]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Lots of fixes to make incremental assembly of containers work.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 void *mdupdate; /* hold metadata update */
430 struct vcl *vlist[0]; /* max_part in size */
431 } *dlist, *add_list;
432 };
433
434 #ifndef offsetof
435 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
436 #endif
437
438
439 static int calc_crc(void *buf, int len)
440 {
441 /* crcs are always at the same place as in the ddf_header */
442 struct ddf_header *ddf = buf;
443 __u32 oldcrc = ddf->crc;
444 __u32 newcrc;
445 ddf->crc = 0xffffffff;
446
447 newcrc = crc32(0, buf, len);
448 ddf->crc = oldcrc;
449 return newcrc;
450 }
451
452 static int load_ddf_header(int fd, unsigned long long lba,
453 unsigned long long size,
454 int type,
455 struct ddf_header *hdr, struct ddf_header *anchor)
456 {
457 /* read a ddf header (primary or secondary) from fd/lba
458 * and check that it is consistent with anchor
459 * Need to check:
460 * magic, crc, guid, rev, and LBA's header_type, and
461 * everything after header_type must be the same
462 */
463 if (lba >= size-1)
464 return 0;
465
466 if (lseek64(fd, lba<<9, 0) < 0)
467 return 0;
468
469 if (read(fd, hdr, 512) != 512)
470 return 0;
471
472 if (hdr->magic != DDF_HEADER_MAGIC)
473 return 0;
474 if (calc_crc(hdr, 512) != hdr->crc)
475 return 0;
476 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
477 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
478 anchor->primary_lba != hdr->primary_lba ||
479 anchor->secondary_lba != hdr->secondary_lba ||
480 hdr->type != type ||
481 memcmp(anchor->pad2, hdr->pad2, 512 -
482 offsetof(struct ddf_header, pad2)) != 0)
483 return 0;
484
485 /* Looks good enough to me... */
486 return 1;
487 }
488
489 static void *load_section(int fd, struct ddf_super *super, void *buf,
490 __u32 offset_be, __u32 len_be, int check)
491 {
492 unsigned long long offset = __be32_to_cpu(offset_be);
493 unsigned long long len = __be32_to_cpu(len_be);
494 int dofree = (buf == NULL);
495
496 if (check)
497 if (len != 2 && len != 8 && len != 32
498 && len != 128 && len != 512)
499 return NULL;
500
501 if (len > 1024)
502 return NULL;
503 if (buf) {
504 /* All pre-allocated sections are a single block */
505 if (len != 1)
506 return NULL;
507 } else {
508 posix_memalign(&buf, 512, len<<9);
509 }
510
511 if (!buf)
512 return NULL;
513
514 if (super->active->type == 1)
515 offset += __be64_to_cpu(super->active->primary_lba);
516 else
517 offset += __be64_to_cpu(super->active->secondary_lba);
518
519 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
520 if (dofree)
521 free(buf);
522 return NULL;
523 }
524 if (read(fd, buf, len<<9) != (len<<9)) {
525 if (dofree)
526 free(buf);
527 return NULL;
528 }
529 return buf;
530 }
531
532 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
533 {
534 unsigned long long dsize;
535
536 get_dev_size(fd, NULL, &dsize);
537
538 if (lseek64(fd, dsize-512, 0) < 0) {
539 if (devname)
540 fprintf(stderr,
541 Name": Cannot seek to anchor block on %s: %s\n",
542 devname, strerror(errno));
543 return 1;
544 }
545 if (read(fd, &super->anchor, 512) != 512) {
546 if (devname)
547 fprintf(stderr,
548 Name ": Cannot read anchor block on %s: %s\n",
549 devname, strerror(errno));
550 return 1;
551 }
552 if (super->anchor.magic != DDF_HEADER_MAGIC) {
553 if (devname)
554 fprintf(stderr, Name ": no DDF anchor found on %s\n",
555 devname);
556 return 2;
557 }
558 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
559 if (devname)
560 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
561 devname);
562 return 2;
563 }
564 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
565 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
566 if (devname)
567 fprintf(stderr, Name ": can only support super revision"
568 " %.8s and earlier, not %.8s on %s\n",
569 DDF_REVISION_2, super->anchor.revision,devname);
570 return 2;
571 }
572 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
573 dsize >> 9, 1,
574 &super->primary, &super->anchor) == 0) {
575 if (devname)
576 fprintf(stderr,
577 Name ": Failed to load primary DDF header "
578 "on %s\n", devname);
579 return 2;
580 }
581 super->active = &super->primary;
582 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
583 dsize >> 9, 2,
584 &super->secondary, &super->anchor)) {
585 if ((__be32_to_cpu(super->primary.seq)
586 < __be32_to_cpu(super->secondary.seq) &&
587 !super->secondary.openflag)
588 || (__be32_to_cpu(super->primary.seq)
589 == __be32_to_cpu(super->secondary.seq) &&
590 super->primary.openflag && !super->secondary.openflag)
591 )
592 super->active = &super->secondary;
593 }
594 return 0;
595 }
596
597 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
598 {
599 void *ok;
600 ok = load_section(fd, super, &super->controller,
601 super->active->controller_section_offset,
602 super->active->controller_section_length,
603 0);
604 super->phys = load_section(fd, super, NULL,
605 super->active->phys_section_offset,
606 super->active->phys_section_length,
607 1);
608 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
609
610 super->virt = load_section(fd, super, NULL,
611 super->active->virt_section_offset,
612 super->active->virt_section_length,
613 1);
614 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
615 if (!ok ||
616 !super->phys ||
617 !super->virt) {
618 free(super->phys);
619 free(super->virt);
620 super->phys = NULL;
621 super->virt = NULL;
622 return 2;
623 }
624 super->conflist = NULL;
625 super->dlist = NULL;
626
627 super->max_part = __be16_to_cpu(super->active->max_partitions);
628 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
629 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
630 return 0;
631 }
632
633 static int load_ddf_local(int fd, struct ddf_super *super,
634 char *devname, int keep)
635 {
636 struct dl *dl;
637 struct stat stb;
638 char *conf;
639 int i;
640 int vnum;
641 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
642 unsigned long long dsize;
643
644 /* First the local disk info */
645 posix_memalign((void**)&dl, 512,
646 sizeof(*dl) +
647 (super->max_part) * sizeof(dl->vlist[0]));
648
649 load_section(fd, super, &dl->disk,
650 super->active->data_section_offset,
651 super->active->data_section_length,
652 0);
653 dl->devname = devname ? strdup(devname) : NULL;
654
655 fstat(fd, &stb);
656 dl->major = major(stb.st_rdev);
657 dl->minor = minor(stb.st_rdev);
658 dl->next = super->dlist;
659 dl->fd = keep ? fd : -1;
660
661 dl->size = 0;
662 if (get_dev_size(fd, devname, &dsize))
663 dl->size = dsize >> 9;
664 dl->spare = NULL;
665 for (i=0 ; i < super->max_part ; i++)
666 dl->vlist[i] = NULL;
667 super->dlist = dl;
668 dl->pdnum = -1;
669 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
