]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Examine: add examine_export for ddf and avoid crashes.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if (read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 int i;
646 int vnum;
647 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
648 unsigned long long dsize;
649
650 /* First the local disk info */
651 if (posix_memalign((void**)&dl, 512,
652 sizeof(*dl) +
653 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
654 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
655 __func__);
656 return 1;
657 }
658
659 load_section(fd, super, &dl->disk,
660 super->active->data_section_offset,
661 super->active->data_section_length,
662 0);
663 dl->devname = devname ? strdup(devname) : NULL;
664
665 fstat(fd, &stb);
666 dl->major = major(stb.st_rdev);
667 dl->minor = minor(stb.st_rdev);
668 dl->next = super->dlist;
669 dl->fd = keep ? fd : -1;
670
671 dl->size = 0;
672 if (get_dev_size(fd, devname, &dsize))
673 dl->size = dsize >> 9;
674 dl->spare = NULL;
675 for (i=0 ; i < super->max_part ; i++)
676 dl->vlist[i] = NULL;
677 super->dlist = dl;
678 dl->pdnum = -1;
679 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
680 if (memcmp(super->phys->entries[i].guid,
681 dl->disk.guid, DDF_GUID_LEN) == 0)
682 dl->pdnum = i;
683
684 /* Now the config list. */
685 /* 'conf' is an array of config entries, some of which are
686 * probably invalid. Those which are good need to be copied into
687 * the conflist
688 */
689
690 conf = load_section(fd, super, NULL,
691 super->active->config_section_offset,
692 super->active->config_section_length,
693 0);
694
695 vnum = 0;
696 for (i = 0;
697 i < __be32_to_cpu(super->active->config_section_length);
698 i += super->conf_rec_len) {
699 struct vd_config *vd =
700 (struct vd_config *)((char*)conf + i*512);
701 struct vcl *vcl;
702
703 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
704 if (dl->spare)
705 continue;
706 if (posix_memalign((void**)&dl->spare, 512,
707 super->conf_rec_len*512) != 0) {
708 fprintf(stderr, Name
709 ": %s could not allocate spare info buf\n",
710 __func__);
711 return 1;
712 }
713
714 memcpy(dl->spare, vd, super->conf_rec_len*512);
715 continue;
716 }
717 if (vd->magic != DDF_VD_CONF_MAGIC)
718 continue;
719 for (vcl = super->conflist; vcl; vcl = vcl->next) {
720 if (memcmp(vcl->conf.guid,
721 vd->guid, DDF_GUID_LEN) == 0)
722 break;
723 }
724
725 if (vcl) {
726 dl->vlist[vnum++] = vcl;
727 if (__be32_to_cpu(vd->seqnum) <=
728 __be32_to_cpu(vcl->conf.seqnum))
729 continue;
730 } else {
731 if (posix_memalign((void**)&vcl, 512,
732 (super->conf_rec_len*512 +
733 offsetof(struct vcl, conf))) != 0) {
734 fprintf(stderr, Name
735 ": %s could not allocate vcl buf\n",
736 __func__);
737 return 1;
738 }
739 vcl->next = super->conflist;
740 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
741 super->conflist = vcl;
742 dl->vlist[vnum++] = vcl;
743 }
744 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
745 vcl->lba_offset = (__u64*)
746 &vcl->conf.phys_refnum[super->mppe];
747
748 for (i=0; i < max_virt_disks ; i++)
749 if (memcmp(super->virt->entries[i].guid,
750 vcl->conf.guid, DDF_GUID_LEN)==0)
751 break;
752 if (i < max_virt_disks)
753 vcl->vcnum = i;
754 }
755 free(conf);
756
757 return 0;
758 }
759
760 #ifndef MDASSEMBLE
761 static int load_super_ddf_all(struct supertype *st, int fd,
762 void **sbp, char *devname, int keep_fd);
763 #endif
764 static int load_super_ddf(struct supertype *st, int fd,
765 char *devname)
766 {
767 unsigned long long dsize;
768 struct ddf_super *super;
769 int rv;
770
771 #ifndef MDASSEMBLE
772 /* if 'fd' is a container, load metadata from all the devices */
773 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
774 return 0;
775 #endif
776 if (st->subarray[0])
777 return 1; /* FIXME Is this correct */
778
779 if (get_dev_size(fd, devname, &dsize) == 0)
780 return 1;
781
782 /* 32M is a lower bound */
783 if (dsize <= 32*1024*1024) {
784 if (devname) {
785 fprintf(stderr,
786 Name ": %s is too small for ddf: "
787 "size is %llu sectors.\n",
788 devname, dsize>>9);
789 return 1;
790 }
791 }
792 if (dsize & 511) {
793 if (devname) {
794 fprintf(stderr,
795 Name ": %s is an odd size for ddf: "
796 "size is %llu bytes.\n",
797 devname, dsize);
798 return 1;
799 }
800 }
801
802 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
803 fprintf(stderr, Name ": malloc of %zu failed.\n",
804 sizeof(*super));
805 return 1;
806 }
807 memset(super, 0, sizeof(*super));
808
809 rv = load_ddf_headers(fd, super, devname);
810 if (rv) {
811 free(super);
812 return rv;
813 }
814
815 /* Have valid headers and have chosen the best. Let's read in the rest*/
816
817 rv = load_ddf_global(fd, super, devname);
818
819 if (rv) {
820 if (devname)
821 fprintf(stderr,
822 Name ": Failed to load all information "
823 "sections on %s\n", devname);
824 free(super);
825 return rv;
826 }
827
828 rv = load_ddf_local(fd, super, devname, 0);
829
830 if (rv) {
831 if (devname)
832 fprintf(stderr,
833 Name ": Failed to load all information "
834 "sections on %s\n", devname);
835 free(super);
836 return rv;
837 }
838
839 /* Should possibly check the sections .... */
840
841 st->sb = super;
842 if (st->ss == NULL) {
843 st->ss = &super_ddf;
844 st->minor_version = 0;
845 st->max_devs = 512;
846 }
847 st->loaded_container = 0;
848 return 0;
849
850 }
851
852 static void free_super_ddf(struct supertype *st)
853 {
854 struct ddf_super *ddf = st->sb;
855 if (ddf == NULL)
856 return;
857 free(ddf->phys);
858 free(ddf->virt);
859 while (ddf->conflist) {
860 struct vcl *v = ddf->conflist;
861 ddf->conflist = v->next;
862 if (v->block_sizes)
863 free(v->block_sizes);
864 free(v);
865 }
866 while (ddf->dlist) {
867 struct dl *d = ddf->dlist;
868 ddf->dlist = d->next;
869 if (d->fd >= 0)
870 close(d->fd);
871 if (d->spare)
872 free(d->spare);
873 free(d);
874 }
875 free(ddf);
876 st->sb = NULL;
877 }
878
879 static struct supertype *match_metadata_desc_ddf(char *arg)
880 {
881 /* 'ddf' only support containers */
882 struct supertype *st;
883 if (strcmp(arg, "ddf") != 0 &&
884 strcmp(arg, "default") != 0
885 )
886 return NULL;
887
888 st = malloc(sizeof(*st));
889 memset(st, 0, sizeof(*st));
890 st->ss = &super_ddf;
891 st->max_devs = 512;
892 st->minor_version = 0;
893 st->sb = NULL;
894 return st;
895 }
896
897
898 #ifndef MDASSEMBLE
899
900 static mapping_t ddf_state[] = {
901 { "Optimal", 0},
902 { "Degraded", 1},
903 { "Deleted", 2},
904 { "Missing", 3},
905 { "Failed", 4},
906 { "Partially Optimal", 5},
907 { "-reserved-", 6},
908 { "-reserved-", 7},
909 { NULL, 0}
910 };
911
912 static mapping_t ddf_init_state[] = {
913 { "Not Initialised", 0},
914 { "QuickInit in Progress", 1},
915 { "Fully Initialised", 2},
916 { "*UNKNOWN*", 3},
917 { NULL, 0}
918 };
919 static mapping_t ddf_access[] = {
920 { "Read/Write", 0},
921 { "Reserved", 1},
922 { "Read Only", 2},
923 { "Blocked (no access)", 3},
924 { NULL ,0}
925 };
926
927 static mapping_t ddf_level[] = {
928 { "RAID0", DDF_RAID0},
929 { "RAID1", DDF_RAID1},
930 { "RAID3", DDF_RAID3},
931 { "RAID4", DDF_RAID4},
932 { "RAID5", DDF_RAID5},
933 { "RAID1E",DDF_RAID1E},
934 { "JBOD", DDF_JBOD},
935 { "CONCAT",DDF_CONCAT},
936 { "RAID5E",DDF_RAID5E},
937 { "RAID5EE",DDF_RAID5EE},
938 { "RAID6", DDF_RAID6},
939 { NULL, 0}
940 };
941 static mapping_t ddf_sec_level[] = {
942 { "Striped", DDF_2STRIPED},
943 { "Mirrored", DDF_2MIRRORED},
944 { "Concat", DDF_2CONCAT},
945 { "Spanned", DDF_2SPANNED},
946 { NULL, 0}
947 };
948 #endif
949
950 struct num_mapping {
951 int num1, num2;
952 };
953 static struct num_mapping ddf_level_num[] = {
954 { DDF_RAID0, 0 },
955 { DDF_RAID1, 1 },
956 { DDF_RAID3, LEVEL_UNSUPPORTED },
957 { DDF_RAID4, 4 },
958 { DDF_RAID5, 5 },
959 { DDF_RAID1E, LEVEL_UNSUPPORTED },
960 { DDF_JBOD, LEVEL_UNSUPPORTED },
961 { DDF_CONCAT, LEVEL_LINEAR },
962 { DDF_RAID5E, LEVEL_UNSUPPORTED },
963 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
964 { DDF_RAID6, 6},
965 { MAXINT, MAXINT }
966 };
967
968 static int map_num1(struct num_mapping *map, int num)
969 {
970 int i;
971 for (i=0 ; map[i].num1 != MAXINT; i++)
972 if (map[i].num1 == num)
973 break;
974 return map[i].num2;
975 }
976
977 static int all_ff(char *guid)
978 {
979 int i;
980 for (i = 0; i < DDF_GUID_LEN; i++)
981 if (guid[i] != (char)0xff)
982 return 0;
983 return 1;
984 }
985
986 #ifndef MDASSEMBLE
987 static void print_guid(char *guid, int tstamp)
988 {
989 /* A GUIDs are part (or all) ASCII and part binary.
990 * They tend to be space padded.
