]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
ddf: hack to fix container recognition.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442 static unsigned int calc_crc(void *buf, int len)
443 {
444 /* crcs are always at the same place as in the ddf_header */
445 struct ddf_header *ddf = buf;
446 __u32 oldcrc = ddf->crc;
447 __u32 newcrc;
448 ddf->crc = 0xffffffff;
449
450 newcrc = crc32(0, buf, len);
451 ddf->crc = oldcrc;
452 /* The crc is store (like everything) bigendian, so convert
453 * here for simplicity
454 */
455 return __cpu_to_be32(newcrc);
456 }
457
458 static int load_ddf_header(int fd, unsigned long long lba,
459 unsigned long long size,
460 int type,
461 struct ddf_header *hdr, struct ddf_header *anchor)
462 {
463 /* read a ddf header (primary or secondary) from fd/lba
464 * and check that it is consistent with anchor
465 * Need to check:
466 * magic, crc, guid, rev, and LBA's header_type, and
467 * everything after header_type must be the same
468 */
469 if (lba >= size-1)
470 return 0;
471
472 if (lseek64(fd, lba<<9, 0) < 0)
473 return 0;
474
475 if (read(fd, hdr, 512) != 512)
476 return 0;
477
478 if (hdr->magic != DDF_HEADER_MAGIC)
479 return 0;
480 if (calc_crc(hdr, 512) != hdr->crc)
481 return 0;
482 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
483 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
484 anchor->primary_lba != hdr->primary_lba ||
485 anchor->secondary_lba != hdr->secondary_lba ||
486 hdr->type != type ||
487 memcmp(anchor->pad2, hdr->pad2, 512 -
488 offsetof(struct ddf_header, pad2)) != 0)
489 return 0;
490
491 /* Looks good enough to me... */
492 return 1;
493 }
494
495 static void *load_section(int fd, struct ddf_super *super, void *buf,
496 __u32 offset_be, __u32 len_be, int check)
497 {
498 unsigned long long offset = __be32_to_cpu(offset_be);
499 unsigned long long len = __be32_to_cpu(len_be);
500 int dofree = (buf == NULL);
501
502 if (check)
503 if (len != 2 && len != 8 && len != 32
504 && len != 128 && len != 512)
505 return NULL;
506
507 if (len > 1024)
508 return NULL;
509 if (buf) {
510 /* All pre-allocated sections are a single block */
511 if (len != 1)
512 return NULL;
513 } else if (posix_memalign(&buf, 512, len<<9) != 0)
514 buf = NULL;
515
516 if (!buf)
517 return NULL;
518
519 if (super->active->type == 1)
520 offset += __be64_to_cpu(super->active->primary_lba);
521 else
522 offset += __be64_to_cpu(super->active->secondary_lba);
523
524 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
525 if (dofree)
526 free(buf);
527 return NULL;
528 }
529 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
530 if (dofree)
531 free(buf);
532 return NULL;
533 }
534 return buf;
535 }
536
537 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
538 {
539 unsigned long long dsize;
540
541 get_dev_size(fd, NULL, &dsize);
542
543 if (lseek64(fd, dsize-512, 0) < 0) {
544 if (devname)
545 pr_err("Cannot seek to anchor block on %s: %s\n",
546 devname, strerror(errno));
547 return 1;
548 }
549 if (read(fd, &super->anchor, 512) != 512) {
550 if (devname)
551 pr_err("Cannot read anchor block on %s: %s\n",
552 devname, strerror(errno));
553 return 1;
554 }
555 if (super->anchor.magic != DDF_HEADER_MAGIC) {
556 if (devname)
557 pr_err("no DDF anchor found on %s\n",
558 devname);
559 return 2;
560 }
561 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
562 if (devname)
563 pr_err("bad CRC on anchor on %s\n",
564 devname);
565 return 2;
566 }
567 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
568 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
569 if (devname)
570 pr_err("can only support super revision"
571 " %.8s and earlier, not %.8s on %s\n",
572 DDF_REVISION_2, super->anchor.revision,devname);
573 return 2;
574 }
575 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
576 dsize >> 9, 1,
577 &super->primary, &super->anchor) == 0) {
578 if (devname)
579 pr_err("Failed to load primary DDF header "
580 "on %s\n", devname);
581 return 2;
582 }
583 super->active = &super->primary;
584 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
585 dsize >> 9, 2,
586 &super->secondary, &super->anchor)) {
587 if ((__be32_to_cpu(super->primary.seq)
588 < __be32_to_cpu(super->secondary.seq) &&
589 !super->secondary.openflag)
590 || (__be32_to_cpu(super->primary.seq)
591 == __be32_to_cpu(super->secondary.seq) &&
592 super->primary.openflag && !super->secondary.openflag)
593 )
594 super->active = &super->secondary;
595 }
596 return 0;
597 }
598
599 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
600 {
601 void *ok;
602 ok = load_section(fd, super, &super->controller,
603 super->active->controller_section_offset,
604 super->active->controller_section_length,
605 0);
606 super->phys = load_section(fd, super, NULL,
607 super->active->phys_section_offset,
608 super->active->phys_section_length,
609 1);
610 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
611
612 super->virt = load_section(fd, super, NULL,
613 super->active->virt_section_offset,
614 super->active->virt_section_length,
615 1);
616 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
617 if (!ok ||
618 !super->phys ||
619 !super->virt) {
620 free(super->phys);
621 free(super->virt);
622 super->phys = NULL;
623 super->virt = NULL;
624 return 2;
625 }
626 super->conflist = NULL;
627 super->dlist = NULL;
628
629 super->max_part = __be16_to_cpu(super->active->max_partitions);
630 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
631 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
632 return 0;
633 }
634
635 static int load_ddf_local(int fd, struct ddf_super *super,
636 char *devname, int keep)
637 {
638 struct dl *dl;
639 struct stat stb;
640 char *conf;
641 unsigned int i;
642 unsigned int confsec;
643 int vnum;
644 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
645 unsigned long long dsize;
646
647 /* First the local disk info */
648 if (posix_memalign((void**)&dl, 512,
649 sizeof(*dl) +
650 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
651 pr_err("%s could not allocate disk info buffer\n",
652 __func__);
653 return 1;
654 }
655
656 load_section(fd, super, &dl->disk,
657 super->active->data_section_offset,
658 super->active->data_section_length,
659 0);
660 dl->devname = devname ? xstrdup(devname) : NULL;
661
662 fstat(fd, &stb);
663 dl->major = major(stb.st_rdev);
664 dl->minor = minor(stb.st_rdev);
665 dl->next = super->dlist;
666 dl->fd = keep ? fd : -1;
667
668 dl->size = 0;
669 if (get_dev_size(fd, devname, &dsize))
670 dl->size = dsize >> 9;
671 dl->spare = NULL;
672 for (i = 0 ; i < super->max_part ; i++)
673 dl->vlist[i] = NULL;
674 super->dlist = dl;
675 dl->pdnum = -1;
676 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
677 if (memcmp(super->phys->entries[i].guid,
678 dl->disk.guid, DDF_GUID_LEN) == 0)
679 dl->pdnum = i;
680
681 /* Now the config list. */
682 /* 'conf' is an array of config entries, some of which are
683 * probably invalid. Those which are good need to be copied into
684 * the conflist
685 */
686
687 conf = load_section(fd, super, NULL,
688 super->active->config_section_offset,
689 super->active->config_section_length,
690 0);
691
692 vnum = 0;
693 for (confsec = 0;
694 confsec < __be32_to_cpu(super->active->config_section_length);
695 confsec += super->conf_rec_len) {
696 struct vd_config *vd =
697 (struct vd_config *)((char*)conf + confsec*512);
698 struct vcl *vcl;
699
700 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
701 if (dl->spare)
702 continue;
703 if (posix_memalign((void**)&dl->spare, 512,
704 super->conf_rec_len*512) != 0) {
705 pr_err("%s could not allocate spare info buf\n",
706 __func__);
707 return 1;
708 }
709
710 memcpy(dl->spare, vd, super->conf_rec_len*512);
711 continue;
712 }
713 if (vd->magic != DDF_VD_CONF_MAGIC)
714 continue;
715 for (vcl = super->conflist; vcl; vcl = vcl->next) {
716 if (memcmp(vcl->conf.guid,
717 vd->guid, DDF_GUID_LEN) == 0)
718 break;
719 }
720
721 if (vcl) {
722 dl->vlist[vnum++] = vcl;
723 if (__be32_to_cpu(vd->seqnum) <=
724 __be32_to_cpu(vcl->conf.seqnum))
725 continue;
726 } else {
727 if (posix_memalign((void**)&vcl, 512,
728 (super->conf_rec_len*512 +
729 offsetof(struct vcl, conf))) != 0) {
730 pr_err("%s could not allocate vcl buf\n",
731 __func__);
732 return 1;
733 }
734 vcl->next = super->conflist;
735 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
736 super->conflist = vcl;
737 dl->vlist[vnum++] = vcl;
738 }
739 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
740 vcl->lba_offset = (__u64*)
741 &vcl->conf.phys_refnum[super->mppe];
742
743 for (i=0; i < max_virt_disks ; i++)
744 if (memcmp(super->virt->entries[i].guid,
745 vcl->conf.guid, DDF_GUID_LEN)==0)
746 break;
747 if (i < max_virt_disks)
748 vcl->vcnum = i;
749 }
750 free(conf);
751
752 return 0;
753 }
754
755 #ifndef MDASSEMBLE
756 static int load_super_ddf_all(struct supertype *st, int fd,
757 void **sbp, char *devname);
758 #endif
759
760 static void free_super_ddf(struct supertype *st);
761
762 static int load_super_ddf(struct supertype *st, int fd,
763 char *devname)
764 {
765 unsigned long long dsize;
766 struct ddf_super *super;
767 int rv;
768
769 if (get_dev_size(fd, devname, &dsize) == 0)
770 return 1;
771
772 if (test_partition(fd))
773 /* DDF is not allowed on partitions */
774 return 1;
775
776 /* 32M is a lower bound */
777 if (dsize <= 32*1024*1024) {
778 if (devname)
779 pr_err("%s is too small for ddf: "
780 "size is %llu sectors.\n",
781 devname, dsize>>9);
782 return 1;
783 }
784 if (dsize & 511) {
785 if (devname)
786 pr_err("%s is an odd size for ddf: "
787 "size is %llu bytes.\n",
788 devname, dsize);
789 return 1;
790 }
791
792 free_super_ddf(st);
793
794 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
795 pr_err("malloc of %zu failed.\n",
796 sizeof(*super));
797 return 1;
798 }
799 memset(super, 0, sizeof(*super));
800
801 rv = load_ddf_headers(fd, super, devname);
802 if (rv) {
803 free(super);
804 return rv;
805 }
806
807 /* Have valid headers and have chosen the best. Let's read in the rest*/
808
809 rv = load_ddf_global(fd, super, devname);
810
811 if (rv) {
812 if (devname)
813 pr_err("Failed to load all information "
814 "sections on %s\n", devname);
815 free(super);
816 return rv;
817 }
818
819 rv = load_ddf_local(fd, super, devname, 0);
820
821 if (rv) {
822 if (devname)
823 pr_err("Failed to load all information "
824 "sections on %s\n", devname);
825 free(super);
826 return rv;
827 }
828
829 /* Should possibly check the sections .... */
830
831 st->sb = super;
832 if (st->ss == NULL) {
833 st->ss = &super_ddf;
834 st->minor_version = 0;
835 st->max_devs = 512;
836 }
837 return 0;
838
839 }
840
841 static void free_super_ddf(struct supertype *st)
842 {
843 struct ddf_super *ddf = st->sb;
844 if (ddf == NULL)
845 return;
846 free(ddf->phys);
847 free(ddf->virt);
848 while (ddf->conflist) {
849 struct vcl *v = ddf->conflist;
850 ddf->conflist = v->next;
851 if (v->block_sizes)
852 free(v->block_sizes);
853 free(v);
854 }
855 while (ddf->dlist) {
856 struct dl *d = ddf->dlist;
857 ddf->dlist = d->next;
858 if (d->fd >= 0)
859 close(d->fd);
860 if (d->spare)
861 free(d->spare);
862 free(d);
863 }
864 while (ddf->add_list) {
865 struct dl *d = ddf->add_list;
866 ddf->add_list = d->next;
867 if (d->fd >= 0)
868 close(d->fd);
869 if (d->spare)
870 free(d->spare);
871 free(d);
872 }
873 free(ddf);
874 st->sb = NULL;
875 }
876
877 static struct supertype *match_metadata_desc_ddf(char *arg)
878 {
879 /* 'ddf' only support containers */
880 struct supertype *st;
881 if (strcmp(arg, "ddf") != 0 &&
882 strcmp(arg, "default") != 0
883 )
884 return NULL;
885
886 st = xcalloc(1, sizeof(*st));
887 st->container_dev = NoMdDev;
888 st->ss = &super_ddf;
889 st->max_devs = 512;
890 st->minor_version = 0;
891 st->sb = NULL;
892 return st;
893 }
894
895 #ifndef MDASSEMBLE
896
897 static mapping_t ddf_state[] = {
898 { "Optimal", 0},
899 { "Degraded", 1},
900 { "Deleted", 2},
901 { "Missing", 3},
902 { "Failed", 4},
903 { "Partially Optimal", 5},
904 { "-reserved-", 6},
905 { "-reserved-", 7},
906 { NULL, 0}
907 };
908
909 static mapping_t ddf_init_state[] = {
910 { "Not Initialised", 0},
911 { "QuickInit in Progress", 1},
912 { "Fully Initialised", 2},
913 { "*UNKNOWN*", 3},
914 { NULL, 0}
915 };
916 static mapping_t ddf_access[] = {
917 { "Read/Write", 0},
918 { "Reserved", 1},
919 { "Read Only", 2},
920 { "Blocked (no access)", 3},
921 { NULL ,0}
922 };
923
924 static mapping_t ddf_level[] = {
925 { "RAID0", DDF_RAID0},
926 { "RAID1", DDF_RAID1},
927 { "RAID3", DDF_RAID3},
928 { "RAID4", DDF_RAID4},
929 { "RAID5", DDF_RAID5},
930 { "RAID1E",DDF_RAID1E},
931 { "JBOD", DDF_JBOD},
932 { "CONCAT",DDF_CONCAT},
933 { "RAID5E",DDF_RAID5E},
934 { "RAID5EE",DDF_RAID5EE},
935 { "RAID6", DDF_RAID6},
936 { NULL, 0}
937 };
938 static mapping_t ddf_sec_level[] = {
939 { "Striped", DDF_2STRIPED},
940 { "Mirrored", DDF_2MIRRORED},
941 { "Concat", DDF_2CONCAT},
942 { "Spanned", DDF_2SPANNED},
943 { NULL, 0}
944 };
945 #endif
946
947 struct num_mapping {
948 int num1, num2;
949 };
950 static struct num_mapping ddf_level_num[] = {
951 { DDF_RAID0, 0 },
952 { DDF_RAID1, 1 },
953 { DDF_RAID3, LEVEL_UNSUPPORTED },
954 { DDF_RAID4, 4 },
955 { DDF_RAID5, 5 },
956 { DDF_RAID1E, LEVEL_UNSUPPORTED },
957 { DDF_JBOD, LEVEL_UNSUPPORTED },
958 { DDF_CONCAT, LEVEL_LINEAR },
959 { DDF_RAID5E, LEVEL_UNSUPPORTED },
960 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
961 { DDF_RAID6, 6},
962 { MAXINT, MAXINT }
963 };
964
965 static int map_num1(struct num_mapping *map, int num)
966 {
967 int i;
968 for (i=0 ; map[i].num1 != MAXINT; i++)
969 if (map[i].num1 == num)
970 break;
971 return map[i].num2;
972 }
973
974 static int all_ff(char *guid)
975 {
976 int i;
977 for (i = 0; i < DDF_GUID_LEN; i++)
978 if (guid[i] != (char)0xff)
979 return 0;
980 return 1;
981 }
982
983 #ifndef MDASSEMBLE
984 static void print_guid(char *guid, int tstamp)
985 {
986 /* A GUIDs are part (or all) ASCII and part binary.
