]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Add recovery blocked field to mdinfo
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static unsigned int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 unsigned int i;
646 unsigned int confsec;
647 int vnum;
648 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
649 unsigned long long dsize;
650
651 /* First the local disk info */
652 if (posix_memalign((void**)&dl, 512,
653 sizeof(*dl) +
654 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
655 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
656 __func__);
657 return 1;
658 }
659
660 load_section(fd, super, &dl->disk,
661 super->active->data_section_offset,
662 super->active->data_section_length,
663 0);
664 dl->devname = devname ? strdup(devname) : NULL;
665
666 fstat(fd, &stb);
667 dl->major = major(stb.st_rdev);
668 dl->minor = minor(stb.st_rdev);
669 dl->next = super->dlist;
670 dl->fd = keep ? fd : -1;
671
672 dl->size = 0;
673 if (get_dev_size(fd, devname, &dsize))
674 dl->size = dsize >> 9;
675 dl->spare = NULL;
676 for (i = 0 ; i < super->max_part ; i++)
677 dl->vlist[i] = NULL;
678 super->dlist = dl;
679 dl->pdnum = -1;
680 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
681 if (memcmp(super->phys->entries[i].guid,
682 dl->disk.guid, DDF_GUID_LEN) == 0)
683 dl->pdnum = i;
684
685 /* Now the config list. */
686 /* 'conf' is an array of config entries, some of which are
687 * probably invalid. Those which are good need to be copied into
688 * the conflist
689 */
690
691 conf = load_section(fd, super, NULL,
692 super->active->config_section_offset,
693 super->active->config_section_length,
694 0);
695
696 vnum = 0;
697 for (confsec = 0;
698 confsec < __be32_to_cpu(super->active->config_section_length);
699 confsec += super->conf_rec_len) {
700 struct vd_config *vd =
701 (struct vd_config *)((char*)conf + confsec*512);
702 struct vcl *vcl;
703
704 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
705 if (dl->spare)
706 continue;
707 if (posix_memalign((void**)&dl->spare, 512,
708 super->conf_rec_len*512) != 0) {
709 fprintf(stderr, Name
710 ": %s could not allocate spare info buf\n",
711 __func__);
712 return 1;
713 }
714
715 memcpy(dl->spare, vd, super->conf_rec_len*512);
716 continue;
717 }
718 if (vd->magic != DDF_VD_CONF_MAGIC)
719 continue;
720 for (vcl = super->conflist; vcl; vcl = vcl->next) {
721 if (memcmp(vcl->conf.guid,
722 vd->guid, DDF_GUID_LEN) == 0)
723 break;
724 }
725
726 if (vcl) {
727 dl->vlist[vnum++] = vcl;
728 if (__be32_to_cpu(vd->seqnum) <=
729 __be32_to_cpu(vcl->conf.seqnum))
730 continue;
731 } else {
732 if (posix_memalign((void**)&vcl, 512,
733 (super->conf_rec_len*512 +
734 offsetof(struct vcl, conf))) != 0) {
735 fprintf(stderr, Name
736 ": %s could not allocate vcl buf\n",
737 __func__);
738 return 1;
739 }
740 vcl->next = super->conflist;
741 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
742 super->conflist = vcl;
743 dl->vlist[vnum++] = vcl;
744 }
745 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
746 vcl->lba_offset = (__u64*)
747 &vcl->conf.phys_refnum[super->mppe];
748
749 for (i=0; i < max_virt_disks ; i++)
750 if (memcmp(super->virt->entries[i].guid,
751 vcl->conf.guid, DDF_GUID_LEN)==0)
752 break;
753 if (i < max_virt_disks)
754 vcl->vcnum = i;
755 }
756 free(conf);
757
758 return 0;
759 }
760
761 #ifndef MDASSEMBLE
762 static int load_super_ddf_all(struct supertype *st, int fd,
763 void **sbp, char *devname);
764 #endif
765
766 static void free_super_ddf(struct supertype *st);
767
768 static int load_super_ddf(struct supertype *st, int fd,
769 char *devname)
770 {
771 unsigned long long dsize;
772 struct ddf_super *super;
773 int rv;
774
775 if (get_dev_size(fd, devname, &dsize) == 0)
776 return 1;
777
778 if (test_partition(fd))
779 /* DDF is not allowed on partitions */
780 return 1;
781
782 /* 32M is a lower bound */
783 if (dsize <= 32*1024*1024) {
784 if (devname)
785 fprintf(stderr,
786 Name ": %s is too small for ddf: "
787 "size is %llu sectors.\n",
788 devname, dsize>>9);
789 return 1;
790 }
791 if (dsize & 511) {
792 if (devname)
793 fprintf(stderr,
794 Name ": %s is an odd size for ddf: "
795 "size is %llu bytes.\n",
796 devname, dsize);
797 return 1;
798 }
799
800 free_super_ddf(st);
801
802 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
803 fprintf(stderr, Name ": malloc of %zu failed.\n",
804 sizeof(*super));
805 return 1;
806 }
807 memset(super, 0, sizeof(*super));
808
809 rv = load_ddf_headers(fd, super, devname);
810 if (rv) {
811 free(super);
812 return rv;
813 }
814
815 /* Have valid headers and have chosen the best. Let's read in the rest*/
816
817 rv = load_ddf_global(fd, super, devname);
818
819 if (rv) {
820 if (devname)
821 fprintf(stderr,
822 Name ": Failed to load all information "
823 "sections on %s\n", devname);
824 free(super);
825 return rv;
826 }
827
828 rv = load_ddf_local(fd, super, devname, 0);
829
830 if (rv) {
831 if (devname)
832 fprintf(stderr,
833 Name ": Failed to load all information "
834 "sections on %s\n", devname);
835 free(super);
836 return rv;
837 }
838
839 /* Should possibly check the sections .... */
840
841 st->sb = super;
842 if (st->ss == NULL) {
843 st->ss = &super_ddf;
844 st->minor_version = 0;
845 st->max_devs = 512;
846 }
847 return 0;
848
849 }
850
851 static void free_super_ddf(struct supertype *st)
852 {
853 struct ddf_super *ddf = st->sb;
854 if (ddf == NULL)
855 return;
856 free(ddf->phys);
857 free(ddf->virt);
858 while (ddf->conflist) {
859 struct vcl *v = ddf->conflist;
860 ddf->conflist = v->next;
861 if (v->block_sizes)
862 free(v->block_sizes);
863 free(v);
864 }
865 while (ddf->dlist) {
866 struct dl *d = ddf->dlist;
867 ddf->dlist = d->next;
868 if (d->fd >= 0)
869 close(d->fd);
870 if (d->spare)
871 free(d->spare);
872 free(d);
873 }
874 while (ddf->add_list) {
875 struct dl *d = ddf->add_list;
876 ddf->add_list = d->next;
877 if (d->fd >= 0)
878 close(d->fd);
879 if (d->spare)
880 free(d->spare);
881 free(d);
882 }
883 free(ddf);
884 st->sb = NULL;
885 }
886
887 static struct supertype *match_metadata_desc_ddf(char *arg)
888 {
889 /* 'ddf' only support containers */
890 struct supertype *st;
891 if (strcmp(arg, "ddf") != 0 &&
892 strcmp(arg, "default") != 0
893 )
894 return NULL;
895
896 st = malloc(sizeof(*st));
897 memset(st, 0, sizeof(*st));
898 st->container_dev = NoMdDev;
899 st->ss = &super_ddf;
900 st->max_devs = 512;
901 st->minor_version = 0;
902 st->sb = NULL;
903 return st;
904 }
905
906
907 #ifndef MDASSEMBLE
908
909 static mapping_t ddf_state[] = {
910 { "Optimal", 0},
911 { "Degraded", 1},
912 { "Deleted", 2},
913 { "Missing", 3},
914 { "Failed", 4},
915 { "Partially Optimal", 5},
916 { "-reserved-", 6},
917 { "-reserved-", 7},
918 { NULL, 0}
919 };
920
921 static mapping_t ddf_init_state[] = {
922 { "Not Initialised", 0},
923 { "QuickInit in Progress", 1},
924 { "Fully Initialised", 2},
925 { "*UNKNOWN*", 3},
926 { NULL, 0}
927 };
928 static mapping_t ddf_access[] = {
929 { "Read/Write", 0},
930 { "Reserved", 1},
931 { "Read Only", 2},
932 { "Blocked (no access)", 3},
933 { NULL ,0}
934 };
935
936 static mapping_t ddf_level[] = {
937 { "RAID0", DDF_RAID0},
938 { "RAID1", DDF_RAID1},
939 { "RAID3", DDF_RAID3},
940 { "RAID4", DDF_RAID4},
941 { "RAID5", DDF_RAID5},
942 { "RAID1E",DDF_RAID1E},
943 { "JBOD", DDF_JBOD},
944 { "CONCAT",DDF_CONCAT},
945 { "RAID5E",DDF_RAID5E},
946 { "RAID5EE",DDF_RAID5EE},
947 { "RAID6", DDF_RAID6},
948 { NULL, 0}
949 };
950 static mapping_t ddf_sec_level[] = {
951 { "Striped", DDF_2STRIPED},
952 { "Mirrored", DDF_2MIRRORED},
953 { "Concat", DDF_2CONCAT},
954 { "Spanned", DDF_2SPANNED},
955 { NULL, 0}
956 };
957 #endif
958
959 struct num_mapping {
960 int num1, num2;
961 };
962 static struct num_mapping ddf_level_num[] = {
963 { DDF_RAID0, 0 },
964 { DDF_RAID1, 1 },
965 { DDF_RAID3, LEVEL_UNSUPPORTED },
966 { DDF_RAID4, 4 },
967 { DDF_RAID5, 5 },
968 { DDF_RAID1E, LEVEL_UNSUPPORTED },
969 { DDF_JBOD, LEVEL_UNSUPPORTED },
970 { DDF_CONCAT, LEVEL_LINEAR },
971 { DDF_RAID5E, LEVEL_UNSUPPORTED },
972 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
973 { DDF_RAID6, 6},
974 { MAXINT, MAXINT }
975 };
976
977 static int map_num1(struct num_mapping *map, int num)
978 {
979 int i;
980 for (i=0 ; map[i].num1 != MAXINT; i++)
981 if (map[i].num1 == num)
982 break;
983 return map[i].num2;
984 }
985
986 static int all_ff(char *guid)
987 {
988 int i;
989 for (i = 0; i < DDF_GUID_LEN; i++)
990 if (guid[i] != (char)0xff)
991 return 0;
992 return 1;
993 }
994
995 #ifndef MDASSEMBLE
996 static void print_guid(char *guid, int tstamp)
997 {
998 /* A GUIDs are part (or all) ASCII and part binary.
999 * They tend to be space padded.