991 * We print the GUID in HEX, then in parentheses add
992 * any initial ASCII sequence, and a possible
993 * time stamp from bytes 16-19
994 */
995 int l = DDF_GUID_LEN;
996 int i;
997
998 for (i=0 ; i<DDF_GUID_LEN ; i++) {
999 if ((i&3)==0 && i != 0) printf(":");
1000 printf("%02X", guid[i]&255);
1001 }
1002
1003 printf("\n (");
1004 while (l && guid[l-1] == ' ')
1005 l--;
1006 for (i=0 ; i<l ; i++) {
1007 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1008 fputc(guid[i], stdout);
1009 else
1010 break;
1011 }
1012 if (tstamp) {
1013 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1014 char tbuf[100];
1015 struct tm *tm;
1016 tm = localtime(&then);
1017 strftime(tbuf, 100, " %D %T",tm);
1018 fputs(tbuf, stdout);
1019 }
1020 printf(")");
1021 }
1022
1023 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1024 {
1025 int crl = sb->conf_rec_len;
1026 struct vcl *vcl;
1027
1028 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1029 int i;
1030 struct vd_config *vc = &vcl->conf;
1031
1032 if (calc_crc(vc, crl*512) != vc->crc)
1033 continue;
1034 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1035 continue;
1036
1037 /* Ok, we know about this VD, let's give more details */
1038 printf(" Raid Devices[%d] : %d (", n,
1039 __be16_to_cpu(vc->prim_elmnt_count));
1040 for (i=0; i<__be16_to_cpu(vc->prim_elmnt_count); i++) {
1041 int j;
1042 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1043 for (j=0; j<cnt; j++)
1044 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1045 break;
1046 if (i) printf(" ");
1047 if (j < cnt)
1048 printf("%d", j);
1049 else
1050 printf("--");
1051 }
1052 printf(")\n");
1053 if (vc->chunk_shift != 255)
1054 printf(" Chunk Size[%d] : %d sectors\n", n,
1055 1 << vc->chunk_shift);
1056 printf(" Raid Level[%d] : %s\n", n,
1057 map_num(ddf_level, vc->prl)?:"-unknown-");
1058 if (vc->sec_elmnt_count != 1) {
1059 printf(" Secondary Position[%d] : %d of %d\n", n,
1060 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1061 printf(" Secondary Level[%d] : %s\n", n,
1062 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1063 }
1064 printf(" Device Size[%d] : %llu\n", n,
1065 __be64_to_cpu(vc->blocks)/2);
1066 printf(" Array Size[%d] : %llu\n", n,
1067 __be64_to_cpu(vc->array_blocks)/2);
1068 }
1069 }
1070
1071 static void examine_vds(struct ddf_super *sb)
1072 {
1073 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1074 int i;
1075 printf(" Virtual Disks : %d\n", cnt);
1076
1077 for (i=0; i<cnt; i++) {
1078 struct virtual_entry *ve = &sb->virt->entries[i];
1079 printf("\n");
1080 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1081 printf("\n");
1082 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1083 printf(" state[%d] : %s, %s%s\n", i,
1084 map_num(ddf_state, ve->state & 7),
1085 (ve->state & 8) ? "Morphing, ": "",
1086 (ve->state & 16)? "Not Consistent" : "Consistent");
1087 printf(" init state[%d] : %s\n", i,
1088 map_num(ddf_init_state, ve->init_state&3));
1089 printf(" access[%d] : %s\n", i,
1090 map_num(ddf_access, (ve->init_state>>6) & 3));
1091 printf(" Name[%d] : %.16s\n", i, ve->name);
1092 examine_vd(i, sb, ve->guid);
1093 }
1094 if (cnt) printf("\n");
1095 }
1096
1097 static void examine_pds(struct ddf_super *sb)
1098 {
1099 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1100 int i;
1101 struct dl *dl;
1102 printf(" Physical Disks : %d\n", cnt);
1103 printf(" Number RefNo Size Device Type/State\n");
1104
1105 for (i=0 ; i<cnt ; i++) {
1106 struct phys_disk_entry *pd = &sb->phys->entries[i];
1107 int type = __be16_to_cpu(pd->type);
1108 int state = __be16_to_cpu(pd->state);
1109
1110 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1111 //printf("\n");
1112 printf(" %3d %08x ", i,
1113 __be32_to_cpu(pd->refnum));
1114 printf("%lluK ", __be64_to_cpu(pd->config_size)>>1);
1115 for (dl = sb->dlist; dl ; dl = dl->next) {
1116 if (dl->disk.refnum == pd->refnum) {
1117 char *dv = map_dev(dl->major, dl->minor, 0);
1118 if (dv) {
1119 printf("%-10s", dv);
1120 break;
1121 }
1122 }
1123 }
1124 if (!dl)
1125 printf("%10s","");
1126 printf(" %s%s%s%s%s",
1127 (type&2) ? "active":"",
1128 (type&4) ? "Global-Spare":"",
1129 (type&8) ? "spare" : "",
1130 (type&16)? ", foreign" : "",
1131 (type&32)? "pass-through" : "");
1132 printf("/%s%s%s%s%s%s%s",
1133 (state&1)? "Online": "Offline",
1134 (state&2)? ", Failed": "",
1135 (state&4)? ", Rebuilding": "",
1136 (state&8)? ", in-transition": "",
1137 (state&16)? ", SMART-errors": "",
1138 (state&32)? ", Unrecovered-Read-Errors": "",
1139 (state&64)? ", Missing" : "");
1140 printf("\n");
1141 }
1142 }
1143
1144 static void examine_super_ddf(struct supertype *st, char *homehost)
1145 {
1146 struct ddf_super *sb = st->sb;
1147
1148 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1149 printf(" Version : %.8s\n", sb->anchor.revision);
1150 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1151 printf("\n");
1152 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1153 printf("\n");
1154 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1155 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1156 ?"yes" : "no");
1157 examine_vds(sb);
1158 examine_pds(sb);
1159 }
1160
1161 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info);
1162
1163 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1164
1165 static void brief_examine_super_ddf(struct supertype *st)
1166 {
1167 /* We just write a generic DDF ARRAY entry
1168 */
1169 struct ddf_super *ddf = st->sb;
1170 struct mdinfo info;
1171 int i;
1172 char nbuf[64];
1173 getinfo_super_ddf(st, &info);
1174 fname_from_uuid(st, &info, nbuf, ':');
1175 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1176
1177 for (i=0; i<__be16_to_cpu(ddf->virt->max_vdes); i++) {
1178 struct virtual_entry *ve = &ddf->virt->entries[i];
1179 struct vcl vcl;
1180 char nbuf1[64];
1181 if (all_ff(ve->guid))
1182 continue;
1183 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1184 ddf->currentconf =&vcl;
1185 uuid_from_super_ddf(st, info.uuid);
1186 fname_from_uuid(st, &info, nbuf1, ':');
1187 printf("ARRAY container=%s member=%d UUID=%s\n",
1188 nbuf+5, i, nbuf1+5);
1189 }
1190 }
1191
1192 static void export_examine_super_ddf(struct supertype *st)
1193 {
1194 struct mdinfo info;
1195 char nbuf[64];
1196 getinfo_super_ddf(st, &info);
1197 fname_from_uuid(st, &info, nbuf, ':');
1198 printf("MD_METADATA=ddf\n");
1199 printf("MD_LEVEL=container\n");
1200 printf("MD_UUID=%s\n", nbuf+5);
1201 }
1202
1203
1204 static void detail_super_ddf(struct supertype *st, char *homehost)
1205 {
1206 /* FIXME later
1207 * Could print DDF GUID
1208 * Need to find which array
1209 * If whole, briefly list all arrays
1210 * If one, give name
1211 */
1212 }
1213
1214 static void brief_detail_super_ddf(struct supertype *st)
1215 {
1216 /* FIXME I really need to know which array we are detailing.
1217 * Can that be stored in ddf_super??
1218 */
1219 // struct ddf_super *ddf = st->sb;
1220 struct mdinfo info;
1221 char nbuf[64];
1222 getinfo_super_ddf(st, &info);
1223 fname_from_uuid(st, &info, nbuf,':');
1224 printf(" UUID=%s", nbuf + 5);
1225 }
1226 #endif
1227
1228 static int match_home_ddf(struct supertype *st, char *homehost)
1229 {
1230 /* It matches 'this' host if the controller is a
1231 * Linux-MD controller with vendor_data matching
1232 * the hostname
1233 */
1234 struct ddf_super *ddf = st->sb;
1235 int len = strlen(homehost);
1236
1237 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1238 len < sizeof(ddf->controller.vendor_data) &&
1239 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1240 ddf->controller.vendor_data[len] == 0);
1241 }
1242
1243 #ifndef MDASSEMBLE
1244 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1245 {
1246 struct vcl *v;
1247
1248 for (v = ddf->conflist; v; v = v->next)
1249 if (inst == v->vcnum)
1250 return &v->conf;
1251 return NULL;
1252 }
1253 #endif
1254
1255 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1256 {
1257 /* Find the entry in phys_disk which has the given refnum
1258 * and return it's index
1259 */
1260 int i;
1261 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1262 if (ddf->phys->entries[i].refnum == phys_refnum)
1263 return i;
1264 return -1;
1265 }
1266
1267 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1268 {
1269 /* The uuid returned here is used for:
1270 * uuid to put into bitmap file (Create, Grow)
1271 * uuid for backup header when saving critical section (Grow)
1272 * comparing uuids when re-adding a device into an array
1273 * In these cases the uuid required is that of the data-array,
1274 * not the device-set.
1275 * uuid to recognise same set when adding a missing device back
1276 * to an array. This is a uuid for the device-set.
1277 *
1278 * For each of these we can make do with a truncated
1279 * or hashed uuid rather than the original, as long as
1280 * everyone agrees.
1281 * In the case of SVD we assume the BVD is of interest,
1282 * though that might be the case if a bitmap were made for
1283 * a mirrored SVD - worry about that later.
1284 * So we need to find the VD configuration record for the
1285 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1286 * The first 16 bytes of the sha1 of these is used.
1287 */
1288 struct ddf_super *ddf = st->sb;
1289 struct vcl *vcl = ddf->currentconf;
1290 char *guid;
1291 char buf[20];
1292 struct sha1_ctx ctx;
1293
1294 if (vcl)
1295 guid = vcl->conf.guid;
1296 else
1297 guid = ddf->anchor.guid;
1298
1299 sha1_init_ctx(&ctx);
1300 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1301 sha1_finish_ctx(&ctx, buf);
1302 memcpy(uuid, buf, 4*4);
1303 }
1304
1305 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1306
1307 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1308 {
1309 struct ddf_super *ddf = st->sb;
1310
1311 if (ddf->currentconf) {
1312 getinfo_super_ddf_bvd(st, info);
1313 return;
1314 }
1315
1316 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1317 info->array.level = LEVEL_CONTAINER;
1318 info->array.layout = 0;
1319 info->array.md_minor = -1;
1320 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1321 (ddf->anchor.guid+16));
1322 info->array.utime = 0;
1323 info->array.chunk_size = 0;
1324
1325
1326 info->disk.major = 0;
1327 info->disk.minor = 0;
1328 if (ddf->dlist) {
1329 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1330 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1331
1332 info->data_offset = __be64_to_cpu(ddf->phys->
1333 entries[info->disk.raid_disk].
1334 config_size);
1335 info->component_size = ddf->dlist->size - info->data_offset;
1336 } else {
1337 info->disk.number = -1;
1338 // info->disk.raid_disk = find refnum in the table and use index;
1339 }
1340 info->disk.state = (1 << MD_DISK_SYNC);
1341
1342
1343 info->reshape_active = 0;
1344 info->name[0] = 0;
1345
1346 info->array.major_version = -1;
1347 info->array.minor_version = -2;
1348 strcpy(info->text_version, "ddf");
1349 info->safe_mode_delay = 0;
1350
1351 uuid_from_super_ddf(st, info->uuid);
1352
1353 }
1354
1355 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1356
1357 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1358 {
1359 struct ddf_super *ddf = st->sb;
1360 struct vcl *vc = ddf->currentconf;
1361 int cd = ddf->currentdev;
1362 int j;
1363 struct dl *dl;
1364
1365 /* FIXME this returns BVD info - what if we want SVD ?? */
1366
1367 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1368 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1369 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1370 info->array.raid_disks);
1371 info->array.md_minor = -1;
1372 info->array.ctime = DECADE +
1373 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1374 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1375 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1376
1377 if (cd >= 0 && cd < ddf->mppe) {
1378 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1379 if (vc->block_sizes)
1380 info->component_size = vc->block_sizes[cd];
1381 else
1382 info->component_size = __be64_to_cpu(vc->conf.blocks);
1383 }
1384
1385 for (dl = ddf->dlist; dl ; dl = dl->next)
1386 if (dl->raiddisk == info->disk.raid_disk)
1387 break;
1388 info->disk.major = 0;
1389 info->disk.minor = 0;
1390 if (dl) {
1391 info->disk.major = dl->major;
1392 info->disk.minor = dl->minor;
1393 }
1394 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1395 // info->disk.raid_disk = find refnum in the table and use index;
1396 // info->disk.state = ???;
1397
1398 info->container_member = ddf->currentconf->vcnum;
1399
1400 info->resync_start = 0;
1401 if (!(ddf->virt->entries[info->container_member].state
1402 & DDF_state_inconsistent) &&
1403 (ddf->virt->entries[info->container_member].init_state
1404 & DDF_initstate_mask)
1405 == DDF_init_full)
1406 info->resync_start = ~0ULL;
1407
1408 uuid_from_super_ddf(st, info->uuid);
1409
1410 info->container_member = atoi(st->subarray);
1411 info->array.major_version = -1;
1412 info->array.minor_version = -2;
1413 sprintf(info->text_version, "/%s/%s",
1414 devnum2devname(st->container_dev),
1415 st->subarray);
1416 info->safe_mode_delay = 200;
1417
1418 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1419 info->name[16]=0;
1420 for(j=0; j<16; j++)
1421 if (info->name[j] == ' ')
1422 info->name[j] = 0;
1423 }
1424
1425
1426 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1427 char *update,
1428 char *devname, int verbose,
1429 int uuid_set, char *homehost)
1430 {
1431 /* For 'assemble' and 'force' we need to return non-zero if any
1432 * change was made. For others, the return value is ignored.