987 * They tend to be space padded.
988 * We print the GUID in HEX, then in parentheses add
989 * any initial ASCII sequence, and a possible
990 * time stamp from bytes 16-19
991 */
992 int l = DDF_GUID_LEN;
993 int i;
994
995 for (i=0 ; i<DDF_GUID_LEN ; i++) {
996 if ((i&3)==0 && i != 0) printf(":");
997 printf("%02X", guid[i]&255);
998 }
999
1000 printf("\n (");
1001 while (l && guid[l-1] == ' ')
1002 l--;
1003 for (i=0 ; i<l ; i++) {
1004 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1005 fputc(guid[i], stdout);
1006 else
1007 break;
1008 }
1009 if (tstamp) {
1010 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1011 char tbuf[100];
1012 struct tm *tm;
1013 tm = localtime(&then);
1014 strftime(tbuf, 100, " %D %T",tm);
1015 fputs(tbuf, stdout);
1016 }
1017 printf(")");
1018 }
1019
1020 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1021 {
1022 int crl = sb->conf_rec_len;
1023 struct vcl *vcl;
1024
1025 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1026 unsigned int i;
1027 struct vd_config *vc = &vcl->conf;
1028
1029 if (calc_crc(vc, crl*512) != vc->crc)
1030 continue;
1031 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1032 continue;
1033
1034 /* Ok, we know about this VD, let's give more details */
1035 printf(" Raid Devices[%d] : %d (", n,
1036 __be16_to_cpu(vc->prim_elmnt_count));
1037 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1038 int j;
1039 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1040 for (j=0; j<cnt; j++)
1041 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1042 break;
1043 if (i) printf(" ");
1044 if (j < cnt)
1045 printf("%d", j);
1046 else
1047 printf("--");
1048 }
1049 printf(")\n");
1050 if (vc->chunk_shift != 255)
1051 printf(" Chunk Size[%d] : %d sectors\n", n,
1052 1 << vc->chunk_shift);
1053 printf(" Raid Level[%d] : %s\n", n,
1054 map_num(ddf_level, vc->prl)?:"-unknown-");
1055 if (vc->sec_elmnt_count != 1) {
1056 printf(" Secondary Position[%d] : %d of %d\n", n,
1057 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1058 printf(" Secondary Level[%d] : %s\n", n,
1059 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1060 }
1061 printf(" Device Size[%d] : %llu\n", n,
1062 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1063 printf(" Array Size[%d] : %llu\n", n,
1064 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1065 }
1066 }
1067
1068 static void examine_vds(struct ddf_super *sb)
1069 {
1070 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1071 int i;
1072 printf(" Virtual Disks : %d\n", cnt);
1073
1074 for (i=0; i<cnt; i++) {
1075 struct virtual_entry *ve = &sb->virt->entries[i];
1076 printf("\n");
1077 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1078 printf("\n");
1079 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1080 printf(" state[%d] : %s, %s%s\n", i,
1081 map_num(ddf_state, ve->state & 7),
1082 (ve->state & 8) ? "Morphing, ": "",
1083 (ve->state & 16)? "Not Consistent" : "Consistent");
1084 printf(" init state[%d] : %s\n", i,
1085 map_num(ddf_init_state, ve->init_state&3));
1086 printf(" access[%d] : %s\n", i,
1087 map_num(ddf_access, (ve->init_state>>6) & 3));
1088 printf(" Name[%d] : %.16s\n", i, ve->name);
1089 examine_vd(i, sb, ve->guid);
1090 }
1091 if (cnt) printf("\n");
1092 }
1093
1094 static void examine_pds(struct ddf_super *sb)
1095 {
1096 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1097 int i;
1098 struct dl *dl;
1099 printf(" Physical Disks : %d\n", cnt);
1100 printf(" Number RefNo Size Device Type/State\n");
1101
1102 for (i=0 ; i<cnt ; i++) {
1103 struct phys_disk_entry *pd = &sb->phys->entries[i];
1104 int type = __be16_to_cpu(pd->type);
1105 int state = __be16_to_cpu(pd->state);
1106
1107 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1108 //printf("\n");
1109 printf(" %3d %08x ", i,
1110 __be32_to_cpu(pd->refnum));
1111 printf("%8lluK ",
1112 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1113 for (dl = sb->dlist; dl ; dl = dl->next) {
1114 if (dl->disk.refnum == pd->refnum) {
1115 char *dv = map_dev(dl->major, dl->minor, 0);
1116 if (dv) {
1117 printf("%-15s", dv);
1118 break;
1119 }
1120 }
1121 }
1122 if (!dl)
1123 printf("%15s","");
1124 printf(" %s%s%s%s%s",
1125 (type&2) ? "active":"",
1126 (type&4) ? "Global-Spare":"",
1127 (type&8) ? "spare" : "",
1128 (type&16)? ", foreign" : "",
1129 (type&32)? "pass-through" : "");
1130 if (state & DDF_Failed)
1131 /* This over-rides these three */
1132 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1133 printf("/%s%s%s%s%s%s%s",
1134 (state&1)? "Online": "Offline",
1135 (state&2)? ", Failed": "",
1136 (state&4)? ", Rebuilding": "",
1137 (state&8)? ", in-transition": "",
1138 (state&16)? ", SMART-errors": "",
1139 (state&32)? ", Unrecovered-Read-Errors": "",
1140 (state&64)? ", Missing" : "");
1141 printf("\n");
1142 }
1143 }
1144
1145 static void examine_super_ddf(struct supertype *st, char *homehost)
1146 {
1147 struct ddf_super *sb = st->sb;
1148
1149 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1150 printf(" Version : %.8s\n", sb->anchor.revision);
1151 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1152 printf("\n");
1153 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1154 printf("\n");
1155 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1156 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1157 ?"yes" : "no");
1158 examine_vds(sb);
1159 examine_pds(sb);
1160 }
1161
1162 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1163
1164 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1165
1166 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1167 {
1168 /* We just write a generic DDF ARRAY entry
1169 */
1170 struct mdinfo info;
1171 char nbuf[64];
1172 getinfo_super_ddf(st, &info, NULL);
1173 fname_from_uuid(st, &info, nbuf, ':');
1174
1175 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1176 }
1177
1178 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1179 {
1180 /* We just write a generic DDF ARRAY entry
1181 */
1182 struct ddf_super *ddf = st->sb;
1183 struct mdinfo info;
1184 unsigned int i;
1185 char nbuf[64];
1186 getinfo_super_ddf(st, &info, NULL);
1187 fname_from_uuid(st, &info, nbuf, ':');
1188
1189 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1190 struct virtual_entry *ve = &ddf->virt->entries[i];
1191 struct vcl vcl;
1192 char nbuf1[64];
1193 if (all_ff(ve->guid))
1194 continue;
1195 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1196 ddf->currentconf =&vcl;
1197 uuid_from_super_ddf(st, info.uuid);
1198 fname_from_uuid(st, &info, nbuf1, ':');
1199 printf("ARRAY container=%s member=%d UUID=%s\n",
1200 nbuf+5, i, nbuf1+5);
1201 }
1202 }
1203
1204 static void export_examine_super_ddf(struct supertype *st)
1205 {
1206 struct mdinfo info;
1207 char nbuf[64];
1208 getinfo_super_ddf(st, &info, NULL);
1209 fname_from_uuid(st, &info, nbuf, ':');
1210 printf("MD_METADATA=ddf\n");
1211 printf("MD_LEVEL=container\n");
1212 printf("MD_UUID=%s\n", nbuf+5);
1213 }
1214
1215 static void detail_super_ddf(struct supertype *st, char *homehost)
1216 {
1217 /* FIXME later
1218 * Could print DDF GUID
1219 * Need to find which array
1220 * If whole, briefly list all arrays
1221 * If one, give name
1222 */
1223 }
1224
1225 static void brief_detail_super_ddf(struct supertype *st)
1226 {
1227 /* FIXME I really need to know which array we are detailing.
1228 * Can that be stored in ddf_super??
1229 */
1230 // struct ddf_super *ddf = st->sb;
1231 struct mdinfo info;
1232 char nbuf[64];
1233 getinfo_super_ddf(st, &info, NULL);
1234 fname_from_uuid(st, &info, nbuf,':');
1235 printf(" UUID=%s", nbuf + 5);
1236 }
1237 #endif
1238
1239 static int match_home_ddf(struct supertype *st, char *homehost)
1240 {
1241 /* It matches 'this' host if the controller is a
1242 * Linux-MD controller with vendor_data matching
1243 * the hostname
1244 */
1245 struct ddf_super *ddf = st->sb;
1246 unsigned int len;
1247
1248 if (!homehost)
1249 return 0;
1250 len = strlen(homehost);
1251
1252 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1253 len < sizeof(ddf->controller.vendor_data) &&
1254 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1255 ddf->controller.vendor_data[len] == 0);
1256 }
1257
1258 #ifndef MDASSEMBLE
1259 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1260 {
1261 struct vcl *v;
1262
1263 for (v = ddf->conflist; v; v = v->next)
1264 if (inst == v->vcnum)
1265 return &v->conf;
1266 return NULL;
1267 }
1268 #endif
1269
1270 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1271 {
1272 /* Find the entry in phys_disk which has the given refnum
1273 * and return it's index
1274 */
1275 unsigned int i;
1276 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1277 if (ddf->phys->entries[i].refnum == phys_refnum)
1278 return i;
1279 return -1;
1280 }
1281
1282 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1283 {
1284 /* The uuid returned here is used for:
1285 * uuid to put into bitmap file (Create, Grow)
1286 * uuid for backup header when saving critical section (Grow)
1287 * comparing uuids when re-adding a device into an array
1288 * In these cases the uuid required is that of the data-array,
1289 * not the device-set.
1290 * uuid to recognise same set when adding a missing device back
1291 * to an array. This is a uuid for the device-set.
1292 *
1293 * For each of these we can make do with a truncated
1294 * or hashed uuid rather than the original, as long as
1295 * everyone agrees.
1296 * In the case of SVD we assume the BVD is of interest,
1297 * though that might be the case if a bitmap were made for
1298 * a mirrored SVD - worry about that later.
1299 * So we need to find the VD configuration record for the
1300 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1301 * The first 16 bytes of the sha1 of these is used.
1302 */
1303 struct ddf_super *ddf = st->sb;
1304 struct vcl *vcl = ddf->currentconf;
1305 char *guid;
1306 char buf[20];
1307 struct sha1_ctx ctx;
1308
1309 if (vcl)
1310 guid = vcl->conf.guid;
1311 else
1312 guid = ddf->anchor.guid;
1313
1314 sha1_init_ctx(&ctx);
1315 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1316 sha1_finish_ctx(&ctx, buf);
1317 memcpy(uuid, buf, 4*4);
1318 }
1319
1320 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1321
1322 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1323 {
1324 struct ddf_super *ddf = st->sb;
1325 int map_disks = info->array.raid_disks;
1326 __u32 *cptr;
1327
1328 if (ddf->currentconf) {
1329 getinfo_super_ddf_bvd(st, info, map);
1330 return;
1331 }
1332 memset(info, 0, sizeof(*info));
1333
1334 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1335 info->array.level = LEVEL_CONTAINER;
1336 info->array.layout = 0;
1337 info->array.md_minor = -1;
1338 cptr = (__u32 *)(ddf->anchor.guid + 16);
1339 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1340
1341 info->array.utime = 0;
1342 info->array.chunk_size = 0;
1343 info->container_enough = 1;
1344
1345 info->disk.major = 0;
1346 info->disk.minor = 0;
1347 if (ddf->dlist) {
1348 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1349 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1350
1351 info->data_offset = __be64_to_cpu(ddf->phys->
1352 entries[info->disk.raid_disk].
