]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
ddf: minor activate_super fixes.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 unsigned int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 unsigned int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static unsigned int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if ((unsigned long long)lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if ((unsigned long long)read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 unsigned int i;
646 unsigned int confsec;
647 int vnum;
648 unsigned int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
649 unsigned long long dsize;
650
651 /* First the local disk info */
652 if (posix_memalign((void**)&dl, 512,
653 sizeof(*dl) +
654 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
655 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
656 __func__);
657 return 1;
658 }
659
660 load_section(fd, super, &dl->disk,
661 super->active->data_section_offset,
662 super->active->data_section_length,
663 0);
664 dl->devname = devname ? strdup(devname) : NULL;
665
666 fstat(fd, &stb);
667 dl->major = major(stb.st_rdev);
668 dl->minor = minor(stb.st_rdev);
669 dl->next = super->dlist;
670 dl->fd = keep ? fd : -1;
671
672 dl->size = 0;
673 if (get_dev_size(fd, devname, &dsize))
674 dl->size = dsize >> 9;
675 dl->spare = NULL;
676 for (i = 0 ; i < super->max_part ; i++)
677 dl->vlist[i] = NULL;
678 super->dlist = dl;
679 dl->pdnum = -1;
680 for (i = 0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
681 if (memcmp(super->phys->entries[i].guid,
682 dl->disk.guid, DDF_GUID_LEN) == 0)
683 dl->pdnum = i;
684
685 /* Now the config list. */
686 /* 'conf' is an array of config entries, some of which are
687 * probably invalid. Those which are good need to be copied into
688 * the conflist
689 */
690
691 conf = load_section(fd, super, NULL,
692 super->active->config_section_offset,
693 super->active->config_section_length,
694 0);
695
696 vnum = 0;
697 for (confsec = 0;
698 confsec < __be32_to_cpu(super->active->config_section_length);
699 confsec += super->conf_rec_len) {
700 struct vd_config *vd =
701 (struct vd_config *)((char*)conf + confsec*512);
702 struct vcl *vcl;
703
704 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
705 if (dl->spare)
706 continue;
707 if (posix_memalign((void**)&dl->spare, 512,
708 super->conf_rec_len*512) != 0) {
709 fprintf(stderr, Name
710 ": %s could not allocate spare info buf\n",
711 __func__);
712 return 1;
713 }
714
715 memcpy(dl->spare, vd, super->conf_rec_len*512);
716 continue;
717 }
718 if (vd->magic != DDF_VD_CONF_MAGIC)
719 continue;
720 for (vcl = super->conflist; vcl; vcl = vcl->next) {
721 if (memcmp(vcl->conf.guid,
722 vd->guid, DDF_GUID_LEN) == 0)
723 break;
724 }
725
726 if (vcl) {
727 dl->vlist[vnum++] = vcl;
728 if (__be32_to_cpu(vd->seqnum) <=
729 __be32_to_cpu(vcl->conf.seqnum))
730 continue;
731 } else {
732 if (posix_memalign((void**)&vcl, 512,
733 (super->conf_rec_len*512 +
734 offsetof(struct vcl, conf))) != 0) {
735 fprintf(stderr, Name
736 ": %s could not allocate vcl buf\n",
737 __func__);
738 return 1;
739 }
740 vcl->next = super->conflist;
741 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
742 super->conflist = vcl;
743 dl->vlist[vnum++] = vcl;
744 }
745 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
746 vcl->lba_offset = (__u64*)
747 &vcl->conf.phys_refnum[super->mppe];
748
749 for (i=0; i < max_virt_disks ; i++)
750 if (memcmp(super->virt->entries[i].guid,
751 vcl->conf.guid, DDF_GUID_LEN)==0)
752 break;
753 if (i < max_virt_disks)
754 vcl->vcnum = i;
755 }
756 free(conf);
757
758 return 0;
759 }
760
761 #ifndef MDASSEMBLE
762 static int load_super_ddf_all(struct supertype *st, int fd,
763 void **sbp, char *devname, int keep_fd);
764 #endif
765
766 static void free_super_ddf(struct supertype *st);
767
768 static int load_super_ddf(struct supertype *st, int fd,
769 char *devname)
770 {
771 unsigned long long dsize;
772 struct ddf_super *super;
773 int rv;
774
775 #ifndef MDASSEMBLE
776 /* if 'fd' is a container, load metadata from all the devices */
777 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
778 return 0;
779 #endif
780 if (st->subarray[0])
781 return 1; /* FIXME Is this correct */
782
783 if (get_dev_size(fd, devname, &dsize) == 0)
784 return 1;
785
786 if (test_partition(fd))
787 /* DDF is not allowed on partitions */
788 return 1;
789
790 /* 32M is a lower bound */
791 if (dsize <= 32*1024*1024) {
792 if (devname)
793 fprintf(stderr,
794 Name ": %s is too small for ddf: "
795 "size is %llu sectors.\n",
796 devname, dsize>>9);
797 return 1;
798 }
799 if (dsize & 511) {
800 if (devname)
801 fprintf(stderr,
802 Name ": %s is an odd size for ddf: "
803 "size is %llu bytes.\n",
804 devname, dsize);
805 return 1;
806 }
807
808 free_super_ddf(st);
809
810 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
811 fprintf(stderr, Name ": malloc of %zu failed.\n",
812 sizeof(*super));
813 return 1;
814 }
815 memset(super, 0, sizeof(*super));
816
817 rv = load_ddf_headers(fd, super, devname);
818 if (rv) {
819 free(super);
820 return rv;
821 }
822
823 /* Have valid headers and have chosen the best. Let's read in the rest*/
824
825 rv = load_ddf_global(fd, super, devname);
826
827 if (rv) {
828 if (devname)
829 fprintf(stderr,
830 Name ": Failed to load all information "
831 "sections on %s\n", devname);
832 free(super);
833 return rv;
834 }
835
836 rv = load_ddf_local(fd, super, devname, 0);
837
838 if (rv) {
839 if (devname)
840 fprintf(stderr,
841 Name ": Failed to load all information "
842 "sections on %s\n", devname);
843 free(super);
844 return rv;
845 }
846
847 if (st->subarray[0]) {
848 unsigned long val;
849 struct vcl *v;
850 char *ep;
851
852 val = strtoul(st->subarray, &ep, 10);
853 if (*ep != '\0') {
854 free(super);
855 return 1;
856 }
857
858 for (v = super->conflist; v; v = v->next)
859 if (v->vcnum == val)
860 super->currentconf = v;
861 if (!super->currentconf) {
862 free(super);
863 return 1;
864 }
865 }
866
867 /* Should possibly check the sections .... */
868
869 st->sb = super;
870 if (st->ss == NULL) {
871 st->ss = &super_ddf;
872 st->minor_version = 0;
873 st->max_devs = 512;
874 }
875 st->loaded_container = 0;
876 return 0;
877
878 }
879
880 static void free_super_ddf(struct supertype *st)
881 {
882 struct ddf_super *ddf = st->sb;
883 if (ddf == NULL)
884 return;
885 free(ddf->phys);
886 free(ddf->virt);
887 while (ddf->conflist) {
888 struct vcl *v = ddf->conflist;
889 ddf->conflist = v->next;
890 if (v->block_sizes)
891 free(v->block_sizes);
892 free(v);
893 }
894 while (ddf->dlist) {
895 struct dl *d = ddf->dlist;
896 ddf->dlist = d->next;
897 if (d->fd >= 0)
898 close(d->fd);
899 if (d->spare)
900 free(d->spare);
901 free(d);
902 }
903 free(ddf);
904 st->sb = NULL;
905 }
906
907 static struct supertype *match_metadata_desc_ddf(char *arg)
908 {
909 /* 'ddf' only support containers */
910 struct supertype *st;
911 if (strcmp(arg, "ddf") != 0 &&
912 strcmp(arg, "default") != 0
913 )
914 return NULL;
915
916 st = malloc(sizeof(*st));
917 memset(st, 0, sizeof(*st));
918 st->ss = &super_ddf;
919 st->max_devs = 512;
920 st->minor_version = 0;
921 st->sb = NULL;
922 return st;
923 }
924
925
926 #ifndef MDASSEMBLE
927
928 static mapping_t ddf_state[] = {
929 { "Optimal", 0},
930 { "Degraded", 1},
931 { "Deleted", 2},
932 { "Missing", 3},
933 { "Failed", 4},
934 { "Partially Optimal", 5},
935 { "-reserved-", 6},
936 { "-reserved-", 7},
937 { NULL, 0}
938 };
939
940 static mapping_t ddf_init_state[] = {
941 { "Not Initialised", 0},
942 { "QuickInit in Progress", 1},
943 { "Fully Initialised", 2},
944 { "*UNKNOWN*", 3},
945 { NULL, 0}
946 };
947 static mapping_t ddf_access[] = {
948 { "Read/Write", 0},
949 { "Reserved", 1},
950 { "Read Only", 2},
951 { "Blocked (no access)", 3},
952 { NULL ,0}
953 };
954
955 static mapping_t ddf_level[] = {
956 { "RAID0", DDF_RAID0},
957 { "RAID1", DDF_RAID1},
958 { "RAID3", DDF_RAID3},
959 { "RAID4", DDF_RAID4},
960 { "RAID5", DDF_RAID5},
961 { "RAID1E",DDF_RAID1E},
962 { "JBOD", DDF_JBOD},
963 { "CONCAT",DDF_CONCAT},
964 { "RAID5E",DDF_RAID5E},
965 { "RAID5EE",DDF_RAID5EE},
966 { "RAID6", DDF_RAID6},
967 { NULL, 0}
968 };
969 static mapping_t ddf_sec_level[] = {
970 { "Striped", DDF_2STRIPED},
971 { "Mirrored", DDF_2MIRRORED},
972 { "Concat", DDF_2CONCAT},
973 { "Spanned", DDF_2SPANNED},
974 { NULL, 0}
975 };
976 #endif
977
978 struct num_mapping {
979 int num1, num2;
980 };
981 static struct num_mapping ddf_level_num[] = {
982 { DDF_RAID0, 0 },
983 { DDF_RAID1, 1 },
984 { DDF_RAID3, LEVEL_UNSUPPORTED },
985 { DDF_RAID4, 4 },
986 { DDF_RAID5, 5 },
987 { DDF_RAID1E, LEVEL_UNSUPPORTED },
988 { DDF_JBOD, LEVEL_UNSUPPORTED },
989 { DDF_CONCAT, LEVEL_LINEAR },
990 { DDF_RAID5E, LEVEL_UNSUPPORTED },
991 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
992 { DDF_RAID6, 6},
993 { MAXINT, MAXINT }
994 };
995
996 static int map_num1(struct num_mapping *map, int num)
997 {
998 int i;
999 for (i=0 ; map[i].num1 != MAXINT; i++)
1000 if (map[i].num1 == num)
1001 break;
1002 return map[i].num2;
1003 }
1004
1005 static int all_ff(char *guid)
1006 {
1007 int i;
1008 for (i = 0; i < DDF_GUID_LEN; i++)
1009 if (guid[i] != (char)0xff)
1010 return 0;
1011 return 1;
1012 }
1013
1014 #ifndef MDASSEMBLE
1015 static void print_guid(char *guid, int tstamp)
1016 {
1017 /* A GUIDs are part (or all) ASCII and part binary.
1018 * They tend to be space padded.