1000 * We print the GUID in HEX, then in parentheses add
1001 * any initial ASCII sequence, and a possible
1002 * time stamp from bytes 16-19
1003 */
1004 int l = DDF_GUID_LEN;
1005 int i;
1006
1007 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1008 if ((i&3)==0 && i != 0) printf(":");
1009 printf("%02X", guid[i]&255);
1010 }
1011
1012 printf("\n (");
1013 while (l && guid[l-1] == ' ')
1014 l--;
1015 for (i=0 ; i<l ; i++) {
1016 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1017 fputc(guid[i], stdout);
1018 else
1019 break;
1020 }
1021 if (tstamp) {
1022 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1023 char tbuf[100];
1024 struct tm *tm;
1025 tm = localtime(&then);
1026 strftime(tbuf, 100, " %D %T",tm);
1027 fputs(tbuf, stdout);
1028 }
1029 printf(")");
1030 }
1031
1032 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1033 {
1034 int crl = sb->conf_rec_len;
1035 struct vcl *vcl;
1036
1037 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1038 unsigned int i;
1039 struct vd_config *vc = &vcl->conf;
1040
1041 if (calc_crc(vc, crl*512) != vc->crc)
1042 continue;
1043 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1044 continue;
1045
1046 /* Ok, we know about this VD, let's give more details */
1047 printf(" Raid Devices[%d] : %d (", n,
1048 __be16_to_cpu(vc->prim_elmnt_count));
1049 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1050 int j;
1051 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1052 for (j=0; j<cnt; j++)
1053 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1054 break;
1055 if (i) printf(" ");
1056 if (j < cnt)
1057 printf("%d", j);
1058 else
1059 printf("--");
1060 }
1061 printf(")\n");
1062 if (vc->chunk_shift != 255)
1063 printf(" Chunk Size[%d] : %d sectors\n", n,
1064 1 << vc->chunk_shift);
1065 printf(" Raid Level[%d] : %s\n", n,
1066 map_num(ddf_level, vc->prl)?:"-unknown-");
1067 if (vc->sec_elmnt_count != 1) {
1068 printf(" Secondary Position[%d] : %d of %d\n", n,
1069 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1070 printf(" Secondary Level[%d] : %s\n", n,
1071 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1072 }
1073 printf(" Device Size[%d] : %llu\n", n,
1074 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1075 printf(" Array Size[%d] : %llu\n", n,
1076 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1077 }
1078 }
1079
1080 static void examine_vds(struct ddf_super *sb)
1081 {
1082 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1083 int i;
1084 printf(" Virtual Disks : %d\n", cnt);
1085
1086 for (i=0; i<cnt; i++) {
1087 struct virtual_entry *ve = &sb->virt->entries[i];
1088 printf("\n");
1089 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1090 printf("\n");
1091 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1092 printf(" state[%d] : %s, %s%s\n", i,
1093 map_num(ddf_state, ve->state & 7),
1094 (ve->state & 8) ? "Morphing, ": "",
1095 (ve->state & 16)? "Not Consistent" : "Consistent");
1096 printf(" init state[%d] : %s\n", i,
1097 map_num(ddf_init_state, ve->init_state&3));
1098 printf(" access[%d] : %s\n", i,
1099 map_num(ddf_access, (ve->init_state>>6) & 3));
1100 printf(" Name[%d] : %.16s\n", i, ve->name);
1101 examine_vd(i, sb, ve->guid);
1102 }
1103 if (cnt) printf("\n");
1104 }
1105
1106 static void examine_pds(struct ddf_super *sb)
1107 {
1108 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1109 int i;
1110 struct dl *dl;
1111 printf(" Physical Disks : %d\n", cnt);
1112 printf(" Number RefNo Size Device Type/State\n");
1113
1114 for (i=0 ; i<cnt ; i++) {
1115 struct phys_disk_entry *pd = &sb->phys->entries[i];
1116 int type = __be16_to_cpu(pd->type);
1117 int state = __be16_to_cpu(pd->state);
1118
1119 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1120 //printf("\n");
1121 printf(" %3d %08x ", i,
1122 __be32_to_cpu(pd->refnum));
1123 printf("%8lluK ",
1124 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1125 for (dl = sb->dlist; dl ; dl = dl->next) {
1126 if (dl->disk.refnum == pd->refnum) {
1127 char *dv = map_dev(dl->major, dl->minor, 0);
1128 if (dv) {
1129 printf("%-15s", dv);
1130 break;
1131 }
1132 }
1133 }
1134 if (!dl)
1135 printf("%15s","");
1136 printf(" %s%s%s%s%s",
1137 (type&2) ? "active":"",
1138 (type&4) ? "Global-Spare":"",
1139 (type&8) ? "spare" : "",
1140 (type&16)? ", foreign" : "",
1141 (type&32)? "pass-through" : "");
1142 if (state & DDF_Failed)
1143 /* This over-rides these three */
1144 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1145 printf("/%s%s%s%s%s%s%s",
1146 (state&1)? "Online": "Offline",
1147 (state&2)? ", Failed": "",
1148 (state&4)? ", Rebuilding": "",
1149 (state&8)? ", in-transition": "",
1150 (state&16)? ", SMART-errors": "",
1151 (state&32)? ", Unrecovered-Read-Errors": "",
1152 (state&64)? ", Missing" : "");
1153 printf("\n");
1154 }
1155 }
1156
1157 static void examine_super_ddf(struct supertype *st, char *homehost)
1158 {
1159 struct ddf_super *sb = st->sb;
1160
1161 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1162 printf(" Version : %.8s\n", sb->anchor.revision);
1163 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1164 printf("\n");
1165 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1166 printf("\n");
1167 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1168 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1169 ?"yes" : "no");
1170 examine_vds(sb);
1171 examine_pds(sb);
1172 }
1173
1174 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map);
1175
1176 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1177
1178 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1179 {
1180 /* We just write a generic DDF ARRAY entry
1181 */
1182 struct mdinfo info;
1183 char nbuf[64];
1184 getinfo_super_ddf(st, &info, NULL);
1185 fname_from_uuid(st, &info, nbuf, ':');
1186
1187 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1188 }
1189
1190 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1191 {
1192 /* We just write a generic DDF ARRAY entry
1193 */
1194 struct ddf_super *ddf = st->sb;
1195 struct mdinfo info;
1196 unsigned int i;
1197 char nbuf[64];
1198 getinfo_super_ddf(st, &info, NULL);
1199 fname_from_uuid(st, &info, nbuf, ':');
1200
1201 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1202 struct virtual_entry *ve = &ddf->virt->entries[i];
1203 struct vcl vcl;
1204 char nbuf1[64];
1205 if (all_ff(ve->guid))
1206 continue;
1207 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1208 ddf->currentconf =&vcl;
1209 uuid_from_super_ddf(st, info.uuid);
1210 fname_from_uuid(st, &info, nbuf1, ':');
1211 printf("ARRAY container=%s member=%d UUID=%s\n",
1212 nbuf+5, i, nbuf1+5);
1213 }
1214 }
1215
1216 static void export_examine_super_ddf(struct supertype *st)
1217 {
1218 struct mdinfo info;
1219 char nbuf[64];
1220 getinfo_super_ddf(st, &info, NULL);
1221 fname_from_uuid(st, &info, nbuf, ':');
1222 printf("MD_METADATA=ddf\n");
1223 printf("MD_LEVEL=container\n");
1224 printf("MD_UUID=%s\n", nbuf+5);
1225 }
1226
1227
1228 static void detail_super_ddf(struct supertype *st, char *homehost)
1229 {
1230 /* FIXME later
1231 * Could print DDF GUID
1232 * Need to find which array
1233 * If whole, briefly list all arrays
1234 * If one, give name
1235 */
1236 }
1237
1238 static void brief_detail_super_ddf(struct supertype *st)
1239 {
1240 /* FIXME I really need to know which array we are detailing.
1241 * Can that be stored in ddf_super??
1242 */
1243 // struct ddf_super *ddf = st->sb;
1244 struct mdinfo info;
1245 char nbuf[64];
1246 getinfo_super_ddf(st, &info, NULL);
1247 fname_from_uuid(st, &info, nbuf,':');
1248 printf(" UUID=%s", nbuf + 5);
1249 }
1250 #endif
1251
1252 static int match_home_ddf(struct supertype *st, char *homehost)
1253 {
1254 /* It matches 'this' host if the controller is a
1255 * Linux-MD controller with vendor_data matching
1256 * the hostname
1257 */
1258 struct ddf_super *ddf = st->sb;
1259 unsigned int len;
1260
1261 if (!homehost)
1262 return 0;
1263 len = strlen(homehost);
1264
1265 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1266 len < sizeof(ddf->controller.vendor_data) &&
1267 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1268 ddf->controller.vendor_data[len] == 0);
1269 }
1270
1271 #ifndef MDASSEMBLE
1272 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1273 {
1274 struct vcl *v;
1275
1276 for (v = ddf->conflist; v; v = v->next)
1277 if (inst == v->vcnum)
1278 return &v->conf;
1279 return NULL;
1280 }
1281 #endif
1282
1283 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1284 {
1285 /* Find the entry in phys_disk which has the given refnum
1286 * and return it's index
1287 */
1288 unsigned int i;
1289 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1290 if (ddf->phys->entries[i].refnum == phys_refnum)
1291 return i;
1292 return -1;
1293 }
1294
1295 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1296 {
1297 /* The uuid returned here is used for:
1298 * uuid to put into bitmap file (Create, Grow)
1299 * uuid for backup header when saving critical section (Grow)
1300 * comparing uuids when re-adding a device into an array
1301 * In these cases the uuid required is that of the data-array,
1302 * not the device-set.
1303 * uuid to recognise same set when adding a missing device back
1304 * to an array. This is a uuid for the device-set.
1305 *
1306 * For each of these we can make do with a truncated
1307 * or hashed uuid rather than the original, as long as
1308 * everyone agrees.
1309 * In the case of SVD we assume the BVD is of interest,
1310 * though that might be the case if a bitmap were made for
1311 * a mirrored SVD - worry about that later.
1312 * So we need to find the VD configuration record for the
1313 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1314 * The first 16 bytes of the sha1 of these is used.
1315 */
1316 struct ddf_super *ddf = st->sb;
1317 struct vcl *vcl = ddf->currentconf;
1318 char *guid;
1319 char buf[20];
1320 struct sha1_ctx ctx;
1321
1322 if (vcl)
1323 guid = vcl->conf.guid;
1324 else
1325 guid = ddf->anchor.guid;
1326
1327 sha1_init_ctx(&ctx);
1328 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1329 sha1_finish_ctx(&ctx, buf);
1330 memcpy(uuid, buf, 4*4);
1331 }
1332
1333 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map);
1334
1335 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info, char *map)
1336 {
1337 struct ddf_super *ddf = st->sb;
1338 int map_disks = info->array.raid_disks;
1339
1340 if (ddf->currentconf) {
1341 getinfo_super_ddf_bvd(st, info, map);
1342 return;
1343 }
1344 memset(info, 0, sizeof(*info));
1345
1346 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1347 info->array.level = LEVEL_CONTAINER;
1348 info->array.layout = 0;
1349 info->array.md_minor = -1;
1350 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1351 (ddf->anchor.guid+16));
1352 info->array.utime = 0;
1353 info->array.chunk_size = 0;
1354 info->container_enough = 1;
1355
1356
1357 info->disk.major = 0;
1358 info->disk.minor = 0;
1359 if (ddf->dlist) {
1360 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1361 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1362
1363 info->data_offset = __be64_to_cpu(ddf->phys->
1364 entries[info->disk.raid_disk].
1365 config_size);
1366 info->component_size = ddf->dlist->size - info->data_offset;
1367 } else {
1368 info->disk.number = -1;
1369 info->disk.raid_disk = -1;
1370 // info->disk.raid_disk = find refnum in the table and use index;
1371 }
1372 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1373
1374
1375 info->recovery_start = MaxSector;
1376 info->reshape_active = 0;
1377 info->recovery_blocked = 0;
1378 info->name[0] = 0;
1379
1380 info->array.major_version = -1;
1381 info->array.minor_version = -2;
1382 strcpy(info->text_version, "ddf");
1383 info->safe_mode_delay = 0;
1384
1385 uuid_from_super_ddf(st, info->uuid);
1386
1387 if (map) {
1388 int i;
1389 for (i = 0 ; i < map_disks; i++) {
1390 if (i < info->array.raid_disks &&
1391 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1392 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1393 map[i] = 1;
1394 else
1395 map[i] = 0;
1396 }
1397 }
1398 }
1399
1400 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1401
1402 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info, char *map)
1403 {
1404 struct ddf_super *ddf = st->sb;
1405 struct vcl *vc = ddf->currentconf;
1406 int cd = ddf->currentdev;
1407 int j;
1408 struct dl *dl;
1409 int map_disks = info->array.raid_disks;
1410
1411 memset(info, 0, sizeof(*info));
1412 /* FIXME this returns BVD info - what if we want SVD ?? */
1413
1414 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1415 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1416 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1417 info->array.raid_disks);
1418 info->array.md_minor = -1;
1419 info->array.ctime = DECADE +
1420 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1421 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1422 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1423 info->custom_array_size = 0;
1424
1425 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1426 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1427 if (vc->block_sizes)
1428 info->component_size = vc->block_sizes[cd];
1429 else
1430 info->component_size = __be64_to_cpu(vc->conf.blocks);
1431 }
1432
1433 for (dl = ddf->dlist; dl ; dl = dl->next)
1434 if (dl->raiddisk == ddf->currentdev)
1435 break;
1436
1437 info->disk.major = 0;
1438 info->disk.minor = 0;
1439 info->disk.state = 0;
1440 if (dl) {
1441 info->disk.major = dl->major;
1442 info->disk.minor = dl->minor;
1443 info->disk.raid_disk = dl->raiddisk;
1444 info->disk.number = dl->pdnum;
1445 info->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
1446 }
1447
1448 info->container_member = ddf->currentconf->vcnum;
1449
1450 info->recovery_start = MaxSector;
1451 info->resync_start = 0;
1452 info->reshape_active = 0;
1453 info->recovery_blocked = 0;
1454 if (!(ddf->virt->entries[info->container_member].state
1455 & DDF_state_inconsistent) &&
1456 (ddf->virt->entries[info->container_member].init_state
1457 & DDF_initstate_mask)
1458 == DDF_init_full)
1459 info->resync_start = MaxSector;
1460
1461 uuid_from_super_ddf(st, info->uuid);
1462
1463 info->array.major_version = -1;
1464 info->array.minor_version = -2;
1465 sprintf(info->text_version, "/%s/%d",
1466 devnum2devname(st->container_dev),
1467 info->container_member);
1468 info->safe_mode_delay = 200;
1469
1470 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1471 info->name[16]=0;
1472 for(j=0; j<16; j++)
1473 if (info->name[j] == ' ')
1474 info->name[j] = 0;
1475
1476 if (map)
1477 for (j = 0; j < map_disks; j++) {
1478 map[j] = 0;
1479 if (j < info->array.raid_disks) {
1480 int i = find_phys(ddf, vc->conf.phys_refnum[j]);
1481 if (i >= 0 &&
1482 (__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Online) &&
1483 !(__be16_to_cpu(ddf->phys->entries[i].state) & DDF_Failed))
1484 map[i] = 1;
1485 }
1486 }
1487 }
1488
1489
1490 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1491 char *update,
1492 char *devname, int verbose,
1493 int uuid_set, char *homehost)
1494 {
1495 /* For 'assemble' and 'force' we need to return non-zero if any
1496 * change was made. For others, the return value is ignored.
1497 * Update options are:
1498 * force-one : This device looks a bit old but needs to be included,
1499 * update age info appropriately.