1353 config_size);
1354 info->component_size = ddf->dlist->size - info->data_offset;
1355 } else {
1356 info->disk.number = -1;
1357 info->disk.raid_disk = -1;
1358 // info->disk.raid_disk = find refnum in the table and use index;
1359 }
1360 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1361
1362 info->recovery_start = MaxSector;
1363 info->reshape_active = 0;
1364 info->recovery_blocked = 0;
1365 info->name[0] = 0;
1366
1367 info->array.major_version = -1;
1368 info->array.minor_version = -2;
1369 strcpy(info->text_version, "ddf");
1370 info->safe_mode_delay = 0;
1371
1372 uuid_from_super_ddf(st, info->uuid);
1373
1374 if (map) {
1375 int i;
1376 for (i = 0 ; i < map_disks; i++) {
1377 if (i < info->array.raid_disks &&
1378 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1379 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1380 map[i] = 1;
1381 else
1382 map[i] = 0;
1383 }
1384 }
1385 }
1386
1387 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1388
1389 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1390 {
1391 struct ddf_super *ddf = st->sb;
1392 struct vcl *vc = ddf->currentconf;
1393 int cd = ddf->currentdev;
1394 int j;
1395 struct dl *dl;
1396 int map_disks = info->array.raid_disks;
1397 __u32 *cptr;
1398
1399 memset(info, 0, sizeof(*info));
1400 /* FIXME this returns BVD info - what if we want SVD ?? */
1401
1402 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1403 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1404 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1405 info->array.raid_disks);
1406 info->array.md_minor = -1;
1407 cptr = (__u32 *)(vc->conf.guid + 16);
1408 info->array.ctime = DECADE + __be32_to_cpu(*cptr);
1409 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1410 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1411 info->custom_array_size = 0;
1412
1413 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1414 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1415 if (vc->block_sizes)
1416 info->component_size = vc->block_sizes[cd];
1417 else
1418 info->component_size = __be64_to_cpu(vc->conf.blocks);
1419 }
1420
1421 for (dl = ddf->dlist; dl ; dl = dl->next)
1422 if (dl->raiddisk == ddf->currentdev)
1423 break;
1424
1425 info->disk.major = 0;
1426 info->disk.minor = 0;
1427 info->disk.state = 0;
1428 if (dl) {
1429 info->disk.major = dl->major;
1430 info->disk.minor = dl->minor;
1431 info->disk.raid_disk = dl->raiddisk;
1432 info->disk.number = dl->pdnum;
1433 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1434 }
1435
1436 info->container_member = ddf->currentconf->vcnum;
1437
1438 info->recovery_start = MaxSector;
1439 info->resync_start = 0;
1440 info->reshape_active = 0;
1441 info->recovery_blocked = 0;
1442 if (!(ddf->virt->entries[info->container_member].state
1443 & DDF_state_inconsistent) &&
1444 (ddf->virt->entries[info->container_member].init_state
1445 & DDF_initstate_mask)
1446 == DDF_init_full)
1447 info->resync_start = MaxSector;
1448
1449 uuid_from_super_ddf(st, info->uuid);
1450
1451 info->array.major_version = -1;
1452 info->array.minor_version = -2;
1453 sprintf(info->text_version, "/%s/%d",
1454 devnum2devname(st->container_dev),
1455 info->container_member);
1456 info->safe_mode_delay = 200;
1457
1458 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1459 info->name[16]=0;
1460 for(j=0; j<16; j++)
1461 if (info->name[j] == ' ')
1462 info->name[j] = 0;
1463
1464 if (map)
1465 for (j = 0; j < map_disks; j++) {
1466 map[j] = 0;
1467 if (j < info->array.raid_disks) {
1468 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1469 if (i >= 0 &&
1470 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1471 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1472 map[i] = 1;
1473 }
1474 }
1475 }
1476
1477 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1478 char *update,
1479 char *devname, int verbose,
1480 int uuid_set, char *homehost)
1481 {
1482 /* For 'assemble' and 'force' we need to return non-zero if any
1483 * change was made. For others, the return value is ignored.
1484 * Update options are:
1485 * force-one : This device looks a bit old but needs to be included,
1486 * update age info appropriately.
1487 * assemble: clear any 'faulty' flag to allow this device to
1488 * be assembled.
1489 * force-array: Array is degraded but being forced, mark it clean
1490 * if that will be needed to assemble it.
1491 *
1492 * newdev: not used ????
1493 * grow: Array has gained a new device - this is currently for
1494 * linear only
1495 * resync: mark as dirty so a resync will happen.
1496 * uuid: Change the uuid of the array to match what is given
1497 * homehost: update the recorded homehost
1498 * name: update the name - preserving the homehost
1499 * _reshape_progress: record new reshape_progress position.
1500 *
1501 * Following are not relevant for this version:
1502 * sparc2.2 : update from old dodgey metadata
1503 * super-minor: change the preferred_minor number
1504 * summaries: update redundant counters.
1505 */
1506 int rv = 0;
1507 // struct ddf_super *ddf = st->sb;
1508 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1509 // struct virtual_entry *ve = find_ve(ddf);
1510
1511 /* we don't need to handle "force-*" or "assemble" as
1512 * there is no need to 'trick' the kernel. We the metadata is
1513 * first updated to activate the array, all the implied modifications
1514 * will just happen.
1515 */
1516
1517 if (strcmp(update, "grow") == 0) {
1518 /* FIXME */
1519 } else if (strcmp(update, "resync") == 0) {
1520 // info->resync_checkpoint = 0;
1521 } else if (strcmp(update, "homehost") == 0) {
1522 /* homehost is stored in controller->vendor_data,
1523 * or it is when we are the vendor
1524 */
1525 // if (info->vendor_is_local)
1526 // strcpy(ddf->controller.vendor_data, homehost);
1527 rv = -1;
1528 } else if (strcmp(update, "name") == 0) {
1529 /* name is stored in virtual_entry->name */
1530 // memset(ve->name, ' ', 16);
1531 // strncpy(ve->name, info->name, 16);
1532 rv = -1;
1533 } else if (strcmp(update, "_reshape_progress") == 0) {
1534 /* We don't support reshape yet */
1535 } else if (strcmp(update, "assemble") == 0 ) {
1536 /* Do nothing, just succeed */
1537 rv = 0;
1538 } else
1539 rv = -1;
1540
1541 // update_all_csum(ddf);
1542
1543 return rv;
1544 }
1545
1546 static void make_header_guid(char *guid)
1547 {
1548 __u32 stamp;
1549 /* Create a DDF Header of Virtual Disk GUID */
1550
1551 /* 24 bytes of fiction required.
1552 * first 8 are a 'vendor-id' - "Linux-MD"
1553 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1554 * Remaining 8 random number plus timestamp
1555 */
1556 memcpy(guid, T10, sizeof(T10));
1557 stamp = __cpu_to_be32(0xdeadbeef);
1558 memcpy(guid+8, &stamp, 4);
1559 stamp = __cpu_to_be32(0);
1560 memcpy(guid+12, &stamp, 4);
1561 stamp = __cpu_to_be32(time(0) - DECADE);
1562 memcpy(guid+16, &stamp, 4);
1563 stamp = random32();
1564 memcpy(guid+20, &stamp, 4);
1565 }
1566
1567 static int init_super_ddf_bvd(struct supertype *st,
1568 mdu_array_info_t *info,
1569 unsigned long long size,
1570 char *name, char *homehost,
1571 int *uuid);
1572
1573 static int init_super_ddf(struct supertype *st,
1574 mdu_array_info_t *info,
1575 unsigned long long size, char *name, char *homehost,
1576 int *uuid)
1577 {
1578 /* This is primarily called by Create when creating a new array.
1579 * We will then get add_to_super called for each component, and then
1580 * write_init_super called to write it out to each device.
1581 * For DDF, Create can create on fresh devices or on a pre-existing
1582 * array.
1583 * To create on a pre-existing array a different method will be called.
1584 * This one is just for fresh drives.
1585 *
1586 * We need to create the entire 'ddf' structure which includes:
1587 * DDF headers - these are easy.
1588 * Controller data - a Sector describing this controller .. not that
1589 * this is a controller exactly.
1590 * Physical Disk Record - one entry per device, so
1591 * leave plenty of space.
1592 * Virtual Disk Records - again, just leave plenty of space.
1593 * This just lists VDs, doesn't give details
1594 * Config records - describes the VDs that use this disk
1595 * DiskData - describes 'this' device.
1596 * BadBlockManagement - empty
1597 * Diag Space - empty
1598 * Vendor Logs - Could we put bitmaps here?
1599 *
1600 */
1601 struct ddf_super *ddf;
1602 char hostname[17];
1603 int hostlen;
1604 int max_phys_disks, max_virt_disks;
1605 unsigned long long sector;
1606 int clen;
1607 int i;
1608 int pdsize, vdsize;
1609 struct phys_disk *pd;
1610 struct virtual_disk *vd;
1611
1612 if (st->sb)
1613 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1614
1615 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1616 pr_err("%s could not allocate superblock\n", __func__);
1617 return 0;
1618 }
1619 memset(ddf, 0, sizeof(*ddf));
1620 ddf->dlist = NULL; /* no physical disks yet */
1621 ddf->conflist = NULL; /* No virtual disks yet */
1622 st->sb = ddf;
1623
1624 if (info == NULL) {
1625 /* zeroing superblock */
1626 return 0;
1627 }
1628
1629 /* At least 32MB *must* be reserved for the ddf. So let's just
1630 * start 32MB from the end, and put the primary header there.
1631 * Don't do secondary for now.
1632 * We don't know exactly where that will be yet as it could be
1633 * different on each device. To just set up the lengths.
1634 *
1635 */
1636
1637 ddf->anchor.magic = DDF_HEADER_MAGIC;
1638 make_header_guid(ddf->anchor.guid);
1639
1640 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1641 ddf->anchor.seq = __cpu_to_be32(1);
1642 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1643 ddf->anchor.openflag = 0xFF;
1644 ddf->anchor.foreignflag = 0;
1645 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1646 ddf->anchor.pad0 = 0xff;
1647 memset(ddf->anchor.pad1, 0xff, 12);
1648 memset(ddf->anchor.header_ext, 0xff, 32);
1649 ddf->anchor.primary_lba = ~(__u64)0;
1650 ddf->anchor.secondary_lba = ~(__u64)0;
1651 ddf->anchor.type = DDF_HEADER_ANCHOR;
1652 memset(ddf->anchor.pad2, 0xff, 3);
1653 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1654 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1655 of 32M reserved.. */
1656 max_phys_disks = 1023; /* Should be enough */
1657 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1658 max_virt_disks = 255;
1659 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1660 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1661 ddf->max_part = 64;
1662 ddf->mppe = 256;
1663 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1664 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1665 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1666 memset(ddf->anchor.pad3, 0xff, 54);
1667 /* controller sections is one sector long immediately
1668 * after the ddf header */
1669 sector = 1;
1670 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1671 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1672 sector += 1;
1673
1674 /* phys is 8 sectors after that */
1675 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1676 sizeof(struct phys_disk_entry)*max_phys_disks,
1677 512);
1678 switch(pdsize/512) {
1679 case 2: case 8: case 32: case 128: case 512: break;
1680 default: abort();
1681 }
1682 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1683 ddf->anchor.phys_section_length =
1684 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1685 sector += pdsize/512;
1686
1687 /* virt is another 32 sectors */
1688 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1689 sizeof(struct virtual_entry) * max_virt_disks,
1690 512);
1691 switch(vdsize/512) {
1692 case 2: case 8: case 32: case 128: case 512: break;
1693 default: abort();
1694 }
1695 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1696 ddf->anchor.virt_section_length =
1697 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1698 sector += vdsize/512;
1699
1700 clen = ddf->conf_rec_len * (ddf->max_part+1);
1701 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1702 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1703 sector += clen;
1704
1705 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1706 ddf->anchor.data_section_length = __cpu_to_be32(1);
1707 sector += 1;
1708
1709 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1710 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1711 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1712 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1713 ddf->anchor.vendor_length = __cpu_to_be32(0);
1714 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1715
1716 memset(ddf->anchor.pad4, 0xff, 256);
1717
1718 memcpy(&ddf->primary, &ddf->anchor, 512);
1719 memcpy(&ddf->secondary, &ddf->anchor, 512);
1720
1721 ddf->primary.openflag = 1; /* I guess.. */
1722 ddf->primary.type = DDF_HEADER_PRIMARY;
1723
1724 ddf->secondary.openflag = 1; /* I guess.. */
1725 ddf->secondary.type = DDF_HEADER_SECONDARY;
1726
1727 ddf->active = &ddf->primary;
1728
1729 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1730
1731 /* 24 more bytes of fiction required.
1732 * first 8 are a 'vendor-id' - "Linux-MD"
1733 * Remaining 16 are serial number.... maybe a hostname would do?
