0xff */
360 __u8 vendor[32];
361 be32 phys_refnum[0]; /* refnum of each disk in sequence */
362 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
363 bvd are always the same size */
364 };
365 #define LBA_OFFSET(ddf, vd) ((be64 *) &(vd)->phys_refnum[(ddf)->mppe])
366
367 /* vd_config.cache_pol[7] is a bitmap */
368 #define DDF_cache_writeback 1 /* else writethrough */
369 #define DDF_cache_wadaptive 2 /* only applies if writeback */
370 #define DDF_cache_readahead 4
371 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
372 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
373 #define DDF_cache_wallowed 32 /* enable write caching */
374 #define DDF_cache_rallowed 64 /* enable read caching */
375
376 struct spare_assign {
377 be32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
378 be32 crc;
379 be32 timestamp;
380 __u8 reserved[7];
381 __u8 type;
382 be16 populated; /* SAEs used */
383 be16 max; /* max SAEs */
384 __u8 pad[8];
385 struct spare_assign_entry {
386 char guid[DDF_GUID_LEN];
387 be16 secondary_element;
388 __u8 pad[6];
389 } spare_ents[0];
390 };
391 /* spare_assign.type is a bitmap */
392 #define DDF_spare_dedicated 0x1 /* else global */
393 #define DDF_spare_revertible 0x2 /* else committable */
394 #define DDF_spare_active 0x4 /* else not active */
395 #define DDF_spare_affinity 0x8 /* enclosure affinity */
396
397 /* The data_section contents - local scope */
398 struct disk_data {
399 be32 magic; /* DDF_PHYS_DATA_MAGIC */
400 be32 crc;
401 char guid[DDF_GUID_LEN];
402 be32 refnum; /* crc of some magic drive data ... */
403 __u8 forced_ref; /* set when above was not result of magic */
404 __u8 forced_guid; /* set if guid was forced rather than magic */
405 __u8 vendor[32];
406 __u8 pad[442];
407 };
408
409 /* bbm_section content */
410 struct bad_block_log {
411 be32 magic;
412 be32 crc;
413 be16 entry_count;
414 be32 spare_count;
415 __u8 pad[10];
416 be64 first_spare;
417 struct mapped_block {
418 be64 defective_start;
419 be32 replacement_start;
420 be16 remap_count;
421 __u8 pad[2];
422 } entries[0];
423 };
424
425 /* Struct for internally holding ddf structures */
426 /* The DDF structure stored on each device is potentially
427 * quite different, as some data is global and some is local.
428 * The global data is:
429 * - ddf header
430 * - controller_data
431 * - Physical disk records
432 * - Virtual disk records
433 * The local data is:
434 * - Configuration records
435 * - Physical Disk data section
436 * ( and Bad block and vendor which I don't care about yet).
437 *
438 * The local data is parsed into separate lists as it is read
439 * and reconstructed for writing. This means that we only need
440 * to make config changes once and they are automatically
441 * propagated to all devices.
442 * The global (config and disk data) records are each in a list
443 * of separate data structures. When writing we find the entry
444 * or entries applicable to the particular device.
445 */
446 struct ddf_super {
447 struct ddf_header anchor, primary, secondary;
448 struct ddf_controller_data controller;
449 struct ddf_header *active;
450 struct phys_disk *phys;
451 struct virtual_disk *virt;
452 char *conf;
453 int pdsize, vdsize;
454 unsigned int max_part, mppe, conf_rec_len;
455 int currentdev;
456 int updates_pending;
457 struct vcl {
458 union {
459 char space[512];
460 struct {
461 struct vcl *next;
462 unsigned int vcnum; /* index into ->virt */
463 /* For an array with a secondary level there are
464 * multiple vd_config structures, all with the same
465 * guid but with different sec_elmnt_seq.
466 * One of these structures is in 'conf' below.
467 * The others are in other_bvds, not in any
468 * particular order.
469 */
470 struct vd_config **other_bvds;
471 __u64 *block_sizes; /* NULL if all the same */
472 };
473 };
474 struct vd_config conf;
475 } *conflist, *currentconf;
476 struct dl {
477 union {
478 char space[512];
479 struct {
480 struct dl *next;
481 int major, minor;
482 char *devname;
483 int fd;
484 unsigned long long size; /* sectors */
485 be64 primary_lba; /* sectors */
486 be64 secondary_lba; /* sectors */
487 be64 workspace_lba; /* sectors */
488 int pdnum; /* index in ->phys */
489 struct spare_assign *spare;
490 void *mdupdate; /* hold metadata update */
491
492 /* These fields used by auto-layout */
493 int raiddisk; /* slot to fill in autolayout */
494 __u64 esize;
495 int displayed;
496 };
497 };
498 struct disk_data disk;
499 struct vcl *vlist[0]; /* max_part in size */
500 } *dlist, *add_list;
501 };
502
503 #ifndef MDASSEMBLE
504 static int load_super_ddf_all(struct supertype *st, int fd,
505 void **sbp, char *devname);
506 static int get_svd_state(const struct ddf_super *, const struct vcl *);
507 static int
508 validate_geometry_ddf_container(struct supertype *st,
509 int level, int layout, int raiddisks,
510 int chunk, unsigned long long size,
511 unsigned long long data_offset,
512 char *dev, unsigned long long *freesize,
513 int verbose);
514
515 static int validate_geometry_ddf_bvd(struct supertype *st,
516 int level, int layout, int raiddisks,
517 int *chunk, unsigned long long size,
518 unsigned long long data_offset,
519 char *dev, unsigned long long *freesize,
520 int verbose);
521 #endif
522
523 static void free_super_ddf(struct supertype *st);
524 static int all_ff(const char *guid);
525 static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
526 be32 refnum, unsigned int nmax,
527 const struct vd_config **bvd,
528 unsigned int *idx);
529 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
530 static void uuid_from_ddf_guid(const char *guid, int uuid[4]);
531 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
532 static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i);
533 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
534 static int init_super_ddf_bvd(struct supertype *st,
535 mdu_array_info_t *info,
536 unsigned long long size,
537 char *name, char *homehost,
538 int *uuid, unsigned long long data_offset);
539
540 #if DEBUG
541 static void pr_state(struct ddf_super *ddf, const char *msg)
542 {
543 unsigned int i;
544 dprintf("%s: ", msg);
545 for (i = 0; i < be16_to_cpu(ddf->active->max_vd_entries); i++) {
546 if (all_ff(ddf->virt->entries[i].guid))
547 continue;
548 dprintf_cont("%u(s=%02x i=%02x) ", i,
549 ddf->virt->entries[i].state,
550 ddf->virt->entries[i].init_state);
551 }
552 dprintf_cont("\n");
553 }
554 #else
555 static void pr_state(const struct ddf_super *ddf, const char *msg) {}
556 #endif
557
558 static void _ddf_set_updates_pending(struct ddf_super *ddf, struct vd_config *vc,
559 const char *func)
560 {
561 if (vc) {
562 vc->timestamp = cpu_to_be32(time(0)-DECADE);
563 vc->seqnum = cpu_to_be32(be32_to_cpu(vc->seqnum) + 1);
564 }
565 if (ddf->updates_pending)
566 return;
567 ddf->updates_pending = 1;
568 ddf->active->seq = cpu_to_be32((be32_to_cpu(ddf->active->seq)+1));
569 pr_state(ddf, func);
570 }
571
572 #define ddf_set_updates_pending(x,v) _ddf_set_updates_pending((x), (v), __func__)
573
574 static be32 calc_crc(void *buf, int len)
575 {
576 /* crcs are always at the same place as in the ddf_header */
577 struct ddf_header *ddf = buf;
578 be32 oldcrc = ddf->crc;
579 __u32 newcrc;
580 ddf->crc = cpu_to_be32(0xffffffff);
581
582 newcrc = crc32(0, buf, len);
583 ddf->crc = oldcrc;
584 /* The crc is stored (like everything) bigendian, so convert
585 * here for simplicity
586 */
587 return cpu_to_be32(newcrc);
588 }
589
590 #define DDF_INVALID_LEVEL 0xff
591 #define DDF_NO_SECONDARY 0xff
592 static int err_bad_md_layout(const mdu_array_info_t *array)
593 {
594 pr_err("RAID%d layout %x with %d disks is unsupported for DDF\n",
595 array->level, array->layout, array->raid_disks);
596 return -1;
597 }
598
599 static int layout_md2ddf(const mdu_array_info_t *array,
600 struct vd_config *conf)
601 {
602 be16 prim_elmnt_count = cpu_to_be16(array->raid_disks);
603 __u8 prl = DDF_INVALID_LEVEL, rlq = 0;
604 __u8 sec_elmnt_count = 1;
605 __u8 srl = DDF_NO_SECONDARY;
606
607 switch (array->level) {
608 case LEVEL_LINEAR:
609 prl = DDF_CONCAT;
610 break;
611 case 0:
612 rlq = DDF_RAID0_SIMPLE;
613 prl = DDF_RAID0;
614 break;
615 case 1:
616 switch (array->raid_disks) {
617 case 2:
618 rlq = DDF_RAID1_SIMPLE;
619 break;
620 case 3:
621 rlq = DDF_RAID1_MULTI;
622 break;
623 default:
624 return err_bad_md_layout(array);
625 }
626 prl = DDF_RAID1;
627 break;
628 case 4:
629 if (array->layout != 0)
630 return err_bad_md_layout(array);
631 rlq = DDF_RAID4_N;
632 prl = DDF_RAID4;
633 break;
634 case 5:
635 switch (array->layout) {
636 case ALGORITHM_LEFT_ASYMMETRIC:
637 rlq = DDF_RAID5_N_RESTART;
638 break;
639 case ALGORITHM_RIGHT_ASYMMETRIC:
640 rlq = DDF_RAID5_0_RESTART;
641 break;
642 case ALGORITHM_LEFT_SYMMETRIC:
643 rlq = DDF_RAID5_N_CONTINUE;
644 break;
645 case ALGORITHM_RIGHT_SYMMETRIC:
646 /* not mentioned in standard */
647 default:
648 return err_bad_md_layout(array);
649 }
650 prl = DDF_RAID5;
651 break;
652 case 6:
653 switch (array->layout) {
654 case ALGORITHM_ROTATING_N_RESTART:
655 rlq = DDF_RAID5_N_RESTART;
656 break;
657 case ALGORITHM_ROTATING_ZERO_RESTART:
658 rlq = DDF_RAID6_0_RESTART;
659 break;
660 case ALGORITHM_ROTATING_N_CONTINUE:
661 rlq = DDF_RAID5_N_CONTINUE;
662 break;
663 default:
664 return err_bad_md_layout(array);
665 }
666 prl = DDF_RAID6;
667 break;
668 case 10:
669 if (array->raid_disks % 2 == 0 && array->layout == 0x102) {
670 rlq = DDF_RAID1_SIMPLE;
671 prim_elmnt_count = cpu_to_be16(2);
672 sec_elmnt_count = array->raid_disks / 2;
673 srl = DDF_2SPANNED;
674 prl = DDF_RAID1;
675 } else if (array->raid_disks % 3 == 0
676 && array->layout == 0x103) {
677 rlq = DDF_RAID1_MULTI;
678 prim_elmnt_count = cpu_to_be16(3);
679 sec_elmnt_count = array->raid_disks / 3;
680 srl = DDF_2SPANNED;
681 prl = DDF_RAID1;
682 } else if (array->layout == 0x201) {
683 prl = DDF_RAID1E;
684 rlq = DDF_RAID1E_OFFSET;
685 } else if (array->layout == 0x102) {
686 prl = DDF_RAID1E;
687 rlq = DDF_RAID1E_ADJACENT;
688 } else
689 return err_bad_md_layout(array);
690 break;
691 default:
692 return err_bad_md_layout(array);
693 }
694 conf->prl = prl;
695 conf->prim_elmnt_count = prim_elmnt_count;
696 conf->rlq = rlq;
697 conf->srl = srl;
698 conf->sec_elmnt_count = sec_elmnt_count;
699 return 0;
700 }
701
702 static int err_bad_ddf_layout(const struct vd_config *conf)
703 {
704 pr_err("DDF RAID %u qualifier %u with %u disks is unsupported\n",
705 conf->prl, conf->rlq, be16_to_cpu(conf->prim_elmnt_count));
706 return -1;
707 }
708
709 static int layout_ddf2md(const struct vd_config *conf,
710 mdu_array_info_t *array)
711 {
712 int level = LEVEL_UNSUPPORTED;
713 int layout = 0;
714 int raiddisks = be16_to_cpu(conf->prim_elmnt_count);
715
716 if (conf->sec_elmnt_count > 1) {
717 /* see also check_secondary() */
718 if (conf->prl != DDF_RAID1 ||
719 (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED)) {
720 pr_err("Unsupported secondary RAID level %u/%u\n",
721 conf->prl, conf->srl);
722 return -1;
723 }
724 if (raiddisks == 2 && conf->rlq == DDF_RAID1_SIMPLE)
725 layout = 0x102;
726 else if (raiddisks == 3 && conf->rlq == DDF_RAID1_MULTI)
727 layout = 0x103;
728 else
729 return err_bad_ddf_layout(conf);
730 raiddisks *= conf->sec_elmnt_count;
731 level = 10;
732 goto good;
733 }
734
735 switch (conf->prl) {
736 case DDF_CONCAT:
737 level = LEVEL_LINEAR;
738 break;
739 case DDF_RAID0:
740 if (conf->rlq != DDF_RAID0_SIMPLE)
741 return err_bad_ddf_layout(conf);
742 level = 0;
743 break;
744 case DDF_RAID1:
745 if (!((conf->rlq == DDF_RAID1_SIMPLE && raiddisks == 2) ||
746 (conf->rlq == DDF_RAID1_MULTI && raiddisks == 3)))
747 return err_bad_ddf_layout(conf);
748 level = 1;
749 break;
750 case DDF_RAID1E:
751 if (conf->rlq == DDF_RAID1E_ADJACENT)
752 layout = 0x102;
753 else if (conf->rlq == DDF_RAID1E_OFFSET)
754 layout = 0x201;
755 else
756 return err_bad_ddf_layout(conf);
757 level = 10;
758 break;
759 case DDF_RAID4:
760 if (conf->rlq != DDF_RAID4_N)
761 return err_bad_ddf_layout(conf);
762 level = 4;
763 break;
764 case DDF_RAID5:
765 switch (conf->rlq) {
766 case DDF_RAID5_N_RESTART:
767 layout = ALGORITHM_LEFT_ASYMMETRIC;
768 break;
769 case DDF_RAID5_0_RESTART:
770 layout = ALGORITHM_RIGHT_ASYMMETRIC;
771 break;
772 case DDF_RAID5_N_CONTINUE:
773 layout = ALGORITHM_LEFT_SYMMETRIC;
774 break;
775 default:
776 return err_bad_ddf_layout(conf);
777 }
778 level = 5;
779 break;
780 case DDF_RAID6:
781 switch (conf->rlq) {
782 case DDF_RAID5_N_RESTART:
783 layout = ALGORITHM_ROTATING_N_RESTART;
784 break;
785 case DDF_RAID6_0_RESTART:
786 layout = ALGORITHM_ROTATING_ZERO_RESTART;
787 break;
788 case DDF_RAID5_N_CONTINUE:
789 layout = ALGORITHM_ROTATING_N_CONTINUE;
790 break;
791 default:
792 return err_bad_ddf_layout(conf);
793 }
794 level = 6;
795 break;
796 default:
797 return err_bad_ddf_layout(conf);
798 };
799
800 good:
801 array->level = level;
802 array->layout = layout;
803 array->raid_disks = raiddisks;
804 return 0;
805 }
806
807 static int load_ddf_header(int fd, unsigned long long lba,
808 unsigned long long size,
809 int type,
810 struct ddf_header *hdr, struct ddf_header *anchor)
811 {
812 /* read a ddf header (primary or secondary) from fd/lba
813 * and check that it is consistent with anchor
814 * Need to check:
815 * magic, crc, guid, rev, and LBA's header_type, and
816 * everything after header_type must be the same
817 */
818 if (lba >= size-1)
819 return 0;
820
821 if (lseek64(fd, lba<<9, 0) < 0)
822 return 0;
823
824 if (read(fd, hdr, 512) != 512)
825 return 0;
826
827 if (!be32_eq(hdr->magic, DDF_HEADER_MAGIC)) {
828 pr_err("bad header magic\n");
829 return 0;
830 }
831 if (!be32_eq(calc_crc(hdr, 512), hdr->crc)) {
832 pr_err("bad CRC\n");
833 return 0;
834 }
835 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
836 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
837 !be64_eq(anchor->primary_lba, hdr->primary_lba) ||
838 !be64_eq(anchor->secondary_lba, hdr->secondary_lba) ||
839 hdr->type != type ||
840 memcmp(anchor->pad2, hdr->pad2, 512 -
841 offsetof(struct ddf_header, pad2)) != 0) {
842 pr_err("header mismatch\n");
843 return 0;
844 }
845
846 /* Looks good enough to me... */
847 return 1;
848 }
849
850 static void *load_section(int fd, struct ddf_super *super, void *buf,
851 be32 offset_be, be32 len_be, int check)
852 {
853 unsigned long long offset = be32_to_cpu(offset_be);
854 unsigned long long len = be32_to_cpu(len_be);
855 int dofree = (buf == NULL);
856
857 if (check)
858 if (len != 2 && len != 8 && len != 32
859 && len != 128 && len != 512)
860 return NULL;
861
862 if (len > 1024)
863 return NULL;
864 if (!buf && posix_memalign(&buf, 512, len<<9) != 0)
865 buf = NULL;
866
867 if (!buf)
868 return NULL;
869
870 if (super->active->type == 1)
871 offset += be64_to_cpu(super->active->primary_lba);
872 else
873 offset += be64_to_cpu(super->active->secondary_lba);
874
875 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
876 if (dofree)
877 free(buf);
878 return NULL;
879 }
880 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
881 if (dofree)
882 free(buf);
883 return NULL;
884 }
885 return buf;
886 }
887
888 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
889 {
890 unsigned long long dsize;
891
892 get_dev_size(fd, NULL, &dsize);
893
894 if (lseek64(fd, dsize-512, 0) < 0) {
895 if (devname)
896 pr_err("Cannot seek to anchor block on %s: %s\n",
897 devname, strerror(errno));
898 return 1;
899 }
900 if (read(fd, &super->anchor, 512) != 512) {
901 if (devname)
902 pr_err("Cannot read anchor block on %s: %s\n",
903 devname, strerror(errno));
904 return 1;
905 }
906 if (!be32_eq(super->anchor.magic, DDF_HEADER_MAGIC)) {
907 if (devname)
908 pr_err("no DDF anchor found on %s\n",
909 devname);
910 return 2;
911 }
912 if (!be32_eq(calc_crc(&super->anchor, 512), super->anchor.crc)) {
913 if (devname)
914 pr_err("bad CRC on anchor on %s\n",
915 devname);
916 return 2;
917 }
918 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
919 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
920 if (devname)
921 pr_err("can only support super revision %.8s and earlier, not %.8s on %s\n",
922 DDF_REVISION_2, super->anchor.revision,devname);
923 return 2;
924 }
925 super->active = NULL;
926 if (load_ddf_header(fd, be64_to_cpu(super->anchor.primary_lba),
927 dsize >> 9, 1,
928 &super->primary, &super->anchor) == 0) {
929 if (devname)
930 pr_err("Failed to load primary DDF header on %s\n", devname);
931 } else
932 super->active = &super->primary;
933
934 if (load_ddf_header(fd, be64_to_cpu(super->anchor.secondary_lba),
935 dsize >> 9, 2,
936 &super->secondary, &super->anchor)) {
937 if (super->active == NULL
938 || (be32_to_cpu(super->primary.seq)
939 < be32_to_cpu(super->secondary.seq) &&
940 !super->secondary.openflag)
941 || (be32_to_cpu(super->primary.seq)
942 == be32_to_cpu(super->secondary.seq) &&
943 super->primary.openflag && !super->secondary.openflag)
944 )
945 super->active = &super->secondary;
946 } else if (devname &&
947 be64_to_cpu(super->anchor.secondary_lba) != ~(__u64)0)
948 pr_err("Failed to load secondary DDF header on %s\n",
949 devname);
950 if (super->active == NULL)
951 return 2;
952 return 0;
953 }
954
955 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
956 {
957 void *ok;
958 ok = load_section(fd, super, &super->controller,
959 super->active->controller_section_offset,
960 super->active->controller_section_length,
961 0);
962 super->phys = load_section(fd, super, NULL,
963 super->active->phys_section_offset,
964 super->active->phys_section_length,
965 1);
966 super->pdsize = be32_to_cpu(super->active->phys_section_length) * 512;
967
968 super->virt = load_section(fd, super, NULL,
969 super->active->virt_section_offset,
970 super->active->virt_section_length,
971 1);
972 super->vdsize = be32_to_cpu(super->active->virt_section_length) * 512;
973 if (!ok ||
974 !super->phys ||
975 !super->virt) {
976 free(super->phys);
977 free(super->virt);
978 super->phys = NULL;
979 super->virt = NULL;
980 return 2;
981 }
982 super->conflist = NULL;
983 super->dlist = NULL;
984
985 super->max_part = be16_to_cpu(super->active->max_partitions);
986 super->mppe = be16_to_cpu(super->active->max_primary_element_entries);
987 super->conf_rec_len = be16_to_cpu(super->active->config_record_len);
988 return 0;
989 }
990
991 #define DDF_UNUSED_BVD 0xff
992 static int alloc_other_bvds(const struct ddf_super *ddf, struct vcl *vcl)
993 {
994 unsigned int n_vds = vcl->conf.sec_elmnt_count - 1;
995 unsigned int i, vdsize;
996 void *p;
997 if (n_vds == 0) {
998 vcl->other_bvds = NULL;
999 return 0;
1000 }
1001 vdsize = ddf->conf_rec_len * 512;
1002 if (posix_memalign(&p, 512, n_vds *
1003 (vdsize + sizeof(struct vd_config *))) != 0)
1004 return -1;
1005 vcl->other_bvds = (struct vd_config **) (p + n_vds * vdsize);
1006 for (i = 0; i < n_vds; i++) {
1007 vcl->other_bvds[i] = p + i * vdsize;
1008 memset(vcl->other_bvds[i], 0, vdsize);
1009 vcl->other_bvds[i]->sec_elmnt_seq = DDF_UNUSED_BVD;
1010 }
1011 return 0;
1012 }
1013
1014 static void add_other_bvd(struct vcl *vcl, struct vd_config *vd,
1015 unsigned int len)
1016 {
1017 int i;
1018 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
1019 if (vcl->other_bvds[i]->sec_elmnt_seq == vd->sec_elmnt_seq)
1020 break;
1021
1022 if (i < vcl->conf.sec_elmnt_count-1) {
1023 if (be32_to_cpu(vd->seqnum) <=
1024 be32_to_cpu(vcl->other_bvds[i]->seqnum))
1025 return;
1026 } else {
1027 for (i = 0; i < vcl->conf.sec_elmnt_count-1; i++)
1028 if (vcl->other_bvds[i]->sec_elmnt_seq == DDF_UNUSED_BVD)
1029 break;
1030 if (i == vcl->conf.sec_elmnt_count-1) {
1031 pr_err("no space for sec level config %u, count is %u\n",
1032 vd->sec_elmnt_seq, vcl->conf.sec_elmnt_count);
1033 return;
1034 }
1035 }
1036 memcpy(vcl->other_bvds[i], vd, len);
1037 }
1038
1039 static int load_ddf_local(int fd, struct ddf_super *super,
1040 char *devname, int keep)
1041 {
1042 struct dl *dl;
1043 struct stat stb;
1044 char *conf;
1045 unsigned int i;
1046 unsigned int confsec;
1047 int vnum;
1048 unsigned int max_virt_disks =
1049 be16_to_cpu(super->active->max_vd_entries);
1050 unsigned long long dsize;
1051
1052 /* First the local disk info */
1053 if (posix_memalign((void**)&dl, 512,
1054 sizeof(*dl) +
1055 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
1056 pr_err("could not allocate disk info buffer\n");
1057 return 1;
1058 }
1059
1060 load_section(fd, super, &dl->disk,
1061 super->active->data_section_offset,
1062 super->active->data_section_length,
1063 0);
1064 dl->devname = devname ? xstrdup(devname) : NULL;
1065
1066 fstat(fd, &stb);
1067 dl->major = major(stb.st_rdev);
1068 dl->minor = minor(stb.st_rdev);
1069 dl->next = super->dlist;
1070 dl->fd = keep ? fd : -1;
1071
1072 dl->size = 0;
1073 if (get_dev_size(fd, devname, &dsize))
1074 dl->size = dsize >> 9;
1075 /* If the disks have different sizes, the LBAs will differ
1076 * between phys disks.
