]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
non-trivial warn_unused_result fixes, activate_spare
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 void *mdupdate; /* hold metadata update */
430 struct vcl *vlist[0]; /* max_part in size */
431 } *dlist, *add_list;
432 };
433
434 #ifndef offsetof
435 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
436 #endif
437
438
439 static int calc_crc(void *buf, int len)
440 {
441 /* crcs are always at the same place as in the ddf_header */
442 struct ddf_header *ddf = buf;
443 __u32 oldcrc = ddf->crc;
444 __u32 newcrc;
445 ddf->crc = 0xffffffff;
446
447 newcrc = crc32(0, buf, len);
448 ddf->crc = oldcrc;
449 return newcrc;
450 }
451
452 static int load_ddf_header(int fd, unsigned long long lba,
453 unsigned long long size,
454 int type,
455 struct ddf_header *hdr, struct ddf_header *anchor)
456 {
457 /* read a ddf header (primary or secondary) from fd/lba
458 * and check that it is consistent with anchor
459 * Need to check:
460 * magic, crc, guid, rev, and LBA's header_type, and
461 * everything after header_type must be the same
462 */
463 if (lba >= size-1)
464 return 0;
465
466 if (lseek64(fd, lba<<9, 0) < 0)
467 return 0;
468
469 if (read(fd, hdr, 512) != 512)
470 return 0;
471
472 if (hdr->magic != DDF_HEADER_MAGIC)
473 return 0;
474 if (calc_crc(hdr, 512) != hdr->crc)
475 return 0;
476 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
477 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
478 anchor->primary_lba != hdr->primary_lba ||
479 anchor->secondary_lba != hdr->secondary_lba ||
480 hdr->type != type ||
481 memcmp(anchor->pad2, hdr->pad2, 512 -
482 offsetof(struct ddf_header, pad2)) != 0)
483 return 0;
484
485 /* Looks good enough to me... */
486 return 1;
487 }
488
489 static void *load_section(int fd, struct ddf_super *super, void *buf,
490 __u32 offset_be, __u32 len_be, int check)
491 {
492 unsigned long long offset = __be32_to_cpu(offset_be);
493 unsigned long long len = __be32_to_cpu(len_be);
494 int dofree = (buf == NULL);
495
496 if (check)
497 if (len != 2 && len != 8 && len != 32
498 && len != 128 && len != 512)
499 return NULL;
500
501 if (len > 1024)
502 return NULL;
503 if (buf) {
504 /* All pre-allocated sections are a single block */
505 if (len != 1)
506 return NULL;
507 } else if (posix_memalign(&buf, 512, len<<9) != 0)
508 buf = NULL;
509
510 if (!buf)
511 return NULL;
512
513 if (super->active->type == 1)
514 offset += __be64_to_cpu(super->active->primary_lba);
515 else
516 offset += __be64_to_cpu(super->active->secondary_lba);
517
518 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
519 if (dofree)
520 free(buf);
521 return NULL;
522 }
523 if (read(fd, buf, len<<9) != (len<<9)) {
524 if (dofree)
525 free(buf);
526 return NULL;
527 }
528 return buf;
529 }
530
531 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
532 {
533 unsigned long long dsize;
534
535 get_dev_size(fd, NULL, &dsize);
536
537 if (lseek64(fd, dsize-512, 0) < 0) {
538 if (devname)
539 fprintf(stderr,
540 Name": Cannot seek to anchor block on %s: %s\n",
541 devname, strerror(errno));
542 return 1;
543 }
544 if (read(fd, &super->anchor, 512) != 512) {
545 if (devname)
546 fprintf(stderr,
547 Name ": Cannot read anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (super->anchor.magic != DDF_HEADER_MAGIC) {
552 if (devname)
553 fprintf(stderr, Name ": no DDF anchor found on %s\n",
554 devname);
555 return 2;
556 }
557 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
558 if (devname)
559 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
560 devname);
561 return 2;
562 }
563 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
564 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
565 if (devname)
566 fprintf(stderr, Name ": can only support super revision"
567 " %.8s and earlier, not %.8s on %s\n",
568 DDF_REVISION_2, super->anchor.revision,devname);
569 return 2;
570 }
571 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
572 dsize >> 9, 1,
573 &super->primary, &super->anchor) == 0) {
574 if (devname)
575 fprintf(stderr,
576 Name ": Failed to load primary DDF header "
577 "on %s\n", devname);
578 return 2;
579 }
580 super->active = &super->primary;
581 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
582 dsize >> 9, 2,
583 &super->secondary, &super->anchor)) {
584 if ((__be32_to_cpu(super->primary.seq)
585 < __be32_to_cpu(super->secondary.seq) &&
586 !super->secondary.openflag)
587 || (__be32_to_cpu(super->primary.seq)
588 == __be32_to_cpu(super->secondary.seq) &&
589 super->primary.openflag && !super->secondary.openflag)
590 )
591 super->active = &super->secondary;
592 }
593 return 0;
594 }
595
596 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
597 {
598 void *ok;
599 ok = load_section(fd, super, &super->controller,
600 super->active->controller_section_offset,
601 super->active->controller_section_length,
602 0);
603 super->phys = load_section(fd, super, NULL,
604 super->active->phys_section_offset,
605 super->active->phys_section_length,
606 1);
607 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
608
609 super->virt = load_section(fd, super, NULL,
610 super->active->virt_section_offset,
611 super->active->virt_section_length,
612 1);
613 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
614 if (!ok ||
615 !super->phys ||
616 !super->virt) {
617 free(super->phys);
618 free(super->virt);
619 super->phys = NULL;
620 super->virt = NULL;
621 return 2;
622 }
623 super->conflist = NULL;
624 super->dlist = NULL;
625
626 super->max_part = __be16_to_cpu(super->active->max_partitions);
627 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
628 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
629 return 0;
630 }
631
632 static int load_ddf_local(int fd, struct ddf_super *super,
633 char *devname, int keep)
634 {
635 struct dl *dl;
636 struct stat stb;
637 char *conf;
638 int i;
639 int vnum;
640 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
641 unsigned long long dsize;
642
643 /* First the local disk info */
644 if (posix_memalign((void**)&dl, 512,
645 sizeof(*dl) +
646 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
647 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
648 __func__);
649 return 1;
650 }
651
652 load_section(fd, super, &dl->disk,
653 super->active->data_section_offset,
654 super->active->data_section_length,
655 0);
656 dl->devname = devname ? strdup(devname) : NULL;
657
658 fstat(fd, &stb);
659 dl->major = major(stb.st_rdev);
660 dl->minor = minor(stb.st_rdev);
661 dl->next = super->dlist;
662 dl->fd = keep ? fd : -1;
663
664 dl->size = 0;
665 if (get_dev_size(fd, devname, &dsize))
666 dl->size = dsize >> 9;
667 dl->spare = NULL;
668 for (i=0 ; i < super->max_part ; i++)
669 dl->vlist[i] = NULL;
670 super->dlist = dl;
671 dl->pdnum = -1;
672 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
673 if (memcmp(super->phys->entries[i].guid,
674 dl->disk.guid, DDF_GUID_LEN) == 0)
675 dl->pdnum = i;
676
677 /* Now the config list. */
678 /* 'conf' is an array of config entries, some of which are
679 * probably invalid. Those which are good need to be copied into
680 * the conflist
681 */
682
683 conf = load_section(fd, super, NULL,
684 super->active->config_section_offset,
685 super->active->config_section_length,
686 0);
687
688 vnum = 0;
689 for (i = 0;
690 i < __be32_to_cpu(super->active->config_section_length);
691 i += super->conf_rec_len) {
692 struct vd_config *vd =
693 (struct vd_config *)((char*)conf + i*512);
694 struct vcl *vcl;
695
696 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
697 if (dl->spare)
698 continue;
699 if (posix_memalign((void**)&dl->spare, 512,
700 super->conf_rec_len*512) != 0) {
701 fprintf(stderr, Name
702 ": %s could not allocate spare info buf\n",
703 __func__);
704 return 1;
705 }
706
707 memcpy(dl->spare, vd, super->conf_rec_len*512);
708 continue;
709 }
710 if (vd->magic != DDF_VD_CONF_MAGIC)
711 continue;
712 for (vcl = super->conflist; vcl; vcl = vcl->next) {
713 if (memcmp(vcl->conf.guid,
714 vd->guid, DDF_GUID_LEN) == 0)
715 break;
716 }
717
718 if (vcl) {
719 dl->vlist[vnum++] = vcl;
720 if (__be32_to_cpu(vd->seqnum) <=
721 __be32_to_cpu(vcl->conf.seqnum))
722 continue;
723 } else {
724 if (posix_memalign((void**)&vcl, 512,
725 (super->conf_rec_len*512 +
726 offsetof(struct vcl, conf))) != 0) {
727 fprintf(stderr, Name
728 ": %s could not allocate vcl buf\n",
729 __func__);
730 return 1;
731 }
732 vcl->next = super->conflist;
733 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
734 super->conflist = vcl;
735 dl->vlist[vnum++] = vcl;
736 }
737 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
738 vcl->lba_offset = (__u64*)
739 &vcl->conf.phys_refnum[super->mppe];
740
741 for (i=0; i < max_virt_disks ; i++)
742 if (memcmp(super->virt->entries[i].guid,
743 vcl->conf.guid, DDF_GUID_LEN)==0)
744 break;
745 if (i < max_virt_disks)
746 vcl->vcnum = i;
747 }
748 free(conf);
749
750 return 0;
751 }
752
753 #ifndef MDASSEMBLE
754 static int load_super_ddf_all(struct supertype *st, int fd,
755 void **sbp, char *devname, int keep_fd);
756 #endif
757 static int load_super_ddf(struct supertype *st, int fd,
758 char *devname)
759 {
760 unsigned long long dsize;
761 struct ddf_super *super;
762 int rv;
763
764 #ifndef MDASSEMBLE
765 /* if 'fd' is a container, load metadata from all the devices */
766 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
767 return 0;
768 #endif
769 if (st->subarray[0])
770 return 1; /* FIXME Is this correct */
771
772 if (get_dev_size(fd, devname, &dsize) == 0)
773 return 1;
774
775 /* 32M is a lower bound */
776 if (dsize <= 32*1024*1024) {
777 if (devname) {
778 fprintf(stderr,
779 Name ": %s is too small for ddf: "
780 "size is %llu sectors.\n",
781 devname, dsize>>9);
782 return 1;
783 }
784 }
785 if (dsize & 511) {
786 if (devname) {
787 fprintf(stderr,
788 Name ": %s is an odd size for ddf: "
789 "size is %llu bytes.\n",
790 devname, dsize);
791 return 1;
792 }
793 }
794
795 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
796 fprintf(stderr, Name ": malloc of %zu failed.\n",
797 sizeof(*super));
798 return 1;
799 }
800 memset(super, 0, sizeof(*super));
801
802 rv = load_ddf_headers(fd, super, devname);
803 if (rv) {
804 free(super);
805 return rv;
806 }
807
808 /* Have valid headers and have chosen the best. Let's read in the rest*/
809
810 rv = load_ddf_global(fd, super, devname);
811
812 if (rv) {
813 if (devname)
814 fprintf(stderr,
815 Name ": Failed to load all information "
816 "sections on %s\n", devname);
817 free(super);
818 return rv;
819 }
820
821 rv = load_ddf_local(fd, super, devname, 0);
822
823 if (rv) {