1734 */
1735 memcpy(ddf->controller.guid, T10, sizeof(T10));
1736 gethostname(hostname, sizeof(hostname));
1737 hostname[sizeof(hostname) - 1] = 0;
1738 hostlen = strlen(hostname);
1739 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1740 for (i = strlen(T10) ; i+hostlen < 24; i++)
1741 ddf->controller.guid[i] = ' ';
1742
1743 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1744 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1745 ddf->controller.type.sub_vendor_id = 0;
1746 ddf->controller.type.sub_device_id = 0;
1747 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1748 memset(ddf->controller.pad, 0xff, 8);
1749 memset(ddf->controller.vendor_data, 0xff, 448);
1750 if (homehost && strlen(homehost) < 440)
1751 strcpy((char*)ddf->controller.vendor_data, homehost);
1752
1753 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1754 pr_err("%s could not allocate pd\n", __func__);
1755 return 0;
1756 }
1757 ddf->phys = pd;
1758 ddf->pdsize = pdsize;
1759
1760 memset(pd, 0xff, pdsize);
1761 memset(pd, 0, sizeof(*pd));
1762 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1763 pd->used_pdes = __cpu_to_be16(0);
1764 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1765 memset(pd->pad, 0xff, 52);
1766
1767 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1768 pr_err("%s could not allocate vd\n", __func__);
1769 return 0;
1770 }
1771 ddf->virt = vd;
1772 ddf->vdsize = vdsize;
1773 memset(vd, 0, vdsize);
1774 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1775 vd->populated_vdes = __cpu_to_be16(0);
1776 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1777 memset(vd->pad, 0xff, 52);
1778
1779 for (i=0; i<max_virt_disks; i++)
1780 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1781
1782 st->sb = ddf;
1783 ddf->updates_pending = 1;
1784 return 1;
1785 }
1786
1787 static int chunk_to_shift(int chunksize)
1788 {
1789 return ffs(chunksize/512)-1;
1790 }
1791
1792 static int level_to_prl(int level)
1793 {
1794 switch (level) {
1795 case LEVEL_LINEAR: return DDF_CONCAT;
1796 case 0: return DDF_RAID0;
1797 case 1: return DDF_RAID1;
1798 case 4: return DDF_RAID4;
1799 case 5: return DDF_RAID5;
1800 case 6: return DDF_RAID6;
1801 default: return -1;
1802 }
1803 }
1804
1805 static int layout_to_rlq(int level, int layout, int raiddisks)
1806 {
1807 switch(level) {
1808 case 0:
1809 return DDF_RAID0_SIMPLE;
1810 case 1:
1811 switch(raiddisks) {
1812 case 2: return DDF_RAID1_SIMPLE;
1813 case 3: return DDF_RAID1_MULTI;
1814 default: return -1;
1815 }
1816 case 4:
1817 switch(layout) {
1818 case 0: return DDF_RAID4_N;
1819 }
1820 break;
1821 case 5:
1822 switch(layout) {
1823 case ALGORITHM_LEFT_ASYMMETRIC:
1824 return DDF_RAID5_N_RESTART;
1825 case ALGORITHM_RIGHT_ASYMMETRIC:
1826 return DDF_RAID5_0_RESTART;
1827 case ALGORITHM_LEFT_SYMMETRIC:
1828 return DDF_RAID5_N_CONTINUE;
1829 case ALGORITHM_RIGHT_SYMMETRIC:
1830 return -1; /* not mentioned in standard */
1831 }
1832 case 6:
1833 switch(layout) {
1834 case ALGORITHM_ROTATING_N_RESTART:
1835 return DDF_RAID5_N_RESTART;
1836 case ALGORITHM_ROTATING_ZERO_RESTART:
1837 return DDF_RAID6_0_RESTART;
1838 case ALGORITHM_ROTATING_N_CONTINUE:
1839 return DDF_RAID5_N_CONTINUE;
1840 }
1841 }
1842 return -1;
1843 }
1844
1845 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1846 {
1847 switch(prl) {
1848 case DDF_RAID0:
1849 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1850 case DDF_RAID1:
1851 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1852 on raiddisks*/
1853 case DDF_RAID4:
1854 switch(rlq) {
1855 case DDF_RAID4_N:
1856 return 0;
1857 default:
1858 /* not supported */
1859 return -1; /* FIXME this isn't checked */
1860 }
1861 case DDF_RAID5:
1862 switch(rlq) {
1863 case DDF_RAID5_N_RESTART:
1864 return ALGORITHM_LEFT_ASYMMETRIC;
1865 case DDF_RAID5_0_RESTART:
1866 return ALGORITHM_RIGHT_ASYMMETRIC;
1867 case DDF_RAID5_N_CONTINUE:
1868 return ALGORITHM_LEFT_SYMMETRIC;
1869 default:
1870 return -1;
1871 }
1872 case DDF_RAID6:
1873 switch(rlq) {
1874 case DDF_RAID5_N_RESTART:
1875 return ALGORITHM_ROTATING_N_RESTART;
1876 case DDF_RAID6_0_RESTART:
1877 return ALGORITHM_ROTATING_ZERO_RESTART;
1878 case DDF_RAID5_N_CONTINUE:
1879 return ALGORITHM_ROTATING_N_CONTINUE;
1880 default:
1881 return -1;
1882 }
1883 }
1884 return -1;
1885 }
1886
1887 #ifndef MDASSEMBLE
1888 struct extent {
1889 unsigned long long start, size;
1890 };
1891 static int cmp_extent(const void *av, const void *bv)
1892 {
1893 const struct extent *a = av;
1894 const struct extent *b = bv;
1895 if (a->start < b->start)
1896 return -1;
1897 if (a->start > b->start)
1898 return 1;
1899 return 0;
1900 }
1901
1902 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1903 {
1904 /* find a list of used extents on the give physical device
1905 * (dnum) of the given ddf.
1906 * Return a malloced array of 'struct extent'
1907
1908 * FIXME ignore DDF_Legacy devices?
1909
1910 */
1911 struct extent *rv;
1912 int n = 0;
1913 unsigned int i, j;
1914
1915 rv = xmalloc(sizeof(struct extent) * (ddf->max_part + 2));
1916
1917 for (i = 0; i < ddf->max_part; i++) {
1918 struct vcl *v = dl->vlist[i];
1919 if (v == NULL)
1920 continue;
1921 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1922 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1923 /* This device plays role 'j' in 'v'. */
1924 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1925 rv[n].size = __be64_to_cpu(v->conf.blocks);
1926 n++;
1927 break;
1928 }
1929 }
1930 qsort(rv, n, sizeof(*rv), cmp_extent);
1931
1932 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1933 rv[n].size = 0;
1934 return rv;
1935 }
1936 #endif
1937
1938 static int init_super_ddf_bvd(struct supertype *st,
1939 mdu_array_info_t *info,
1940 unsigned long long size,
1941 char *name, char *homehost,
1942 int *uuid)
1943 {
1944 /* We are creating a BVD inside a pre-existing container.
1945 * so st->sb is already set.
1946 * We need to create a new vd_config and a new virtual_entry
1947 */
1948 struct ddf_super *ddf = st->sb;
1949 unsigned int venum;
1950 struct virtual_entry *ve;
1951 struct vcl *vcl;
1952 struct vd_config *vc;
1953
1954 if (__be16_to_cpu(ddf->virt->populated_vdes)
1955 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1956 pr_err("This ddf already has the "
1957 "maximum of %d virtual devices\n",
1958 __be16_to_cpu(ddf->virt->max_vdes));
1959 return 0;
1960 }
1961
1962 if (name)
1963 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1964 if (!all_ff(ddf->virt->entries[venum].guid)) {
1965 char *n = ddf->virt->entries[venum].name;
1966
1967 if (strncmp(name, n, 16) == 0) {
1968 pr_err("This ddf already"
1969 " has an array called %s\n",
1970 name);
1971 return 0;
1972 }
1973 }
1974
1975 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1976 if (all_ff(ddf->virt->entries[venum].guid))
1977 break;
1978 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1979 pr_err("Cannot find spare slot for "
1980 "virtual disk - DDF is corrupt\n");
1981 return 0;
1982 }
1983 ve = &ddf->virt->entries[venum];
1984
1985 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1986 * timestamp, random number
1987 */
1988 make_header_guid(ve->guid);
1989 ve->unit = __cpu_to_be16(info->md_minor);
1990 ve->pad0 = 0xFFFF;
1991 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1992 ve->type = 0;
1993 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1994 if (info->state & 1) /* clean */
1995 ve->init_state = DDF_init_full;
1996 else
1997 ve->init_state = DDF_init_not;
1998
1999 memset(ve->pad1, 0xff, 14);
2000 memset(ve->name, ' ', 16);
2001 if (name)
2002 strncpy(ve->name, name, 16);
2003 ddf->virt->populated_vdes =
2004 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2005
2006 /* Now create a new vd_config */
2007 if (posix_memalign((void**)&vcl, 512,
2008 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2009 pr_err("%s could not allocate vd_config\n", __func__);
2010 return 0;
2011 }
2012 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2013 vcl->vcnum = venum;
2014 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2015
2016 vc = &vcl->conf;
2017
2018 vc->magic = DDF_VD_CONF_MAGIC;
2019 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2020 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2021 vc->seqnum = __cpu_to_be32(1);
2022 memset(vc->pad0, 0xff, 24);
2023 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2024 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2025 vc->prl = level_to_prl(info->level);
2026 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2027 vc->sec_elmnt_count = 1;
2028 vc->sec_elmnt_seq = 0;
2029 vc->srl = 0;
2030 vc->blocks = __cpu_to_be64(info->size * 2);
2031 vc->array_blocks = __cpu_to_be64(
2032 calc_array_size(info->level, info->raid_disks, info->layout,
2033 info->chunk_size, info->size*2));
2034 memset(vc->pad1, 0xff, 8);
2035 vc->spare_refs[0] = 0xffffffff;
2036 vc->spare_refs[1] = 0xffffffff;
2037 vc->spare_refs[2] = 0xffffffff;
2038 vc->spare_refs[3] = 0xffffffff;
2039 vc->spare_refs[4] = 0xffffffff;
2040 vc->spare_refs[5] = 0xffffffff;
2041 vc->spare_refs[6] = 0xffffffff;
2042 vc->spare_refs[7] = 0xffffffff;
2043 memset(vc->cache_pol, 0, 8);
2044 vc->bg_rate = 0x80;
2045 memset(vc->pad2, 0xff, 3);
2046 memset(vc->pad3, 0xff, 52);
2047 memset(vc->pad4, 0xff, 192);
2048 memset(vc->v0, 0xff, 32);
2049 memset(vc->v1, 0xff, 32);
2050 memset(vc->v2, 0xff, 16);
2051 memset(vc->v3, 0xff, 16);
2052 memset(vc->vendor, 0xff, 32);
2053
2054 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2055 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2056
2057 vcl->next = ddf->conflist;
2058 ddf->conflist = vcl;
2059 ddf->currentconf = vcl;
2060 ddf->updates_pending = 1;
2061 return 1;
2062 }
2063
2064 #ifndef MDASSEMBLE
2065 static void add_to_super_ddf_bvd(struct supertype *st,
2066 mdu_disk_info_t *dk, int fd, char *devname)
2067 {
2068 /* fd and devname identify a device with-in the ddf container (st).
2069 * dk identifies a location in the new BVD.
2070 * We need to find suitable free space in that device and update
2071 * the phys_refnum and lba_offset for the newly created vd_config.
2072 * We might also want to update the type in the phys_disk
2073 * section.
2074 *
2075 * Alternately: fd == -1 and we have already chosen which device to
2076 * use and recorded in dlist->raid_disk;
2077 */
2078 struct dl *dl;
2079 struct ddf_super *ddf = st->sb;
2080 struct vd_config *vc;
2081 __u64 *lba_offset;
2082 unsigned int working;
2083 unsigned int i;
2084 unsigned long long blocks, pos, esize;
2085 struct extent *ex;
2086
2087 if (fd == -1) {
2088 for (dl = ddf->dlist; dl ; dl = dl->next)
2089 if (dl->raiddisk == dk->raid_disk)
2090 break;
2091 } else {
2092 for (dl = ddf->dlist; dl ; dl = dl->next)
2093 if (dl->major == dk->major &&
2094 dl->minor == dk->minor)
2095 break;
2096 }
2097 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2098 return;
2099
2100 vc = &ddf->currentconf->conf;
2101 lba_offset = ddf->currentconf->lba_offset;
2102
2103 ex = get_extents(ddf, dl);
2104 if (!ex)
2105 return;
2106
2107 i = 0; pos = 0;
2108 blocks = __be64_to_cpu(vc->blocks);
2109 if (ddf->currentconf->block_sizes)
2110 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2111
2112 do {
2113 esize = ex[i].start - pos;
2114 if (esize >= blocks)
2115 break;
2116 pos = ex[i].start + ex[i].size;
2117 i++;
2118 } while (ex[i-1].size);
2119
2120 free(ex);
2121 if (esize < blocks)
2122 return;
2123
2124 ddf->currentdev = dk->raid_disk;
2125 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2126 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2127
2128 for (i = 0; i < ddf->max_part ; i++)
2129 if (dl->vlist[i] == NULL)
2130 break;
2131 if (i == ddf->max_part)
2132 return;
2133 dl->vlist[i] = ddf->currentconf;
2134
2135 if (fd >= 0)
2136 dl->fd = fd;
2137 if (devname)
2138 dl->devname = devname;
2139
2140 /* Check how many working raid_disks, and if we can mark
2141 * array as optimal yet
2142 */
2143 working = 0;
2144
2145 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2146 if (vc->phys_refnum[i] != 0xffffffff)
2147 working++;
2148
2149 /* Find which virtual_entry */
2150 i = ddf->currentconf->vcnum;
2151 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2152 ddf->virt->entries[i].state =
2153 (ddf->virt->entries[i].state & ~DDF_state_mask)
2154 | DDF_state_optimal;
2155
2156 if (vc->prl == DDF_RAID6 &&
2157 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2158 ddf->virt->entries[i].state =
2159 (ddf->virt->entries[i].state & ~DDF_state_mask)
2160 | DDF_state_part_optimal;
2161
2162 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2163 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2164 ddf->updates_pending = 1;
2165 }
2166
2167 /* add a device to a container, either while creating it or while
2168 * expanding a pre-existing container
2169 */
2170 static int add_to_super_ddf(struct supertype *st,
2171 mdu_disk_info_t *dk, int fd, char *devname)
2172 {
2173 struct ddf_super *ddf = st->sb;
2174 struct dl *dd;
2175 time_t now;
2176 struct tm *tm;
2177 unsigned long long size;
2178 struct phys_disk_entry *pde;
2179 unsigned int n, i;
2180 struct stat stb;
2181 __u32 *tptr;
2182
2183 if (ddf->currentconf) {
2184 add_to_super_ddf_bvd(st, dk, fd, devname);
2185 return 0;
2186 }
2187
2188 /* This is device numbered dk->number. We need to create
2189 * a phys_disk entry and a more detailed disk_data entry.