1433 * Update options are:
1434 * force-one : This device looks a bit old but needs to be included,
1435 * update age info appropriately.
1436 * assemble: clear any 'faulty' flag to allow this device to
1437 * be assembled.
1438 * force-array: Array is degraded but being forced, mark it clean
1439 * if that will be needed to assemble it.
1440 *
1441 * newdev: not used ????
1442 * grow: Array has gained a new device - this is currently for
1443 * linear only
1444 * resync: mark as dirty so a resync will happen.
1445 * uuid: Change the uuid of the array to match what is given
1446 * homehost: update the recorded homehost
1447 * name: update the name - preserving the homehost
1448 * _reshape_progress: record new reshape_progress position.
1449 *
1450 * Following are not relevant for this version:
1451 * sparc2.2 : update from old dodgey metadata
1452 * super-minor: change the preferred_minor number
1453 * summaries: update redundant counters.
1454 */
1455 int rv = 0;
1456 // struct ddf_super *ddf = st->sb;
1457 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1458 // struct virtual_entry *ve = find_ve(ddf);
1459
1460 /* we don't need to handle "force-*" or "assemble" as
1461 * there is no need to 'trick' the kernel. We the metadata is
1462 * first updated to activate the array, all the implied modifications
1463 * will just happen.
1464 */
1465
1466 if (strcmp(update, "grow") == 0) {
1467 /* FIXME */
1468 }
1469 if (strcmp(update, "resync") == 0) {
1470 // info->resync_checkpoint = 0;
1471 }
1472 /* We ignore UUID updates as they make even less sense
1473 * with DDF
1474 */
1475 if (strcmp(update, "homehost") == 0) {
1476 /* homehost is stored in controller->vendor_data,
1477 * or it is when we are the vendor
1478 */
1479 // if (info->vendor_is_local)
1480 // strcpy(ddf->controller.vendor_data, homehost);
1481 }
1482 if (strcmp(update, "name") == 0) {
1483 /* name is stored in virtual_entry->name */
1484 // memset(ve->name, ' ', 16);
1485 // strncpy(ve->name, info->name, 16);
1486 }
1487 if (strcmp(update, "_reshape_progress") == 0) {
1488 /* We don't support reshape yet */
1489 }
1490
1491 // update_all_csum(ddf);
1492
1493 return rv;
1494 }
1495
1496 static void make_header_guid(char *guid)
1497 {
1498 __u32 stamp;
1499 int rfd;
1500 /* Create a DDF Header of Virtual Disk GUID */
1501
1502 /* 24 bytes of fiction required.
1503 * first 8 are a 'vendor-id' - "Linux-MD"
1504 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1505 * Remaining 8 random number plus timestamp
1506 */
1507 memcpy(guid, T10, sizeof(T10));
1508 stamp = __cpu_to_be32(0xdeadbeef);
1509 memcpy(guid+8, &stamp, 4);
1510 stamp = __cpu_to_be32(0);
1511 memcpy(guid+12, &stamp, 4);
1512 stamp = __cpu_to_be32(time(0) - DECADE);
1513 memcpy(guid+16, &stamp, 4);
1514 rfd = open("/dev/urandom", O_RDONLY);
1515 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1516 stamp = random();
1517 memcpy(guid+20, &stamp, 4);
1518 if (rfd >= 0) close(rfd);
1519 }
1520
1521 static int init_super_ddf_bvd(struct supertype *st,
1522 mdu_array_info_t *info,
1523 unsigned long long size,
1524 char *name, char *homehost,
1525 int *uuid);
1526
1527 static int init_super_ddf(struct supertype *st,
1528 mdu_array_info_t *info,
1529 unsigned long long size, char *name, char *homehost,
1530 int *uuid)
1531 {
1532 /* This is primarily called by Create when creating a new array.
1533 * We will then get add_to_super called for each component, and then
1534 * write_init_super called to write it out to each device.
1535 * For DDF, Create can create on fresh devices or on a pre-existing
1536 * array.
1537 * To create on a pre-existing array a different method will be called.
1538 * This one is just for fresh drives.
1539 *
1540 * We need to create the entire 'ddf' structure which includes:
1541 * DDF headers - these are easy.
1542 * Controller data - a Sector describing this controller .. not that
1543 * this is a controller exactly.
1544 * Physical Disk Record - one entry per device, so
1545 * leave plenty of space.
1546 * Virtual Disk Records - again, just leave plenty of space.
1547 * This just lists VDs, doesn't give details
1548 * Config records - describes the VDs that use this disk
1549 * DiskData - describes 'this' device.
1550 * BadBlockManagement - empty
1551 * Diag Space - empty
1552 * Vendor Logs - Could we put bitmaps here?
1553 *
1554 */
1555 struct ddf_super *ddf;
1556 char hostname[17];
1557 int hostlen;
1558 int max_phys_disks, max_virt_disks;
1559 unsigned long long sector;
1560 int clen;
1561 int i;
1562 int pdsize, vdsize;
1563 struct phys_disk *pd;
1564 struct virtual_disk *vd;
1565
1566 if (!info) {
1567 st->sb = NULL;
1568 return 0;
1569 }
1570 if (st->sb)
1571 return init_super_ddf_bvd(st, info, size, name, homehost,
1572 uuid);
1573
1574 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1575 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1576 return 0;
1577 }
1578 memset(ddf, 0, sizeof(*ddf));
1579 ddf->dlist = NULL; /* no physical disks yet */
1580 ddf->conflist = NULL; /* No virtual disks yet */
1581
1582 /* At least 32MB *must* be reserved for the ddf. So let's just
1583 * start 32MB from the end, and put the primary header there.
1584 * Don't do secondary for now.
1585 * We don't know exactly where that will be yet as it could be
1586 * different on each device. To just set up the lengths.
1587 *
1588 */
1589
1590 ddf->anchor.magic = DDF_HEADER_MAGIC;
1591 make_header_guid(ddf->anchor.guid);
1592
1593 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1594 ddf->anchor.seq = __cpu_to_be32(1);
1595 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1596 ddf->anchor.openflag = 0xFF;
1597 ddf->anchor.foreignflag = 0;
1598 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1599 ddf->anchor.pad0 = 0xff;
1600 memset(ddf->anchor.pad1, 0xff, 12);
1601 memset(ddf->anchor.header_ext, 0xff, 32);
1602 ddf->anchor.primary_lba = ~(__u64)0;
1603 ddf->anchor.secondary_lba = ~(__u64)0;
1604 ddf->anchor.type = DDF_HEADER_ANCHOR;
1605 memset(ddf->anchor.pad2, 0xff, 3);
1606 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1607 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1608 of 32M reserved.. */
1609 max_phys_disks = 1023; /* Should be enough */
1610 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1611 max_virt_disks = 255;
1612 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1613 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1614 ddf->max_part = 64;
1615 ddf->mppe = 256;
1616 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1617 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1618 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1619 memset(ddf->anchor.pad3, 0xff, 54);
1620 /* controller sections is one sector long immediately
1621 * after the ddf header */
1622 sector = 1;
1623 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1624 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1625 sector += 1;
1626
1627 /* phys is 8 sectors after that */
1628 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1629 sizeof(struct phys_disk_entry)*max_phys_disks,
1630 512);
1631 switch(pdsize/512) {
1632 case 2: case 8: case 32: case 128: case 512: break;
1633 default: abort();
1634 }
1635 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1636 ddf->anchor.phys_section_length =
1637 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1638 sector += pdsize/512;
1639
1640 /* virt is another 32 sectors */
1641 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1642 sizeof(struct virtual_entry) * max_virt_disks,
1643 512);
1644 switch(vdsize/512) {
1645 case 2: case 8: case 32: case 128: case 512: break;
1646 default: abort();
1647 }
1648 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1649 ddf->anchor.virt_section_length =
1650 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1651 sector += vdsize/512;
1652
1653 clen = ddf->conf_rec_len * (ddf->max_part+1);
1654 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1655 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1656 sector += clen;
1657
1658 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1659 ddf->anchor.data_section_length = __cpu_to_be32(1);
1660 sector += 1;
1661
1662 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1663 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1664 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1665 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1666 ddf->anchor.vendor_length = __cpu_to_be32(0);
1667 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1668
1669 memset(ddf->anchor.pad4, 0xff, 256);
1670
1671 memcpy(&ddf->primary, &ddf->anchor, 512);
1672 memcpy(&ddf->secondary, &ddf->anchor, 512);
1673
1674 ddf->primary.openflag = 1; /* I guess.. */
1675 ddf->primary.type = DDF_HEADER_PRIMARY;
1676
1677 ddf->secondary.openflag = 1; /* I guess.. */
1678 ddf->secondary.type = DDF_HEADER_SECONDARY;
1679
1680 ddf->active = &ddf->primary;
1681
1682 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1683
1684 /* 24 more bytes of fiction required.
1685 * first 8 are a 'vendor-id' - "Linux-MD"
1686 * Remaining 16 are serial number.... maybe a hostname would do?