1019 * We print the GUID in HEX, then in parentheses add
1020 * any initial ASCII sequence, and a possible
1021 * time stamp from bytes 16-19
1022 */
1023 int l = DDF_GUID_LEN;
1024 int i;
1025
1026 for (i=0 ; i<DDF_GUID_LEN ; i++) {
1027 if ((i&3)==0 && i != 0) printf(":");
1028 printf("%02X", guid[i]&255);
1029 }
1030
1031 printf("\n (");
1032 while (l && guid[l-1] == ' ')
1033 l--;
1034 for (i=0 ; i<l ; i++) {
1035 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1036 fputc(guid[i], stdout);
1037 else
1038 break;
1039 }
1040 if (tstamp) {
1041 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1042 char tbuf[100];
1043 struct tm *tm;
1044 tm = localtime(&then);
1045 strftime(tbuf, 100, " %D %T",tm);
1046 fputs(tbuf, stdout);
1047 }
1048 printf(")");
1049 }
1050
1051 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1052 {
1053 int crl = sb->conf_rec_len;
1054 struct vcl *vcl;
1055
1056 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1057 unsigned int i;
1058 struct vd_config *vc = &vcl->conf;
1059
1060 if (calc_crc(vc, crl*512) != vc->crc)
1061 continue;
1062 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1063 continue;
1064
1065 /* Ok, we know about this VD, let's give more details */
1066 printf(" Raid Devices[%d] : %d (", n,
1067 __be16_to_cpu(vc->prim_elmnt_count));
1068 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++) {
1069 int j;
1070 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1071 for (j=0; j<cnt; j++)
1072 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1073 break;
1074 if (i) printf(" ");
1075 if (j < cnt)
1076 printf("%d", j);
1077 else
1078 printf("--");
1079 }
1080 printf(")\n");
1081 if (vc->chunk_shift != 255)
1082 printf(" Chunk Size[%d] : %d sectors\n", n,
1083 1 << vc->chunk_shift);
1084 printf(" Raid Level[%d] : %s\n", n,
1085 map_num(ddf_level, vc->prl)?:"-unknown-");
1086 if (vc->sec_elmnt_count != 1) {
1087 printf(" Secondary Position[%d] : %d of %d\n", n,
1088 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1089 printf(" Secondary Level[%d] : %s\n", n,
1090 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1091 }
1092 printf(" Device Size[%d] : %llu\n", n,
1093 (unsigned long long)__be64_to_cpu(vc->blocks)/2);
1094 printf(" Array Size[%d] : %llu\n", n,
1095 (unsigned long long)__be64_to_cpu(vc->array_blocks)/2);
1096 }
1097 }
1098
1099 static void examine_vds(struct ddf_super *sb)
1100 {
1101 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1102 int i;
1103 printf(" Virtual Disks : %d\n", cnt);
1104
1105 for (i=0; i<cnt; i++) {
1106 struct virtual_entry *ve = &sb->virt->entries[i];
1107 printf("\n");
1108 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1109 printf("\n");
1110 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1111 printf(" state[%d] : %s, %s%s\n", i,
1112 map_num(ddf_state, ve->state & 7),
1113 (ve->state & 8) ? "Morphing, ": "",
1114 (ve->state & 16)? "Not Consistent" : "Consistent");
1115 printf(" init state[%d] : %s\n", i,
1116 map_num(ddf_init_state, ve->init_state&3));
1117 printf(" access[%d] : %s\n", i,
1118 map_num(ddf_access, (ve->init_state>>6) & 3));
1119 printf(" Name[%d] : %.16s\n", i, ve->name);
1120 examine_vd(i, sb, ve->guid);
1121 }
1122 if (cnt) printf("\n");
1123 }
1124
1125 static void examine_pds(struct ddf_super *sb)
1126 {
1127 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1128 int i;
1129 struct dl *dl;
1130 printf(" Physical Disks : %d\n", cnt);
1131 printf(" Number RefNo Size Device Type/State\n");
1132
1133 for (i=0 ; i<cnt ; i++) {
1134 struct phys_disk_entry *pd = &sb->phys->entries[i];
1135 int type = __be16_to_cpu(pd->type);
1136 int state = __be16_to_cpu(pd->state);
1137
1138 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1139 //printf("\n");
1140 printf(" %3d %08x ", i,
1141 __be32_to_cpu(pd->refnum));
1142 printf("%8lluK ",
1143 (unsigned long long)__be64_to_cpu(pd->config_size)>>1);
1144 for (dl = sb->dlist; dl ; dl = dl->next) {
1145 if (dl->disk.refnum == pd->refnum) {
1146 char *dv = map_dev(dl->major, dl->minor, 0);
1147 if (dv) {
1148 printf("%-15s", dv);
1149 break;
1150 }
1151 }
1152 }
1153 if (!dl)
1154 printf("%15s","");
1155 printf(" %s%s%s%s%s",
1156 (type&2) ? "active":"",
1157 (type&4) ? "Global-Spare":"",
1158 (type&8) ? "spare" : "",
1159 (type&16)? ", foreign" : "",
1160 (type&32)? "pass-through" : "");
1161 if (state & DDF_Failed)
1162 /* This over-rides these three */
1163 state &= ~(DDF_Online|DDF_Rebuilding|DDF_Transition);
1164 printf("/%s%s%s%s%s%s%s",
1165 (state&1)? "Online": "Offline",
1166 (state&2)? ", Failed": "",
1167 (state&4)? ", Rebuilding": "",
1168 (state&8)? ", in-transition": "",
1169 (state&16)? ", SMART-errors": "",
1170 (state&32)? ", Unrecovered-Read-Errors": "",
1171 (state&64)? ", Missing" : "");
1172 printf("\n");
1173 }
1174 }
1175
1176 static void examine_super_ddf(struct supertype *st, char *homehost)
1177 {
1178 struct ddf_super *sb = st->sb;
1179
1180 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1181 printf(" Version : %.8s\n", sb->anchor.revision);
1182 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1183 printf("\n");
1184 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1185 printf("\n");
1186 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1187 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1188 ?"yes" : "no");
1189 examine_vds(sb);
1190 examine_pds(sb);
1191 }
1192
1193 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info);
1194
1195 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1196
1197 static void brief_examine_super_ddf(struct supertype *st, int verbose)
1198 {
1199 /* We just write a generic DDF ARRAY entry
1200 */
1201 struct mdinfo info;
1202 char nbuf[64];
1203 getinfo_super_ddf(st, &info);
1204 fname_from_uuid(st, &info, nbuf, ':');
1205
1206 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1207 }
1208
1209 static void brief_examine_subarrays_ddf(struct supertype *st, int verbose)
1210 {
1211 /* We just write a generic DDF ARRAY entry
1212 */
1213 struct ddf_super *ddf = st->sb;
1214 struct mdinfo info;
1215 unsigned int i;
1216 char nbuf[64];
1217 getinfo_super_ddf(st, &info);
1218 fname_from_uuid(st, &info, nbuf, ':');
1219
1220 for (i = 0; i < __be16_to_cpu(ddf->virt->max_vdes); i++) {
1221 struct virtual_entry *ve = &ddf->virt->entries[i];
1222 struct vcl vcl;
1223 char nbuf1[64];
1224 if (all_ff(ve->guid))
1225 continue;
1226 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1227 ddf->currentconf =&vcl;
1228 uuid_from_super_ddf(st, info.uuid);
1229 fname_from_uuid(st, &info, nbuf1, ':');
1230 printf("ARRAY container=%s member=%d UUID=%s\n",
1231 nbuf+5, i, nbuf1+5);
1232 }
1233 }
1234
1235 static void export_examine_super_ddf(struct supertype *st)
1236 {
1237 struct mdinfo info;
1238 char nbuf[64];
1239 getinfo_super_ddf(st, &info);
1240 fname_from_uuid(st, &info, nbuf, ':');
1241 printf("MD_METADATA=ddf\n");
1242 printf("MD_LEVEL=container\n");
1243 printf("MD_UUID=%s\n", nbuf+5);
1244 }
1245
1246
1247 static void detail_super_ddf(struct supertype *st, char *homehost)
1248 {
1249 /* FIXME later
1250 * Could print DDF GUID
1251 * Need to find which array
1252 * If whole, briefly list all arrays
1253 * If one, give name
1254 */
1255 }
1256
1257 static void brief_detail_super_ddf(struct supertype *st)
1258 {
1259 /* FIXME I really need to know which array we are detailing.
1260 * Can that be stored in ddf_super??
1261 */
1262 // struct ddf_super *ddf = st->sb;
1263 struct mdinfo info;
1264 char nbuf[64];
1265 getinfo_super_ddf(st, &info);
1266 fname_from_uuid(st, &info, nbuf,':');
1267 printf(" UUID=%s", nbuf + 5);
1268 }
1269 #endif
1270
1271 static int match_home_ddf(struct supertype *st, char *homehost)
1272 {
1273 /* It matches 'this' host if the controller is a
1274 * Linux-MD controller with vendor_data matching
1275 * the hostname
1276 */
1277 struct ddf_super *ddf = st->sb;
1278 unsigned int len;
1279
1280 if (!homehost)
1281 return 0;
1282 len = strlen(homehost);
1283
1284 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1285 len < sizeof(ddf->controller.vendor_data) &&
1286 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1287 ddf->controller.vendor_data[len] == 0);
1288 }
1289
1290 #ifndef MDASSEMBLE
1291 static struct vd_config *find_vdcr(struct ddf_super *ddf, unsigned int inst)
1292 {
1293 struct vcl *v;
1294
1295 for (v = ddf->conflist; v; v = v->next)
1296 if (inst == v->vcnum)
1297 return &v->conf;
1298 return NULL;
1299 }
1300 #endif
1301
1302 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1303 {
1304 /* Find the entry in phys_disk which has the given refnum
1305 * and return it's index
1306 */
1307 unsigned int i;
1308 for (i = 0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1309 if (ddf->phys->entries[i].refnum == phys_refnum)
1310 return i;
1311 return -1;
1312 }
1313
1314 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1315 {
1316 /* The uuid returned here is used for:
1317 * uuid to put into bitmap file (Create, Grow)
1318 * uuid for backup header when saving critical section (Grow)
1319 * comparing uuids when re-adding a device into an array
1320 * In these cases the uuid required is that of the data-array,
1321 * not the device-set.
1322 * uuid to recognise same set when adding a missing device back
1323 * to an array. This is a uuid for the device-set.
1324 *
1325 * For each of these we can make do with a truncated
1326 * or hashed uuid rather than the original, as long as
1327 * everyone agrees.
1328 * In the case of SVD we assume the BVD is of interest,
1329 * though that might be the case if a bitmap were made for
1330 * a mirrored SVD - worry about that later.
1331 * So we need to find the VD configuration record for the
1332 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1333 * The first 16 bytes of the sha1 of these is used.
1334 */
1335 struct ddf_super *ddf = st->sb;
1336 struct vcl *vcl = ddf->currentconf;
1337 char *guid;
1338 char buf[20];
1339 struct sha1_ctx ctx;
1340
1341 if (vcl)
1342 guid = vcl->conf.guid;
1343 else
1344 guid = ddf->anchor.guid;
1345
1346 sha1_init_ctx(&ctx);
1347 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1348 sha1_finish_ctx(&ctx, buf);
1349 memcpy(uuid, buf, 4*4);
1350 }
1351
1352 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1353
1354 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1355 {
1356 struct ddf_super *ddf = st->sb;
1357
1358 if (ddf->currentconf) {
1359 getinfo_super_ddf_bvd(st, info);
1360 return;
1361 }
1362
1363 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1364 info->array.level = LEVEL_CONTAINER;
1365 info->array.layout = 0;
1366 info->array.md_minor = -1;
1367 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1368 (ddf->anchor.guid+16));
1369 info->array.utime = 0;
1370 info->array.chunk_size = 0;
1371 info->container_enough = 1;
1372
1373
1374 info->disk.major = 0;
1375 info->disk.minor = 0;
1376 if (ddf->dlist) {
1377 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1378 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1379
1380 info->data_offset = __be64_to_cpu(ddf->phys->
1381 entries[info->disk.raid_disk].
1382 config_size);
1383 info->component_size = ddf->dlist->size - info->data_offset;
1384 } else {
1385 info->disk.number = -1;
1386 info->disk.raid_disk = -1;
1387 // info->disk.raid_disk = find refnum in the table and use index;
1388 }
1389 info->disk.state = (1 << MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE);
1390
1391
1392 info->recovery_start = MaxSector;
1393 info->reshape_active = 0;
1394 info->name[0] = 0;
1395
1396 info->array.major_version = -1;
1397 info->array.minor_version = -2;
1398 strcpy(info->text_version, "ddf");
1399 info->safe_mode_delay = 0;
1400
1401 uuid_from_super_ddf(st, info->uuid);
1402
1403 }
1404
1405 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1406
1407 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1408 {
1409 struct ddf_super *ddf = st->sb;
1410 struct vcl *vc = ddf->currentconf;
1411 int cd = ddf->currentdev;
1412 int j;
1413 struct dl *dl;
1414
1415 /* FIXME this returns BVD info - what if we want SVD ?? */
1416
1417 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1418 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1419 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1420 info->array.raid_disks);
1421 info->array.md_minor = -1;
1422 info->array.ctime = DECADE +
1423 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1424 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1425 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1426 info->custom_array_size = 0;
1427
1428 if (cd >= 0 && (unsigned)cd < ddf->mppe) {
1429 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1430 if (vc->block_sizes)
1431 info->component_size = vc->block_sizes[cd];
1432 else
1433 info->component_size = __be64_to_cpu(vc->conf.blocks);
1434 }
1435
1436 for (dl = ddf->dlist; dl ; dl = dl->next)
1437 if (dl->raiddisk == info->disk.raid_disk)
1438 break;
1439 info->disk.major = 0;
1440 info->disk.minor = 0;
1441 if (dl) {
1442 info->disk.major = dl->major;
1443 info->disk.minor = dl->minor;
1444 }
1445 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1446 // info->disk.raid_disk = find refnum in the table and use index;
1447 // info->disk.state = ???;
1448
1449 info->container_member = ddf->currentconf->vcnum;
1450
1451 info->recovery_start = MaxSector;
1452 info->resync_start = 0;
1453 info->reshape_active = 0;
1454 if (!(ddf->virt->entries[info->container_member].state
1455 & DDF_state_inconsistent) &&
1456 (ddf->virt->entries[info->container_member].init_state
1457 & DDF_initstate_mask)
1458 == DDF_init_full)
1459 info->resync_start = MaxSector;
1460
1461 uuid_from_super_ddf(st, info->uuid);
1462
1463 info->array.major_version = -1;
1464 info->array.minor_version = -2;
1465 sprintf(info->text_version, "/%s/%s",
1466 devnum2devname(st->container_dev),
1467 st->subarray);
1468 info->safe_mode_delay = 200;
1469
1470 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1471 info->name[16]=0;
1472 for(j=0; j<16; j++)
1473 if (info->name[j] == ' ')
1474 info->name[j] = 0;
1475 }
1476
1477
1478 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1479 char *update,
1480 char *devname, int verbose,
1481 int uuid_set, char *homehost)
1482 {
1483 /* For 'assemble' and 'force' we need to return non-zero if any
1484 * change was made. For others, the return value is ignored.