2190 */
2191 fstat(fd, &stb);
2192 if (posix_memalign((void**)&dd, 512,
2193 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2194 pr_err("%s could allocate buffer for new disk, aborting\n",
2195 __func__);
2196 return 1;
2197 }
2198 dd->major = major(stb.st_rdev);
2199 dd->minor = minor(stb.st_rdev);
2200 dd->devname = devname;
2201 dd->fd = fd;
2202 dd->spare = NULL;
2203
2204 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2205 now = time(0);
2206 tm = localtime(&now);
2207 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2208 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2209 tptr = (__u32 *)(dd->disk.guid + 16);
2210 *tptr++ = random32();
2211 *tptr = random32();
2212
2213 do {
2214 /* Cannot be bothered finding a CRC of some irrelevant details*/
2215 dd->disk.refnum = random32();
2216 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2217 i > 0; i--)
2218 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2219 break;
2220 } while (i > 0);
2221
2222 dd->disk.forced_ref = 1;
2223 dd->disk.forced_guid = 1;
2224 memset(dd->disk.vendor, ' ', 32);
2225 memcpy(dd->disk.vendor, "Linux", 5);
2226 memset(dd->disk.pad, 0xff, 442);
2227 for (i = 0; i < ddf->max_part ; i++)
2228 dd->vlist[i] = NULL;
2229
2230 n = __be16_to_cpu(ddf->phys->used_pdes);
2231 pde = &ddf->phys->entries[n];
2232 dd->pdnum = n;
2233
2234 if (st->update_tail) {
2235 int len = (sizeof(struct phys_disk) +
2236 sizeof(struct phys_disk_entry));
2237 struct phys_disk *pd;
2238
2239 pd = xmalloc(len);
2240 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2241 pd->used_pdes = __cpu_to_be16(n);
2242 pde = &pd->entries[0];
2243 dd->mdupdate = pd;
2244 } else {
2245 n++;
2246 ddf->phys->used_pdes = __cpu_to_be16(n);
2247 }
2248
2249 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2250 pde->refnum = dd->disk.refnum;
2251 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2252 pde->state = __cpu_to_be16(DDF_Online);
2253 get_dev_size(fd, NULL, &size);
2254 /* We are required to reserve 32Meg, and record the size in sectors */
2255 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2256 sprintf(pde->path, "%17.17s","Information: nil") ;
2257 memset(pde->pad, 0xff, 6);
2258
2259 dd->size = size >> 9;
2260 if (st->update_tail) {
2261 dd->next = ddf->add_list;
2262 ddf->add_list = dd;
2263 } else {
2264 dd->next = ddf->dlist;
2265 ddf->dlist = dd;
2266 ddf->updates_pending = 1;
2267 }
2268
2269 return 0;
2270 }
2271
2272 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2273 {
2274 struct ddf_super *ddf = st->sb;
2275 struct dl *dl;
2276
2277 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2278 * disappeared from the container.
2279 * We need to arrange that it disappears from the metadata and
2280 * internal data structures too.
2281 * Most of the work is done by ddf_process_update which edits
2282 * the metadata and closes the file handle and attaches the memory
2283 * where free_updates will free it.
2284 */
2285 for (dl = ddf->dlist; dl ; dl = dl->next)
2286 if (dl->major == dk->major &&
2287 dl->minor == dk->minor)
2288 break;
2289 if (!dl)
2290 return -1;
2291
2292 if (st->update_tail) {
2293 int len = (sizeof(struct phys_disk) +
2294 sizeof(struct phys_disk_entry));
2295 struct phys_disk *pd;
2296
2297 pd = xmalloc(len);
2298 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2299 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2300 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2301 append_metadata_update(st, pd, len);
2302 }
2303 return 0;
2304 }
2305
2306 /*
2307 * This is the write_init_super method for a ddf container. It is
2308 * called when creating a container or adding another device to a
2309 * container.
2310 */
2311 #define NULL_CONF_SZ 4096
2312
2313 static int __write_init_super_ddf(struct supertype *st)
2314 {
2315
2316 struct ddf_super *ddf = st->sb;
2317 int i;
2318 struct dl *d;
2319 int n_config;
2320 int conf_size;
2321 int attempts = 0;
2322 int successes = 0;
2323 unsigned long long size, sector;
2324 char *null_aligned;
2325
2326 if (posix_memalign((void**)&null_aligned, 4096, NULL_CONF_SZ) != 0) {
2327 return -ENOMEM;
2328 }
2329 memset(null_aligned, 0xff, NULL_CONF_SZ);
2330
2331 /* try to write updated metadata,
2332 * if we catch a failure move on to the next disk
2333 */
2334 for (d = ddf->dlist; d; d=d->next) {
2335 int fd = d->fd;
2336
2337 if (fd < 0)
2338 continue;
2339
2340 attempts++;
2341 /* We need to fill in the primary, (secondary) and workspace
2342 * lba's in the headers, set their checksums,
2343 * Also checksum phys, virt....
2344 *
2345 * Then write everything out, finally the anchor is written.
2346 */
2347 get_dev_size(fd, NULL, &size);
2348 size /= 512;
2349 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2350 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2351 ddf->anchor.seq = __cpu_to_be32(1);
2352 memcpy(&ddf->primary, &ddf->anchor, 512);
2353 memcpy(&ddf->secondary, &ddf->anchor, 512);
2354
2355 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2356 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2357 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2358
2359 ddf->primary.openflag = 0;
2360 ddf->primary.type = DDF_HEADER_PRIMARY;
2361
2362 ddf->secondary.openflag = 0;
2363 ddf->secondary.type = DDF_HEADER_SECONDARY;
2364
2365 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2366 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2367
2368 sector = size - 16*1024*2;
2369 lseek64(fd, sector<<9, 0);
2370 if (write(fd, &ddf->primary, 512) < 0)
2371 continue;
2372
2373 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2374 if (write(fd, &ddf->controller, 512) < 0)
2375 continue;
2376
2377 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2378
2379 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2380 continue;
2381
2382 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2383 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2384 continue;
2385
2386 /* Now write lots of config records. */
2387 n_config = ddf->max_part;
2388 conf_size = ddf->conf_rec_len * 512;
2389 for (i = 0 ; i <= n_config ; i++) {
2390 struct vcl *c = d->vlist[i];
2391 if (i == n_config)
2392 c = (struct vcl*)d->spare;
2393
2394 if (c) {
2395 c->conf.crc = calc_crc(&c->conf, conf_size);
2396 if (write(fd, &c->conf, conf_size) < 0)
2397 break;
2398 } else {
2399 unsigned int togo = conf_size;
2400 while (togo > NULL_CONF_SZ) {
2401 if (write(fd, null_aligned, NULL_CONF_SZ) < 0)
2402 break;
2403 togo -= NULL_CONF_SZ;
2404 }
2405 if (write(fd, null_aligned, togo) < 0)
2406 break;
2407 }
2408 }
2409 if (i <= n_config)
2410 continue;
2411 d->disk.crc = calc_crc(&d->disk, 512);
2412 if (write(fd, &d->disk, 512) < 0)
2413 continue;
2414
2415 /* Maybe do the same for secondary */
2416
2417 lseek64(fd, (size-1)*512, SEEK_SET);
2418 if (write(fd, &ddf->anchor, 512) < 0)
2419 continue;
2420 successes++;
2421 }
2422 free(null_aligned);
2423
2424 return attempts != successes;
2425 }
2426
2427 static int write_init_super_ddf(struct supertype *st)
2428 {
2429 struct ddf_super *ddf = st->sb;
2430 struct vcl *currentconf = ddf->currentconf;
2431
2432 /* we are done with currentconf reset it to point st at the container */
2433 ddf->currentconf = NULL;
2434
2435 if (st->update_tail) {
2436 /* queue the virtual_disk and vd_config as metadata updates */
2437 struct virtual_disk *vd;
2438 struct vd_config *vc;
2439 int len;
2440
2441 if (!currentconf) {
2442 int len = (sizeof(struct phys_disk) +
2443 sizeof(struct phys_disk_entry));
2444
2445 /* adding a disk to the container. */
2446 if (!ddf->add_list)
2447 return 0;
2448
2449 append_metadata_update(st, ddf->add_list->mdupdate, len);
2450 ddf->add_list->mdupdate = NULL;
2451 return 0;
2452 }
2453
2454 /* Newly created VD */
2455
2456 /* First the virtual disk. We have a slightly fake header */
2457 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2458 vd = xmalloc(len);
2459 *vd = *ddf->virt;
2460 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2461 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2462 append_metadata_update(st, vd, len);
2463
2464 /* Then the vd_config */
2465 len = ddf->conf_rec_len * 512;
2466 vc = xmalloc(len);
2467 memcpy(vc, &currentconf->conf, len);
2468 append_metadata_update(st, vc, len);
2469
2470 /* FIXME I need to close the fds! */
2471 return 0;
2472 } else {
2473 struct dl *d;
2474 for (d = ddf->dlist; d; d=d->next)
2475 while (Kill(d->devname, NULL, 0, -1, 1) == 0);
2476 return __write_init_super_ddf(st);
2477 }
2478 }
2479
2480 #endif
2481
2482 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2483 {
2484 /* We must reserve the last 32Meg */
2485 if (devsize <= 32*1024*2)
2486 return 0;
2487 return devsize - 32*1024*2;
2488 }
2489
2490 #ifndef MDASSEMBLE
2491
2492 static int reserve_space(struct supertype *st, int raiddisks,
2493 unsigned long long size, int chunk,
2494 unsigned long long *freesize)
2495 {
2496 /* Find 'raiddisks' spare extents at least 'size' big (but
2497 * only caring about multiples of 'chunk') and remember
2498 * them.
2499 * If the cannot be found, fail.
2500 */
2501 struct dl *dl;
2502 struct ddf_super *ddf = st->sb;
2503 int cnt = 0;
2504
2505 for (dl = ddf->dlist; dl ; dl=dl->next) {
2506 dl->raiddisk = -1;
2507 dl->esize = 0;
2508 }
2509 /* Now find largest extent on each device */
2510 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2511 struct extent *e = get_extents(ddf, dl);
2512 unsigned long long pos = 0;
2513 int i = 0;
2514 int found = 0;
2515 unsigned long long minsize = size;
2516
2517 if (size == 0)
2518 minsize = chunk;
2519
2520 if (!e)
2521 continue;
2522 do {
2523 unsigned long long esize;
2524 esize = e[i].start - pos;
2525 if (esize >= minsize) {
2526 found = 1;
2527 minsize = esize;
2528 }
2529 pos = e[i].start + e[i].size;
2530 i++;
2531 } while (e[i-1].size);
2532 if (found) {
2533 cnt++;
2534 dl->esize = minsize;
2535 }
2536 free(e);
2537 }
2538 if (cnt < raiddisks) {
2539 pr_err("not enough devices with space to create array.\n");
2540 return 0; /* No enough free spaces large enough */
2541 }
2542 if (size == 0) {
2543 /* choose the largest size of which there are at least 'raiddisk' */
2544 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2545 struct dl *dl2;
2546 if (dl->esize <= size)
2547 continue;
2548 /* This is bigger than 'size', see if there are enough */
2549 cnt = 0;
2550 for (dl2 = ddf->dlist; dl2 ; dl2=dl2->next)
2551 if (dl2->esize >= dl->esize)
2552 cnt++;
2553 if (cnt >= raiddisks)
2554 size = dl->esize;
2555 }
2556 if (chunk) {
2557 size = size / chunk;
2558 size *= chunk;
2559 }
2560 *freesize = size;
2561 if (size < 32) {
2562 pr_err("not enough spare devices to create array.\n");
2563 return 0;
2564 }
2565 }
2566 /* We have a 'size' of which there are enough spaces.
2567 * We simply do a first-fit */
2568 cnt = 0;
2569 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2570 if (dl->esize < size)
2571 continue;
2572
2573 dl->raiddisk = cnt;
2574 cnt++;
2575 }
2576 return 1;
2577 }
2578
2579 static int
2580 validate_geometry_ddf_container(struct supertype *st,
2581 int level, int layout, int raiddisks,
2582 int chunk, unsigned long long size,
2583 char *dev, unsigned long long *freesize,
2584 int verbose);
2585
2586 static int validate_geometry_ddf_bvd(struct supertype *st,
2587 int level, int layout, int raiddisks,
2588 int *chunk, unsigned long long size,
2589 char *dev, unsigned long long *freesize,
2590 int verbose);
2591
2592 static int validate_geometry_ddf(struct supertype *st,
2593 int level, int layout, int raiddisks,
2594 int *chunk, unsigned long long size,
2595 char *dev, unsigned long long *freesize,
2596 int verbose)
2597 {
2598 int fd;
2599 struct mdinfo *sra;
2600 int cfd;
2601
2602 /* ddf potentially supports lots of things, but it depends on
2603 * what devices are offered (and maybe kernel version?)
2604 * If given unused devices, we will make a container.
2605 * If given devices in a container, we will make a BVD.