670 if (memcmp(super->phys->entries[i].guid,
671 dl->disk.guid, DDF_GUID_LEN) == 0)
672 dl->pdnum = i;
673
674 /* Now the config list. */
675 /* 'conf' is an array of config entries, some of which are
676 * probably invalid. Those which are good need to be copied into
677 * the conflist
678 */
679
680 conf = load_section(fd, super, NULL,
681 super->active->config_section_offset,
682 super->active->config_section_length,
683 0);
684
685 vnum = 0;
686 for (i = 0;
687 i < __be32_to_cpu(super->active->config_section_length);
688 i += super->conf_rec_len) {
689 struct vd_config *vd =
690 (struct vd_config *)((char*)conf + i*512);
691 struct vcl *vcl;
692
693 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
694 if (dl->spare)
695 continue;
696 posix_memalign((void**)&dl->spare, 512,
697 super->conf_rec_len*512);
698 memcpy(dl->spare, vd, super->conf_rec_len*512);
699 continue;
700 }
701 if (vd->magic != DDF_VD_CONF_MAGIC)
702 continue;
703 for (vcl = super->conflist; vcl; vcl = vcl->next) {
704 if (memcmp(vcl->conf.guid,
705 vd->guid, DDF_GUID_LEN) == 0)
706 break;
707 }
708
709 if (vcl) {
710 dl->vlist[vnum++] = vcl;
711 if (__be32_to_cpu(vd->seqnum) <=
712 __be32_to_cpu(vcl->conf.seqnum))
713 continue;
714 } else {
715 posix_memalign((void**)&vcl, 512,
716 (super->conf_rec_len*512 +
717 offsetof(struct vcl, conf)));
718 vcl->next = super->conflist;
719 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
720 super->conflist = vcl;
721 dl->vlist[vnum++] = vcl;
722 }
723 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
724 vcl->lba_offset = (__u64*)
725 &vcl->conf.phys_refnum[super->mppe];
726
727 for (i=0; i < max_virt_disks ; i++)
728 if (memcmp(super->virt->entries[i].guid,
729 vcl->conf.guid, DDF_GUID_LEN)==0)
730 break;
731 if (i < max_virt_disks)
732 vcl->vcnum = i;
733 }
734 free(conf);
735
736 return 0;
737 }
738
739 #ifndef MDASSEMBLE
740 static int load_super_ddf_all(struct supertype *st, int fd,
741 void **sbp, char *devname, int keep_fd);
742 #endif
743 static int load_super_ddf(struct supertype *st, int fd,
744 char *devname)
745 {
746 unsigned long long dsize;
747 struct ddf_super *super;
748 int rv;
749
750 #ifndef MDASSEMBLE
751 /* if 'fd' is a container, load metadata from all the devices */
752 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
753 return 0;
754 #endif
755 if (st->subarray[0])
756 return 1; /* FIXME Is this correct */
757
758 if (get_dev_size(fd, devname, &dsize) == 0)
759 return 1;
760
761 /* 32M is a lower bound */
762 if (dsize <= 32*1024*1024) {
763 if (devname) {
764 fprintf(stderr,
765 Name ": %s is too small for ddf: "
766 "size is %llu sectors.\n",
767 devname, dsize>>9);
768 return 1;
769 }
770 }
771 if (dsize & 511) {
772 if (devname) {
773 fprintf(stderr,
774 Name ": %s is an odd size for ddf: "
775 "size is %llu bytes.\n",
776 devname, dsize);
777 return 1;
778 }
779 }
780
781 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
782 fprintf(stderr, Name ": malloc of %zu failed.\n",
783 sizeof(*super));
784 return 1;
785 }
786 memset(super, 0, sizeof(*super));
787
788 rv = load_ddf_headers(fd, super, devname);
789 if (rv) {
790 free(super);
791 return rv;
792 }
793
794 /* Have valid headers and have chosen the best. Let's read in the rest*/
795
796 rv = load_ddf_global(fd, super, devname);
797
798 if (rv) {
799 if (devname)
800 fprintf(stderr,
801 Name ": Failed to load all information "
802 "sections on %s\n", devname);
803 free(super);
804 return rv;
805 }
806
807 load_ddf_local(fd, super, devname, 0);
808
809 /* Should possibly check the sections .... */
810
811 st->sb = super;
812 if (st->ss == NULL) {
813 st->ss = &super_ddf;
814 st->minor_version = 0;
815 st->max_devs = 512;
816 }
817 st->loaded_container = 0;
818 return 0;
819
820 }
821
822 static void free_super_ddf(struct supertype *st)
823 {
824 struct ddf_super *ddf = st->sb;
825 if (ddf == NULL)
826 return;
827 free(ddf->phys);
828 free(ddf->virt);
829 while (ddf->conflist) {
830 struct vcl *v = ddf->conflist;
831 ddf->conflist = v->next;
832 if (v->block_sizes)
833 free(v->block_sizes);
834 free(v);
835 }
836 while (ddf->dlist) {
837 struct dl *d = ddf->dlist;
838 ddf->dlist = d->next;
839 if (d->fd >= 0)
840 close(d->fd);
841 if (d->spare)
842 free(d->spare);
843 free(d);
844 }
845 free(ddf);
846 st->sb = NULL;
847 }
848
849 static struct supertype *match_metadata_desc_ddf(char *arg)
850 {
851 /* 'ddf' only support containers */
852 struct supertype *st;
853 if (strcmp(arg, "ddf") != 0 &&
854 strcmp(arg, "default") != 0
855 )
856 return NULL;
857
858 st = malloc(sizeof(*st));
859 memset(st, 0, sizeof(*st));
860 st->ss = &super_ddf;
861 st->max_devs = 512;
862 st->minor_version = 0;
863 st->sb = NULL;
864 return st;
865 }
866
867
868 #ifndef MDASSEMBLE
869
870 static mapping_t ddf_state[] = {
871 { "Optimal", 0},
872 { "Degraded", 1},
873 { "Deleted", 2},
874 { "Missing", 3},
875 { "Failed", 4},
876 { "Partially Optimal", 5},
877 { "-reserved-", 6},
878 { "-reserved-", 7},
879 { NULL, 0}
880 };
881
882 static mapping_t ddf_init_state[] = {
883 { "Not Initialised", 0},
884 { "QuickInit in Progress", 1},
885 { "Fully Initialised", 2},
886 { "*UNKNOWN*", 3},
887 { NULL, 0}
888 };
889 static mapping_t ddf_access[] = {
890 { "Read/Write", 0},
891 { "Reserved", 1},
892 { "Read Only", 2},
893 { "Blocked (no access)", 3},
894 { NULL ,0}
895 };
896
897 static mapping_t ddf_level[] = {
898 { "RAID0", DDF_RAID0},
899 { "RAID1", DDF_RAID1},
900 { "RAID3", DDF_RAID3},
901 { "RAID4", DDF_RAID4},
902 { "RAID5", DDF_RAID5},
903 { "RAID1E",DDF_RAID1E},
904 { "JBOD", DDF_JBOD},
905 { "CONCAT",DDF_CONCAT},
906 { "RAID5E",DDF_RAID5E},
907 { "RAID5EE",DDF_RAID5EE},
908 { "RAID6", DDF_RAID6},
909 { NULL, 0}
910 };
911 static mapping_t ddf_sec_level[] = {
912 { "Striped", DDF_2STRIPED},
913 { "Mirrored", DDF_2MIRRORED},
914 { "Concat", DDF_2CONCAT},
915 { "Spanned", DDF_2SPANNED},
916 { NULL, 0}
917 };
918 #endif
919
920 struct num_mapping {
921 int num1, num2;
922 };
923 static struct num_mapping ddf_level_num[] = {
924 { DDF_RAID0, 0 },
925 { DDF_RAID1, 1 },
926 { DDF_RAID3, LEVEL_UNSUPPORTED },
927 { DDF_RAID4, 4 },
928 { DDF_RAID5, 5 },
929 { DDF_RAID1E, LEVEL_UNSUPPORTED },
930 { DDF_JBOD, LEVEL_UNSUPPORTED },
931 { DDF_CONCAT, LEVEL_LINEAR },
932 { DDF_RAID5E, LEVEL_UNSUPPORTED },
933 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
934 { DDF_RAID6, 6},
935 { MAXINT, MAXINT }
936 };
937
938 static int map_num1(struct num_mapping *map, int num)
939 {
940 int i;
941 for (i=0 ; map[i].num1 != MAXINT; i++)
942 if (map[i].num1 == num)
943 break;
944 return map[i].num2;
945 }
946
947 #ifndef MDASSEMBLE
948 static void print_guid(char *guid, int tstamp)
949 {
950 /* A GUIDs are part (or all) ASCII and part binary.