1077 * At this point here, the values in super->active must be valid
1078 * for this phys disk. */
1079 dl->primary_lba = super->active->primary_lba;
1080 dl->secondary_lba = super->active->secondary_lba;
1081 dl->workspace_lba = super->active->workspace_lba;
1082 dl->spare = NULL;
1083 for (i = 0 ; i < super->max_part ; i++)
1084 dl->vlist[i] = NULL;
1085 super->dlist = dl;
1086 dl->pdnum = -1;
1087 for (i = 0; i < be16_to_cpu(super->active->max_pd_entries); i++)
1088 if (memcmp(super->phys->entries[i].guid,
1089 dl->disk.guid, DDF_GUID_LEN) == 0)
1090 dl->pdnum = i;
1091
1092 /* Now the config list. */
1093 /* 'conf' is an array of config entries, some of which are
1094 * probably invalid. Those which are good need to be copied into
1095 * the conflist
1096 */
1097
1098 conf = load_section(fd, super, super->conf,
1099 super->active->config_section_offset,
1100 super->active->config_section_length,
1101 0);
1102 super->conf = conf;
1103 vnum = 0;
1104 for (confsec = 0;
1105 confsec < be32_to_cpu(super->active->config_section_length);
1106 confsec += super->conf_rec_len) {
1107 struct vd_config *vd =
1108 (struct vd_config *)((char*)conf + confsec*512);
1109 struct vcl *vcl;
1110
1111 if (be32_eq(vd->magic, DDF_SPARE_ASSIGN_MAGIC)) {
1112 if (dl->spare)
1113 continue;
1114 if (posix_memalign((void**)&dl->spare, 512,
1115 super->conf_rec_len*512) != 0) {
1116 pr_err("could not allocate spare info buf\n");
1117 return 1;
1118 }
1119
1120 memcpy(dl->spare, vd, super->conf_rec_len*512);
1121 continue;
1122 }
1123 if (!be32_eq(vd->magic, DDF_VD_CONF_MAGIC))
1124 /* Must be vendor-unique - I cannot handle those */
1125 continue;
1126
1127 for (vcl = super->conflist; vcl; vcl = vcl->next) {
1128 if (memcmp(vcl->conf.guid,
1129 vd->guid, DDF_GUID_LEN) == 0)
1130 break;
1131 }
1132
1133 if (vcl) {
1134 dl->vlist[vnum++] = vcl;
1135 if (vcl->other_bvds != NULL &&
1136 vcl->conf.sec_elmnt_seq != vd->sec_elmnt_seq) {
1137 add_other_bvd(vcl, vd, super->conf_rec_len*512);
1138 continue;
1139 }
1140 if (be32_to_cpu(vd->seqnum) <=
1141 be32_to_cpu(vcl->conf.seqnum))
1142 continue;
1143 } else {
1144 if (posix_memalign((void**)&vcl, 512,
1145 (super->conf_rec_len*512 +
1146 offsetof(struct vcl, conf))) != 0) {
1147 pr_err("could not allocate vcl buf\n");
1148 return 1;
1149 }
1150 vcl->next = super->conflist;
1151 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1152 vcl->conf.sec_elmnt_count = vd->sec_elmnt_count;
1153 if (alloc_other_bvds(super, vcl) != 0) {
1154 pr_err("could not allocate other bvds\n");
1155 free(vcl);
1156 return 1;
1157 };
1158 super->conflist = vcl;
1159 dl->vlist[vnum++] = vcl;
1160 }
1161 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
1162 for (i=0; i < max_virt_disks ; i++)
1163 if (memcmp(super->virt->entries[i].guid,
1164 vcl->conf.guid, DDF_GUID_LEN)==0)
1165 break;
1166 if (i < max_virt_disks)
1167 vcl->vcnum = i;
1168 }
1169
1170 return 0;
1171 }
1172
1173 static int load_super_ddf(struct supertype *st, int fd,
1174 char *devname)
1175 {
1176 unsigned long long dsize;
1177 struct ddf_super *super;
1178 int rv;
1179
1180 if (get_dev_size(fd, devname, &dsize) == 0)
1181 return 1;
1182
1183 if (test_partition(fd))
1184 /* DDF is not allowed on partitions */
1185 return 1;
1186
1187 /* 32M is a lower bound */
1188 if (dsize <= 32*1024*1024) {
1189 if (devname)
1190 pr_err("%s is too small for ddf: size is %llu sectors.\n",
1191 devname, dsize>>9);
1192 return 1;
1193 }
1194 if (dsize & 511) {
1195 if (devname)
1196 pr_err("%s is an odd size for ddf: size is %llu bytes.\n",
1197 devname, dsize);
1198 return 1;
1199 }
1200
1201 free_super_ddf(st);
1202
1203 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
1204 pr_err("malloc of %zu failed.\n",
1205 sizeof(*super));
1206 return 1;
1207 }
1208 memset(super, 0, sizeof(*super));
1209
1210 rv = load_ddf_headers(fd, super, devname);
1211 if (rv) {
1212 free(super);
1213 return rv;
1214 }
1215
1216 /* Have valid headers and have chosen the best. Let's read in the rest*/
1217
1218 rv = load_ddf_global(fd, super, devname);
1219
1220 if (rv) {
1221 if (devname)
1222 pr_err("Failed to load all information sections on %s\n", devname);
1223 free(super);
1224 return rv;
1225 }
1226
1227 rv = load_ddf_local(fd, super, devname, 0);
1228
1229 if (rv) {
1230 if (devname)
1231 pr_err("Failed to load all information sections on %s\n", devname);
1232 free(super);
1233 return rv;
1234 }
1235
1236 /* Should possibly check the sections .... */
1237
1238 st->sb = super;
1239 if (st->ss == NULL) {
1240 st->ss = &super_ddf;
1241 st->minor_version = 0;
1242 st->max_devs = 512;
1243 }
1244 return 0;
1245
1246 }
1247
1248 static void free_super_ddf(struct supertype *st)
1249 {
1250 struct ddf_super *ddf = st->sb;
1251 if (ddf == NULL)
1252 return;
1253 free(ddf->phys);
1254 free(ddf->virt);
1255 free(ddf->conf);
1256 while (ddf->conflist) {
1257 struct vcl *v = ddf->conflist;
1258 ddf->conflist = v->next;
1259 if (v->block_sizes)
1260 free(v->block_sizes);
1261 if (v->other_bvds)
1262 /*
1263 v->other_bvds[0] points to beginning of buffer,
1264 see alloc_other_bvds()
1265 */
1266 free(v->other_bvds[0]);
1267 free(v);
1268 }
1269 while (ddf->dlist) {
1270 struct dl *d = ddf->dlist;
1271 ddf->dlist = d->next;
1272 if (d->fd >= 0)
1273 close(d->fd);
1274 if (d->spare)
1275 free(d->spare);
1276 free(d);
1277 }
1278 while (ddf->add_list) {
1279 struct dl *d = ddf->add_list;
1280 ddf->add_list = d->next;
1281 if (d->fd >= 0)
1282 close(d->fd);
1283 if (d->spare)
1284 free(d->spare);
1285 free(d);
1286 }
1287 free(ddf);
1288 st->sb = NULL;
1289 }
1290
1291 static struct supertype *match_metadata_desc_ddf(char *arg)
1292 {
1293 /* 'ddf' only supports containers */
1294 struct supertype *st;
1295 if (strcmp(arg, "ddf") != 0 &&
1296 strcmp(arg, "default") != 0
1297 )
1298 return NULL;
1299
1300 st = xcalloc(1, sizeof(*st));
1301 st->ss = &super_ddf;
1302 st->max_devs = 512;
1303 st->minor_version = 0;
1304 st->sb = NULL;
1305 return st;
1306 }
1307
1308 #ifndef MDASSEMBLE
1309
1310 static mapping_t ddf_state[] = {
1311 { "Optimal", 0},
1312 { "Degraded", 1},
1313 { "Deleted", 2},
1314 { "Missing", 3},
1315 { "Failed", 4},
1316 { "Partially Optimal", 5},
1317 { "-reserved-", 6},
1318 { "-reserved-", 7},
1319 { NULL, 0}
1320 };
1321
1322 static mapping_t ddf_init_state[] = {
1323 { "Not Initialised", 0},
1324 { "QuickInit in Progress", 1},
1325 { "Fully Initialised", 2},
1326 { "*UNKNOWN*", 3},
1327 { NULL, 0}
1328 };
1329 static mapping_t ddf_access[] = {
1330 { "Read/Write", 0},
1331 { "Reserved", 1},
1332 { "Read Only", 2},
1333 { "Blocked (no access)", 3},
1334 { NULL ,0}
1335 };
1336
1337 static mapping_t ddf_level[] = {
1338 { "RAID0", DDF_RAID0},
1339 { "RAID1", DDF_RAID1},
1340 { "RAID3", DDF_RAID3},
1341 { "RAID4", DDF_RAID4},
1342 { "RAID5", DDF_RAID5},
1343 { "RAID1E",DDF_RAID1E},
1344 { "JBOD", DDF_JBOD},
1345 { "CONCAT",DDF_CONCAT},
1346 { "RAID5E",DDF_RAID5E},
1347 { "RAID5EE",DDF_RAID5EE},
1348 { "RAID6", DDF_RAID6},
1349 { NULL, 0}
1350 };
1351 static mapping_t ddf_sec_level[] = {
1352 { "Striped", DDF_2STRIPED},
1353 { "Mirrored", DDF_2MIRRORED},
1354 { "Concat", DDF_2CONCAT},
1355 { "Spanned", DDF_2SPANNED},
1356 { NULL, 0}
1357 };
1358 #endif
1359
1360 static int all_ff(const char *guid)
1361 {
1362 int i;
1363 for (i = 0; i < DDF_GUID_LEN; i++)
1364 if (guid[i] != (char)0xff)
1365 return 0;
1366 return 1;
1367 }
1368
1369 static const char *guid_str(const char *guid)
1370 {
1371 static char buf[DDF_GUID_LEN*2+1];
1372 int i;
1373 char *p = buf;
1374 for (i = 0; i < DDF_GUID_LEN; i++) {
1375 unsigned char c = guid[i];
1376 if (c >= 32 && c < 127)
1377 p += sprintf(p, "%c", c);
1378 else
1379 p += sprintf(p, "%02x", c);
1380 }
1381 *p = '\0';
1382 return (const char *) buf;
1383 }
1384
1385 #ifndef MDASSEMBLE
1386 static void print_guid(char *guid, int tstamp)
1387 {
1388 /* A GUIDs are part (or all) ASCII and part binary.
1389 * They tend to be space padded.
1390 * We print the GUID in HEX, then in parentheses add
1391 * any initial ASCII sequence, and a possible
1392 * time stamp from bytes 16-19
1393 */
1394 int l = DDF_GUID_LEN;
1395 int i;
1396
1397 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1398 if ((i&3)==0 && i != 0) printf(":");
1399 printf("%02X", guid[i]&255);
1400 }
1401
1402 printf("\n (");
1403 while (l && guid[l-1] == ' ')
1404 l--;
1405 for (i=0 ; i<l ; i++) {
1406 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1407 fputc(guid[i], stdout);
1408 else
1409 break;
1410 }
1411 if (tstamp) {
1412 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1413 char tbuf[100];
1414 struct tm *tm;
1415 tm = localtime(&then);
1416 strftime(tbuf, 100, " %D %T",tm);
1417 fputs(tbuf, stdout);
1418 }
1419 printf(")");
1420 }
1421
1422 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1423 {
1424 int crl = sb->conf_rec_len;
1425 struct vcl *vcl;
1426
1427 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1428 unsigned int i;
1429 struct vd_config *vc = &vcl->conf;
1430
1431 if (!be32_eq(calc_crc(vc, crl*512), vc->crc))
1432 continue;
1433 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1434 continue;
1435
1436 /* Ok, we know about this VD, let's give more details */
1437 printf(" Raid Devices[%d] : %d (", n,
1438 be16_to_cpu(vc->prim_elmnt_count));
1439 for (i = 0; i < be16_to_cpu(vc->prim_elmnt_count); i++) {
1440 int j;
1441 int cnt = be16_to_cpu(sb->phys->max_pdes);
1442 for (j=0; j<cnt; j++)
1443 if (be32_eq(vc->phys_refnum[i],
1444 sb->phys->entries[j].refnum))
1445 break;
1446 if (i) printf(" ");
1447 if (j < cnt)
1448 printf("%d", j);
1449 else
1450 printf("--");
1451 printf("@%lluK", (unsigned long long) be64_to_cpu(LBA_OFFSET(sb, vc)[i])/2);
1452 }
1453 printf(")\n");
1454 if (vc->chunk_shift != 255)
1455 printf(" Chunk Size[%d] : %d sectors\n", n,
1456 1 << vc->chunk_shift);
1457 printf(" Raid Level[%d] : %s\n", n,
1458 map_num(ddf_level, vc->prl)?:"-unknown-");
1459 if (vc->sec_elmnt_count != 1) {
1460 printf(" Secondary Position[%d] : %d of %d\n", n,
1461 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1462 printf(" Secondary Level[%d] : %s\n", n,
1463 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1464 }
1465 printf(" Device Size[%d] : %llu\n", n,
1466 be64_to_cpu(vc->blocks)/2);
1467 printf(" Array Size[%d] : %llu\n", n,
1468 be64_to_cpu(vc->array_blocks)/2);
1469 }
1470 }
1471
1472 static void examine_vds(struct ddf_super *sb)
1473 {
1474 int cnt = be16_to_cpu(sb->virt->populated_vdes);
1475 unsigned int i;
1476 printf(" Virtual Disks : %d\n", cnt);
1477
1478 for (i = 0; i < be16_to_cpu(sb->virt->max_vdes); i++) {
1479 struct virtual_entry *ve = &sb->virt->entries[i];
1480 if (all_ff(ve->guid))
1481 continue;
1482 printf("\n");
1483 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1484 printf("\n");
1485 printf(" unit[%d] : %d\n", i, be16_to_cpu(ve->unit));
1486 printf(" state[%d] : %s, %s%s\n", i,
1487 map_num(ddf_state, ve->state & 7),
1488 (ve->state & DDF_state_morphing) ? "Morphing, ": "",
1489 (ve->state & DDF_state_inconsistent)? "Not Consistent" : "Consistent");
1490 printf(" init state[%d] : %s\n", i,
1491 map_num(ddf_init_state, ve->init_state&DDF_initstate_mask));
1492 printf(" access[%d] : %s\n", i,
1493 map_num(ddf_access, (ve->init_state & DDF_access_mask) >> 6));
1494 printf(" Name[%d] : %.16s\n", i, ve->name);
1495 examine_vd(i, sb, ve->guid);
1496 }
1497 if (cnt) printf("\n");
1498 }
1499
1500 static void examine_pds(struct ddf_super *sb)
1501 {
1502 int cnt = be16_to_cpu(sb->phys->max_pdes);
1503 int i;
1504 struct dl *dl;
1505 int unlisted = 0;
1506 printf(" Physical Disks : %d\n", cnt);
1507 printf(" Number RefNo Size Device Type/State\n");
1508
1509 for (dl = sb->dlist; dl; dl = dl->next)
1510 dl->displayed = 0;
1511
1512 for (i=0 ; i<cnt ; i++) {
1513 struct phys_disk_entry *pd = &sb->phys->entries[i];
1514 int type = be16_to_cpu(pd->type);
1515 int state = be16_to_cpu(pd->state);
1516
1517 if (be32_to_cpu(pd->refnum) == 0xffffffff)
1518 /* Not in use */
1519 continue;
1520 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1521 //printf("\n");
1522 printf(" %3d %08x ", i,
1523 be32_to_cpu(pd->refnum));
1524 printf("%8lluK ",
1525 be64_to_cpu(pd->config_size)>>1);
1526 for (dl = sb->dlist; dl ; dl = dl->next) {
1527 if (be32_eq(dl->disk.refnum, pd->refnum)) {
1528 char *dv = map_dev(dl->major, dl->minor, 0);
1529 if (dv) {
1530 printf("%-15s", dv);
1531 break;
1532 }
1533 }
1534 }
1535 if (!dl)
1536 printf("%15s","");
1537 else
1538 dl->displayed = 1;
1539 printf(" %s%s%s%s%s",
1540 (type&2) ? "active":"",
1541 (type&4) ? "Global-Spare":"",
1542 (type&8) ? "spare" : "",
1543 (type&16)? ", foreign" : "",
1544 (type&32)? "pass-through" : "");
1545 if (state & DDF_Failed)
1546 /* This over-rides these three */
1547 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1548 printf("/%s%s%s%s%s%s%s",
1549 (state&1)? "Online": "Offline",
1550 (state&2)? ", Failed": "",
1551 (state&4)? ", Rebuilding": "",
1552 (state&8)? ", in-transition": "",
1553 (state&16)? ", SMART-errors": "",
1554 (state&32)? ", Unrecovered-Read-Errors": "",
1555 (state&64)? ", Missing" : "");
1556 printf("\n");
1557 }
1558 for (dl = sb->dlist; dl; dl = dl->next) {
1559 char *dv;
1560 if (dl->displayed)
1561 continue;
1562 if (!unlisted)
1563 printf(" Physical disks not in metadata!:\n");
1564 unlisted = 1;
1565 dv = map_dev(dl->major, dl->minor, 0);
1566 printf(" %08x %s\n", be32_to_cpu(dl->disk.refnum),
1567 dv ? dv : "-unknown-");
1568 }
1569 if (unlisted)
1570 printf("\n");
1571 }
1572
1573 static void examine_super_ddf(struct supertype *st, char *homehost)
1574 {
1575 struct ddf_super *sb = st->sb;
1576
1577 printf(" Magic : %08x\n", be32_to_cpu(sb->anchor.magic));
1578 printf(" Version : %.8s\n", sb->anchor.revision);
1579 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1580 printf("\n");
1581 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1582 printf("\n");
1583 printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
1584 printf(" Redundant hdr : %s\n", (be32_eq(sb->secondary.magic,
1585 DDF_HEADER_MAGIC)
1586 ?"yes" : "no"));
1587 examine_vds(sb);
1588 examine_pds(sb);
1589 }
1590
1591 static unsigned int get_vd_num_of_subarray(struct supertype *st)
1592 {
1593 /*
1594 * Figure out the VD number for this supertype.
1595 * Returns DDF_CONTAINER for the container itself,
1596 * and DDF_NOTFOUND on error.
1597 */
1598 struct ddf_super *ddf = st->sb;
1599 struct mdinfo *sra;
1600 char *sub, *end;
1601 unsigned int vcnum;
1602
1603 if (*st->container_devnm == '\0')
1604 return DDF_CONTAINER;
1605
1606 sra = sysfs_read(-1, st->devnm, GET_VERSION);
1607 if (!sra || sra->array.major_version != -1 ||
1608 sra->array.minor_version != -2 ||
1609 !is_subarray(sra->text_version))
1610 return DDF_NOTFOUND;
1611
1612 sub = strchr(sra->text_version + 1, '/');
1613 if (sub != NULL)
1614 vcnum = strtoul(sub + 1, &end, 10);
1615 if (sub == NULL || *sub == '\0' || *end != '\0' ||
1616 vcnum >= be16_to_cpu(ddf->active->max_vd_entries))
1617 return DDF_NOTFOUND;
1618
1619 return vcnum;
1620 }
1621
1622 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1623 {
1624 /* We just write a generic DDF ARRAY entry
1625 */
1626 struct mdinfo info;
1627 char nbuf[64];
1628 getinfo_super_ddf(st, &info, NULL);
1629 fname_from_uuid(st, &info, nbuf, ':');
1630
1631 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1632 }
1633
1634 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1635 {
1636 /* We write a DDF ARRAY member entry for each vd, identifying container
1637 * by uuid and member by unit number and uuid.