824 if (devname)
825 fprintf(stderr,
826 Name ": Failed to load all information "
827 "sections on %s\n", devname);
828 free(super);
829 return rv;
830 }
831
832 /* Should possibly check the sections .... */
833
834 st->sb = super;
835 if (st->ss == NULL) {
836 st->ss = &super_ddf;
837 st->minor_version = 0;
838 st->max_devs = 512;
839 }
840 st->loaded_container = 0;
841 return 0;
842
843 }
844
845 static void free_super_ddf(struct supertype *st)
846 {
847 struct ddf_super *ddf = st->sb;
848 if (ddf == NULL)
849 return;
850 free(ddf->phys);
851 free(ddf->virt);
852 while (ddf->conflist) {
853 struct vcl *v = ddf->conflist;
854 ddf->conflist = v->next;
855 if (v->block_sizes)
856 free(v->block_sizes);
857 free(v);
858 }
859 while (ddf->dlist) {
860 struct dl *d = ddf->dlist;
861 ddf->dlist = d->next;
862 if (d->fd >= 0)
863 close(d->fd);
864 if (d->spare)
865 free(d->spare);
866 free(d);
867 }
868 free(ddf);
869 st->sb = NULL;
870 }
871
872 static struct supertype *match_metadata_desc_ddf(char *arg)
873 {
874 /* 'ddf' only support containers */
875 struct supertype *st;
876 if (strcmp(arg, "ddf") != 0 &&
877 strcmp(arg, "default") != 0
878 )
879 return NULL;
880
881 st = malloc(sizeof(*st));
882 memset(st, 0, sizeof(*st));
883 st->ss = &super_ddf;
884 st->max_devs = 512;
885 st->minor_version = 0;
886 st->sb = NULL;
887 return st;
888 }
889
890
891 #ifndef MDASSEMBLE
892
893 static mapping_t ddf_state[] = {
894 { "Optimal", 0},
895 { "Degraded", 1},
896 { "Deleted", 2},
897 { "Missing", 3},
898 { "Failed", 4},
899 { "Partially Optimal", 5},
900 { "-reserved-", 6},
901 { "-reserved-", 7},
902 { NULL, 0}
903 };
904
905 static mapping_t ddf_init_state[] = {
906 { "Not Initialised", 0},
907 { "QuickInit in Progress", 1},
908 { "Fully Initialised", 2},
909 { "*UNKNOWN*", 3},
910 { NULL, 0}
911 };
912 static mapping_t ddf_access[] = {
913 { "Read/Write", 0},
914 { "Reserved", 1},
915 { "Read Only", 2},
916 { "Blocked (no access)", 3},
917 { NULL ,0}
918 };
919
920 static mapping_t ddf_level[] = {
921 { "RAID0", DDF_RAID0},
922 { "RAID1", DDF_RAID1},
923 { "RAID3", DDF_RAID3},
924 { "RAID4", DDF_RAID4},
925 { "RAID5", DDF_RAID5},
926 { "RAID1E",DDF_RAID1E},
927 { "JBOD", DDF_JBOD},
928 { "CONCAT",DDF_CONCAT},
929 { "RAID5E",DDF_RAID5E},
930 { "RAID5EE",DDF_RAID5EE},
931 { "RAID6", DDF_RAID6},
932 { NULL, 0}
933 };
934 static mapping_t ddf_sec_level[] = {
935 { "Striped", DDF_2STRIPED},
936 { "Mirrored", DDF_2MIRRORED},
937 { "Concat", DDF_2CONCAT},
938 { "Spanned", DDF_2SPANNED},
939 { NULL, 0}
940 };
941 #endif
942
943 struct num_mapping {
944 int num1, num2;
945 };
946 static struct num_mapping ddf_level_num[] = {
947 { DDF_RAID0, 0 },
948 { DDF_RAID1, 1 },
949 { DDF_RAID3, LEVEL_UNSUPPORTED },
950 { DDF_RAID4, 4 },
951 { DDF_RAID5, 5 },
952 { DDF_RAID1E, LEVEL_UNSUPPORTED },
953 { DDF_JBOD, LEVEL_UNSUPPORTED },
954 { DDF_CONCAT, LEVEL_LINEAR },
955 { DDF_RAID5E, LEVEL_UNSUPPORTED },
956 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
957 { DDF_RAID6, 6},
958 { MAXINT, MAXINT }
959 };
960
961 static int map_num1(struct num_mapping *map, int num)
962 {
963 int i;
964 for (i=0 ; map[i].num1 != MAXINT; i++)
965 if (map[i].num1 == num)
966 break;
967 return map[i].num2;
968 }
969
970 #ifndef MDASSEMBLE
971 static void print_guid(char *guid, int tstamp)
972 {
973 /* A GUIDs are part (or all) ASCII and part binary.
974 * They tend to be space padded.
975 * We print the GUID in HEX, then in parentheses add
976 * any initial ASCII sequence, and a possible
977 * time stamp from bytes 16-19
978 */
979 int l = DDF_GUID_LEN;
980 int i;
981
982 for (i=0 ; i<DDF_GUID_LEN ; i++) {
983 if ((i&3)==0 && i != 0) printf(":");
984 printf("%02X", guid[i]&255);
985 }
986
987 printf(" (");
988 while (l && guid[l-1] == ' ')
989 l--;
990 for (i=0 ; i<l ; i++) {
991 if (guid[i] >= 0x20 && guid[i] < 0x7f)
992 fputc(guid[i], stdout);
993 else
994 break;
995 }
996 if (tstamp) {
997 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
998 char tbuf[100];
999 struct tm *tm;
1000 tm = localtime(&then);
1001 strftime(tbuf, 100, " %D %T",tm);
1002 fputs(tbuf, stdout);
1003 }
1004 printf(")");
1005 }
1006
1007 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1008 {
1009 int crl = sb->conf_rec_len;
1010 struct vcl *vcl;
1011
1012 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1013 struct vd_config *vc = &vcl->conf;
1014
1015 if (calc_crc(vc, crl*512) != vc->crc)
1016 continue;
1017 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1018 continue;
1019
1020 /* Ok, we know about this VD, let's give more details */
1021 printf(" Raid Devices[%d] : %d\n", n,
1022 __be16_to_cpu(vc->prim_elmnt_count));
1023 printf(" Chunk Size[%d] : %d sectors\n", n,
1024 1 << vc->chunk_shift);
1025 printf(" Raid Level[%d] : %s\n", n,
1026 map_num(ddf_level, vc->prl)?:"-unknown-");
1027 if (vc->sec_elmnt_count != 1) {
1028 printf(" Secondary Position[%d] : %d of %d\n", n,
1029 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1030 printf(" Secondary Level[%d] : %s\n", n,
1031 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1032 }
1033 printf(" Device Size[%d] : %llu\n", n,
1034 __be64_to_cpu(vc->blocks)/2);
1035 printf(" Array Size[%d] : %llu\n", n,
1036 __be64_to_cpu(vc->array_blocks)/2);
1037 }
1038 }
1039
1040 static void examine_vds(struct ddf_super *sb)
1041 {
1042 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1043 int i;
1044 printf(" Virtual Disks : %d\n", cnt);
1045
1046 for (i=0; i<cnt; i++) {
1047 struct virtual_entry *ve = &sb->virt->entries[i];
1048 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1049 printf("\n");
1050 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1051 printf(" state[%d] : %s, %s%s\n", i,
1052 map_num(ddf_state, ve->state & 7),
1053 (ve->state & 8) ? "Morphing, ": "",
1054 (ve->state & 16)? "Not Consistent" : "Consistent");
1055 printf(" init state[%d] : %s\n", i,
1056 map_num(ddf_init_state, ve->init_state&3));
1057 printf(" access[%d] : %s\n", i,
1058 map_num(ddf_access, (ve->init_state>>6) & 3));
1059 printf(" Name[%d] : %.16s\n", i, ve->name);
1060 examine_vd(i, sb, ve->guid);
1061 }
1062 if (cnt) printf("\n");
1063 }
1064
1065 static void examine_pds(struct ddf_super *sb)
1066 {
1067 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1068 int i;
1069 struct dl *dl;
1070 printf(" Physical Disks : %d\n", cnt);
1071
1072 for (i=0 ; i<cnt ; i++) {
1073 struct phys_disk_entry *pd = &sb->phys->entries[i];
1074 int type = __be16_to_cpu(pd->type);
1075 int state = __be16_to_cpu(pd->state);
1076
1077 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1078 printf("\n");
1079 printf(" ref[%d] : %08x\n", i,
1080 __be32_to_cpu(pd->refnum));
1081 printf(" mode[%d] : %s%s%s%s%s\n", i,
1082 (type&2) ? "active":"",
1083 (type&4) ? "Global Spare":"",
1084 (type&8) ? "spare" : "",
1085 (type&16)? ", foreign" : "",
1086 (type&32)? "pass-through" : "");
1087 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1088 (state&1)? "Online": "Offline",
1089 (state&2)? ", Failed": "",
1090 (state&4)? ", Rebuilding": "",
1091 (state&8)? ", in-transition": "",
1092 (state&16)? ", SMART errors": "",
1093 (state&32)? ", Unrecovered Read Errors": "",
1094 (state&64)? ", Missing" : "");
1095 printf(" Avail Size[%d] : %llu K\n", i,
1096 __be64_to_cpu(pd->config_size)>>1);
1097 for (dl = sb->dlist; dl ; dl = dl->next) {
1098 if (dl->disk.refnum == pd->refnum) {
1099 char *dv = map_dev(dl->major, dl->minor, 0);
1100 if (dv)
1101 printf(" Device[%d] : %s\n",
1102 i, dv);
1103 }
1104 }
1105 printf("\n");
1106 }
1107 }
1108
1109 static void examine_super_ddf(struct supertype *st, char *homehost)
1110 {
1111 struct ddf_super *sb = st->sb;
1112
1113 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1114 printf(" Version : %.8s\n", sb->anchor.revision);
1115 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1116 printf("\n");
1117 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1118 printf("\n");
1119 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1120 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1121 ?"yes" : "no");
1122 examine_vds(sb);
1123 examine_pds(sb);
1124 }
1125
1126 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info);
1127
1128
1129 static void brief_examine_super_ddf(struct supertype *st)
1130 {
1131 /* We just write a generic DDF ARRAY entry
1132 */
1133 struct mdinfo info;
1134 char nbuf[64];
1135 getinfo_super_ddf(st, &info);
1136 fname_from_uuid(st, &info, nbuf, ':');
1137 printf("ARRAY /dev/ddf metadata=ddf UUID=%s\n", nbuf + 5);
1138 }
1139
1140 static void detail_super_ddf(struct supertype *st, char *homehost)
1141 {
1142 /* FIXME later
1143 * Could print DDF GUID
1144 * Need to find which array
1145 * If whole, briefly list all arrays
1146 * If one, give name
1147 */
1148 }
1149
1150 static void brief_detail_super_ddf(struct supertype *st)
1151 {
1152 /* FIXME I really need to know which array we are detailing.
1153 * Can that be stored in ddf_super??
1154 */
1155 // struct ddf_super *ddf = st->sb;
1156 struct mdinfo info;
1157 char nbuf[64];
1158 getinfo_super_ddf(st, &info);
1159 fname_from_uuid(st, &info, nbuf,':');
1160 printf(" UUID=%s", nbuf + 5);
1161 }
1162 #endif
1163
1164 static int match_home_ddf(struct supertype *st, char *homehost)
1165 {
1166 /* It matches 'this' host if the controller is a
1167 * Linux-MD controller with vendor_data matching
1168 * the hostname
1169 */
1170 struct ddf_super *ddf = st->sb;
1171 int len = strlen(homehost);
1172
1173 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1174 len < sizeof(ddf->controller.vendor_data) &&
1175 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1176 ddf->controller.vendor_data[len] == 0);
1177 }
1178
1179 #ifndef MDASSEMBLE
1180 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1181 {
1182 struct vcl *v;
1183
1184 for (v = ddf->conflist; v; v = v->next)
1185 if (inst == v->vcnum)
1186 return &v->conf;
1187 return NULL;
1188 }
1189 #endif
1190
1191 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1192 {
1193 /* Find the entry in phys_disk which has the given refnum
1194 * and return it's index
1195 */
1196 int i;
1197 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1198 if (ddf->phys->entries[i].refnum == phys_refnum)
1199 return i;
1200 return -1;
1201 }
1202
1203 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1204 {
1205 /* The uuid returned here is used for:
1206 * uuid to put into bitmap file (Create, Grow)
1207 * uuid for backup header when saving critical section (Grow)
1208 * comparing uuids when re-adding a device into an array
1209 * In these cases the uuid required is that of the data-array,
1210 * not the device-set.