1485 * Update options are:
1486 * force-one : This device looks a bit old but needs to be included,
1487 * update age info appropriately.
1488 * assemble: clear any 'faulty' flag to allow this device to
1489 * be assembled.
1490 * force-array: Array is degraded but being forced, mark it clean
1491 * if that will be needed to assemble it.
1492 *
1493 * newdev: not used ????
1494 * grow: Array has gained a new device - this is currently for
1495 * linear only
1496 * resync: mark as dirty so a resync will happen.
1497 * uuid: Change the uuid of the array to match what is given
1498 * homehost: update the recorded homehost
1499 * name: update the name - preserving the homehost
1500 * _reshape_progress: record new reshape_progress position.
1501 *
1502 * Following are not relevant for this version:
1503 * sparc2.2 : update from old dodgey metadata
1504 * super-minor: change the preferred_minor number
1505 * summaries: update redundant counters.
1506 */
1507 int rv = 0;
1508 // struct ddf_super *ddf = st->sb;
1509 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1510 // struct virtual_entry *ve = find_ve(ddf);
1511
1512 /* we don't need to handle "force-*" or "assemble" as
1513 * there is no need to 'trick' the kernel. We the metadata is
1514 * first updated to activate the array, all the implied modifications
1515 * will just happen.
1516 */
1517
1518 if (strcmp(update, "grow") == 0) {
1519 /* FIXME */
1520 }
1521 if (strcmp(update, "resync") == 0) {
1522 // info->resync_checkpoint = 0;
1523 }
1524 /* We ignore UUID updates as they make even less sense
1525 * with DDF
1526 */
1527 if (strcmp(update, "homehost") == 0) {
1528 /* homehost is stored in controller->vendor_data,
1529 * or it is when we are the vendor
1530 */
1531 // if (info->vendor_is_local)
1532 // strcpy(ddf->controller.vendor_data, homehost);
1533 }
1534 if (strcmp(update, "name") == 0) {
1535 /* name is stored in virtual_entry->name */
1536 // memset(ve->name, ' ', 16);
1537 // strncpy(ve->name, info->name, 16);
1538 }
1539 if (strcmp(update, "_reshape_progress") == 0) {
1540 /* We don't support reshape yet */
1541 }
1542
1543 // update_all_csum(ddf);
1544
1545 return rv;
1546 }
1547
1548 static void make_header_guid(char *guid)
1549 {
1550 __u32 stamp;
1551 /* Create a DDF Header of Virtual Disk GUID */
1552
1553 /* 24 bytes of fiction required.
1554 * first 8 are a 'vendor-id' - "Linux-MD"
1555 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1556 * Remaining 8 random number plus timestamp
1557 */
1558 memcpy(guid, T10, sizeof(T10));
1559 stamp = __cpu_to_be32(0xdeadbeef);
1560 memcpy(guid+8, &stamp, 4);
1561 stamp = __cpu_to_be32(0);
1562 memcpy(guid+12, &stamp, 4);
1563 stamp = __cpu_to_be32(time(0) - DECADE);
1564 memcpy(guid+16, &stamp, 4);
1565 stamp = random32();
1566 memcpy(guid+20, &stamp, 4);
1567 }
1568
1569 static int init_super_ddf_bvd(struct supertype *st,
1570 mdu_array_info_t *info,
1571 unsigned long long size,
1572 char *name, char *homehost,
1573 int *uuid);
1574
1575 static int init_super_ddf(struct supertype *st,
1576 mdu_array_info_t *info,
1577 unsigned long long size, char *name, char *homehost,
1578 int *uuid)
1579 {
1580 /* This is primarily called by Create when creating a new array.
1581 * We will then get add_to_super called for each component, and then
1582 * write_init_super called to write it out to each device.
1583 * For DDF, Create can create on fresh devices or on a pre-existing
1584 * array.
1585 * To create on a pre-existing array a different method will be called.
1586 * This one is just for fresh drives.
1587 *
1588 * We need to create the entire 'ddf' structure which includes:
1589 * DDF headers - these are easy.
1590 * Controller data - a Sector describing this controller .. not that
1591 * this is a controller exactly.
1592 * Physical Disk Record - one entry per device, so
1593 * leave plenty of space.
1594 * Virtual Disk Records - again, just leave plenty of space.
1595 * This just lists VDs, doesn't give details
1596 * Config records - describes the VDs that use this disk
1597 * DiskData - describes 'this' device.
1598 * BadBlockManagement - empty
1599 * Diag Space - empty
1600 * Vendor Logs - Could we put bitmaps here?
1601 *
1602 */
1603 struct ddf_super *ddf;
1604 char hostname[17];
1605 int hostlen;
1606 int max_phys_disks, max_virt_disks;
1607 unsigned long long sector;
1608 int clen;
1609 int i;
1610 int pdsize, vdsize;
1611 struct phys_disk *pd;
1612 struct virtual_disk *vd;
1613
1614 if (st->sb)
1615 return init_super_ddf_bvd(st, info, size, name, homehost, uuid);
1616
1617 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1618 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1619 return 0;
1620 }
1621 memset(ddf, 0, sizeof(*ddf));
1622 ddf->dlist = NULL; /* no physical disks yet */
1623 ddf->conflist = NULL; /* No virtual disks yet */
1624 st->sb = ddf;
1625
1626 if (info == NULL) {
1627 /* zeroing superblock */
1628 return 0;
1629 }
1630
1631 /* At least 32MB *must* be reserved for the ddf. So let's just
1632 * start 32MB from the end, and put the primary header there.
1633 * Don't do secondary for now.
1634 * We don't know exactly where that will be yet as it could be
1635 * different on each device. To just set up the lengths.
1636 *
1637 */
1638
1639 ddf->anchor.magic = DDF_HEADER_MAGIC;
1640 make_header_guid(ddf->anchor.guid);
1641
1642 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1643 ddf->anchor.seq = __cpu_to_be32(1);
1644 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1645 ddf->anchor.openflag = 0xFF;
1646 ddf->anchor.foreignflag = 0;
1647 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1648 ddf->anchor.pad0 = 0xff;
1649 memset(ddf->anchor.pad1, 0xff, 12);
1650 memset(ddf->anchor.header_ext, 0xff, 32);
1651 ddf->anchor.primary_lba = ~(__u64)0;
1652 ddf->anchor.secondary_lba = ~(__u64)0;
1653 ddf->anchor.type = DDF_HEADER_ANCHOR;
1654 memset(ddf->anchor.pad2, 0xff, 3);
1655 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1656 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1657 of 32M reserved.. */
1658 max_phys_disks = 1023; /* Should be enough */
1659 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1660 max_virt_disks = 255;
1661 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1662 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1663 ddf->max_part = 64;
1664 ddf->mppe = 256;
1665 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1666 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1667 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1668 memset(ddf->anchor.pad3, 0xff, 54);
1669 /* controller sections is one sector long immediately
1670 * after the ddf header */
1671 sector = 1;
1672 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1673 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1674 sector += 1;
1675
1676 /* phys is 8 sectors after that */
1677 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1678 sizeof(struct phys_disk_entry)*max_phys_disks,
1679 512);
1680 switch(pdsize/512) {
1681 case 2: case 8: case 32: case 128: case 512: break;
1682 default: abort();
1683 }
1684 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1685 ddf->anchor.phys_section_length =
1686 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1687 sector += pdsize/512;
1688
1689 /* virt is another 32 sectors */
1690 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1691 sizeof(struct virtual_entry) * max_virt_disks,
1692 512);
1693 switch(vdsize/512) {
1694 case 2: case 8: case 32: case 128: case 512: break;
1695 default: abort();
1696 }
1697 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1698 ddf->anchor.virt_section_length =
1699 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1700 sector += vdsize/512;
1701
1702 clen = ddf->conf_rec_len * (ddf->max_part+1);
1703 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1704 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1705 sector += clen;
1706
1707 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1708 ddf->anchor.data_section_length = __cpu_to_be32(1);
1709 sector += 1;
1710
1711 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1712 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1713 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1714 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1715 ddf->anchor.vendor_length = __cpu_to_be32(0);
1716 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1717
1718 memset(ddf->anchor.pad4, 0xff, 256);
1719
1720 memcpy(&ddf->primary, &ddf->anchor, 512);
1721 memcpy(&ddf->secondary, &ddf->anchor, 512);
1722
1723 ddf->primary.openflag = 1; /* I guess.. */
1724 ddf->primary.type = DDF_HEADER_PRIMARY;
1725
1726 ddf->secondary.openflag = 1; /* I guess.. */
1727 ddf->secondary.type = DDF_HEADER_SECONDARY;
1728
1729 ddf->active = &ddf->primary;
1730
1731 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1732
1733 /* 24 more bytes of fiction required.
1734 * first 8 are a 'vendor-id' - "Linux-MD"
1735 * Remaining 16 are serial number.... maybe a hostname would do?