1638 */
1639 struct ddf_super *ddf = st->sb;
1640 struct mdinfo info;
1641 unsigned int i;
1642 char nbuf[64];
1643 getinfo_super_ddf(st, &info, NULL);
1644 fname_from_uuid(st, &info, nbuf, ':');
1645
1646 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
1647 struct virtual_entry *ve = &ddf->virt->entries[i];
1648 struct vcl vcl;
1649 char nbuf1[64];
1650 char namebuf[17];
1651 if (all_ff(ve->guid))
1652 continue;
1653 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1654 ddf->currentconf =&vcl;
1655 vcl.vcnum = i;
1656 uuid_from_super_ddf(st, info.uuid);
1657 fname_from_uuid(st, &info, nbuf1, ':');
1658 _ddf_array_name(namebuf, ddf, i);
1659 printf("ARRAY%s%s container=%s member=%d UUID=%s\n",
1660 namebuf[0] == '\0' ? "" : " /dev/md/", namebuf,
1661 nbuf+5, i, nbuf1+5);
1662 }
1663 }
1664
1665 static void export_examine_super_ddf(struct supertype *st)
1666 {
1667 struct mdinfo info;
1668 char nbuf[64];
1669 getinfo_super_ddf(st, &info, NULL);
1670 fname_from_uuid(st, &info, nbuf, ':');
1671 printf("MD_METADATA=ddf\n");
1672 printf("MD_LEVEL=container\n");
1673 printf("MD_UUID=%s\n", nbuf+5);
1674 printf("MD_DEVICES=%u\n",
1675 be16_to_cpu(((struct ddf_super *)st->sb)->phys->used_pdes));
1676 }
1677
1678 static int copy_metadata_ddf(struct supertype *st, int from, int to)
1679 {
1680 void *buf;
1681 unsigned long long dsize, offset;
1682 int bytes;
1683 struct ddf_header *ddf;
1684 int written = 0;
1685
1686 /* The meta consists of an anchor, a primary, and a secondary.
1687 * This all lives at the end of the device.
1688 * So it is easiest to find the earliest of primary and
1689 * secondary, and copy everything from there.
1690 *
1691 * Anchor is 512 from end. It contains primary_lba and secondary_lba
1692 * we choose one of those
1693 */
1694
1695 if (posix_memalign(&buf, 4096, 4096) != 0)
1696 return 1;
1697
1698 if (!get_dev_size(from, NULL, &dsize))
1699 goto err;
1700
1701 if (lseek64(from, dsize-512, 0) < 0)
1702 goto err;
1703 if (read(from, buf, 512) != 512)
1704 goto err;
1705 ddf = buf;
1706 if (!be32_eq(ddf->magic, DDF_HEADER_MAGIC) ||
1707 !be32_eq(calc_crc(ddf, 512), ddf->crc) ||
1708 (memcmp(ddf->revision, DDF_REVISION_0, 8) != 0 &&
1709 memcmp(ddf->revision, DDF_REVISION_2, 8) != 0))
1710 goto err;
1711
1712 offset = dsize - 512;
1713 if ((be64_to_cpu(ddf->primary_lba) << 9) < offset)
1714 offset = be64_to_cpu(ddf->primary_lba) << 9;
1715 if ((be64_to_cpu(ddf->secondary_lba) << 9) < offset)
1716 offset = be64_to_cpu(ddf->secondary_lba) << 9;
1717
1718 bytes = dsize - offset;
1719
1720 if (lseek64(from, offset, 0) < 0 ||
1721 lseek64(to, offset, 0) < 0)
1722 goto err;
1723 while (written < bytes) {
1724 int n = bytes - written;
1725 if (n > 4096)
1726 n = 4096;
1727 if (read(from, buf, n) != n)
1728 goto err;
1729 if (write(to, buf, n) != n)
1730 goto err;
1731 written += n;
1732 }
1733 free(buf);
1734 return 0;
1735 err:
1736 free(buf);
1737 return 1;
1738 }
1739
1740 static void detail_super_ddf(struct supertype *st, char *homehost)
1741 {
1742 struct ddf_super *sb = st->sb;
1743 int cnt = be16_to_cpu(sb->virt->populated_vdes);
1744
1745 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1746 printf("\n");
1747 printf(" Seq : %08x\n", be32_to_cpu(sb->active->seq));
1748 printf(" Virtual Disks : %d\n", cnt);
1749 printf("\n");
1750 }
1751 #endif
1752
1753 static const char *vendors_with_variable_volume_UUID[] = {
1754 "LSI ",
1755 };
1756
1757 static int volume_id_is_reliable(const struct ddf_super *ddf)
1758 {
1759 int n = ARRAY_SIZE(vendors_with_variable_volume_UUID);
1760 int i;
1761 for (i = 0; i < n; i++)
1762 if (!memcmp(ddf->controller.guid,
1763 vendors_with_variable_volume_UUID[i], 8))
1764 return 0;
1765 return 1;
1766 }
1767
1768 static void uuid_of_ddf_subarray(const struct ddf_super *ddf,
1769 unsigned int vcnum, int uuid[4])
1770 {
1771 char buf[DDF_GUID_LEN+18], sha[20], *p;
1772 struct sha1_ctx ctx;
1773 if (volume_id_is_reliable(ddf)) {
1774 uuid_from_ddf_guid(ddf->virt->entries[vcnum].guid, uuid);
1775 return;
1776 }
1777 /*
1778 * Some fake RAID BIOSes (in particular, LSI ones) change the
1779 * VD GUID at every boot. These GUIDs are not suitable for
1780 * identifying an array. Luckily the header GUID appears to
1781 * remain constant.
1782 * We construct a pseudo-UUID from the header GUID and those
1783 * properties of the subarray that we expect to remain constant.
1784 */
1785 memset(buf, 0, sizeof(buf));
1786 p = buf;
1787 memcpy(p, ddf->anchor.guid, DDF_GUID_LEN);
1788 p += DDF_GUID_LEN;
1789 memcpy(p, ddf->virt->entries[vcnum].name, 16);
1790 p += 16;
1791 *((__u16 *) p) = vcnum;
1792 sha1_init_ctx(&ctx);
1793 sha1_process_bytes(buf, sizeof(buf), &ctx);
1794 sha1_finish_ctx(&ctx, sha);
1795 memcpy(uuid, sha, 4*4);
1796 }
1797
1798 #ifndef MDASSEMBLE
1799 static void brief_detail_super_ddf(struct supertype *st)
1800 {
1801 struct mdinfo info;
1802 char nbuf[64];
1803 struct ddf_super *ddf = st->sb;
1804 unsigned int vcnum = get_vd_num_of_subarray(st);
1805 if (vcnum == DDF_CONTAINER)
1806 uuid_from_super_ddf(st, info.uuid);
1807 else if (vcnum == DDF_NOTFOUND)
1808 return;
1809 else
1810 uuid_of_ddf_subarray(ddf, vcnum, info.uuid);
1811 fname_from_uuid(st, &info, nbuf,':');
1812 printf(" UUID=%s", nbuf + 5);
1813 }
1814 #endif
1815
1816 static int match_home_ddf(struct supertype *st, char *homehost)
1817 {
1818 /* It matches 'this' host if the controller is a
1819 * Linux-MD controller with vendor_data matching
1820 * the hostname. It would be nice if we could
1821 * test against controller found in /sys or somewhere...
1822 */
1823 struct ddf_super *ddf = st->sb;
1824 unsigned int len;
1825
1826 if (!homehost)
1827 return 0;
1828 len = strlen(homehost);
1829
1830 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1831 len < sizeof(ddf->controller.vendor_data) &&
1832 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1833 ddf->controller.vendor_data[len] == 0);
1834 }
1835
1836 #ifndef MDASSEMBLE
1837 static int find_index_in_bvd(const struct ddf_super *ddf,
1838 const struct vd_config *conf, unsigned int n,
1839 unsigned int *n_bvd)
1840 {
1841 /*
1842 * Find the index of the n-th valid physical disk in this BVD.
1843 * Unused entries can be sprinkled in with the used entries,
1844 * but don't count.
1845 */
1846 unsigned int i, j;
1847 for (i = 0, j = 0;
1848 i < ddf->mppe && j < be16_to_cpu(conf->prim_elmnt_count);
1849 i++) {
1850 if (be32_to_cpu(conf->phys_refnum[i]) != 0xffffffff) {
1851 if (n == j) {
1852 *n_bvd = i;
1853 return 1;
1854 }
1855 j++;
1856 }
1857 }
1858 dprintf("couldn't find BVD member %u (total %u)\n",
1859 n, be16_to_cpu(conf->prim_elmnt_count));
1860 return 0;
1861 }
1862
1863 /* Given a member array instance number, and a raid disk within that instance,
1864 * find the vd_config structure. The offset of the given disk in the phys_refnum
1865 * table is returned in n_bvd.
1866 * For two-level members with a secondary raid level the vd_config for
1867 * the appropriate BVD is returned.
1868 * The return value is always &vlc->conf, where vlc is returned in last pointer.
1869 */
1870 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst,
1871 unsigned int n,
1872 unsigned int *n_bvd, struct vcl **vcl)
1873 {
1874 struct vcl *v;
1875
1876 for (v = ddf->conflist; v; v = v->next) {
1877 unsigned int nsec, ibvd = 0;
1878 struct vd_config *conf;
1879 if (inst != v->vcnum)
1880 continue;
1881 conf = &v->conf;
1882 if (conf->sec_elmnt_count == 1) {
1883 if (find_index_in_bvd(ddf, conf, n, n_bvd)) {
1884 *vcl = v;
1885 return conf;
1886 } else
1887 goto bad;
1888 }
1889 if (v->other_bvds == NULL) {
1890 pr_err("BUG: other_bvds is NULL, nsec=%u\n",
1891 conf->sec_elmnt_count);
1892 goto bad;
1893 }
1894 nsec = n / be16_to_cpu(conf->prim_elmnt_count);
1895 if (conf->sec_elmnt_seq != nsec) {
1896 for (ibvd = 1; ibvd < conf->sec_elmnt_count; ibvd++) {
1897 if (v->other_bvds[ibvd-1]->sec_elmnt_seq
1898 == nsec)
1899 break;
1900 }
1901 if (ibvd == conf->sec_elmnt_count)
1902 goto bad;
1903 conf = v->other_bvds[ibvd-1];
1904 }
1905 if (!find_index_in_bvd(ddf, conf,
1906 n - nsec*conf->sec_elmnt_count, n_bvd))
1907 goto bad;
1908 dprintf("found disk %u as member %u in bvd %d of array %u\n",
1909 n, *n_bvd, ibvd, inst);
1910 *vcl = v;
1911 return conf;
1912 }
1913 bad:
1914 pr_err("Could't find disk %d in array %u\n", n, inst);
1915 return NULL;
1916 }
1917 #endif
1918
1919 static int find_phys(const struct ddf_super *ddf, be32 phys_refnum)
1920 {
1921 /* Find the entry in phys_disk which has the given refnum
1922 * and return it's index
1923 */
1924 unsigned int i;
1925 for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++)
1926 if (be32_eq(ddf->phys->entries[i].refnum, phys_refnum))
1927 return i;
1928 return -1;
1929 }
1930
1931 static void uuid_from_ddf_guid(const char *guid, int uuid[4])
1932 {
1933 char buf[20];
1934 struct sha1_ctx ctx;
1935 sha1_init_ctx(&ctx);
1936 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1937 sha1_finish_ctx(&ctx, buf);
1938 memcpy(uuid, buf, 4*4);
1939 }
1940
1941 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1942 {
1943 /* The uuid returned here is used for:
1944 * uuid to put into bitmap file (Create, Grow)
1945 * uuid for backup header when saving critical section (Grow)
1946 * comparing uuids when re-adding a device into an array
1947 * In these cases the uuid required is that of the data-array,
1948 * not the device-set.
1949 * uuid to recognise same set when adding a missing device back
1950 * to an array. This is a uuid for the device-set.
1951 *
1952 * For each of these we can make do with a truncated
1953 * or hashed uuid rather than the original, as long as
1954 * everyone agrees.
1955 * In the case of SVD we assume the BVD is of interest,
1956 * though that might be the case if a bitmap were made for
1957 * a mirrored SVD - worry about that later.
1958 * So we need to find the VD configuration record for the
1959 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1960 * The first 16 bytes of the sha1 of these is used.
1961 */
1962 struct ddf_super *ddf = st->sb;
1963 struct vcl *vcl = ddf->currentconf;
1964
1965 if (vcl)
1966 uuid_of_ddf_subarray(ddf, vcl->vcnum, uuid);
1967 else
1968 uuid_from_ddf_guid(ddf->anchor.guid, uuid);
1969 }
1970
1971 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1972 {
1973 struct ddf_super *ddf = st->sb;
1974 int map_disks = info->array.raid_disks;
1975 __u32 *cptr;
1976
1977 if (ddf->currentconf) {
1978 getinfo_super_ddf_bvd(st, info, map);
1979 return;
1980 }
1981 memset(info, 0, sizeof(*info));
1982
1983 info->array.raid_disks = be16_to_cpu(ddf->phys->used_pdes);
1984 info->array.level = LEVEL_CONTAINER;
1985 info->array.layout = 0;
1986 info->array.md_minor = -1;
1987 cptr = (__u32 *)(ddf->anchor.guid + 16);
1988 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1989
1990 info->array.chunk_size = 0;
1991 info->container_enough = 1;
1992
1993 info->disk.major = 0;
1994 info->disk.minor = 0;
1995 if (ddf->dlist) {
1996 struct phys_disk_entry *pde = NULL;
1997 info->disk.number = be32_to_cpu(ddf->dlist->disk.refnum);
1998 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1999
2000 info->data_offset = be64_to_cpu(ddf->phys->
2001 entries[info->disk.raid_disk].
2002 config_size);
2003 info->component_size = ddf->dlist->size - info->data_offset;
2004 if (info->disk.raid_disk >= 0)
2005 pde = ddf->phys->entries + info->disk.raid_disk;
2006 if (pde &&
2007 !(be16_to_cpu(pde->state) & DDF_Failed) &&
2008 !(be16_to_cpu(pde->state) & DDF_Missing))
2009 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
2010 else
2011 info->disk.state = 1 << MD_DISK_FAULTY;
2012
2013 } else {
2014 /* There should always be a dlist, but just in case...*/
2015 info->disk.number = -1;
2016 info->disk.raid_disk = -1;
2017 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
2018 }
2019 info->events = be32_to_cpu(ddf->active->seq);
2020 info->array.utime = DECADE + be32_to_cpu(ddf->active->timestamp);
2021
2022 info->recovery_start = MaxSector;
2023 info->reshape_active = 0;
2024 info->recovery_blocked = 0;
2025 info->name[0] = 0;
2026
2027 info->array.major_version = -1;
2028 info->array.minor_version = -2;
2029 strcpy(info->text_version, "ddf");
2030 info->safe_mode_delay = 0;
2031
2032 uuid_from_super_ddf(st, info->uuid);
2033
2034 if (map) {
2035 int i, e = 0;
2036 int max = be16_to_cpu(ddf->phys->max_pdes);
2037 for (i = e = 0 ; i < map_disks ; i++, e++) {
2038 while (e < max &&
2039 be32_to_cpu(ddf->phys->entries[e].refnum) == 0xffffffff)
2040 e++;
2041 if (i < info->array.raid_disks && e < max &&
2042 !(be16_to_cpu(ddf->phys->entries[e].state)
2043 & DDF_Failed))
2044 map[i] = 1;
2045 else
2046 map[i] = 0;
2047 }
2048 }
2049 }
2050
2051 /* size of name must be at least 17 bytes! */
2052 static void _ddf_array_name(char *name, const struct ddf_super *ddf, int i)
2053 {
2054 int j;
2055 memcpy(name, ddf->virt->entries[i].name, 16);
2056 name[16] = 0;
2057 for(j = 0; j < 16; j++)
2058 if (name[j] == ' ')
2059 name[j] = 0;
2060 }
2061
2062 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
2063 {
2064 struct ddf_super *ddf = st->sb;
2065 struct vcl *vc = ddf->currentconf;
2066 int cd = ddf->currentdev;
2067 int n_prim;
2068 int j;
2069 struct dl *dl = NULL;
2070 int map_disks = info->array.raid_disks;
2071 __u32 *cptr;
2072 struct vd_config *conf;
2073
2074 memset(info, 0, sizeof(*info));
2075 if (layout_ddf2md(&vc->conf, &info->array) == -1)
2076 return;
2077 info->array.md_minor = -1;
2078 cptr = (__u32 *)(vc->conf.guid + 16);
2079 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
2080 info->array.utime = DECADE + be32_to_cpu(vc->conf.timestamp);
2081 info->array.chunk_size = 512 << vc->conf.chunk_shift;
2082 info->custom_array_size = be64_to_cpu(vc->conf.array_blocks);
2083
2084 conf = &vc->conf;
2085 n_prim = be16_to_cpu(conf->prim_elmnt_count);
2086 if (conf->sec_elmnt_count > 1 && cd >= n_prim) {
2087 int ibvd = cd / n_prim - 1;
2088 cd %= n_prim;
2089 conf = vc->other_bvds[ibvd];
2090 }
2091
2092 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
2093 info->data_offset =
2094 be64_to_cpu(LBA_OFFSET(ddf, conf)[cd]);
2095 if (vc->block_sizes)
2096 info->component_size = vc->block_sizes[cd];
2097 else
2098 info->component_size = be64_to_cpu(conf->blocks);
2099
2100 for (dl = ddf->dlist; dl ; dl = dl->next)
2101 if (be32_eq(dl->disk.refnum, conf->phys_refnum[cd]))
2102 break;
2103 }
2104
2105 info->disk.major = 0;
2106 info->disk.minor = 0;
2107 info->disk.state = 0;
2108 if (dl && dl->pdnum >= 0) {
2109 info->disk.major = dl->major;
2110 info->disk.minor = dl->minor;
2111 info->disk.raid_disk = cd + conf->sec_elmnt_seq
2112 * be16_to_cpu(conf->prim_elmnt_count);
2113 info->disk.number = dl->pdnum;
2114 info->disk.state = 0;
2115 if (info->disk.number >= 0 &&
2116 (be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Online) &&
2117 !(be16_to_cpu(ddf->phys->entries[info->disk.number].state) & DDF_Failed))
2118 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2119 info->events = be32_to_cpu(ddf->active->seq);
2120 }
2121
2122 info->container_member = ddf->currentconf->vcnum;
2123
2124 info->recovery_start = MaxSector;
2125 info->resync_start = 0;
2126 info->reshape_active = 0;
2127 info->recovery_blocked = 0;
2128 if (!(ddf->virt->entries[info->container_member].state
2129 & DDF_state_inconsistent) &&
2130 (ddf->virt->entries[info->container_member].init_state
2131 & DDF_initstate_mask)
2132 == DDF_init_full)
2133 info->resync_start = MaxSector;
2134
2135 uuid_from_super_ddf(st, info->uuid);
2136
2137 info->array.major_version = -1;
2138 info->array.minor_version = -2;
2139 sprintf(info->text_version, "/%s/%d",
2140 st->container_devnm,
2141 info->container_member);
2142 info->safe_mode_delay = DDF_SAFE_MODE_DELAY;
2143
2144 _ddf_array_name(info->name, ddf, info->container_member);
2145
2146 if (map)
2147 for (j = 0; j < map_disks; j++) {
2148 map[j] = 0;
2149 if (j < info->array.raid_disks) {
2150 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
2151 if (i >= 0 &&
2152 (be16_to_cpu(ddf->phys->entries[i].state)
2153 & DDF_Online) &&
2154 !(be16_to_cpu(ddf->phys->entries[i].state)
2155 & DDF_Failed))
2156 map[i] = 1;
2157 }
2158 }
2159 }
2160
2161 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
2162 char *update,
2163 char *devname, int verbose,
2164 int uuid_set, char *homehost)
2165 {
2166 /* For 'assemble' and 'force' we need to return non-zero if any
2167 * change was made. For others, the return value is ignored.
2168 * Update options are:
2169 * force-one : This device looks a bit old but needs to be included,
2170 * update age info appropriately.
2171 * assemble: clear any 'faulty' flag to allow this device to
2172 * be assembled.
2173 * force-array: Array is degraded but being forced, mark it clean
2174 * if that will be needed to assemble it.
2175 *
2176 * newdev: not used ????
2177 * grow: Array has gained a new device - this is currently for
2178 * linear only
2179 * resync: mark as dirty so a resync will happen.
2180 * uuid: Change the uuid of the array to match what is given
2181 * homehost: update the recorded homehost
2182 * name: update the name - preserving the homehost
2183 * _reshape_progress: record new reshape_progress position.
2184 *
2185 * Following are not relevant for this version:
2186 * sparc2.2 : update from old dodgey metadata
2187 * super-minor: change the preferred_minor number
2188 * summaries: update redundant counters.
2189 */
2190 int rv = 0;
2191 // struct ddf_super *ddf = st->sb;
2192 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
2193 // struct virtual_entry *ve = find_ve(ddf);
2194
2195 /* we don't need to handle "force-*" or "assemble" as
2196 * there is no need to 'trick' the kernel. When the metadata is
2197 * first updated to activate the array, all the implied modifications
2198 * will just happen.
2199 */
2200
2201 if (strcmp(update, "grow") == 0) {
2202 /* FIXME */
2203 } else if (strcmp(update, "resync") == 0) {
2204 // info->resync_checkpoint = 0;
2205 } else if (strcmp(update, "homehost") == 0) {
2206 /* homehost is stored in controller->vendor_data,
2207 * or it is when we are the vendor
2208 */
2209 // if (info->vendor_is_local)
2210 // strcpy(ddf->controller.vendor_data, homehost);
2211 rv = -1;
2212 } else if (strcmp(update, "name") == 0) {
2213 /* name is stored in virtual_entry->name */
2214 // memset(ve->name, ' ', 16);
2215 // strncpy(ve->name, info->name, 16);
2216 rv = -1;
2217 } else if (strcmp(update, "_reshape_progress") == 0) {
2218 /* We don't support reshape yet */
2219 } else if (strcmp(update, "assemble") == 0 ) {
2220 /* Do nothing, just succeed */
2221 rv = 0;
2222 } else
2223 rv = -1;
2224
2225 // update_all_csum(ddf);
2226
2227 return rv;
2228 }
2229
2230 static void make_header_guid(char *guid)
2231 {
2232 be32 stamp;
2233 /* Create a DDF Header of Virtual Disk GUID */
2234
2235 /* 24 bytes of fiction required.