1211 * uuid to recognise same set when adding a missing device back
1212 * to an array. This is a uuid for the device-set.
1213 *
1214 * For each of these we can make do with a truncated
1215 * or hashed uuid rather than the original, as long as
1216 * everyone agrees.
1217 * In the case of SVD we assume the BVD is of interest,
1218 * though that might be the case if a bitmap were made for
1219 * a mirrored SVD - worry about that later.
1220 * So we need to find the VD configuration record for the
1221 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1222 * The first 16 bytes of the sha1 of these is used.
1223 */
1224 struct ddf_super *ddf = st->sb;
1225 struct vcl *vcl = ddf->currentconf;
1226 char *guid;
1227 char buf[20];
1228 struct sha1_ctx ctx;
1229
1230 if (vcl)
1231 guid = vcl->conf.guid;
1232 else
1233 guid = ddf->anchor.guid;
1234
1235 sha1_init_ctx(&ctx);
1236 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1237 if (vcl && vcl->conf.sec_elmnt_count > 1)
1238 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1239 sha1_finish_ctx(&ctx, buf);
1240 memcpy(uuid, buf, 4*4);
1241 }
1242
1243 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1244
1245 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1246 {
1247 struct ddf_super *ddf = st->sb;
1248
1249 if (ddf->currentconf) {
1250 getinfo_super_ddf_bvd(st, info);
1251 return;
1252 }
1253
1254 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1255 info->array.level = LEVEL_CONTAINER;
1256 info->array.layout = 0;
1257 info->array.md_minor = -1;
1258 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1259 (ddf->anchor.guid+16));
1260 info->array.utime = 0;
1261 info->array.chunk_size = 0;
1262
1263
1264 info->disk.major = 0;
1265 info->disk.minor = 0;
1266 if (ddf->dlist) {
1267 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1268 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1269
1270 info->data_offset = __be64_to_cpu(ddf->phys->
1271 entries[info->disk.raid_disk].
1272 config_size);
1273 info->component_size = ddf->dlist->size - info->data_offset;
1274 } else {
1275 info->disk.number = -1;
1276 // info->disk.raid_disk = find refnum in the table and use index;
1277 }
1278 info->disk.state = (1 << MD_DISK_SYNC);
1279
1280
1281 info->reshape_active = 0;
1282 info->name[0] = 0;
1283
1284 info->array.major_version = -1;
1285 info->array.minor_version = -2;
1286 strcpy(info->text_version, "ddf");
1287 info->safe_mode_delay = 0;
1288
1289 uuid_from_super_ddf(st, info->uuid);
1290
1291 }
1292
1293 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1294
1295 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1296 {
1297 struct ddf_super *ddf = st->sb;
1298 struct vcl *vc = ddf->currentconf;
1299 int cd = ddf->currentdev;
1300
1301 /* FIXME this returns BVD info - what if we want SVD ?? */
1302
1303 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1304 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1305 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1306 info->array.raid_disks);
1307 info->array.md_minor = -1;
1308 info->array.ctime = DECADE +
1309 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1310 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1311 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1312
1313 if (cd >= 0 && cd < ddf->mppe) {
1314 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1315 if (vc->block_sizes)
1316 info->component_size = vc->block_sizes[cd];
1317 else
1318 info->component_size = __be64_to_cpu(vc->conf.blocks);
1319 }
1320
1321 info->disk.major = 0;
1322 info->disk.minor = 0;
1323 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1324 // info->disk.raid_disk = find refnum in the table and use index;
1325 // info->disk.state = ???;
1326
1327 info->container_member = ddf->currentconf->vcnum;
1328
1329 info->resync_start = 0;
1330 if (!(ddf->virt->entries[info->container_member].state
1331 & DDF_state_inconsistent) &&
1332 (ddf->virt->entries[info->container_member].init_state
1333 & DDF_initstate_mask)
1334 == DDF_init_full)
1335 info->resync_start = ~0ULL;
1336
1337 uuid_from_super_ddf(st, info->uuid);
1338
1339 info->container_member = atoi(st->subarray);
1340 info->array.major_version = -1;
1341 info->array.minor_version = -2;
1342 sprintf(info->text_version, "/%s/%s",
1343 devnum2devname(st->container_dev),
1344 st->subarray);
1345 info->safe_mode_delay = 200;
1346
1347 info->name[0] = 0;
1348 }
1349
1350
1351 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1352 char *update,
1353 char *devname, int verbose,
1354 int uuid_set, char *homehost)
1355 {
1356 /* For 'assemble' and 'force' we need to return non-zero if any
1357 * change was made. For others, the return value is ignored.
1358 * Update options are:
1359 * force-one : This device looks a bit old but needs to be included,
1360 * update age info appropriately.
1361 * assemble: clear any 'faulty' flag to allow this device to
1362 * be assembled.
1363 * force-array: Array is degraded but being forced, mark it clean
1364 * if that will be needed to assemble it.
1365 *
1366 * newdev: not used ????
1367 * grow: Array has gained a new device - this is currently for
1368 * linear only
1369 * resync: mark as dirty so a resync will happen.
1370 * uuid: Change the uuid of the array to match what is given
1371 * homehost: update the recorded homehost
1372 * name: update the name - preserving the homehost
1373 * _reshape_progress: record new reshape_progress position.
1374 *
1375 * Following are not relevant for this version:
1376 * sparc2.2 : update from old dodgey metadata
1377 * super-minor: change the preferred_minor number
1378 * summaries: update redundant counters.
1379 */
1380 int rv = 0;
1381 // struct ddf_super *ddf = st->sb;
1382 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1383 // struct virtual_entry *ve = find_ve(ddf);
1384
1385 /* we don't need to handle "force-*" or "assemble" as
1386 * there is no need to 'trick' the kernel. We the metadata is
1387 * first updated to activate the array, all the implied modifications
1388 * will just happen.
1389 */
1390
1391 if (strcmp(update, "grow") == 0) {
1392 /* FIXME */
1393 }
1394 if (strcmp(update, "resync") == 0) {
1395 // info->resync_checkpoint = 0;
1396 }
1397 /* We ignore UUID updates as they make even less sense
1398 * with DDF
1399 */
1400 if (strcmp(update, "homehost") == 0) {
1401 /* homehost is stored in controller->vendor_data,
1402 * or it is when we are the vendor
1403 */
1404 // if (info->vendor_is_local)
1405 // strcpy(ddf->controller.vendor_data, homehost);
1406 }
1407 if (strcmp(update, "name") == 0) {
1408 /* name is stored in virtual_entry->name */
1409 // memset(ve->name, ' ', 16);
1410 // strncpy(ve->name, info->name, 16);
1411 }
1412 if (strcmp(update, "_reshape_progress") == 0) {
1413 /* We don't support reshape yet */
1414 }
1415
1416 // update_all_csum(ddf);
1417
1418 return rv;
1419 }
1420
1421 static void make_header_guid(char *guid)
1422 {
1423 __u32 stamp;
1424 int rfd;
1425 /* Create a DDF Header of Virtual Disk GUID */
1426
1427 /* 24 bytes of fiction required.
1428 * first 8 are a 'vendor-id' - "Linux-MD"
1429 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1430 * Remaining 8 random number plus timestamp
1431 */
1432 memcpy(guid, T10, sizeof(T10));
1433 stamp = __cpu_to_be32(0xdeadbeef);
1434 memcpy(guid+8, &stamp, 4);
1435 stamp = __cpu_to_be32(0);
1436 memcpy(guid+12, &stamp, 4);
1437 stamp = __cpu_to_be32(time(0) - DECADE);
1438 memcpy(guid+16, &stamp, 4);
1439 rfd = open("/dev/urandom", O_RDONLY);
1440 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1441 stamp = random();
1442 memcpy(guid+20, &stamp, 4);
1443 if (rfd >= 0) close(rfd);
1444 }
1445
1446 static int init_super_ddf_bvd(struct supertype *st,
1447 mdu_array_info_t *info,
1448 unsigned long long size,
1449 char *name, char *homehost,
1450 int *uuid);
1451
1452 static int init_super_ddf(struct supertype *st,
1453 mdu_array_info_t *info,
1454 unsigned long long size, char *name, char *homehost,
1455 int *uuid)
1456 {
1457 /* This is primarily called by Create when creating a new array.
1458 * We will then get add_to_super called for each component, and then
1459 * write_init_super called to write it out to each device.
1460 * For DDF, Create can create on fresh devices or on a pre-existing
1461 * array.
1462 * To create on a pre-existing array a different method will be called.
1463 * This one is just for fresh drives.
1464 *
1465 * We need to create the entire 'ddf' structure which includes:
1466 * DDF headers - these are easy.
1467 * Controller data - a Sector describing this controller .. not that
1468 * this is a controller exactly.
1469 * Physical Disk Record - one entry per device, so
1470 * leave plenty of space.
1471 * Virtual Disk Records - again, just leave plenty of space.
1472 * This just lists VDs, doesn't give details
1473 * Config records - describes the VDs that use this disk
1474 * DiskData - describes 'this' device.
1475 * BadBlockManagement - empty
1476 * Diag Space - empty
1477 * Vendor Logs - Could we put bitmaps here?
1478 *
1479 */
1480 struct ddf_super *ddf;
1481 char hostname[17];
1482 int hostlen;
1483 int max_phys_disks, max_virt_disks;
1484 unsigned long long sector;
1485 int clen;
1486 int i;
1487 int pdsize, vdsize;
1488 struct phys_disk *pd;
1489 struct virtual_disk *vd;
1490
1491 if (!info) {
1492 st->sb = NULL;
1493 return 0;
1494 }
1495 if (st->sb)
1496 return init_super_ddf_bvd(st, info, size, name, homehost,
1497 uuid);
1498
1499 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1500 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1501 return 0;
1502 }
1503 memset(ddf, 0, sizeof(*ddf));
1504 ddf->dlist = NULL; /* no physical disks yet */
1505 ddf->conflist = NULL; /* No virtual disks yet */
1506
1507 /* At least 32MB *must* be reserved for the ddf. So let's just
1508 * start 32MB from the end, and put the primary header there.
1509 * Don't do secondary for now.
1510 * We don't know exactly where that will be yet as it could be
1511 * different on each device. To just set up the lengths.