2606 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2607 */
2608
2609 if (chunk && *chunk == UnSet)
2610 *chunk = DEFAULT_CHUNK;
2611
2612 if (level == -1000000) level = LEVEL_CONTAINER;
2613 if (level == LEVEL_CONTAINER) {
2614 /* Must be a fresh device to add to a container */
2615 return validate_geometry_ddf_container(st, level, layout,
2616 raiddisks, chunk?*chunk:0,
2617 size, dev, freesize,
2618 verbose);
2619 }
2620
2621 if (!dev) {
2622 /* Initial sanity check. Exclude illegal levels. */
2623 int i;
2624 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2625 if (ddf_level_num[i].num2 == level)
2626 break;
2627 if (ddf_level_num[i].num1 == MAXINT) {
2628 if (verbose)
2629 pr_err("DDF does not support level %d arrays\n",
2630 level);
2631 return 0;
2632 }
2633 /* Should check layout? etc */
2634
2635 if (st->sb && freesize) {
2636 /* --create was given a container to create in.
2637 * So we need to check that there are enough
2638 * free spaces and return the amount of space.
2639 * We may as well remember which drives were
2640 * chosen so that add_to_super/getinfo_super
2641 * can return them.
2642 */
2643 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2644 }
2645 return 1;
2646 }
2647
2648 if (st->sb) {
2649 /* A container has already been opened, so we are
2650 * creating in there. Maybe a BVD, maybe an SVD.
2651 * Should make a distinction one day.
2652 */
2653 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2654 chunk, size, dev, freesize,
2655 verbose);
2656 }
2657 /* This is the first device for the array.
2658 * If it is a container, we read it in and do automagic allocations,
2659 * no other devices should be given.
2660 * Otherwise it must be a member device of a container, and we
2661 * do manual allocation.
2662 * Later we should check for a BVD and make an SVD.
2663 */
2664 fd = open(dev, O_RDONLY|O_EXCL, 0);
2665 if (fd >= 0) {
2666 sra = sysfs_read(fd, 0, GET_VERSION);
2667 close(fd);
2668 if (sra && sra->array.major_version == -1 &&
2669 strcmp(sra->text_version, "ddf") == 0) {
2670
2671 /* load super */
2672 /* find space for 'n' devices. */
2673 /* remember the devices */
2674 /* Somehow return the fact that we have enough */
2675 }
2676
2677 if (verbose)
2678 pr_err("ddf: Cannot create this array "
2679 "on device %s - a container is required.\n",
2680 dev);
2681 return 0;
2682 }
2683 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2684 if (verbose)
2685 pr_err("ddf: Cannot open %s: %s\n",
2686 dev, strerror(errno));
2687 return 0;
2688 }
2689 /* Well, it is in use by someone, maybe a 'ddf' container. */
2690 cfd = open_container(fd);
2691 if (cfd < 0) {
2692 close(fd);
2693 if (verbose)
2694 pr_err("ddf: Cannot use %s: %s\n",
2695 dev, strerror(EBUSY));
2696 return 0;
2697 }
2698 sra = sysfs_read(cfd, 0, GET_VERSION);
2699 close(fd);
2700 if (sra && sra->array.major_version == -1 &&
2701 strcmp(sra->text_version, "ddf") == 0) {
2702 /* This is a member of a ddf container. Load the container
2703 * and try to create a bvd
2704 */
2705 struct ddf_super *ddf;
2706 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2707 st->sb = ddf;
2708 st->container_dev = fd2devnum(cfd);
2709 close(cfd);
2710 return validate_geometry_ddf_bvd(st, level, layout,
2711 raiddisks, chunk, size,
2712 dev, freesize,
2713 verbose);
2714 }
2715 close(cfd);
2716 } else /* device may belong to a different container */
2717 return 0;
2718
2719 return 1;
2720 }
2721
2722 static int
2723 validate_geometry_ddf_container(struct supertype *st,
2724 int level, int layout, int raiddisks,
2725 int chunk, unsigned long long size,
2726 char *dev, unsigned long long *freesize,
2727 int verbose)
2728 {
2729 int fd;
2730 unsigned long long ldsize;
2731
2732 if (level != LEVEL_CONTAINER)
2733 return 0;
2734 if (!dev)
2735 return 1;
2736
2737 fd = open(dev, O_RDONLY|O_EXCL, 0);
2738 if (fd < 0) {
2739 if (verbose)
2740 pr_err("ddf: Cannot open %s: %s\n",
2741 dev, strerror(errno));
2742 return 0;
2743 }
2744 if (!get_dev_size(fd, dev, &ldsize)) {
2745 close(fd);
2746 return 0;
2747 }
2748 close(fd);
2749
2750 *freesize = avail_size_ddf(st, ldsize >> 9);
2751 if (*freesize == 0)
2752 return 0;
2753
2754 return 1;
2755 }
2756
2757 static int validate_geometry_ddf_bvd(struct supertype *st,
2758 int level, int layout, int raiddisks,
2759 int *chunk, unsigned long long size,
2760 char *dev, unsigned long long *freesize,
2761 int verbose)
2762 {
2763 struct stat stb;
2764 struct ddf_super *ddf = st->sb;
2765 struct dl *dl;
2766 unsigned long long pos = 0;
2767 unsigned long long maxsize;
2768 struct extent *e;
2769 int i;
2770 /* ddf/bvd supports lots of things, but not containers */
2771 if (level == LEVEL_CONTAINER) {
2772 if (verbose)
2773 pr_err("DDF cannot create a container within an container\n");
2774 return 0;
2775 }
2776 /* We must have the container info already read in. */
2777 if (!ddf)
2778 return 0;
2779
2780 if (!dev) {
2781 /* General test: make sure there is space for
2782 * 'raiddisks' device extents of size 'size'.
2783 */
2784 unsigned long long minsize = size;
2785 int dcnt = 0;
2786 if (minsize == 0)
2787 minsize = 8;
2788 for (dl = ddf->dlist; dl ; dl = dl->next)
2789 {
2790 int found = 0;
2791 pos = 0;
2792
2793 i = 0;
2794 e = get_extents(ddf, dl);
2795 if (!e) continue;
2796 do {
2797 unsigned long long esize;
2798 esize = e[i].start - pos;
2799 if (esize >= minsize)
2800 found = 1;
2801 pos = e[i].start + e[i].size;
2802 i++;
2803 } while (e[i-1].size);
2804 if (found)
2805 dcnt++;
2806 free(e);
2807 }
2808 if (dcnt < raiddisks) {
2809 if (verbose)
2810 pr_err("ddf: Not enough devices with "
2811 "space for this array (%d < %d)\n",
2812 dcnt, raiddisks);
2813 return 0;
2814 }
2815 return 1;
2816 }
2817 /* This device must be a member of the set */
2818 if (stat(dev, &stb) < 0)
2819 return 0;
2820 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2821 return 0;
2822 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2823 if (dl->major == (int)major(stb.st_rdev) &&
2824 dl->minor == (int)minor(stb.st_rdev))
2825 break;
2826 }
2827 if (!dl) {
2828 if (verbose)
2829 pr_err("ddf: %s is not in the "
2830 "same DDF set\n",
2831 dev);
2832 return 0;
2833 }
2834 e = get_extents(ddf, dl);
2835 maxsize = 0;
2836 i = 0;
2837 if (e) do {
2838 unsigned long long esize;
2839 esize = e[i].start - pos;
2840 if (esize >= maxsize)
2841 maxsize = esize;
2842 pos = e[i].start + e[i].size;
2843 i++;
2844 } while (e[i-1].size);
2845 *freesize = maxsize;
2846 // FIXME here I am
2847
2848 return 1;
2849 }
2850
2851 static int load_super_ddf_all(struct supertype *st, int fd,
2852 void **sbp, char *devname)
2853 {
2854 struct mdinfo *sra;
2855 struct ddf_super *super;
2856 struct mdinfo *sd, *best = NULL;
2857 int bestseq = 0;
2858 int seq;
2859 char nm[20];
2860 int dfd;
2861
2862 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2863 if (!sra)
2864 return 1;
2865 if (sra->array.major_version != -1 ||
2866 sra->array.minor_version != -2 ||
2867 strcmp(sra->text_version, "ddf") != 0)
2868 return 1;
2869
2870 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2871 return 1;
2872 memset(super, 0, sizeof(*super));
2873
2874 /* first, try each device, and choose the best ddf */
2875 for (sd = sra->devs ; sd ; sd = sd->next) {
2876 int rv;
2877 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2878 dfd = dev_open(nm, O_RDONLY);
2879 if (dfd < 0)
2880 return 2;
2881 rv = load_ddf_headers(dfd, super, NULL);
2882 close(dfd);
2883 if (rv == 0) {
2884 seq = __be32_to_cpu(super->active->seq);
2885 if (super->active->openflag)
2886 seq--;
2887 if (!best || seq > bestseq) {
2888 bestseq = seq;
2889 best = sd;
2890 }
2891 }
2892 }
2893 if (!best)
2894 return 1;
2895 /* OK, load this ddf */
2896 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2897 dfd = dev_open(nm, O_RDONLY);
2898 if (dfd < 0)
2899 return 1;
2900 load_ddf_headers(dfd, super, NULL);
2901 load_ddf_global(dfd, super, NULL);
2902 close(dfd);
2903 /* Now we need the device-local bits */
2904 for (sd = sra->devs ; sd ; sd = sd->next) {
2905 int rv;
2906
2907 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2908 dfd = dev_open(nm, O_RDWR);
2909 if (dfd < 0)
2910 return 2;
2911 rv = load_ddf_headers(dfd, super, NULL);
2912 if (rv == 0)
2913 rv = load_ddf_local(dfd, super, NULL, 1);
2914 if (rv)
2915 return 1;
2916 }
2917
2918 *sbp = super;
2919 if (st->ss == NULL) {
2920 st->ss = &super_ddf;
2921 st->minor_version = 0;
2922 st->max_devs = 512;
2923 }
2924 st->container_dev = fd2devnum(fd);
2925 return 0;
2926 }
2927
2928 static int load_container_ddf(struct supertype *st, int fd,
2929 char *devname)
2930 {
2931 return load_super_ddf_all(st, fd, &st->sb, devname);
2932 }
2933
2934 #endif /* MDASSEMBLE */
2935
2936 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2937 {
2938 /* Given a container loaded by load_super_ddf_all,
2939 * extract information about all the arrays into
2940 * an mdinfo tree.
2941 *
2942 * For each vcl in conflist: create an mdinfo, fill it in,
2943 * then look for matching devices (phys_refnum) in dlist
2944 * and create appropriate device mdinfo.
2945 */
2946 struct ddf_super *ddf = st->sb;
2947 struct mdinfo *rest = NULL;
2948 struct vcl *vc;
2949
2950 for (vc = ddf->conflist ; vc ; vc=vc->next)
2951 {
2952 unsigned int i;
2953 unsigned int j;
2954 struct mdinfo *this;
2955 char *ep;
2956 __u32 *cptr;
2957
2958 if (subarray &&
2959 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2960 *ep != '\0'))
2961 continue;
2962
2963 this = xcalloc(1, sizeof(*this));
2964 this->next = rest;
2965 rest = this;
2966
2967 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2968 this->array.raid_disks =
2969 __be16_to_cpu(vc->conf.prim_elmnt_count);
2970 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2971 this->array.raid_disks);
2972 this->array.md_minor = -1;
2973 this->array.major_version = -1;
2974 this->array.minor_version = -2;
2975 cptr = (__u32 *)(vc->conf.guid + 16);
2976 this->array.ctime = DECADE + __be32_to_cpu(*cptr);
2977 this->array.utime = DECADE +
2978 __be32_to_cpu(vc->conf.timestamp);
2979 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2980
2981 i = vc->vcnum;
2982 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2983 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2984 DDF_init_full) {
2985 this->array.state = 0;
2986 this->resync_start = 0;
2987 } else {
2988 this->array.state = 1;
2989 this->resync_start = MaxSector;
2990 }
2991 memcpy(this->name, ddf->virt->entries[i].name, 16);
2992 this->name[16]=0;
2993 for(j=0; j<16; j++)
2994 if (this->name[j] == ' ')
2995 this->name[j] = 0;
2996
2997 memset(this->uuid, 0, sizeof(this->uuid));
2998 this->component_size = __be64_to_cpu(vc->conf.blocks);
2999 this->array.size = this->component_size / 2;
3000 this->container_member = i;
3001
3002 ddf->currentconf = vc;
3003 uuid_from_super_ddf(st, this->uuid);
3004 ddf->currentconf = NULL;
3005
3006 sprintf(this->text_version, "/%s/%d",
3007 devnum2devname(st->container_dev),
3008 this->container_member);
3009
3010 for (i = 0 ; i < ddf->mppe ; i++) {
3011 struct mdinfo *dev;
3012 struct dl *d;
3013 int stt;
3014 int pd;
3015
3016 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3017 continue;
3018
3019 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3020 pd--;)
3021 if (ddf->phys->entries[pd].refnum
3022 == vc->conf.phys_refnum[i])
3023 break;
3024 if (pd < 0)
3025 continue;
3026
3027 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3028 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3029 != DDF_Online)
3030 continue;
3031
3032 this->array.working_disks++;
3033
3034 for (d = ddf->dlist; d ; d=d->next)
3035 if (d->disk.refnum == vc->conf.phys_refnum[i])
3036 break;
3037 if (d == NULL)
3038 /* Haven't found that one yet, maybe there are others */
3039 continue;
3040
3041 dev = xcalloc(1, sizeof(*dev));
3042 dev->next = this->devs;
3043 this->devs = dev;
3044
3045 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3046 dev->disk.major = d->major;
3047 dev->disk.minor = d->minor;
3048 dev->disk.raid_disk = i;
3049 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3050 dev->recovery_start = MaxSector;
3051
3052 dev->events = __be32_to_cpu(ddf->primary.seq);
3053 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3054 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3055 if (d->devname)
3056 strcpy(dev->name, d->devname);
3057 }
3058 }
3059 return rest;
3060 }
3061
3062 static int store_super_ddf(struct supertype *st, int fd)
3063 {
3064 struct ddf_super *ddf = st->sb;
3065 unsigned long long dsize;
3066 void *buf;
3067 int rc;
3068
3069 if (!ddf)
3070 return 1;
3071
3072 /* ->dlist and ->conflist will be set for updates, currently not
3073 * supported
3074 */
3075 if (ddf->dlist || ddf->conflist)
3076 return 1;
3077
3078 if (!get_dev_size(fd, NULL, &dsize))
3079 return 1;
3080
3081 if (posix_memalign(&buf, 512, 512) != 0)
3082 return 1;
3083 memset(buf, 0, 512);
3084
3085 lseek64(fd, dsize-512, 0);
3086 rc = write(fd, buf, 512);
3087 free(buf);
3088 if (rc < 0)
3089 return 1;
3090 return 0;
3091 }
3092
3093 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3094 {
3095 /*
3096 * return:
3097 * 0 same, or first was empty, and second was copied
3098 * 1 second had wrong number
3099 * 2 wrong uuid
3100 * 3 wrong other info
3101 */
3102 struct ddf_super *first = st->sb;
3103 struct ddf_super *second = tst->sb;
3104
3105 if (!first) {
3106 st->sb = tst->sb;
3107 tst->sb = NULL;
3108 return 0;
3109 }
3110
3111 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3112 return 2;
3113
3114 /* FIXME should I look at anything else? */
3115 return 0;
3116 }
3117
3118 #ifndef MDASSEMBLE
3119 /*
3120 * A new array 'a' has been started which claims to be instance 'inst'
3121 * within container 'c'.