951 * They tend to be space padded.
952 * We print the GUID in HEX, then in parentheses add
953 * any initial ASCII sequence, and a possible
954 * time stamp from bytes 16-19
955 */
956 int l = DDF_GUID_LEN;
957 int i;
958
959 for (i=0 ; i<DDF_GUID_LEN ; i++) {
960 if ((i&3)==0 && i != 0) printf(":");
961 printf("%02X", guid[i]&255);
962 }
963
964 printf(" (");
965 while (l && guid[l-1] == ' ')
966 l--;
967 for (i=0 ; i<l ; i++) {
968 if (guid[i] >= 0x20 && guid[i] < 0x7f)
969 fputc(guid[i], stdout);
970 else
971 break;
972 }
973 if (tstamp) {
974 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
975 char tbuf[100];
976 struct tm *tm;
977 tm = localtime(&then);
978 strftime(tbuf, 100, " %D %T",tm);
979 fputs(tbuf, stdout);
980 }
981 printf(")");
982 }
983
984 static void examine_vd(int n, struct ddf_super *sb, char *guid)
985 {
986 int crl = sb->conf_rec_len;
987 struct vcl *vcl;
988
989 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
990 struct vd_config *vc = &vcl->conf;
991
992 if (calc_crc(vc, crl*512) != vc->crc)
993 continue;
994 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
995 continue;
996
997 /* Ok, we know about this VD, let's give more details */
998 printf(" Raid Devices[%d] : %d\n", n,
999 __be16_to_cpu(vc->prim_elmnt_count));
1000 printf(" Chunk Size[%d] : %d sectors\n", n,
1001 1 << vc->chunk_shift);
1002 printf(" Raid Level[%d] : %s\n", n,
1003 map_num(ddf_level, vc->prl)?:"-unknown-");
1004 if (vc->sec_elmnt_count != 1) {
1005 printf(" Secondary Position[%d] : %d of %d\n", n,
1006 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1007 printf(" Secondary Level[%d] : %s\n", n,
1008 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1009 }
1010 printf(" Device Size[%d] : %llu\n", n,
1011 __be64_to_cpu(vc->blocks)/2);
1012 printf(" Array Size[%d] : %llu\n", n,
1013 __be64_to_cpu(vc->array_blocks)/2);
1014 }
1015 }
1016
1017 static void examine_vds(struct ddf_super *sb)
1018 {
1019 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1020 int i;
1021 printf(" Virtual Disks : %d\n", cnt);
1022
1023 for (i=0; i<cnt; i++) {
1024 struct virtual_entry *ve = &sb->virt->entries[i];
1025 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1026 printf("\n");
1027 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1028 printf(" state[%d] : %s, %s%s\n", i,
1029 map_num(ddf_state, ve->state & 7),
1030 (ve->state & 8) ? "Morphing, ": "",
1031 (ve->state & 16)? "Not Consistent" : "Consistent");
1032 printf(" init state[%d] : %s\n", i,
1033 map_num(ddf_init_state, ve->init_state&3));
1034 printf(" access[%d] : %s\n", i,
1035 map_num(ddf_access, (ve->init_state>>6) & 3));
1036 printf(" Name[%d] : %.16s\n", i, ve->name);
1037 examine_vd(i, sb, ve->guid);
1038 }
1039 if (cnt) printf("\n");
1040 }
1041
1042 static void examine_pds(struct ddf_super *sb)
1043 {
1044 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1045 int i;
1046 struct dl *dl;
1047 printf(" Physical Disks : %d\n", cnt);
1048
1049 for (i=0 ; i<cnt ; i++) {
1050 struct phys_disk_entry *pd = &sb->phys->entries[i];
1051 int type = __be16_to_cpu(pd->type);
1052 int state = __be16_to_cpu(pd->state);
1053
1054 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1055 printf("\n");
1056 printf(" ref[%d] : %08x\n", i,
1057 __be32_to_cpu(pd->refnum));
1058 printf(" mode[%d] : %s%s%s%s%s\n", i,
1059 (type&2) ? "active":"",
1060 (type&4) ? "Global Spare":"",
1061 (type&8) ? "spare" : "",
1062 (type&16)? ", foreign" : "",
1063 (type&32)? "pass-through" : "");
1064 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1065 (state&1)? "Online": "Offline",
1066 (state&2)? ", Failed": "",
1067 (state&4)? ", Rebuilding": "",
1068 (state&8)? ", in-transition": "",
1069 (state&16)? ", SMART errors": "",
1070 (state&32)? ", Unrecovered Read Errors": "",
1071 (state&64)? ", Missing" : "");
1072 printf(" Avail Size[%d] : %llu K\n", i,
1073 __be64_to_cpu(pd->config_size)>>1);
1074 for (dl = sb->dlist; dl ; dl = dl->next) {
1075 if (dl->disk.refnum == pd->refnum) {
1076 char *dv = map_dev(dl->major, dl->minor, 0);
1077 if (dv)
1078 printf(" Device[%d] : %s\n",
1079 i, dv);
1080 }
1081 }
1082 printf("\n");
1083 }
1084 }
1085
1086 static void examine_super_ddf(struct supertype *st, char *homehost)
1087 {
1088 struct ddf_super *sb = st->sb;
1089
1090 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1091 printf(" Version : %.8s\n", sb->anchor.revision);
1092 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1093 printf("\n");
1094 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1095 printf("\n");
1096 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1097 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1098 ?"yes" : "no");
1099 examine_vds(sb);
1100 examine_pds(sb);
1101 }
1102
1103 static void brief_examine_super_ddf(struct supertype *st)
1104 {
1105 /* We just write a generic DDF ARRAY entry
1106 * The uuid is all hex, 6 groups of 4 bytes
1107 */
1108 struct ddf_super *ddf = st->sb;
1109 int i;
1110 printf("ARRAY /dev/ddf metadata=ddf UUID=");
1111 for (i = 0; i < DDF_GUID_LEN; i++) {
1112 if ((i&3) == 0 && i != 0)
1113 printf(":");
1114 printf("%02X", 255&ddf->anchor.guid[i]);
1115 }
1116 printf("\n");
1117 }
1118
1119 static void detail_super_ddf(struct supertype *st, char *homehost)
1120 {
1121 /* FIXME later
1122 * Could print DDF GUID
1123 * Need to find which array
1124 * If whole, briefly list all arrays
1125 * If one, give name
1126 */
1127 }
1128
1129 static void brief_detail_super_ddf(struct supertype *st)
1130 {
1131 /* FIXME I really need to know which array we are detailing.