1736 */
1737 memcpy(ddf->controller.guid, T10, sizeof(T10));
1738 gethostname(hostname, sizeof(hostname));
1739 hostname[sizeof(hostname) - 1] = 0;
1740 hostlen = strlen(hostname);
1741 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1742 for (i = strlen(T10) ; i+hostlen < 24; i++)
1743 ddf->controller.guid[i] = ' ';
1744
1745 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1746 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1747 ddf->controller.type.sub_vendor_id = 0;
1748 ddf->controller.type.sub_device_id = 0;
1749 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1750 memset(ddf->controller.pad, 0xff, 8);
1751 memset(ddf->controller.vendor_data, 0xff, 448);
1752 if (homehost && strlen(homehost) < 440)
1753 strcpy((char*)ddf->controller.vendor_data, homehost);
1754
1755 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1756 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1757 return 0;
1758 }
1759 ddf->phys = pd;
1760 ddf->pdsize = pdsize;
1761
1762 memset(pd, 0xff, pdsize);
1763 memset(pd, 0, sizeof(*pd));
1764 pd->magic = DDF_PHYS_RECORDS_MAGIC;
1765 pd->used_pdes = __cpu_to_be16(0);
1766 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1767 memset(pd->pad, 0xff, 52);
1768
1769 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1770 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1771 return 0;
1772 }
1773 ddf->virt = vd;
1774 ddf->vdsize = vdsize;
1775 memset(vd, 0, vdsize);
1776 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1777 vd->populated_vdes = __cpu_to_be16(0);
1778 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1779 memset(vd->pad, 0xff, 52);
1780
1781 for (i=0; i<max_virt_disks; i++)
1782 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1783
1784 st->sb = ddf;
1785 ddf->updates_pending = 1;
1786 return 1;
1787 }
1788
1789 static int chunk_to_shift(int chunksize)
1790 {
1791 return ffs(chunksize/512)-1;
1792 }
1793
1794 static int level_to_prl(int level)
1795 {
1796 switch (level) {
1797 case LEVEL_LINEAR: return DDF_CONCAT;
1798 case 0: return DDF_RAID0;
1799 case 1: return DDF_RAID1;
1800 case 4: return DDF_RAID4;
1801 case 5: return DDF_RAID5;
1802 case 6: return DDF_RAID6;
1803 default: return -1;
1804 }
1805 }
1806 static int layout_to_rlq(int level, int layout, int raiddisks)
1807 {
1808 switch(level) {
1809 case 0:
1810 return DDF_RAID0_SIMPLE;
1811 case 1:
1812 switch(raiddisks) {
1813 case 2: return DDF_RAID1_SIMPLE;
1814 case 3: return DDF_RAID1_MULTI;
1815 default: return -1;
1816 }
1817 case 4:
1818 switch(layout) {
1819 case 0: return DDF_RAID4_N;
1820 }
1821 break;
1822 case 5:
1823 switch(layout) {
1824 case ALGORITHM_LEFT_ASYMMETRIC:
1825 return DDF_RAID5_N_RESTART;
1826 case ALGORITHM_RIGHT_ASYMMETRIC:
1827 return DDF_RAID5_0_RESTART;
1828 case ALGORITHM_LEFT_SYMMETRIC:
1829 return DDF_RAID5_N_CONTINUE;
1830 case ALGORITHM_RIGHT_SYMMETRIC:
1831 return -1; /* not mentioned in standard */
1832 }
1833 case 6:
1834 switch(layout) {
1835 case ALGORITHM_ROTATING_N_RESTART:
1836 return DDF_RAID5_N_RESTART;
1837 case ALGORITHM_ROTATING_ZERO_RESTART:
1838 return DDF_RAID6_0_RESTART;
1839 case ALGORITHM_ROTATING_N_CONTINUE:
1840 return DDF_RAID5_N_CONTINUE;
1841 }
1842 }
1843 return -1;
1844 }
1845
1846 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1847 {
1848 switch(prl) {
1849 case DDF_RAID0:
1850 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1851 case DDF_RAID1:
1852 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1853 on raiddisks*/
1854 case DDF_RAID4:
1855 switch(rlq) {
1856 case DDF_RAID4_N:
1857 return 0;
1858 default:
1859 /* not supported */
1860 return -1; /* FIXME this isn't checked */
1861 }
1862 case DDF_RAID5:
1863 switch(rlq) {
1864 case DDF_RAID5_N_RESTART:
1865 return ALGORITHM_LEFT_ASYMMETRIC;
1866 case DDF_RAID5_0_RESTART:
1867 return ALGORITHM_RIGHT_ASYMMETRIC;
1868 case DDF_RAID5_N_CONTINUE:
1869 return ALGORITHM_LEFT_SYMMETRIC;
1870 default:
1871 return -1;
1872 }
1873 case DDF_RAID6:
1874 switch(rlq) {
1875 case DDF_RAID5_N_RESTART:
1876 return ALGORITHM_ROTATING_N_RESTART;
1877 case DDF_RAID6_0_RESTART:
1878 return ALGORITHM_ROTATING_ZERO_RESTART;
1879 case DDF_RAID5_N_CONTINUE:
1880 return ALGORITHM_ROTATING_N_CONTINUE;
1881 default:
1882 return -1;
1883 }
1884 }
1885 return -1;
1886 }
1887
1888 #ifndef MDASSEMBLE
1889 struct extent {
1890 unsigned long long start, size;
1891 };
1892 static int cmp_extent(const void *av, const void *bv)
1893 {
1894 const struct extent *a = av;
1895 const struct extent *b = bv;
1896 if (a->start < b->start)
1897 return -1;
1898 if (a->start > b->start)
1899 return 1;
1900 return 0;
1901 }
1902
1903 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1904 {
1905 /* find a list of used extents on the give physical device
1906 * (dnum) of the given ddf.
1907 * Return a malloced array of 'struct extent'
1908
1909 FIXME ignore DDF_Legacy devices?
1910
1911 */
1912 struct extent *rv;
1913 int n = 0;
1914 unsigned int i, j;
1915
1916 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1917 if (!rv)
1918 return NULL;
1919
1920 for (i = 0; i < ddf->max_part; i++) {
1921 struct vcl *v = dl->vlist[i];
1922 if (v == NULL)
1923 continue;
1924 for (j = 0; j < v->conf.prim_elmnt_count; j++)
1925 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1926 /* This device plays role 'j' in 'v'. */
1927 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1928 rv[n].size = __be64_to_cpu(v->conf.blocks);
1929 n++;
1930 break;
1931 }
1932 }
1933 qsort(rv, n, sizeof(*rv), cmp_extent);
1934
1935 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1936 rv[n].size = 0;
1937 return rv;
1938 }
1939 #endif
1940
1941 static int init_super_ddf_bvd(struct supertype *st,
1942 mdu_array_info_t *info,
1943 unsigned long long size,
1944 char *name, char *homehost,
1945 int *uuid)
1946 {
1947 /* We are creating a BVD inside a pre-existing container.
1948 * so st->sb is already set.
1949 * We need to create a new vd_config and a new virtual_entry
1950 */
1951 struct ddf_super *ddf = st->sb;
1952 unsigned int venum;
1953 struct virtual_entry *ve;
1954 struct vcl *vcl;
1955 struct vd_config *vc;
1956
1957 if (__be16_to_cpu(ddf->virt->populated_vdes)
1958 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1959 fprintf(stderr, Name": This ddf already has the "
1960 "maximum of %d virtual devices\n",
1961 __be16_to_cpu(ddf->virt->max_vdes));
1962 return 0;
1963 }
1964
1965 if (name)
1966 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1967 if (!all_ff(ddf->virt->entries[venum].guid)) {
1968 char *n = ddf->virt->entries[venum].name;
1969
1970 if (strncmp(name, n, 16) == 0) {
1971 fprintf(stderr, Name ": This ddf already"
1972 " has an array called %s\n",
1973 name);
1974 return 0;
1975 }
1976 }
1977
1978 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1979 if (all_ff(ddf->virt->entries[venum].guid))
1980 break;
1981 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1982 fprintf(stderr, Name ": Cannot find spare slot for "
1983 "virtual disk - DDF is corrupt\n");
1984 return 0;
1985 }
1986 ve = &ddf->virt->entries[venum];
1987
1988 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1989 * timestamp, random number
1990 */
1991 make_header_guid(ve->guid);
1992 ve->unit = __cpu_to_be16(info->md_minor);
1993 ve->pad0 = 0xFFFF;
1994 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1995 ve->type = 0;
1996 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1997 if (info->state & 1) /* clean */
1998 ve->init_state = DDF_init_full;
1999 else
2000 ve->init_state = DDF_init_not;
2001
2002 memset(ve->pad1, 0xff, 14);
2003 memset(ve->name, ' ', 16);
2004 if (name)
2005 strncpy(ve->name, name, 16);
2006 ddf->virt->populated_vdes =
2007 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
2008
2009 /* Now create a new vd_config */
2010 if (posix_memalign((void**)&vcl, 512,
2011 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
2012 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
2013 return 0;
2014 }
2015 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
2016 vcl->vcnum = venum;
2017 sprintf(st->subarray, "%d", venum);
2018 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
2019
2020 vc = &vcl->conf;
2021
2022 vc->magic = DDF_VD_CONF_MAGIC;
2023 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
2024 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
2025 vc->seqnum = __cpu_to_be32(1);
2026 memset(vc->pad0, 0xff, 24);
2027 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
2028 vc->chunk_shift = chunk_to_shift(info->chunk_size);
2029 vc->prl = level_to_prl(info->level);
2030 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
2031 vc->sec_elmnt_count = 1;
2032 vc->sec_elmnt_seq = 0;
2033 vc->srl = 0;
2034 vc->blocks = __cpu_to_be64(info->size * 2);
2035 vc->array_blocks = __cpu_to_be64(
2036 calc_array_size(info->level, info->raid_disks, info->layout,
2037 info->chunk_size, info->size*2));
2038 memset(vc->pad1, 0xff, 8);
2039 vc->spare_refs[0] = 0xffffffff;
2040 vc->spare_refs[1] = 0xffffffff;
2041 vc->spare_refs[2] = 0xffffffff;
2042 vc->spare_refs[3] = 0xffffffff;
2043 vc->spare_refs[4] = 0xffffffff;
2044 vc->spare_refs[5] = 0xffffffff;
2045 vc->spare_refs[6] = 0xffffffff;
2046 vc->spare_refs[7] = 0xffffffff;
2047 memset(vc->cache_pol, 0, 8);
2048 vc->bg_rate = 0x80;
2049 memset(vc->pad2, 0xff, 3);
2050 memset(vc->pad3, 0xff, 52);
2051 memset(vc->pad4, 0xff, 192);
2052 memset(vc->v0, 0xff, 32);
2053 memset(vc->v1, 0xff, 32);
2054 memset(vc->v2, 0xff, 16);
2055 memset(vc->v3, 0xff, 16);
2056 memset(vc->vendor, 0xff, 32);
2057
2058 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
2059 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
2060
2061 vcl->next = ddf->conflist;
2062 ddf->conflist = vcl;
2063 ddf->currentconf = vcl;
2064 ddf->updates_pending = 1;
2065 return 1;
2066 }
2067
2068 #ifndef MDASSEMBLE
2069 static void add_to_super_ddf_bvd(struct supertype *st,
2070 mdu_disk_info_t *dk, int fd, char *devname)
2071 {
2072 /* fd and devname identify a device with-in the ddf container (st).
2073 * dk identifies a location in the new BVD.
2074 * We need to find suitable free space in that device and update
2075 * the phys_refnum and lba_offset for the newly created vd_config.
2076 * We might also want to update the type in the phys_disk
2077 * section.
2078 *
2079 * Alternately: fd == -1 and we have already chosen which device to
2080 * use and recorded in dlist->raid_disk;
2081 */
2082 struct dl *dl;
2083 struct ddf_super *ddf = st->sb;
2084 struct vd_config *vc;
2085 __u64 *lba_offset;
2086 unsigned int working;
2087 unsigned int i;
2088 unsigned long long blocks, pos, esize;
2089 struct extent *ex;
2090
2091 if (fd == -1) {
2092 for (dl = ddf->dlist; dl ; dl = dl->next)
2093 if (dl->raiddisk == dk->raid_disk)
2094 break;
2095 } else {
2096 for (dl = ddf->dlist; dl ; dl = dl->next)
2097 if (dl->major == dk->major &&
2098 dl->minor == dk->minor)
2099 break;
2100 }
2101 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2102 return;
2103
2104 vc = &ddf->currentconf->conf;
2105 lba_offset = ddf->currentconf->lba_offset;
2106
2107 ex = get_extents(ddf, dl);
2108 if (!ex)
2109 return;
2110
2111 i = 0; pos = 0;
2112 blocks = __be64_to_cpu(vc->blocks);
2113 if (ddf->currentconf->block_sizes)
2114 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2115
2116 do {
2117 esize = ex[i].start - pos;
2118 if (esize >= blocks)
2119 break;
2120 pos = ex[i].start + ex[i].size;
2121 i++;
2122 } while (ex[i-1].size);
2123
2124 free(ex);
2125 if (esize < blocks)
2126 return;
2127
2128 ddf->currentdev = dk->raid_disk;
2129 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2130 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2131
2132 for (i = 0; i < ddf->max_part ; i++)
2133 if (dl->vlist[i] == NULL)
2134 break;
2135 if (i == ddf->max_part)
2136 return;
2137 dl->vlist[i] = ddf->currentconf;
2138
2139 if (fd >= 0)
2140 dl->fd = fd;
2141 if (devname)
2142 dl->devname = devname;
2143
2144 /* Check how many working raid_disks, and if we can mark
2145 * array as optimal yet
2146 */
2147 working = 0;
2148
2149 for (i = 0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2150 if (vc->phys_refnum[i] != 0xffffffff)
2151 working++;
2152
2153 /* Find which virtual_entry */
2154 i = ddf->currentconf->vcnum;
2155 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2156 ddf->virt->entries[i].state =
2157 (ddf->virt->entries[i].state & ~DDF_state_mask)
2158 | DDF_state_optimal;
2159
2160 if (vc->prl == DDF_RAID6 &&
2161 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2162 ddf->virt->entries[i].state =
2163 (ddf->virt->entries[i].state & ~DDF_state_mask)
2164 | DDF_state_part_optimal;
2165
2166 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2167 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2168 ddf->updates_pending = 1;
2169 }
2170
2171 /* add a device to a container, either while creating it or while
2172 * expanding a pre-existing container
2173 */
2174 static int add_to_super_ddf(struct supertype *st,
2175 mdu_disk_info_t *dk, int fd, char *devname)
2176 {
2177 struct ddf_super *ddf = st->sb;
2178 struct dl *dd;
2179 time_t now;
2180 struct tm *tm;
2181 unsigned long long size;
2182 struct phys_disk_entry *pde;
2183 unsigned int n, i;
2184 struct stat stb;
2185
2186 if (ddf->currentconf) {
2187 add_to_super_ddf_bvd(st, dk, fd, devname);
2188 return 0;
2189 }
2190
2191 /* This is device numbered dk->number. We need to create
2192 * a phys_disk entry and a more detailed disk_data entry.