1512 *
1513 */
1514
1515 ddf->anchor.magic = DDF_HEADER_MAGIC;
1516 make_header_guid(ddf->anchor.guid);
1517
1518 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1519 ddf->anchor.seq = __cpu_to_be32(1);
1520 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1521 ddf->anchor.openflag = 0xFF;
1522 ddf->anchor.foreignflag = 0;
1523 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1524 ddf->anchor.pad0 = 0xff;
1525 memset(ddf->anchor.pad1, 0xff, 12);
1526 memset(ddf->anchor.header_ext, 0xff, 32);
1527 ddf->anchor.primary_lba = ~(__u64)0;
1528 ddf->anchor.secondary_lba = ~(__u64)0;
1529 ddf->anchor.type = DDF_HEADER_ANCHOR;
1530 memset(ddf->anchor.pad2, 0xff, 3);
1531 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1532 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1533 of 32M reserved.. */
1534 max_phys_disks = 1023; /* Should be enough */
1535 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1536 max_virt_disks = 255;
1537 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1538 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1539 ddf->max_part = 64;
1540 ddf->mppe = 256;
1541 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1542 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1543 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1544 memset(ddf->anchor.pad3, 0xff, 54);
1545 /* controller sections is one sector long immediately
1546 * after the ddf header */
1547 sector = 1;
1548 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1549 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1550 sector += 1;
1551
1552 /* phys is 8 sectors after that */
1553 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1554 sizeof(struct phys_disk_entry)*max_phys_disks,
1555 512);
1556 switch(pdsize/512) {
1557 case 2: case 8: case 32: case 128: case 512: break;
1558 default: abort();
1559 }
1560 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1561 ddf->anchor.phys_section_length =
1562 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1563 sector += pdsize/512;
1564
1565 /* virt is another 32 sectors */
1566 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1567 sizeof(struct virtual_entry) * max_virt_disks,
1568 512);
1569 switch(vdsize/512) {
1570 case 2: case 8: case 32: case 128: case 512: break;
1571 default: abort();
1572 }
1573 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1574 ddf->anchor.virt_section_length =
1575 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1576 sector += vdsize/512;
1577
1578 clen = ddf->conf_rec_len * (ddf->max_part+1);
1579 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1580 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1581 sector += clen;
1582
1583 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1584 ddf->anchor.data_section_length = __cpu_to_be32(1);
1585 sector += 1;
1586
1587 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1588 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1589 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1590 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1591 ddf->anchor.vendor_length = __cpu_to_be32(0);
1592 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1593
1594 memset(ddf->anchor.pad4, 0xff, 256);
1595
1596 memcpy(&ddf->primary, &ddf->anchor, 512);
1597 memcpy(&ddf->secondary, &ddf->anchor, 512);
1598
1599 ddf->primary.openflag = 1; /* I guess.. */
1600 ddf->primary.type = DDF_HEADER_PRIMARY;
1601
1602 ddf->secondary.openflag = 1; /* I guess.. */
1603 ddf->secondary.type = DDF_HEADER_SECONDARY;
1604
1605 ddf->active = &ddf->primary;
1606
1607 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1608
1609 /* 24 more bytes of fiction required.
1610 * first 8 are a 'vendor-id' - "Linux-MD"
1611 * Remaining 16 are serial number.... maybe a hostname would do?
1612 */
1613 memcpy(ddf->controller.guid, T10, sizeof(T10));
1614 gethostname(hostname, sizeof(hostname));
1615 hostname[sizeof(hostname) - 1] = 0;
1616 hostlen = strlen(hostname);
1617 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1618 for (i = strlen(T10) ; i+hostlen < 24; i++)
1619 ddf->controller.guid[i] = ' ';
1620
1621 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1622 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1623 ddf->controller.type.sub_vendor_id = 0;
1624 ddf->controller.type.sub_device_id = 0;
1625 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1626 memset(ddf->controller.pad, 0xff, 8);
1627 memset(ddf->controller.vendor_data, 0xff, 448);
1628
1629 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1630 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1631 return 0;
1632 }
1633 ddf->phys = pd;
1634 ddf->pdsize = pdsize;
1635
1636 memset(pd, 0xff, pdsize);
1637 memset(pd, 0, sizeof(*pd));
1638 pd->magic = DDF_PHYS_DATA_MAGIC;
1639 pd->used_pdes = __cpu_to_be16(0);
1640 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1641 memset(pd->pad, 0xff, 52);
1642
1643 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1644 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1645 return 0;
1646 }
1647 ddf->virt = vd;
1648 ddf->vdsize = vdsize;
1649 memset(vd, 0, vdsize);
1650 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1651 vd->populated_vdes = __cpu_to_be16(0);
1652 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1653 memset(vd->pad, 0xff, 52);
1654
1655 for (i=0; i<max_virt_disks; i++)
1656 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1657
1658 st->sb = ddf;
1659 ddf->updates_pending = 1;
1660 return 1;
1661 }
1662
1663 static int all_ff(char *guid)
1664 {
1665 int i;
1666 for (i = 0; i < DDF_GUID_LEN; i++)
1667 if (guid[i] != (char)0xff)
1668 return 0;
1669 return 1;
1670 }
1671 static int chunk_to_shift(int chunksize)
1672 {
1673 return ffs(chunksize/512)-1;
1674 }
1675
1676 static int level_to_prl(int level)
1677 {
1678 switch (level) {
1679 case LEVEL_LINEAR: return DDF_CONCAT;
1680 case 0: return DDF_RAID0;
1681 case 1: return DDF_RAID1;
1682 case 4: return DDF_RAID4;
1683 case 5: return DDF_RAID5;
1684 case 6: return DDF_RAID6;
1685 default: return -1;
1686 }
1687 }
1688 static int layout_to_rlq(int level, int layout, int raiddisks)
1689 {
1690 switch(level) {
1691 case 0:
1692 return DDF_RAID0_SIMPLE;
1693 case 1:
1694 switch(raiddisks) {
1695 case 2: return DDF_RAID1_SIMPLE;
1696 case 3: return DDF_RAID1_MULTI;
1697 default: return -1;
1698 }
1699 case 4:
1700 switch(layout) {
1701 case 0: return DDF_RAID4_N;
1702 }
1703 break;
1704 case 5:
1705 case 6:
1706 switch(layout) {
1707 case ALGORITHM_LEFT_ASYMMETRIC:
1708 return DDF_RAID5_N_RESTART;
1709 case ALGORITHM_RIGHT_ASYMMETRIC:
1710 if (level == 5)
1711 return DDF_RAID5_0_RESTART;
1712 else
1713 return DDF_RAID6_0_RESTART;
1714 case ALGORITHM_LEFT_SYMMETRIC:
1715 return DDF_RAID5_N_CONTINUE;
1716 case ALGORITHM_RIGHT_SYMMETRIC:
1717 return -1; /* not mentioned in standard */
1718 }
1719 }
1720 return -1;
1721 }
1722
1723 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1724 {
1725 switch(prl) {
1726 case DDF_RAID0:
1727 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1728 case DDF_RAID1:
1729 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1730 on raiddisks*/
1731 case DDF_RAID4:
1732 switch(rlq) {
1733 case DDF_RAID4_N:
1734 return 0;
1735 default:
1736 /* not supported */
1737 return -1; /* FIXME this isn't checked */
1738 }
1739 case DDF_RAID5:
1740 switch(rlq) {
1741 case DDF_RAID5_N_RESTART:
1742 return ALGORITHM_LEFT_ASYMMETRIC;
1743 case DDF_RAID5_0_RESTART:
1744 return ALGORITHM_RIGHT_ASYMMETRIC;
1745 case DDF_RAID5_N_CONTINUE:
1746 return ALGORITHM_LEFT_SYMMETRIC;
1747 default:
1748 return -1;
1749 }
1750 case DDF_RAID6:
1751 switch(rlq) {
1752 case DDF_RAID5_N_RESTART:
1753 return ALGORITHM_LEFT_ASYMMETRIC;
1754 case DDF_RAID6_0_RESTART:
1755 return ALGORITHM_RIGHT_ASYMMETRIC;
1756 case DDF_RAID5_N_CONTINUE:
1757 return ALGORITHM_LEFT_SYMMETRIC;
1758 default:
1759 return -1;
1760 }
1761 }
1762 return -1;
1763 }
1764
1765 #ifndef MDASSEMBLE
1766 struct extent {
1767 unsigned long long start, size;
1768 };
1769 static int cmp_extent(const void *av, const void *bv)
1770 {
1771 const struct extent *a = av;
1772 const struct extent *b = bv;
1773 if (a->start < b->start)
1774 return -1;
1775 if (a->start > b->start)
1776 return 1;
1777 return 0;
1778 }
1779
1780 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1781 {
1782 /* find a list of used extents on the give physical device
1783 * (dnum) of the given ddf.
1784 * Return a malloced array of 'struct extent'
1785
1786 FIXME ignore DDF_Legacy devices?
1787
1788 */
1789 struct extent *rv;
1790 int n = 0;
1791 int i, j;
1792
1793 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1794 if (!rv)
1795 return NULL;
1796
1797 for (i = 0; i < ddf->max_part; i++) {
1798 struct vcl *v = dl->vlist[i];
1799 if (v == NULL)
1800 continue;
1801 for (j=0; j < v->conf.prim_elmnt_count; j++)
1802 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1803 /* This device plays role 'j' in 'v'. */
1804 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1805 rv[n].size = __be64_to_cpu(v->conf.blocks);
1806 n++;
1807 break;
1808 }
1809 }
1810 qsort(rv, n, sizeof(*rv), cmp_extent);
1811
1812 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1813 rv[n].size = 0;
1814 return rv;
1815 }
1816 #endif
1817
1818 static int init_super_ddf_bvd(struct supertype *st,
1819 mdu_array_info_t *info,
1820 unsigned long long size,
1821 char *name, char *homehost,
1822 int *uuid)
1823 {
1824 /* We are creating a BVD inside a pre-existing container.
1825 * so st->sb is already set.
1826 * We need to create a new vd_config and a new virtual_entry
1827 */
1828 struct ddf_super *ddf = st->sb;
1829 int venum;
1830 struct virtual_entry *ve;
1831 struct vcl *vcl;
1832 struct vd_config *vc;
1833
1834 if (__be16_to_cpu(ddf->virt->populated_vdes)
1835 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1836 fprintf(stderr, Name": This ddf already has the "
1837 "maximum of %d virtual devices\n",
1838 __be16_to_cpu(ddf->virt->max_vdes));
1839 return 0;
1840 }
1841
1842 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1843 if (all_ff(ddf->virt->entries[venum].guid))
1844 break;
1845 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1846 fprintf(stderr, Name ": Cannot find spare slot for "
1847 "virtual disk - DDF is corrupt\n");
1848 return 0;
1849 }
1850 ve = &ddf->virt->entries[venum];
1851
1852 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1853 * timestamp, random number
1854 */
1855 make_header_guid(ve->guid);
1856 ve->unit = __cpu_to_be16(info->md_minor);
1857 ve->pad0 = 0xFFFF;
1858 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1859 ve->type = 0;
1860 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1861 if (info->state & 1) /* clean */
1862 ve->init_state = DDF_init_full;
1863 else
1864 ve->init_state = DDF_init_not;
1865
1866 memset(ve->pad1, 0xff, 14);
1867 memset(ve->name, ' ', 16);
1868 if (name)
1869 strncpy(ve->name, name, 16);
1870 ddf->virt->populated_vdes =
1871 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1872
1873 /* Now create a new vd_config */
1874 if (posix_memalign((void**)&vcl, 512,
1875 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
1876 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
1877 return 0;
1878 }
1879 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1880 vcl->vcnum = venum;
1881 sprintf(st->subarray, "%d", venum);
1882 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1883
1884 vc = &vcl->conf;
1885
1886 vc->magic = DDF_VD_CONF_MAGIC;
1887 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1888 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1889 vc->seqnum = __cpu_to_be32(1);
1890 memset(vc->pad0, 0xff, 24);
1891 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1892 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1893 vc->prl = level_to_prl(info->level);
1894 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1895 vc->sec_elmnt_count = 1;
1896 vc->sec_elmnt_seq = 0;
1897 vc->srl = 0;
1898 vc->blocks = __cpu_to_be64(info->size * 2);
1899 vc->array_blocks = __cpu_to_be64(
1900 calc_array_size(info->level, info->raid_disks, info->layout,
1901 info->chunk_size, info->size*2));
1902 memset(vc->pad1, 0xff, 8);
1903 vc->spare_refs[0] = 0xffffffff;
1904 vc->spare_refs[1] = 0xffffffff;
1905 vc->spare_refs[2] = 0xffffffff;
1906 vc->spare_refs[3] = 0xffffffff;
1907 vc->spare_refs[4] = 0xffffffff;
1908 vc->spare_refs[5] = 0xffffffff;
1909 vc->spare_refs[6] = 0xffffffff;
1910 vc->spare_refs[7] = 0xffffffff;
1911 memset(vc->cache_pol, 0, 8);
1912 vc->bg_rate = 0x80;
1913 memset(vc->pad2, 0xff, 3);
1914 memset(vc->pad3, 0xff, 52);
1915 memset(vc->pad4, 0xff, 192);
1916 memset(vc->v0, 0xff, 32);
1917 memset(vc->v1, 0xff, 32);
1918 memset(vc->v2, 0xff, 16);
1919 memset(vc->v3, 0xff, 16);
1920 memset(vc->vendor, 0xff, 32);
1921
1922 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1923 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1924
1925 vcl->next = ddf->conflist;
1926 ddf->conflist = vcl;
1927 ddf->currentconf = vcl;
1928 ddf->updates_pending = 1;
1929 return 1;
1930 }
1931
1932 #ifndef MDASSEMBLE
1933 static void add_to_super_ddf_bvd(struct supertype *st,
1934 mdu_disk_info_t *dk, int fd, char *devname)
1935 {
1936 /* fd and devname identify a device with-in the ddf container (st).