2236 * first 8 are a 'vendor-id' - "Linux-MD"
2237 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
2238 * Remaining 8 random number plus timestamp
2239 */
2240 memcpy(guid, T10, sizeof(T10));
2241 stamp = cpu_to_be32(0xdeadbeef);
2242 memcpy(guid+8, &stamp, 4);
2243 stamp = cpu_to_be32(0);
2244 memcpy(guid+12, &stamp, 4);
2245 stamp = cpu_to_be32(time(0) - DECADE);
2246 memcpy(guid+16, &stamp, 4);
2247 stamp._v32 = random32();
2248 memcpy(guid+20, &stamp, 4);
2249 }
2250
2251 static unsigned int find_unused_vde(const struct ddf_super *ddf)
2252 {
2253 unsigned int i;
2254 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
2255 if (all_ff(ddf->virt->entries[i].guid))
2256 return i;
2257 }
2258 return DDF_NOTFOUND;
2259 }
2260
2261 static unsigned int find_vde_by_name(const struct ddf_super *ddf,
2262 const char *name)
2263 {
2264 unsigned int i;
2265 if (name == NULL)
2266 return DDF_NOTFOUND;
2267 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++) {
2268 if (all_ff(ddf->virt->entries[i].guid))
2269 continue;
2270 if (!strncmp(name, ddf->virt->entries[i].name,
2271 sizeof(ddf->virt->entries[i].name)))
2272 return i;
2273 }
2274 return DDF_NOTFOUND;
2275 }
2276
2277 #ifndef MDASSEMBLE
2278 static unsigned int find_vde_by_guid(const struct ddf_super *ddf,
2279 const char *guid)
2280 {
2281 unsigned int i;
2282 if (guid == NULL || all_ff(guid))
2283 return DDF_NOTFOUND;
2284 for (i = 0; i < be16_to_cpu(ddf->virt->max_vdes); i++)
2285 if (!memcmp(ddf->virt->entries[i].guid, guid, DDF_GUID_LEN))
2286 return i;
2287 return DDF_NOTFOUND;
2288 }
2289 #endif
2290
2291 static int init_super_ddf(struct supertype *st,
2292 mdu_array_info_t *info,
2293 unsigned long long size, char *name, char *homehost,
2294 int *uuid, unsigned long long data_offset)
2295 {
2296 /* This is primarily called by Create when creating a new array.
2297 * We will then get add_to_super called for each component, and then
2298 * write_init_super called to write it out to each device.
2299 * For DDF, Create can create on fresh devices or on a pre-existing
2300 * array.
2301 * To create on a pre-existing array a different method will be called.
2302 * This one is just for fresh drives.
2303 *
2304 * We need to create the entire 'ddf' structure which includes:
2305 * DDF headers - these are easy.
2306 * Controller data - a Sector describing this controller .. not that
2307 * this is a controller exactly.
2308 * Physical Disk Record - one entry per device, so
2309 * leave plenty of space.
2310 * Virtual Disk Records - again, just leave plenty of space.
2311 * This just lists VDs, doesn't give details.
2312 * Config records - describe the VDs that use this disk
2313 * DiskData - describes 'this' device.
2314 * BadBlockManagement - empty
2315 * Diag Space - empty
2316 * Vendor Logs - Could we put bitmaps here?
2317 *
2318 */
2319 struct ddf_super *ddf;
2320 char hostname[17];
2321 int hostlen;
2322 int max_phys_disks, max_virt_disks;
2323 unsigned long long sector;
2324 int clen;
2325 int i;
2326 int pdsize, vdsize;
2327 struct phys_disk *pd;
2328 struct virtual_disk *vd;
2329
2330 if (st->sb)
2331 return init_super_ddf_bvd(st, info, size, name, homehost, uuid,
2332 data_offset);
2333
2334 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
2335 pr_err("could not allocate superblock\n");
2336 return 0;
2337 }
2338 memset(ddf, 0, sizeof(*ddf));
2339 st->sb = ddf;
2340
2341 if (info == NULL) {
2342 /* zeroing superblock */
2343 return 0;
2344 }
2345
2346 /* At least 32MB *must* be reserved for the ddf. So let's just
2347 * start 32MB from the end, and put the primary header there.
2348 * Don't do secondary for now.
2349 * We don't know exactly where that will be yet as it could be
2350 * different on each device. So just set up the lengths.
2351 */
2352
2353 ddf->anchor.magic = DDF_HEADER_MAGIC;
2354 make_header_guid(ddf->anchor.guid);
2355
2356 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
2357 ddf->anchor.seq = cpu_to_be32(1);
2358 ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
2359 ddf->anchor.openflag = 0xFF;
2360 ddf->anchor.foreignflag = 0;
2361 ddf->anchor.enforcegroups = 0; /* Is this best?? */
2362 ddf->anchor.pad0 = 0xff;
2363 memset(ddf->anchor.pad1, 0xff, 12);
2364 memset(ddf->anchor.header_ext, 0xff, 32);
2365 ddf->anchor.primary_lba = cpu_to_be64(~(__u64)0);
2366 ddf->anchor.secondary_lba = cpu_to_be64(~(__u64)0);
2367 ddf->anchor.type = DDF_HEADER_ANCHOR;
2368 memset(ddf->anchor.pad2, 0xff, 3);
2369 ddf->anchor.workspace_len = cpu_to_be32(32768); /* Must be reserved */
2370 /* Put this at bottom of 32M reserved.. */
2371 ddf->anchor.workspace_lba = cpu_to_be64(~(__u64)0);
2372 max_phys_disks = 1023; /* Should be enough, 4095 is also allowed */
2373 ddf->anchor.max_pd_entries = cpu_to_be16(max_phys_disks);
2374 max_virt_disks = 255; /* 15, 63, 255, 1024, 4095 are all allowed */
2375 ddf->anchor.max_vd_entries = cpu_to_be16(max_virt_disks);
2376 ddf->max_part = 64;
2377 ddf->anchor.max_partitions = cpu_to_be16(ddf->max_part);
2378 ddf->mppe = 256; /* 16, 64, 256, 1024, 4096 are all allowed */
2379 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
2380 ddf->anchor.config_record_len = cpu_to_be16(ddf->conf_rec_len);
2381 ddf->anchor.max_primary_element_entries = cpu_to_be16(ddf->mppe);
2382 memset(ddf->anchor.pad3, 0xff, 54);
2383 /* Controller section is one sector long immediately
2384 * after the ddf header */
2385 sector = 1;
2386 ddf->anchor.controller_section_offset = cpu_to_be32(sector);
2387 ddf->anchor.controller_section_length = cpu_to_be32(1);
2388 sector += 1;
2389
2390 /* phys is 8 sectors after that */
2391 pdsize = ROUND_UP(sizeof(struct phys_disk) +
2392 sizeof(struct phys_disk_entry)*max_phys_disks,
2393 512);
2394 switch(pdsize/512) {
2395 case 2: case 8: case 32: case 128: case 512: break;
2396 default: abort();
2397 }
2398 ddf->anchor.phys_section_offset = cpu_to_be32(sector);
2399 ddf->anchor.phys_section_length =
2400 cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
2401 sector += pdsize/512;
2402
2403 /* virt is another 32 sectors */
2404 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
2405 sizeof(struct virtual_entry) * max_virt_disks,
2406 512);
2407 switch(vdsize/512) {
2408 case 2: case 8: case 32: case 128: case 512: break;
2409 default: abort();
2410 }
2411 ddf->anchor.virt_section_offset = cpu_to_be32(sector);
2412 ddf->anchor.virt_section_length =
2413 cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
2414 sector += vdsize/512;
2415
2416 clen = ddf->conf_rec_len * (ddf->max_part+1);
2417 ddf->anchor.config_section_offset = cpu_to_be32(sector);
2418 ddf->anchor.config_section_length = cpu_to_be32(clen);
2419 sector += clen;
2420
2421 ddf->anchor.data_section_offset = cpu_to_be32(sector);
2422 ddf->anchor.data_section_length = cpu_to_be32(1);
2423 sector += 1;
2424
2425 ddf->anchor.bbm_section_length = cpu_to_be32(0);
2426 ddf->anchor.bbm_section_offset = cpu_to_be32(0xFFFFFFFF);
2427 ddf->anchor.diag_space_length = cpu_to_be32(0);
2428 ddf->anchor.diag_space_offset = cpu_to_be32(0xFFFFFFFF);
2429 ddf->anchor.vendor_length = cpu_to_be32(0);
2430 ddf->anchor.vendor_offset = cpu_to_be32(0xFFFFFFFF);
2431
2432 memset(ddf->anchor.pad4, 0xff, 256);
2433
2434 memcpy(&ddf->primary, &ddf->anchor, 512);
2435 memcpy(&ddf->secondary, &ddf->anchor, 512);
2436
2437 ddf->primary.openflag = 1; /* I guess.. */
2438 ddf->primary.type = DDF_HEADER_PRIMARY;
2439
2440 ddf->secondary.openflag = 1; /* I guess.. */
2441 ddf->secondary.type = DDF_HEADER_SECONDARY;
2442
2443 ddf->active = &ddf->primary;
2444
2445 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
2446
2447 /* 24 more bytes of fiction required.
2448 * first 8 are a 'vendor-id' - "Linux-MD"
2449 * Remaining 16 are serial number.... maybe a hostname would do?
2450 */
2451 memcpy(ddf->controller.guid, T10, sizeof(T10));
2452 gethostname(hostname, sizeof(hostname));
2453 hostname[sizeof(hostname) - 1] = 0;
2454 hostlen = strlen(hostname);
2455 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
2456 for (i = strlen(T10) ; i+hostlen < 24; i++)
2457 ddf->controller.guid[i] = ' ';
2458
2459 ddf->controller.type.vendor_id = cpu_to_be16(0xDEAD);
2460 ddf->controller.type.device_id = cpu_to_be16(0xBEEF);
2461 ddf->controller.type.sub_vendor_id = cpu_to_be16(0);
2462 ddf->controller.type.sub_device_id = cpu_to_be16(0);
2463 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
2464 memset(ddf->controller.pad, 0xff, 8);
2465 memset(ddf->controller.vendor_data, 0xff, 448);
2466 if (homehost && strlen(homehost) < 440)
2467 strcpy((char*)ddf->controller.vendor_data, homehost);
2468
2469 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
2470 pr_err("could not allocate pd\n");
2471 return 0;
2472 }
2473 ddf->phys = pd;
2474 ddf->pdsize = pdsize;
2475
2476 memset(pd, 0xff, pdsize);
2477 memset(pd, 0, sizeof(*pd));
2478 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2479 pd->used_pdes = cpu_to_be16(0);
2480 pd->max_pdes = cpu_to_be16(max_phys_disks);
2481 memset(pd->pad, 0xff, 52);
2482 for (i = 0; i < max_phys_disks; i++)
2483 memset(pd->entries[i].guid, 0xff, DDF_GUID_LEN);
2484
2485 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
2486 pr_err("could not allocate vd\n");
2487 return 0;
2488 }
2489 ddf->virt = vd;
2490 ddf->vdsize = vdsize;
2491 memset(vd, 0, vdsize);
2492 vd->magic = DDF_VIRT_RECORDS_MAGIC;
2493 vd->populated_vdes = cpu_to_be16(0);
2494 vd->max_vdes = cpu_to_be16(max_virt_disks);
2495 memset(vd->pad, 0xff, 52);
2496
2497 for (i=0; i<max_virt_disks; i++)
2498 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
2499
2500 st->sb = ddf;
2501 ddf_set_updates_pending(ddf, NULL);
2502 return 1;
2503 }
2504
2505 static int chunk_to_shift(int chunksize)
2506 {
2507 return ffs(chunksize/512)-1;
2508 }
2509
2510 #ifndef MDASSEMBLE
2511 struct extent {
2512 unsigned long long start, size;
2513 };
2514 static int cmp_extent(const void *av, const void *bv)
2515 {
2516 const struct extent *a = av;
2517 const struct extent *b = bv;
2518 if (a->start < b->start)
2519 return -1;
2520 if (a->start > b->start)
2521 return 1;
2522 return 0;
2523 }
2524
2525 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
2526 {
2527 /* Find a list of used extents on the given physical device
2528 * (dnum) of the given ddf.
2529 * Return a malloced array of 'struct extent'
2530 */
2531 struct extent *rv;
2532 int n = 0;
2533 unsigned int i;
2534 __u16 state;
2535
2536 if (dl->pdnum < 0)
2537 return NULL;
2538 state = be16_to_cpu(ddf->phys->entries[dl->pdnum].state);
2539
2540 if ((state & (DDF_Online|DDF_Failed|DDF_Missing)) != DDF_Online)
2541 return NULL;
2542
2543 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
2544
2545 for (i = 0; i < ddf->max_part; i++) {
2546 const struct vd_config *bvd;
2547 unsigned int ibvd;
2548 struct vcl *v = dl->vlist[i];
2549 if (v == NULL ||
2550 get_pd_index_from_refnum(v, dl->disk.refnum, ddf->mppe,
2551 &bvd, &ibvd) == DDF_NOTFOUND)
2552 continue;
2553 rv[n].start = be64_to_cpu(LBA_OFFSET(ddf, bvd)[ibvd]);
2554 rv[n].size = be64_to_cpu(bvd->blocks);
2555 n++;
2556 }
2557 qsort(rv, n, sizeof(*rv), cmp_extent);
2558
2559 rv[n].start = be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
2560 rv[n].size = 0;
2561 return rv;
2562 }
2563
2564 static unsigned long long find_space(
2565 struct ddf_super *ddf, struct dl *dl,
2566 unsigned long long data_offset,
2567 unsigned long long *size)
2568 {
2569 /* Find if the requested amount of space is available.
2570 * If it is, return start.
2571 * If not, set *size to largest space.
2572 * If data_offset != INVALID_SECTORS, then the space must start
2573 * at this location.
2574 */
2575 struct extent *e = get_extents(ddf, dl);
2576 int i = 0;
2577 unsigned long long pos = 0;
2578 unsigned long long max_size = 0;
2579
2580 if (!e) {
2581 *size = 0;
2582 return INVALID_SECTORS;
2583 }
2584 do {
2585 unsigned long long esize = e[i].start - pos;
2586 if (data_offset != INVALID_SECTORS &&
2587 pos <= data_offset &&
2588 e[i].start > data_offset) {
2589 pos = data_offset;
2590 esize = e[i].start - pos;
2591 }
2592 if (data_offset != INVALID_SECTORS &&
2593 pos != data_offset) {
2594 i++;
2595 continue;
2596 }
2597 if (esize >= *size) {
2598 /* Found! */
2599 free(e);
2600 return pos;
2601 }
2602 if (esize > max_size)
2603 max_size = esize;
2604 pos = e[i].start + e[i].size;
2605 i++;
2606 } while (e[i-1].size);
2607 *size = max_size;
2608 free(e);
2609 return INVALID_SECTORS;
2610 }
2611 #endif
2612
2613 static int init_super_ddf_bvd(struct supertype *st,
2614 mdu_array_info_t *info,
2615 unsigned long long size,
2616 char *name, char *homehost,
2617 int *uuid, unsigned long long data_offset)
2618 {
2619 /* We are creating a BVD inside a pre-existing container.
2620 * so st->sb is already set.
2621 * We need to create a new vd_config and a new virtual_entry
2622 */
2623 struct ddf_super *ddf = st->sb;
2624 unsigned int venum, i;
2625 struct virtual_entry *ve;
2626 struct vcl *vcl;
2627 struct vd_config *vc;
2628
2629 if (find_vde_by_name(ddf, name) != DDF_NOTFOUND) {
2630 pr_err("This ddf already has an array called %s\n", name);
2631 return 0;
2632 }
2633 venum = find_unused_vde(ddf);
2634 if (venum == DDF_NOTFOUND) {
2635 pr_err("Cannot find spare slot for virtual disk\n");
2636 return 0;
2637 }
2638 ve = &ddf->virt->entries[venum];
2639
2640 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
2641 * timestamp, random number
2642 */
2643 make_header_guid(ve->guid);
2644 ve->unit = cpu_to_be16(info->md_minor);
2645 ve->pad0 = 0xFFFF;
2646 ve->guid_crc._v16 = crc32(0, (unsigned char *)ddf->anchor.guid,
2647 DDF_GUID_LEN);
2648 ve->type = cpu_to_be16(0);
2649 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2650 if (info->state & 1) /* clean */
2651 ve->init_state = DDF_init_full;
2652 else
2653 ve->init_state = DDF_init_not;
2654
2655 memset(ve->pad1, 0xff, 14);
2656 memset(ve->name, ' ', 16);
2657 if (name)
2658 strncpy(ve->name, name, 16);
2659 ddf->virt->populated_vdes =
2660 cpu_to_be16(be16_to_cpu(ddf->virt->populated_vdes)+1);
2661
2662 /* Now create a new vd_config */
2663 if (posix_memalign((void**)&vcl, 512,
2664 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2665 pr_err("could not allocate vd_config\n");
2666 return 0;
2667 }
2668 vcl->vcnum = venum;
2669 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2670 vc = &vcl->conf;
2671
2672 vc->magic = DDF_VD_CONF_MAGIC;
2673 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2674 vc->timestamp = cpu_to_be32(time(0)-DECADE);
2675 vc->seqnum = cpu_to_be32(1);
2676 memset(vc->pad0, 0xff, 24);
2677 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2678 if (layout_md2ddf(info, vc) == -1 ||
2679 be16_to_cpu(vc->prim_elmnt_count) > ddf->mppe) {
2680 pr_err("unsupported RAID level/layout %d/%d with %d disks\n",
2681 info->level, info->layout, info->raid_disks);
2682 free(vcl);
2683 return 0;
2684 }
2685 vc->sec_elmnt_seq = 0;
2686 if (alloc_other_bvds(ddf, vcl) != 0) {
2687 pr_err("could not allocate other bvds\n");
2688 free(vcl);
2689 return 0;
2690 }
2691 vc->blocks = cpu_to_be64(info->size * 2);
2692 vc->array_blocks = cpu_to_be64(
2693 calc_array_size(info->level, info->raid_disks, info->layout,
2694 info->chunk_size, info->size*2));
2695 memset(vc->pad1, 0xff, 8);
2696 vc->spare_refs[0] = cpu_to_be32(0xffffffff);
2697 vc->spare_refs[1] = cpu_to_be32(0xffffffff);
2698 vc->spare_refs[2] = cpu_to_be32(0xffffffff);
2699 vc->spare_refs[3] = cpu_to_be32(0xffffffff);
2700 vc->spare_refs[4] = cpu_to_be32(0xffffffff);
2701 vc->spare_refs[5] = cpu_to_be32(0xffffffff);
2702 vc->spare_refs[6] = cpu_to_be32(0xffffffff);
2703 vc->spare_refs[7] = cpu_to_be32(0xffffffff);
2704 memset(vc->cache_pol, 0, 8);
2705 vc->bg_rate = 0x80;
2706 memset(vc->pad2, 0xff, 3);
2707 memset(vc->pad3, 0xff, 52);
2708 memset(vc->pad4, 0xff, 192);
2709 memset(vc->v0, 0xff, 32);
2710 memset(vc->v1, 0xff, 32);
2711 memset(vc->v2, 0xff, 16);
2712 memset(vc->v3, 0xff, 16);
2713 memset(vc->vendor, 0xff, 32);
2714
2715 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2716 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2717
2718 for (i = 1; i < vc->sec_elmnt_count; i++) {
2719 memcpy(vcl->other_bvds[i-1], vc, ddf->conf_rec_len * 512);
2720 vcl->other_bvds[i-1]->sec_elmnt_seq = i;
2721 }
2722
2723 vcl->next = ddf->conflist;
2724 ddf->conflist = vcl;
2725 ddf->currentconf = vcl;
2726 ddf_set_updates_pending(ddf, NULL);
2727 return 1;
2728 }
2729
2730 #ifndef MDASSEMBLE
2731 static void add_to_super_ddf_bvd(struct supertype *st,
2732 mdu_disk_info_t *dk, int fd, char *devname,
2733 unsigned long long data_offset)
2734 {
2735 /* fd and devname identify a device within the ddf container (st).
2736 * dk identifies a location in the new BVD.
2737 * We need to find suitable free space in that device and update
2738 * the phys_refnum and lba_offset for the newly created vd_config.
2739 * We might also want to update the type in the phys_disk
2740 * section.
2741 *
2742 * Alternately: fd == -1 and we have already chosen which device to
2743 * use and recorded in dlist->raid_disk;
2744 */
2745 struct dl *dl;
2746 struct ddf_super *ddf = st->sb;
2747 struct vd_config *vc;
2748 unsigned int i;
2749 unsigned long long blocks, pos;
2750 unsigned int raid_disk = dk->raid_disk;
2751
2752 if (fd == -1) {
2753 for (dl = ddf->dlist; dl ; dl = dl->next)
2754 if (dl->raiddisk == dk->raid_disk)
2755 break;
2756 } else {
2757 for (dl = ddf->dlist; dl ; dl = dl->next)
2758 if (dl->major == dk->major &&
2759 dl->minor == dk->minor)
2760 break;
2761 }
2762 if (!dl || dl->pdnum < 0 || ! (dk->state & (1<<MD_DISK_SYNC)))
2763 return;
2764
2765 vc = &ddf->currentconf->conf;
2766 if (vc->sec_elmnt_count > 1) {
2767 unsigned int n = be16_to_cpu(vc->prim_elmnt_count);
2768 if (raid_disk >= n)
2769 vc = ddf->currentconf->other_bvds[raid_disk / n - 1];
2770 raid_disk %= n;
2771 }
2772
2773 blocks = be64_to_cpu(vc->blocks);
2774 if (ddf->currentconf->block_sizes)
2775 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2776
2777 pos = find_space(ddf, dl, data_offset, &blocks);
2778 if (pos == INVALID_SECTORS)
2779 return;
2780
2781 ddf->currentdev = dk->raid_disk;
2782 vc->phys_refnum[raid_disk] = dl->disk.refnum;
2783 LBA_OFFSET(ddf, vc)[raid_disk] = cpu_to_be64(pos);
2784
2785 for (i = 0; i < ddf->max_part ; i++)
2786 if (dl->vlist[i] == NULL)
2787 break;
2788 if (i == ddf->max_part)
2789 return;
2790 dl->vlist[i] = ddf->currentconf;
2791
2792 if (fd >= 0)
2793 dl->fd = fd;
2794 if (devname)
2795 dl->devname = devname;
2796
2797 /* Check if we can mark array as optimal yet */
2798 i = ddf->currentconf->vcnum;
2799 ddf->virt->entries[i].state =
2800 (ddf->virt->entries[i].state & ~DDF_state_mask)
2801 | get_svd_state(ddf, ddf->currentconf);
2802 be16_clear(ddf->phys->entries[dl->pdnum].type,
2803 cpu_to_be16(DDF_Global_Spare));
2804 be16_set(ddf->phys->entries[dl->pdnum].type,
2805 cpu_to_be16(DDF_Active_in_VD));
2806 dprintf("added disk %d/%08x to VD %d/%s as disk %d\n",
2807 dl->pdnum, be32_to_cpu(dl->disk.refnum),
2808 ddf->currentconf->vcnum, guid_str(vc->guid),
2809 dk->raid_disk);
2810 ddf_set_updates_pending(ddf, vc);
2811 }
2812
2813 static unsigned int find_unused_pde(const struct ddf_super *ddf)
2814 {
2815 unsigned int i;
2816 for (i = 0; i < be16_to_cpu(ddf->phys->max_pdes); i++) {
2817 if (all_ff(ddf->phys->entries[i].guid))
2818 return i;
2819 }
2820 return DDF_NOTFOUND;
2821 }
2822
2823 static void _set_config_size(struct phys_disk_entry *pde, const struct dl *dl)
2824 {
2825 __u64 cfs, t;
2826 cfs = min(dl->size - 32*1024*2ULL, be64_to_cpu(dl->primary_lba));
2827 t = be64_to_cpu(dl->secondary_lba);
2828 if (t != ~(__u64)0)
2829 cfs = min(cfs, t);
2830 /*
2831 * Some vendor DDF structures interpret workspace_lba
2832 * very differently than we do: Make a sanity check on the value.