1687 */
1688 memcpy(ddf->controller.guid, T10, sizeof(T10));
1689 gethostname(hostname, sizeof(hostname));
1690 hostname[sizeof(hostname) - 1] = 0;
1691 hostlen = strlen(hostname);
1692 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1693 for (i = strlen(T10) ; i+hostlen < 24; i++)
1694 ddf->controller.guid[i] = ' ';
1695
1696 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1697 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1698 ddf->controller.type.sub_vendor_id = 0;
1699 ddf->controller.type.sub_device_id = 0;
1700 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1701 memset(ddf->controller.pad, 0xff, 8);
1702 memset(ddf->controller.vendor_data, 0xff, 448);
1703 if (homehost && strlen(homehost) < 440)
1704 strcpy((char*)ddf->controller.vendor_data, homehost);
1705
1706 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1707 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1708 return 0;
1709 }
1710 ddf->phys = pd;
1711 ddf->pdsize = pdsize;
1712
1713 memset(pd, 0xff, pdsize);
1714 memset(pd, 0, sizeof(*pd));
1715 pd->magic = DDF_PHYS_DATA_MAGIC;
1716 pd->used_pdes = __cpu_to_be16(0);
1717 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1718 memset(pd->pad, 0xff, 52);
1719
1720 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1721 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1722 return 0;
1723 }
1724 ddf->virt = vd;
1725 ddf->vdsize = vdsize;
1726 memset(vd, 0, vdsize);
1727 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1728 vd->populated_vdes = __cpu_to_be16(0);
1729 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1730 memset(vd->pad, 0xff, 52);
1731
1732 for (i=0; i<max_virt_disks; i++)
1733 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1734
1735 st->sb = ddf;
1736 ddf->updates_pending = 1;
1737 return 1;
1738 }
1739
1740 static int chunk_to_shift(int chunksize)
1741 {
1742 return ffs(chunksize/512)-1;
1743 }
1744
1745 static int level_to_prl(int level)
1746 {
1747 switch (level) {
1748 case LEVEL_LINEAR: return DDF_CONCAT;
1749 case 0: return DDF_RAID0;
1750 case 1: return DDF_RAID1;
1751 case 4: return DDF_RAID4;
1752 case 5: return DDF_RAID5;
1753 case 6: return DDF_RAID6;
1754 default: return -1;
1755 }
1756 }
1757 static int layout_to_rlq(int level, int layout, int raiddisks)
1758 {
1759 switch(level) {
1760 case 0:
1761 return DDF_RAID0_SIMPLE;
1762 case 1:
1763 switch(raiddisks) {
1764 case 2: return DDF_RAID1_SIMPLE;
1765 case 3: return DDF_RAID1_MULTI;
1766 default: return -1;
1767 }
1768 case 4:
1769 switch(layout) {
1770 case 0: return DDF_RAID4_N;
1771 }
1772 break;
1773 case 5:
1774 switch(layout) {
1775 case ALGORITHM_LEFT_ASYMMETRIC:
1776 return DDF_RAID5_N_RESTART;
1777 case ALGORITHM_RIGHT_ASYMMETRIC:
1778 return DDF_RAID5_0_RESTART;
1779 case ALGORITHM_LEFT_SYMMETRIC:
1780 return DDF_RAID5_N_CONTINUE;
1781 case ALGORITHM_RIGHT_SYMMETRIC:
1782 return -1; /* not mentioned in standard */
1783 }
1784 case 6:
1785 switch(layout) {
1786 case ALGORITHM_ROTATING_N_RESTART:
1787 return DDF_RAID5_N_RESTART;
1788 case ALGORITHM_ROTATING_ZERO_RESTART:
1789 return DDF_RAID6_0_RESTART;
1790 case ALGORITHM_ROTATING_N_CONTINUE:
1791 return DDF_RAID5_N_CONTINUE;
1792 }
1793 }
1794 return -1;
1795 }
1796
1797 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1798 {
1799 switch(prl) {
1800 case DDF_RAID0:
1801 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1802 case DDF_RAID1:
1803 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1804 on raiddisks*/
1805 case DDF_RAID4:
1806 switch(rlq) {
1807 case DDF_RAID4_N:
1808 return 0;
1809 default:
1810 /* not supported */
1811 return -1; /* FIXME this isn't checked */
1812 }
1813 case DDF_RAID5:
1814 switch(rlq) {
1815 case DDF_RAID5_N_RESTART:
1816 return ALGORITHM_LEFT_ASYMMETRIC;
1817 case DDF_RAID5_0_RESTART:
1818 return ALGORITHM_RIGHT_ASYMMETRIC;
1819 case DDF_RAID5_N_CONTINUE:
1820 return ALGORITHM_LEFT_SYMMETRIC;
1821 default:
1822 return -1;
1823 }
1824 case DDF_RAID6:
1825 switch(rlq) {
1826 case DDF_RAID5_N_RESTART:
1827 return ALGORITHM_ROTATING_N_RESTART;
1828 case DDF_RAID6_0_RESTART:
1829 return ALGORITHM_ROTATING_ZERO_RESTART;
1830 case DDF_RAID5_N_CONTINUE:
1831 return ALGORITHM_ROTATING_N_CONTINUE;
1832 default:
1833 return -1;
1834 }
1835 }
1836 return -1;
1837 }
1838
1839 #ifndef MDASSEMBLE
1840 struct extent {
1841 unsigned long long start, size;
1842 };
1843 static int cmp_extent(const void *av, const void *bv)
1844 {
1845 const struct extent *a = av;
1846 const struct extent *b = bv;
1847 if (a->start < b->start)
1848 return -1;
1849 if (a->start > b->start)
1850 return 1;
1851 return 0;
1852 }
1853
1854 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1855 {
1856 /* find a list of used extents on the give physical device
1857 * (dnum) of the given ddf.
1858 * Return a malloced array of 'struct extent'
1859
1860 FIXME ignore DDF_Legacy devices?
1861
1862 */
1863 struct extent *rv;
1864 int n = 0;
1865 int i, j;
1866
1867 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1868 if (!rv)
1869 return NULL;
1870
1871 for (i = 0; i < ddf->max_part; i++) {
1872 struct vcl *v = dl->vlist[i];
1873 if (v == NULL)
1874 continue;
1875 for (j=0; j < v->conf.prim_elmnt_count; j++)
1876 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1877 /* This device plays role 'j' in 'v'. */
1878 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1879 rv[n].size = __be64_to_cpu(v->conf.blocks);
1880 n++;
1881 break;
1882 }
1883 }
1884 qsort(rv, n, sizeof(*rv), cmp_extent);
1885
1886 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1887 rv[n].size = 0;
1888 return rv;
1889 }
1890 #endif
1891
1892 static int init_super_ddf_bvd(struct supertype *st,
1893 mdu_array_info_t *info,
1894 unsigned long long size,
1895 char *name, char *homehost,
1896 int *uuid)
1897 {
1898 /* We are creating a BVD inside a pre-existing container.
1899 * so st->sb is already set.
1900 * We need to create a new vd_config and a new virtual_entry
1901 */
1902 struct ddf_super *ddf = st->sb;
1903 int venum;
1904 struct virtual_entry *ve;
1905 struct vcl *vcl;
1906 struct vd_config *vc;
1907
1908 if (__be16_to_cpu(ddf->virt->populated_vdes)
1909 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1910 fprintf(stderr, Name": This ddf already has the "
1911 "maximum of %d virtual devices\n",
1912 __be16_to_cpu(ddf->virt->max_vdes));
1913 return 0;
1914 }
1915
1916 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1917 if (all_ff(ddf->virt->entries[venum].guid))
1918 break;
1919 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1920 fprintf(stderr, Name ": Cannot find spare slot for "
1921 "virtual disk - DDF is corrupt\n");
1922 return 0;
1923 }
1924 ve = &ddf->virt->entries[venum];
1925
1926 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1927 * timestamp, random number
1928 */
1929 make_header_guid(ve->guid);
1930 ve->unit = __cpu_to_be16(info->md_minor);
1931 ve->pad0 = 0xFFFF;
1932 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1933 ve->type = 0;
1934 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1935 if (info->state & 1) /* clean */
1936 ve->init_state = DDF_init_full;
1937 else
1938 ve->init_state = DDF_init_not;
1939
1940 memset(ve->pad1, 0xff, 14);
1941 memset(ve->name, ' ', 16);
1942 if (name)
1943 strncpy(ve->name, name, 16);
1944 ddf->virt->populated_vdes =
1945 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1946
1947 /* Now create a new vd_config */
1948 if (posix_memalign((void**)&vcl, 512,
1949 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
1950 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
1951 return 0;
1952 }
1953 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1954 vcl->vcnum = venum;
1955 sprintf(st->subarray, "%d", venum);
1956 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1957
1958 vc = &vcl->conf;
1959
1960 vc->magic = DDF_VD_CONF_MAGIC;
1961 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1962 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1963 vc->seqnum = __cpu_to_be32(1);
1964 memset(vc->pad0, 0xff, 24);
1965 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1966 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1967 vc->prl = level_to_prl(info->level);
1968 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1969 vc->sec_elmnt_count = 1;
1970 vc->sec_elmnt_seq = 0;
1971 vc->srl = 0;
1972 vc->blocks = __cpu_to_be64(info->size * 2);
1973 vc->array_blocks = __cpu_to_be64(
1974 calc_array_size(info->level, info->raid_disks, info->layout,
1975 info->chunk_size, info->size*2));
1976 memset(vc->pad1, 0xff, 8);
1977 vc->spare_refs[0] = 0xffffffff;
1978 vc->spare_refs[1] = 0xffffffff;
1979 vc->spare_refs[2] = 0xffffffff;
1980 vc->spare_refs[3] = 0xffffffff;
1981 vc->spare_refs[4] = 0xffffffff;
1982 vc->spare_refs[5] = 0xffffffff;
1983 vc->spare_refs[6] = 0xffffffff;
1984 vc->spare_refs[7] = 0xffffffff;
1985 memset(vc->cache_pol, 0, 8);
1986 vc->bg_rate = 0x80;
1987 memset(vc->pad2, 0xff, 3);
1988 memset(vc->pad3, 0xff, 52);
1989 memset(vc->pad4, 0xff, 192);
1990 memset(vc->v0, 0xff, 32);
1991 memset(vc->v1, 0xff, 32);
1992 memset(vc->v2, 0xff, 16);
1993 memset(vc->v3, 0xff, 16);
1994 memset(vc->vendor, 0xff, 32);
1995
1996 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1997 memset(vc->phys_refnum+ddf->mppe, 0x00, 8*ddf->mppe);
1998
1999 vcl->next = ddf->conflist;
2000 ddf->conflist = vcl;
2001 ddf->currentconf = vcl;
2002 ddf->updates_pending = 1;
2003 return 1;
2004 }
2005
2006 #ifndef MDASSEMBLE
2007 static void add_to_super_ddf_bvd(struct supertype *st,
2008 mdu_disk_info_t *dk, int fd, char *devname)
2009 {
2010 /* fd and devname identify a device with-in the ddf container (st).
2011 * dk identifies a location in the new BVD.
2012 * We need to find suitable free space in that device and update
2013 * the phys_refnum and lba_offset for the newly created vd_config.
2014 * We might also want to update the type in the phys_disk
2015 * section.
2016 *
2017 * Alternately: fd == -1 and we have already chosen which device to
2018 * use and recorded in dlist->raid_disk;
2019 */
2020 struct dl *dl;
2021 struct ddf_super *ddf = st->sb;
2022 struct vd_config *vc;
2023 __u64 *lba_offset;
2024 int working;
2025 int i;
2026 unsigned long long blocks, pos, esize;
2027 struct extent *ex;
2028
2029 if (fd == -1) {
2030 for (dl = ddf->dlist; dl ; dl = dl->next)
2031 if (dl->raiddisk == dk->raid_disk)
2032 break;
2033 } else {
2034 for (dl = ddf->dlist; dl ; dl = dl->next)
2035 if (dl->major == dk->major &&
2036 dl->minor == dk->minor)
2037 break;
2038 }
2039 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2040 return;
2041
2042 vc = &ddf->currentconf->conf;
2043 lba_offset = ddf->currentconf->lba_offset;
2044
2045 ex = get_extents(ddf, dl);
2046 if (!ex)
2047 return;
2048
2049 i = 0; pos = 0;
2050 blocks = __be64_to_cpu(vc->blocks);
2051 if (ddf->currentconf->block_sizes)
2052 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2053
2054 do {
2055 esize = ex[i].start - pos;
2056 if (esize >= blocks)
2057 break;
2058 pos = ex[i].start + ex[i].size;
2059 i++;
2060 } while (ex[i-1].size);
2061
2062 free(ex);
2063 if (esize < blocks)
2064 return;
2065
2066 ddf->currentdev = dk->raid_disk;
2067 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2068 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2069
2070 for (i=0; i < ddf->max_part ; i++)
2071 if (dl->vlist[i] == NULL)
2072 break;
2073 if (i == ddf->max_part)
2074 return;
2075 dl->vlist[i] = ddf->currentconf;
2076
2077 if (fd >= 0)
2078 dl->fd = fd;
2079 if (devname)
2080 dl->devname = devname;
2081
2082 /* Check how many working raid_disks, and if we can mark
2083 * array as optimal yet
2084 */
2085 working = 0;
2086
2087 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2088 if (vc->phys_refnum[i] != 0xffffffff)
2089 working++;
2090
2091 /* Find which virtual_entry */
2092 i = ddf->currentconf->vcnum;
2093 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2094 ddf->virt->entries[i].state =
2095 (ddf->virt->entries[i].state & ~DDF_state_mask)
2096 | DDF_state_optimal;
2097
2098 if (vc->prl == DDF_RAID6 &&
2099 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2100 ddf->virt->entries[i].state =
2101 (ddf->virt->entries[i].state & ~DDF_state_mask)
2102 | DDF_state_part_optimal;
2103
2104 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2105 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2106 ddf->updates_pending = 1;
2107 }
2108
2109 /* add a device to a container, either while creating it or while
2110 * expanding a pre-existing container
2111 */
2112 static int add_to_super_ddf(struct supertype *st,
2113 mdu_disk_info_t *dk, int fd, char *devname)
2114 {
2115 struct ddf_super *ddf = st->sb;
2116 struct dl *dd;
2117 time_t now;
2118 struct tm *tm;
2119 unsigned long long size;
2120 struct phys_disk_entry *pde;
2121 int n, i;
2122 struct stat stb;
2123
2124 if (ddf->currentconf) {
2125 add_to_super_ddf_bvd(st, dk, fd, devname);
2126 return 0;
2127 }
2128
2129 /* This is device numbered dk->number. We need to create
2130 * a phys_disk entry and a more detailed disk_data entry.