2193 */
2194 fstat(fd, &stb);
2195 if (posix_memalign((void**)&dd, 512,
2196 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2197 fprintf(stderr, Name
2198 ": %s could allocate buffer for new disk, aborting\n",
2199 __func__);
2200 return 1;
2201 }
2202 dd->major = major(stb.st_rdev);
2203 dd->minor = minor(stb.st_rdev);
2204 dd->devname = devname;
2205 dd->fd = fd;
2206 dd->spare = NULL;
2207
2208 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2209 now = time(0);
2210 tm = localtime(&now);
2211 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2212 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2213 *(__u32*)(dd->disk.guid + 16) = random32();
2214 *(__u32*)(dd->disk.guid + 20) = random32();
2215
2216 do {
2217 /* Cannot be bothered finding a CRC of some irrelevant details*/
2218 dd->disk.refnum = random32();
2219 for (i = __be16_to_cpu(ddf->active->max_pd_entries);
2220 i > 0; i--)
2221 if (ddf->phys->entries[i-1].refnum == dd->disk.refnum)
2222 break;
2223 } while (i > 0);
2224
2225 dd->disk.forced_ref = 1;
2226 dd->disk.forced_guid = 1;
2227 memset(dd->disk.vendor, ' ', 32);
2228 memcpy(dd->disk.vendor, "Linux", 5);
2229 memset(dd->disk.pad, 0xff, 442);
2230 for (i = 0; i < ddf->max_part ; i++)
2231 dd->vlist[i] = NULL;
2232
2233 n = __be16_to_cpu(ddf->phys->used_pdes);
2234 pde = &ddf->phys->entries[n];
2235 dd->pdnum = n;
2236
2237 if (st->update_tail) {
2238 int len = (sizeof(struct phys_disk) +
2239 sizeof(struct phys_disk_entry));
2240 struct phys_disk *pd;
2241
2242 pd = malloc(len);
2243 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2244 pd->used_pdes = __cpu_to_be16(n);
2245 pde = &pd->entries[0];
2246 dd->mdupdate = pd;
2247 } else {
2248 n++;
2249 ddf->phys->used_pdes = __cpu_to_be16(n);
2250 }
2251
2252 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2253 pde->refnum = dd->disk.refnum;
2254 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2255 pde->state = __cpu_to_be16(DDF_Online);
2256 get_dev_size(fd, NULL, &size);
2257 /* We are required to reserve 32Meg, and record the size in sectors */
2258 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2259 sprintf(pde->path, "%17.17s","Information: nil") ;
2260 memset(pde->pad, 0xff, 6);
2261
2262 dd->size = size >> 9;
2263 if (st->update_tail) {
2264 dd->next = ddf->add_list;
2265 ddf->add_list = dd;
2266 } else {
2267 dd->next = ddf->dlist;
2268 ddf->dlist = dd;
2269 ddf->updates_pending = 1;
2270 }
2271
2272 return 0;
2273 }
2274
2275 /*
2276 * This is the write_init_super method for a ddf container. It is
2277 * called when creating a container or adding another device to a
2278 * container.
2279 */
2280
2281 static unsigned char null_conf[4096+512];
2282
2283 static int __write_init_super_ddf(struct supertype *st, int do_close)
2284 {
2285
2286 struct ddf_super *ddf = st->sb;
2287 int i;
2288 struct dl *d;
2289 int n_config;
2290 int conf_size;
2291 int attempts = 0;
2292 int successes = 0;
2293 unsigned long long size, sector;
2294
2295 /* try to write updated metadata,
2296 * if we catch a failure move on to the next disk
2297 */
2298 for (d = ddf->dlist; d; d=d->next) {
2299 int fd = d->fd;
2300
2301 if (fd < 0)
2302 continue;
2303
2304 attempts++;
2305 /* We need to fill in the primary, (secondary) and workspace
2306 * lba's in the headers, set their checksums,
2307 * Also checksum phys, virt....
2308 *
2309 * Then write everything out, finally the anchor is written.
2310 */
2311 get_dev_size(fd, NULL, &size);
2312 size /= 512;
2313 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2314 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2315 ddf->anchor.seq = __cpu_to_be32(1);
2316 memcpy(&ddf->primary, &ddf->anchor, 512);
2317 memcpy(&ddf->secondary, &ddf->anchor, 512);
2318
2319 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2320 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2321 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2322
2323 ddf->primary.openflag = 0;
2324 ddf->primary.type = DDF_HEADER_PRIMARY;
2325
2326 ddf->secondary.openflag = 0;
2327 ddf->secondary.type = DDF_HEADER_SECONDARY;
2328
2329 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2330 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2331
2332 sector = size - 16*1024*2;
2333 lseek64(fd, sector<<9, 0);
2334 if (write(fd, &ddf->primary, 512) < 0)
2335 continue;
2336
2337 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2338 if (write(fd, &ddf->controller, 512) < 0)
2339 continue;
2340
2341 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2342
2343 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2344 continue;
2345
2346 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2347 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2348 continue;
2349
2350 /* Now write lots of config records. */
2351 n_config = ddf->max_part;
2352 conf_size = ddf->conf_rec_len * 512;
2353 for (i = 0 ; i <= n_config ; i++) {
2354 struct vcl *c = d->vlist[i];
2355 if (i == n_config)
2356 c = (struct vcl*)d->spare;
2357
2358 if (c) {
2359 c->conf.crc = calc_crc(&c->conf, conf_size);
2360 if (write(fd, &c->conf, conf_size) < 0)
2361 break;
2362 } else {
2363 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2364 if (null_conf[0] != 0xff)
2365 memset(null_conf, 0xff, sizeof(null_conf));
2366 unsigned int togo = conf_size;
2367 while (togo > sizeof(null_conf)-512) {
2368 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2369 break;
2370 togo -= sizeof(null_conf)-512;
2371 }
2372 if (write(fd, null_aligned, togo) < 0)
2373 break;
2374 }
2375 }
2376 if (i <= n_config)
2377 continue;
2378 d->disk.crc = calc_crc(&d->disk, 512);
2379 if (write(fd, &d->disk, 512) < 0)
2380 continue;
2381
2382 /* Maybe do the same for secondary */
2383
2384 lseek64(fd, (size-1)*512, SEEK_SET);
2385 if (write(fd, &ddf->anchor, 512) < 0)
2386 continue;
2387 successes++;
2388 }
2389
2390 if (do_close)
2391 for (d = ddf->dlist; d; d=d->next) {
2392 close(d->fd);
2393 d->fd = -1;
2394 }
2395
2396 return attempts != successes;
2397 }
2398
2399 static int write_init_super_ddf(struct supertype *st)
2400 {
2401 struct ddf_super *ddf = st->sb;
2402 struct vcl *currentconf = ddf->currentconf;
2403
2404 /* we are done with currentconf reset it to point st at the container */
2405 ddf->currentconf = NULL;
2406
2407 if (st->update_tail) {
2408 /* queue the virtual_disk and vd_config as metadata updates */
2409 struct virtual_disk *vd;
2410 struct vd_config *vc;
2411 int len;
2412
2413 if (!currentconf) {
2414 int len = (sizeof(struct phys_disk) +
2415 sizeof(struct phys_disk_entry));
2416
2417 /* adding a disk to the container. */
2418 if (!ddf->add_list)
2419 return 0;
2420
2421 append_metadata_update(st, ddf->add_list->mdupdate, len);
2422 ddf->add_list->mdupdate = NULL;
2423 return 0;
2424 }
2425
2426 /* Newly created VD */
2427
2428 /* First the virtual disk. We have a slightly fake header */
2429 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2430 vd = malloc(len);
2431 *vd = *ddf->virt;
2432 vd->entries[0] = ddf->virt->entries[currentconf->vcnum];
2433 vd->populated_vdes = __cpu_to_be16(currentconf->vcnum);
2434 append_metadata_update(st, vd, len);
2435
2436 /* Then the vd_config */
2437 len = ddf->conf_rec_len * 512;
2438 vc = malloc(len);
2439 memcpy(vc, &currentconf->conf, len);
2440 append_metadata_update(st, vc, len);
2441
2442 /* FIXME I need to close the fds! */
2443 return 0;
2444 } else {
2445 struct dl *d;
2446 for (d = ddf->dlist; d; d=d->next)
2447 while (Kill(d->devname, NULL, 0, 1, 1) == 0);
2448 return __write_init_super_ddf(st, 1);
2449 }
2450 }
2451
2452 #endif
2453
2454 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2455 {
2456 /* We must reserve the last 32Meg */
2457 if (devsize <= 32*1024*2)
2458 return 0;
2459 return devsize - 32*1024*2;
2460 }
2461
2462 #ifndef MDASSEMBLE
2463
2464 static int reserve_space(struct supertype *st, int raiddisks,
2465 unsigned long long size, int chunk,
2466 unsigned long long *freesize)
2467 {
2468 /* Find 'raiddisks' spare extents at least 'size' big (but
2469 * only caring about multiples of 'chunk') and remember
2470 * them.
2471 * If the cannot be found, fail.
2472 */
2473 struct dl *dl;
2474 struct ddf_super *ddf = st->sb;
2475 int cnt = 0;
2476
2477 for (dl = ddf->dlist; dl ; dl=dl->next) {
2478 dl->raiddisk = -1;
2479 dl->esize = 0;
2480 }
2481 /* Now find largest extent on each device */
2482 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2483 struct extent *e = get_extents(ddf, dl);
2484 unsigned long long pos = 0;
2485 int i = 0;
2486 int found = 0;
2487 unsigned long long minsize = size;
2488
2489 if (size == 0)
2490 minsize = chunk;
2491
2492 if (!e)
2493 continue;
2494 do {
2495 unsigned long long esize;
2496 esize = e[i].start - pos;
2497 if (esize >= minsize) {
2498 found = 1;
2499 minsize = esize;
2500 }
2501 pos = e[i].start + e[i].size;
2502 i++;
2503 } while (e[i-1].size);
2504 if (found) {
2505 cnt++;
2506 dl->esize = minsize;
2507 }
2508 free(e);
2509 }
2510 if (cnt < raiddisks) {
2511 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2512 return 0; /* No enough free spaces large enough */
2513 }
2514 if (size == 0) {
2515 /* choose the largest size of which there are at least 'raiddisk' */
2516 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2517 struct dl *dl2;
2518 if (dl->esize <= size)
2519 continue;
2520 /* This is bigger than 'size', see if there are enough */
2521 cnt = 0;
2522 for (dl2 = dl; dl2 ; dl2=dl2->next)
2523 if (dl2->esize >= dl->esize)
2524 cnt++;
2525 if (cnt >= raiddisks)
2526 size = dl->esize;
2527 }
2528 if (chunk) {
2529 size = size / chunk;
2530 size *= chunk;
2531 }
2532 *freesize = size;
2533 if (size < 32) {
2534 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2535 return 0;
2536 }
2537 }
2538 /* We have a 'size' of which there are enough spaces.
2539 * We simply do a first-fit */
2540 cnt = 0;
2541 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2542 if (dl->esize < size)
2543 continue;
2544
2545 dl->raiddisk = cnt;
2546 cnt++;
2547 }
2548 return 1;
2549 }
2550
2551
2552
2553 static int
2554 validate_geometry_ddf_container(struct supertype *st,
2555 int level, int layout, int raiddisks,
2556 int chunk, unsigned long long size,
2557 char *dev, unsigned long long *freesize,
2558 int verbose);
2559
2560 static int validate_geometry_ddf_bvd(struct supertype *st,
2561 int level, int layout, int raiddisks,
2562 int chunk, unsigned long long size,
2563 char *dev, unsigned long long *freesize,
2564 int verbose);
2565
2566 static int validate_geometry_ddf(struct supertype *st,
2567 int level, int layout, int raiddisks,
2568 int chunk, unsigned long long size,
2569 char *dev, unsigned long long *freesize,
2570 int verbose)
2571 {
2572 int fd;
2573 struct mdinfo *sra;
2574 int cfd;
2575
2576 /* ddf potentially supports lots of things, but it depends on
2577 * what devices are offered (and maybe kernel version?)