2833 */
2834 t = be64_to_cpu(dl->workspace_lba);
2835 if (t < cfs) {
2836 __u64 wsp = cfs - t;
2837 if (wsp > 1024*1024*2ULL && wsp > dl->size / 16) {
2838 pr_err("%x:%x: workspace size 0x%llx too big, ignoring\n",
2839 dl->major, dl->minor, (unsigned long long)wsp);
2840 } else
2841 cfs = t;
2842 }
2843 pde->config_size = cpu_to_be64(cfs);
2844 dprintf("%x:%x config_size %llx, DDF structure is %llx blocks\n",
2845 dl->major, dl->minor,
2846 (unsigned long long)cfs, (unsigned long long)(dl->size-cfs));
2847 }
2848
2849 /* Add a device to a container, either while creating it or while
2850 * expanding a pre-existing container
2851 */
2852 static int add_to_super_ddf(struct supertype *st,
2853 mdu_disk_info_t *dk, int fd, char *devname,
2854 unsigned long long data_offset)
2855 {
2856 struct ddf_super *ddf = st->sb;
2857 struct dl *dd;
2858 time_t now;
2859 struct tm *tm;
2860 unsigned long long size;
2861 struct phys_disk_entry *pde;
2862 unsigned int n, i;
2863 struct stat stb;
2864 __u32 *tptr;
2865
2866 if (ddf->currentconf) {
2867 add_to_super_ddf_bvd(st, dk, fd, devname, data_offset);
2868 return 0;
2869 }
2870
2871 /* This is device numbered dk->number. We need to create
2872 * a phys_disk entry and a more detailed disk_data entry.
2873 */
2874 fstat(fd, &stb);
2875 n = find_unused_pde(ddf);
2876 if (n == DDF_NOTFOUND) {
2877 pr_err("No free slot in array, cannot add disk\n");
2878 return 1;
2879 }
2880 pde = &ddf->phys->entries[n];
2881 get_dev_size(fd, NULL, &size);
2882 if (size <= 32*1024*1024) {
2883 pr_err("device size must be at least 32MB\n");
2884 return 1;
2885 }
2886 size >>= 9;
2887
2888 if (posix_memalign((void**)&dd, 512,
2889 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2890 pr_err("could allocate buffer for new disk, aborting\n");
2891 return 1;
2892 }
2893 dd->major = major(stb.st_rdev);
2894 dd->minor = minor(stb.st_rdev);
2895 dd->devname = devname;
2896 dd->fd = fd;
2897 dd->spare = NULL;
2898
2899 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2900 now = time(0);
2901 tm = localtime(&now);
2902 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2903 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2904 tptr = (__u32 *)(dd->disk.guid + 16);
2905 *tptr++ = random32();
2906 *tptr = random32();
2907
2908 do {
2909 /* Cannot be bothered finding a CRC of some irrelevant details*/
2910 dd->disk.refnum._v32 = random32();
2911 for (i = be16_to_cpu(ddf->active->max_pd_entries);
2912 i > 0; i--)
2913 if (be32_eq(ddf->phys->entries[i-1].refnum,
2914 dd->disk.refnum))
2915 break;
2916 } while (i > 0);
2917
2918 dd->disk.forced_ref = 1;
2919 dd->disk.forced_guid = 1;
2920 memset(dd->disk.vendor, ' ', 32);
2921 memcpy(dd->disk.vendor, "Linux", 5);
2922 memset(dd->disk.pad, 0xff, 442);
2923 for (i = 0; i < ddf->max_part ; i++)
2924 dd->vlist[i] = NULL;
2925
2926 dd->pdnum = n;
2927
2928 if (st->update_tail) {
2929 int len = (sizeof(struct phys_disk) +
2930 sizeof(struct phys_disk_entry));
2931 struct phys_disk *pd;
2932
2933 pd = xmalloc(len);
2934 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2935 pd->used_pdes = cpu_to_be16(n);
2936 pde = &pd->entries[0];
2937 dd->mdupdate = pd;
2938 } else
2939 ddf->phys->used_pdes = cpu_to_be16(
2940 1 + be16_to_cpu(ddf->phys->used_pdes));
2941
2942 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2943 pde->refnum = dd->disk.refnum;
2944 pde->type = cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2945 pde->state = cpu_to_be16(DDF_Online);
2946 dd->size = size;
2947 /*
2948 * If there is already a device in dlist, try to reserve the same
2949 * amount of workspace. Otherwise, use 32MB.
2950 * We checked disk size above already.
2951 */
2952 #define __calc_lba(new, old, lba, mb) do { \
2953 unsigned long long dif; \
2954 if ((old) != NULL) \
2955 dif = (old)->size - be64_to_cpu((old)->lba); \
2956 else \
2957 dif = (new)->size; \
2958 if ((new)->size > dif) \
2959 (new)->lba = cpu_to_be64((new)->size - dif); \
2960 else \
2961 (new)->lba = cpu_to_be64((new)->size - (mb*1024*2)); \
2962 } while (0)
2963 __calc_lba(dd, ddf->dlist, workspace_lba, 32);
2964 __calc_lba(dd, ddf->dlist, primary_lba, 16);
2965 if (ddf->dlist == NULL ||
2966 be64_to_cpu(ddf->dlist->secondary_lba) != ~(__u64)0)
2967 __calc_lba(dd, ddf->dlist, secondary_lba, 32);
2968 _set_config_size(pde, dd);
2969
2970 sprintf(pde->path, "%17.17s","Information: nil") ;
2971 memset(pde->pad, 0xff, 6);
2972
2973 if (st->update_tail) {
2974 dd->next = ddf->add_list;
2975 ddf->add_list = dd;
2976 } else {
2977 dd->next = ddf->dlist;
2978 ddf->dlist = dd;
2979 ddf_set_updates_pending(ddf, NULL);
2980 }
2981
2982 return 0;
2983 }
2984
2985 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2986 {
2987 struct ddf_super *ddf = st->sb;
2988 struct dl *dl;
2989
2990 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2991 * disappeared from the container.
2992 * We need to arrange that it disappears from the metadata and
2993 * internal data structures too.
2994 * Most of the work is done by ddf_process_update which edits
2995 * the metadata and closes the file handle and attaches the memory
2996 * where free_updates will free it.
2997 */
2998 for (dl = ddf->dlist; dl ; dl = dl->next)
2999 if (dl->major == dk->major &&
3000 dl->minor == dk->minor)
3001 break;
3002 if (!dl || dl->pdnum < 0)
3003 return -1;
3004
3005 if (st->update_tail) {
3006 int len = (sizeof(struct phys_disk) +
3007 sizeof(struct phys_disk_entry));
3008 struct phys_disk *pd;
3009
3010 pd = xmalloc(len);
3011 pd->magic = DDF_PHYS_RECORDS_MAGIC;
3012 pd->used_pdes = cpu_to_be16(dl->pdnum);
3013 pd->entries[0].state = cpu_to_be16(DDF_Missing);
3014 append_metadata_update(st, pd, len);
3015 }
3016 return 0;
3017 }
3018 #endif
3019
3020 /*
3021 * This is the write_init_super method for a ddf container. It is
3022 * called when creating a container or adding another device to a
3023 * container.
3024 */
3025
3026 static int __write_ddf_structure(struct dl *d, struct ddf_super *ddf, __u8 type)
3027 {
3028 unsigned long long sector;
3029 struct ddf_header *header;
3030 int fd, i, n_config, conf_size, buf_size;
3031 int ret = 0;
3032 char *conf;
3033
3034 fd = d->fd;
3035
3036 switch (type) {
3037 case DDF_HEADER_PRIMARY:
3038 header = &ddf->primary;
3039 sector = be64_to_cpu(header->primary_lba);
3040 break;
3041 case DDF_HEADER_SECONDARY:
3042 header = &ddf->secondary;
3043 sector = be64_to_cpu(header->secondary_lba);
3044 break;
3045 default:
3046 return 0;
3047 }
3048 if (sector == ~(__u64)0)
3049 return 0;
3050
3051 header->type = type;
3052 header->openflag = 1;
3053 header->crc = calc_crc(header, 512);
3054
3055 lseek64(fd, sector<<9, 0);
3056 if (write(fd, header, 512) < 0)
3057 goto out;
3058
3059 ddf->controller.crc = calc_crc(&ddf->controller, 512);
3060 if (write(fd, &ddf->controller, 512) < 0)
3061 goto out;
3062
3063 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
3064 if (write(fd, ddf->phys, ddf->pdsize) < 0)
3065 goto out;
3066 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
3067 if (write(fd, ddf->virt, ddf->vdsize) < 0)
3068 goto out;
3069
3070 /* Now write lots of config records. */
3071 n_config = ddf->max_part;
3072 conf_size = ddf->conf_rec_len * 512;
3073 conf = ddf->conf;
3074 buf_size = conf_size * (n_config + 1);
3075 if (!conf) {
3076 if (posix_memalign((void**)&conf, 512, buf_size) != 0)
3077 goto out;
3078 ddf->conf = conf;
3079 }
3080 for (i = 0 ; i <= n_config ; i++) {
3081 struct vcl *c;
3082 struct vd_config *vdc = NULL;
3083 if (i == n_config) {
3084 c = (struct vcl *)d->spare;
3085 if (c)
3086 vdc = &c->conf;
3087 } else {
3088 unsigned int dummy;
3089 c = d->vlist[i];
3090 if (c)
3091 get_pd_index_from_refnum(
3092 c, d->disk.refnum,
3093 ddf->mppe,
3094 (const struct vd_config **)&vdc,
3095 &dummy);
3096 }
3097 if (vdc) {
3098 dprintf("writing conf record %i on disk %08x for %s/%u\n",
3099 i, be32_to_cpu(d->disk.refnum),
3100 guid_str(vdc->guid),
3101 vdc->sec_elmnt_seq);
3102 vdc->crc = calc_crc(vdc, conf_size);
3103 memcpy(conf + i*conf_size, vdc, conf_size);
3104 } else
3105 memset(conf + i*conf_size, 0xff, conf_size);
3106 }
3107 if (write(fd, conf, buf_size) != buf_size)
3108 goto out;
3109
3110 d->disk.crc = calc_crc(&d->disk, 512);
3111 if (write(fd, &d->disk, 512) < 0)
3112 goto out;
3113
3114 ret = 1;
3115 out:
3116 header->openflag = 0;
3117 header->crc = calc_crc(header, 512);
3118
3119 lseek64(fd, sector<<9, 0);
3120 if (write(fd, header, 512) < 0)
3121 ret = 0;
3122
3123 return ret;
3124 }
3125
3126 static int _write_super_to_disk(struct ddf_super *ddf, struct dl *d)
3127 {
3128 unsigned long long size;
3129 int fd = d->fd;
3130 if (fd < 0)
3131 return 0;
3132
3133 /* We need to fill in the primary, (secondary) and workspace
3134 * lba's in the headers, set their checksums,
3135 * Also checksum phys, virt....
3136 *
3137 * Then write everything out, finally the anchor is written.
3138 */
3139 get_dev_size(fd, NULL, &size);
3140 size /= 512;
3141 memcpy(&ddf->anchor, ddf->active, 512);
3142 if (be64_to_cpu(d->workspace_lba) != 0ULL)
3143 ddf->anchor.workspace_lba = d->workspace_lba;
3144 else
3145 ddf->anchor.workspace_lba =
3146 cpu_to_be64(size - 32*1024*2);
3147 if (be64_to_cpu(d->primary_lba) != 0ULL)
3148 ddf->anchor.primary_lba = d->primary_lba;
3149 else
3150 ddf->anchor.primary_lba =
3151 cpu_to_be64(size - 16*1024*2);
3152 if (be64_to_cpu(d->secondary_lba) != 0ULL)
3153 ddf->anchor.secondary_lba = d->secondary_lba;
3154 else
3155 ddf->anchor.secondary_lba =
3156 cpu_to_be64(size - 32*1024*2);
3157 ddf->anchor.timestamp = cpu_to_be32(time(0) - DECADE);
3158 memcpy(&ddf->primary, &ddf->anchor, 512);
3159 memcpy(&ddf->secondary, &ddf->anchor, 512);
3160
3161 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
3162 ddf->anchor.seq = cpu_to_be32(0xFFFFFFFF); /* no sequencing in anchor */
3163 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
3164
3165 if (!__write_ddf_structure(d, ddf, DDF_HEADER_PRIMARY))
3166 return 0;
3167
3168 if (!__write_ddf_structure(d, ddf, DDF_HEADER_SECONDARY))
3169 return 0;
3170
3171 lseek64(fd, (size-1)*512, SEEK_SET);
3172 if (write(fd, &ddf->anchor, 512) < 0)
3173 return 0;
3174
3175 return 1;
3176 }
3177
3178 #ifndef MDASSEMBLE
3179 static int __write_init_super_ddf(struct supertype *st)
3180 {
3181 struct ddf_super *ddf = st->sb;
3182 struct dl *d;
3183 int attempts = 0;
3184 int successes = 0;
3185
3186 pr_state(ddf, __func__);
3187
3188 /* try to write updated metadata,
3189 * if we catch a failure move on to the next disk
3190 */
3191 for (d = ddf->dlist; d; d=d->next) {
3192 attempts++;
3193 successes += _write_super_to_disk(ddf, d);
3194 }
3195
3196 return attempts != successes;
3197 }
3198
3199 static int write_init_super_ddf(struct supertype *st)
3200 {
3201 struct ddf_super *ddf = st->sb;
3202 struct vcl *currentconf = ddf->currentconf;
3203
3204 /* We are done with currentconf - reset it so st refers to the container */
3205 ddf->currentconf = NULL;
3206
3207 if (st->update_tail) {
3208 /* queue the virtual_disk and vd_config as metadata updates */
3209 struct virtual_disk *vd;
3210 struct vd_config *vc;
3211 int len, tlen;
3212 unsigned int i;
3213
3214 if (!currentconf) {
3215 /* Must be adding a physical disk to the container */
3216 int len = (sizeof(struct phys_disk) +
3217 sizeof(struct phys_disk_entry));
3218
3219 /* adding a disk to the container. */
3220 if (!ddf->add_list)
3221 return 0;
3222
3223 append_metadata_update(st, ddf->add_list->mdupdate, len);
3224 ddf->add_list->mdupdate = NULL;
3225 return 0;
3226 }
3227
3228 /* Newly created VD */
3229
3230 /* First the virtual disk. We have a slightly fake header */
3231 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
3232 vd = xmalloc(len);
3233 *vd = *ddf->virt;
3234 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
3235 vd->populated_vdes = cpu_to_be16(currentconf->vcnum);
3236 append_metadata_update(st, vd, len);
3237
3238 /* Then the vd_config */
3239 len = ddf->conf_rec_len * 512;
3240 tlen = len * currentconf->conf.sec_elmnt_count;
3241 vc = xmalloc(tlen);
3242 memcpy(vc, &currentconf->conf, len);
3243 for (i = 1; i < currentconf->conf.sec_elmnt_count; i++)
3244 memcpy((char *)vc + i*len, currentconf->other_bvds[i-1],
3245 len);
3246 append_metadata_update(st, vc, tlen);
3247
3248 return 0;
3249 } else {
3250 struct dl *d;
3251 if (!currentconf)
3252 for (d = ddf->dlist; d; d=d->next)
3253 while (Kill(d->devname, NULL, 0, -1, 1) == 0);
3254 /* Note: we don't close the fd's now, but a subsequent
3255 * ->free_super() will
3256 */
3257 return __write_init_super_ddf(st);
3258 }
3259 }
3260
3261 #endif
3262
3263 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize,
3264 unsigned long long data_offset)
3265 {
3266 /* We must reserve the last 32Meg */
3267 if (devsize <= 32*1024*2)
3268 return 0;
3269 return devsize - 32*1024*2;
3270 }
3271
3272 #ifndef MDASSEMBLE
3273
3274 static int reserve_space(struct supertype *st, int raiddisks,
3275 unsigned long long size, int chunk,
3276 unsigned long long data_offset,
3277 unsigned long long *freesize)
3278 {
3279 /* Find 'raiddisks' spare extents at least 'size' big (but
3280 * only caring about multiples of 'chunk') and remember
3281 * them. If size==0, find the largest size possible.
3282 * Report available size in *freesize
3283 * If space cannot be found, fail.
3284 */
3285 struct dl *dl;
3286 struct ddf_super *ddf = st->sb;
3287 int cnt = 0;
3288
3289 for (dl = ddf->dlist; dl ; dl=dl->next) {
3290 dl->raiddisk = -1;
3291 dl->esize = 0;
3292 }
3293 /* Now find largest extent on each device */
3294 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3295 unsigned long long minsize = ULLONG_MAX;
3296
3297 find_space(ddf, dl, data_offset, &minsize);
3298 if (minsize >= size && minsize >= (unsigned)chunk) {
3299 cnt++;
3300 dl->esize = minsize;
3301 }
3302 }
3303 if (cnt < raiddisks) {
3304 pr_err("not enough devices with space to create array.\n");
3305 return 0; /* No enough free spaces large enough */
3306 }
3307 if (size == 0) {
3308 /* choose the largest size of which there are at least 'raiddisk' */
3309 for (dl = ddf->dlist ; dl ; dl=dl->next) {
3310 struct dl *dl2;
3311 if (dl->esize <= size)
3312 continue;
3313 /* This is bigger than 'size', see if there are enough */
3314 cnt = 0;
3315 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
3316 if (dl2->esize >= dl->esize)
3317 cnt++;
3318 if (cnt >= raiddisks)
3319 size = dl->esize;
3320 }
3321 if (chunk) {
3322 size = size / chunk;
3323 size *= chunk;
3324 }
3325 *freesize = size;
3326 if (size < 32) {
3327 pr_err("not enough spare devices to create array.\n");
3328 return 0;
3329 }
3330 }
3331 /* We have a 'size' of which there are enough spaces.
3332 * We simply do a first-fit */
3333 cnt = 0;
3334 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
3335 if (dl->esize < size)
3336 continue;
3337
3338 dl->raiddisk = cnt;
3339 cnt++;
3340 }
3341 return 1;
3342 }
3343
3344 static int validate_geometry_ddf(struct supertype *st,
3345 int level, int layout, int raiddisks,
3346 int *chunk, unsigned long long size,
3347 unsigned long long data_offset,
3348 char *dev, unsigned long long *freesize,
3349 int verbose)
3350 {
3351 int fd;
3352 struct mdinfo *sra;
3353 int cfd;
3354
3355 /* ddf potentially supports lots of things, but it depends on
3356 * what devices are offered (and maybe kernel version?)
3357 * If given unused devices, we will make a container.
3358 * If given devices in a container, we will make a BVD.
3359 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
3360 */
3361
3362 if (*chunk == UnSet)
3363 *chunk = DEFAULT_CHUNK;
3364
3365 if (level == LEVEL_NONE)
3366 level = LEVEL_CONTAINER;
3367 if (level == LEVEL_CONTAINER) {
3368 /* Must be a fresh device to add to a container */
3369 return validate_geometry_ddf_container(st, level, layout,
3370 raiddisks, *chunk,
3371 size, data_offset, dev,
3372 freesize,
3373 verbose);
3374 }
3375
3376 if (!dev) {
3377 mdu_array_info_t array = {
3378 .level = level,
3379 .layout = layout,
3380 .raid_disks = raiddisks
3381 };
3382 struct vd_config conf;
3383 if (layout_md2ddf(&array, &conf) == -1) {
3384 if (verbose)
3385 pr_err("DDF does not support level %d /layout %d arrays with %d disks\n",
3386 level, layout, raiddisks);
3387 return 0;
3388 }
3389 /* Should check layout? etc */
3390
3391 if (st->sb && freesize) {
3392 /* --create was given a container to create in.
3393 * So we need to check that there are enough
3394 * free spaces and return the amount of space.
3395 * We may as well remember which drives were
3396 * chosen so that add_to_super/getinfo_super
3397 * can return them.
3398 */
3399 return reserve_space(st, raiddisks, size, *chunk,
3400 data_offset, freesize);
3401 }
3402 return 1;
3403 }
3404
3405 if (st->sb) {
3406 /* A container has already been opened, so we are
3407 * creating in there. Maybe a BVD, maybe an SVD.
3408 * Should make a distinction one day.
3409 */
3410 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
3411 chunk, size, data_offset, dev,
3412 freesize,
3413 verbose);
3414 }
3415 /* This is the first device for the array.
3416 * If it is a container, we read it in and do automagic allocations,
3417 * no other devices should be given.
3418 * Otherwise it must be a member device of a container, and we
3419 * do manual allocation.
3420 * Later we should check for a BVD and make an SVD.