1500 * assemble: clear any 'faulty' flag to allow this device to
1501 * be assembled.
1502 * force-array: Array is degraded but being forced, mark it clean
1503 * if that will be needed to assemble it.
1504 *
1505 * newdev: not used ????
1506 * grow: Array has gained a new device - this is currently for
1507 * linear only
1508 * resync: mark as dirty so a resync will happen.
1509 * uuid: Change the uuid of the array to match what is given
1510 * homehost: update the recorded homehost
1511 * name: update the name - preserving the homehost
1512 * _reshape_progress: record new reshape_progress position.
1513 *
1514 * Following are not relevant for this version:
1515 * sparc2.2 : update from old dodgey metadata
1516 * super-minor: change the preferred_minor number
1517 * summaries: update redundant counters.
1518 */
1519 int rv = 0;
1520 // struct ddf_super *ddf = st->sb;
1521 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1522 // struct virtual_entry *ve = find_ve(ddf);
1523
1524 /* we don't need to handle "force-*" or "assemble" as
1525 * there is no need to 'trick' the kernel. We the metadata is
1526 * first updated to activate the array, all the implied modifications
1527 * will just happen.
1528 */
1529
1530 if (strcmp(update, "grow") == 0) {
1531 /* FIXME */
1532 } else if (strcmp(update, "resync") == 0) {
1533 // info->resync_checkpoint = 0;
1534 } else if (strcmp(update, "homehost") == 0) {
1535 /* homehost is stored in controller->vendor_data,
1536 * or it is when we are the vendor
1537 */
1538 // if (info->vendor_is_local)
1539 // strcpy(ddf->controller.vendor_data, homehost);
1540 rv = -1;
1541 } else if (strcmp(update, "name") == 0) {
1542 /* name is stored in virtual_entry->name */
1543 // memset(ve->name, ' ', 16);
1544 // strncpy(ve->name, info->name, 16);
1545 rv = -1;
1546 } else if (strcmp(update, "_reshape_progress") == 0) {
1547 /* We don't support reshape yet */
1548 } else if (strcmp(update, "assemble") == 0 ) {
1549 /* Do nothing, just succeed */
1550 rv = 0;
1551 } else
1552 rv = -1;
1553
1554 // update_all_csum(ddf);
1555
1556 return rv;
1557 }
1558
1559 static void make_header_guid(char *guid)
1560 {
1561 __u32 stamp;
1562 /* Create a DDF Header of Virtual Disk GUID */
1563
1564 /* 24 bytes of fiction required.
1565 * first 8 are a 'vendor-id' - "Linux-MD"
1566 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1567 * Remaining 8 random number plus timestamp
1568 */
1569 memcpy(guid, T10, sizeof(T10));
1570 stamp = __cpu_to_be32(0xdeadbeef);
1571 memcpy(guid+8, &stamp, 4);
1572 stamp = __cpu_to_be32(0);
1573 memcpy(guid+12, &stamp, 4);
1574 stamp = __cpu_to_be32(time(0) - DECADE);
1575 memcpy(guid+16, &stamp, 4);
1576 stamp = random32();
1577 memcpy(guid+20, &stamp, 4);
1578 }
1579
1580 static int init_super_ddf_bvd(struct supertype *st,
1581 mdu_array_info_t *info,
1582 unsigned long long size,
1583 char *name, char *homehost,
1584 int *uuid);
1585
1586 static int init_super_ddf(struct supertype *st,
1587 mdu_array_info_t *info,
1588 unsigned long long size, char *name, char *homehost,
1589 int *uuid)
1590 {
1591 /* This is primarily called by Create when creating a new array.
1592 * We will then get add_to_super called for each component, and then
1593 * write_init_super called to write it out to each device.
1594 * For DDF, Create can create on fresh devices or on a pre-existing
1595 * array.
1596 * To create on a pre-existing array a different method will be called.
1597 * This one is just for fresh drives.
1598 *
1599 * We need to create the entire 'ddf' structure which includes:
1600 * DDF headers - these are easy.
1601 * Controller data - a Sector describing this controller .. not that
1602 * this is a controller exactly.
1603 * Physical Disk Record - one entry per device, so
1604 * leave plenty of space.
1605 * Virtual Disk Records - again, just leave plenty of space.
1606 * This just lists VDs, doesn't give details
1607 * Config records - describes the VDs that use this disk
1608 * DiskData - describes 'this' device.
1609 * BadBlockManagement - empty
1610 * Diag Space - empty
1611 * Vendor Logs - Could we put bitmaps here?
1612 *
1613 */
1614 struct ddf_super *ddf;
1615 char hostname[17];
1616 int hostlen;
1617 int max_phys_disks, max_virt_disks;
1618 unsigned long long sector;
1619 int clen;
1620 int i;
1621 int pdsize, vdsize;
1622 struct phys_disk *pd;
1623 struct virtual_disk *vd;
1624
1625 if (st->sb)
1626 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1627
1628 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1629 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1630 return 0;
1631 }
1632 memset(ddf, 0, sizeof(*ddf));
1633 ddf->dlist = NULL; /* no physical disks yet */
1634 ddf->conflist = NULL; /* No virtual disks yet */
1635 st->sb = ddf;
1636
1637 if (info == NULL) {
1638 /* zeroing superblock */
1639 return 0;
1640 }
1641
1642 /* At least 32MB *must* be reserved for the ddf. So let's just
1643 * start 32MB from the end, and put the primary header there.
1644 * Don't do secondary for now.
1645 * We don't know exactly where that will be yet as it could be
1646 * different on each device. To just set up the lengths.
1647 *
1648 */
1649
1650 ddf->anchor.magic = DDF_HEADER_MAGIC;
1651 make_header_guid(ddf->anchor.guid);
1652
1653 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1654 ddf->anchor.seq = __cpu_to_be32(1);
1655 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1656 ddf->anchor.openflag = 0xFF;
1657 ddf->anchor.foreignflag = 0;
1658 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1659 ddf->anchor.pad0 = 0xff;
1660 memset(ddf->anchor.pad1, 0xff, 12);
1661 memset(ddf->anchor.header_ext, 0xff, 32);
1662 ddf->anchor.primary_lba = ~(__u64)0;
1663 ddf->anchor.secondary_lba = ~(__u64)0;
1664 ddf->anchor.type = DDF_HEADER_ANCHOR;
1665 memset(ddf->anchor.pad2, 0xff, 3);
1666 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1667 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1668 of 32M reserved.. */
1669 max_phys_disks = 1023; /* Should be enough */
1670 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1671 max_virt_disks = 255;
1672 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1673 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1674 ddf->max_part = 64;
1675 ddf->mppe = 256;
1676 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1677 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1678 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1679 memset(ddf->anchor.pad3, 0xff, 54);
1680 /* controller sections is one sector long immediately
1681 * after the ddf header */
1682 sector = 1;
1683 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1684 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1685 sector += 1;
1686
1687 /* phys is 8 sectors after that */
1688 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1689 sizeof(struct phys_disk_entry)*max_phys_disks,
1690 512);
1691 switch(pdsize/512) {
1692 case 2: case 8: case 32: case 128: case 512: break;
1693 default: abort();
1694 }
1695 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1696 ddf->anchor.phys_section_length =
1697 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1698 sector += pdsize/512;
1699
1700 /* virt is another 32 sectors */
1701 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1702 sizeof(struct virtual_entry) * max_virt_disks,
1703 512);
1704 switch(vdsize/512) {
1705 case 2: case 8: case 32: case 128: case 512: break;
1706 default: abort();
1707 }
1708 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1709 ddf->anchor.virt_section_length =
1710 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1711 sector += vdsize/512;
1712
1713 clen = ddf->conf_rec_len * (ddf->max_part+1);
1714 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1715 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1716 sector += clen;
1717
1718 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1719 ddf->anchor.data_section_length = __cpu_to_be32(1);
1720 sector += 1;
1721
1722 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1723 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1724 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1725 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1726 ddf->anchor.vendor_length = __cpu_to_be32(0);
1727 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1728
1729 memset(ddf->anchor.pad4, 0xff, 256);
1730
1731 memcpy(&ddf->primary, &ddf->anchor, 512);
1732 memcpy(&ddf->secondary, &ddf->anchor, 512);
1733
1734 ddf->primary.openflag = 1; /* I guess.. */
1735 ddf->primary.type = DDF_HEADER_PRIMARY;
1736
1737 ddf->secondary.openflag = 1; /* I guess.. */
1738 ddf->secondary.type = DDF_HEADER_SECONDARY;
1739
1740 ddf->active = &ddf->primary;
1741
1742 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1743
1744 /* 24 more bytes of fiction required.
1745 * first 8 are a 'vendor-id' - "Linux-MD"
1746 * Remaining 16 are serial number.... maybe a hostname would do?
1747 */
1748 memcpy(ddf->controller.guid, T10, sizeof(T10));
1749 gethostname(hostname, sizeof(hostname));
1750 hostname[sizeof(hostname) - 1] = 0;
1751 hostlen = strlen(hostname);
1752 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1753 for (i = strlen(T10) ; i+hostlen < 24; i++)
1754 ddf->controller.guid[i] = ' ';
1755
1756 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1757 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1758 ddf->controller.type.sub_vendor_id = 0;
1759 ddf->controller.type.sub_device_id = 0;
1760 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1761 memset(ddf->controller.pad, 0xff, 8);
1762 memset(ddf->controller.vendor_data, 0xff, 448);
1763 if (homehost && strlen(homehost) < 440)
1764 strcpy((char*)ddf->controller.vendor_data, homehost);
1765
1766 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1767 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1768 return 0;
1769 }
1770 ddf->phys = pd;
1771 ddf->pdsize = pdsize;
1772
1773 memset(pd, 0xff, pdsize);
1774 memset(pd, 0, sizeof(*pd));
1775 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1776 pd->used_pdes = __cpu_to_be16(0);
1777 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1778 memset(pd->pad, 0xff, 52);
1779
1780 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1781 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1782 return 0;
1783 }
1784 ddf->virt = vd;
1785 ddf->vdsize = vdsize;
1786 memset(vd, 0, vdsize);
1787 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1788 vd->populated_vdes = __cpu_to_be16(0);
1789 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1790 memset(vd->pad, 0xff, 52);
1791
1792 for (i=0; i<max_virt_disks; i++)
1793 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1794
1795 st->sb = ddf;
1796 ddf->updates_pending = 1;
1797 return 1;
1798 }
1799
1800 static int chunk_to_shift(int chunksize)
1801 {
1802 return ffs(chunksize/512)-1;
1803 }
1804
1805 static int level_to_prl(int level)
1806 {
1807 switch (level) {
1808 case LEVEL_LINEAR: return DDF_CONCAT;
1809 case 0: return DDF_RAID0;
1810 case 1: return DDF_RAID1;
1811 case 4: return DDF_RAID4;
1812 case 5: return DDF_RAID5;
1813 case 6: return DDF_RAID6;
1814 default: return -1;
1815 }
1816 }
1817 static int layout_to_rlq(int level, int layout, int raiddisks)
1818 {
1819 switch(level) {
1820 case 0:
1821 return DDF_RAID0_SIMPLE;
1822 case 1:
1823 switch(raiddisks) {
1824 case 2: return DDF_RAID1_SIMPLE;
1825 case 3: return DDF_RAID1_MULTI;
1826 default: return -1;
1827 }
1828 case 4:
1829 switch(layout) {
1830 case 0: return DDF_RAID4_N;
1831 }
1832 break;
1833 case 5:
1834 switch(layout) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 return DDF_RAID5_N_RESTART;
1837 case ALGORITHM_RIGHT_ASYMMETRIC:
1838 return DDF_RAID5_0_RESTART;
1839 case ALGORITHM_LEFT_SYMMETRIC:
1840 return DDF_RAID5_N_CONTINUE;
1841 case ALGORITHM_RIGHT_SYMMETRIC:
1842 return -1; /* not mentioned in standard */
1843 }
1844 case 6:
1845 switch(layout) {
1846 case ALGORITHM_ROTATING_N_RESTART:
1847 return DDF_RAID5_N_RESTART;
1848 case ALGORITHM_ROTATING_ZERO_RESTART:
1849 return DDF_RAID6_0_RESTART;
1850 case ALGORITHM_ROTATING_N_CONTINUE:
1851 return DDF_RAID5_N_CONTINUE;
1852 }
1853 }
1854 return -1;
1855 }
1856
1857 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1858 {
1859 switch(prl) {
1860 case DDF_RAID0:
1861 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1862 case DDF_RAID1:
1863 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1864 on raiddisks*/
1865 case DDF_RAID4:
1866 switch(rlq) {
1867 case DDF_RAID4_N:
1868 return 0;
1869 default:
1870 /* not supported */
1871 return -1; /* FIXME this isn't checked */
1872 }
1873 case DDF_RAID5:
1874 switch(rlq) {
1875 case DDF_RAID5_N_RESTART:
1876 return ALGORITHM_LEFT_ASYMMETRIC;
1877 case DDF_RAID5_0_RESTART:
1878 return ALGORITHM_RIGHT_ASYMMETRIC;
1879 case DDF_RAID5_N_CONTINUE:
1880 return ALGORITHM_LEFT_SYMMETRIC;
1881 default:
1882 return -1;
1883 }
1884 case DDF_RAID6:
1885 switch(rlq) {
1886 case DDF_RAID5_N_RESTART:
1887 return ALGORITHM_ROTATING_N_RESTART;
1888 case DDF_RAID6_0_RESTART:
1889 return ALGORITHM_ROTATING_ZERO_RESTART;
1890 case DDF_RAID5_N_CONTINUE:
1891 return ALGORITHM_ROTATING_N_CONTINUE;
1892 default:
1893 return -1;
1894 }
1895 }
1896 return -1;
1897 }
1898
1899 #ifndef MDASSEMBLE
1900 struct extent {
1901 unsigned long long start, size;
1902 };
1903 static int cmp_extent(const void *av, const void *bv)
1904 {
1905 const struct extent *a = av;
1906 const struct extent *b = bv;
1907 if (a->start < b->start)
1908 return -1;
1909 if (a->start > b->start)
1910 return 1;
1911 return 0;
1912 }
1913
1914 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1915 {
1916 /* find a list of used extents on the give physical device
1917 * (dnum) of the given ddf.