1132 * Can that be stored in ddf_super??
1133 */
1134 // struct ddf_super *ddf = st->sb;
1135 }
1136 #endif
1137
1138 static int match_home_ddf(struct supertype *st, char *homehost)
1139 {
1140 /* It matches 'this' host if the controller is a
1141 * Linux-MD controller with vendor_data matching
1142 * the hostname
1143 */
1144 struct ddf_super *ddf = st->sb;
1145 int len = strlen(homehost);
1146
1147 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1148 len < sizeof(ddf->controller.vendor_data) &&
1149 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1150 ddf->controller.vendor_data[len] == 0);
1151 }
1152
1153 #ifndef MDASSEMBLE
1154 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1155 {
1156 struct vcl *v;
1157
1158 for (v = ddf->conflist; v; v = v->next)
1159 if (inst == v->vcnum)
1160 return &v->conf;
1161 return NULL;
1162 }
1163 #endif
1164
1165 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1166 {
1167 /* Find the entry in phys_disk which has the given refnum
1168 * and return it's index
1169 */
1170 int i;
1171 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1172 if (ddf->phys->entries[i].refnum == phys_refnum)
1173 return i;
1174 return -1;
1175 }
1176
1177 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1178 {
1179 /* The uuid returned here is used for:
1180 * uuid to put into bitmap file (Create, Grow)
1181 * uuid for backup header when saving critical section (Grow)
1182 * comparing uuids when re-adding a device into an array
1183 * For each of these we can make do with a truncated
1184 * or hashed uuid rather than the original, as long as
1185 * everyone agrees.
1186 * In each case the uuid required is that of the data-array,
1187 * not the device-set.
1188 * In the case of SVD we assume the BVD is of interest,
1189 * though that might be the case if a bitmap were made for
1190 * a mirrored SVD - worry about that later.
1191 * So we need to find the VD configuration record for the
1192 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1193 * The first 16 bytes of the sha1 of these is used.
1194 */
1195 struct ddf_super *ddf = st->sb;
1196 struct vcl *vcl = ddf->currentconf;
1197 char *guid;
1198 char buf[20];
1199 struct sha1_ctx ctx;
1200
1201 if (vcl)
1202 guid = vcl->conf.guid;
1203 else
1204 guid = ddf->anchor.guid;
1205
1206 sha1_init_ctx(&ctx);
1207 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1208 if (vcl && vcl->conf.sec_elmnt_count > 1)
1209 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1210 sha1_finish_ctx(&ctx, buf);
1211 memcpy(uuid, buf, 4*4);
1212 }
1213
1214 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1215
1216 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1217 {
1218 struct ddf_super *ddf = st->sb;
1219
1220 if (ddf->currentconf) {
1221 getinfo_super_ddf_bvd(st, info);
1222 return;
1223 }
1224
1225 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1226 info->array.level = LEVEL_CONTAINER;
1227 info->array.layout = 0;
1228 info->array.md_minor = -1;
1229 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1230 (ddf->anchor.guid+16));
1231 info->array.utime = 0;
1232 info->array.chunk_size = 0;
1233
1234
1235 info->disk.major = 0;
1236 info->disk.minor = 0;
1237 if (ddf->dlist) {
1238 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1239 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1240
1241 info->data_offset = __be64_to_cpu(ddf->phys->
1242 entries[info->disk.raid_disk].
1243 config_size);
1244 info->component_size = ddf->dlist->size - info->data_offset;
1245 } else {
1246 info->disk.number = -1;
1247 // info->disk.raid_disk = find refnum in the table and use index;
1248 }
1249 info->disk.state = (1 << MD_DISK_SYNC);
1250
1251
1252 info->reshape_active = 0;
1253 info->name[0] = 0;
1254
1255 info->array.major_version = -1;
1256 info->array.minor_version = -2;
1257 strcpy(info->text_version, "ddf");
1258 info->safe_mode_delay = 0;
1259
1260 uuid_from_super_ddf(st, info->uuid);
1261
1262 }
1263
1264 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1265
1266 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1267 {
1268 struct ddf_super *ddf = st->sb;
1269 struct vcl *vc = ddf->currentconf;
1270 int cd = ddf->currentdev;
1271
1272 /* FIXME this returns BVD info - what if we want SVD ?? */
1273
1274 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1275 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1276 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1277 info->array.raid_disks);
1278 info->array.md_minor = -1;
1279 info->array.ctime = DECADE +
1280 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1281 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1282 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1283
1284 if (cd >= 0 && cd < ddf->mppe) {
1285 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1286 if (vc->block_sizes)
1287 info->component_size = vc->block_sizes[cd];
1288 else
1289 info->component_size = __be64_to_cpu(vc->conf.blocks);
1290 }
1291
1292 info->disk.major = 0;
1293 info->disk.minor = 0;
1294 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1295 // info->disk.raid_disk = find refnum in the table and use index;
1296 // info->disk.state = ???;
1297
1298 info->container_member = ddf->currentconf->vcnum;
1299
1300 info->resync_start = 0;
1301 if (!(ddf->virt->entries[info->container_member].state
1302 & DDF_state_inconsistent) &&
1303 (ddf->virt->entries[info->container_member].init_state
1304 & DDF_initstate_mask)
1305 == DDF_init_full)
1306 info->resync_start = ~0ULL;
1307
1308 uuid_from_super_ddf(st, info->uuid);
1309
1310 info->container_member = atoi(st->subarray);
1311 info->array.major_version = -1;
1312 info->array.minor_version = -2;
1313 sprintf(info->text_version, "/%s/%s",
1314 devnum2devname(st->container_dev),
1315 st->subarray);
1316 info->safe_mode_delay = 200;
1317
1318 info->name[0] = 0;
1319 }
1320
1321
1322 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1323 char *update,
1324 char *devname, int verbose,
1325 int uuid_set, char *homehost)
1326 {
1327 /* For 'assemble' and 'force' we need to return non-zero if any
1328 * change was made. For others, the return value is ignored.