3421 */
3422 fd = open(dev, O_RDONLY|O_EXCL, 0);
3423 if (fd >= 0) {
3424 close(fd);
3425 /* Just a bare device, no good to us */
3426 if (verbose)
3427 pr_err("ddf: Cannot create this array on device %s - a container is required.\n",
3428 dev);
3429 return 0;
3430 }
3431 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3432 if (verbose)
3433 pr_err("ddf: Cannot open %s: %s\n",
3434 dev, strerror(errno));
3435 return 0;
3436 }
3437 /* Well, it is in use by someone, maybe a 'ddf' container. */
3438 cfd = open_container(fd);
3439 if (cfd < 0) {
3440 close(fd);
3441 if (verbose)
3442 pr_err("ddf: Cannot use %s: %s\n",
3443 dev, strerror(EBUSY));
3444 return 0;
3445 }
3446 sra = sysfs_read(cfd, NULL, GET_VERSION);
3447 close(fd);
3448 if (sra && sra->array.major_version == -1 &&
3449 strcmp(sra->text_version, "ddf") == 0) {
3450 /* This is a member of a ddf container. Load the container
3451 * and try to create a bvd
3452 */
3453 struct ddf_super *ddf;
3454 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
3455 st->sb = ddf;
3456 strcpy(st->container_devnm, fd2devnm(cfd));
3457 close(cfd);
3458 return validate_geometry_ddf_bvd(st, level, layout,
3459 raiddisks, chunk, size,
3460 data_offset,
3461 dev, freesize,
3462 verbose);
3463 }
3464 close(cfd);
3465 } else /* device may belong to a different container */
3466 return 0;
3467
3468 return 1;
3469 }
3470
3471 static int
3472 validate_geometry_ddf_container(struct supertype *st,
3473 int level, int layout, int raiddisks,
3474 int chunk, unsigned long long size,
3475 unsigned long long data_offset,
3476 char *dev, unsigned long long *freesize,
3477 int verbose)
3478 {
3479 int fd;
3480 unsigned long long ldsize;
3481
3482 if (level != LEVEL_CONTAINER)
3483 return 0;
3484 if (!dev)
3485 return 1;
3486
3487 fd = open(dev, O_RDONLY|O_EXCL, 0);
3488 if (fd < 0) {
3489 if (verbose)
3490 pr_err("ddf: Cannot open %s: %s\n",
3491 dev, strerror(errno));
3492 return 0;
3493 }
3494 if (!get_dev_size(fd, dev, &ldsize)) {
3495 close(fd);
3496 return 0;
3497 }
3498 close(fd);
3499
3500 *freesize = avail_size_ddf(st, ldsize >> 9, INVALID_SECTORS);
3501 if (*freesize == 0)
3502 return 0;
3503
3504 return 1;
3505 }
3506
3507 static int validate_geometry_ddf_bvd(struct supertype *st,
3508 int level, int layout, int raiddisks,
3509 int *chunk, unsigned long long size,
3510 unsigned long long data_offset,
3511 char *dev, unsigned long long *freesize,
3512 int verbose)
3513 {
3514 struct stat stb;
3515 struct ddf_super *ddf = st->sb;
3516 struct dl *dl;
3517 unsigned long long maxsize;
3518 /* ddf/bvd supports lots of things, but not containers */
3519 if (level == LEVEL_CONTAINER) {
3520 if (verbose)
3521 pr_err("DDF cannot create a container within an container\n");
3522 return 0;
3523 }
3524 /* We must have the container info already read in. */
3525 if (!ddf)
3526 return 0;
3527
3528 if (!dev) {
3529 /* General test: make sure there is space for
3530 * 'raiddisks' device extents of size 'size'.
3531 */
3532 unsigned long long minsize = size;
3533 int dcnt = 0;
3534 if (minsize == 0)
3535 minsize = 8;
3536 for (dl = ddf->dlist; dl ; dl = dl->next) {
3537 if (find_space(ddf, dl, data_offset, &minsize)
3538 != INVALID_SECTORS)
3539 dcnt++;
3540 }
3541 if (dcnt < raiddisks) {
3542 if (verbose)
3543 pr_err("ddf: Not enough devices with space for this array (%d < %d)\n",
3544 dcnt, raiddisks);
3545 return 0;
3546 }
3547 return 1;
3548 }
3549 /* This device must be a member of the set */
3550 if (stat(dev, &stb) < 0)
3551 return 0;
3552 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3553 return 0;
3554 for (dl = ddf->dlist ; dl ; dl = dl->next) {
3555 if (dl->major == (int)major(stb.st_rdev) &&
3556 dl->minor == (int)minor(stb.st_rdev))
3557 break;
3558 }
3559 if (!dl) {
3560 if (verbose)
3561 pr_err("ddf: %s is not in the same DDF set\n",
3562 dev);
3563 return 0;
3564 }
3565 maxsize = ULLONG_MAX;
3566 find_space(ddf, dl, data_offset, &maxsize);
3567 *freesize = maxsize;
3568
3569 return 1;
3570 }
3571
3572 static int load_super_ddf_all(struct supertype *st, int fd,
3573 void **sbp, char *devname)
3574 {
3575 struct mdinfo *sra;
3576 struct ddf_super *super;
3577 struct mdinfo *sd, *best = NULL;
3578 int bestseq = 0;
3579 int seq;
3580 char nm[20];
3581 int dfd;
3582
3583 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3584 if (!sra)
3585 return 1;
3586 if (sra->array.major_version != -1 ||
3587 sra->array.minor_version != -2 ||
3588 strcmp(sra->text_version, "ddf") != 0)
3589 return 1;
3590
3591 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
3592 return 1;
3593 memset(super, 0, sizeof(*super));
3594
3595 /* first, try each device, and choose the best ddf */
3596 for (sd = sra->devs ; sd ; sd = sd->next) {
3597 int rv;
3598 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3599 dfd = dev_open(nm, O_RDONLY);
3600 if (dfd < 0)
3601 return 2;
3602 rv = load_ddf_headers(dfd, super, NULL);
3603 close(dfd);
3604 if (rv == 0) {
3605 seq = be32_to_cpu(super->active->seq);
3606 if (super->active->openflag)
3607 seq--;
3608 if (!best || seq > bestseq) {
3609 bestseq = seq;
3610 best = sd;
3611 }
3612 }
3613 }
3614 if (!best)
3615 return 1;
3616 /* OK, load this ddf */
3617 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
3618 dfd = dev_open(nm, O_RDONLY);
3619 if (dfd < 0)
3620 return 1;
3621 load_ddf_headers(dfd, super, NULL);
3622 load_ddf_global(dfd, super, NULL);
3623 close(dfd);
3624 /* Now we need the device-local bits */
3625 for (sd = sra->devs ; sd ; sd = sd->next) {
3626 int rv;
3627
3628 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3629 dfd = dev_open(nm, O_RDWR);
3630 if (dfd < 0)
3631 return 2;
3632 rv = load_ddf_headers(dfd, super, NULL);
3633 if (rv == 0)
3634 rv = load_ddf_local(dfd, super, NULL, 1);
3635 if (rv)
3636 return 1;
3637 }
3638
3639 *sbp = super;
3640 if (st->ss == NULL) {
3641 st->ss = &super_ddf;
3642 st->minor_version = 0;
3643 st->max_devs = 512;
3644 }
3645 strcpy(st->container_devnm, fd2devnm(fd));
3646 return 0;
3647 }
3648
3649 static int load_container_ddf(struct supertype *st, int fd,
3650 char *devname)
3651 {
3652 return load_super_ddf_all(st, fd, &st->sb, devname);
3653 }
3654
3655 #endif /* MDASSEMBLE */
3656
3657 static int check_secondary(const struct vcl *vc)
3658 {
3659 const struct vd_config *conf = &vc->conf;
3660 int i;
3661
3662 /* The only DDF secondary RAID level md can support is
3663 * RAID 10, if the stripe sizes and Basic volume sizes
3664 * are all equal.
3665 * Other configurations could in theory be supported by exposing
3666 * the BVDs to user space and using device mapper for the secondary
3667 * mapping. So far we don't support that.
3668 */
3669
3670 __u64 sec_elements[4] = {0, 0, 0, 0};
3671 #define __set_sec_seen(n) (sec_elements[(n)>>6] |= (1<<((n)&63)))
3672 #define __was_sec_seen(n) ((sec_elements[(n)>>6] & (1<<((n)&63))) != 0)
3673
3674 if (vc->other_bvds == NULL) {
3675 pr_err("No BVDs for secondary RAID found\n");
3676 return -1;
3677 }
3678 if (conf->prl != DDF_RAID1) {
3679 pr_err("Secondary RAID level only supported for mirrored BVD\n");
3680 return -1;
3681 }
3682 if (conf->srl != DDF_2STRIPED && conf->srl != DDF_2SPANNED) {
3683 pr_err("Secondary RAID level %d is unsupported\n",
3684 conf->srl);
3685 return -1;
3686 }
3687 __set_sec_seen(conf->sec_elmnt_seq);
3688 for (i = 0; i < conf->sec_elmnt_count-1; i++) {
3689 const struct vd_config *bvd = vc->other_bvds[i];
3690 if (bvd->sec_elmnt_seq == DDF_UNUSED_BVD)
3691 continue;
3692 if (bvd->srl != conf->srl) {
3693 pr_err("Inconsistent secondary RAID level across BVDs\n");
3694 return -1;
3695 }
3696 if (bvd->prl != conf->prl) {
3697 pr_err("Different RAID levels for BVDs are unsupported\n");
3698 return -1;
3699 }
3700 if (!be16_eq(bvd->prim_elmnt_count, conf->prim_elmnt_count)) {
3701 pr_err("All BVDs must have the same number of primary elements\n");
3702 return -1;
3703 }
3704 if (bvd->chunk_shift != conf->chunk_shift) {
3705 pr_err("Different strip sizes for BVDs are unsupported\n");
3706 return -1;
3707 }
3708 if (!be64_eq(bvd->array_blocks, conf->array_blocks)) {
3709 pr_err("Different BVD sizes are unsupported\n");
3710 return -1;
3711 }
3712 __set_sec_seen(bvd->sec_elmnt_seq);
3713 }
3714 for (i = 0; i < conf->sec_elmnt_count; i++) {
3715 if (!__was_sec_seen(i)) {
3716 /* pr_err("BVD %d is missing\n", i); */
3717 return -1;
3718 }
3719 }
3720 return 0;
3721 }
3722
3723 static unsigned int get_pd_index_from_refnum(const struct vcl *vc,
3724 be32 refnum, unsigned int nmax,
3725 const struct vd_config **bvd,
3726 unsigned int *idx)
3727 {
3728 unsigned int i, j, n, sec, cnt;
3729
3730 cnt = be16_to_cpu(vc->conf.prim_elmnt_count);
3731 sec = (vc->conf.sec_elmnt_count == 1 ? 0 : vc->conf.sec_elmnt_seq);
3732
3733 for (i = 0, j = 0 ; i < nmax ; i++) {
3734 /* j counts valid entries for this BVD */
3735 if (be32_eq(vc->conf.phys_refnum[i], refnum)) {
3736 *bvd = &vc->conf;
3737 *idx = i;
3738 return sec * cnt + j;
3739 }
3740 if (be32_to_cpu(vc->conf.phys_refnum[i]) != 0xffffffff)
3741 j++;
3742 }
3743 if (vc->other_bvds == NULL)
3744 goto bad;
3745
3746 for (n = 1; n < vc->conf.sec_elmnt_count; n++) {
3747 struct vd_config *vd = vc->other_bvds[n-1];
3748 sec = vd->sec_elmnt_seq;
3749 if (sec == DDF_UNUSED_BVD)
3750 continue;
3751 for (i = 0, j = 0 ; i < nmax ; i++) {
3752 if (be32_eq(vd->phys_refnum[i], refnum)) {
3753 *bvd = vd;
3754 *idx = i;
3755 return sec * cnt + j;
3756 }
3757 if (be32_to_cpu(vd->phys_refnum[i]) != 0xffffffff)
3758 j++;
3759 }
3760 }
3761 bad:
3762 *bvd = NULL;
3763 return DDF_NOTFOUND;
3764 }
3765
3766 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
3767 {
3768 /* Given a container loaded by load_super_ddf_all,
3769 * extract information about all the arrays into
3770 * an mdinfo tree.
3771 *
3772 * For each vcl in conflist: create an mdinfo, fill it in,
3773 * then look for matching devices (phys_refnum) in dlist
3774 * and create appropriate device mdinfo.
3775 */
3776 struct ddf_super *ddf = st->sb;
3777 struct mdinfo *rest = NULL;
3778 struct vcl *vc;
3779
3780 for (vc = ddf->conflist ; vc ; vc=vc->next) {
3781 unsigned int i;
3782 struct mdinfo *this;
3783 char *ep;
3784 __u32 *cptr;
3785 unsigned int pd;
3786
3787 if (subarray &&
3788 (strtoul(subarray, &ep, 10) != vc->vcnum ||
3789 *ep != '\0'))
3790 continue;
3791
3792 if (vc->conf.sec_elmnt_count > 1) {
3793 if (check_secondary(vc) != 0)
3794 continue;
3795 }
3796
3797 this = xcalloc(1, sizeof(*this));
3798 this->next = rest;
3799 rest = this;
3800
3801 if (layout_ddf2md(&vc->conf, &this->array))
3802 continue;
3803 this->array.md_minor = -1;
3804 this->array.major_version = -1;
3805 this->array.minor_version = -2;
3806 this->safe_mode_delay = DDF_SAFE_MODE_DELAY;
3807 cptr = (__u32 *)(vc->conf.guid + 16);
3808 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
3809 this->array.utime = DECADE +
3810 be32_to_cpu(vc->conf.timestamp);
3811 this->array.chunk_size = 512 << vc->conf.chunk_shift;
3812
3813 i = vc->vcnum;
3814 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
3815 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
3816 DDF_init_full) {
3817 this->array.state = 0;
3818 this->resync_start = 0;
3819 } else {
3820 this->array.state = 1;
3821 this->resync_start = MaxSector;
3822 }
3823 _ddf_array_name(this->name, ddf, i);
3824 memset(this->uuid, 0, sizeof(this->uuid));
3825 this->component_size = be64_to_cpu(vc->conf.blocks);
3826 this->array.size = this->component_size / 2;
3827 this->container_member = i;
3828
3829 ddf->currentconf = vc;
3830 uuid_from_super_ddf(st, this->uuid);
3831 if (!subarray)
3832 ddf->currentconf = NULL;
3833
3834 sprintf(this->text_version, "/%s/%d",
3835 st->container_devnm, this->container_member);
3836
3837 for (pd = 0; pd < be16_to_cpu(ddf->phys->max_pdes); pd++) {
3838 struct mdinfo *dev;
3839 struct dl *d;
3840 const struct vd_config *bvd;
3841 unsigned int iphys;
3842 int stt;
3843
3844 if (be32_to_cpu(ddf->phys->entries[pd].refnum)
3845 == 0xFFFFFFFF)
3846 continue;
3847
3848 stt = be16_to_cpu(ddf->phys->entries[pd].state);
3849 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3850 != DDF_Online)
3851 continue;
3852
3853 i = get_pd_index_from_refnum(
3854 vc, ddf->phys->entries[pd].refnum,
3855 ddf->mppe, &bvd, &iphys);
3856 if (i == DDF_NOTFOUND)
3857 continue;
3858
3859 this->array.working_disks++;
3860
3861 for (d = ddf->dlist; d ; d=d->next)
3862 if (be32_eq(d->disk.refnum,
3863 ddf->phys->entries[pd].refnum))
3864 break;
3865 if (d == NULL)
3866 /* Haven't found that one yet, maybe there are others */
3867 continue;
3868
3869 dev = xcalloc(1, sizeof(*dev));
3870 dev->next = this->devs;
3871 this->devs = dev;
3872
3873 dev->disk.number = be32_to_cpu(d->disk.refnum);
3874 dev->disk.major = d->major;
3875 dev->disk.minor = d->minor;
3876 dev->disk.raid_disk = i;
3877 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3878 dev->recovery_start = MaxSector;
3879
3880 dev->events = be32_to_cpu(ddf->active->seq);
3881 dev->data_offset =
3882 be64_to_cpu(LBA_OFFSET(ddf, bvd)[iphys]);
3883 dev->component_size = be64_to_cpu(bvd->blocks);
3884 if (d->devname)
3885 strcpy(dev->name, d->devname);
3886 }
3887 }
3888 return rest;
3889 }
3890
3891 static int store_super_ddf(struct supertype *st, int fd)
3892 {
3893 struct ddf_super *ddf = st->sb;
3894 unsigned long long dsize;
3895 void *buf;
3896 int rc;
3897
3898 if (!ddf)
3899 return 1;
3900
3901 if (!get_dev_size(fd, NULL, &dsize))
3902 return 1;
3903
3904 if (ddf->dlist || ddf->conflist) {
3905 struct stat sta;
3906 struct dl *dl;
3907 int ofd, ret;
3908
3909 if (fstat(fd, &sta) == -1 || !S_ISBLK(sta.st_mode)) {
3910 pr_err("file descriptor for invalid device\n");
3911 return 1;
3912 }
3913 for (dl = ddf->dlist; dl; dl = dl->next)
3914 if (dl->major == (int)major(sta.st_rdev) &&
3915 dl->minor == (int)minor(sta.st_rdev))
3916 break;
3917 if (!dl) {
3918 pr_err("couldn't find disk %d/%d\n",
3919 (int)major(sta.st_rdev),
3920 (int)minor(sta.st_rdev));
3921 return 1;
3922 }
3923 ofd = dl->fd;
3924 dl->fd = fd;
3925 ret = (_write_super_to_disk(ddf, dl) != 1);
3926 dl->fd = ofd;
3927 return ret;
3928 }
3929
3930 if (posix_memalign(&buf, 512, 512) != 0)
3931 return 1;
3932 memset(buf, 0, 512);
3933
3934 lseek64(fd, dsize-512, 0);
3935 rc = write(fd, buf, 512);
3936 free(buf);
3937 if (rc < 0)
3938 return 1;
3939 return 0;
3940 }
3941
3942 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3943 {
3944 /*
3945 * return:
3946 * 0 same, or first was empty, and second was copied
3947 * 1 second had wrong magic number - but that isn't possible
3948 * 2 wrong uuid
3949 * 3 wrong other info
3950 */
3951 struct ddf_super *first = st->sb;
3952 struct ddf_super *second = tst->sb;
3953 struct dl *dl1, *dl2;
3954 struct vcl *vl1, *vl2;
3955 unsigned int max_vds, max_pds, pd, vd;
3956
3957 if (!first) {
3958 st->sb = tst->sb;
3959 tst->sb = NULL;
3960 return 0;
3961 }
3962
3963 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3964 return 2;
3965
3966 /* It is only OK to compare info in the anchor. Anything else
3967 * could be changing due to a reconfig so must be ignored.
3968 * guid really should be enough anyway.
3969 */
3970
3971 if (!be32_eq(first->active->seq, second->active->seq)) {
3972 dprintf("sequence number mismatch %u<->%u\n",
3973 be32_to_cpu(first->active->seq),
3974 be32_to_cpu(second->active->seq));
3975 return 0;
3976 }
3977
3978 /*
3979 * At this point we are fairly sure that the meta data matches.
3980 * But the new disk may contain additional local data.
3981 * Add it to the super block.
3982 */
3983 max_vds = be16_to_cpu(first->active->max_vd_entries);
3984 max_pds = be16_to_cpu(first->phys->max_pdes);
3985 for (vl2 = second->conflist; vl2; vl2 = vl2->next) {
3986 for (vl1 = first->conflist; vl1; vl1 = vl1->next)
3987 if (!memcmp(vl1->conf.guid, vl2->conf.guid,
3988 DDF_GUID_LEN))
3989 break;
3990 if (vl1) {
3991 if (vl1->other_bvds != NULL &&
3992 vl1->conf.sec_elmnt_seq !=
3993 vl2->conf.sec_elmnt_seq) {
3994 dprintf("adding BVD %u\n",
3995 vl2->conf.sec_elmnt_seq);
3996 add_other_bvd(vl1, &vl2->conf,
3997 first->conf_rec_len*512);
3998 }
3999 continue;
4000 }
4001
4002 if (posix_memalign((void **)&vl1, 512,
4003 (first->conf_rec_len*512 +
4004 offsetof(struct vcl, conf))) != 0) {
4005 pr_err("could not allocate vcl buf\n");
4006 return 3;
4007 }
4008
4009 vl1->next = first->conflist;
4010 vl1->block_sizes = NULL;
4011 memcpy(&vl1->conf, &vl2->conf, first->conf_rec_len*512);
4012 if (alloc_other_bvds(first, vl1) != 0) {
4013 pr_err("could not allocate other bvds\n");
4014 free(vl1);
4015 return 3;
4016 }
4017 for (vd = 0; vd < max_vds; vd++)
4018 if (!memcmp(first->virt->entries[vd].guid,
4019 vl1->conf.guid, DDF_GUID_LEN))
4020 break;
4021 vl1->vcnum = vd;
4022 dprintf("added config for VD %u\n", vl1->vcnum);
4023 first->conflist = vl1;
4024 }
4025
4026 for (dl2 = second->dlist; dl2; dl2 = dl2->next) {
4027 for (dl1 = first->dlist; dl1; dl1 = dl1->next)
4028 if (be32_eq(dl1->disk.refnum, dl2->disk.refnum))
4029 break;
4030 if (dl1)
4031 continue;
4032
4033 if (posix_memalign((void **)&dl1, 512,
4034 sizeof(*dl1) + (first->max_part) * sizeof(dl1->vlist[0]))
4035 != 0) {
4036 pr_err("could not allocate disk info buffer\n");
4037 return 3;
4038 }
4039 memcpy(dl1, dl2, sizeof(*dl1));
4040 dl1->mdupdate = NULL;
4041 dl1->next = first->dlist;
4042 dl1->fd = -1;
4043 for (pd = 0; pd < max_pds; pd++)
4044 if (be32_eq(first->phys->entries[pd].refnum,
4045 dl1->disk.refnum))
4046 break;
4047 dl1->pdnum = pd < max_pds ? (int)pd : -1;
4048 if (dl2->spare) {
4049 if (posix_memalign((void **)&dl1->spare, 512,
4050 first->conf_rec_len*512) != 0) {
4051 pr_err("could not allocate spare info buf\n");
4052 return 3;
4053 }
4054 memcpy(dl1->spare, dl2->spare, first->conf_rec_len*512);
4055 }
4056 for (vd = 0 ; vd < first->max_part ; vd++) {
4057 if (!dl2->vlist[vd]) {
4058 dl1->vlist[vd] = NULL;
4059 continue;
4060 }
4061 for (vl1 = first->conflist; vl1; vl1 = vl1->next) {
4062 if (!memcmp(vl1->conf.guid,
4063 dl2->vlist[vd]->conf.guid,
4064 DDF_GUID_LEN))
4065 break;
4066 dl1->vlist[vd] = vl1;
4067 }
4068 }
4069 first->dlist = dl1;
4070 dprintf("added disk %d: %08x\n", dl1->pdnum,
4071 be32_to_cpu(dl1->disk.refnum));
4072 }
4073
4074 return 0;
4075 }
4076
4077 #ifndef MDASSEMBLE
4078 /*
4079 * A new array 'a' has been started which claims to be instance 'inst'
4080 * within container 'c'.
4081 * We need to confirm that the array matches the metadata in 'c' so
4082 * that we don't corrupt any metadata.