1918 * Return a malloced array of 'struct extent'
1919
1920 FIXME ignore DDF_Legacy devices?
1921
1922 */
1923 struct extent *rv;
1924 int n = 0;
1925 unsigned int i, j;
1926
1927 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1928 if (!rv)
1929 return NULL;
1930
1931 for (i = 0; i < ddf->max_part; i++) {
1932 struct vcl *v = dl->vlist[i];
1933 if (v == NULL)
1934 continue;
1935 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1936 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1937 /* This device plays role 'j' in 'v'. */
1938 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1939 rv[n].size = __be64_to_cpu(v->conf.blocks);
1940 n++;
1941 break;
1942 }
1943 }
1944 qsort(rv, n, sizeof(*rv), cmp_extent);
1945
1946 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1947 rv[n].size = 0;
1948 return rv;
1949 }
1950 #endif
1951
1952 static int init_super_ddf_bvd(struct supertype *st,
1953 mdu_array_info_t *info,
1954 unsigned long long size,
1955 char *name, char *homehost,
1956 int *uuid)
1957 {
1958 /* We are creating a BVD inside a pre-existing container.
1959 * so st->sb is already set.
1960 * We need to create a new vd_config and a new virtual_entry
1961 */
1962 struct ddf_super *ddf = st->sb;
1963 unsigned int venum;
1964 struct virtual_entry *ve;
1965 struct vcl *vcl;
1966 struct vd_config *vc;
1967
1968 if (__be16_to_cpu(ddf->virt->populated_vdes)
1969 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1970 fprintf(stderr, Name": This ddf already has the "
1971 "maximum of %d virtual devices\n",
1972 __be16_to_cpu(ddf->virt->max_vdes));
1973 return 0;
1974 }
1975
1976 if (name)
1977 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1978 if (!all_ff(ddf->virt->entries[venum].guid)) {
1979 char *n = ddf->virt->entries[venum].name;
1980
1981 if (strncmp(name, n, 16) == 0) {
1982 fprintf(stderr, Name ": This ddf already"
1983 " has an array called %s\n",
1984 name);
1985 return 0;
1986 }
1987 }
1988
1989 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1990 if (all_ff(ddf->virt->entries[venum].guid))
1991 break;
1992 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1993 fprintf(stderr, Name ": Cannot find spare slot for "
1994 "virtual disk - DDF is corrupt\n");
1995 return 0;
1996 }
1997 ve = &ddf->virt->entries[venum];
1998
1999 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
2000 * timestamp, random number
2001 */
2002 make_header_guid(ve->guid);
2003 ve->unit = __cpu_to_be16(info->md_minor);
2004 ve->pad0 = 0xFFFF;
2005 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
2006 ve->type = 0;
2007 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
2008 if (info->state & 1) /* clean */
2009 ve->init_state = DDF_init_full;
2010 else
2011 ve->init_state = DDF_init_not;
2012
2013 memset(ve->pad1, 0xff, 14);
2014 memset(ve->name, ' ', 16);
2015 if (name)
2016 strncpy(ve->name, name, 16);
2017 ddf->virt->populated_vdes =
2018 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2019
2020 /* Now create a new vd_config */
2021 if (posix_memalign((void**)&vcl, 512,
2022 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2023 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
2024 return 0;
2025 }
2026 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2027 vcl->vcnum = venum;
2028 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2029
2030 vc = &vcl->conf;
2031
2032 vc->magic = DDF_VD_CONF_MAGIC;
2033 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2034 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2035 vc->seqnum = __cpu_to_be32(1);
2036 memset(vc->pad0, 0xff, 24);
2037 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2038 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2039 vc->prl = level_to_prl(info->level);
2040 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2041 vc->sec_elmnt_count = 1;
2042 vc->sec_elmnt_seq = 0;
2043 vc->srl = 0;
2044 vc->blocks = __cpu_to_be64(info->size * 2);
2045 vc->array_blocks = __cpu_to_be64(
2046 calc_array_size(info->level, info->raid_disks, info->layout,
2047 info->chunk_size, info->size*2));
2048 memset(vc->pad1, 0xff, 8);
2049 vc->spare_refs[0] = 0xffffffff;
2050 vc->spare_refs[1] = 0xffffffff;
2051 vc->spare_refs[2] = 0xffffffff;
2052 vc->spare_refs[3] = 0xffffffff;
2053 vc->spare_refs[4] = 0xffffffff;
2054 vc->spare_refs[5] = 0xffffffff;
2055 vc->spare_refs[6] = 0xffffffff;
2056 vc->spare_refs[7] = 0xffffffff;
2057 memset(vc->cache_pol, 0, 8);
2058 vc->bg_rate = 0x80;
2059 memset(vc->pad2, 0xff, 3);
2060 memset(vc->pad3, 0xff, 52);
2061 memset(vc->pad4, 0xff, 192);
2062 memset(vc->v0, 0xff, 32);
2063 memset(vc->v1, 0xff, 32);
2064 memset(vc->v2, 0xff, 16);
2065 memset(vc->v3, 0xff, 16);
2066 memset(vc->vendor, 0xff, 32);
2067
2068 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2069 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2070
2071 vcl->next = ddf->conflist;
2072 ddf->conflist = vcl;
2073 ddf->currentconf = vcl;
2074 ddf->updates_pending = 1;
2075 return 1;
2076 }
2077
2078 #ifndef MDASSEMBLE
2079 static void add_to_super_ddf_bvd(struct supertype *st,
2080 mdu_disk_info_t *dk, int fd, char *devname)
2081 {
2082 /* fd and devname identify a device with-in the ddf container (st).
2083 * dk identifies a location in the new BVD.
2084 * We need to find suitable free space in that device and update
2085 * the phys_refnum and lba_offset for the newly created vd_config.
2086 * We might also want to update the type in the phys_disk
2087 * section.
2088 *
2089 * Alternately: fd == -1 and we have already chosen which device to
2090 * use and recorded in dlist->raid_disk;
2091 */
2092 struct dl *dl;
2093 struct ddf_super *ddf = st->sb;
2094 struct vd_config *vc;
2095 __u64 *lba_offset;
2096 unsigned int working;
2097 unsigned int i;
2098 unsigned long long blocks, pos, esize;
2099 struct extent *ex;
2100
2101 if (fd == -1) {
2102 for (dl = ddf->dlist; dl ; dl = dl->next)
2103 if (dl->raiddisk == dk->raid_disk)
2104 break;
2105 } else {
2106 for (dl = ddf->dlist; dl ; dl = dl->next)
2107 if (dl->major == dk->major &&
2108 dl->minor == dk->minor)
2109 break;
2110 }
2111 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2112 return;
2113
2114 vc = &ddf->currentconf->conf;
2115 lba_offset = ddf->currentconf->lba_offset;
2116
2117 ex = get_extents(ddf, dl);
2118 if (!ex)
2119 return;
2120
2121 i = 0; pos = 0;
2122 blocks = __be64_to_cpu(vc->blocks);
2123 if (ddf->currentconf->block_sizes)
2124 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2125
2126 do {
2127 esize = ex[i].start - pos;
2128 if (esize >= blocks)
2129 break;
2130 pos = ex[i].start + ex[i].size;
2131 i++;
2132 } while (ex[i-1].size);
2133
2134 free(ex);
2135 if (esize < blocks)
2136 return;
2137
2138 ddf->currentdev = dk->raid_disk;
2139 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2140 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2141
2142 for (i = 0; i < ddf->max_part ; i++)
2143 if (dl->vlist[i] == NULL)
2144 break;
2145 if (i == ddf->max_part)
2146 return;
2147 dl->vlist[i] = ddf->currentconf;
2148
2149 if (fd >= 0)
2150 dl->fd = fd;
2151 if (devname)
2152 dl->devname = devname;
2153
2154 /* Check how many working raid_disks, and if we can mark
2155 * array as optimal yet
2156 */
2157 working = 0;
2158
2159 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2160 if (vc->phys_refnum[i] != 0xffffffff)
2161 working++;
2162
2163 /* Find which virtual_entry */
2164 i = ddf->currentconf->vcnum;
2165 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2166 ddf->virt->entries[i].state =
2167 (ddf->virt->entries[i].state & ~DDF_state_mask)
2168 | DDF_state_optimal;
2169
2170 if (vc->prl == DDF_RAID6 &&
2171 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2172 ddf->virt->entries[i].state =
2173 (ddf->virt->entries[i].state & ~DDF_state_mask)
2174 | DDF_state_part_optimal;
2175
2176 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2177 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2178 ddf->updates_pending = 1;
2179 }
2180
2181 /* add a device to a container, either while creating it or while
2182 * expanding a pre-existing container
2183 */
2184 static int add_to_super_ddf(struct supertype *st,
2185 mdu_disk_info_t *dk, int fd, char *devname)
2186 {
2187 struct ddf_super *ddf = st->sb;
2188 struct dl *dd;
2189 time_t now;
2190 struct tm *tm;
2191 unsigned long long size;
2192 struct phys_disk_entry *pde;
2193 unsigned int n, i;
2194 struct stat stb;
2195
2196 if (ddf->currentconf) {
2197 add_to_super_ddf_bvd(st, dk, fd, devname);
2198 return 0;
2199 }
2200
2201 /* This is device numbered dk->number. We need to create
2202 * a phys_disk entry and a more detailed disk_data entry.
2203 */
2204 fstat(fd, &stb);
2205 if (posix_memalign((void**)&dd, 512,
2206 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2207 fprintf(stderr, Name
2208 ": %s could allocate buffer for new disk, aborting\n",
2209 __func__);
2210 return 1;
2211 }
2212 dd->major = major(stb.st_rdev);
2213 dd->minor = minor(stb.st_rdev);
2214 dd->devname = devname;
2215 dd->fd = fd;
2216 dd->spare = NULL;
2217
2218 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2219 now = time(0);
2220 tm = localtime(&now);
2221 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2222 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2223 *(__u32*)(dd->disk.guid + 16) = random32();
2224 *(__u32*)(dd->disk.guid + 20) = random32();
2225
2226 do {
2227 /* Cannot be bothered finding a CRC of some irrelevant details*/
2228 dd->disk.refnum = random32();
2229 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2230 i > 0; i--)
2231 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2232 break;
2233 } while (i > 0);
2234
2235 dd->disk.forced_ref = 1;
2236 dd->disk.forced_guid = 1;
2237 memset(dd->disk.vendor, ' ', 32);
2238 memcpy(dd->disk.vendor, "Linux", 5);
2239 memset(dd->disk.pad, 0xff, 442);
2240 for (i = 0; i < ddf->max_part ; i++)
2241 dd->vlist[i] = NULL;
2242
2243 n = __be16_to_cpu(ddf->phys->used_pdes);
2244 pde = &ddf->phys->entries[n];
2245 dd->pdnum = n;
2246
2247 if (st->update_tail) {
2248 int len = (sizeof(struct phys_disk) +
2249 sizeof(struct phys_disk_entry));
2250 struct phys_disk *pd;
2251
2252 pd = malloc(len);
2253 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2254 pd->used_pdes = __cpu_to_be16(n);
2255 pde = &pd->entries[0];
2256 dd->mdupdate = pd;
2257 } else {
2258 n++;
2259 ddf->phys->used_pdes = __cpu_to_be16(n);
2260 }
2261
2262 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2263 pde->refnum = dd->disk.refnum;
2264 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2265 pde->state = __cpu_to_be16(DDF_Online);
2266 get_dev_size(fd, NULL, &size);
2267 /* We are required to reserve 32Meg, and record the size in sectors */
2268 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2269 sprintf(pde->path, "%17.17s","Information: nil") ;
2270 memset(pde->pad, 0xff, 6);
2271
2272 dd->size = size >> 9;
2273 if (st->update_tail) {
2274 dd->next = ddf->add_list;
2275 ddf->add_list = dd;
2276 } else {
2277 dd->next = ddf->dlist;
2278 ddf->dlist = dd;
2279 ddf->updates_pending = 1;
2280 }
2281
2282 return 0;
2283 }
2284
2285 static int remove_from_super_ddf(struct supertype *st, mdu_disk_info_t *dk)
2286 {
2287 struct ddf_super *ddf = st->sb;
2288 struct dl *dl;
2289
2290 /* mdmon has noticed that this disk (dk->major/dk->minor) has
2291 * disappeared from the container.