1937 * dk identifies a location in the new BVD.
1938 * We need to find suitable free space in that device and update
1939 * the phys_refnum and lba_offset for the newly created vd_config.
1940 * We might also want to update the type in the phys_disk
1941 * section.
1942 */
1943 struct dl *dl;
1944 struct ddf_super *ddf = st->sb;
1945 struct vd_config *vc;
1946 __u64 *lba_offset;
1947 int working;
1948 int i;
1949 unsigned long long blocks, pos, esize;
1950 struct extent *ex;
1951
1952 for (dl = ddf->dlist; dl ; dl = dl->next)
1953 if (dl->major == dk->major &&
1954 dl->minor == dk->minor)
1955 break;
1956 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1957 return;
1958
1959 vc = &ddf->currentconf->conf;
1960 lba_offset = ddf->currentconf->lba_offset;
1961
1962 ex = get_extents(ddf, dl);
1963 if (!ex)
1964 return;
1965
1966 i = 0; pos = 0;
1967 blocks = __be64_to_cpu(vc->blocks);
1968 if (ddf->currentconf->block_sizes)
1969 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1970
1971 do {
1972 esize = ex[i].start - pos;
1973 if (esize >= blocks)
1974 break;
1975 pos = ex[i].start + ex[i].size;
1976 i++;
1977 } while (ex[i-1].size);
1978
1979 free(ex);
1980 if (esize < blocks)
1981 return;
1982
1983 ddf->currentdev = dk->raid_disk;
1984 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1985 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1986
1987 for (i=0; i < ddf->max_part ; i++)
1988 if (dl->vlist[i] == NULL)
1989 break;
1990 if (i == ddf->max_part)
1991 return;
1992 dl->vlist[i] = ddf->currentconf;
1993
1994 dl->fd = fd;
1995 dl->devname = devname;
1996
1997 /* Check how many working raid_disks, and if we can mark
1998 * array as optimal yet
1999 */
2000 working = 0;
2001
2002 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2003 if (vc->phys_refnum[i] != 0xffffffff)
2004 working++;
2005
2006 /* Find which virtual_entry */
2007 i = ddf->currentconf->vcnum;
2008 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2009 ddf->virt->entries[i].state =
2010 (ddf->virt->entries[i].state & ~DDF_state_mask)
2011 | DDF_state_optimal;
2012
2013 if (vc->prl == DDF_RAID6 &&
2014 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2015 ddf->virt->entries[i].state =
2016 (ddf->virt->entries[i].state & ~DDF_state_mask)
2017 | DDF_state_part_optimal;
2018
2019 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2020 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2021 ddf->updates_pending = 1;
2022 }
2023
2024 /* add a device to a container, either while creating it or while
2025 * expanding a pre-existing container
2026 */
2027 static void add_to_super_ddf(struct supertype *st,
2028 mdu_disk_info_t *dk, int fd, char *devname)
2029 {
2030 struct ddf_super *ddf = st->sb;
2031 struct dl *dd;
2032 time_t now;
2033 struct tm *tm;
2034 unsigned long long size;
2035 struct phys_disk_entry *pde;
2036 int n, i;
2037 struct stat stb;
2038
2039 if (ddf->currentconf) {
2040 add_to_super_ddf_bvd(st, dk, fd, devname);
2041 return;
2042 }
2043
2044 /* This is device numbered dk->number. We need to create
2045 * a phys_disk entry and a more detailed disk_data entry.
2046 */
2047 fstat(fd, &stb);
2048 if (posix_memalign((void**)&dd, 512,
2049 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2050 fprintf(stderr, Name
2051 ": %s could allocate buffer for new disk, aborting\n",
2052 __func__);
2053 abort();
2054 }
2055 dd->major = major(stb.st_rdev);
2056 dd->minor = minor(stb.st_rdev);
2057 dd->devname = devname;
2058 dd->fd = fd;
2059 dd->spare = NULL;
2060
2061 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2062 now = time(0);
2063 tm = localtime(&now);
2064 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2065 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2066 *(__u32*)(dd->disk.guid + 16) = random();
2067 *(__u32*)(dd->disk.guid + 20) = random();
2068
2069 do {
2070 /* Cannot be bothered finding a CRC of some irrelevant details*/
2071 dd->disk.refnum = random();
2072 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2073 i >= 0; i--)
2074 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2075 break;
2076 } while (i >= 0);
2077
2078 dd->disk.forced_ref = 1;
2079 dd->disk.forced_guid = 1;
2080 memset(dd->disk.vendor, ' ', 32);
2081 memcpy(dd->disk.vendor, "Linux", 5);
2082 memset(dd->disk.pad, 0xff, 442);
2083 for (i = 0; i < ddf->max_part ; i++)
2084 dd->vlist[i] = NULL;
2085
2086 n = __be16_to_cpu(ddf->phys->used_pdes);
2087 pde = &ddf->phys->entries[n];
2088 dd->pdnum = n;
2089
2090 if (st->update_tail) {
2091 int len = (sizeof(struct phys_disk) +
2092 sizeof(struct phys_disk_entry));
2093 struct phys_disk *pd;
2094
2095 pd = malloc(len);
2096 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2097 pd->used_pdes = __cpu_to_be16(n);
2098 pde = &pd->entries[0];
2099 dd->mdupdate = pd;
2100 } else {
2101 n++;
2102 ddf->phys->used_pdes = __cpu_to_be16(n);
2103 }
2104
2105 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2106 pde->refnum = dd->disk.refnum;
2107 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2108 pde->state = __cpu_to_be16(DDF_Online);
2109 get_dev_size(fd, NULL, &size);
2110 /* We are required to reserve 32Meg, and record the size in sectors */
2111 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2112 sprintf(pde->path, "%17.17s","Information: nil") ;
2113 memset(pde->pad, 0xff, 6);
2114
2115 dd->size = size >> 9;
2116 if (st->update_tail) {
2117 dd->next = ddf->add_list;
2118 ddf->add_list = dd;
2119 } else {
2120 dd->next = ddf->dlist;
2121 ddf->dlist = dd;
2122 ddf->updates_pending = 1;
2123 }
2124 }
2125
2126 /*
2127 * This is the write_init_super method for a ddf container. It is
2128 * called when creating a container or adding another device to a
2129 * container.
2130 */
2131
2132 static unsigned char null_conf[4096+512];
2133
2134 static int __write_init_super_ddf(struct supertype *st, int do_close)
2135 {
2136
2137 struct ddf_super *ddf = st->sb;
2138 int i;
2139 struct dl *d;
2140 int n_config;
2141 int conf_size;
2142 int attempts = 0;
2143 int successes = 0;
2144 unsigned long long size, sector;
2145
2146 /* try to write updated metadata,
2147 * if we catch a failure move on to the next disk
2148 */
2149 for (d = ddf->dlist; d; d=d->next) {
2150 int fd = d->fd;
2151
2152 if (fd < 0)
2153 continue;
2154
2155 attempts++;
2156 /* We need to fill in the primary, (secondary) and workspace
2157 * lba's in the headers, set their checksums,
2158 * Also checksum phys, virt....
2159 *
2160 * Then write everything out, finally the anchor is written.
2161 */
2162 get_dev_size(fd, NULL, &size);
2163 size /= 512;
2164 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2165 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2166 ddf->anchor.seq = __cpu_to_be32(1);
2167 memcpy(&ddf->primary, &ddf->anchor, 512);
2168 memcpy(&ddf->secondary, &ddf->anchor, 512);
2169
2170 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2171 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2172 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2173
2174 ddf->primary.openflag = 0;
2175 ddf->primary.type = DDF_HEADER_PRIMARY;
2176
2177 ddf->secondary.openflag = 0;
2178 ddf->secondary.type = DDF_HEADER_SECONDARY;
2179
2180 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2181 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2182
2183 sector = size - 16*1024*2;
2184 lseek64(fd, sector<<9, 0);
2185 if (write(fd, &ddf->primary, 512) < 0)
2186 continue;
2187
2188 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2189 if (write(fd, &ddf->controller, 512) < 0)
2190 continue;
2191
2192 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2193
2194 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2195 continue;
2196
2197 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2198 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2199 continue;
2200
2201 /* Now write lots of config records. */
2202 n_config = ddf->max_part;
2203 conf_size = ddf->conf_rec_len * 512;
2204 for (i = 0 ; i <= n_config ; i++) {
2205 struct vcl *c = d->vlist[i];
2206 if (i == n_config)
2207 c = (struct vcl*)d->spare;
2208
2209 if (c) {
2210 c->conf.crc = calc_crc(&c->conf, conf_size);
2211 if (write(fd, &c->conf, conf_size) < 0)
2212 break;
2213 } else {
2214 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2215 if (null_conf[0] != 0xff)
2216 memset(null_conf, 0xff, sizeof(null_conf));
2217 int togo = conf_size;
2218 while (togo > sizeof(null_conf)-512) {
2219 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2220 break;
2221 togo -= sizeof(null_conf)-512;
2222 }
2223 if (write(fd, null_aligned, togo) < 0)
2224 break;
2225 }
2226 }
2227 if (i <= n_config)
2228 continue;
2229 d->disk.crc = calc_crc(&d->disk, 512);
2230 if (write(fd, &d->disk, 512) < 0)
2231 continue;
2232
2233 /* Maybe do the same for secondary */
2234
2235 lseek64(fd, (size-1)*512, SEEK_SET);
2236 if (write(fd, &ddf->anchor, 512) < 0)
2237 continue;
2238 successes++;
2239 }
2240
2241 if (do_close)
2242 for (d = ddf->dlist; d; d=d->next) {
2243 close(d->fd);
2244 d->fd = -1;
2245 }
2246
2247 return attempts != successes;
2248 }
2249
2250 static int write_init_super_ddf(struct supertype *st)
2251 {
2252
2253 if (st->update_tail) {
2254 /* queue the virtual_disk and vd_config as metadata updates */
2255 struct virtual_disk *vd;
2256 struct vd_config *vc;
2257 struct ddf_super *ddf = st->sb;
2258 int len;
2259
2260 if (!ddf->currentconf) {
2261 int len = (sizeof(struct phys_disk) +
2262 sizeof(struct phys_disk_entry));
2263
2264 /* adding a disk to the container. */
2265 if (!ddf->add_list)
2266 return 0;
2267
2268 append_metadata_update(st, ddf->add_list->mdupdate, len);
2269 ddf->add_list->mdupdate = NULL;
2270 return 0;
2271 }
2272
2273 /* Newly created VD */
2274
2275 /* First the virtual disk. We have a slightly fake header */
2276 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2277 vd = malloc(len);
2278 *vd = *ddf->virt;
2279 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2280 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2281 append_metadata_update(st, vd, len);
2282
2283 /* Then the vd_config */
2284 len = ddf->conf_rec_len * 512;
2285 vc = malloc(len);
2286 memcpy(vc, &ddf->currentconf->conf, len);
2287 append_metadata_update(st, vc, len);
2288
2289 /* FIXME I need to close the fds! */
2290 return 0;
2291 } else
2292 return __write_init_super_ddf(st, 1);
2293 }
2294
2295 #endif
2296
2297 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2298 {
2299 /* We must reserve the last 32Meg */
2300 if (devsize <= 32*1024*2)
2301 return 0;
2302 return devsize - 32*1024*2;
2303 }
2304
2305 #ifndef MDASSEMBLE
2306 static int
2307 validate_geometry_ddf_container(struct supertype *st,
2308 int level, int layout, int raiddisks,
2309 int chunk, unsigned long long size,
2310 char *dev, unsigned long long *freesize,
2311 int verbose);
2312
2313 static int validate_geometry_ddf_bvd(struct supertype *st,
2314 int level, int layout, int raiddisks,
2315 int chunk, unsigned long long size,
2316 char *dev, unsigned long long *freesize,
2317 int verbose);
2318
2319 static int validate_geometry_ddf(struct supertype *st,
2320 int level, int layout, int raiddisks,
2321 int chunk, unsigned long long size,
2322 char *dev, unsigned long long *freesize,
2323 int verbose)
2324 {
2325 int fd;
2326 struct mdinfo *sra;
2327 int cfd;
2328
2329 /* ddf potentially supports lots of things, but it depends on
2330 * what devices are offered (and maybe kernel version?)