4083 */
4084 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
4085 {
4086 struct ddf_super *ddf = c->sb;
4087 int n = atoi(inst);
4088 struct mdinfo *dev;
4089 struct dl *dl;
4090 static const char faulty[] = "faulty";
4091
4092 if (all_ff(ddf->virt->entries[n].guid)) {
4093 pr_err("subarray %d doesn't exist\n", n);
4094 return -ENODEV;
4095 }
4096 dprintf("new subarray %d, GUID: %s\n", n,
4097 guid_str(ddf->virt->entries[n].guid));
4098 for (dev = a->info.devs; dev; dev = dev->next) {
4099 for (dl = ddf->dlist; dl; dl = dl->next)
4100 if (dl->major == dev->disk.major &&
4101 dl->minor == dev->disk.minor)
4102 break;
4103 if (!dl || dl->pdnum < 0) {
4104 pr_err("device %d/%d of subarray %d not found in meta data\n",
4105 dev->disk.major, dev->disk.minor, n);
4106 return -1;
4107 }
4108 if ((be16_to_cpu(ddf->phys->entries[dl->pdnum].state) &
4109 (DDF_Online|DDF_Missing|DDF_Failed)) != DDF_Online) {
4110 pr_err("new subarray %d contains broken device %d/%d (%02x)\n",
4111 n, dl->major, dl->minor,
4112 be16_to_cpu(ddf->phys->entries[dl->pdnum].state));
4113 if (write(dev->state_fd, faulty, sizeof(faulty)-1) !=
4114 sizeof(faulty) - 1)
4115 pr_err("Write to state_fd failed\n");
4116 dev->curr_state = DS_FAULTY;
4117 }
4118 }
4119 a->info.container_member = n;
4120 return 0;
4121 }
4122
4123 static void handle_missing(struct ddf_super *ddf, struct active_array *a, int inst)
4124 {
4125 /* This member array is being activated. If any devices
4126 * are missing they must now be marked as failed.
4127 */
4128 struct vd_config *vc;
4129 unsigned int n_bvd;
4130 struct vcl *vcl;
4131 struct dl *dl;
4132 int pd;
4133 int n;
4134 int state;
4135
4136 for (n = 0; ; n++) {
4137 vc = find_vdcr(ddf, inst, n, &n_bvd, &vcl);
4138 if (!vc)
4139 break;
4140 for (dl = ddf->dlist; dl; dl = dl->next)
4141 if (be32_eq(dl->disk.refnum, vc->phys_refnum[n_bvd]))
4142 break;
4143 if (dl)
4144 /* Found this disk, so not missing */
4145 continue;
4146
4147 /* Mark the device as failed/missing. */
4148 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4149 if (pd >= 0 && be16_and(ddf->phys->entries[pd].state,
4150 cpu_to_be16(DDF_Online))) {
4151 be16_clear(ddf->phys->entries[pd].state,
4152 cpu_to_be16(DDF_Online));
4153 be16_set(ddf->phys->entries[pd].state,
4154 cpu_to_be16(DDF_Failed|DDF_Missing));
4155 vc->phys_refnum[n_bvd] = cpu_to_be32(0);
4156 ddf_set_updates_pending(ddf, vc);
4157 }
4158
4159 /* Mark the array as Degraded */
4160 state = get_svd_state(ddf, vcl);
4161 if (ddf->virt->entries[inst].state !=
4162 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
4163 | state)) {
4164 ddf->virt->entries[inst].state =
4165 (ddf->virt->entries[inst].state & ~DDF_state_mask)
4166 | state;
4167 a->check_degraded = 1;
4168 ddf_set_updates_pending(ddf, vc);
4169 }
4170 }
4171 }
4172
4173 /*
4174 * The array 'a' is to be marked clean in the metadata.
4175 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
4176 * clean up to the point (in sectors). If that cannot be recorded in the
4177 * metadata, then leave it as dirty.
4178 *
4179 * For DDF, we need to clear the DDF_state_inconsistent bit in the
4180 * !global! virtual_disk.virtual_entry structure.
4181 */
4182 static int ddf_set_array_state(struct active_array *a, int consistent)
4183 {
4184 struct ddf_super *ddf = a->container->sb;
4185 int inst = a->info.container_member;
4186 int old = ddf->virt->entries[inst].state;
4187 if (consistent == 2) {
4188 handle_missing(ddf, a, inst);
4189 consistent = 1;
4190 if (!is_resync_complete(&a->info))
4191 consistent = 0;
4192 }
4193 if (consistent)
4194 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
4195 else
4196 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
4197 if (old != ddf->virt->entries[inst].state)
4198 ddf_set_updates_pending(ddf, NULL);
4199
4200 old = ddf->virt->entries[inst].init_state;
4201 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
4202 if (is_resync_complete(&a->info))
4203 ddf->virt->entries[inst].init_state |= DDF_init_full;
4204 else if (a->info.resync_start == 0)
4205 ddf->virt->entries[inst].init_state |= DDF_init_not;
4206 else
4207 ddf->virt->entries[inst].init_state |= DDF_init_quick;
4208 if (old != ddf->virt->entries[inst].init_state)
4209 ddf_set_updates_pending(ddf, NULL);
4210
4211 dprintf("ddf mark %d/%s (%d) %s %llu\n", inst,
4212 guid_str(ddf->virt->entries[inst].guid), a->curr_state,
4213 consistent?"clean":"dirty",
4214 a->info.resync_start);
4215 return consistent;
4216 }
4217
4218 static int get_bvd_state(const struct ddf_super *ddf,
4219 const struct vd_config *vc)
4220 {
4221 unsigned int i, n_bvd, working = 0;
4222 unsigned int n_prim = be16_to_cpu(vc->prim_elmnt_count);
4223 int pd, st, state;
4224 char *avail = xcalloc(1, n_prim);
4225 mdu_array_info_t array;
4226
4227 layout_ddf2md(vc, &array);
4228
4229 for (i = 0; i < n_prim; i++) {
4230 if (!find_index_in_bvd(ddf, vc, i, &n_bvd))
4231 continue;
4232 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4233 if (pd < 0)
4234 continue;
4235 st = be16_to_cpu(ddf->phys->entries[pd].state);
4236 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
4237 == DDF_Online) {
4238 working++;
4239 avail[i] = 1;
4240 }
4241 }
4242
4243 state = DDF_state_degraded;
4244 if (working == n_prim)
4245 state = DDF_state_optimal;
4246 else
4247 switch (vc->prl) {
4248 case DDF_RAID0:
4249 case DDF_CONCAT:
4250 case DDF_JBOD:
4251 state = DDF_state_failed;
4252 break;
4253 case DDF_RAID1:
4254 if (working == 0)
4255 state = DDF_state_failed;
4256 else if (working >= 2)
4257 state = DDF_state_part_optimal;
4258 break;
4259 case DDF_RAID1E:
4260 if (!enough(10, n_prim, array.layout, 1, avail))
4261 state = DDF_state_failed;
4262 break;
4263 case DDF_RAID4:
4264 case DDF_RAID5:
4265 if (working < n_prim - 1)
4266 state = DDF_state_failed;
4267 break;
4268 case DDF_RAID6:
4269 if (working < n_prim - 2)
4270 state = DDF_state_failed;
4271 else if (working == n_prim - 1)
4272 state = DDF_state_part_optimal;
4273 break;
4274 }
4275 return state;
4276 }
4277
4278 static int secondary_state(int state, int other, int seclevel)
4279 {
4280 if (state == DDF_state_optimal && other == DDF_state_optimal)
4281 return DDF_state_optimal;
4282 if (seclevel == DDF_2MIRRORED) {
4283 if (state == DDF_state_optimal || other == DDF_state_optimal)
4284 return DDF_state_part_optimal;
4285 if (state == DDF_state_failed && other == DDF_state_failed)
4286 return DDF_state_failed;
4287 return DDF_state_degraded;
4288 } else {
4289 if (state == DDF_state_failed || other == DDF_state_failed)
4290 return DDF_state_failed;
4291 if (state == DDF_state_degraded || other == DDF_state_degraded)
4292 return DDF_state_degraded;
4293 return DDF_state_part_optimal;
4294 }
4295 }
4296
4297 static int get_svd_state(const struct ddf_super *ddf, const struct vcl *vcl)
4298 {
4299 int state = get_bvd_state(ddf, &vcl->conf);
4300 unsigned int i;
4301 for (i = 1; i < vcl->conf.sec_elmnt_count; i++) {
4302 state = secondary_state(
4303 state,
4304 get_bvd_state(ddf, vcl->other_bvds[i-1]),
4305 vcl->conf.srl);
4306 }
4307 return state;
4308 }
4309
4310 /*
4311 * The state of each disk is stored in the global phys_disk structure
4312 * in phys_disk.entries[n].state.
4313 * This makes various combinations awkward.
4314 * - When a device fails in any array, it must be failed in all arrays
4315 * that include a part of this device.
4316 * - When a component is rebuilding, we cannot include it officially in the
4317 * array unless this is the only array that uses the device.
4318 *
4319 * So: when transitioning:
4320 * Online -> failed, just set failed flag. monitor will propagate
4321 * spare -> online, the device might need to be added to the array.
4322 * spare -> failed, just set failed. Don't worry if in array or not.
4323 */
4324 static void ddf_set_disk(struct active_array *a, int n, int state)
4325 {
4326 struct ddf_super *ddf = a->container->sb;
4327 unsigned int inst = a->info.container_member, n_bvd;
4328 struct vcl *vcl;
4329 struct vd_config *vc = find_vdcr(ddf, inst, (unsigned int)n,
4330 &n_bvd, &vcl);
4331 int pd;
4332 struct mdinfo *mdi;
4333 struct dl *dl;
4334 int update = 0;
4335
4336 dprintf("%d to %x\n", n, state);
4337 if (vc == NULL) {
4338 dprintf("ddf: cannot find instance %d!!\n", inst);
4339 return;
4340 }
4341 /* Find the matching slot in 'info'. */
4342 for (mdi = a->info.devs; mdi; mdi = mdi->next)
4343 if (mdi->disk.raid_disk == n)
4344 break;
4345 if (!mdi) {
4346 pr_err("cannot find raid disk %d\n", n);
4347 return;
4348 }
4349
4350 /* and find the 'dl' entry corresponding to that. */
4351 for (dl = ddf->dlist; dl; dl = dl->next)
4352 if (mdi->state_fd >= 0 &&
4353 mdi->disk.major == dl->major &&
4354 mdi->disk.minor == dl->minor)
4355 break;
4356 if (!dl) {
4357 pr_err("cannot find raid disk %d (%d/%d)\n",
4358 n, mdi->disk.major, mdi->disk.minor);
4359 return;
4360 }
4361
4362 pd = find_phys(ddf, vc->phys_refnum[n_bvd]);
4363 if (pd < 0 || pd != dl->pdnum) {
4364 /* disk doesn't currently exist or has changed.
4365 * If it is now in_sync, insert it. */
4366 dprintf("phys disk not found for %d: %d/%d ref %08x\n",
4367 dl->pdnum, dl->major, dl->minor,
4368 be32_to_cpu(dl->disk.refnum));
4369 dprintf("array %u disk %u ref %08x pd %d\n",
4370 inst, n_bvd,
4371 be32_to_cpu(vc->phys_refnum[n_bvd]), pd);
4372 if ((state & DS_INSYNC) && ! (state & DS_FAULTY) &&
4373 dl->pdnum >= 0) {
4374 pd = dl->pdnum;
4375 vc->phys_refnum[n_bvd] = dl->disk.refnum;
4376 LBA_OFFSET(ddf, vc)[n_bvd] =
4377 cpu_to_be64(mdi->data_offset);
4378 be16_clear(ddf->phys->entries[pd].type,
4379 cpu_to_be16(DDF_Global_Spare));
4380 be16_set(ddf->phys->entries[pd].type,
4381 cpu_to_be16(DDF_Active_in_VD));
4382 update = 1;
4383 }
4384 } else {
4385 be16 old = ddf->phys->entries[pd].state;
4386 if (state & DS_FAULTY)
4387 be16_set(ddf->phys->entries[pd].state,
4388 cpu_to_be16(DDF_Failed));
4389 if (state & DS_INSYNC) {
4390 be16_set(ddf->phys->entries[pd].state,
4391 cpu_to_be16(DDF_Online));
4392 be16_clear(ddf->phys->entries[pd].state,
4393 cpu_to_be16(DDF_Rebuilding));
4394 }
4395 if (!be16_eq(old, ddf->phys->entries[pd].state))
4396 update = 1;
4397 }
4398
4399 dprintf("ddf: set_disk %d (%08x) to %x->%02x\n", n,
4400 be32_to_cpu(dl->disk.refnum), state,
4401 be16_to_cpu(ddf->phys->entries[pd].state));
4402
4403 /* Now we need to check the state of the array and update
4404 * virtual_disk.entries[n].state.
4405 * It needs to be one of "optimal", "degraded", "failed".
4406 * I don't understand 'deleted' or 'missing'.
4407 */
4408 state = get_svd_state(ddf, vcl);
4409
4410 if (ddf->virt->entries[inst].state !=
4411 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
4412 | state)) {
4413 ddf->virt->entries[inst].state =
4414 (ddf->virt->entries[inst].state & ~DDF_state_mask)
4415 | state;
4416 update = 1;
4417 }
4418 if (update)
4419 ddf_set_updates_pending(ddf, vc);
4420 }
4421
4422 static void ddf_sync_metadata(struct supertype *st)
4423 {
4424 /*
4425 * Write all data to all devices.
4426 * Later, we might be able to track whether only local changes
4427 * have been made, or whether any global data has been changed,
4428 * but ddf is sufficiently weird that it probably always
4429 * changes global data ....
4430 */
4431 struct ddf_super *ddf = st->sb;
4432 if (!ddf->updates_pending)
4433 return;
4434 ddf->updates_pending = 0;
4435 __write_init_super_ddf(st);
4436 dprintf("ddf: sync_metadata\n");
4437 }
4438
4439 static int del_from_conflist(struct vcl **list, const char *guid)
4440 {
4441 struct vcl **p;
4442 int found = 0;
4443 for (p = list; p && *p; p = &((*p)->next))
4444 if (!memcmp((*p)->conf.guid, guid, DDF_GUID_LEN)) {
4445 found = 1;
4446 *p = (*p)->next;
4447 }
4448 return found;
4449 }
4450
4451 static int _kill_subarray_ddf(struct ddf_super *ddf, const char *guid)
4452 {
4453 struct dl *dl;
4454 unsigned int vdnum, i;
4455 vdnum = find_vde_by_guid(ddf, guid);
4456 if (vdnum == DDF_NOTFOUND) {
4457 pr_err("could not find VD %s\n", guid_str(guid));
4458 return -1;
4459 }
4460 if (del_from_conflist(&ddf->conflist, guid) == 0) {
4461 pr_err("could not find conf %s\n", guid_str(guid));
4462 return -1;
4463 }
4464 for (dl = ddf->dlist; dl; dl = dl->next)
4465 for (i = 0; i < ddf->max_part; i++)
4466 if (dl->vlist[i] != NULL &&
4467 !memcmp(dl->vlist[i]->conf.guid, guid,
4468 DDF_GUID_LEN))
4469 dl->vlist[i] = NULL;
4470 memset(ddf->virt->entries[vdnum].guid, 0xff, DDF_GUID_LEN);
4471 dprintf("deleted %s\n", guid_str(guid));
4472 return 0;
4473 }
4474
4475 static int kill_subarray_ddf(struct supertype *st)
4476 {
4477 struct ddf_super *ddf = st->sb;
4478 /*
4479 * currentconf is set in container_content_ddf,
4480 * called with subarray arg
4481 */
4482 struct vcl *victim = ddf->currentconf;
4483 struct vd_config *conf;
4484 unsigned int vdnum;
4485
4486 ddf->currentconf = NULL;
4487 if (!victim) {
4488 pr_err("nothing to kill\n");
4489 return -1;
4490 }
4491 conf = &victim->conf;
4492 vdnum = find_vde_by_guid(ddf, conf->guid);
4493 if (vdnum == DDF_NOTFOUND) {
4494 pr_err("could not find VD %s\n", guid_str(conf->guid));
4495 return -1;
4496 }
4497 if (st->update_tail) {
4498 struct virtual_disk *vd;
4499 int len = sizeof(struct virtual_disk)
4500 + sizeof(struct virtual_entry);
4501 vd = xmalloc(len);
4502 if (vd == NULL) {
4503 pr_err("failed to allocate %d bytes\n", len);
4504 return -1;
4505 }
4506 memset(vd, 0 , len);
4507 vd->magic = DDF_VIRT_RECORDS_MAGIC;
4508 vd->populated_vdes = cpu_to_be16(0);
4509 memcpy(vd->entries[0].guid, conf->guid, DDF_GUID_LEN);
4510 /* we use DDF_state_deleted as marker */
4511 vd->entries[0].state = DDF_state_deleted;
4512 append_metadata_update(st, vd, len);
4513 } else {
4514 _kill_subarray_ddf(ddf, conf->guid);
4515 ddf_set_updates_pending(ddf, NULL);
4516 ddf_sync_metadata(st);
4517 }
4518 return 0;
4519 }
4520
4521 static void copy_matching_bvd(struct ddf_super *ddf,
4522 struct vd_config *conf,
4523 const struct metadata_update *update)
4524 {
4525 unsigned int mppe =
4526 be16_to_cpu(ddf->anchor.max_primary_element_entries);
4527 unsigned int len = ddf->conf_rec_len * 512;
4528 char *p;
4529 struct vd_config *vc;
4530 for (p = update->buf; p < update->buf + update->len; p += len) {
4531 vc = (struct vd_config *) p;
4532 if (vc->sec_elmnt_seq == conf->sec_elmnt_seq) {
4533 memcpy(conf->phys_refnum, vc->phys_refnum,
4534 mppe * (sizeof(__u32) + sizeof(__u64)));
4535 return;
4536 }
4537 }
4538 pr_err("no match for BVD %d of %s in update\n",
4539 conf->sec_elmnt_seq, guid_str(conf->guid));
4540 }
4541
4542 static void ddf_process_phys_update(struct supertype *st,
4543 struct metadata_update *update)
4544 {
4545 struct ddf_super *ddf = st->sb;
4546 struct phys_disk *pd;
4547 unsigned int ent;
4548
4549 pd = (struct phys_disk*)update->buf;
4550 ent = be16_to_cpu(pd->used_pdes);
4551 if (ent >= be16_to_cpu(ddf->phys->max_pdes))
4552 return;
4553 if (be16_and(pd->entries[0].state, cpu_to_be16(DDF_Missing))) {
4554 struct dl **dlp;
4555 /* removing this disk. */
4556 be16_set(ddf->phys->entries[ent].state,
4557 cpu_to_be16(DDF_Missing));
4558 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
4559 struct dl *dl = *dlp;
4560 if (dl->pdnum == (signed)ent) {
4561 close(dl->fd);
4562 dl->fd = -1;
4563 *dlp = dl->next;
4564 update->space = dl->devname;
4565 *(void**)dl = update->space_list;
4566 update->space_list = (void**)dl;
4567 break;
4568 }
4569 }
4570 ddf_set_updates_pending(ddf, NULL);
4571 return;
4572 }
4573 if (!all_ff(ddf->phys->entries[ent].guid))
4574 return;
4575 ddf->phys->entries[ent] = pd->entries[0];
4576 ddf->phys->used_pdes = cpu_to_be16
4577 (1 + be16_to_cpu(ddf->phys->used_pdes));
4578 ddf_set_updates_pending(ddf, NULL);
4579 if (ddf->add_list) {
4580 struct active_array *a;
4581 struct dl *al = ddf->add_list;
4582 ddf->add_list = al->next;
4583
4584 al->next = ddf->dlist;
4585 ddf->dlist = al;
4586
4587 /* As a device has been added, we should check
4588 * for any degraded devices that might make
4589 * use of this spare */
4590 for (a = st->arrays ; a; a=a->next)
4591 a->check_degraded = 1;
4592 }
4593 }
4594
4595 static void ddf_process_virt_update(struct supertype *st,
4596 struct metadata_update *update)
4597 {
4598 struct ddf_super *ddf = st->sb;
4599 struct virtual_disk *vd;
4600 unsigned int ent;
4601
4602 vd = (struct virtual_disk*)update->buf;
4603
4604 if (vd->entries[0].state == DDF_state_deleted) {
4605 if (_kill_subarray_ddf(ddf, vd->entries[0].guid))
4606 return;
4607 } else {
4608 ent = find_vde_by_guid(ddf, vd->entries[0].guid);
4609 if (ent != DDF_NOTFOUND) {
4610 dprintf("VD %s exists already in slot %d\n",
4611 guid_str(vd->entries[0].guid),
4612 ent);
4613 return;
4614 }
4615 ent = find_unused_vde(ddf);
4616 if (ent == DDF_NOTFOUND)
4617 return;
4618 ddf->virt->entries[ent] = vd->entries[0];
4619 ddf->virt->populated_vdes =
4620 cpu_to_be16(
4621 1 + be16_to_cpu(
4622 ddf->virt->populated_vdes));
4623 dprintf("added VD %s in slot %d(s=%02x i=%02x)\n",
4624 guid_str(vd->entries[0].guid), ent,
4625 ddf->virt->entries[ent].state,
4626 ddf->virt->entries[ent].init_state);
4627 }
4628 ddf_set_updates_pending(ddf, NULL);
4629 }
4630
4631 static void ddf_remove_failed(struct ddf_super *ddf)
4632 {
4633 /* Now remove any 'Failed' devices that are not part
4634 * of any VD. They will have the Transition flag set.
4635 * Once done, we need to update all dl->pdnum numbers.