2131 */
2132 fstat(fd, &stb);
2133 if (posix_memalign((void**)&dd, 512,
2134 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2135 fprintf(stderr, Name
2136 ": %s could allocate buffer for new disk, aborting\n",
2137 __func__);
2138 return 1;
2139 }
2140 dd->major = major(stb.st_rdev);
2141 dd->minor = minor(stb.st_rdev);
2142 dd->devname = devname;
2143 dd->fd = fd;
2144 dd->spare = NULL;
2145
2146 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2147 now = time(0);
2148 tm = localtime(&now);
2149 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2150 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2151 *(__u32*)(dd->disk.guid + 16) = random();
2152 *(__u32*)(dd->disk.guid + 20) = random();
2153
2154 do {
2155 /* Cannot be bothered finding a CRC of some irrelevant details*/
2156 dd->disk.refnum = random();
2157 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2158 i >= 0; i--)
2159 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2160 break;
2161 } while (i >= 0);
2162
2163 dd->disk.forced_ref = 1;
2164 dd->disk.forced_guid = 1;
2165 memset(dd->disk.vendor, ' ', 32);
2166 memcpy(dd->disk.vendor, "Linux", 5);
2167 memset(dd->disk.pad, 0xff, 442);
2168 for (i = 0; i < ddf->max_part ; i++)
2169 dd->vlist[i] = NULL;
2170
2171 n = __be16_to_cpu(ddf->phys->used_pdes);
2172 pde = &ddf->phys->entries[n];
2173 dd->pdnum = n;
2174
2175 if (st->update_tail) {
2176 int len = (sizeof(struct phys_disk) +
2177 sizeof(struct phys_disk_entry));
2178 struct phys_disk *pd;
2179
2180 pd = malloc(len);
2181 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2182 pd->used_pdes = __cpu_to_be16(n);
2183 pde = &pd->entries[0];
2184 dd->mdupdate = pd;
2185 } else {
2186 n++;
2187 ddf->phys->used_pdes = __cpu_to_be16(n);
2188 }
2189
2190 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2191 pde->refnum = dd->disk.refnum;
2192 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2193 pde->state = __cpu_to_be16(DDF_Online);
2194 get_dev_size(fd, NULL, &size);
2195 /* We are required to reserve 32Meg, and record the size in sectors */
2196 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2197 sprintf(pde->path, "%17.17s","Information: nil") ;
2198 memset(pde->pad, 0xff, 6);
2199
2200 dd->size = size >> 9;
2201 if (st->update_tail) {
2202 dd->next = ddf->add_list;
2203 ddf->add_list = dd;
2204 } else {
2205 dd->next = ddf->dlist;
2206 ddf->dlist = dd;
2207 ddf->updates_pending = 1;
2208 }
2209
2210 return 0;
2211 }
2212
2213 /*
2214 * This is the write_init_super method for a ddf container. It is
2215 * called when creating a container or adding another device to a
2216 * container.
2217 */
2218
2219 static unsigned char null_conf[4096+512];
2220
2221 static int __write_init_super_ddf(struct supertype *st, int do_close)
2222 {
2223
2224 struct ddf_super *ddf = st->sb;
2225 int i;
2226 struct dl *d;
2227 int n_config;
2228 int conf_size;
2229 int attempts = 0;
2230 int successes = 0;
2231 unsigned long long size, sector;
2232
2233 /* try to write updated metadata,
2234 * if we catch a failure move on to the next disk
2235 */
2236 for (d = ddf->dlist; d; d=d->next) {
2237 int fd = d->fd;
2238
2239 if (fd < 0)
2240 continue;
2241
2242 attempts++;
2243 /* We need to fill in the primary, (secondary) and workspace
2244 * lba's in the headers, set their checksums,
2245 * Also checksum phys, virt....
2246 *
2247 * Then write everything out, finally the anchor is written.
2248 */
2249 get_dev_size(fd, NULL, &size);
2250 size /= 512;
2251 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2252 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2253 ddf->anchor.seq = __cpu_to_be32(1);
2254 memcpy(&ddf->primary, &ddf->anchor, 512);
2255 memcpy(&ddf->secondary, &ddf->anchor, 512);
2256
2257 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2258 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2259 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2260
2261 ddf->primary.openflag = 0;
2262 ddf->primary.type = DDF_HEADER_PRIMARY;
2263
2264 ddf->secondary.openflag = 0;
2265 ddf->secondary.type = DDF_HEADER_SECONDARY;
2266
2267 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2268 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2269
2270 sector = size - 16*1024*2;
2271 lseek64(fd, sector<<9, 0);
2272 if (write(fd, &ddf->primary, 512) < 0)
2273 continue;
2274
2275 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2276 if (write(fd, &ddf->controller, 512) < 0)
2277 continue;
2278
2279 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2280
2281 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2282 continue;
2283
2284 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2285 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2286 continue;
2287
2288 /* Now write lots of config records. */
2289 n_config = ddf->max_part;
2290 conf_size = ddf->conf_rec_len * 512;
2291 for (i = 0 ; i <= n_config ; i++) {
2292 struct vcl *c = d->vlist[i];
2293 if (i == n_config)
2294 c = (struct vcl*)d->spare;
2295
2296 if (c) {
2297 c->conf.crc = calc_crc(&c->conf, conf_size);
2298 if (write(fd, &c->conf, conf_size) < 0)
2299 break;
2300 } else {
2301 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2302 if (null_conf[0] != 0xff)
2303 memset(null_conf, 0xff, sizeof(null_conf));
2304 int togo = conf_size;
2305 while (togo > sizeof(null_conf)-512) {
2306 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2307 break;
2308 togo -= sizeof(null_conf)-512;
2309 }
2310 if (write(fd, null_aligned, togo) < 0)
2311 break;
2312 }
2313 }
2314 if (i <= n_config)
2315 continue;
2316 d->disk.crc = calc_crc(&d->disk, 512);
2317 if (write(fd, &d->disk, 512) < 0)
2318 continue;
2319
2320 /* Maybe do the same for secondary */
2321
2322 lseek64(fd, (size-1)*512, SEEK_SET);
2323 if (write(fd, &ddf->anchor, 512) < 0)
2324 continue;
2325 successes++;
2326 }
2327
2328 if (do_close)
2329 for (d = ddf->dlist; d; d=d->next) {
2330 close(d->fd);
2331 d->fd = -1;
2332 }
2333
2334 return attempts != successes;
2335 }
2336
2337 static int write_init_super_ddf(struct supertype *st)
2338 {
2339
2340 if (st->update_tail) {
2341 /* queue the virtual_disk and vd_config as metadata updates */
2342 struct virtual_disk *vd;
2343 struct vd_config *vc;
2344 struct ddf_super *ddf = st->sb;
2345 int len;
2346
2347 if (!ddf->currentconf) {
2348 int len = (sizeof(struct phys_disk) +
2349 sizeof(struct phys_disk_entry));
2350
2351 /* adding a disk to the container. */
2352 if (!ddf->add_list)
2353 return 0;
2354
2355 append_metadata_update(st, ddf->add_list->mdupdate, len);
2356 ddf->add_list->mdupdate = NULL;
2357 return 0;
2358 }
2359
2360 /* Newly created VD */
2361
2362 /* First the virtual disk. We have a slightly fake header */
2363 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2364 vd = malloc(len);
2365 *vd = *ddf->virt;
2366 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2367 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2368 append_metadata_update(st, vd, len);
2369
2370 /* Then the vd_config */
2371 len = ddf->conf_rec_len * 512;
2372 vc = malloc(len);
2373 memcpy(vc, &ddf->currentconf->conf, len);
2374 append_metadata_update(st, vc, len);
2375
2376 /* FIXME I need to close the fds! */
2377 return 0;
2378 } else
2379 return __write_init_super_ddf(st, 1);
2380 }
2381
2382 #endif
2383
2384 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2385 {
2386 /* We must reserve the last 32Meg */
2387 if (devsize <= 32*1024*2)
2388 return 0;
2389 return devsize - 32*1024*2;
2390 }
2391
2392 #ifndef MDASSEMBLE
2393
2394 static int reserve_space(struct supertype *st, int raiddisks,
2395 unsigned long long size, int chunk,
2396 unsigned long long *freesize)
2397 {
2398 /* Find 'raiddisks' spare extents at least 'size' big (but
2399 * only caring about multiples of 'chunk') and remember
2400 * them.
2401 * If the cannot be found, fail.
2402 */
2403 struct dl *dl;
2404 struct ddf_super *ddf = st->sb;
2405 int cnt = 0;
2406
2407 for (dl = ddf->dlist; dl ; dl=dl->next) {
2408 dl->raiddisk = -1;
2409 dl->esize = 0;
2410 }
2411 /* Now find largest extent on each device */
2412 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2413 struct extent *e = get_extents(ddf, dl);
2414 unsigned long long pos = 0;
2415 int i = 0;
2416 int found = 0;
2417 unsigned long long minsize = size;
2418
2419 if (size == 0)
2420 minsize = chunk;
2421
2422 if (!e)
2423 continue;
2424 do {
2425 unsigned long long esize;
2426 esize = e[i].start - pos;
2427 if (esize >= minsize) {
2428 found = 1;
2429 minsize = esize;
2430 }
2431 pos = e[i].start + e[i].size;
2432 i++;
2433 } while (e[i-1].size);
2434 if (found) {
2435 cnt++;
2436 dl->esize = minsize;
2437 }
2438 free(e);
2439 }
2440 if (cnt < raiddisks) {
2441 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2442 return 0; /* No enough free spaces large enough */
2443 }
2444 if (size == 0) {
2445 /* choose the largest size of which there are at least 'raiddisk' */
2446 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2447 struct dl *dl2;
2448 if (dl->esize <= size)
2449 continue;
2450 /* This is bigger than 'size', see if there are enough */
2451 cnt = 0;
2452 for (dl2 = dl; dl2 ; dl2=dl2->next)
2453 if (dl2->esize >= dl->esize)
2454 cnt++;
2455 if (cnt >= raiddisks)
2456 size = dl->esize;
2457 }
2458 if (chunk) {
2459 size = size / chunk;
2460 size *= chunk;
2461 }
2462 *freesize = size;
2463 if (size < 32) {
2464 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2465 return 0;
2466 }
2467 }
2468 /* We have a 'size' of which there are enough spaces.
2469 * We simply do a first-fit */
2470 cnt = 0;
2471 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2472 if (dl->esize < size)
2473 continue;
2474
2475 dl->raiddisk = cnt;
2476 cnt++;
2477 }
2478 return 1;
2479 }
2480
2481
2482
2483 static int
2484 validate_geometry_ddf_container(struct supertype *st,
2485 int level, int layout, int raiddisks,
2486 int chunk, unsigned long long size,
2487 char *dev, unsigned long long *freesize,
2488 int verbose);
2489
2490 static int validate_geometry_ddf_bvd(struct supertype *st,
2491 int level, int layout, int raiddisks,
2492 int chunk, unsigned long long size,
2493 char *dev, unsigned long long *freesize,
2494 int verbose);
2495
2496 static int validate_geometry_ddf(struct supertype *st,
2497 int level, int layout, int raiddisks,
2498 int chunk, unsigned long long size,
2499 char *dev, unsigned long long *freesize,
2500 int verbose)
2501 {
2502 int fd;
2503 struct mdinfo *sra;
2504 int cfd;
2505
2506 /* ddf potentially supports lots of things, but it depends on
2507 * what devices are offered (and maybe kernel version?)
2508 * If given unused devices, we will make a container.
2509 * If given devices in a container, we will make a BVD.