1329 * Update options are:
1330 * force-one : This device looks a bit old but needs to be included,
1331 * update age info appropriately.
1332 * assemble: clear any 'faulty' flag to allow this device to
1333 * be assembled.
1334 * force-array: Array is degraded but being forced, mark it clean
1335 * if that will be needed to assemble it.
1336 *
1337 * newdev: not used ????
1338 * grow: Array has gained a new device - this is currently for
1339 * linear only
1340 * resync: mark as dirty so a resync will happen.
1341 * uuid: Change the uuid of the array to match what is given
1342 * homehost: update the recorded homehost
1343 * name: update the name - preserving the homehost
1344 * _reshape_progress: record new reshape_progress position.
1345 *
1346 * Following are not relevant for this version:
1347 * sparc2.2 : update from old dodgey metadata
1348 * super-minor: change the preferred_minor number
1349 * summaries: update redundant counters.
1350 */
1351 int rv = 0;
1352 // struct ddf_super *ddf = st->sb;
1353 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1354 // struct virtual_entry *ve = find_ve(ddf);
1355
1356 /* we don't need to handle "force-*" or "assemble" as
1357 * there is no need to 'trick' the kernel. We the metadata is
1358 * first updated to activate the array, all the implied modifications
1359 * will just happen.
1360 */
1361
1362 if (strcmp(update, "grow") == 0) {
1363 /* FIXME */
1364 }
1365 if (strcmp(update, "resync") == 0) {
1366 // info->resync_checkpoint = 0;
1367 }
1368 /* We ignore UUID updates as they make even less sense
1369 * with DDF
1370 */
1371 if (strcmp(update, "homehost") == 0) {
1372 /* homehost is stored in controller->vendor_data,
1373 * or it is when we are the vendor
1374 */
1375 // if (info->vendor_is_local)
1376 // strcpy(ddf->controller.vendor_data, homehost);
1377 }
1378 if (strcmp(update, "name") == 0) {
1379 /* name is stored in virtual_entry->name */
1380 // memset(ve->name, ' ', 16);
1381 // strncpy(ve->name, info->name, 16);
1382 }
1383 if (strcmp(update, "_reshape_progress") == 0) {
1384 /* We don't support reshape yet */
1385 }
1386
1387 // update_all_csum(ddf);
1388
1389 return rv;
1390 }
1391
1392 static void make_header_guid(char *guid)
1393 {
1394 __u32 stamp;
1395 int rfd;
1396 /* Create a DDF Header of Virtual Disk GUID */
1397
1398 /* 24 bytes of fiction required.
1399 * first 8 are a 'vendor-id' - "Linux-MD"
1400 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1401 * Remaining 8 random number plus timestamp
1402 */
1403 memcpy(guid, T10, sizeof(T10));
1404 stamp = __cpu_to_be32(0xdeadbeef);
1405 memcpy(guid+8, &stamp, 4);
1406 stamp = __cpu_to_be32(0);
1407 memcpy(guid+12, &stamp, 4);
1408 stamp = __cpu_to_be32(time(0) - DECADE);
1409 memcpy(guid+16, &stamp, 4);
1410 rfd = open("/dev/urandom", O_RDONLY);
1411 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1412 stamp = random();
1413 memcpy(guid+20, &stamp, 4);
1414 if (rfd >= 0) close(rfd);
1415 }
1416
1417 static int init_super_ddf_bvd(struct supertype *st,
1418 mdu_array_info_t *info,
1419 unsigned long long size,
1420 char *name, char *homehost,
1421 int *uuid);
1422
1423 static int init_super_ddf(struct supertype *st,
1424 mdu_array_info_t *info,
1425 unsigned long long size, char *name, char *homehost,
1426 int *uuid)
1427 {
1428 /* This is primarily called by Create when creating a new array.
1429 * We will then get add_to_super called for each component, and then
1430 * write_init_super called to write it out to each device.
1431 * For DDF, Create can create on fresh devices or on a pre-existing
1432 * array.
1433 * To create on a pre-existing array a different method will be called.
1434 * This one is just for fresh drives.
1435 *
1436 * We need to create the entire 'ddf' structure which includes:
1437 * DDF headers - these are easy.
1438 * Controller data - a Sector describing this controller .. not that
1439 * this is a controller exactly.
1440 * Physical Disk Record - one entry per device, so
1441 * leave plenty of space.
1442 * Virtual Disk Records - again, just leave plenty of space.
1443 * This just lists VDs, doesn't give details
1444 * Config records - describes the VDs that use this disk
1445 * DiskData - describes 'this' device.
1446 * BadBlockManagement - empty
1447 * Diag Space - empty
1448 * Vendor Logs - Could we put bitmaps here?
1449 *
1450 */
1451 struct ddf_super *ddf;
1452 char hostname[17];
1453 int hostlen;
1454 int max_phys_disks, max_virt_disks;
1455 unsigned long long sector;
1456 int clen;
1457 int i;
1458 int pdsize, vdsize;
1459 struct phys_disk *pd;
1460 struct virtual_disk *vd;
1461
1462 if (!info) {
1463 st->sb = NULL;
1464 return 0;
1465 }
1466 if (st->sb)
1467 return init_super_ddf_bvd(st, info, size, name, homehost,
1468 uuid);
1469
1470 posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1471 memset(ddf, 0, sizeof(*ddf));
1472 ddf->dlist = NULL; /* no physical disks yet */
1473 ddf->conflist = NULL; /* No virtual disks yet */
1474
1475 /* At least 32MB *must* be reserved for the ddf. So let's just
1476 * start 32MB from the end, and put the primary header there.
1477 * Don't do secondary for now.
1478 * We don't know exactly where that will be yet as it could be
1479 * different on each device. To just set up the lengths.