3122 * We need to confirm that the array matches the metadata in 'c' so
3123 * that we don't corrupt any metadata.
3124 */
3125 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3126 {
3127 dprintf("ddf: open_new %s\n", inst);
3128 a->info.container_member = atoi(inst);
3129 return 0;
3130 }
3131
3132 /*
3133 * The array 'a' is to be marked clean in the metadata.
3134 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3135 * clean up to the point (in sectors). If that cannot be recorded in the
3136 * metadata, then leave it as dirty.
3137 *
3138 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3139 * !global! virtual_disk.virtual_entry structure.
3140 */
3141 static int ddf_set_array_state(struct active_array *a, int consistent)
3142 {
3143 struct ddf_super *ddf = a->container->sb;
3144 int inst = a->info.container_member;
3145 int old = ddf->virt->entries[inst].state;
3146 if (consistent == 2) {
3147 /* Should check if a recovery should be started FIXME */
3148 consistent = 1;
3149 if (!is_resync_complete(&a->info))
3150 consistent = 0;
3151 }
3152 if (consistent)
3153 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3154 else
3155 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3156 if (old != ddf->virt->entries[inst].state)
3157 ddf->updates_pending = 1;
3158
3159 old = ddf->virt->entries[inst].init_state;
3160 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3161 if (is_resync_complete(&a->info))
3162 ddf->virt->entries[inst].init_state |= DDF_init_full;
3163 else if (a->info.resync_start == 0)
3164 ddf->virt->entries[inst].init_state |= DDF_init_not;
3165 else
3166 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3167 if (old != ddf->virt->entries[inst].init_state)
3168 ddf->updates_pending = 1;
3169
3170 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3171 a->info.resync_start);
3172 return consistent;
3173 }
3174
3175 #define container_of(ptr, type, member) ({ \
3176 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3177 (type *)( (char *)__mptr - offsetof(type,member) );})
3178 /*
3179 * The state of each disk is stored in the global phys_disk structure
3180 * in phys_disk.entries[n].state.
3181 * This makes various combinations awkward.
3182 * - When a device fails in any array, it must be failed in all arrays
3183 * that include a part of this device.
3184 * - When a component is rebuilding, we cannot include it officially in the
3185 * array unless this is the only array that uses the device.
3186 *
3187 * So: when transitioning:
3188 * Online -> failed, just set failed flag. monitor will propagate
3189 * spare -> online, the device might need to be added to the array.
3190 * spare -> failed, just set failed. Don't worry if in array or not.
3191 */
3192 static void ddf_set_disk(struct active_array *a, int n, int state)
3193 {
3194 struct ddf_super *ddf = a->container->sb;
3195 unsigned int inst = a->info.container_member;
3196 struct vd_config *vc = find_vdcr(ddf, inst);
3197 int pd = find_phys(ddf, vc->phys_refnum[n]);
3198 int i, st, working;
3199 struct mdinfo *mdi;
3200 struct dl *dl;
3201
3202 if (vc == NULL) {
3203 dprintf("ddf: cannot find instance %d!!\n", inst);
3204 return;
3205 }
3206 /* Find the matching slot in 'info'. */
3207 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3208 if (mdi->disk.raid_disk == n)
3209 break;
3210 if (!mdi)
3211 return;
3212
3213 /* and find the 'dl' entry corresponding to that. */
3214 for (dl = ddf->dlist; dl; dl = dl->next)
3215 if (mdi->state_fd >= 0 &&
3216 mdi->disk.major == dl->major &&
3217 mdi->disk.minor == dl->minor)
3218 break;
3219 if (!dl)
3220 return;
3221
3222 if (pd < 0 || pd != dl->pdnum) {
3223 /* disk doesn't currently exist or has changed.
3224 * If it is now in_sync, insert it. */
3225 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3226 struct vcl *vcl;
3227 pd = dl->pdnum;
3228 vc->phys_refnum[n] = dl->disk.refnum;
3229 vcl = container_of(vc, struct vcl, conf);
3230 vcl->lba_offset[n] = mdi->data_offset;
3231 ddf->phys->entries[pd].type &=
3232 ~__cpu_to_be16(DDF_Global_Spare);
3233 ddf->phys->entries[pd].type |=
3234 __cpu_to_be16(DDF_Active_in_VD);
3235 ddf->updates_pending = 1;
3236 }
3237 } else {
3238 int old = ddf->phys->entries[pd].state;
3239 if (state & DS_FAULTY)
3240 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3241 if (state & DS_INSYNC) {
3242 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3243 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3244 }
3245 if (old != ddf->phys->entries[pd].state)
3246 ddf->updates_pending = 1;
3247 }
3248
3249 dprintf("ddf: set_disk %d to %x\n", n, state);
3250
3251 /* Now we need to check the state of the array and update
3252 * virtual_disk.entries[n].state.
3253 * It needs to be one of "optimal", "degraded", "failed".
3254 * I don't understand 'deleted' or 'missing'.
3255 */
3256 working = 0;
3257 for (i=0; i < a->info.array.raid_disks; i++) {
3258 pd = find_phys(ddf, vc->phys_refnum[i]);
3259 if (pd < 0)
3260 continue;
3261 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3262 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3263 == DDF_Online)
3264 working++;
3265 }
3266 state = DDF_state_degraded;
3267 if (working == a->info.array.raid_disks)
3268 state = DDF_state_optimal;
3269 else switch(vc->prl) {
3270 case DDF_RAID0:
3271 case DDF_CONCAT:
3272 case DDF_JBOD:
3273 state = DDF_state_failed;
3274 break;
3275 case DDF_RAID1:
3276 if (working == 0)
3277 state = DDF_state_failed;
3278 else if (working == 2 && state == DDF_state_degraded)
3279 state = DDF_state_part_optimal;
3280 break;
3281 case DDF_RAID4:
3282 case DDF_RAID5:
3283 if (working < a->info.array.raid_disks-1)
3284 state = DDF_state_failed;
3285 break;
3286 case DDF_RAID6:
3287 if (working < a->info.array.raid_disks-2)
3288 state = DDF_state_failed;
3289 else if (working == a->info.array.raid_disks-1)
3290 state = DDF_state_part_optimal;
3291 break;
3292 }
3293
3294 if (ddf->virt->entries[inst].state !=
3295 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3296 | state)) {
3297
3298 ddf->virt->entries[inst].state =
3299 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3300 | state;
3301 ddf->updates_pending = 1;
3302 }
3303
3304 }
3305
3306 static void ddf_sync_metadata(struct supertype *st)
3307 {
3308
3309 /*
3310 * Write all data to all devices.
3311 * Later, we might be able to track whether only local changes
3312 * have been made, or whether any global data has been changed,
3313 * but ddf is sufficiently weird that it probably always
3314 * changes global data ....
3315 */
3316 struct ddf_super *ddf = st->sb;
3317 if (!ddf->updates_pending)
3318 return;
3319 ddf->updates_pending = 0;
3320 __write_init_super_ddf(st);
3321 dprintf("ddf: sync_metadata\n");
3322 }
3323
3324 static void ddf_process_update(struct supertype *st,
3325 struct metadata_update *update)
3326 {
3327 /* Apply this update to the metadata.
3328 * The first 4 bytes are a DDF_*_MAGIC which guides
3329 * our actions.
3330 * Possible update are:
3331 * DDF_PHYS_RECORDS_MAGIC
3332 * Add a new physical device or remove an old one.
3333 * Changes to this record only happen implicitly.
3334 * used_pdes is the device number.
3335 * DDF_VIRT_RECORDS_MAGIC
3336 * Add a new VD. Possibly also change the 'access' bits.
3337 * populated_vdes is the entry number.
3338 * DDF_VD_CONF_MAGIC
3339 * New or updated VD. the VIRT_RECORD must already
3340 * exist. For an update, phys_refnum and lba_offset
3341 * (at least) are updated, and the VD_CONF must
3342 * be written to precisely those devices listed with
3343 * a phys_refnum.
3344 * DDF_SPARE_ASSIGN_MAGIC
3345 * replacement Spare Assignment Record... but for which device?
3346 *
3347 * So, e.g.:
3348 * - to create a new array, we send a VIRT_RECORD and
3349 * a VD_CONF. Then assemble and start the array.
3350 * - to activate a spare we send a VD_CONF to add the phys_refnum
3351 * and offset. This will also mark the spare as active with
3352 * a spare-assignment record.
3353 */
3354 struct ddf_super *ddf = st->sb;
3355 __u32 *magic = (__u32*)update->buf;
3356 struct phys_disk *pd;
3357 struct virtual_disk *vd;
3358 struct vd_config *vc;
3359 struct vcl *vcl;
3360 struct dl *dl;
3361 unsigned int mppe;
3362 unsigned int ent;
3363 unsigned int pdnum, pd2;
3364
3365 dprintf("Process update %x\n", *magic);
3366
3367 switch (*magic) {
3368 case DDF_PHYS_RECORDS_MAGIC:
3369
3370 if (update->len != (sizeof(struct phys_disk) +
3371 sizeof(struct phys_disk_entry)))
3372 return;
3373 pd = (struct phys_disk*)update->buf;
3374
3375 ent = __be16_to_cpu(pd->used_pdes);
3376 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3377 return;
3378 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3379 struct dl **dlp;
3380 /* removing this disk. */
3381 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3382 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3383 struct dl *dl = *dlp;
3384 if (dl->pdnum == (signed)ent) {
3385 close(dl->fd);
3386 dl->fd = -1;
3387 /* FIXME this doesn't free
3388 * dl->devname */
3389 update->space = dl;
3390 *dlp = dl->next;
3391 break;
3392 }
3393 }
3394 ddf->updates_pending = 1;
3395 return;
3396 }
3397 if (!all_ff(ddf->phys->entries[ent].guid))
3398 return;
3399 ddf->phys->entries[ent] = pd->entries[0];
3400 ddf->phys->used_pdes = __cpu_to_be16(1 +
3401 __be16_to_cpu(ddf->phys->used_pdes));
3402 ddf->updates_pending = 1;
3403 if (ddf->add_list) {
3404 struct active_array *a;
3405 struct dl *al = ddf->add_list;
3406 ddf->add_list = al->next;
3407
3408 al->next = ddf->dlist;
3409 ddf->dlist = al;
3410
3411 /* As a device has been added, we should check
3412 * for any degraded devices that might make
3413 * use of this spare */
3414 for (a = st->arrays ; a; a=a->next)
3415 a->check_degraded = 1;
3416 }
3417 break;
3418
3419 case DDF_VIRT_RECORDS_MAGIC:
3420
3421 if (update->len != (sizeof(struct virtual_disk) +
3422 sizeof(struct virtual_entry)))
3423 return;
3424 vd = (struct virtual_disk*)update->buf;
3425
3426 ent = __be16_to_cpu(vd->populated_vdes);
3427 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3428 return;
3429 if (!all_ff(ddf->virt->entries[ent].guid))
3430 return;
3431 ddf->virt->entries[ent] = vd->entries[0];
3432 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3433 __be16_to_cpu(ddf->virt->populated_vdes));
3434 ddf->updates_pending = 1;
3435 break;
3436
3437 case DDF_VD_CONF_MAGIC:
3438 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3439
3440 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3441 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3442 return;
3443 vc = (struct vd_config*)update->buf;
3444 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3445 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3446 break;
3447 dprintf("vcl = %p\n", vcl);
3448 if (vcl) {
3449 /* An update, just copy the phys_refnum and lba_offset
3450 * fields
3451 */
3452 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3453 mppe * (sizeof(__u32) + sizeof(__u64)));
3454 } else {
3455 /* A new VD_CONF */
3456 if (!update->space)
3457 return;
3458 vcl = update->space;
3459 update->space = NULL;
3460 vcl->next = ddf->conflist;
3461 memcpy(&vcl->conf, vc, update->len);
3462 vcl->lba_offset = (__u64*)
3463 &vcl->conf.phys_refnum[mppe];
3464 for (ent = 0;
3465 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3466 ent++)
3467 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3468 DDF_GUID_LEN) == 0) {
3469 vcl->vcnum = ent;
3470 break;
3471 }
3472 ddf->conflist = vcl;
3473 }
3474 /* Set DDF_Transition on all Failed devices - to help
3475 * us detect those that are no longer in use
3476 */
3477 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3478 if (ddf->phys->entries[pdnum].state
3479 & __be16_to_cpu(DDF_Failed))
3480 ddf->phys->entries[pdnum].state
3481 |= __be16_to_cpu(DDF_Transition);
3482 /* Now make sure vlist is correct for each dl. */
3483 for (dl = ddf->dlist; dl; dl = dl->next) {
3484 unsigned int dn;
3485 unsigned int vn = 0;
3486 int in_degraded = 0;
3487 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3488 for (dn=0; dn < ddf->mppe ; dn++)
3489 if (vcl->conf.phys_refnum[dn] ==
3490 dl->disk.refnum) {
3491 int vstate;
3492 dprintf("dev %d has %p at %d\n",
3493 dl->pdnum, vcl, vn);
3494 /* Clear the Transition flag */
3495 if (ddf->phys->entries[dl->pdnum].state
3496 & __be16_to_cpu(DDF_Failed))
3497 ddf->phys->entries[dl->pdnum].state &=
3498 ~__be16_to_cpu(DDF_Transition);
3499
3500 dl->vlist[vn++] = vcl;
3501 vstate = ddf->virt->entries[vcl->vcnum].state
3502 & DDF_state_mask;
3503 if (vstate == DDF_state_degraded ||
3504 vstate == DDF_state_part_optimal)
3505 in_degraded = 1;
3506 break;
3507 }
3508 while (vn < ddf->max_part)
3509 dl->vlist[vn++] = NULL;
3510 if (dl->vlist[0]) {
3511 ddf->phys->entries[dl->pdnum].type &=
3512 ~__cpu_to_be16(DDF_Global_Spare);
3513 if (!(ddf->phys->entries[dl->pdnum].type &
3514 __cpu_to_be16(DDF_Active_in_VD))) {
3515 ddf->phys->entries[dl->pdnum].type |=
3516 __cpu_to_be16(DDF_Active_in_VD);
3517 if (in_degraded)
3518 ddf->phys->entries[dl->pdnum].state |=
3519 __cpu_to_be16(DDF_Rebuilding);
3520 }
3521 }
3522 if (dl->spare) {
3523 ddf->phys->entries[dl->pdnum].type &=
3524 ~__cpu_to_be16(DDF_Global_Spare);
3525 ddf->phys->entries[dl->pdnum].type |=
3526 __cpu_to_be16(DDF_Spare);
3527 }
3528 if (!dl->vlist[0] && !dl->spare) {
3529 ddf->phys->entries[dl->pdnum].type |=
3530 __cpu_to_be16(DDF_Global_Spare);
3531 ddf->phys->entries[dl->pdnum].type &=
3532 ~__cpu_to_be16(DDF_Spare |
3533 DDF_Active_in_VD);
3534 }
3535 }
3536
3537 /* Now remove any 'Failed' devices that are not part
3538 * of any VD. They will have the Transition flag set.