2510 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2511 */
2512
2513 if (level == LEVEL_CONTAINER) {
2514 /* Must be a fresh device to add to a container */
2515 return validate_geometry_ddf_container(st, level, layout,
2516 raiddisks, chunk,
2517 size, dev, freesize,
2518 verbose);
2519 }
2520
2521 if (!dev) {
2522 /* Initial sanity check. Exclude illegal levels. */
2523 int i;
2524 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2525 if (ddf_level_num[i].num2 == level)
2526 break;
2527 if (ddf_level_num[i].num1 == MAXINT)
2528 return 0;
2529 /* Should check layout? etc */
2530
2531 if (st->sb && freesize) {
2532 /* --create was given a container to create in.
2533 * So we need to check that there are enough
2534 * free spaces and return the amount of space.
2535 * We may as well remember which drives were
2536 * chosen so that add_to_super/getinfo_super
2537 * can return them.
2538 */
2539 return reserve_space(st, raiddisks, size, chunk, freesize);
2540 }
2541 return 1;
2542 }
2543
2544 if (st->sb) {
2545 /* A container has already been opened, so we are
2546 * creating in there. Maybe a BVD, maybe an SVD.
2547 * Should make a distinction one day.
2548 */
2549 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2550 chunk, size, dev, freesize,
2551 verbose);
2552 }
2553 /* This is the first device for the array.
2554 * If it is a container, we read it in and do automagic allocations,
2555 * no other devices should be given.
2556 * Otherwise it must be a member device of a container, and we
2557 * do manual allocation.
2558 * Later we should check for a BVD and make an SVD.
2559 */
2560 fd = open(dev, O_RDONLY|O_EXCL, 0);
2561 if (fd >= 0) {
2562 sra = sysfs_read(fd, 0, GET_VERSION);
2563 close(fd);
2564 if (sra && sra->array.major_version == -1 &&
2565 strcmp(sra->text_version, "ddf") == 0) {
2566
2567 /* load super */
2568 /* find space for 'n' devices. */
2569 /* remember the devices */
2570 /* Somehow return the fact that we have enough */
2571 }
2572
2573 if (verbose)
2574 fprintf(stderr,
2575 Name ": ddf: Cannot create this array "
2576 "on device %s\n",
2577 dev);
2578 return 0;
2579 }
2580 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2581 if (verbose)
2582 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2583 dev, strerror(errno));
2584 return 0;
2585 }
2586 /* Well, it is in use by someone, maybe a 'ddf' container. */
2587 cfd = open_container(fd);
2588 if (cfd < 0) {
2589 close(fd);
2590 if (verbose)
2591 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2592 dev, strerror(EBUSY));
2593 return 0;
2594 }
2595 sra = sysfs_read(cfd, 0, GET_VERSION);
2596 close(fd);
2597 if (sra && sra->array.major_version == -1 &&
2598 strcmp(sra->text_version, "ddf") == 0) {
2599 /* This is a member of a ddf container. Load the container
2600 * and try to create a bvd
2601 */
2602 struct ddf_super *ddf;
2603 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2604 st->sb = ddf;
2605 st->container_dev = fd2devnum(cfd);
2606 close(cfd);
2607 return validate_geometry_ddf_bvd(st, level, layout,
2608 raiddisks, chunk, size,
2609 dev, freesize,
2610 verbose);
2611 }
2612 close(cfd);
2613 } else /* device may belong to a different container */
2614 return 0;
2615
2616 return 1;
2617 }
2618
2619 static int
2620 validate_geometry_ddf_container(struct supertype *st,
2621 int level, int layout, int raiddisks,
2622 int chunk, unsigned long long size,
2623 char *dev, unsigned long long *freesize,
2624 int verbose)
2625 {
2626 int fd;
2627 unsigned long long ldsize;
2628
2629 if (level != LEVEL_CONTAINER)
2630 return 0;
2631 if (!dev)
2632 return 1;
2633
2634 fd = open(dev, O_RDONLY|O_EXCL, 0);
2635 if (fd < 0) {
2636 if (verbose)
2637 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2638 dev, strerror(errno));
2639 return 0;
2640 }
2641 if (!get_dev_size(fd, dev, &ldsize)) {
2642 close(fd);
2643 return 0;
2644 }
2645 close(fd);
2646
2647 *freesize = avail_size_ddf(st, ldsize >> 9);
2648
2649 return 1;
2650 }
2651
2652 static int validate_geometry_ddf_bvd(struct supertype *st,
2653 int level, int layout, int raiddisks,
2654 int chunk, unsigned long long size,
2655 char *dev, unsigned long long *freesize,
2656 int verbose)
2657 {
2658 struct stat stb;
2659 struct ddf_super *ddf = st->sb;
2660 struct dl *dl;
2661 unsigned long long pos = 0;
2662 unsigned long long maxsize;
2663 struct extent *e;
2664 int i;
2665 /* ddf/bvd supports lots of things, but not containers */
2666 if (level == LEVEL_CONTAINER)
2667 return 0;
2668 /* We must have the container info already read in. */
2669 if (!ddf)
2670 return 0;
2671
2672 if (!dev) {
2673 /* General test: make sure there is space for
2674 * 'raiddisks' device extents of size 'size'.
2675 */
2676 unsigned long long minsize = size;
2677 int dcnt = 0;
2678 if (minsize == 0)
2679 minsize = 8;
2680 for (dl = ddf->dlist; dl ; dl = dl->next)
2681 {
2682 int found = 0;
2683 pos = 0;
2684
2685 i = 0;
2686 e = get_extents(ddf, dl);
2687 if (!e) continue;
2688 do {
2689 unsigned long long esize;
2690 esize = e[i].start - pos;
2691 if (esize >= minsize)
2692 found = 1;
2693 pos = e[i].start + e[i].size;
2694 i++;
2695 } while (e[i-1].size);
2696 if (found)
2697 dcnt++;
2698 free(e);
2699 }
2700 if (dcnt < raiddisks) {
2701 if (verbose)
2702 fprintf(stderr,
2703 Name ": ddf: Not enough devices with "
2704 "space for this array (%d < %d)\n",
2705 dcnt, raiddisks);
2706 return 0;
2707 }
2708 return 1;
2709 }
2710 /* This device must be a member of the set */
2711 if (stat(dev, &stb) < 0)
2712 return 0;
2713 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2714 return 0;
2715 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2716 if (dl->major == major(stb.st_rdev) &&
2717 dl->minor == minor(stb.st_rdev))
2718 break;
2719 }
2720 if (!dl) {
2721 if (verbose)
2722 fprintf(stderr, Name ": ddf: %s is not in the "
2723 "same DDF set\n",
2724 dev);
2725 return 0;
2726 }
2727 e = get_extents(ddf, dl);
2728 maxsize = 0;
2729 i = 0;
2730 if (e) do {
2731 unsigned long long esize;
2732 esize = e[i].start - pos;
2733 if (esize >= maxsize)
2734 maxsize = esize;
2735 pos = e[i].start + e[i].size;
2736 i++;
2737 } while (e[i-1].size);
2738 *freesize = maxsize;
2739 // FIXME here I am
2740
2741 return 1;
2742 }
2743
2744 static int load_super_ddf_all(struct supertype *st, int fd,
2745 void **sbp, char *devname, int keep_fd)
2746 {
2747 struct mdinfo *sra;
2748 struct ddf_super *super;
2749 struct mdinfo *sd, *best = NULL;
2750 int bestseq = 0;
2751 int seq;
2752 char nm[20];
2753 int dfd;
2754 int devnum = fd2devnum(fd);
2755 enum sysfs_read_flags flags;
2756
2757 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2758 if (mdmon_running(devnum))
2759 flags |= SKIP_GONE_DEVS;
2760
2761 sra = sysfs_read(fd, 0, flags);
2762 if (!sra)
2763 return 1;
2764 if (sra->array.major_version != -1 ||
2765 sra->array.minor_version != -2 ||
2766 strcmp(sra->text_version, "ddf") != 0)
2767 return 1;
2768
2769 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2770 return 1;
2771 memset(super, 0, sizeof(*super));
2772
2773 /* first, try each device, and choose the best ddf */
2774 for (sd = sra->devs ; sd ; sd = sd->next) {
2775 int rv;
2776 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2777 dfd = dev_open(nm, O_RDONLY);
2778 if (dfd < 0)
2779 return 2;
2780 rv = load_ddf_headers(dfd, super, NULL);
2781 close(dfd);
2782 if (rv == 0) {
2783 seq = __be32_to_cpu(super->active->seq);
2784 if (super->active->openflag)
2785 seq--;
2786 if (!best || seq > bestseq) {
2787 bestseq = seq;
2788 best = sd;
2789 }
2790 }
2791 }
2792 if (!best)
2793 return 1;
2794 /* OK, load this ddf */
2795 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2796 dfd = dev_open(nm, O_RDONLY);
2797 if (dfd < 0)
2798 return 1;
2799 load_ddf_headers(dfd, super, NULL);
2800 load_ddf_global(dfd, super, NULL);
2801 close(dfd);
2802 /* Now we need the device-local bits */
2803 for (sd = sra->devs ; sd ; sd = sd->next) {
2804 int rv;
2805
2806 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2807 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2808 if (dfd < 0)
2809 return 2;
2810 rv = load_ddf_headers(dfd, super, NULL);
2811 if (rv == 0)
2812 rv = load_ddf_local(dfd, super, NULL, keep_fd);
2813 if (!keep_fd) close(dfd);
2814 if (rv)
2815 return 1;
2816 }
2817 if (st->subarray[0]) {
2818 struct vcl *v;
2819
2820 for (v = super->conflist; v; v = v->next)
2821 if (v->vcnum == atoi(st->subarray))
2822 super->currentconf = v;
2823 if (!super->currentconf)
2824 return 1;
2825 }
2826 *sbp = super;
2827 if (st->ss == NULL) {
2828 st->ss = &super_ddf;
2829 st->minor_version = 0;
2830 st->max_devs = 512;
2831 st->container_dev = fd2devnum(fd);
2832 }
2833 st->loaded_container = 1;
2834 return 0;
2835 }
2836 #endif /* MDASSEMBLE */
2837
2838 static struct mdinfo *container_content_ddf(struct supertype *st)
2839 {
2840 /* Given a container loaded by load_super_ddf_all,
2841 * extract information about all the arrays into
2842 * an mdinfo tree.
2843 *
2844 * For each vcl in conflist: create an mdinfo, fill it in,
2845 * then look for matching devices (phys_refnum) in dlist
2846 * and create appropriate device mdinfo.