2578 * If given unused devices, we will make a container.
2579 * If given devices in a container, we will make a BVD.
2580 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2581 */
2582
2583 if (level == LEVEL_CONTAINER) {
2584 /* Must be a fresh device to add to a container */
2585 return validate_geometry_ddf_container(st, level, layout,
2586 raiddisks, chunk,
2587 size, dev, freesize,
2588 verbose);
2589 }
2590
2591 if (!dev) {
2592 /* Initial sanity check. Exclude illegal levels. */
2593 int i;
2594 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2595 if (ddf_level_num[i].num2 == level)
2596 break;
2597 if (ddf_level_num[i].num1 == MAXINT) {
2598 if (verbose)
2599 fprintf(stderr, Name ": DDF does not support level %d arrays\n",
2600 level);
2601 return 0;
2602 }
2603 /* Should check layout? etc */
2604
2605 if (st->sb && freesize) {
2606 /* --create was given a container to create in.
2607 * So we need to check that there are enough
2608 * free spaces and return the amount of space.
2609 * We may as well remember which drives were
2610 * chosen so that add_to_super/getinfo_super
2611 * can return them.
2612 */
2613 return reserve_space(st, raiddisks, size, chunk, freesize);
2614 }
2615 return 1;
2616 }
2617
2618 if (st->sb) {
2619 /* A container has already been opened, so we are
2620 * creating in there. Maybe a BVD, maybe an SVD.
2621 * Should make a distinction one day.
2622 */
2623 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2624 chunk, size, dev, freesize,
2625 verbose);
2626 }
2627 /* This is the first device for the array.
2628 * If it is a container, we read it in and do automagic allocations,
2629 * no other devices should be given.
2630 * Otherwise it must be a member device of a container, and we
2631 * do manual allocation.
2632 * Later we should check for a BVD and make an SVD.
2633 */
2634 fd = open(dev, O_RDONLY|O_EXCL, 0);
2635 if (fd >= 0) {
2636 sra = sysfs_read(fd, 0, GET_VERSION);
2637 close(fd);
2638 if (sra && sra->array.major_version == -1 &&
2639 strcmp(sra->text_version, "ddf") == 0) {
2640
2641 /* load super */
2642 /* find space for 'n' devices. */
2643 /* remember the devices */
2644 /* Somehow return the fact that we have enough */
2645 }
2646
2647 if (verbose)
2648 fprintf(stderr,
2649 Name ": ddf: Cannot create this array "
2650 "on device %s - a container is required.\n",
2651 dev);
2652 return 0;
2653 }
2654 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2655 if (verbose)
2656 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2657 dev, strerror(errno));
2658 return 0;
2659 }
2660 /* Well, it is in use by someone, maybe a 'ddf' container. */
2661 cfd = open_container(fd);
2662 if (cfd < 0) {
2663 close(fd);
2664 if (verbose)
2665 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2666 dev, strerror(EBUSY));
2667 return 0;
2668 }
2669 sra = sysfs_read(cfd, 0, GET_VERSION);
2670 close(fd);
2671 if (sra && sra->array.major_version == -1 &&
2672 strcmp(sra->text_version, "ddf") == 0) {
2673 /* This is a member of a ddf container. Load the container
2674 * and try to create a bvd
2675 */
2676 struct ddf_super *ddf;
2677 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2678 st->sb = ddf;
2679 st->container_dev = fd2devnum(cfd);
2680 close(cfd);
2681 return validate_geometry_ddf_bvd(st, level, layout,
2682 raiddisks, chunk, size,
2683 dev, freesize,
2684 verbose);
2685 }
2686 close(cfd);
2687 } else /* device may belong to a different container */
2688 return 0;
2689
2690 return 1;
2691 }
2692
2693 static int
2694 validate_geometry_ddf_container(struct supertype *st,
2695 int level, int layout, int raiddisks,
2696 int chunk, unsigned long long size,
2697 char *dev, unsigned long long *freesize,
2698 int verbose)
2699 {
2700 int fd;
2701 unsigned long long ldsize;
2702
2703 if (level != LEVEL_CONTAINER)
2704 return 0;
2705 if (!dev)
2706 return 1;
2707
2708 fd = open(dev, O_RDONLY|O_EXCL, 0);
2709 if (fd < 0) {
2710 if (verbose)
2711 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2712 dev, strerror(errno));
2713 return 0;
2714 }
2715 if (!get_dev_size(fd, dev, &ldsize)) {
2716 close(fd);
2717 return 0;
2718 }
2719 close(fd);
2720
2721 *freesize = avail_size_ddf(st, ldsize >> 9);
2722 if (*freesize == 0)
2723 return 0;
2724
2725 return 1;
2726 }
2727
2728 static int validate_geometry_ddf_bvd(struct supertype *st,
2729 int level, int layout, int raiddisks,
2730 int chunk, unsigned long long size,
2731 char *dev, unsigned long long *freesize,
2732 int verbose)
2733 {
2734 struct stat stb;
2735 struct ddf_super *ddf = st->sb;
2736 struct dl *dl;
2737 unsigned long long pos = 0;
2738 unsigned long long maxsize;
2739 struct extent *e;
2740 int i;
2741 /* ddf/bvd supports lots of things, but not containers */
2742 if (level == LEVEL_CONTAINER) {
2743 if (verbose)
2744 fprintf(stderr, Name ": DDF cannot create a container within an container\n");
2745 return 0;
2746 }
2747 /* We must have the container info already read in. */
2748 if (!ddf)
2749 return 0;
2750
2751 if (!dev) {
2752 /* General test: make sure there is space for
2753 * 'raiddisks' device extents of size 'size'.
2754 */
2755 unsigned long long minsize = size;
2756 int dcnt = 0;
2757 if (minsize == 0)
2758 minsize = 8;
2759 for (dl = ddf->dlist; dl ; dl = dl->next)
2760 {
2761 int found = 0;
2762 pos = 0;
2763
2764 i = 0;
2765 e = get_extents(ddf, dl);
2766 if (!e) continue;
2767 do {
2768 unsigned long long esize;
2769 esize = e[i].start - pos;
2770 if (esize >= minsize)
2771 found = 1;
2772 pos = e[i].start + e[i].size;
2773 i++;
2774 } while (e[i-1].size);
2775 if (found)
2776 dcnt++;
2777 free(e);
2778 }
2779 if (dcnt < raiddisks) {
2780 if (verbose)
2781 fprintf(stderr,
2782 Name ": ddf: Not enough devices with "
2783 "space for this array (%d < %d)\n",
2784 dcnt, raiddisks);
2785 return 0;
2786 }
2787 return 1;
2788 }
2789 /* This device must be a member of the set */
2790 if (stat(dev, &stb) < 0)
2791 return 0;
2792 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2793 return 0;
2794 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2795 if (dl->major == (int)major(stb.st_rdev) &&
2796 dl->minor == (int)minor(stb.st_rdev))
2797 break;
2798 }
2799 if (!dl) {
2800 if (verbose)
2801 fprintf(stderr, Name ": ddf: %s is not in the "
2802 "same DDF set\n",
2803 dev);
2804 return 0;
2805 }
2806 e = get_extents(ddf, dl);
2807 maxsize = 0;
2808 i = 0;
2809 if (e) do {
2810 unsigned long long esize;
2811 esize = e[i].start - pos;
2812 if (esize >= maxsize)
2813 maxsize = esize;
2814 pos = e[i].start + e[i].size;
2815 i++;
2816 } while (e[i-1].size);
2817 *freesize = maxsize;
2818 // FIXME here I am
2819
2820 return 1;
2821 }
2822
2823 static int load_super_ddf_all(struct supertype *st, int fd,
2824 void **sbp, char *devname, int keep_fd)
2825 {
2826 struct mdinfo *sra;
2827 struct ddf_super *super;
2828 struct mdinfo *sd, *best = NULL;
2829 int bestseq = 0;
2830 int seq;
2831 char nm[20];
2832 int dfd;
2833
2834 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2835 if (!sra)
2836 return 1;
2837 if (sra->array.major_version != -1 ||
2838 sra->array.minor_version != -2 ||
2839 strcmp(sra->text_version, "ddf") != 0)
2840 return 1;
2841
2842 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2843 return 1;
2844 memset(super, 0, sizeof(*super));
2845
2846 /* first, try each device, and choose the best ddf */
2847 for (sd = sra->devs ; sd ; sd = sd->next) {
2848 int rv;
2849 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2850 dfd = dev_open(nm, O_RDONLY);
2851 if (dfd < 0)
2852 return 2;
2853 rv = load_ddf_headers(dfd, super, NULL);
2854 close(dfd);
2855 if (rv == 0) {
2856 seq = __be32_to_cpu(super->active->seq);
2857 if (super->active->openflag)
2858 seq--;
2859 if (!best || seq > bestseq) {
2860 bestseq = seq;
2861 best = sd;
2862 }
2863 }
2864 }
2865 if (!best)
2866 return 1;
2867 /* OK, load this ddf */
2868 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2869 dfd = dev_open(nm, O_RDONLY);
2870 if (dfd < 0)
2871 return 1;
2872 load_ddf_headers(dfd, super, NULL);
2873 load_ddf_global(dfd, super, NULL);
2874 close(dfd);
2875 /* Now we need the device-local bits */
2876 for (sd = sra->devs ; sd ; sd = sd->next) {
2877 int rv;
2878
2879 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2880 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2881 if (dfd < 0)
2882 return 2;
2883 rv = load_ddf_headers(dfd, super, NULL);
2884 if (rv == 0)
2885 rv = load_ddf_local(dfd, super, NULL, keep_fd);
2886 if (!keep_fd) close(dfd);
2887 if (rv)
2888 return 1;
2889 }
2890 if (st->subarray[0]) {
2891 unsigned long val;
2892 struct vcl *v;
2893 char *ep;
2894
2895 val = strtoul(st->subarray, &ep, 10);
2896 if (*ep != '\0') {
2897 free(super);
2898 return 1;
2899 }
2900
2901 for (v = super->conflist; v; v = v->next)
2902 if (v->vcnum == val)
2903 super->currentconf = v;
2904 if (!super->currentconf) {
2905 free(super);
2906 return 1;
2907 }
2908 }
2909
2910 *sbp = super;
2911 if (st->ss == NULL) {
2912 st->ss = &super_ddf;
2913 st->minor_version = 0;
2914 st->max_devs = 512;
2915 st->container_dev = fd2devnum(fd);
2916 }
2917 st->loaded_container = 1;
2918 return 0;
2919 }
2920 #endif /* MDASSEMBLE */
2921
2922 static struct mdinfo *container_content_ddf(struct supertype *st)
2923 {
2924 /* Given a container loaded by load_super_ddf_all,
2925 * extract information about all the arrays into
2926 * an mdinfo tree.
2927 *
2928 * For each vcl in conflist: create an mdinfo, fill it in,
2929 * then look for matching devices (phys_refnum) in dlist
2930 * and create appropriate device mdinfo.