3539 * Once done, we need to update all dl->pdnum numbers.
3540 */
3541 pd2 = 0;
3542 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3543 if ((ddf->phys->entries[pdnum].state
3544 & __be16_to_cpu(DDF_Failed))
3545 && (ddf->phys->entries[pdnum].state
3546 & __be16_to_cpu(DDF_Transition)))
3547 /* skip this one */;
3548 else if (pdnum == pd2)
3549 pd2++;
3550 else {
3551 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3552 for (dl = ddf->dlist; dl; dl = dl->next)
3553 if (dl->pdnum == (int)pdnum)
3554 dl->pdnum = pd2;
3555 pd2++;
3556 }
3557 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3558 while (pd2 < pdnum) {
3559 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3560 pd2++;
3561 }
3562
3563 ddf->updates_pending = 1;
3564 break;
3565 case DDF_SPARE_ASSIGN_MAGIC:
3566 default: break;
3567 }
3568 }
3569
3570 static void ddf_prepare_update(struct supertype *st,
3571 struct metadata_update *update)
3572 {
3573 /* This update arrived at managemon.
3574 * We are about to pass it to monitor.
3575 * If a malloc is needed, do it here.
3576 */
3577 struct ddf_super *ddf = st->sb;
3578 __u32 *magic = (__u32*)update->buf;
3579 if (*magic == DDF_VD_CONF_MAGIC)
3580 if (posix_memalign(&update->space, 512,
3581 offsetof(struct vcl, conf)
3582 + ddf->conf_rec_len * 512) != 0)
3583 update->space = NULL;
3584 }
3585
3586 /*
3587 * Check if the array 'a' is degraded but not failed.
3588 * If it is, find as many spares as are available and needed and
3589 * arrange for their inclusion.
3590 * We only choose devices which are not already in the array,
3591 * and prefer those with a spare-assignment to this array.
3592 * otherwise we choose global spares - assuming always that
3593 * there is enough room.
3594 * For each spare that we assign, we return an 'mdinfo' which
3595 * describes the position for the device in the array.
3596 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3597 * the new phys_refnum and lba_offset values.
3598 *
3599 * Only worry about BVDs at the moment.
3600 */
3601 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3602 struct metadata_update **updates)
3603 {
3604 int working = 0;
3605 struct mdinfo *d;
3606 struct ddf_super *ddf = a->container->sb;
3607 int global_ok = 0;
3608 struct mdinfo *rv = NULL;
3609 struct mdinfo *di;
3610 struct metadata_update *mu;
3611 struct dl *dl;
3612 int i;
3613 struct vd_config *vc;
3614 __u64 *lba;
3615
3616 for (d = a->info.devs ; d ; d = d->next) {
3617 if ((d->curr_state & DS_FAULTY) &&
3618 d->state_fd >= 0)
3619 /* wait for Removal to happen */
3620 return NULL;
3621 if (d->state_fd >= 0)
3622 working ++;
3623 }
3624
3625 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3626 a->info.array.level);
3627 if (working == a->info.array.raid_disks)
3628 return NULL; /* array not degraded */
3629 switch (a->info.array.level) {
3630 case 1:
3631 if (working == 0)
3632 return NULL; /* failed */
3633 break;
3634 case 4:
3635 case 5:
3636 if (working < a->info.array.raid_disks - 1)
3637 return NULL; /* failed */
3638 break;
3639 case 6:
3640 if (working < a->info.array.raid_disks - 2)
3641 return NULL; /* failed */
3642 break;
3643 default: /* concat or stripe */
3644 return NULL; /* failed */
3645 }
3646
3647 /* For each slot, if it is not working, find a spare */
3648 dl = ddf->dlist;
3649 for (i = 0; i < a->info.array.raid_disks; i++) {
3650 for (d = a->info.devs ; d ; d = d->next)
3651 if (d->disk.raid_disk == i)
3652 break;
3653 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3654 if (d && (d->state_fd >= 0))
3655 continue;
3656
3657 /* OK, this device needs recovery. Find a spare */
3658 again:
3659 for ( ; dl ; dl = dl->next) {
3660 unsigned long long esize;
3661 unsigned long long pos;
3662 struct mdinfo *d2;
3663 int is_global = 0;
3664 int is_dedicated = 0;
3665 struct extent *ex;
3666 unsigned int j;
3667 /* If in this array, skip */
3668 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3669 if (d2->state_fd >= 0 &&
3670 d2->disk.major == dl->major &&
3671 d2->disk.minor == dl->minor) {
3672 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3673 break;
3674 }
3675 if (d2)
3676 continue;
3677 if (ddf->phys->entries[dl->pdnum].type &
3678 __cpu_to_be16(DDF_Spare)) {
3679 /* Check spare assign record */
3680 if (dl->spare) {
3681 if (dl->spare->type & DDF_spare_dedicated) {
3682 /* check spare_ents for guid */
3683 for (j = 0 ;
3684 j < __be16_to_cpu(dl->spare->populated);
3685 j++) {
3686 if (memcmp(dl->spare->spare_ents[j].guid,
3687 ddf->virt->entries[a->info.container_member].guid,
3688 DDF_GUID_LEN) == 0)
3689 is_dedicated = 1;
3690 }
3691 } else
3692 is_global = 1;
3693 }
3694 } else if (ddf->phys->entries[dl->pdnum].type &
3695 __cpu_to_be16(DDF_Global_Spare)) {
3696 is_global = 1;
3697 } else if (!(ddf->phys->entries[dl->pdnum].state &
3698 __cpu_to_be16(DDF_Failed))) {
3699 /* we can possibly use some of this */
3700 is_global = 1;
3701 }
3702 if ( ! (is_dedicated ||
3703 (is_global && global_ok))) {
3704 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3705 is_dedicated, is_global);
3706 continue;
3707 }
3708
3709 /* We are allowed to use this device - is there space?
3710 * We need a->info.component_size sectors */
3711 ex = get_extents(ddf, dl);
3712 if (!ex) {
3713 dprintf("cannot get extents\n");
3714 continue;
3715 }
3716 j = 0; pos = 0;
3717 esize = 0;
3718
3719 do {
3720 esize = ex[j].start - pos;
3721 if (esize >= a->info.component_size)
3722 break;
3723 pos = ex[j].start + ex[j].size;
3724 j++;
3725 } while (ex[j-1].size);
3726
3727 free(ex);
3728 if (esize < a->info.component_size) {
3729 dprintf("%x:%x has no room: %llu %llu\n",
3730 dl->major, dl->minor,
3731 esize, a->info.component_size);
3732 /* No room */
3733 continue;
3734 }
3735
3736 /* Cool, we have a device with some space at pos */
3737 di = xcalloc(1, sizeof(*di));
3738 di->disk.number = i;
3739 di->disk.raid_disk = i;
3740 di->disk.major = dl->major;
3741 di->disk.minor = dl->minor;
3742 di->disk.state = 0;
3743 di->recovery_start = 0;
3744 di->data_offset = pos;
3745 di->component_size = a->info.component_size;
3746 di->container_member = dl->pdnum;
3747 di->next = rv;
3748 rv = di;
3749 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3750 i, pos);
3751
3752 break;
3753 }
3754 if (!dl && ! global_ok) {
3755 /* not enough dedicated spares, try global */
3756 global_ok = 1;
3757 dl = ddf->dlist;
3758 goto again;
3759 }
3760 }
3761
3762 if (!rv)
3763 /* No spares found */
3764 return rv;
3765 /* Now 'rv' has a list of devices to return.
3766 * Create a metadata_update record to update the
3767 * phys_refnum and lba_offset values
3768 */
3769 mu = xmalloc(sizeof(*mu));
3770 if (posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3771 free(mu);
3772 mu = NULL;
3773 }
3774 mu->buf = xmalloc(ddf->conf_rec_len * 512);
3775 mu->len = ddf->conf_rec_len * 512;
3776 mu->space = NULL;
3777 mu->space_list = NULL;
3778 mu->next = *updates;
3779 vc = find_vdcr(ddf, a->info.container_member);
3780 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3781
3782 vc = (struct vd_config*)mu->buf;
3783 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3784 for (di = rv ; di ; di = di->next) {
3785 vc->phys_refnum[di->disk.raid_disk] =
3786 ddf->phys->entries[dl->pdnum].refnum;
3787 lba[di->disk.raid_disk] = di->data_offset;
3788 }
3789 *updates = mu;
3790 return rv;
3791 }
3792 #endif /* MDASSEMBLE */
3793
3794 static int ddf_level_to_layout(int level)
3795 {
3796 switch(level) {
3797 case 0:
3798 case 1:
3799 return 0;
3800 case 5:
3801 return ALGORITHM_LEFT_SYMMETRIC;
3802 case 6:
3803 return ALGORITHM_ROTATING_N_CONTINUE;
3804 case 10:
3805 return 0x102;
3806 default:
3807 return UnSet;
3808 }
3809 }
3810
3811 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3812 {
3813 if (level && *level == UnSet)
3814 *level = LEVEL_CONTAINER;
3815
3816 if (level && layout && *layout == UnSet)
3817 *layout = ddf_level_to_layout(*level);
3818 }
3819
3820 struct superswitch super_ddf = {
3821 #ifndef MDASSEMBLE
3822 .examine_super = examine_super_ddf,
3823 .brief_examine_super = brief_examine_super_ddf,
3824 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3825 .export_examine_super = export_examine_super_ddf,
3826 .detail_super = detail_super_ddf,
3827 .brief_detail_super = brief_detail_super_ddf,
3828 .validate_geometry = validate_geometry_ddf,
3829 .write_init_super = write_init_super_ddf,
3830 .add_to_super = add_to_super_ddf,
3831 .remove_from_super = remove_from_super_ddf,
3832 .load_container = load_container_ddf,
3833 #endif
3834 .match_home = match_home_ddf,
3835 .uuid_from_super= uuid_from_super_ddf,
3836 .getinfo_super = getinfo_super_ddf,
3837 .update_super = update_super_ddf,
3838
3839 .avail_size = avail_size_ddf,
3840
3841 .compare_super = compare_super_ddf,
3842
3843 .load_super = load_super_ddf,
3844 .init_super = init_super_ddf,
3845 .store_super = store_super_ddf,
3846 .free_super = free_super_ddf,
3847 .match_metadata_desc = match_metadata_desc_ddf,
3848 .container_content = container_content_ddf,
3849 .default_geometry = default_geometry_ddf,
3850
3851 .external = 1,
3852
3853 #ifndef MDASSEMBLE
3854 /* for mdmon */
3855 .open_new = ddf_open_new,
3856 .set_array_state= ddf_set_array_state,
3857 .set_disk = ddf_set_disk,
3858 .sync_metadata = ddf_sync_metadata,
3859 .process_update = ddf_process_update,
3860 .prepare_update = ddf_prepare_update,
3861 .activate_spare = ddf_activate_spare,
3862 #endif
3863 .name = "ddf",
3864 };