2331 * If given unused devices, we will make a container.
2332 * If given devices in a container, we will make a BVD.
2333 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2334 */
2335
2336 if (level == LEVEL_CONTAINER) {
2337 /* Must be a fresh device to add to a container */
2338 return validate_geometry_ddf_container(st, level, layout,
2339 raiddisks, chunk,
2340 size, dev, freesize,
2341 verbose);
2342 }
2343
2344 if (st->sb) {
2345 /* A container has already been opened, so we are
2346 * creating in there. Maybe a BVD, maybe an SVD.
2347 * Should make a distinction one day.
2348 */
2349 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2350 chunk, size, dev, freesize,
2351 verbose);
2352 }
2353 if (!dev) {
2354 /* Initial sanity check. Exclude illegal levels. */
2355 int i;
2356 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2357 if (ddf_level_num[i].num2 == level)
2358 break;
2359 if (ddf_level_num[i].num1 == MAXINT)
2360 return 0;
2361 /* Should check layout? etc */
2362 return 1;
2363 }
2364
2365 /* This is the first device for the array.
2366 * If it is a container, we read it in and do automagic allocations,
2367 * no other devices should be given.
2368 * Otherwise it must be a member device of a container, and we
2369 * do manual allocation.
2370 * Later we should check for a BVD and make an SVD.
2371 */
2372 fd = open(dev, O_RDONLY|O_EXCL, 0);
2373 if (fd >= 0) {
2374 sra = sysfs_read(fd, 0, GET_VERSION);
2375 close(fd);
2376 if (sra && sra->array.major_version == -1 &&
2377 strcmp(sra->text_version, "ddf") == 0) {
2378
2379 /* load super */
2380 /* find space for 'n' devices. */
2381 /* remember the devices */
2382 /* Somehow return the fact that we have enough */
2383 }
2384
2385 if (verbose)
2386 fprintf(stderr,
2387 Name ": ddf: Cannot create this array "
2388 "on device %s\n",
2389 dev);
2390 return 0;
2391 }
2392 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2393 if (verbose)
2394 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2395 dev, strerror(errno));
2396 return 0;
2397 }
2398 /* Well, it is in use by someone, maybe a 'ddf' container. */
2399 cfd = open_container(fd);
2400 if (cfd < 0) {
2401 close(fd);
2402 if (verbose)
2403 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2404 dev, strerror(EBUSY));
2405 return 0;
2406 }
2407 sra = sysfs_read(cfd, 0, GET_VERSION);
2408 close(fd);
2409 if (sra && sra->array.major_version == -1 &&
2410 strcmp(sra->text_version, "ddf") == 0) {
2411 /* This is a member of a ddf container. Load the container
2412 * and try to create a bvd
2413 */
2414 struct ddf_super *ddf;
2415 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2416 st->sb = ddf;
2417 st->container_dev = fd2devnum(cfd);
2418 close(cfd);
2419 return validate_geometry_ddf_bvd(st, level, layout,
2420 raiddisks, chunk, size,
2421 dev, freesize,
2422 verbose);
2423 }
2424 close(cfd);
2425 } else /* device may belong to a different container */
2426 return 0;
2427
2428 return 1;
2429 }
2430
2431 static int
2432 validate_geometry_ddf_container(struct supertype *st,
2433 int level, int layout, int raiddisks,
2434 int chunk, unsigned long long size,
2435 char *dev, unsigned long long *freesize,
2436 int verbose)
2437 {
2438 int fd;
2439 unsigned long long ldsize;
2440
2441 if (level != LEVEL_CONTAINER)
2442 return 0;
2443 if (!dev)
2444 return 1;
2445
2446 fd = open(dev, O_RDONLY|O_EXCL, 0);
2447 if (fd < 0) {
2448 if (verbose)
2449 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2450 dev, strerror(errno));
2451 return 0;
2452 }
2453 if (!get_dev_size(fd, dev, &ldsize)) {
2454 close(fd);
2455 return 0;
2456 }
2457 close(fd);
2458
2459 *freesize = avail_size_ddf(st, ldsize >> 9);
2460
2461 return 1;
2462 }
2463
2464 static int validate_geometry_ddf_bvd(struct supertype *st,
2465 int level, int layout, int raiddisks,
2466 int chunk, unsigned long long size,
2467 char *dev, unsigned long long *freesize,
2468 int verbose)
2469 {
2470 struct stat stb;
2471 struct ddf_super *ddf = st->sb;
2472 struct dl *dl;
2473 unsigned long long pos = 0;
2474 unsigned long long maxsize;
2475 struct extent *e;
2476 int i;
2477 /* ddf/bvd supports lots of things, but not containers */
2478 if (level == LEVEL_CONTAINER)
2479 return 0;
2480 /* We must have the container info already read in. */
2481 if (!ddf)
2482 return 0;
2483
2484 if (!dev) {
2485 /* General test: make sure there is space for
2486 * 'raiddisks' device extents of size 'size'.
2487 */
2488 unsigned long long minsize = size;
2489 int dcnt = 0;
2490 if (minsize == 0)
2491 minsize = 8;
2492 for (dl = ddf->dlist; dl ; dl = dl->next)
2493 {
2494 int found = 0;
2495 pos = 0;
2496
2497 i = 0;
2498 e = get_extents(ddf, dl);
2499 if (!e) continue;
2500 do {
2501 unsigned long long esize;
2502 esize = e[i].start - pos;
2503 if (esize >= minsize)
2504 found = 1;
2505 pos = e[i].start + e[i].size;
2506 i++;
2507 } while (e[i-1].size);
2508 if (found)
2509 dcnt++;
2510 free(e);
2511 }
2512 if (dcnt < raiddisks) {
2513 if (verbose)
2514 fprintf(stderr,
2515 Name ": ddf: Not enough devices with "
2516 "space for this array (%d < %d)\n",
2517 dcnt, raiddisks);
2518 return 0;
2519 }
2520 return 1;
2521 }
2522 /* This device must be a member of the set */
2523 if (stat(dev, &stb) < 0)
2524 return 0;
2525 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2526 return 0;
2527 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2528 if (dl->major == major(stb.st_rdev) &&
2529 dl->minor == minor(stb.st_rdev))
2530 break;
2531 }
2532 if (!dl) {
2533 if (verbose)
2534 fprintf(stderr, Name ": ddf: %s is not in the "
2535 "same DDF set\n",
2536 dev);
2537 return 0;
2538 }
2539 e = get_extents(ddf, dl);
2540 maxsize = 0;
2541 i = 0;
2542 if (e) do {
2543 unsigned long long esize;
2544 esize = e[i].start - pos;
2545 if (esize >= maxsize)
2546 maxsize = esize;
2547 pos = e[i].start + e[i].size;
2548 i++;
2549 } while (e[i-1].size);
2550 *freesize = maxsize;
2551 // FIXME here I am
2552
2553 return 1;
2554 }
2555
2556 static int load_super_ddf_all(struct supertype *st, int fd,
2557 void **sbp, char *devname, int keep_fd)
2558 {
2559 struct mdinfo *sra;
2560 struct ddf_super *super;
2561 struct mdinfo *sd, *best = NULL;
2562 int bestseq = 0;
2563 int seq;
2564 char nm[20];
2565 int dfd;
2566
2567 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2568 if (!sra)
2569 return 1;
2570 if (sra->array.major_version != -1 ||
2571 sra->array.minor_version != -2 ||
2572 strcmp(sra->text_version, "ddf") != 0)
2573 return 1;
2574
2575 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2576 return 1;
2577 memset(super, 0, sizeof(*super));
2578
2579 /* first, try each device, and choose the best ddf */
2580 for (sd = sra->devs ; sd ; sd = sd->next) {
2581 int rv;
2582 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2583 dfd = dev_open(nm, O_RDONLY);
2584 if (dfd < 0)
2585 return 2;
2586 rv = load_ddf_headers(dfd, super, NULL);
2587 close(dfd);
2588 if (rv == 0) {
2589 seq = __be32_to_cpu(super->active->seq);
2590 if (super->active->openflag)
2591 seq--;
2592 if (!best || seq > bestseq) {
2593 bestseq = seq;
2594 best = sd;
2595 }
2596 }
2597 }
2598 if (!best)
2599 return 1;
2600 /* OK, load this ddf */
2601 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2602 dfd = dev_open(nm, O_RDONLY);
2603 if (dfd < 0)
2604 return 1;
2605 load_ddf_headers(dfd, super, NULL);
2606 load_ddf_global(dfd, super, NULL);
2607 close(dfd);
2608 /* Now we need the device-local bits */
2609 for (sd = sra->devs ; sd ; sd = sd->next) {
2610 int rv;
2611
2612 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2613 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2614 if (dfd < 0)
2615 return 2;
2616 rv = load_ddf_headers(dfd, super, NULL);
2617 if (rv == 0)
2618 rv = load_ddf_local(dfd, super, NULL, keep_fd);
2619 if (!keep_fd) close(dfd);
2620 if (rv)
2621 return 1;
2622 }
2623 if (st->subarray[0]) {
2624 struct vcl *v;
2625
2626 for (v = super->conflist; v; v = v->next)
2627 if (v->vcnum == atoi(st->subarray))
2628 super->currentconf = v;
2629 if (!super->currentconf)
2630 return 1;
2631 }
2632 *sbp = super;
2633 if (st->ss == NULL) {
2634 st->ss = &super_ddf;
2635 st->minor_version = 0;
2636 st->max_devs = 512;
2637 st->container_dev = fd2devnum(fd);
2638 }
2639 st->loaded_container = 1;
2640 return 0;
2641 }
2642 #endif /* MDASSEMBLE */
2643
2644 static struct mdinfo *container_content_ddf(struct supertype *st)
2645 {
2646 /* Given a container loaded by load_super_ddf_all,
2647 * extract information about all the arrays into
2648 * an mdinfo tree.
2649 *
2650 * For each vcl in conflist: create an mdinfo, fill it in,
2651 * then look for matching devices (phys_refnum) in dlist
2652 * and create appropriate device mdinfo.