4636 */
4637 unsigned int pdnum;
4638 unsigned int pd2 = 0;
4639 struct dl *dl;
4640
4641 for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
4642 pdnum++) {
4643 if (be32_to_cpu(ddf->phys->entries[pdnum].refnum) ==
4644 0xFFFFFFFF)
4645 continue;
4646 if (be16_and(ddf->phys->entries[pdnum].state,
4647 cpu_to_be16(DDF_Failed))
4648 && be16_and(ddf->phys->entries[pdnum].state,
4649 cpu_to_be16(DDF_Transition))) {
4650 /* skip this one unless in dlist*/
4651 for (dl = ddf->dlist; dl; dl = dl->next)
4652 if (dl->pdnum == (int)pdnum)
4653 break;
4654 if (!dl)
4655 continue;
4656 }
4657 if (pdnum == pd2)
4658 pd2++;
4659 else {
4660 ddf->phys->entries[pd2] =
4661 ddf->phys->entries[pdnum];
4662 for (dl = ddf->dlist; dl; dl = dl->next)
4663 if (dl->pdnum == (int)pdnum)
4664 dl->pdnum = pd2;
4665 pd2++;
4666 }
4667 }
4668 ddf->phys->used_pdes = cpu_to_be16(pd2);
4669 while (pd2 < pdnum) {
4670 memset(ddf->phys->entries[pd2].guid, 0xff,
4671 DDF_GUID_LEN);
4672 pd2++;
4673 }
4674 }
4675
4676 static void ddf_update_vlist(struct ddf_super *ddf, struct dl *dl)
4677 {
4678 struct vcl *vcl;
4679 unsigned int vn = 0;
4680 int in_degraded = 0;
4681
4682 if (dl->pdnum < 0)
4683 return;
4684 for (vcl = ddf->conflist; vcl ; vcl = vcl->next) {
4685 unsigned int dn, ibvd;
4686 const struct vd_config *conf;
4687 int vstate;
4688 dn = get_pd_index_from_refnum(vcl,
4689 dl->disk.refnum,
4690 ddf->mppe,
4691 &conf, &ibvd);
4692 if (dn == DDF_NOTFOUND)
4693 continue;
4694 dprintf("dev %d/%08x has %s (sec=%u) at %d\n",
4695 dl->pdnum,
4696 be32_to_cpu(dl->disk.refnum),
4697 guid_str(conf->guid),
4698 conf->sec_elmnt_seq, vn);
4699 /* Clear the Transition flag */
4700 if (be16_and
4701 (ddf->phys->entries[dl->pdnum].state,
4702 cpu_to_be16(DDF_Failed)))
4703 be16_clear(ddf->phys
4704 ->entries[dl->pdnum].state,
4705 cpu_to_be16(DDF_Transition));
4706 dl->vlist[vn++] = vcl;
4707 vstate = ddf->virt->entries[vcl->vcnum].state
4708 & DDF_state_mask;
4709 if (vstate == DDF_state_degraded ||
4710 vstate == DDF_state_part_optimal)
4711 in_degraded = 1;
4712 }
4713 while (vn < ddf->max_part)
4714 dl->vlist[vn++] = NULL;
4715 if (dl->vlist[0]) {
4716 be16_clear(ddf->phys->entries[dl->pdnum].type,
4717 cpu_to_be16(DDF_Global_Spare));
4718 if (!be16_and(ddf->phys
4719 ->entries[dl->pdnum].type,
4720 cpu_to_be16(DDF_Active_in_VD))) {
4721 be16_set(ddf->phys
4722 ->entries[dl->pdnum].type,
4723 cpu_to_be16(DDF_Active_in_VD));
4724 if (in_degraded)
4725 be16_set(ddf->phys
4726 ->entries[dl->pdnum]
4727 .state,
4728 cpu_to_be16
4729 (DDF_Rebuilding));
4730 }
4731 }
4732 if (dl->spare) {
4733 be16_clear(ddf->phys->entries[dl->pdnum].type,
4734 cpu_to_be16(DDF_Global_Spare));
4735 be16_set(ddf->phys->entries[dl->pdnum].type,
4736 cpu_to_be16(DDF_Spare));
4737 }
4738 if (!dl->vlist[0] && !dl->spare) {
4739 be16_set(ddf->phys->entries[dl->pdnum].type,
4740 cpu_to_be16(DDF_Global_Spare));
4741 be16_clear(ddf->phys->entries[dl->pdnum].type,
4742 cpu_to_be16(DDF_Spare));
4743 be16_clear(ddf->phys->entries[dl->pdnum].type,
4744 cpu_to_be16(DDF_Active_in_VD));
4745 }
4746 }
4747
4748 static void ddf_process_conf_update(struct supertype *st,
4749 struct metadata_update *update)
4750 {
4751 struct ddf_super *ddf = st->sb;
4752 struct vd_config *vc;
4753 struct vcl *vcl;
4754 struct dl *dl;
4755 unsigned int ent;
4756 unsigned int pdnum, len;
4757
4758 vc = (struct vd_config*)update->buf;
4759 len = ddf->conf_rec_len * 512;
4760 if ((unsigned int)update->len != len * vc->sec_elmnt_count) {
4761 pr_err("%s: insufficient data (%d) for %u BVDs\n",
4762 guid_str(vc->guid), update->len,
4763 vc->sec_elmnt_count);
4764 return;
4765 }
4766 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
4767 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
4768 break;
4769 dprintf("conf update for %s (%s)\n",
4770 guid_str(vc->guid), (vcl ? "old" : "new"));
4771 if (vcl) {
4772 /* An update, just copy the phys_refnum and lba_offset
4773 * fields
4774 */
4775 unsigned int i;
4776 unsigned int k;
4777 copy_matching_bvd(ddf, &vcl->conf, update);
4778 for (k = 0; k < be16_to_cpu(vc->prim_elmnt_count); k++)
4779 dprintf("BVD %u has %08x at %llu\n", 0,
4780 be32_to_cpu(vcl->conf.phys_refnum[k]),
4781 be64_to_cpu(LBA_OFFSET(ddf,
4782 &vcl->conf)[k]));
4783 for (i = 1; i < vc->sec_elmnt_count; i++) {
4784 copy_matching_bvd(ddf, vcl->other_bvds[i-1],
4785 update);
4786 for (k = 0; k < be16_to_cpu(
4787 vc->prim_elmnt_count); k++)
4788 dprintf("BVD %u has %08x at %llu\n", i,
4789 be32_to_cpu
4790 (vcl->other_bvds[i-1]->
4791 phys_refnum[k]),
4792 be64_to_cpu
4793 (LBA_OFFSET
4794 (ddf,
4795 vcl->other_bvds[i-1])[k]));
4796 }
4797 } else {
4798 /* A new VD_CONF */
4799 unsigned int i;
4800 if (!update->space)
4801 return;
4802 vcl = update->space;
4803 update->space = NULL;
4804 vcl->next = ddf->conflist;
4805 memcpy(&vcl->conf, vc, len);
4806 ent = find_vde_by_guid(ddf, vc->guid);
4807 if (ent == DDF_NOTFOUND)
4808 return;
4809 vcl->vcnum = ent;
4810 ddf->conflist = vcl;
4811 for (i = 1; i < vc->sec_elmnt_count; i++)
4812 memcpy(vcl->other_bvds[i-1],
4813 update->buf + len * i, len);
4814 }
4815 /* Set DDF_Transition on all Failed devices - to help
4816 * us detect those that are no longer in use
4817 */
4818 for (pdnum = 0; pdnum < be16_to_cpu(ddf->phys->max_pdes);
4819 pdnum++)
4820 if (be16_and(ddf->phys->entries[pdnum].state,
4821 cpu_to_be16(DDF_Failed)))
4822 be16_set(ddf->phys->entries[pdnum].state,
4823 cpu_to_be16(DDF_Transition));
4824
4825 /* Now make sure vlist is correct for each dl. */
4826 for (dl = ddf->dlist; dl; dl = dl->next)
4827 ddf_update_vlist(ddf, dl);
4828 ddf_remove_failed(ddf);
4829
4830 ddf_set_updates_pending(ddf, vc);
4831 }
4832
4833 static void ddf_process_update(struct supertype *st,
4834 struct metadata_update *update)
4835 {
4836 /* Apply this update to the metadata.
4837 * The first 4 bytes are a DDF_*_MAGIC which guides
4838 * our actions.
4839 * Possible update are:
4840 * DDF_PHYS_RECORDS_MAGIC
4841 * Add a new physical device or remove an old one.
4842 * Changes to this record only happen implicitly.
4843 * used_pdes is the device number.
4844 * DDF_VIRT_RECORDS_MAGIC
4845 * Add a new VD. Possibly also change the 'access' bits.
4846 * populated_vdes is the entry number.
4847 * DDF_VD_CONF_MAGIC
4848 * New or updated VD. the VIRT_RECORD must already
4849 * exist. For an update, phys_refnum and lba_offset
4850 * (at least) are updated, and the VD_CONF must
4851 * be written to precisely those devices listed with
4852 * a phys_refnum.
4853 * DDF_SPARE_ASSIGN_MAGIC
4854 * replacement Spare Assignment Record... but for which device?
4855 *
4856 * So, e.g.:
4857 * - to create a new array, we send a VIRT_RECORD and
4858 * a VD_CONF. Then assemble and start the array.
4859 * - to activate a spare we send a VD_CONF to add the phys_refnum
4860 * and offset. This will also mark the spare as active with
4861 * a spare-assignment record.
4862 */
4863 be32 *magic = (be32 *)update->buf;
4864
4865 dprintf("Process update %x\n", be32_to_cpu(*magic));
4866
4867 if (be32_eq(*magic, DDF_PHYS_RECORDS_MAGIC)) {
4868 if (update->len == (sizeof(struct phys_disk) +
4869 sizeof(struct phys_disk_entry)))
4870 ddf_process_phys_update(st, update);
4871 } else if (be32_eq(*magic, DDF_VIRT_RECORDS_MAGIC)) {
4872 if (update->len == (sizeof(struct virtual_disk) +
4873 sizeof(struct virtual_entry)))
4874 ddf_process_virt_update(st, update);
4875 } else if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
4876 ddf_process_conf_update(st, update);
4877 }
4878 /* case DDF_SPARE_ASSIGN_MAGIC */
4879 }
4880
4881 static int ddf_prepare_update(struct supertype *st,
4882 struct metadata_update *update)
4883 {
4884 /* This update arrived at managemon.
4885 * We are about to pass it to monitor.
4886 * If a malloc is needed, do it here.
4887 */
4888 struct ddf_super *ddf = st->sb;
4889 be32 *magic;
4890 if (update->len < 4)
4891 return 0;
4892 magic = (be32 *)update->buf;
4893 if (be32_eq(*magic, DDF_VD_CONF_MAGIC)) {
4894 struct vcl *vcl;
4895 struct vd_config *conf;
4896 if (update->len < (int)sizeof(*conf))
4897 return 0;
4898 conf = (struct vd_config *) update->buf;
4899 if (posix_memalign(&update->space, 512,
4900 offsetof(struct vcl, conf)
4901 + ddf->conf_rec_len * 512) != 0) {
4902 update->space = NULL;
4903 return 0;
4904 }
4905 vcl = update->space;
4906 vcl->conf.sec_elmnt_count = conf->sec_elmnt_count;
4907 if (alloc_other_bvds(ddf, vcl) != 0) {
4908 free(update->space);
4909 update->space = NULL;
4910 return 0;
4911 }
4912 }
4913 return 1;
4914 }
4915
4916 /*
4917 * Check degraded state of a RAID10.
4918 * returns 2 for good, 1 for degraded, 0 for failed, and -1 for error
4919 */
4920 static int raid10_degraded(struct mdinfo *info)
4921 {
4922 int n_prim, n_bvds;
4923 int i;
4924 struct mdinfo *d;
4925 char *found;
4926 int ret = -1;
4927
4928 n_prim = info->array.layout & ~0x100;
4929 n_bvds = info->array.raid_disks / n_prim;
4930 found = xmalloc(n_bvds);
4931 if (found == NULL)
4932 return ret;
4933 memset(found, 0, n_bvds);
4934 for (d = info->devs; d; d = d->next) {
4935 i = d->disk.raid_disk / n_prim;
4936 if (i >= n_bvds) {
4937 pr_err("BUG: invalid raid disk\n");
4938 goto out;
4939 }
4940 if (d->state_fd > 0)
4941 found[i]++;
4942 }
4943 ret = 2;
4944 for (i = 0; i < n_bvds; i++)
4945 if (!found[i]) {
4946 dprintf("BVD %d/%d failed\n", i, n_bvds);
4947 ret = 0;
4948 goto out;
4949 } else if (found[i] < n_prim) {
4950 dprintf("BVD %d/%d degraded\n", i, n_bvds);
4951 ret = 1;
4952 }
4953 out:
4954 free(found);
4955 return ret;
4956 }
4957
4958 /*
4959 * Check if the array 'a' is degraded but not failed.
4960 * If it is, find as many spares as are available and needed and
4961 * arrange for their inclusion.
4962 * We only choose devices which are not already in the array,
4963 * and prefer those with a spare-assignment to this array.
4964 * Otherwise we choose global spares - assuming always that
4965 * there is enough room.
4966 * For each spare that we assign, we return an 'mdinfo' which
4967 * describes the position for the device in the array.
4968 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
4969 * the new phys_refnum and lba_offset values.
4970 *
4971 * Only worry about BVDs at the moment.
4972 */
4973 static struct mdinfo *ddf_activate_spare(struct active_array *a,
4974 struct metadata_update **updates)
4975 {
4976 int working = 0;
4977 struct mdinfo *d;
4978 struct ddf_super *ddf = a->container->sb;
4979 int global_ok = 0;
4980 struct mdinfo *rv = NULL;
4981 struct mdinfo *di;
4982 struct metadata_update *mu;
4983 struct dl *dl;
4984 int i;
4985 unsigned int j;
4986 struct vcl *vcl;
4987 struct vd_config *vc;
4988 unsigned int n_bvd;
4989
4990 for (d = a->info.devs ; d ; d = d->next) {
4991 if ((d->curr_state & DS_FAULTY) &&
4992 d->state_fd >= 0)
4993 /* wait for Removal to happen */
4994 return NULL;
4995 if (d->state_fd >= 0)
4996 working ++;
4997 }
4998
4999 dprintf("working=%d (%d) level=%d\n", working,
5000 a->info.array.raid_disks,
5001 a->info.array.level);
5002 if (working == a->info.array.raid_disks)
5003 return NULL; /* array not degraded */
5004 switch (a->info.array.level) {
5005 case 1:
5006 if (working == 0)
5007 return NULL; /* failed */
5008 break;
5009 case 4:
5010 case 5:
5011 if (working < a->info.array.raid_disks - 1)
5012 return NULL; /* failed */
5013 break;
5014 case 6:
5015 if (working < a->info.array.raid_disks - 2)
5016 return NULL; /* failed */
5017 break;
5018 case 10:
5019 if (raid10_degraded(&a->info) < 1)
5020 return NULL;
5021 break;
5022 default: /* concat or stripe */
5023 return NULL; /* failed */
5024 }
5025
5026 /* For each slot, if it is not working, find a spare */
5027 dl = ddf->dlist;
5028 for (i = 0; i < a->info.array.raid_disks; i++) {
5029 for (d = a->info.devs ; d ; d = d->next)
5030 if (d->disk.raid_disk == i)
5031 break;
5032 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5033 if (d && (d->state_fd >= 0))
5034 continue;
5035
5036 /* OK, this device needs recovery. Find a spare */
5037 again:
5038 for ( ; dl ; dl = dl->next) {
5039 unsigned long long esize;
5040 unsigned long long pos;
5041 struct mdinfo *d2;
5042 int is_global = 0;
5043 int is_dedicated = 0;
5044 be16 state;
5045
5046 if (dl->pdnum < 0)
5047 continue;
5048 state = ddf->phys->entries[dl->pdnum].state;
5049 if (be16_and(state,
5050 cpu_to_be16(DDF_Failed|DDF_Missing)) ||
5051 !be16_and(state,
5052 cpu_to_be16(DDF_Online)))
5053 continue;
5054
5055 /* If in this array, skip */
5056 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
5057 if (d2->state_fd >= 0 &&
5058 d2->disk.major == dl->major &&
5059 d2->disk.minor == dl->minor) {
5060 dprintf("%x:%x (%08x) already in array\n",
5061 dl->major, dl->minor,
5062 be32_to_cpu(dl->disk.refnum));
5063 break;
5064 }
5065 if (d2)
5066 continue;
5067 if (be16_and(ddf->phys->entries[dl->pdnum].type,
5068 cpu_to_be16(DDF_Spare))) {
5069 /* Check spare assign record */
5070 if (dl->spare) {
5071 if (dl->spare->type & DDF_spare_dedicated) {
5072 /* check spare_ents for guid */
5073 unsigned int j;
5074 for (j = 0 ;
5075 j < be16_to_cpu
5076 (dl->spare
5077 ->populated);
5078 j++) {
5079 if (memcmp(dl->spare->spare_ents[j].guid,
5080 ddf->virt->entries[a->info.container_member].guid,
5081 DDF_GUID_LEN) == 0)
5082 is_dedicated = 1;
5083 }
5084 } else
5085 is_global = 1;
5086 }
5087 } else if (be16_and(ddf->phys->entries[dl->pdnum].type,
5088 cpu_to_be16(DDF_Global_Spare))) {
5089 is_global = 1;
5090 } else if (!be16_and(ddf->phys
5091 ->entries[dl->pdnum].state,
5092 cpu_to_be16(DDF_Failed))) {
5093 /* we can possibly use some of this */
5094 is_global = 1;
5095 }
5096 if ( ! (is_dedicated ||
5097 (is_global && global_ok))) {
5098 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
5099 is_dedicated, is_global);
5100 continue;
5101 }
5102
5103 /* We are allowed to use this device - is there space?
5104 * We need a->info.component_size sectors */
5105 esize = a->info.component_size;
5106 pos = find_space(ddf, dl, INVALID_SECTORS, &esize);
5107
5108 if (esize < a->info.component_size) {
5109 dprintf("%x:%x has no room: %llu %llu\n",
5110 dl->major, dl->minor,
5111 esize, a->info.component_size);
5112 /* No room */
5113 continue;
5114 }
5115
5116 /* Cool, we have a device with some space at pos */
5117 di = xcalloc(1, sizeof(*di));
5118 di->disk.number = i;
5119 di->disk.raid_disk = i;
5120 di->disk.major = dl->major;
5121 di->disk.minor = dl->minor;
5122 di->disk.state = 0;
5123 di->recovery_start = 0;
5124 di->data_offset = pos;
5125 di->component_size = a->info.component_size;
5126 di->next = rv;
5127 rv = di;
5128 dprintf("%x:%x (%08x) to be %d at %llu\n",
5129 dl->major, dl->minor,
5130 be32_to_cpu(dl->disk.refnum), i, pos);
5131
5132 break;
5133 }
5134 if (!dl && ! global_ok) {
5135 /* not enough dedicated spares, try global */
5136 global_ok = 1;
5137 dl = ddf->dlist;
5138 goto again;
5139 }
5140 }
5141
5142 if (!rv)
5143 /* No spares found */
5144 return rv;
5145 /* Now 'rv' has a list of devices to return.
5146 * Create a metadata_update record to update the
5147 * phys_refnum and lba_offset values
5148 */
5149 vc = find_vdcr(ddf, a->info.container_member, rv->disk.raid_disk,
5150 &n_bvd, &vcl);
5151 if (vc == NULL)
5152 return NULL;
5153
5154 mu = xmalloc(sizeof(*mu));
5155 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
5156 free(mu);
5157 mu = NULL;
5158 }
5159
5160 mu->len = ddf->conf_rec_len * 512 * vcl->conf.sec_elmnt_count;
5161 mu->buf = xmalloc(mu->len);
5162 mu->space = NULL;
5163 mu->space_list = NULL;
5164 mu->next = *updates;
5165 memcpy(mu->buf, &vcl->conf, ddf->conf_rec_len * 512);
5166 for (j = 1; j < vcl->conf.sec_elmnt_count; j++)
5167 memcpy(mu->buf + j * ddf->conf_rec_len * 512,
5168 vcl->other_bvds[j-1], ddf->conf_rec_len * 512);
5169
5170 vc = (struct vd_config*)mu->buf;
5171 for (di = rv ; di ; di = di->next) {
5172 unsigned int i_sec, i_prim;
5173 i_sec = di->disk.raid_disk
5174 / be16_to_cpu(vcl->conf.prim_elmnt_count);
5175 i_prim = di->disk.raid_disk
5176 % be16_to_cpu(vcl->conf.prim_elmnt_count);
5177 vc = (struct vd_config *)(mu->buf
5178 + i_sec * ddf->conf_rec_len * 512);
5179 for (dl = ddf->dlist; dl; dl = dl->next)
5180 if (dl->major == di->disk.major
5181 && dl->minor == di->disk.minor)
5182 break;
5183 if (!dl || dl->pdnum < 0) {
5184 pr_err("BUG: can't find disk %d (%d/%d)\n",
5185 di->disk.raid_disk,
5186 di->disk.major, di->disk.minor);
5187 return NULL;
5188 }
5189 vc->phys_refnum[i_prim] = ddf->phys->entries[dl->pdnum].refnum;
5190 LBA_OFFSET(ddf, vc)[i_prim] = cpu_to_be64(di->data_offset);
5191 dprintf("BVD %u gets %u: %08x at %llu\n", i_sec, i_prim,
5192 be32_to_cpu(vc->phys_refnum[i_prim]),
5193 be64_to_cpu(LBA_OFFSET(ddf, vc)[i_prim]));
5194 }
5195 *updates = mu;
5196 return rv;
5197 }
5198 #endif /* MDASSEMBLE */
5199
5200 static int ddf_level_to_layout(int level)
5201 {
5202 switch(level) {
5203 case 0:
5204 case 1:
5205 return 0;
5206 case 5:
5207 return ALGORITHM_LEFT_SYMMETRIC;
5208 case 6:
5209 return ALGORITHM_ROTATING_N_CONTINUE;
5210 case 10:
5211 return 0x102;
5212 default:
5213 return UnSet;
5214 }
5215 }
5216
5217 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
5218 {
5219 if (level && *level == UnSet)
5220 *level = LEVEL_CONTAINER;
5221
5222 if (level && layout && *layout == UnSet)
5223 *layout = ddf_level_to_layout(*level);
5224 }
5225
5226 struct superswitch super_ddf = {
5227 #ifndef MDASSEMBLE
5228 .examine_super = examine_super_ddf,
5229 .brief_examine_super = brief_examine_super_ddf,
5230 .brief_examine_subarrays = brief_examine_subarrays_ddf,
5231 .export_examine_super = export_examine_super_ddf,
5232 .detail_super = detail_super_ddf,
5233 .brief_detail_super = brief_detail_super_ddf,
5234 .validate_geometry = validate_geometry_ddf,
5235 .write_init_super = write_init_super_ddf,
5236 .add_to_super = add_to_super_ddf,
5237 .remove_from_super = remove_from_super_ddf,
5238 .load_container = load_container_ddf,
5239 .copy_metadata = copy_metadata_ddf,
5240 .kill_subarray = kill_subarray_ddf,
5241 #endif
5242 .match_home = match_home_ddf,
5243 .uuid_from_super= uuid_from_super_ddf,
5244 .getinfo_super = getinfo_super_ddf,
5245 .update_super = update_super_ddf,
5246
5247 .avail_size = avail_size_ddf,
5248
5249 .compare_super = compare_super_ddf,
5250
5251 .load_super = load_super_ddf,
5252 .init_super = init_super_ddf,
5253 .store_super = store_super_ddf,
5254 .free_super = free_super_ddf,
5255 .match_metadata_desc = match_metadata_desc_ddf,
5256 .container_content = container_content_ddf,
5257 .default_geometry = default_geometry_ddf,
5258
5259 .external = 1,
5260
5261 #ifndef MDASSEMBLE
5262 /* for mdmon */
5263 .open_new = ddf_open_new,
5264 .set_array_state= ddf_set_array_state,
5265 .set_disk = ddf_set_disk,
5266 .sync_metadata = ddf_sync_metadata,
5267 .process_update = ddf_process_update,
5268 .prepare_update = ddf_prepare_update,
5269 .activate_spare = ddf_activate_spare,
5270 #endif
5271 .name = "ddf",
5272 };