1480 *
1481 */
1482
1483 ddf->anchor.magic = DDF_HEADER_MAGIC;
1484 make_header_guid(ddf->anchor.guid);
1485
1486 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1487 ddf->anchor.seq = __cpu_to_be32(1);
1488 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1489 ddf->anchor.openflag = 0xFF;
1490 ddf->anchor.foreignflag = 0;
1491 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1492 ddf->anchor.pad0 = 0xff;
1493 memset(ddf->anchor.pad1, 0xff, 12);
1494 memset(ddf->anchor.header_ext, 0xff, 32);
1495 ddf->anchor.primary_lba = ~(__u64)0;
1496 ddf->anchor.secondary_lba = ~(__u64)0;
1497 ddf->anchor.type = DDF_HEADER_ANCHOR;
1498 memset(ddf->anchor.pad2, 0xff, 3);
1499 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1500 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1501 of 32M reserved.. */
1502 max_phys_disks = 1023; /* Should be enough */
1503 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1504 max_virt_disks = 255;
1505 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1506 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1507 ddf->max_part = 64;
1508 ddf->mppe = 256;
1509 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1510 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1511 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1512 memset(ddf->anchor.pad3, 0xff, 54);
1513 /* controller sections is one sector long immediately
1514 * after the ddf header */
1515 sector = 1;
1516 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1517 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1518 sector += 1;
1519
1520 /* phys is 8 sectors after that */
1521 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1522 sizeof(struct phys_disk_entry)*max_phys_disks,
1523 512);
1524 switch(pdsize/512) {
1525 case 2: case 8: case 32: case 128: case 512: break;
1526 default: abort();
1527 }
1528 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1529 ddf->anchor.phys_section_length =
1530 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1531 sector += pdsize/512;
1532
1533 /* virt is another 32 sectors */
1534 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1535 sizeof(struct virtual_entry) * max_virt_disks,
1536 512);
1537 switch(vdsize/512) {
1538 case 2: case 8: case 32: case 128: case 512: break;
1539 default: abort();
1540 }
1541 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1542 ddf->anchor.virt_section_length =
1543 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1544 sector += vdsize/512;
1545
1546 clen = ddf->conf_rec_len * (ddf->max_part+1);
1547 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1548 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1549 sector += clen;
1550
1551 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1552 ddf->anchor.data_section_length = __cpu_to_be32(1);
1553 sector += 1;
1554
1555 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1556 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1557 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1558 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1559 ddf->anchor.vendor_length = __cpu_to_be32(0);
1560 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1561
1562 memset(ddf->anchor.pad4, 0xff, 256);
1563
1564 memcpy(&ddf->primary, &ddf->anchor, 512);
1565 memcpy(&ddf->secondary, &ddf->anchor, 512);
1566
1567 ddf->primary.openflag = 1; /* I guess.. */
1568 ddf->primary.type = DDF_HEADER_PRIMARY;
1569
1570 ddf->secondary.openflag = 1; /* I guess.. */
1571 ddf->secondary.type = DDF_HEADER_SECONDARY;
1572
1573 ddf->active = &ddf->primary;
1574
1575 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1576
1577 /* 24 more bytes of fiction required.
1578 * first 8 are a 'vendor-id' - "Linux-MD"
1579 * Remaining 16 are serial number.... maybe a hostname would do?
1580 */
1581 memcpy(ddf->controller.guid, T10, sizeof(T10));
1582 gethostname(hostname, sizeof(hostname));
1583 hostname[sizeof(hostname) - 1] = 0;
1584 hostlen = strlen(hostname);
1585 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1586 for (i = strlen(T10) ; i+hostlen < 24; i++)
1587 ddf->controller.guid[i] = ' ';
1588
1589 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1590 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1591 ddf->controller.type.sub_vendor_id = 0;
1592 ddf->controller.type.sub_device_id = 0;
1593 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1594 memset(ddf->controller.pad, 0xff, 8);
1595 memset(ddf->controller.vendor_data, 0xff, 448);
1596
1597 posix_memalign((void**)&pd, 512, pdsize);
1598 ddf->phys = pd;
1599 ddf->pdsize = pdsize;
1600
1601 memset(pd, 0xff, pdsize);
1602 memset(pd, 0, sizeof(*pd));
1603 pd->magic = DDF_PHYS_DATA_MAGIC;
1604 pd->used_pdes = __cpu_to_be16(0);
1605 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1606 memset(pd->pad, 0xff, 52);
1607
1608 posix_memalign((void**)&vd, 512, vdsize);
1609 ddf->virt = vd;
1610 ddf->vdsize = vdsize;
1611 memset(vd, 0, vdsize);
1612 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1613 vd->populated_vdes = __cpu_to_be16(0);
1614 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1615 memset(vd->pad, 0xff, 52);
1616
1617 for (i=0; i<max_virt_disks; i++)
1618 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1619
1620 st->sb = ddf;
1621 ddf->updates_pending = 1;
1622 return 1;
1623 }
1624
1625 static int all_ff(char *guid)
1626 {
1627 int i;
1628 for (i = 0; i < DDF_GUID_LEN; i++)
1629 if (guid[i] != (char)0xff)
1630 return 0;
1631 return 1;
1632 }
1633 static int chunk_to_shift(int chunksize)
1634 {
1635 return ffs(chunksize/512)-1;
1636 }
1637
1638 static int level_to_prl(int level)
1639 {
1640 switch (level) {
1641 case LEVEL_LINEAR: return DDF_CONCAT;
1642 case 0: return DDF_RAID0;
1643 case 1: return DDF_RAID1;
1644 case 4: return DDF_RAID4;
1645 case 5: return DDF_RAID5;
1646 case 6: return DDF_RAID6;
1647 default: return -1;
1648 }
1649 }
1650 static int layout_to_rlq(int level, int layout, int raiddisks)
1651 {
1652 switch(level) {
1653 case 0:
1654 return DDF_RAID0_SIMPLE;
1655 case 1:
1656 switch(raiddisks) {
1657 case 2: return DDF_RAID1_SIMPLE;
1658 case 3: return DDF_RAID1_MULTI;
1659 default: return -1;
1660 }
1661 case 4:
1662 switch(layout) {
1663 case 0: return DDF_RAID4_N;
1664 }
1665 break;
1666 case 5:
1667 case 6:
1668 switch(layout) {
1669 case ALGORITHM_LEFT_ASYMMETRIC:
1670 return DDF_RAID5_N_RESTART;
1671 case ALGORITHM_RIGHT_ASYMMETRIC:
1672 if (level == 5)
1673 return DDF_RAID5_0_RESTART;
1674 else
1675 return DDF_RAID6_0_RESTART;
1676 case ALGORITHM_LEFT_SYMMETRIC:
1677 return DDF_RAID5_N_CONTINUE;
1678 case ALGORITHM_RIGHT_SYMMETRIC:
1679 return -1; /* not mentioned in standard */
1680 }
1681 }
1682 return -1;
1683 }
1684
1685 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1686 {
1687 switch(prl) {
1688 case DDF_RAID0:
1689 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1690 case DDF_RAID1:
1691 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1692 on raiddisks*/
1693 case DDF_RAID4:
1694 switch(rlq) {
1695 case DDF_RAID4_N:
1696 return 0;
1697 default:
1698 /* not supported */
1699 return -1; /* FIXME this isn't checked */
1700 }
1701 case DDF_RAID5:
1702 switch(rlq) {
1703 case DDF_RAID5_N_RESTART:
1704 return ALGORITHM_LEFT_ASYMMETRIC;
1705 case DDF_RAID5_0_RESTART:
1706 return ALGORITHM_RIGHT_ASYMMETRIC;
1707 case DDF_RAID5_N_CONTINUE:
1708 return ALGORITHM_LEFT_SYMMETRIC;
1709 default:
1710 return -1;
1711 }
1712 case DDF_RAID6:
1713 switch(rlq) {
1714 case DDF_RAID5_N_RESTART:
1715 return ALGORITHM_LEFT_ASYMMETRIC;
1716 case DDF_RAID6_0_RESTART:
1717 return ALGORITHM_RIGHT_ASYMMETRIC;
1718 case DDF_RAID5_N_CONTINUE:
1719 return ALGORITHM_LEFT_SYMMETRIC;
1720 default:
1721 return -1;
1722 }
1723 }
1724 return -1;
1725 }
1726
1727 #ifndef MDASSEMBLE
1728 struct extent {
1729 unsigned long long start, size;
1730 };
1731 static int cmp_extent(const void *av, const void *bv)
1732 {
1733 const struct extent *a = av;
1734 const struct extent *b = bv;
1735 if (a->start < b->start)
1736 return -1;
1737 if (a->start > b->start)
1738 return 1;
1739 return 0;
1740 }
1741
1742 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1743 {
1744 /* find a list of used extents on the give physical device
1745 * (dnum) of the given ddf.