2292 * We need to arrange that it disappears from the metadata and
2293 * internal data structures too.
2294 * Most of the work is done by ddf_process_update which edits
2295 * the metadata and closes the file handle and attaches the memory
2296 * where free_updates will free it.
2297 */
2298 for (dl = ddf->dlist; dl ; dl = dl->next)
2299 if (dl->major == dk->major &&
2300 dl->minor == dk->minor)
2301 break;
2302 if (!dl)
2303 return -1;
2304
2305 if (st->update_tail) {
2306 int len = (sizeof(struct phys_disk) +
2307 sizeof(struct phys_disk_entry));
2308 struct phys_disk *pd;
2309
2310 pd = malloc(len);
2311 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2312 pd->used_pdes = __cpu_to_be16(dl->pdnum);
2313 pd->entries[0].state = __cpu_to_be16(DDF_Missing);
2314 append_metadata_update(st, pd, len);
2315 }
2316 return 0;
2317 }
2318
2319 /*
2320 * This is the write_init_super method for a ddf container. It is
2321 * called when creating a container or adding another device to a
2322 * container.
2323 */
2324
2325 static unsigned char null_conf[4096+512];
2326
2327 static int __write_init_super_ddf(struct supertype *st)
2328 {
2329
2330 struct ddf_super *ddf = st->sb;
2331 int i;
2332 struct dl *d;
2333 int n_config;
2334 int conf_size;
2335 int attempts = 0;
2336 int successes = 0;
2337 unsigned long long size, sector;
2338
2339 /* try to write updated metadata,
2340 * if we catch a failure move on to the next disk
2341 */
2342 for (d = ddf->dlist; d; d=d->next) {
2343 int fd = d->fd;
2344
2345 if (fd < 0)
2346 continue;
2347
2348 attempts++;
2349 /* We need to fill in the primary, (secondary) and workspace
2350 * lba's in the headers, set their checksums,
2351 * Also checksum phys, virt....
2352 *
2353 * Then write everything out, finally the anchor is written.
2354 */
2355 get_dev_size(fd, NULL, &size);
2356 size /= 512;
2357 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2358 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2359 ddf->anchor.seq = __cpu_to_be32(1);
2360 memcpy(&ddf->primary, &ddf->anchor, 512);
2361 memcpy(&ddf->secondary, &ddf->anchor, 512);
2362
2363 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2364 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2365 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2366
2367 ddf->primary.openflag = 0;
2368 ddf->primary.type = DDF_HEADER_PRIMARY;
2369
2370 ddf->secondary.openflag = 0;
2371 ddf->secondary.type = DDF_HEADER_SECONDARY;
2372
2373 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2374 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2375
2376 sector = size - 16*1024*2;
2377 lseek64(fd, sector<<9, 0);
2378 if (write(fd, &ddf->primary, 512) < 0)
2379 continue;
2380
2381 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2382 if (write(fd, &ddf->controller, 512) < 0)
2383 continue;
2384
2385 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2386
2387 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2388 continue;
2389
2390 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2391 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2392 continue;
2393
2394 /* Now write lots of config records. */
2395 n_config = ddf->max_part;
2396 conf_size = ddf->conf_rec_len * 512;
2397 for (i = 0 ; i <= n_config ; i++) {
2398 struct vcl *c = d->vlist[i];
2399 if (i == n_config)
2400 c = (struct vcl*)d->spare;
2401
2402 if (c) {
2403 c->conf.crc = calc_crc(&c->conf, conf_size);
2404 if (write(fd, &c->conf, conf_size) < 0)
2405 break;
2406 } else {
2407 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2408 if (null_conf[0] != 0xff)
2409 memset(null_conf, 0xff, sizeof(null_conf));
2410 unsigned int togo = conf_size;
2411 while (togo > sizeof(null_conf)-512) {
2412 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2413 break;
2414 togo -= sizeof(null_conf)-512;
2415 }
2416 if (write(fd, null_aligned, togo) < 0)
2417 break;
2418 }
2419 }
2420 if (i <= n_config)
2421 continue;
2422 d->disk.crc = calc_crc(&d->disk, 512);
2423 if (write(fd, &d->disk, 512) < 0)
2424 continue;
2425
2426 /* Maybe do the same for secondary */
2427
2428 lseek64(fd, (size-1)*512, SEEK_SET);
2429 if (write(fd, &ddf->anchor, 512) < 0)
2430 continue;
2431 successes++;
2432 }
2433
2434 return attempts != successes;
2435 }
2436
2437 static int write_init_super_ddf(struct supertype *st)
2438 {
2439 struct ddf_super *ddf = st->sb;
2440 struct vcl *currentconf = ddf->currentconf;
2441
2442 /* we are done with currentconf reset it to point st at the container */
2443 ddf->currentconf = NULL;
2444
2445 if (st->update_tail) {
2446 /* queue the virtual_disk and vd_config as metadata updates */
2447 struct virtual_disk *vd;
2448 struct vd_config *vc;
2449 int len;
2450
2451 if (!currentconf) {
2452 int len = (sizeof(struct phys_disk) +
2453 sizeof(struct phys_disk_entry));
2454
2455 /* adding a disk to the container. */
2456 if (!ddf->add_list)
2457 return 0;
2458
2459 append_metadata_update(st, ddf->add_list->mdupdate, len);
2460 ddf->add_list->mdupdate = NULL;
2461 return 0;
2462 }
2463
2464 /* Newly created VD */
2465
2466 /* First the virtual disk. We have a slightly fake header */
2467 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2468 vd = malloc(len);
2469 *vd = *ddf->virt;
2470 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2471 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2472 append_metadata_update(st, vd, len);
2473
2474 /* Then the vd_config */
2475 len = ddf->conf_rec_len * 512;
2476 vc = malloc(len);
2477 memcpy(vc, &currentconf->conf, len);
2478 append_metadata_update(st, vc, len);
2479
2480 /* FIXME I need to close the fds! */
2481 return 0;
2482 } else {
2483 struct dl *d;
2484 for (d = ddf->dlist; d; d=d->next)
2485 while (Kill(d->devname, NULL, 0, 1, 1) == 0);
2486 return __write_init_super_ddf(st);
2487 }
2488 }
2489
2490 #endif
2491
2492 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2493 {
2494 /* We must reserve the last 32Meg */
2495 if (devsize <= 32*1024*2)
2496 return 0;
2497 return devsize - 32*1024*2;
2498 }
2499
2500 #ifndef MDASSEMBLE
2501
2502 static int reserve_space(struct supertype *st, int raiddisks,
2503 unsigned long long size, int chunk,
2504 unsigned long long *freesize)
2505 {
2506 /* Find 'raiddisks' spare extents at least 'size' big (but
2507 * only caring about multiples of 'chunk') and remember
2508 * them.
2509 * If the cannot be found, fail.
2510 */
2511 struct dl *dl;
2512 struct ddf_super *ddf = st->sb;
2513 int cnt = 0;
2514
2515 for (dl = ddf->dlist; dl ; dl=dl->next) {
2516 dl->raiddisk = -1;
2517 dl->esize = 0;
2518 }
2519 /* Now find largest extent on each device */
2520 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2521 struct extent *e = get_extents(ddf, dl);
2522 unsigned long long pos = 0;
2523 int i = 0;
2524 int found = 0;
2525 unsigned long long minsize = size;
2526
2527 if (size == 0)
2528 minsize = chunk;
2529
2530 if (!e)
2531 continue;
2532 do {
2533 unsigned long long esize;
2534 esize = e[i].start - pos;
2535 if (esize >= minsize) {
2536 found = 1;
2537 minsize = esize;
2538 }
2539 pos = e[i].start + e[i].size;
2540 i++;
2541 } while (e[i-1].size);
2542 if (found) {
2543 cnt++;
2544 dl->esize = minsize;
2545 }
2546 free(e);
2547 }
2548 if (cnt < raiddisks) {
2549 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2550 return 0; /* No enough free spaces large enough */
2551 }
2552 if (size == 0) {
2553 /* choose the largest size of which there are at least 'raiddisk' */
2554 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2555 struct dl *dl2;
2556 if (dl->esize <= size)
2557 continue;
2558 /* This is bigger than 'size', see if there are enough */
2559 cnt = 0;
2560 for (dl2 = dl; dl2 ; dl2=dl2->next)
2561 if (dl2->esize >= dl->esize)
2562 cnt++;
2563 if (cnt >= raiddisks)
2564 size = dl->esize;
2565 }
2566 if (chunk) {
2567 size = size / chunk;
2568 size *= chunk;
2569 }
2570 *freesize = size;
2571 if (size < 32) {
2572 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2573 return 0;
2574 }
2575 }
2576 /* We have a 'size' of which there are enough spaces.
2577 * We simply do a first-fit */
2578 cnt = 0;
2579 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2580 if (dl->esize < size)
2581 continue;
2582
2583 dl->raiddisk = cnt;
2584 cnt++;
2585 }
2586 return 1;
2587 }
2588
2589
2590
2591 static int
2592 validate_geometry_ddf_container(struct supertype *st,
2593 int level, int layout, int raiddisks,
2594 int chunk, unsigned long long size,
2595 char *dev, unsigned long long *freesize,
2596 int verbose);
2597
2598 static int validate_geometry_ddf_bvd(struct supertype *st,
2599 int level, int layout, int raiddisks,
2600 int *chunk, unsigned long long size,
2601 char *dev, unsigned long long *freesize,
2602 int verbose);
2603
2604 static int validate_geometry_ddf(struct supertype *st,
2605 int level, int layout, int raiddisks,
2606 int *chunk, unsigned long long size,
2607 char *dev, unsigned long long *freesize,
2608 int verbose)
2609 {
2610 int fd;
2611 struct mdinfo *sra;
2612 int cfd;
2613
2614 /* ddf potentially supports lots of things, but it depends on
2615 * what devices are offered (and maybe kernel version?)
2616 * If given unused devices, we will make a container.
2617 * If given devices in a container, we will make a BVD.
2618 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2619 */
2620
2621 if (chunk && *chunk == UnSet)
2622 *chunk = DEFAULT_CHUNK;
2623
2624
2625 if (level == LEVEL_CONTAINER) {
2626 /* Must be a fresh device to add to a container */
2627 return validate_geometry_ddf_container(st, level, layout,
2628 raiddisks, chunk?*chunk:0,
2629 size, dev, freesize,
2630 verbose);
2631 }
2632
2633 if (!dev) {
2634 /* Initial sanity check. Exclude illegal levels. */
2635 int i;
2636 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2637 if (ddf_level_num[i].num2 == level)
2638 break;
2639 if (ddf_level_num[i].num1 == MAXINT) {
2640 if (verbose)
2641 fprintf(stderr, Name ": DDF does not support level %d arrays\n",
2642 level);
2643 return 0;
2644 }
2645 /* Should check layout? etc */
2646
2647 if (st->sb && freesize) {
2648 /* --create was given a container to create in.
2649 * So we need to check that there are enough
2650 * free spaces and return the amount of space.
2651 * We may as well remember which drives were
2652 * chosen so that add_to_super/getinfo_super
2653 * can return them.
2654 */
2655 return reserve_space(st, raiddisks, size, chunk?*chunk:0, freesize);
2656 }
2657 return 1;
2658 }
2659
2660 if (st->sb) {
2661 /* A container has already been opened, so we are
2662 * creating in there. Maybe a BVD, maybe an SVD.
2663 * Should make a distinction one day.
2664 */
2665 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2666 chunk, size, dev, freesize,
2667 verbose);
2668 }
2669 /* This is the first device for the array.
2670 * If it is a container, we read it in and do automagic allocations,
2671 * no other devices should be given.
2672 * Otherwise it must be a member device of a container, and we
2673 * do manual allocation.
2674 * Later we should check for a BVD and make an SVD.