2931 */
2932 struct ddf_super *ddf = st->sb;
2933 struct mdinfo *rest = NULL;
2934 struct vcl *vc;
2935
2936 for (vc = ddf->conflist ; vc ; vc=vc->next)
2937 {
2938 unsigned int i;
2939 unsigned int j;
2940 struct mdinfo *this;
2941 this = malloc(sizeof(*this));
2942 memset(this, 0, sizeof(*this));
2943 this->next = rest;
2944 rest = this;
2945
2946 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2947 this->array.raid_disks =
2948 __be16_to_cpu(vc->conf.prim_elmnt_count);
2949 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2950 this->array.raid_disks);
2951 this->array.md_minor = -1;
2952 this->array.major_version = -1;
2953 this->array.minor_version = -2;
2954 this->array.ctime = DECADE +
2955 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2956 this->array.utime = DECADE +
2957 __be32_to_cpu(vc->conf.timestamp);
2958 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2959
2960 i = vc->vcnum;
2961 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2962 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2963 DDF_init_full) {
2964 this->array.state = 0;
2965 this->resync_start = 0;
2966 } else {
2967 this->array.state = 1;
2968 this->resync_start = MaxSector;
2969 }
2970 memcpy(this->name, ddf->virt->entries[i].name, 16);
2971 this->name[16]=0;
2972 for(j=0; j<16; j++)
2973 if (this->name[j] == ' ')
2974 this->name[j] = 0;
2975
2976 memset(this->uuid, 0, sizeof(this->uuid));
2977 this->component_size = __be64_to_cpu(vc->conf.blocks);
2978 this->array.size = this->component_size / 2;
2979 this->container_member = i;
2980
2981 ddf->currentconf = vc;
2982 uuid_from_super_ddf(st, this->uuid);
2983 ddf->currentconf = NULL;
2984
2985 sprintf(this->text_version, "/%s/%d",
2986 devnum2devname(st->container_dev),
2987 this->container_member);
2988
2989 for (i = 0 ; i < ddf->mppe ; i++) {
2990 struct mdinfo *dev;
2991 struct dl *d;
2992 int stt;
2993
2994 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2995 continue;
2996
2997 for (d = ddf->dlist; d ; d=d->next)
2998 if (d->disk.refnum == vc->conf.phys_refnum[i])
2999 break;
3000 if (d == NULL)
3001 /* Haven't found that one yet, maybe there are others */
3002 continue;
3003 stt = __be16_to_cpu(ddf->phys->entries[d->pdnum].state);
3004 if ((stt & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3005 != DDF_Online)
3006 continue;
3007
3008 this->array.working_disks++;
3009
3010 dev = malloc(sizeof(*dev));
3011 memset(dev, 0, sizeof(*dev));
3012 dev->next = this->devs;
3013 this->devs = dev;
3014
3015 dev->disk.number = __be32_to_cpu(d->disk.refnum);
3016 dev->disk.major = d->major;
3017 dev->disk.minor = d->minor;
3018 dev->disk.raid_disk = i;
3019 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
3020 dev->recovery_start = MaxSector;
3021
3022 dev->events = __be32_to_cpu(ddf->primary.seq);
3023 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
3024 dev->component_size = __be64_to_cpu(vc->conf.blocks);
3025 if (d->devname)
3026 strcpy(dev->name, d->devname);
3027 }
3028 }
3029 return rest;
3030 }
3031
3032 static int store_super_ddf(struct supertype *st, int fd)
3033 {
3034 struct ddf_super *ddf = st->sb;
3035 unsigned long long dsize;
3036 void *buf;
3037 int rc;
3038
3039 if (!ddf)
3040 return 1;
3041
3042 /* ->dlist and ->conflist will be set for updates, currently not
3043 * supported
3044 */
3045 if (ddf->dlist || ddf->conflist)
3046 return 1;
3047
3048 if (!get_dev_size(fd, NULL, &dsize))
3049 return 1;
3050
3051 if (posix_memalign(&buf, 512, 512) != 0)
3052 return 1;
3053 memset(buf, 0, 512);
3054
3055 lseek64(fd, dsize-512, 0);
3056 rc = write(fd, buf, 512);
3057 free(buf);
3058 if (rc < 0)
3059 return 1;
3060 return 0;
3061 }
3062
3063 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
3064 {
3065 /*
3066 * return:
3067 * 0 same, or first was empty, and second was copied
3068 * 1 second had wrong number
3069 * 2 wrong uuid
3070 * 3 wrong other info
3071 */
3072 struct ddf_super *first = st->sb;
3073 struct ddf_super *second = tst->sb;
3074
3075 if (!first) {
3076 st->sb = tst->sb;
3077 tst->sb = NULL;
3078 return 0;
3079 }
3080
3081 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
3082 return 2;
3083
3084 /* FIXME should I look at anything else? */
3085 return 0;
3086 }
3087
3088 #ifndef MDASSEMBLE
3089 /*
3090 * A new array 'a' has been started which claims to be instance 'inst'
3091 * within container 'c'.
3092 * We need to confirm that the array matches the metadata in 'c' so
3093 * that we don't corrupt any metadata.
3094 */
3095 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
3096 {
3097 dprintf("ddf: open_new %s\n", inst);
3098 a->info.container_member = atoi(inst);
3099 return 0;
3100 }
3101
3102 /*
3103 * The array 'a' is to be marked clean in the metadata.
3104 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3105 * clean up to the point (in sectors). If that cannot be recorded in the
3106 * metadata, then leave it as dirty.
3107 *
3108 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3109 * !global! virtual_disk.virtual_entry structure.
3110 */
3111 static int ddf_set_array_state(struct active_array *a, int consistent)
3112 {
3113 struct ddf_super *ddf = a->container->sb;
3114 int inst = a->info.container_member;
3115 int old = ddf->virt->entries[inst].state;
3116 if (consistent == 2) {
3117 /* Should check if a recovery should be started FIXME */
3118 consistent = 1;
3119 if (!is_resync_complete(&a->info))
3120 consistent = 0;
3121 }
3122 if (consistent)
3123 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3124 else
3125 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3126 if (old != ddf->virt->entries[inst].state)
3127 ddf->updates_pending = 1;
3128
3129 old = ddf->virt->entries[inst].init_state;
3130 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3131 if (is_resync_complete(&a->info))
3132 ddf->virt->entries[inst].init_state |= DDF_init_full;
3133 else if (a->info.resync_start == 0)
3134 ddf->virt->entries[inst].init_state |= DDF_init_not;
3135 else
3136 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3137 if (old != ddf->virt->entries[inst].init_state)
3138 ddf->updates_pending = 1;
3139
3140 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3141 a->info.resync_start);
3142 return consistent;
3143 }
3144
3145 /*
3146 * The state of each disk is stored in the global phys_disk structure
3147 * in phys_disk.entries[n].state.
3148 * This makes various combinations awkward.
3149 * - When a device fails in any array, it must be failed in all arrays
3150 * that include a part of this device.
3151 * - When a component is rebuilding, we cannot include it officially in the
3152 * array unless this is the only array that uses the device.
3153 *
3154 * So: when transitioning:
3155 * Online -> failed, just set failed flag. monitor will propagate
3156 * spare -> online, the device might need to be added to the array.
3157 * spare -> failed, just set failed. Don't worry if in array or not.
3158 */
3159 static void ddf_set_disk(struct active_array *a, int n, int state)
3160 {
3161 struct ddf_super *ddf = a->container->sb;
3162 unsigned int inst = a->info.container_member;
3163 struct vd_config *vc = find_vdcr(ddf, inst);
3164 int pd = find_phys(ddf, vc->phys_refnum[n]);
3165 int i, st, working;
3166
3167 if (vc == NULL) {
3168 dprintf("ddf: cannot find instance %d!!\n", inst);
3169 return;
3170 }
3171 if (pd < 0) {
3172 /* disk doesn't currently exist. If it is now in_sync,
3173 * insert it. */
3174 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3175 /* Find dev 'n' in a->info->devs, determine the
3176 * ddf refnum, and set vc->phys_refnum and update
3177 * phys->entries[]
3178 */
3179 /* FIXME */
3180 }
3181 } else {
3182 int old = ddf->phys->entries[pd].state;
3183 if (state & DS_FAULTY)
3184 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3185 if (state & DS_INSYNC) {
3186 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3187 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3188 }
3189 if (old != ddf->phys->entries[pd].state)
3190 ddf->updates_pending = 1;
3191 }
3192
3193 dprintf("ddf: set_disk %d to %x\n", n, state);
3194
3195 /* Now we need to check the state of the array and update
3196 * virtual_disk.entries[n].state.
3197 * It needs to be one of "optimal", "degraded", "failed".
3198 * I don't understand 'deleted' or 'missing'.
3199 */
3200 working = 0;
3201 for (i=0; i < a->info.array.raid_disks; i++) {
3202 pd = find_phys(ddf, vc->phys_refnum[i]);
3203 if (pd < 0)
3204 continue;
3205 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3206 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3207 == DDF_Online)
3208 working++;
3209 }
3210 state = DDF_state_degraded;
3211 if (working == a->info.array.raid_disks)
3212 state = DDF_state_optimal;
3213 else switch(vc->prl) {
3214 case DDF_RAID0:
3215 case DDF_CONCAT:
3216 case DDF_JBOD:
3217 state = DDF_state_failed;
3218 break;
3219 case DDF_RAID1:
3220 if (working == 0)
3221 state = DDF_state_failed;
3222 break;
3223 case DDF_RAID4:
3224 case DDF_RAID5:
3225 if (working < a->info.array.raid_disks-1)
3226 state = DDF_state_failed;
3227 break;
3228 case DDF_RAID6:
3229 if (working < a->info.array.raid_disks-2)
3230 state = DDF_state_failed;
3231 else if (working == a->info.array.raid_disks-1)
3232 state = DDF_state_part_optimal;
3233 break;
3234 }
3235
3236 if (ddf->virt->entries[inst].state !=
3237 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3238 | state)) {
3239
3240 ddf->virt->entries[inst].state =
3241 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3242 | state;
3243 ddf->updates_pending = 1;
3244 }
3245
3246 }
3247
3248 static void ddf_sync_metadata(struct supertype *st)
3249 {
3250
3251 /*
3252 * Write all data to all devices.
3253 * Later, we might be able to track whether only local changes
3254 * have been made, or whether any global data has been changed,
3255 * but ddf is sufficiently weird that it probably always
3256 * changes global data ....
3257 */
3258 struct ddf_super *ddf = st->sb;
3259 if (!ddf->updates_pending)
3260 return;
3261 ddf->updates_pending = 0;
3262 __write_init_super_ddf(st, 0);
3263 dprintf("ddf: sync_metadata\n");
3264 }
3265
3266 static void ddf_process_update(struct supertype *st,
3267 struct metadata_update *update)
3268 {
3269 /* Apply this update to the metadata.
3270 * The first 4 bytes are a DDF_*_MAGIC which guides
3271 * our actions.
3272 * Possible update are:
3273 * DDF_PHYS_RECORDS_MAGIC
3274 * Add a new physical device. Changes to this record
3275 * only happen implicitly.
3276 * used_pdes is the device number.
3277 * DDF_VIRT_RECORDS_MAGIC
3278 * Add a new VD. Possibly also change the 'access' bits.
3279 * populated_vdes is the entry number.
3280 * DDF_VD_CONF_MAGIC
3281 * New or updated VD. the VIRT_RECORD must already
3282 * exist. For an update, phys_refnum and lba_offset
3283 * (at least) are updated, and the VD_CONF must
3284 * be written to precisely those devices listed with
3285 * a phys_refnum.
3286 * DDF_SPARE_ASSIGN_MAGIC
3287 * replacement Spare Assignment Record... but for which device?
3288 *
3289 * So, e.g.:
3290 * - to create a new array, we send a VIRT_RECORD and
3291 * a VD_CONF. Then assemble and start the array.
3292 * - to activate a spare we send a VD_CONF to add the phys_refnum
3293 * and offset. This will also mark the spare as active with
3294 * a spare-assignment record.