1746 * Return a malloced array of 'struct extent'
1747
1748 FIXME ignore DDF_Legacy devices?
1749
1750 */
1751 struct extent *rv;
1752 int n = 0;
1753 int i, j;
1754
1755 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1756 if (!rv)
1757 return NULL;
1758
1759 for (i = 0; i < ddf->max_part; i++) {
1760 struct vcl *v = dl->vlist[i];
1761 if (v == NULL)
1762 continue;
1763 for (j=0; j < v->conf.prim_elmnt_count; j++)
1764 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1765 /* This device plays role 'j' in 'v'. */
1766 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1767 rv[n].size = __be64_to_cpu(v->conf.blocks);
1768 n++;
1769 break;
1770 }
1771 }
1772 qsort(rv, n, sizeof(*rv), cmp_extent);
1773
1774 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1775 rv[n].size = 0;
1776 return rv;
1777 }
1778 #endif
1779
1780 static int init_super_ddf_bvd(struct supertype *st,
1781 mdu_array_info_t *info,
1782 unsigned long long size,
1783 char *name, char *homehost,
1784 int *uuid)
1785 {
1786 /* We are creating a BVD inside a pre-existing container.
1787 * so st->sb is already set.
1788 * We need to create a new vd_config and a new virtual_entry
1789 */
1790 struct ddf_super *ddf = st->sb;
1791 int venum;
1792 struct virtual_entry *ve;
1793 struct vcl *vcl;
1794 struct vd_config *vc;
1795
1796 if (__be16_to_cpu(ddf->virt->populated_vdes)
1797 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1798 fprintf(stderr, Name": This ddf already has the "
1799 "maximum of %d virtual devices\n",
1800 __be16_to_cpu(ddf->virt->max_vdes));
1801 return 0;
1802 }
1803
1804 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1805 if (all_ff(ddf->virt->entries[venum].guid))
1806 break;
1807 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1808 fprintf(stderr, Name ": Cannot find spare slot for "
1809 "virtual disk - DDF is corrupt\n");
1810 return 0;
1811 }
1812 ve = &ddf->virt->entries[venum];
1813
1814 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1815 * timestamp, random number
1816 */
1817 make_header_guid(ve->guid);
1818 ve->unit = __cpu_to_be16(info->md_minor);
1819 ve->pad0 = 0xFFFF;
1820 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1821 ve->type = 0;
1822 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1823 if (info->state & 1) /* clean */
1824 ve->init_state = DDF_init_full;
1825 else
1826 ve->init_state = DDF_init_not;
1827
1828 memset(ve->pad1, 0xff, 14);
1829 memset(ve->name, ' ', 16);
1830 if (name)
1831 strncpy(ve->name, name, 16);
1832 ddf->virt->populated_vdes =
1833 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1834
1835 /* Now create a new vd_config */
1836 posix_memalign((void**)&vcl, 512,
1837 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1838 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1839 vcl->vcnum = venum;
1840 sprintf(st->subarray, "%d", venum);
1841 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1842
1843 vc = &vcl->conf;
1844
1845 vc->magic = DDF_VD_CONF_MAGIC;
1846 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1847 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1848 vc->seqnum = __cpu_to_be32(1);
1849 memset(vc->pad0, 0xff, 24);
1850 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1851 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1852 vc->prl = level_to_prl(info->level);
1853 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1854 vc->sec_elmnt_count = 1;
1855 vc->sec_elmnt_seq = 0;
1856 vc->srl = 0;
1857 vc->blocks = __cpu_to_be64(info->size * 2);
1858 vc->array_blocks = __cpu_to_be64(
1859 calc_array_size(info->level, info->raid_disks, info->layout,
1860 info->chunk_size, info->size*2));
1861 memset(vc->pad1, 0xff, 8);
1862 vc->spare_refs[0] = 0xffffffff;
1863 vc->spare_refs[1] = 0xffffffff;
1864 vc->spare_refs[2] = 0xffffffff;
1865 vc->spare_refs[3] = 0xffffffff;
1866 vc->spare_refs[4] = 0xffffffff;
1867 vc->spare_refs[5] = 0xffffffff;
1868 vc->spare_refs[6] = 0xffffffff;
1869 vc->spare_refs[7] = 0xffffffff;
1870 memset(vc->cache_pol, 0, 8);
1871 vc->bg_rate = 0x80;
1872 memset(vc->pad2, 0xff, 3);
1873 memset(vc->pad3, 0xff, 52);
1874 memset(vc->pad4, 0xff, 192);
1875 memset(vc->v0, 0xff, 32);
1876 memset(vc->v1, 0xff, 32);
1877 memset(vc->v2, 0xff, 16);
1878 memset(vc->v3, 0xff, 16);
1879 memset(vc->vendor, 0xff, 32);
1880
1881 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1882 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1883
1884 vcl->next = ddf->conflist;
1885 ddf->conflist = vcl;
1886 ddf->currentconf = vcl;
1887 ddf->updates_pending = 1;
1888 return 1;
1889 }
1890
1891 #ifndef MDASSEMBLE
1892 static void add_to_super_ddf_bvd(struct supertype *st,
1893 mdu_disk_info_t *dk, int fd, char *devname)
1894 {
1895 /* fd and devname identify a device with-in the ddf container (st).
1896 * dk identifies a location in the new BVD.
1897 * We need to find suitable free space in that device and update
1898 * the phys_refnum and lba_offset for the newly created vd_config.
1899 * We might also want to update the type in the phys_disk
1900 * section.