2675 */
2676 fd = open(dev, O_RDONLY|O_EXCL, 0);
2677 if (fd >= 0) {
2678 sra = sysfs_read(fd, 0, GET_VERSION);
2679 close(fd);
2680 if (sra && sra->array.major_version == -1 &&
2681 strcmp(sra->text_version, "ddf") == 0) {
2682
2683 /* load super */
2684 /* find space for 'n' devices. */
2685 /* remember the devices */
2686 /* Somehow return the fact that we have enough */
2687 }
2688
2689 if (verbose)
2690 fprintf(stderr,
2691 Name ": ddf: Cannot create this array "
2692 "on device %s - a container is required.\n",
2693 dev);
2694 return 0;
2695 }
2696 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2697 if (verbose)
2698 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2699 dev, strerror(errno));
2700 return 0;
2701 }
2702 /* Well, it is in use by someone, maybe a 'ddf' container. */
2703 cfd = open_container(fd);
2704 if (cfd < 0) {
2705 close(fd);
2706 if (verbose)
2707 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2708 dev, strerror(EBUSY));
2709 return 0;
2710 }
2711 sra = sysfs_read(cfd, 0, GET_VERSION);
2712 close(fd);
2713 if (sra && sra->array.major_version == -1 &&
2714 strcmp(sra->text_version, "ddf") == 0) {
2715 /* This is a member of a ddf container. Load the container
2716 * and try to create a bvd
2717 */
2718 struct ddf_super *ddf;
2719 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL) == 0) {
2720 st->sb = ddf;
2721 st->container_dev = fd2devnum(cfd);
2722 close(cfd);
2723 return validate_geometry_ddf_bvd(st, level, layout,
2724 raiddisks, chunk, size,
2725 dev, freesize,
2726 verbose);
2727 }
2728 close(cfd);
2729 } else /* device may belong to a different container */
2730 return 0;
2731
2732 return 1;
2733 }
2734
2735 static int
2736 validate_geometry_ddf_container(struct supertype *st,
2737 int level, int layout, int raiddisks,
2738 int chunk, unsigned long long size,
2739 char *dev, unsigned long long *freesize,
2740 int verbose)
2741 {
2742 int fd;
2743 unsigned long long ldsize;
2744
2745 if (level != LEVEL_CONTAINER)
2746 return 0;
2747 if (!dev)
2748 return 1;
2749
2750 fd = open(dev, O_RDONLY|O_EXCL, 0);
2751 if (fd < 0) {
2752 if (verbose)
2753 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2754 dev, strerror(errno));
2755 return 0;
2756 }
2757 if (!get_dev_size(fd, dev, &ldsize)) {
2758 close(fd);
2759 return 0;
2760 }
2761 close(fd);
2762
2763 *freesize = avail_size_ddf(st, ldsize >> 9);
2764 if (*freesize == 0)
2765 return 0;
2766
2767 return 1;
2768 }
2769
2770 static int validate_geometry_ddf_bvd(struct supertype *st,
2771 int level, int layout, int raiddisks,
2772 int *chunk, unsigned long long size,
2773 char *dev, unsigned long long *freesize,
2774 int verbose)
2775 {
2776 struct stat stb;
2777 struct ddf_super *ddf = st->sb;
2778 struct dl *dl;
2779 unsigned long long pos = 0;
2780 unsigned long long maxsize;
2781 struct extent *e;
2782 int i;
2783 /* ddf/bvd supports lots of things, but not containers */
2784 if (level == LEVEL_CONTAINER) {
2785 if (verbose)
2786 fprintf(stderr, Name ": DDF cannot create a container within an container\n");
2787 return 0;
2788 }
2789 /* We must have the container info already read in. */
2790 if (!ddf)
2791 return 0;
2792
2793 if (!dev) {
2794 /* General test: make sure there is space for
2795 * 'raiddisks' device extents of size 'size'.
2796 */
2797 unsigned long long minsize = size;
2798 int dcnt = 0;
2799 if (minsize == 0)
2800 minsize = 8;
2801 for (dl = ddf->dlist; dl ; dl = dl->next)
2802 {
2803 int found = 0;
2804 pos = 0;
2805
2806 i = 0;
2807 e = get_extents(ddf, dl);
2808 if (!e) continue;
2809 do {
2810 unsigned long long esize;
2811 esize = e[i].start - pos;
2812 if (esize >= minsize)
2813 found = 1;
2814 pos = e[i].start + e[i].size;
2815 i++;
2816 } while (e[i-1].size);
2817 if (found)
2818 dcnt++;
2819 free(e);
2820 }
2821 if (dcnt < raiddisks) {
2822 if (verbose)
2823 fprintf(stderr,
2824 Name ": ddf: Not enough devices with "
2825 "space for this array (%d < %d)\n",
2826 dcnt, raiddisks);
2827 return 0;
2828 }
2829 return 1;
2830 }
2831 /* This device must be a member of the set */
2832 if (stat(dev, &stb) < 0)
2833 return 0;
2834 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2835 return 0;
2836 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2837 if (dl->major == (int)major(stb.st_rdev) &&
2838 dl->minor == (int)minor(stb.st_rdev))
2839 break;
2840 }
2841 if (!dl) {
2842 if (verbose)
2843 fprintf(stderr, Name ": ddf: %s is not in the "
2844 "same DDF set\n",
2845 dev);
2846 return 0;
2847 }
2848 e = get_extents(ddf, dl);
2849 maxsize = 0;
2850 i = 0;
2851 if (e) do {
2852 unsigned long long esize;
2853 esize = e[i].start - pos;
2854 if (esize >= maxsize)
2855 maxsize = esize;
2856 pos = e[i].start + e[i].size;
2857 i++;
2858 } while (e[i-1].size);
2859 *freesize = maxsize;
2860 // FIXME here I am
2861
2862 return 1;
2863 }
2864
2865 static int load_super_ddf_all(struct supertype *st, int fd,
2866 void **sbp, char *devname)
2867 {
2868 struct mdinfo *sra;
2869 struct ddf_super *super;
2870 struct mdinfo *sd, *best = NULL;
2871 int bestseq = 0;
2872 int seq;
2873 char nm[20];
2874 int dfd;
2875
2876 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2877 if (!sra)
2878 return 1;
2879 if (sra->array.major_version != -1 ||
2880 sra->array.minor_version != -2 ||
2881 strcmp(sra->text_version, "ddf") != 0)
2882 return 1;
2883
2884 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2885 return 1;
2886 memset(super, 0, sizeof(*super));
2887
2888 /* first, try each device, and choose the best ddf */
2889 for (sd = sra->devs ; sd ; sd = sd->next) {
2890 int rv;
2891 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2892 dfd = dev_open(nm, O_RDONLY);
2893 if (dfd < 0)
2894 return 2;
2895 rv = load_ddf_headers(dfd, super, NULL);
2896 close(dfd);
2897 if (rv == 0) {
2898 seq = __be32_to_cpu(super->active->seq);
2899 if (super->active->openflag)
2900 seq--;
2901 if (!best || seq > bestseq) {
2902 bestseq = seq;
2903 best = sd;
2904 }
2905 }
2906 }
2907 if (!best)
2908 return 1;
2909 /* OK, load this ddf */
2910 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2911 dfd = dev_open(nm, O_RDONLY);
2912 if (dfd < 0)
2913 return 1;
2914 load_ddf_headers(dfd, super, NULL);
2915 load_ddf_global(dfd, super, NULL);
2916 close(dfd);
2917 /* Now we need the device-local bits */
2918 for (sd = sra->devs ; sd ; sd = sd->next) {
2919 int rv;
2920
2921 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2922 dfd = dev_open(nm, O_RDWR);
2923 if (dfd < 0)
2924 return 2;
2925 rv = load_ddf_headers(dfd, super, NULL);
2926 if (rv == 0)
2927 rv = load_ddf_local(dfd, super, NULL, 1);
2928 if (rv)
2929 return 1;
2930 }
2931
2932 *sbp = super;
2933 if (st->ss == NULL) {
2934 st->ss = &super_ddf;
2935 st->minor_version = 0;
2936 st->max_devs = 512;
2937 }
2938 st->container_dev = fd2devnum(fd);
2939 return 0;
2940 }
2941
2942 static int load_container_ddf(struct supertype *st, int fd,
2943 char *devname)
2944 {
2945 return load_super_ddf_all(st, fd, &st->sb, devname);
2946 }
2947
2948 #endif /* MDASSEMBLE */
2949
2950 static struct mdinfo *container_content_ddf(struct supertype *st, char *subarray)
2951 {
2952 /* Given a container loaded by load_super_ddf_all,
2953 * extract information about all the arrays into
2954 * an mdinfo tree.
2955 *
2956 * For each vcl in conflist: create an mdinfo, fill it in,
2957 * then look for matching devices (phys_refnum) in dlist
2958 * and create appropriate device mdinfo.
2959 */
2960 struct ddf_super *ddf = st->sb;
2961 struct mdinfo *rest = NULL;
2962 struct vcl *vc;
2963
2964 for (vc = ddf->conflist ; vc ; vc=vc->next)
2965 {
2966 unsigned int i;
2967 unsigned int j;
2968 struct mdinfo *this;
2969 char *ep;
2970
2971 if (subarray &&
2972 (strtoul(subarray, &ep, 10) != vc->vcnum ||
2973 *ep != '\0'))
2974 continue;
2975
2976 this = malloc(sizeof(*this));
2977 memset(this, 0, sizeof(*this));
2978 this->next = rest;
2979 rest = this;
2980
2981 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2982 this->array.raid_disks =
2983 __be16_to_cpu(vc->conf.prim_elmnt_count);
2984 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2985 this->array.raid_disks);
2986 this->array.md_minor = -1;
2987 this->array.major_version = -1;
2988 this->array.minor_version = -2;
2989 this->array.ctime = DECADE +
2990 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2991 this->array.utime = DECADE +
2992 __be32_to_cpu(vc->conf.timestamp);
2993 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2994
2995 i = vc->vcnum;
2996 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2997 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2998 DDF_init_full) {
2999 this->array.state = 0;
3000 this->resync_start = 0;
3001 } else {
3002 this->array.state = 1;
3003 this->resync_start = MaxSector;
3004 }
3005 memcpy(this->name, ddf->virt->entries[i].name, 16);
3006 this->name[16]=0;
3007 for(j=0; j<16; j++)
3008 if (this->name[j] == ' ')
3009 this->name[j] = 0;
3010
3011 memset(this->uuid, 0, sizeof(this->uuid));
3012 this->component_size = __be64_to_cpu(vc->conf.blocks);
3013 this->array.size = this->component_size / 2;
3014 this->container_member = i;
3015
3016 ddf->currentconf = vc;
3017 uuid_from_super_ddf(st, this->uuid);
3018 ddf->currentconf = NULL;
3019
3020 sprintf(this->text_version, "/%s/%d",
3021 devnum2devname(st->container_dev),
3022 this->container_member);
3023
3024 for (i = 0 ; i < ddf->mppe ; i++) {
3025 struct mdinfo *dev;
3026 struct dl *d;
3027 int stt;
3028 int pd;
3029
3030 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
3031 continue;
3032
3033 for (pd = __be16_to_cpu(ddf->phys->used_pdes);
3034 pd--;)
3035 if (ddf->phys->entries[pd].refnum
3036 == vc->conf.phys_refnum[i])
3037 break;
3038 if (pd < 0)
3039 continue;
3040
3041 stt = __be16_to_cpu(ddf->phys->entries[pd].state);
3042 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3043 != DDF_Online)
3044 continue;
3045
3046 this->array.working_disks++;
3047
3048 for (d = ddf->dlist; d ; d=d->next)
3049 if (d->disk.refnum == vc->conf.phys_refnum[i])
3050 break;
3051 if (d == NULL)
3052 /* Haven't found that one yet, maybe there are others */
3053 continue;
3054
3055 dev = malloc(sizeof(*dev));
3056 memset(dev, 0, sizeof(*dev));
3057 dev->next = this->devs;
3058 this->devs = dev;
3059
3060 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3061 dev->disk.major = d->major;
3062 dev->disk.minor = d->minor;
3063 dev->disk.raid_disk = i;
3064 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3065 dev->recovery_start = MaxSector;
3066
3067 dev->events = __be32_to_cpu(ddf->primary.seq);
3068 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3069 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3070 if (d->devname)
3071 strcpy(dev->name, d->devname);
3072 }
3073 }
3074 return rest;
3075 }
3076
3077 static int store_super_ddf(struct supertype *st, int fd)
3078 {
3079 struct ddf_super *ddf = st->sb;
3080 unsigned long long dsize;
3081 void *buf;
3082 int rc;
3083
3084 if (!ddf)
3085 return 1;
3086
3087 /* ->dlist and ->conflist will be set for updates, currently not
3088 * supported
3089 */
3090 if (ddf->dlist || ddf->conflist)
3091 return 1;
3092
3093 if (!get_dev_size(fd, NULL, &dsize))
3094 return 1;
3095
3096 if (posix_memalign(&buf, 512, 512) != 0)
3097 return 1;
3098 memset(buf, 0, 512);
3099
3100 lseek64(fd, dsize-512, 0);
3101 rc = write(fd, buf, 512);
3102 free(buf);
3103 if (rc < 0)
3104 return 1;
3105 return 0;
3106 }
3107
3108 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3109 {
3110 /*
3111 * return:
3112 * 0 same, or first was empty, and second was copied
3113 * 1 second had wrong number
3114 * 2 wrong uuid
3115 * 3 wrong other info
3116 */
3117 struct ddf_super *first = st->sb;
3118 struct ddf_super *second = tst->sb;
3119
3120 if (!first) {
3121 st->sb = tst->sb;
3122 tst->sb = NULL;
3123 return 0;
3124 }
3125
3126 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3127 return 2;
3128
3129 /* FIXME should I look at anything else? */
3130 return 0;
3131 }
3132
3133 #ifndef MDASSEMBLE
3134 /*
3135 * A new array 'a' has been started which claims to be instance 'inst'
3136 * within container 'c'.
3137 * We need to confirm that the array matches the metadata in 'c' so
3138 * that we don't corrupt any metadata.
3139 */
3140 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3141 {
3142 dprintf("ddf: open_new %s\n", inst);
3143 a->info.container_member = atoi(inst);
3144 return 0;
3145 }
3146
3147 /*
3148 * The array 'a' is to be marked clean in the metadata.
3149 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3150 * clean up to the point (in sectors). If that cannot be recorded in the
3151 * metadata, then leave it as dirty.