3295 */
3296 struct ddf_super *ddf = st->sb;
3297 __u32 *magic = (__u32*)update->buf;
3298 struct phys_disk *pd;
3299 struct virtual_disk *vd;
3300 struct vd_config *vc;
3301 struct vcl *vcl;
3302 struct dl *dl;
3303 unsigned int mppe;
3304 unsigned int ent;
3305
3306 dprintf("Process update %x\n", *magic);
3307
3308 switch (*magic) {
3309 case DDF_PHYS_RECORDS_MAGIC:
3310
3311 if (update->len != (sizeof(struct phys_disk) +
3312 sizeof(struct phys_disk_entry)))
3313 return;
3314 pd = (struct phys_disk*)update->buf;
3315
3316 ent = __be16_to_cpu(pd->used_pdes);
3317 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3318 return;
3319 if (!all_ff(ddf->phys->entries[ent].guid))
3320 return;
3321 ddf->phys->entries[ent] = pd->entries[0];
3322 ddf->phys->used_pdes = __cpu_to_be16(1 +
3323 __be16_to_cpu(ddf->phys->used_pdes));
3324 ddf->updates_pending = 1;
3325 if (ddf->add_list) {
3326 struct active_array *a;
3327 struct dl *al = ddf->add_list;
3328 ddf->add_list = al->next;
3329
3330 al->next = ddf->dlist;
3331 ddf->dlist = al;
3332
3333 /* As a device has been added, we should check
3334 * for any degraded devices that might make
3335 * use of this spare */
3336 for (a = st->arrays ; a; a=a->next)
3337 a->check_degraded = 1;
3338 }
3339 break;
3340
3341 case DDF_VIRT_RECORDS_MAGIC:
3342
3343 if (update->len != (sizeof(struct virtual_disk) +
3344 sizeof(struct virtual_entry)))
3345 return;
3346 vd = (struct virtual_disk*)update->buf;
3347
3348 ent = __be16_to_cpu(vd->populated_vdes);
3349 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3350 return;
3351 if (!all_ff(ddf->virt->entries[ent].guid))
3352 return;
3353 ddf->virt->entries[ent] = vd->entries[0];
3354 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3355 __be16_to_cpu(ddf->virt->populated_vdes));
3356 ddf->updates_pending = 1;
3357 break;
3358
3359 case DDF_VD_CONF_MAGIC:
3360 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3361
3362 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3363 if ((unsigned)update->len != ddf->conf_rec_len * 512)
3364 return;
3365 vc = (struct vd_config*)update->buf;
3366 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3367 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3368 break;
3369 dprintf("vcl = %p\n", vcl);
3370 if (vcl) {
3371 /* An update, just copy the phys_refnum and lba_offset
3372 * fields
3373 */
3374 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3375 mppe * (sizeof(__u32) + sizeof(__u64)));
3376 } else {
3377 /* A new VD_CONF */
3378 if (!update->space)
3379 return;
3380 vcl = update->space;
3381 update->space = NULL;
3382 vcl->next = ddf->conflist;
3383 memcpy(&vcl->conf, vc, update->len);
3384 vcl->lba_offset = (__u64*)
3385 &vcl->conf.phys_refnum[mppe];
3386 ddf->conflist = vcl;
3387 }
3388 /* Now make sure vlist is correct for each dl. */
3389 for (dl = ddf->dlist; dl; dl = dl->next) {
3390 unsigned int dn;
3391 unsigned int vn = 0;
3392 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3393 for (dn=0; dn < ddf->mppe ; dn++)
3394 if (vcl->conf.phys_refnum[dn] ==
3395 dl->disk.refnum) {
3396 dprintf("dev %d has %p at %d\n",
3397 dl->pdnum, vcl, vn);
3398 dl->vlist[vn++] = vcl;
3399 break;
3400 }
3401 while (vn < ddf->max_part)
3402 dl->vlist[vn++] = NULL;
3403 if (dl->vlist[0]) {
3404 ddf->phys->entries[dl->pdnum].type &=
3405 ~__cpu_to_be16(DDF_Global_Spare);
3406 ddf->phys->entries[dl->pdnum].type |=
3407 __cpu_to_be16(DDF_Active_in_VD);
3408 }
3409 if (dl->spare) {
3410 ddf->phys->entries[dl->pdnum].type &=
3411 ~__cpu_to_be16(DDF_Global_Spare);
3412 ddf->phys->entries[dl->pdnum].type |=
3413 __cpu_to_be16(DDF_Spare);
3414 }
3415 if (!dl->vlist[0] && !dl->spare) {
3416 ddf->phys->entries[dl->pdnum].type |=
3417 __cpu_to_be16(DDF_Global_Spare);
3418 ddf->phys->entries[dl->pdnum].type &=
3419 ~__cpu_to_be16(DDF_Spare |
3420 DDF_Active_in_VD);
3421 }
3422 }
3423 ddf->updates_pending = 1;
3424 break;
3425 case DDF_SPARE_ASSIGN_MAGIC:
3426 default: break;
3427 }
3428 }
3429
3430 static void ddf_prepare_update(struct supertype *st,
3431 struct metadata_update *update)
3432 {
3433 /* This update arrived at managemon.
3434 * We are about to pass it to monitor.
3435 * If a malloc is needed, do it here.
3436 */
3437 struct ddf_super *ddf = st->sb;
3438 __u32 *magic = (__u32*)update->buf;
3439 if (*magic == DDF_VD_CONF_MAGIC)
3440 if (posix_memalign(&update->space, 512,
3441 offsetof(struct vcl, conf)
3442 + ddf->conf_rec_len * 512) != 0)
3443 update->space = NULL;
3444 }
3445
3446 /*
3447 * Check if the array 'a' is degraded but not failed.
3448 * If it is, find as many spares as are available and needed and
3449 * arrange for their inclusion.
3450 * We only choose devices which are not already in the array,
3451 * and prefer those with a spare-assignment to this array.
3452 * otherwise we choose global spares - assuming always that
3453 * there is enough room.
3454 * For each spare that we assign, we return an 'mdinfo' which
3455 * describes the position for the device in the array.
3456 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3457 * the new phys_refnum and lba_offset values.
3458 *
3459 * Only worry about BVDs at the moment.
3460 */
3461 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3462 struct metadata_update **updates)
3463 {
3464 int working = 0;
3465 struct mdinfo *d;
3466 struct ddf_super *ddf = a->container->sb;
3467 int global_ok = 0;
3468 struct mdinfo *rv = NULL;
3469 struct mdinfo *di;
3470 struct metadata_update *mu;
3471 struct dl *dl;
3472 int i;
3473 struct vd_config *vc;
3474 __u64 *lba;
3475
3476 for (d = a->info.devs ; d ; d = d->next) {
3477 if ((d->curr_state & DS_FAULTY) &&
3478 d->state_fd >= 0)
3479 /* wait for Removal to happen */
3480 return NULL;
3481 if (d->state_fd >= 0)
3482 working ++;
3483 }
3484
3485 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3486 a->info.array.level);
3487 if (working == a->info.array.raid_disks)
3488 return NULL; /* array not degraded */
3489 switch (a->info.array.level) {
3490 case 1:
3491 if (working == 0)
3492 return NULL; /* failed */
3493 break;
3494 case 4:
3495 case 5:
3496 if (working < a->info.array.raid_disks - 1)
3497 return NULL; /* failed */
3498 break;
3499 case 6:
3500 if (working < a->info.array.raid_disks - 2)
3501 return NULL; /* failed */
3502 break;
3503 default: /* concat or stripe */
3504 return NULL; /* failed */
3505 }
3506
3507 /* For each slot, if it is not working, find a spare */
3508 dl = ddf->dlist;
3509 for (i = 0; i < a->info.array.raid_disks; i++) {
3510 for (d = a->info.devs ; d ; d = d->next)
3511 if (d->disk.raid_disk == i)
3512 break;
3513 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3514 if (d && (d->state_fd >= 0))
3515 continue;
3516
3517 /* OK, this device needs recovery. Find a spare */
3518 again:
3519 for ( ; dl ; dl = dl->next) {
3520 unsigned long long esize;
3521 unsigned long long pos;
3522 struct mdinfo *d2;
3523 int is_global = 0;
3524 int is_dedicated = 0;
3525 struct extent *ex;
3526 unsigned int j;
3527 /* If in this array, skip */
3528 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3529 if (d2->state_fd >= 0 &&
3530 d2->disk.major == dl->major &&
3531 d2->disk.minor == dl->minor) {
3532 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3533 break;
3534 }
3535 if (d2)
3536 continue;
3537 if (ddf->phys->entries[dl->pdnum].type &
3538 __cpu_to_be16(DDF_Spare)) {
3539 /* Check spare assign record */
3540 if (dl->spare) {
3541 if (dl->spare->type & DDF_spare_dedicated) {
3542 /* check spare_ents for guid */
3543 for (j = 0 ;
3544 j < __be16_to_cpu(dl->spare->populated);
3545 j++) {
3546 if (memcmp(dl->spare->spare_ents[j].guid,
3547 ddf->virt->entries[a->info.container_member].guid,
3548 DDF_GUID_LEN) == 0)
3549 is_dedicated = 1;
3550 }
3551 } else
3552 is_global = 1;
3553 }
3554 } else if (ddf->phys->entries[dl->pdnum].type &
3555 __cpu_to_be16(DDF_Global_Spare)) {
3556 is_global = 1;
3557 }
3558 if ( ! (is_dedicated ||
3559 (is_global && global_ok))) {
3560 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3561 is_dedicated, is_global);
3562 continue;
3563 }
3564
3565 /* We are allowed to use this device - is there space?
3566 * We need a->info.component_size sectors */
3567 ex = get_extents(ddf, dl);
3568 if (!ex) {
3569 dprintf("cannot get extents\n");
3570 continue;
3571 }
3572 j = 0; pos = 0;
3573 esize = 0;
3574
3575 do {
3576 esize = ex[j].start - pos;
3577 if (esize >= a->info.component_size)
3578 break;
3579 pos = ex[i].start + ex[i].size;
3580 i++;
3581 } while (ex[i-1].size);
3582
3583 free(ex);
3584 if (esize < a->info.component_size) {
3585 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3586 esize, a->info.component_size);
3587 /* No room */
3588 continue;
3589 }
3590
3591 /* Cool, we have a device with some space at pos */
3592 di = malloc(sizeof(*di));
3593 if (!di)
3594 continue;
3595 memset(di, 0, sizeof(*di));
3596 di->disk.number = i;
3597 di->disk.raid_disk = i;
3598 di->disk.major = dl->major;
3599 di->disk.minor = dl->minor;
3600 di->disk.state = 0;
3601 di->recovery_start = 0;
3602 di->data_offset = pos;
3603 di->component_size = a->info.component_size;
3604 di->container_member = dl->pdnum;
3605 di->next = rv;
3606 rv = di;
3607 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3608 i, pos);
3609
3610 break;
3611 }
3612 if (!dl && ! global_ok) {
3613 /* not enough dedicated spares, try global */
3614 global_ok = 1;
3615 dl = ddf->dlist;
3616 goto again;
3617 }
3618 }
3619
3620 if (!rv)
3621 /* No spares found */
3622 return rv;
3623 /* Now 'rv' has a list of devices to return.
3624 * Create a metadata_update record to update the
3625 * phys_refnum and lba_offset values
3626 */
3627 mu = malloc(sizeof(*mu));
3628 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3629 free(mu);
3630 mu = NULL;
3631 }
3632 if (!mu) {
3633 while (rv) {
3634 struct mdinfo *n = rv->next;
3635
3636 free(rv);
3637 rv = n;
3638 }
3639 return NULL;
3640 }
3641
3642 mu->buf = malloc(ddf->conf_rec_len * 512);
3643 mu->len = ddf->conf_rec_len * 512;
3644 mu->space = NULL;
3645 mu->next = *updates;
3646 vc = find_vdcr(ddf, a->info.container_member);
3647 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3648
3649 vc = (struct vd_config*)mu->buf;
3650 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3651 for (di = rv ; di ; di = di->next) {
3652 vc->phys_refnum[di->disk.raid_disk] =
3653 ddf->phys->entries[dl->pdnum].refnum;
3654 lba[di->disk.raid_disk] = di->data_offset;
3655 }
3656 *updates = mu;
3657 return rv;
3658 }
3659 #endif /* MDASSEMBLE */
3660
3661 static int ddf_level_to_layout(int level)
3662 {
3663 switch(level) {
3664 case 0:
3665 case 1:
3666 return 0;
3667 case 5:
3668 return ALGORITHM_LEFT_SYMMETRIC;
3669 case 6:
3670 return ALGORITHM_ROTATING_N_CONTINUE;
3671 case 10:
3672 return 0x102;
3673 default:
3674 return UnSet;
3675 }
3676 }
3677
3678 struct superswitch super_ddf = {
3679 #ifndef MDASSEMBLE
3680 .examine_super = examine_super_ddf,
3681 .brief_examine_super = brief_examine_super_ddf,
3682 .brief_examine_subarrays = brief_examine_subarrays_ddf,
3683 .export_examine_super = export_examine_super_ddf,
3684 .detail_super = detail_super_ddf,
3685 .brief_detail_super = brief_detail_super_ddf,
3686 .validate_geometry = validate_geometry_ddf,
3687 .write_init_super = write_init_super_ddf,
3688 .add_to_super = add_to_super_ddf,
3689 #endif
3690 .match_home = match_home_ddf,
3691 .uuid_from_super= uuid_from_super_ddf,
3692 .getinfo_super = getinfo_super_ddf,
3693 .update_super = update_super_ddf,
3694
3695 .avail_size = avail_size_ddf,
3696
3697 .compare_super = compare_super_ddf,
3698
3699 .load_super = load_super_ddf,
3700 .init_super = init_super_ddf,
3701 .store_super = store_super_ddf,
3702 .free_super = free_super_ddf,
3703 .match_metadata_desc = match_metadata_desc_ddf,
3704 .container_content = container_content_ddf,
3705 .default_layout = ddf_level_to_layout,
3706
3707 .external = 1,
3708
3709 #ifndef MDASSEMBLE
3710 /* for mdmon */
3711 .open_new = ddf_open_new,
3712 .set_array_state= ddf_set_array_state,
3713 .set_disk = ddf_set_disk,
3714 .sync_metadata = ddf_sync_metadata,
3715 .process_update = ddf_process_update,
3716 .prepare_update = ddf_prepare_update,
3717 .activate_spare = ddf_activate_spare,
3718 #endif
3719 .name = "ddf",
3720 };