2847 */
2848 struct ddf_super *ddf = st->sb;
2849 struct mdinfo *rest = NULL;
2850 struct vcl *vc;
2851
2852 for (vc = ddf->conflist ; vc ; vc=vc->next)
2853 {
2854 int i;
2855 int j;
2856 struct mdinfo *this;
2857 this = malloc(sizeof(*this));
2858 memset(this, 0, sizeof(*this));
2859 this->next = rest;
2860 rest = this;
2861
2862 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2863 this->array.raid_disks =
2864 __be16_to_cpu(vc->conf.prim_elmnt_count);
2865 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2866 this->array.raid_disks);
2867 this->array.md_minor = -1;
2868 this->array.major_version = -1;
2869 this->array.minor_version = -2;
2870 this->array.ctime = DECADE +
2871 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2872 this->array.utime = DECADE +
2873 __be32_to_cpu(vc->conf.timestamp);
2874 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2875
2876 i = vc->vcnum;
2877 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2878 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2879 DDF_init_full) {
2880 this->array.state = 0;
2881 this->resync_start = 0;
2882 } else {
2883 this->array.state = 1;
2884 this->resync_start = ~0ULL;
2885 }
2886 memcpy(this->name, ddf->virt->entries[i].name, 16);
2887 this->name[16]=0;
2888 for(j=0; j<16; j++)
2889 if (this->name[j] == ' ')
2890 this->name[j] = 0;
2891
2892 memset(this->uuid, 0, sizeof(this->uuid));
2893 this->component_size = __be64_to_cpu(vc->conf.blocks);
2894 this->array.size = this->component_size / 2;
2895 this->container_member = i;
2896
2897 ddf->currentconf = vc;
2898 uuid_from_super_ddf(st, this->uuid);
2899 ddf->currentconf = NULL;
2900
2901 sprintf(this->text_version, "/%s/%d",
2902 devnum2devname(st->container_dev),
2903 this->container_member);
2904
2905 for (i=0 ; i < ddf->mppe ; i++) {
2906 struct mdinfo *dev;
2907 struct dl *d;
2908
2909 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2910 continue;
2911
2912 this->array.working_disks++;
2913
2914 for (d = ddf->dlist; d ; d=d->next)
2915 if (d->disk.refnum == vc->conf.phys_refnum[i])
2916 break;
2917 if (d == NULL)
2918 break;
2919
2920 dev = malloc(sizeof(*dev));
2921 memset(dev, 0, sizeof(*dev));
2922 dev->next = this->devs;
2923 this->devs = dev;
2924
2925 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2926 dev->disk.major = d->major;
2927 dev->disk.minor = d->minor;
2928 dev->disk.raid_disk = i;
2929 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2930
2931 dev->events = __be32_to_cpu(ddf->primary.seq);
2932 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2933 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2934 if (d->devname)
2935 strcpy(dev->name, d->devname);
2936 }
2937 }
2938 return rest;
2939 }
2940
2941 static int store_zero_ddf(struct supertype *st, int fd)
2942 {
2943 unsigned long long dsize;
2944 void *buf;
2945 int rc;
2946
2947 if (!get_dev_size(fd, NULL, &dsize))
2948 return 1;
2949
2950 if (posix_memalign(&buf, 512, 512) != 0)
2951 return 1;
2952 memset(buf, 0, 512);
2953
2954 lseek64(fd, dsize-512, 0);
2955 rc = write(fd, buf, 512);
2956 free(buf);
2957 if (rc < 0)
2958 return 1;
2959 return 0;
2960 }
2961
2962 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2963 {
2964 /*
2965 * return:
2966 * 0 same, or first was empty, and second was copied
2967 * 1 second had wrong number
2968 * 2 wrong uuid
2969 * 3 wrong other info
2970 */
2971 struct ddf_super *first = st->sb;
2972 struct ddf_super *second = tst->sb;
2973
2974 if (!first) {
2975 st->sb = tst->sb;
2976 tst->sb = NULL;
2977 return 0;
2978 }
2979
2980 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2981 return 2;
2982
2983 /* FIXME should I look at anything else? */
2984 return 0;
2985 }
2986
2987 #ifndef MDASSEMBLE
2988 /*
2989 * A new array 'a' has been started which claims to be instance 'inst'
2990 * within container 'c'.
2991 * We need to confirm that the array matches the metadata in 'c' so
2992 * that we don't corrupt any metadata.
2993 */
2994 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2995 {
2996 dprintf("ddf: open_new %s\n", inst);
2997 a->info.container_member = atoi(inst);
2998 return 0;
2999 }
3000
3001 /*
3002 * The array 'a' is to be marked clean in the metadata.
3003 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
3004 * clean up to the point (in sectors). If that cannot be recorded in the
3005 * metadata, then leave it as dirty.
3006 *
3007 * For DDF, we need to clear the DDF_state_inconsistent bit in the
3008 * !global! virtual_disk.virtual_entry structure.
3009 */
3010 static int ddf_set_array_state(struct active_array *a, int consistent)
3011 {
3012 struct ddf_super *ddf = a->container->sb;
3013 int inst = a->info.container_member;
3014 int old = ddf->virt->entries[inst].state;
3015 if (consistent == 2) {
3016 /* Should check if a recovery should be started FIXME */
3017 consistent = 1;
3018 if (!is_resync_complete(a))
3019 consistent = 0;
3020 }
3021 if (consistent)
3022 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3023 else
3024 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3025 if (old != ddf->virt->entries[inst].state)
3026 ddf->updates_pending = 1;
3027
3028 old = ddf->virt->entries[inst].init_state;
3029 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3030 if (is_resync_complete(a))
3031 ddf->virt->entries[inst].init_state |= DDF_init_full;
3032 else if (a->resync_start == 0)
3033 ddf->virt->entries[inst].init_state |= DDF_init_not;
3034 else
3035 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3036 if (old != ddf->virt->entries[inst].init_state)
3037 ddf->updates_pending = 1;
3038
3039 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3040 a->resync_start);
3041 return consistent;
3042 }
3043
3044 /*
3045 * The state of each disk is stored in the global phys_disk structure
3046 * in phys_disk.entries[n].state.
3047 * This makes various combinations awkward.
3048 * - When a device fails in any array, it must be failed in all arrays
3049 * that include a part of this device.
3050 * - When a component is rebuilding, we cannot include it officially in the
3051 * array unless this is the only array that uses the device.
3052 *
3053 * So: when transitioning:
3054 * Online -> failed, just set failed flag. monitor will propagate
3055 * spare -> online, the device might need to be added to the array.
3056 * spare -> failed, just set failed. Don't worry if in array or not.
3057 */
3058 static void ddf_set_disk(struct active_array *a, int n, int state)
3059 {
3060 struct ddf_super *ddf = a->container->sb;
3061 int inst = a->info.container_member;
3062 struct vd_config *vc = find_vdcr(ddf, inst);
3063 int pd = find_phys(ddf, vc->phys_refnum[n]);
3064 int i, st, working;
3065
3066 if (vc == NULL) {
3067 dprintf("ddf: cannot find instance %d!!\n", inst);
3068 return;
3069 }
3070 if (pd < 0) {
3071 /* disk doesn't currently exist. If it is now in_sync,
3072 * insert it. */
3073 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3074 /* Find dev 'n' in a->info->devs, determine the
3075 * ddf refnum, and set vc->phys_refnum and update
3076 * phys->entries[]
3077 */
3078 /* FIXME */
3079 }
3080 } else {
3081 int old = ddf->phys->entries[pd].state;
3082 if (state & DS_FAULTY)
3083 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3084 if (state & DS_INSYNC) {
3085 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3086 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3087 }
3088 if (old != ddf->phys->entries[pd].state)
3089 ddf->updates_pending = 1;
3090 }
3091
3092 dprintf("ddf: set_disk %d to %x\n", n, state);
3093
3094 /* Now we need to check the state of the array and update
3095 * virtual_disk.entries[n].state.
3096 * It needs to be one of "optimal", "degraded", "failed".
3097 * I don't understand 'deleted' or 'missing'.
3098 */
3099 working = 0;
3100 for (i=0; i < a->info.array.raid_disks; i++) {
3101 pd = find_phys(ddf, vc->phys_refnum[i]);
3102 if (pd < 0)
3103 continue;
3104 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3105 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3106 == DDF_Online)
3107 working++;
3108 }
3109 state = DDF_state_degraded;
3110 if (working == a->info.array.raid_disks)
3111 state = DDF_state_optimal;
3112 else switch(vc->prl) {
3113 case DDF_RAID0:
3114 case DDF_CONCAT:
3115 case DDF_JBOD:
3116 state = DDF_state_failed;
3117 break;
3118 case DDF_RAID1:
3119 if (working == 0)
3120 state = DDF_state_failed;
3121 break;
3122 case DDF_RAID4:
3123 case DDF_RAID5:
3124 if (working < a->info.array.raid_disks-1)
3125 state = DDF_state_failed;
3126 break;
3127 case DDF_RAID6:
3128 if (working < a->info.array.raid_disks-2)
3129 state = DDF_state_failed;
3130 else if (working == a->info.array.raid_disks-1)
3131 state = DDF_state_part_optimal;
3132 break;
3133 }
3134
3135 if (ddf->virt->entries[inst].state !=
3136 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3137 | state)) {
3138
3139 ddf->virt->entries[inst].state =
3140 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3141 | state;
3142 ddf->updates_pending = 1;
3143 }
3144
3145 }
3146
3147 static void ddf_sync_metadata(struct supertype *st)
3148 {
3149
3150 /*
3151 * Write all data to all devices.
3152 * Later, we might be able to track whether only local changes
3153 * have been made, or whether any global data has been changed,
3154 * but ddf is sufficiently weird that it probably always
3155 * changes global data ....
3156 */
3157 struct ddf_super *ddf = st->sb;
3158 if (!ddf->updates_pending)
3159 return;
3160 ddf->updates_pending = 0;
3161 __write_init_super_ddf(st, 0);
3162 dprintf("ddf: sync_metadata\n");
3163 }
3164
3165 static void ddf_process_update(struct supertype *st,
3166 struct metadata_update *update)
3167 {
3168 /* Apply this update to the metadata.
3169 * The first 4 bytes are a DDF_*_MAGIC which guides
3170 * our actions.
3171 * Possible update are:
3172 * DDF_PHYS_RECORDS_MAGIC
3173 * Add a new physical device. Changes to this record
3174 * only happen implicitly.
3175 * used_pdes is the device number.
3176 * DDF_VIRT_RECORDS_MAGIC
3177 * Add a new VD. Possibly also change the 'access' bits.
3178 * populated_vdes is the entry number.
3179 * DDF_VD_CONF_MAGIC
3180 * New or updated VD. the VIRT_RECORD must already
3181 * exist. For an update, phys_refnum and lba_offset
3182 * (at least) are updated, and the VD_CONF must
3183 * be written to precisely those devices listed with
3184 * a phys_refnum.
3185 * DDF_SPARE_ASSIGN_MAGIC
3186 * replacement Spare Assignment Record... but for which device?
3187 *
3188 * So, e.g.:
3189 * - to create a new array, we send a VIRT_RECORD and
3190 * a VD_CONF. Then assemble and start the array.
3191 * - to activate a spare we send a VD_CONF to add the phys_refnum
3192 * and offset. This will also mark the spare as active with
3193 * a spare-assignment record.