3152 *
3153 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3154 * !global! virtual_disk.virtual_entry structure.
3155 */
3156 static int ddf_set_array_state(struct active_array *a, int consistent)
3157 {
3158 struct ddf_super *ddf = a->container->sb;
3159 int inst = a->info.container_member;
3160 int old = ddf->virt->entries[inst].state;
3161 if (consistent == 2) {
3162 /* Should check if a recovery should be started FIXME */
3163 consistent = 1;
3164 if (!is_resync_complete(&a->info))
3165 consistent = 0;
3166 }
3167 if (consistent)
3168 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3169 else
3170 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3171 if (old != ddf->virt->entries[inst].state)
3172 ddf->updates_pending = 1;
3173
3174 old = ddf->virt->entries[inst].init_state;
3175 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3176 if (is_resync_complete(&a->info))
3177 ddf->virt->entries[inst].init_state |= DDF_init_full;
3178 else if (a->info.resync_start == 0)
3179 ddf->virt->entries[inst].init_state |= DDF_init_not;
3180 else
3181 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3182 if (old != ddf->virt->entries[inst].init_state)
3183 ddf->updates_pending = 1;
3184
3185 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3186 a->info.resync_start);
3187 return consistent;
3188 }
3189
3190 #define container_of(ptr, type, member) ({ \
3191 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
3192 (type *)( (char *)__mptr - offsetof(type,member) );})
3193 /*
3194 * The state of each disk is stored in the global phys_disk structure
3195 * in phys_disk.entries[n].state.
3196 * This makes various combinations awkward.
3197 * - When a device fails in any array, it must be failed in all arrays
3198 * that include a part of this device.
3199 * - When a component is rebuilding, we cannot include it officially in the
3200 * array unless this is the only array that uses the device.
3201 *
3202 * So: when transitioning:
3203 * Online -> failed, just set failed flag. monitor will propagate
3204 * spare -> online, the device might need to be added to the array.
3205 * spare -> failed, just set failed. Don't worry if in array or not.
3206 */
3207 static void ddf_set_disk(struct active_array *a, int n, int state)
3208 {
3209 struct ddf_super *ddf = a->container->sb;
3210 unsigned int inst = a->info.container_member;
3211 struct vd_config *vc = find_vdcr(ddf, inst);
3212 int pd = find_phys(ddf, vc->phys_refnum[n]);
3213 int i, st, working;
3214 struct mdinfo *mdi;
3215 struct dl *dl;
3216
3217 if (vc == NULL) {
3218 dprintf("ddf: cannot find instance %d!!\n", inst);
3219 return;
3220 }
3221 /* Find the matching slot in 'info'. */
3222 for (mdi = a->info.devs; mdi; mdi = mdi->next)
3223 if (mdi->disk.raid_disk == n)
3224 break;
3225 if (!mdi)
3226 return;
3227
3228 /* and find the 'dl' entry corresponding to that. */
3229 for (dl = ddf->dlist; dl; dl = dl->next)
3230 if (mdi->state_fd >= 0 &&
3231 mdi->disk.major == dl->major &&
3232 mdi->disk.minor == dl->minor)
3233 break;
3234 if (!dl)
3235 return;
3236
3237 if (pd < 0 || pd != dl->pdnum) {
3238 /* disk doesn't currently exist or has changed.
3239 * If it is now in_sync, insert it. */
3240 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3241 struct vcl *vcl;
3242 pd = dl->pdnum;
3243 vc->phys_refnum[n] = dl->disk.refnum;
3244 vcl = container_of(vc, struct vcl, conf);
3245 vcl->lba_offset[n] = mdi->data_offset;
3246 ddf->phys->entries[pd].type &=
3247 ~__cpu_to_be16(DDF_Global_Spare);
3248 ddf->phys->entries[pd].type |=
3249 __cpu_to_be16(DDF_Active_in_VD);
3250 ddf->updates_pending = 1;
3251 }
3252 } else {
3253 int old = ddf->phys->entries[pd].state;
3254 if (state & DS_FAULTY)
3255 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3256 if (state & DS_INSYNC) {
3257 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3258 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3259 }
3260 if (old != ddf->phys->entries[pd].state)
3261 ddf->updates_pending = 1;
3262 }
3263
3264 dprintf("ddf: set_disk %d to %x\n", n, state);
3265
3266 /* Now we need to check the state of the array and update
3267 * virtual_disk.entries[n].state.
3268 * It needs to be one of "optimal", "degraded", "failed".
3269 * I don't understand 'deleted' or 'missing'.
3270 */
3271 working = 0;
3272 for (i=0; i < a->info.array.raid_disks; i++) {
3273 pd = find_phys(ddf, vc->phys_refnum[i]);
3274 if (pd < 0)
3275 continue;
3276 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3277 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3278 == DDF_Online)
3279 working++;
3280 }
3281 state = DDF_state_degraded;
3282 if (working == a->info.array.raid_disks)
3283 state = DDF_state_optimal;
3284 else switch(vc->prl) {
3285 case DDF_RAID0:
3286 case DDF_CONCAT:
3287 case DDF_JBOD:
3288 state = DDF_state_failed;
3289 break;
3290 case DDF_RAID1:
3291 if (working == 0)
3292 state = DDF_state_failed;
3293 else if (working == 2 && state == DDF_state_degraded)
3294 state = DDF_state_part_optimal;
3295 break;
3296 case DDF_RAID4:
3297 case DDF_RAID5:
3298 if (working < a->info.array.raid_disks-1)
3299 state = DDF_state_failed;
3300 break;
3301 case DDF_RAID6:
3302 if (working < a->info.array.raid_disks-2)
3303 state = DDF_state_failed;
3304 else if (working == a->info.array.raid_disks-1)
3305 state = DDF_state_part_optimal;
3306 break;
3307 }
3308
3309 if (ddf->virt->entries[inst].state !=
3310 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3311 | state)) {
3312
3313 ddf->virt->entries[inst].state =
3314 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3315 | state;
3316 ddf->updates_pending = 1;
3317 }
3318
3319 }
3320
3321 static void ddf_sync_metadata(struct supertype *st)
3322 {
3323
3324 /*
3325 * Write all data to all devices.
3326 * Later, we might be able to track whether only local changes
3327 * have been made, or whether any global data has been changed,
3328 * but ddf is sufficiently weird that it probably always
3329 * changes global data ....
3330 */
3331 struct ddf_super *ddf = st->sb;
3332 if (!ddf->updates_pending)
3333 return;
3334 ddf->updates_pending = 0;
3335 __write_init_super_ddf(st);
3336 dprintf("ddf: sync_metadata\n");
3337 }
3338
3339 static void ddf_process_update(struct supertype *st,
3340 struct metadata_update *update)
3341 {
3342 /* Apply this update to the metadata.
3343 * The first 4 bytes are a DDF_*_MAGIC which guides
3344 * our actions.
3345 * Possible update are:
3346 * DDF_PHYS_RECORDS_MAGIC
3347 * Add a new physical device or remove an old one.
3348 * Changes to this record only happen implicitly.
3349 * used_pdes is the device number.
3350 * DDF_VIRT_RECORDS_MAGIC
3351 * Add a new VD. Possibly also change the 'access' bits.
3352 * populated_vdes is the entry number.
3353 * DDF_VD_CONF_MAGIC
3354 * New or updated VD. the VIRT_RECORD must already
3355 * exist. For an update, phys_refnum and lba_offset
3356 * (at least) are updated, and the VD_CONF must
3357 * be written to precisely those devices listed with
3358 * a phys_refnum.
3359 * DDF_SPARE_ASSIGN_MAGIC
3360 * replacement Spare Assignment Record... but for which device?
3361 *
3362 * So, e.g.:
3363 * - to create a new array, we send a VIRT_RECORD and
3364 * a VD_CONF. Then assemble and start the array.
3365 * - to activate a spare we send a VD_CONF to add the phys_refnum
3366 * and offset. This will also mark the spare as active with
3367 * a spare-assignment record.
3368 */
3369 struct ddf_super *ddf = st->sb;
3370 __u32 *magic = (__u32*)update->buf;
3371 struct phys_disk *pd;
3372 struct virtual_disk *vd;
3373 struct vd_config *vc;
3374 struct vcl *vcl;
3375 struct dl *dl;
3376 unsigned int mppe;
3377 unsigned int ent;
3378 unsigned int pdnum, pd2;
3379
3380 dprintf("Process update %x\n", *magic);
3381
3382 switch (*magic) {
3383 case DDF_PHYS_RECORDS_MAGIC:
3384
3385 if (update->len != (sizeof(struct phys_disk) +
3386 sizeof(struct phys_disk_entry)))
3387 return;
3388 pd = (struct phys_disk*)update->buf;
3389
3390 ent = __be16_to_cpu(pd->used_pdes);
3391 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3392 return;
3393 if (pd->entries[0].state & __cpu_to_be16(DDF_Missing)) {
3394 struct dl **dlp;
3395 /* removing this disk. */
3396 ddf->phys->entries[ent].state |= __cpu_to_be16(DDF_Missing);
3397 for (dlp = &ddf->dlist; *dlp; dlp = &(*dlp)->next) {
3398 struct dl *dl = *dlp;
3399 if (dl->pdnum == (signed)ent) {
3400 close(dl->fd);
3401 dl->fd = -1;
3402 /* FIXME this doesn't free
3403 * dl->devname */
3404 update->space = dl;
3405 *dlp = dl->next;
3406 break;
3407 }
3408 }
3409 ddf->updates_pending = 1;
3410 return;
3411 }
3412 if (!all_ff(ddf->phys->entries[ent].guid))
3413 return;
3414 ddf->phys->entries[ent] = pd->entries[0];
3415 ddf->phys->used_pdes = __cpu_to_be16(1 +
3416 __be16_to_cpu(ddf->phys->used_pdes));
3417 ddf->updates_pending = 1;
3418 if (ddf->add_list) {
3419 struct active_array *a;
3420 struct dl *al = ddf->add_list;
3421 ddf->add_list = al->next;
3422
3423 al->next = ddf->dlist;
3424 ddf->dlist = al;
3425
3426 /* As a device has been added, we should check
3427 * for any degraded devices that might make
3428 * use of this spare */
3429 for (a = st->arrays ; a; a=a->next)
3430 a->check_degraded = 1;
3431 }
3432 break;
3433
3434 case DDF_VIRT_RECORDS_MAGIC:
3435
3436 if (update->len != (sizeof(struct virtual_disk) +
3437 sizeof(struct virtual_entry)))
3438 return;
3439 vd = (struct virtual_disk*)update->buf;
3440
3441 ent = __be16_to_cpu(vd->populated_vdes);
3442 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3443 return;
3444 if (!all_ff(ddf->virt->entries[ent].guid))
3445 return;
3446 ddf->virt->entries[ent] = vd->entries[0];
3447 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3448 __be16_to_cpu(ddf->virt->populated_vdes));
3449 ddf->updates_pending = 1;
3450 break;
3451
3452 case DDF_VD_CONF_MAGIC:
3453 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3454
3455 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3456 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3457 return;
3458 vc = (struct vd_config*)update->buf;
3459 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3460 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3461 break;
3462 dprintf("vcl = %p\n", vcl);
3463 if (vcl) {
3464 /* An update, just copy the phys_refnum and lba_offset
3465 * fields
3466 */
3467 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3468 mppe * (sizeof(__u32) + sizeof(__u64)));
3469 } else {
3470 /* A new VD_CONF */
3471 if (!update->space)
3472 return;
3473 vcl = update->space;
3474 update->space = NULL;
3475 vcl->next = ddf->conflist;
3476 memcpy(&vcl->conf, vc, update->len);
3477 vcl->lba_offset = (__u64*)
3478 &vcl->conf.phys_refnum[mppe];
3479 for (ent = 0;
3480 ent < __be16_to_cpu(ddf->virt->populated_vdes);
3481 ent++)
3482 if (memcmp(vc->guid, ddf->virt->entries[ent].guid,
3483 DDF_GUID_LEN) == 0) {
3484 vcl->vcnum = ent;
3485 break;
3486 }
3487 ddf->conflist = vcl;
3488 }
3489 /* Set DDF_Transition on all Failed devices - to help
3490 * us detect those that are no longer in use
3491 */
3492 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3493 if (ddf->phys->entries[pdnum].state
3494 & __be16_to_cpu(DDF_Failed))
3495 ddf->phys->entries[pdnum].state
3496 |= __be16_to_cpu(DDF_Transition);
3497 /* Now make sure vlist is correct for each dl. */
3498 for (dl = ddf->dlist; dl; dl = dl->next) {
3499 unsigned int dn;
3500 unsigned int vn = 0;
3501 int in_degraded = 0;
3502 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3503 for (dn=0; dn < ddf->mppe ; dn++)
3504 if (vcl->conf.phys_refnum[dn] ==
3505 dl->disk.refnum) {
3506 int vstate;
3507 dprintf("dev %d has %p at %d\n",
3508 dl->pdnum, vcl, vn);
3509 /* Clear the Transition flag */
3510 if (ddf->phys->entries[dl->pdnum].state
3511 & __be16_to_cpu(DDF_Failed))
3512 ddf->phys->entries[dl->pdnum].state &=
3513 ~__be16_to_cpu(DDF_Transition);
3514
3515 dl->vlist[vn++] = vcl;
3516 vstate = ddf->virt->entries[vcl->vcnum].state
3517 & DDF_state_mask;
3518 if (vstate == DDF_state_degraded ||
3519 vstate == DDF_state_part_optimal)
3520 in_degraded = 1;
3521 break;
3522 }
3523 while (vn < ddf->max_part)
3524 dl->vlist[vn++] = NULL;
3525 if (dl->vlist[0]) {
3526 ddf->phys->entries[dl->pdnum].type &=
3527 ~__cpu_to_be16(DDF_Global_Spare);
3528 if (!(ddf->phys->entries[dl->pdnum].type &
3529 __cpu_to_be16(DDF_Active_in_VD))) {
3530 ddf->phys->entries[dl->pdnum].type |=
3531 __cpu_to_be16(DDF_Active_in_VD);
3532 if (in_degraded)
3533 ddf->phys->entries[dl->pdnum].state |=
3534 __cpu_to_be16(DDF_Rebuilding);
3535 }
3536 }
3537 if (dl->spare) {
3538 ddf->phys->entries[dl->pdnum].type &=
3539 ~__cpu_to_be16(DDF_Global_Spare);
3540 ddf->phys->entries[dl->pdnum].type |=
3541 __cpu_to_be16(DDF_Spare);
3542 }
3543 if (!dl->vlist[0] && !dl->spare) {
3544 ddf->phys->entries[dl->pdnum].type |=
3545 __cpu_to_be16(DDF_Global_Spare);
3546 ddf->phys->entries[dl->pdnum].type &=
3547 ~__cpu_to_be16(DDF_Spare |
3548 DDF_Active_in_VD);
3549 }
3550 }
3551
3552 /* Now remove any 'Failed' devices that are not part
3553 * of any VD. They will have the Transition flag set.