2653 */
2654 struct ddf_super *ddf = st->sb;
2655 struct mdinfo *rest = NULL;
2656 struct vcl *vc;
2657
2658 for (vc = ddf->conflist ; vc ; vc=vc->next)
2659 {
2660 int i;
2661 struct mdinfo *this;
2662 this = malloc(sizeof(*this));
2663 memset(this, 0, sizeof(*this));
2664 this->next = rest;
2665 rest = this;
2666
2667 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2668 this->array.raid_disks =
2669 __be16_to_cpu(vc->conf.prim_elmnt_count);
2670 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2671 this->array.raid_disks);
2672 this->array.md_minor = -1;
2673 this->array.major_version = -1;
2674 this->array.minor_version = -2;
2675 this->array.ctime = DECADE +
2676 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2677 this->array.utime = DECADE +
2678 __be32_to_cpu(vc->conf.timestamp);
2679 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2680
2681 i = vc->vcnum;
2682 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2683 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2684 DDF_init_full) {
2685 this->array.state = 0;
2686 this->resync_start = 0;
2687 } else {
2688 this->array.state = 1;
2689 this->resync_start = ~0ULL;
2690 }
2691 memcpy(this->name, ddf->virt->entries[i].name, 32);
2692 this->name[32]=0;
2693
2694 memset(this->uuid, 0, sizeof(this->uuid));
2695 this->component_size = __be64_to_cpu(vc->conf.blocks);
2696 this->array.size = this->component_size / 2;
2697 this->container_member = i;
2698
2699 ddf->currentconf = vc;
2700 uuid_from_super_ddf(st, this->uuid);
2701 ddf->currentconf = NULL;
2702
2703 sprintf(this->text_version, "/%s/%d",
2704 devnum2devname(st->container_dev),
2705 this->container_member);
2706
2707 for (i=0 ; i < ddf->mppe ; i++) {
2708 struct mdinfo *dev;
2709 struct dl *d;
2710
2711 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2712 continue;
2713
2714 this->array.working_disks++;
2715
2716 for (d = ddf->dlist; d ; d=d->next)
2717 if (d->disk.refnum == vc->conf.phys_refnum[i])
2718 break;
2719 if (d == NULL)
2720 break;
2721
2722 dev = malloc(sizeof(*dev));
2723 memset(dev, 0, sizeof(*dev));
2724 dev->next = this->devs;
2725 this->devs = dev;
2726
2727 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2728 dev->disk.major = d->major;
2729 dev->disk.minor = d->minor;
2730 dev->disk.raid_disk = i;
2731 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2732
2733 dev->events = __be32_to_cpu(ddf->primary.seq);
2734 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2735 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2736 if (d->devname)
2737 strcpy(dev->name, d->devname);
2738 }
2739 }
2740 return rest;
2741 }
2742
2743 static int store_zero_ddf(struct supertype *st, int fd)
2744 {
2745 unsigned long long dsize;
2746 void *buf;
2747 int rc;
2748
2749 if (!get_dev_size(fd, NULL, &dsize))
2750 return 1;
2751
2752 if (posix_memalign(&buf, 512, 512) != 0)
2753 return 1;
2754 memset(buf, 0, 512);
2755
2756 lseek64(fd, dsize-512, 0);
2757 rc = write(fd, buf, 512);
2758 free(buf);
2759 if (rc < 0)
2760 return 1;
2761 return 0;
2762 }
2763
2764 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2765 {
2766 /*
2767 * return:
2768 * 0 same, or first was empty, and second was copied
2769 * 1 second had wrong number
2770 * 2 wrong uuid
2771 * 3 wrong other info
2772 */
2773 struct ddf_super *first = st->sb;
2774 struct ddf_super *second = tst->sb;
2775
2776 if (!first) {
2777 st->sb = tst->sb;
2778 tst->sb = NULL;
2779 return 0;
2780 }
2781
2782 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2783 return 2;
2784
2785 /* FIXME should I look at anything else? */
2786 return 0;
2787 }
2788
2789 #ifndef MDASSEMBLE
2790 /*
2791 * A new array 'a' has been started which claims to be instance 'inst'
2792 * within container 'c'.
2793 * We need to confirm that the array matches the metadata in 'c' so
2794 * that we don't corrupt any metadata.
2795 */
2796 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2797 {
2798 dprintf("ddf: open_new %s\n", inst);
2799 a->info.container_member = atoi(inst);
2800 return 0;
2801 }
2802
2803 /*
2804 * The array 'a' is to be marked clean in the metadata.
2805 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2806 * clean up to the point (in sectors). If that cannot be recorded in the
2807 * metadata, then leave it as dirty.
2808 *
2809 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2810 * !global! virtual_disk.virtual_entry structure.
2811 */
2812 static int ddf_set_array_state(struct active_array *a, int consistent)
2813 {
2814 struct ddf_super *ddf = a->container->sb;
2815 int inst = a->info.container_member;
2816 int old = ddf->virt->entries[inst].state;
2817 if (consistent == 2) {
2818 /* Should check if a recovery should be started FIXME */
2819 consistent = 1;
2820 if (!is_resync_complete(a))
2821 consistent = 0;
2822 }
2823 if (consistent)
2824 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2825 else
2826 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2827 if (old != ddf->virt->entries[inst].state)
2828 ddf->updates_pending = 1;
2829
2830 old = ddf->virt->entries[inst].init_state;
2831 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2832 if (is_resync_complete(a))
2833 ddf->virt->entries[inst].init_state |= DDF_init_full;
2834 else if (a->resync_start == 0)
2835 ddf->virt->entries[inst].init_state |= DDF_init_not;
2836 else
2837 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2838 if (old != ddf->virt->entries[inst].init_state)
2839 ddf->updates_pending = 1;
2840
2841 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2842 a->resync_start);
2843 return consistent;
2844 }
2845
2846 /*
2847 * The state of each disk is stored in the global phys_disk structure
2848 * in phys_disk.entries[n].state.
2849 * This makes various combinations awkward.
2850 * - When a device fails in any array, it must be failed in all arrays
2851 * that include a part of this device.
2852 * - When a component is rebuilding, we cannot include it officially in the
2853 * array unless this is the only array that uses the device.
2854 *
2855 * So: when transitioning:
2856 * Online -> failed, just set failed flag. monitor will propagate
2857 * spare -> online, the device might need to be added to the array.
2858 * spare -> failed, just set failed. Don't worry if in array or not.
2859 */
2860 static void ddf_set_disk(struct active_array *a, int n, int state)
2861 {
2862 struct ddf_super *ddf = a->container->sb;
2863 int inst = a->info.container_member;
2864 struct vd_config *vc = find_vdcr(ddf, inst);
2865 int pd = find_phys(ddf, vc->phys_refnum[n]);
2866 int i, st, working;
2867
2868 if (vc == NULL) {
2869 dprintf("ddf: cannot find instance %d!!\n", inst);
2870 return;
2871 }
2872 if (pd < 0) {
2873 /* disk doesn't currently exist. If it is now in_sync,
2874 * insert it. */
2875 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2876 /* Find dev 'n' in a->info->devs, determine the
2877 * ddf refnum, and set vc->phys_refnum and update
2878 * phys->entries[]
2879 */
2880 /* FIXME */
2881 }
2882 } else {
2883 int old = ddf->phys->entries[pd].state;
2884 if (state & DS_FAULTY)
2885 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2886 if (state & DS_INSYNC) {
2887 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2888 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2889 }
2890 if (old != ddf->phys->entries[pd].state)
2891 ddf->updates_pending = 1;
2892 }
2893
2894 dprintf("ddf: set_disk %d to %x\n", n, state);
2895
2896 /* Now we need to check the state of the array and update
2897 * virtual_disk.entries[n].state.
2898 * It needs to be one of "optimal", "degraded", "failed".
2899 * I don't understand 'deleted' or 'missing'.
2900 */
2901 working = 0;
2902 for (i=0; i < a->info.array.raid_disks; i++) {
2903 pd = find_phys(ddf, vc->phys_refnum[i]);
2904 if (pd < 0)
2905 continue;
2906 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2907 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2908 == DDF_Online)
2909 working++;
2910 }
2911 state = DDF_state_degraded;
2912 if (working == a->info.array.raid_disks)
2913 state = DDF_state_optimal;
2914 else switch(vc->prl) {
2915 case DDF_RAID0:
2916 case DDF_CONCAT:
2917 case DDF_JBOD:
2918 state = DDF_state_failed;
2919 break;
2920 case DDF_RAID1:
2921 if (working == 0)
2922 state = DDF_state_failed;
2923 break;
2924 case DDF_RAID4:
2925 case DDF_RAID5:
2926 if (working < a->info.array.raid_disks-1)
2927 state = DDF_state_failed;
2928 break;
2929 case DDF_RAID6:
2930 if (working < a->info.array.raid_disks-2)
2931 state = DDF_state_failed;
2932 else if (working == a->info.array.raid_disks-1)
2933 state = DDF_state_part_optimal;
2934 break;
2935 }
2936
2937 if (ddf->virt->entries[inst].state !=
2938 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2939 | state)) {
2940
2941 ddf->virt->entries[inst].state =
2942 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2943 | state;
2944 ddf->updates_pending = 1;
2945 }
2946
2947 }
2948
2949 static void ddf_sync_metadata(struct supertype *st)
2950 {
2951
2952 /*
2953 * Write all data to all devices.
2954 * Later, we might be able to track whether only local changes
2955 * have been made, or whether any global data has been changed,
2956 * but ddf is sufficiently weird that it probably always
2957 * changes global data ....
2958 */
2959 struct ddf_super *ddf = st->sb;
2960 if (!ddf->updates_pending)
2961 return;
2962 ddf->updates_pending = 0;
2963 __write_init_super_ddf(st, 0);
2964 dprintf("ddf: sync_metadata\n");
2965 }
2966
2967 static void ddf_process_update(struct supertype *st,
2968 struct metadata_update *update)
2969 {
2970 /* Apply this update to the metadata.
2971 * The first 4 bytes are a DDF_*_MAGIC which guides
2972 * our actions.
2973 * Possible update are:
2974 * DDF_PHYS_RECORDS_MAGIC
2975 * Add a new physical device. Changes to this record
2976 * only happen implicitly.
2977 * used_pdes is the device number.
2978 * DDF_VIRT_RECORDS_MAGIC
2979 * Add a new VD. Possibly also change the 'access' bits.
2980 * populated_vdes is the entry number.
2981 * DDF_VD_CONF_MAGIC
2982 * New or updated VD. the VIRT_RECORD must already
2983 * exist. For an update, phys_refnum and lba_offset
2984 * (at least) are updated, and the VD_CONF must
2985 * be written to precisely those devices listed with
2986 * a phys_refnum.
2987 * DDF_SPARE_ASSIGN_MAGIC
2988 * replacement Spare Assignment Record... but for which device?
2989 *
2990 * So, e.g.:
2991 * - to create a new array, we send a VIRT_RECORD and
2992 * a VD_CONF. Then assemble and start the array.
2993 * - to activate a spare we send a VD_CONF to add the phys_refnum
2994 * and offset. This will also mark the spare as active with
2995 * a spare-assignment record.