3194 */
3195 struct ddf_super *ddf = st->sb;
3196 __u32 *magic = (__u32*)update->buf;
3197 struct phys_disk *pd;
3198 struct virtual_disk *vd;
3199 struct vd_config *vc;
3200 struct vcl *vcl;
3201 struct dl *dl;
3202 int mppe;
3203 int ent;
3204
3205 dprintf("Process update %x\n", *magic);
3206
3207 switch (*magic) {
3208 case DDF_PHYS_RECORDS_MAGIC:
3209
3210 if (update->len != (sizeof(struct phys_disk) +
3211 sizeof(struct phys_disk_entry)))
3212 return;
3213 pd = (struct phys_disk*)update->buf;
3214
3215 ent = __be16_to_cpu(pd->used_pdes);
3216 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3217 return;
3218 if (!all_ff(ddf->phys->entries[ent].guid))
3219 return;
3220 ddf->phys->entries[ent] = pd->entries[0];
3221 ddf->phys->used_pdes = __cpu_to_be16(1 +
3222 __be16_to_cpu(ddf->phys->used_pdes));
3223 ddf->updates_pending = 1;
3224 if (ddf->add_list) {
3225 struct active_array *a;
3226 struct dl *al = ddf->add_list;
3227 ddf->add_list = al->next;
3228
3229 al->next = ddf->dlist;
3230 ddf->dlist = al;
3231
3232 /* As a device has been added, we should check
3233 * for any degraded devices that might make
3234 * use of this spare */
3235 for (a = st->arrays ; a; a=a->next)
3236 a->check_degraded = 1;
3237 }
3238 break;
3239
3240 case DDF_VIRT_RECORDS_MAGIC:
3241
3242 if (update->len != (sizeof(struct virtual_disk) +
3243 sizeof(struct virtual_entry)))
3244 return;
3245 vd = (struct virtual_disk*)update->buf;
3246
3247 ent = __be16_to_cpu(vd->populated_vdes);
3248 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3249 return;
3250 if (!all_ff(ddf->virt->entries[ent].guid))
3251 return;
3252 ddf->virt->entries[ent] = vd->entries[0];
3253 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3254 __be16_to_cpu(ddf->virt->populated_vdes));
3255 ddf->updates_pending = 1;
3256 break;
3257
3258 case DDF_VD_CONF_MAGIC:
3259 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3260
3261 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3262 if (update->len != ddf->conf_rec_len * 512)
3263 return;
3264 vc = (struct vd_config*)update->buf;
3265 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3266 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3267 break;
3268 dprintf("vcl = %p\n", vcl);
3269 if (vcl) {
3270 /* An update, just copy the phys_refnum and lba_offset
3271 * fields
3272 */
3273 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3274 mppe * (sizeof(__u32) + sizeof(__u64)));
3275 } else {
3276 /* A new VD_CONF */
3277 if (!update->space)
3278 return;
3279 vcl = update->space;
3280 update->space = NULL;
3281 vcl->next = ddf->conflist;
3282 memcpy(&vcl->conf, vc, update->len);
3283 vcl->lba_offset = (__u64*)
3284 &vcl->conf.phys_refnum[mppe];
3285 ddf->conflist = vcl;
3286 }
3287 /* Now make sure vlist is correct for each dl. */
3288 for (dl = ddf->dlist; dl; dl = dl->next) {
3289 int dn;
3290 int vn = 0;
3291 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3292 for (dn=0; dn < ddf->mppe ; dn++)
3293 if (vcl->conf.phys_refnum[dn] ==
3294 dl->disk.refnum) {
3295 dprintf("dev %d has %p at %d\n",
3296 dl->pdnum, vcl, vn);
3297 dl->vlist[vn++] = vcl;
3298 break;
3299 }
3300 while (vn < ddf->max_part)
3301 dl->vlist[vn++] = NULL;
3302 if (dl->vlist[0]) {
3303 ddf->phys->entries[dl->pdnum].type &=
3304 ~__cpu_to_be16(DDF_Global_Spare);
3305 ddf->phys->entries[dl->pdnum].type |=
3306 __cpu_to_be16(DDF_Active_in_VD);
3307 }
3308 if (dl->spare) {
3309 ddf->phys->entries[dl->pdnum].type &=
3310 ~__cpu_to_be16(DDF_Global_Spare);
3311 ddf->phys->entries[dl->pdnum].type |=
3312 __cpu_to_be16(DDF_Spare);
3313 }
3314 if (!dl->vlist[0] && !dl->spare) {
3315 ddf->phys->entries[dl->pdnum].type |=
3316 __cpu_to_be16(DDF_Global_Spare);
3317 ddf->phys->entries[dl->pdnum].type &=
3318 ~__cpu_to_be16(DDF_Spare |
3319 DDF_Active_in_VD);
3320 }
3321 }
3322 ddf->updates_pending = 1;
3323 break;
3324 case DDF_SPARE_ASSIGN_MAGIC:
3325 default: break;
3326 }
3327 }
3328
3329 static void ddf_prepare_update(struct supertype *st,
3330 struct metadata_update *update)
3331 {
3332 /* This update arrived at managemon.
3333 * We are about to pass it to monitor.
3334 * If a malloc is needed, do it here.
3335 */
3336 struct ddf_super *ddf = st->sb;
3337 __u32 *magic = (__u32*)update->buf;
3338 if (*magic == DDF_VD_CONF_MAGIC)
3339 if (posix_memalign(&update->space, 512,
3340 offsetof(struct vcl, conf)
3341 + ddf->conf_rec_len * 512) != 0)
3342 update->space = NULL;
3343 }
3344
3345 /*
3346 * Check if the array 'a' is degraded but not failed.
3347 * If it is, find as many spares as are available and needed and
3348 * arrange for their inclusion.
3349 * We only choose devices which are not already in the array,
3350 * and prefer those with a spare-assignment to this array.
3351 * otherwise we choose global spares - assuming always that
3352 * there is enough room.
3353 * For each spare that we assign, we return an 'mdinfo' which
3354 * describes the position for the device in the array.
3355 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3356 * the new phys_refnum and lba_offset values.
3357 *
3358 * Only worry about BVDs at the moment.
3359 */
3360 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3361 struct metadata_update **updates)
3362 {
3363 int working = 0;
3364 struct mdinfo *d;
3365 struct ddf_super *ddf = a->container->sb;
3366 int global_ok = 0;
3367 struct mdinfo *rv = NULL;
3368 struct mdinfo *di;
3369 struct metadata_update *mu;
3370 struct dl *dl;
3371 int i;
3372 struct vd_config *vc;
3373 __u64 *lba;
3374
3375 for (d = a->info.devs ; d ; d = d->next) {
3376 if ((d->curr_state & DS_FAULTY) &&
3377 d->state_fd >= 0)
3378 /* wait for Removal to happen */
3379 return NULL;
3380 if (d->state_fd >= 0)
3381 working ++;
3382 }
3383
3384 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3385 a->info.array.level);
3386 if (working == a->info.array.raid_disks)
3387 return NULL; /* array not degraded */
3388 switch (a->info.array.level) {
3389 case 1:
3390 if (working == 0)
3391 return NULL; /* failed */
3392 break;
3393 case 4:
3394 case 5:
3395 if (working < a->info.array.raid_disks - 1)
3396 return NULL; /* failed */
3397 break;
3398 case 6:
3399 if (working < a->info.array.raid_disks - 2)
3400 return NULL; /* failed */
3401 break;
3402 default: /* concat or stripe */
3403 return NULL; /* failed */
3404 }
3405
3406 /* For each slot, if it is not working, find a spare */
3407 dl = ddf->dlist;
3408 for (i = 0; i < a->info.array.raid_disks; i++) {
3409 for (d = a->info.devs ; d ; d = d->next)
3410 if (d->disk.raid_disk == i)
3411 break;
3412 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3413 if (d && (d->state_fd >= 0))
3414 continue;
3415
3416 /* OK, this device needs recovery. Find a spare */
3417 again:
3418 for ( ; dl ; dl = dl->next) {
3419 unsigned long long esize;
3420 unsigned long long pos;
3421 struct mdinfo *d2;
3422 int is_global = 0;
3423 int is_dedicated = 0;
3424 struct extent *ex;
3425 int j;
3426 /* If in this array, skip */
3427 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3428 if (d2->disk.major == dl->major &&
3429 d2->disk.minor == dl->minor) {
3430 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3431 break;
3432 }
3433 if (d2)
3434 continue;
3435 if (ddf->phys->entries[dl->pdnum].type &
3436 __cpu_to_be16(DDF_Spare)) {
3437 /* Check spare assign record */
3438 if (dl->spare) {
3439 if (dl->spare->type & DDF_spare_dedicated) {
3440 /* check spare_ents for guid */
3441 for (j = 0 ;
3442 j < __be16_to_cpu(dl->spare->populated);
3443 j++) {
3444 if (memcmp(dl->spare->spare_ents[j].guid,
3445 ddf->virt->entries[a->info.container_member].guid,
3446 DDF_GUID_LEN) == 0)
3447 is_dedicated = 1;
3448 }
3449 } else
3450 is_global = 1;
3451 }
3452 } else if (ddf->phys->entries[dl->pdnum].type &
3453 __cpu_to_be16(DDF_Global_Spare)) {
3454 is_global = 1;
3455 }
3456 if ( ! (is_dedicated ||
3457 (is_global && global_ok))) {
3458 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3459 is_dedicated, is_global);
3460 continue;
3461 }
3462
3463 /* We are allowed to use this device - is there space?
3464 * We need a->info.component_size sectors */
3465 ex = get_extents(ddf, dl);
3466 if (!ex) {
3467 dprintf("cannot get extents\n");
3468 continue;
3469 }
3470 j = 0; pos = 0;
3471 esize = 0;
3472
3473 do {
3474 esize = ex[j].start - pos;
3475 if (esize >= a->info.component_size)
3476 break;
3477 pos = ex[i].start + ex[i].size;
3478 i++;
3479 } while (ex[i-1].size);
3480
3481 free(ex);
3482 if (esize < a->info.component_size) {
3483 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3484 esize, a->info.component_size);
3485 /* No room */
3486 continue;
3487 }
3488
3489 /* Cool, we have a device with some space at pos */
3490 di = malloc(sizeof(*di));
3491 if (!di)
3492 continue;
3493 memset(di, 0, sizeof(*di));
3494 di->disk.number = i;
3495 di->disk.raid_disk = i;
3496 di->disk.major = dl->major;
3497 di->disk.minor = dl->minor;
3498 di->disk.state = 0;
3499 di->data_offset = pos;
3500 di->component_size = a->info.component_size;
3501 di->container_member = dl->pdnum;
3502 di->next = rv;
3503 rv = di;
3504 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3505 i, pos);
3506
3507 break;
3508 }
3509 if (!dl && ! global_ok) {
3510 /* not enough dedicated spares, try global */
3511 global_ok = 1;
3512 dl = ddf->dlist;
3513 goto again;
3514 }
3515 }
3516
3517 if (!rv)
3518 /* No spares found */
3519 return rv;
3520 /* Now 'rv' has a list of devices to return.
3521 * Create a metadata_update record to update the
3522 * phys_refnum and lba_offset values
3523 */
3524 mu = malloc(sizeof(*mu));
3525 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3526 free(mu);
3527 mu = NULL;
3528 }
3529 if (!mu) {
3530 while (rv) {
3531 struct mdinfo *n = rv->next;
3532
3533 free(rv);
3534 rv = n;
3535 }
3536 return NULL;
3537 }
3538
3539 mu->buf = malloc(ddf->conf_rec_len * 512);
3540 mu->len = ddf->conf_rec_len;
3541 mu->next = *updates;
3542 vc = find_vdcr(ddf, a->info.container_member);
3543 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3544
3545 vc = (struct vd_config*)mu->buf;
3546 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3547 for (di = rv ; di ; di = di->next) {
3548 vc->phys_refnum[di->disk.raid_disk] =
3549 ddf->phys->entries[dl->pdnum].refnum;
3550 lba[di->disk.raid_disk] = di->data_offset;
3551 }
3552 *updates = mu;
3553 return rv;
3554 }
3555 #endif /* MDASSEMBLE */
3556
3557 static int ddf_level_to_layout(int level)
3558 {
3559 switch(level) {
3560 case 0:
3561 case 1:
3562 return 0;
3563 case 5:
3564 return ALGORITHM_LEFT_SYMMETRIC;
3565 case 6:
3566 return ALGORITHM_ROTATING_N_CONTINUE;
3567 case 10:
3568 return 0x102;
3569 default:
3570 return UnSet;
3571 }
3572 }
3573
3574 struct superswitch super_ddf = {
3575 #ifndef MDASSEMBLE
3576 .examine_super = examine_super_ddf,
3577 .brief_examine_super = brief_examine_super_ddf,
3578 .export_examine_super = export_examine_super_ddf,
3579 .detail_super = detail_super_ddf,
3580 .brief_detail_super = brief_detail_super_ddf,
3581 .validate_geometry = validate_geometry_ddf,
3582 .write_init_super = write_init_super_ddf,
3583 .add_to_super = add_to_super_ddf,
3584 #endif
3585 .match_home = match_home_ddf,
3586 .uuid_from_super= uuid_from_super_ddf,
3587 .getinfo_super = getinfo_super_ddf,
3588 .update_super = update_super_ddf,
3589
3590 .avail_size = avail_size_ddf,
3591
3592 .compare_super = compare_super_ddf,
3593
3594 .load_super = load_super_ddf,
3595 .init_super = init_super_ddf,
3596 .store_super = store_zero_ddf,
3597 .free_super = free_super_ddf,
3598 .match_metadata_desc = match_metadata_desc_ddf,
3599 .container_content = container_content_ddf,
3600 .default_layout = ddf_level_to_layout,
3601
3602 .external = 1,
3603
3604 #ifndef MDASSEMBLE
3605 /* for mdmon */
3606 .open_new = ddf_open_new,
3607 .set_array_state= ddf_set_array_state,
3608 .set_disk = ddf_set_disk,
3609 .sync_metadata = ddf_sync_metadata,
3610 .process_update = ddf_process_update,
3611 .prepare_update = ddf_prepare_update,
3612 .activate_spare = ddf_activate_spare,
3613 #endif
3614 .name = "ddf",
3615 };