3554 * Once done, we need to update all dl->pdnum numbers.
3555 */
3556 pd2 = 0;
3557 for (pdnum = 0; pdnum < __be16_to_cpu(ddf->phys->used_pdes); pdnum++)
3558 if ((ddf->phys->entries[pdnum].state
3559 & __be16_to_cpu(DDF_Failed))
3560 && (ddf->phys->entries[pdnum].state
3561 & __be16_to_cpu(DDF_Transition)))
3562 /* skip this one */;
3563 else if (pdnum == pd2)
3564 pd2++;
3565 else {
3566 ddf->phys->entries[pd2] = ddf->phys->entries[pdnum];
3567 for (dl = ddf->dlist; dl; dl = dl->next)
3568 if (dl->pdnum == (int)pdnum)
3569 dl->pdnum = pd2;
3570 pd2++;
3571 }
3572 ddf->phys->used_pdes = __cpu_to_be16(pd2);
3573 while (pd2 < pdnum) {
3574 memset(ddf->phys->entries[pd2].guid, 0xff, DDF_GUID_LEN);
3575 pd2++;
3576 }
3577
3578 ddf->updates_pending = 1;
3579 break;
3580 case DDF_SPARE_ASSIGN_MAGIC:
3581 default: break;
3582 }
3583 }
3584
3585 static void ddf_prepare_update(struct supertype *st,
3586 struct metadata_update *update)
3587 {
3588 /* This update arrived at managemon.
3589 * We are about to pass it to monitor.
3590 * If a malloc is needed, do it here.
3591 */
3592 struct ddf_super *ddf = st->sb;
3593 __u32 *magic = (__u32*)update->buf;
3594 if (*magic == DDF_VD_CONF_MAGIC)
3595 if (posix_memalign(&update->space, 512,
3596 offsetof(struct vcl, conf)
3597 + ddf->conf_rec_len * 512) != 0)
3598 update->space = NULL;
3599 }
3600
3601 /*
3602 * Check if the array 'a' is degraded but not failed.
3603 * If it is, find as many spares as are available and needed and
3604 * arrange for their inclusion.
3605 * We only choose devices which are not already in the array,
3606 * and prefer those with a spare-assignment to this array.
3607 * otherwise we choose global spares - assuming always that
3608 * there is enough room.
3609 * For each spare that we assign, we return an 'mdinfo' which
3610 * describes the position for the device in the array.
3611 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3612 * the new phys_refnum and lba_offset values.
3613 *
3614 * Only worry about BVDs at the moment.
3615 */
3616 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3617 struct metadata_update **updates)
3618 {
3619 int working = 0;
3620 struct mdinfo *d;
3621 struct ddf_super *ddf = a->container->sb;
3622 int global_ok = 0;
3623 struct mdinfo *rv = NULL;
3624 struct mdinfo *di;
3625 struct metadata_update *mu;
3626 struct dl *dl;
3627 int i;
3628 struct vd_config *vc;
3629 __u64 *lba;
3630
3631 for (d = a->info.devs ; d ; d = d->next) {
3632 if ((d->curr_state & DS_FAULTY) &&
3633 d->state_fd >= 0)
3634 /* wait for Removal to happen */
3635 return NULL;
3636 if (d->state_fd >= 0)
3637 working ++;
3638 }
3639
3640 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3641 a->info.array.level);
3642 if (working == a->info.array.raid_disks)
3643 return NULL; /* array not degraded */
3644 switch (a->info.array.level) {
3645 case 1:
3646 if (working == 0)
3647 return NULL; /* failed */
3648 break;
3649 case 4:
3650 case 5:
3651 if (working < a->info.array.raid_disks - 1)
3652 return NULL; /* failed */
3653 break;
3654 case 6:
3655 if (working < a->info.array.raid_disks - 2)
3656 return NULL; /* failed */
3657 break;
3658 default: /* concat or stripe */
3659 return NULL; /* failed */
3660 }
3661
3662 /* For each slot, if it is not working, find a spare */
3663 dl = ddf->dlist;
3664 for (i = 0; i < a->info.array.raid_disks; i++) {
3665 for (d = a->info.devs ; d ; d = d->next)
3666 if (d->disk.raid_disk == i)
3667 break;
3668 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3669 if (d && (d->state_fd >= 0))
3670 continue;
3671
3672 /* OK, this device needs recovery. Find a spare */
3673 again:
3674 for ( ; dl ; dl = dl->next) {
3675 unsigned long long esize;
3676 unsigned long long pos;
3677 struct mdinfo *d2;
3678 int is_global = 0;
3679 int is_dedicated = 0;
3680 struct extent *ex;
3681 unsigned int j;
3682 /* If in this array, skip */
3683 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3684 if (d2->state_fd >= 0 &&
3685 d2->disk.major == dl->major &&
3686 d2->disk.minor == dl->minor) {
3687 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3688 break;
3689 }
3690 if (d2)
3691 continue;
3692 if (ddf->phys->entries[dl->pdnum].type &
3693 __cpu_to_be16(DDF_Spare)) {
3694 /* Check spare assign record */
3695 if (dl->spare) {
3696 if (dl->spare->type & DDF_spare_dedicated) {
3697 /* check spare_ents for guid */
3698 for (j = 0 ;
3699 j < __be16_to_cpu(dl->spare->populated);
3700 j++) {
3701 if (memcmp(dl->spare->spare_ents[j].guid,
3702 ddf->virt->entries[a->info.container_member].guid,
3703 DDF_GUID_LEN) == 0)
3704 is_dedicated = 1;
3705 }
3706 } else
3707 is_global = 1;
3708 }
3709 } else if (ddf->phys->entries[dl->pdnum].type &
3710 __cpu_to_be16(DDF_Global_Spare)) {
3711 is_global = 1;
3712 }
3713 if ( ! (is_dedicated ||
3714 (is_global && global_ok))) {
3715 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3716 is_dedicated, is_global);
3717 continue;
3718 }
3719
3720 /* We are allowed to use this device - is there space?
3721 * We need a->info.component_size sectors */
3722 ex = get_extents(ddf, dl);
3723 if (!ex) {
3724 dprintf("cannot get extents\n");
3725 continue;
3726 }
3727 j = 0; pos = 0;
3728 esize = 0;
3729
3730 do {
3731 esize = ex[j].start - pos;
3732 if (esize >= a->info.component_size)
3733 break;
3734 pos = ex[j].start + ex[j].size;
3735 j++;
3736 } while (ex[j-1].size);
3737
3738 free(ex);
3739 if (esize < a->info.component_size) {
3740 dprintf("%x:%x has no room: %llu %llu\n",
3741 dl->major, dl->minor,
3742 esize, a->info.component_size);
3743 /* No room */
3744 continue;
3745 }
3746
3747 /* Cool, we have a device with some space at pos */
3748 di = malloc(sizeof(*di));
3749 if (!di)
3750 continue;
3751 memset(di, 0, sizeof(*di));
3752 di->disk.number = i;
3753 di->disk.raid_disk = i;
3754 di->disk.major = dl->major;
3755 di->disk.minor = dl->minor;
3756 di->disk.state = 0;
3757 di->recovery_start = 0;
3758 di->data_offset = pos;
3759 di->component_size = a->info.component_size;
3760 di->container_member = dl->pdnum;
3761 di->next = rv;
3762 rv = di;
3763 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3764 i, pos);
3765
3766 break;
3767 }
3768 if (!dl && ! global_ok) {
3769 /* not enough dedicated spares, try global */
3770 global_ok = 1;
3771 dl = ddf->dlist;
3772 goto again;
3773 }
3774 }
3775
3776 if (!rv)
3777 /* No spares found */
3778 return rv;
3779 /* Now 'rv' has a list of devices to return.
3780 * Create a metadata_update record to update the
3781 * phys_refnum and lba_offset values
3782 */
3783 mu = malloc(sizeof(*mu));
3784 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3785 free(mu);
3786 mu = NULL;
3787 }
3788 if (!mu) {
3789 while (rv) {
3790 struct mdinfo *n = rv->next;
3791
3792 free(rv);
3793 rv = n;
3794 }
3795 return NULL;
3796 }
3797
3798 mu->buf = malloc(ddf->conf_rec_len * 512);
3799 mu->len = ddf->conf_rec_len * 512;
3800 mu->space = NULL;
3801 mu->space_list = NULL;
3802 mu->next = *updates;
3803 vc = find_vdcr(ddf, a->info.container_member);
3804 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3805
3806 vc = (struct vd_config*)mu->buf;
3807 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3808 for (di = rv ; di ; di = di->next) {
3809 vc->phys_refnum[di->disk.raid_disk] =
3810 ddf->phys->entries[dl->pdnum].refnum;
3811 lba[di->disk.raid_disk] = di->data_offset;
3812 }
3813 *updates = mu;
3814 return rv;
3815 }
3816 #endif /* MDASSEMBLE */
3817
3818 static int ddf_level_to_layout(int level)
3819 {
3820 switch(level) {
3821 case 0:
3822 case 1:
3823 return 0;
3824 case 5:
3825 return ALGORITHM_LEFT_SYMMETRIC;
3826 case 6:
3827 return ALGORITHM_ROTATING_N_CONTINUE;
3828 case 10:
3829 return 0x102;
3830 default:
3831 return UnSet;
3832 }
3833 }
3834
3835 static void default_geometry_ddf(struct supertype *st, int *level, int *layout, int *chunk)
3836 {
3837 if (level && *level == UnSet)
3838 *level = LEVEL_CONTAINER;
3839
3840 if (level && layout && *layout == UnSet)
3841 *layout = ddf_level_to_layout(*level);
3842 }
3843
3844 struct superswitch super_ddf = {
3845 #ifndef MDASSEMBLE
3846 .examine_super = examine_super_ddf,
3847 .brief_examine_super = brief_examine_super_ddf,
3848 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3849 .export_examine_super = export_examine_super_ddf,
3850 .detail_super = detail_super_ddf,
3851 .brief_detail_super = brief_detail_super_ddf,
3852 .validate_geometry = validate_geometry_ddf,
3853 .write_init_super = write_init_super_ddf,
3854 .add_to_super = add_to_super_ddf,
3855 .remove_from_super = remove_from_super_ddf,
3856 .load_container = load_container_ddf,
3857 #endif
3858 .match_home = match_home_ddf,
3859 .uuid_from_super= uuid_from_super_ddf,
3860 .getinfo_super = getinfo_super_ddf,
3861 .update_super = update_super_ddf,
3862
3863 .avail_size = avail_size_ddf,
3864
3865 .compare_super = compare_super_ddf,
3866
3867 .load_super = load_super_ddf,
3868 .init_super = init_super_ddf,
3869 .store_super = store_super_ddf,
3870 .free_super = free_super_ddf,
3871 .match_metadata_desc = match_metadata_desc_ddf,
3872 .container_content = container_content_ddf,
3873 .default_geometry = default_geometry_ddf,
3874
3875 .external = 1,
3876
3877 #ifndef MDASSEMBLE
3878 /* for mdmon */
3879 .open_new = ddf_open_new,
3880 .set_array_state= ddf_set_array_state,
3881 .set_disk = ddf_set_disk,
3882 .sync_metadata = ddf_sync_metadata,
3883 .process_update = ddf_process_update,
3884 .prepare_update = ddf_prepare_update,
3885 .activate_spare = ddf_activate_spare,
3886 #endif
3887 .name = "ddf",
3888 };