2996 */
2997 struct ddf_super *ddf = st->sb;
2998 __u32 *magic = (__u32*)update->buf;
2999 struct phys_disk *pd;
3000 struct virtual_disk *vd;
3001 struct vd_config *vc;
3002 struct vcl *vcl;
3003 struct dl *dl;
3004 int mppe;
3005 int ent;
3006
3007 dprintf("Process update %x\n", *magic);
3008
3009 switch (*magic) {
3010 case DDF_PHYS_RECORDS_MAGIC:
3011
3012 if (update->len != (sizeof(struct phys_disk) +
3013 sizeof(struct phys_disk_entry)))
3014 return;
3015 pd = (struct phys_disk*)update->buf;
3016
3017 ent = __be16_to_cpu(pd->used_pdes);
3018 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3019 return;
3020 if (!all_ff(ddf->phys->entries[ent].guid))
3021 return;
3022 ddf->phys->entries[ent] = pd->entries[0];
3023 ddf->phys->used_pdes = __cpu_to_be16(1 +
3024 __be16_to_cpu(ddf->phys->used_pdes));
3025 ddf->updates_pending = 1;
3026 if (ddf->add_list) {
3027 struct active_array *a;
3028 struct dl *al = ddf->add_list;
3029 ddf->add_list = al->next;
3030
3031 al->next = ddf->dlist;
3032 ddf->dlist = al;
3033
3034 /* As a device has been added, we should check
3035 * for any degraded devices that might make
3036 * use of this spare */
3037 for (a = st->arrays ; a; a=a->next)
3038 a->check_degraded = 1;
3039 }
3040 break;
3041
3042 case DDF_VIRT_RECORDS_MAGIC:
3043
3044 if (update->len != (sizeof(struct virtual_disk) +
3045 sizeof(struct virtual_entry)))
3046 return;
3047 vd = (struct virtual_disk*)update->buf;
3048
3049 ent = __be16_to_cpu(vd->populated_vdes);
3050 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3051 return;
3052 if (!all_ff(ddf->virt->entries[ent].guid))
3053 return;
3054 ddf->virt->entries[ent] = vd->entries[0];
3055 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3056 __be16_to_cpu(ddf->virt->populated_vdes));
3057 ddf->updates_pending = 1;
3058 break;
3059
3060 case DDF_VD_CONF_MAGIC:
3061 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3062
3063 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3064 if (update->len != ddf->conf_rec_len * 512)
3065 return;
3066 vc = (struct vd_config*)update->buf;
3067 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3068 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3069 break;
3070 dprintf("vcl = %p\n", vcl);
3071 if (vcl) {
3072 /* An update, just copy the phys_refnum and lba_offset
3073 * fields
3074 */
3075 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3076 mppe * (sizeof(__u32) + sizeof(__u64)));
3077 } else {
3078 /* A new VD_CONF */
3079 vcl = update->space;
3080 update->space = NULL;
3081 vcl->next = ddf->conflist;
3082 memcpy(&vcl->conf, vc, update->len);
3083 vcl->lba_offset = (__u64*)
3084 &vcl->conf.phys_refnum[mppe];
3085 ddf->conflist = vcl;
3086 }
3087 /* Now make sure vlist is correct for each dl. */
3088 for (dl = ddf->dlist; dl; dl = dl->next) {
3089 int dn;
3090 int vn = 0;
3091 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3092 for (dn=0; dn < ddf->mppe ; dn++)
3093 if (vcl->conf.phys_refnum[dn] ==
3094 dl->disk.refnum) {
3095 dprintf("dev %d has %p at %d\n",
3096 dl->pdnum, vcl, vn);
3097 dl->vlist[vn++] = vcl;
3098 break;
3099 }
3100 while (vn < ddf->max_part)
3101 dl->vlist[vn++] = NULL;
3102 if (dl->vlist[0]) {
3103 ddf->phys->entries[dl->pdnum].type &=
3104 ~__cpu_to_be16(DDF_Global_Spare);
3105 ddf->phys->entries[dl->pdnum].type |=
3106 __cpu_to_be16(DDF_Active_in_VD);
3107 }
3108 if (dl->spare) {
3109 ddf->phys->entries[dl->pdnum].type &=
3110 ~__cpu_to_be16(DDF_Global_Spare);
3111 ddf->phys->entries[dl->pdnum].type |=
3112 __cpu_to_be16(DDF_Spare);
3113 }
3114 if (!dl->vlist[0] && !dl->spare) {
3115 ddf->phys->entries[dl->pdnum].type |=
3116 __cpu_to_be16(DDF_Global_Spare);
3117 ddf->phys->entries[dl->pdnum].type &=
3118 ~__cpu_to_be16(DDF_Spare |
3119 DDF_Active_in_VD);
3120 }
3121 }
3122 ddf->updates_pending = 1;
3123 break;
3124 case DDF_SPARE_ASSIGN_MAGIC:
3125 default: break;
3126 }
3127 }
3128
3129 static void ddf_prepare_update(struct supertype *st,
3130 struct metadata_update *update)
3131 {
3132 /* This update arrived at managemon.
3133 * We are about to pass it to monitor.
3134 * If a malloc is needed, do it here.
3135 */
3136 struct ddf_super *ddf = st->sb;
3137 __u32 *magic = (__u32*)update->buf;
3138 if (*magic == DDF_VD_CONF_MAGIC)
3139 posix_memalign(&update->space, 512,
3140 offsetof(struct vcl, conf)
3141 + ddf->conf_rec_len * 512);
3142 }
3143
3144 /*
3145 * Check if the array 'a' is degraded but not failed.
3146 * If it is, find as many spares as are available and needed and
3147 * arrange for their inclusion.
3148 * We only choose devices which are not already in the array,
3149 * and prefer those with a spare-assignment to this array.
3150 * otherwise we choose global spares - assuming always that
3151 * there is enough room.
3152 * For each spare that we assign, we return an 'mdinfo' which
3153 * describes the position for the device in the array.
3154 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3155 * the new phys_refnum and lba_offset values.
3156 *
3157 * Only worry about BVDs at the moment.
3158 */
3159 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3160 struct metadata_update **updates)
3161 {
3162 int working = 0;
3163 struct mdinfo *d;
3164 struct ddf_super *ddf = a->container->sb;
3165 int global_ok = 0;
3166 struct mdinfo *rv = NULL;
3167 struct mdinfo *di;
3168 struct metadata_update *mu;
3169 struct dl *dl;
3170 int i;
3171 struct vd_config *vc;
3172 __u64 *lba;
3173
3174 for (d = a->info.devs ; d ; d = d->next) {
3175 if ((d->curr_state & DS_FAULTY) &&
3176 d->state_fd >= 0)
3177 /* wait for Removal to happen */
3178 return NULL;
3179 if (d->state_fd >= 0)
3180 working ++;
3181 }
3182
3183 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3184 a->info.array.level);
3185 if (working == a->info.array.raid_disks)
3186 return NULL; /* array not degraded */
3187 switch (a->info.array.level) {
3188 case 1:
3189 if (working == 0)
3190 return NULL; /* failed */
3191 break;
3192 case 4:
3193 case 5:
3194 if (working < a->info.array.raid_disks - 1)
3195 return NULL; /* failed */
3196 break;
3197 case 6:
3198 if (working < a->info.array.raid_disks - 2)
3199 return NULL; /* failed */
3200 break;
3201 default: /* concat or stripe */
3202 return NULL; /* failed */
3203 }
3204
3205 /* For each slot, if it is not working, find a spare */
3206 dl = ddf->dlist;
3207 for (i = 0; i < a->info.array.raid_disks; i++) {
3208 for (d = a->info.devs ; d ; d = d->next)
3209 if (d->disk.raid_disk == i)
3210 break;
3211 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3212 if (d && (d->state_fd >= 0))
3213 continue;
3214
3215 /* OK, this device needs recovery. Find a spare */
3216 again:
3217 for ( ; dl ; dl = dl->next) {
3218 unsigned long long esize;
3219 unsigned long long pos;
3220 struct mdinfo *d2;
3221 int is_global = 0;
3222 int is_dedicated = 0;
3223 struct extent *ex;
3224 int j;
3225 /* If in this array, skip */
3226 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3227 if (d2->disk.major == dl->major &&
3228 d2->disk.minor == dl->minor) {
3229 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3230 break;
3231 }
3232 if (d2)
3233 continue;
3234 if (ddf->phys->entries[dl->pdnum].type &
3235 __cpu_to_be16(DDF_Spare)) {
3236 /* Check spare assign record */
3237 if (dl->spare) {
3238 if (dl->spare->type & DDF_spare_dedicated) {
3239 /* check spare_ents for guid */
3240 for (j = 0 ;
3241 j < __be16_to_cpu(dl->spare->populated);
3242 j++) {
3243 if (memcmp(dl->spare->spare_ents[j].guid,
3244 ddf->virt->entries[a->info.container_member].guid,
3245 DDF_GUID_LEN) == 0)
3246 is_dedicated = 1;
3247 }
3248 } else
3249 is_global = 1;
3250 }
3251 } else if (ddf->phys->entries[dl->pdnum].type &
3252 __cpu_to_be16(DDF_Global_Spare)) {
3253 is_global = 1;
3254 }
3255 if ( ! (is_dedicated ||
3256 (is_global && global_ok))) {
3257 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3258 is_dedicated, is_global);
3259 continue;
3260 }
3261
3262 /* We are allowed to use this device - is there space?
3263 * We need a->info.component_size sectors */
3264 ex = get_extents(ddf, dl);
3265 if (!ex) {
3266 dprintf("cannot get extents\n");
3267 continue;
3268 }
3269 j = 0; pos = 0;
3270 esize = 0;
3271
3272 do {
3273 esize = ex[j].start - pos;
3274 if (esize >= a->info.component_size)
3275 break;
3276 pos = ex[i].start + ex[i].size;
3277 i++;
3278 } while (ex[i-1].size);
3279
3280 free(ex);
3281 if (esize < a->info.component_size) {
3282 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3283 esize, a->info.component_size);
3284 /* No room */
3285 continue;
3286 }
3287
3288 /* Cool, we have a device with some space at pos */
3289 di = malloc(sizeof(*di));
3290 if (!di)
3291 continue;
3292 memset(di, 0, sizeof(*di));
3293 di->disk.number = i;
3294 di->disk.raid_disk = i;
3295 di->disk.major = dl->major;
3296 di->disk.minor = dl->minor;
3297 di->disk.state = 0;
3298 di->data_offset = pos;
3299 di->component_size = a->info.component_size;
3300 di->container_member = dl->pdnum;
3301 di->next = rv;
3302 rv = di;
3303 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3304 i, pos);
3305
3306 break;
3307 }
3308 if (!dl && ! global_ok) {
3309 /* not enough dedicated spares, try global */
3310 global_ok = 1;
3311 dl = ddf->dlist;
3312 goto again;
3313 }
3314 }
3315
3316 if (!rv)
3317 /* No spares found */
3318 return rv;
3319 /* Now 'rv' has a list of devices to return.
3320 * Create a metadata_update record to update the
3321 * phys_refnum and lba_offset values
3322 */
3323 mu = malloc(sizeof(*mu));
3324 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3325 free(mu);
3326 mu = NULL;
3327 }
3328 if (!mu) {
3329 while (rv) {
3330 struct mdinfo *n = rv->next;
3331
3332 free(rv);
3333 rv = n;
3334 }
3335 return NULL;
3336 }
3337
3338 mu->buf = malloc(ddf->conf_rec_len * 512);
3339 mu->len = ddf->conf_rec_len;
3340 mu->next = *updates;
3341 vc = find_vdcr(ddf, a->info.container_member);
3342 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3343
3344 vc = (struct vd_config*)mu->buf;
3345 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3346 for (di = rv ; di ; di = di->next) {
3347 vc->phys_refnum[di->disk.raid_disk] =
3348 ddf->phys->entries[dl->pdnum].refnum;
3349 lba[di->disk.raid_disk] = di->data_offset;
3350 }
3351 *updates = mu;
3352 return rv;
3353 }
3354 #endif /* MDASSEMBLE */
3355
3356 struct superswitch super_ddf = {
3357 #ifndef MDASSEMBLE
3358 .examine_super = examine_super_ddf,
3359 .brief_examine_super = brief_examine_super_ddf,
3360 .detail_super = detail_super_ddf,
3361 .brief_detail_super = brief_detail_super_ddf,
3362 .validate_geometry = validate_geometry_ddf,
3363 .write_init_super = write_init_super_ddf,
3364 .add_to_super = add_to_super_ddf,
3365 #endif
3366 .match_home = match_home_ddf,
3367 .uuid_from_super= uuid_from_super_ddf,
3368 .getinfo_super = getinfo_super_ddf,
3369 .update_super = update_super_ddf,
3370
3371 .avail_size = avail_size_ddf,
3372
3373 .compare_super = compare_super_ddf,
3374
3375 .load_super = load_super_ddf,
3376 .init_super = init_super_ddf,
3377 .store_super = store_zero_ddf,
3378 .free_super = free_super_ddf,
3379 .match_metadata_desc = match_metadata_desc_ddf,
3380 .container_content = container_content_ddf,
3381
3382 .external = 1,
3383
3384 #ifndef MDASSEMBLE
3385 /* for mdmon */
3386 .open_new = ddf_open_new,
3387 .set_array_state= ddf_set_array_state,
3388 .set_disk = ddf_set_disk,
3389 .sync_metadata = ddf_sync_metadata,
3390 .process_update = ddf_process_update,
3391 .prepare_update = ddf_prepare_update,
3392 .activate_spare = ddf_activate_spare,
3393 #endif
3394 };