1901 */
1902 struct dl *dl;
1903 struct ddf_super *ddf = st->sb;
1904 struct vd_config *vc;
1905 __u64 *lba_offset;
1906 int working;
1907 int i;
1908 unsigned long long blocks, pos, esize;
1909 struct extent *ex;
1910
1911 for (dl = ddf->dlist; dl ; dl = dl->next)
1912 if (dl->major == dk->major &&
1913 dl->minor == dk->minor)
1914 break;
1915 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1916 return;
1917
1918 vc = &ddf->currentconf->conf;
1919 lba_offset = ddf->currentconf->lba_offset;
1920
1921 ex = get_extents(ddf, dl);
1922 if (!ex)
1923 return;
1924
1925 i = 0; pos = 0;
1926 blocks = __be64_to_cpu(vc->blocks);
1927 if (ddf->currentconf->block_sizes)
1928 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1929
1930 do {
1931 esize = ex[i].start - pos;
1932 if (esize >= blocks)
1933 break;
1934 pos = ex[i].start + ex[i].size;
1935 i++;
1936 } while (ex[i-1].size);
1937
1938 free(ex);
1939 if (esize < blocks)
1940 return;
1941
1942 ddf->currentdev = dk->raid_disk;
1943 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1944 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1945
1946 for (i=0; i < ddf->max_part ; i++)
1947 if (dl->vlist[i] == NULL)
1948 break;
1949 if (i == ddf->max_part)
1950 return;
1951 dl->vlist[i] = ddf->currentconf;
1952
1953 dl->fd = fd;
1954 dl->devname = devname;
1955
1956 /* Check how many working raid_disks, and if we can mark
1957 * array as optimal yet
1958 */
1959 working = 0;
1960
1961 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1962 if (vc->phys_refnum[i] != 0xffffffff)
1963 working++;
1964
1965 /* Find which virtual_entry */
1966 i = ddf->currentconf->vcnum;
1967 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1968 ddf->virt->entries[i].state =
1969 (ddf->virt->entries[i].state & ~DDF_state_mask)
1970 | DDF_state_optimal;
1971
1972 if (vc->prl == DDF_RAID6 &&
1973 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1974 ddf->virt->entries[i].state =
1975 (ddf->virt->entries[i].state & ~DDF_state_mask)
1976 | DDF_state_part_optimal;
1977
1978 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1979 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1980 ddf->updates_pending = 1;
1981 }
1982
1983 /* add a device to a container, either while creating it or while
1984 * expanding a pre-existing container
1985 */
1986 static void add_to_super_ddf(struct supertype *st,
1987 mdu_disk_info_t *dk, int fd, char *devname)
1988 {
1989 struct ddf_super *ddf = st->sb;
1990 struct dl *dd;
1991 time_t now;
1992 struct tm *tm;
1993 unsigned long long size;
1994 struct phys_disk_entry *pde;
1995 int n, i;
1996 struct stat stb;
1997
1998 if (ddf->currentconf) {
1999 add_to_super_ddf_bvd(st, dk, fd, devname);
2000 return;
2001 }
2002
2003 /* This is device numbered dk->number. We need to create
2004 * a phys_disk entry and a more detailed disk_data entry.
2005 */
2006 fstat(fd, &stb);
2007 posix_memalign((void**)&dd, 512,
2008 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
2009 dd->major = major(stb.st_rdev);
2010 dd->minor = minor(stb.st_rdev);
2011 dd->devname = devname;
2012 dd->fd = fd;
2013 dd->spare = NULL;
2014
2015 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2016 now = time(0);
2017 tm = localtime(&now);
2018 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2019 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2020 *(__u32*)(dd->disk.guid + 16) = random();
2021 *(__u32*)(dd->disk.guid + 20) = random();
2022
2023 do {
2024 /* Cannot be bothered finding a CRC of some irrelevant details*/
2025 dd->disk.refnum = random();
2026 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2027 i >= 0; i--)
2028 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2029 break;
2030 } while (i >= 0);
2031
2032 dd->disk.forced_ref = 1;
2033 dd->disk.forced_guid = 1;
2034 memset(dd->disk.vendor, ' ', 32);
2035 memcpy(dd->disk.vendor, "Linux", 5);
2036 memset(dd->disk.pad, 0xff, 442);
2037 for (i = 0; i < ddf->max_part ; i++)
2038 dd->vlist[i] = NULL;
2039
2040 n = __be16_to_cpu(ddf->phys->used_pdes);
2041 pde = &ddf->phys->entries[n];
2042 dd->pdnum = n;
2043
2044 if (st->update_tail) {
2045 int len = (sizeof(struct phys_disk) +
2046 sizeof(struct phys_disk_entry));
2047 struct phys_disk *pd;
2048
2049 pd = malloc(len);
2050 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2051 pd->used_pdes = __cpu_to_be16(n);
2052 pde = &pd->entries[0];
2053 dd->mdupdate = pd;
2054 } else {
2055 n++;
2056 ddf->phys->used_pdes = __cpu_to_be16(n);
2057 }
2058
2059 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2060 pde->refnum = dd->disk.refnum;
2061 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2062 pde->state = __cpu_to_be16(DDF_Online);
2063 get_dev_size(fd, NULL, &size);
2064 /* We are required to reserve 32Meg, and record the size in sectors */
2065 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2066 sprintf(pde->path, "%17.17s","Information: nil") ;
2067 memset(pde->pad, 0xff, 6);
2068
2069 dd->size = size >> 9;
2070 if (st->update_tail) {
2071 dd->next = ddf->add_list;
2072 ddf->add_list = dd;
2073 } else {
2074 dd->next = ddf->dlist;
2075 ddf->dlist = dd;
2076 ddf->updates_pending = 1;
2077 }
2078 }
2079
2080 /*
2081 * This is the write_init_super method for a ddf container. It is
2082 * called when creating a container or adding another device to a
2083 * container.
2084 */
2085
2086 static unsigned char null_conf[4096+512];
2087
2088 static int __write_init_super_ddf(struct supertype *st, int do_close)
2089 {
2090
2091 struct ddf_super *ddf = st->sb;
2092 int i;
2093 struct dl *d;
2094 int n_config;
2095 int conf_size;
2096
2097 unsigned long long size, sector;
2098
2099 for (d = ddf->dlist; d; d=d->next) {
2100 int fd = d->fd;
2101
2102 if (fd < 0)
2103 continue;
2104
2105 /* We need to fill in the primary, (secondary) and workspace
2106 * lba's in the headers, set their checksums,
2107 * Also checksum phys, virt....
2108 *
2109 * Then write everything out, finally the anchor is written.
2110 */
2111 get_dev_size(fd, NULL, &size);
2112 size /= 512;
2113 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2114 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2115 ddf->anchor.seq = __cpu_to_be32(1);
2116 memcpy(&ddf->primary, &ddf->anchor, 512);
2117 memcpy(&ddf->secondary, &ddf->anchor, 512);
2118
2119 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2120 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2121 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2122
2123 ddf->primary.openflag = 0;
2124 ddf->primary.type = DDF_HEADER_PRIMARY;
2125
2126 ddf->secondary.openflag = 0;
2127 ddf->secondary.type = DDF_HEADER_SECONDARY;
2128
2129 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2130 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2131
2132 sector = size - 16*1024*2;
2133 lseek64(fd, sector<<9, 0);
2134 write(fd, &ddf->primary, 512);
2135
2136 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2137 write(fd, &ddf->controller, 512);
2138
2139 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2140
2141 write(fd, ddf->phys, ddf->pdsize);
2142
2143 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2144 write(fd, ddf->virt, ddf->vdsize);
2145
2146 /* Now write lots of config records. */
2147 n_config = ddf->max_part;
2148 conf_size = ddf->conf_rec_len * 512;
2149 for (i = 0 ; i <= n_config ; i++) {
2150 struct vcl *c = d->vlist[i];
2151 if (i == n_config)
2152 c = (struct vcl*)d->spare;
2153
2154 if (c) {
2155 c->conf.crc = calc_crc(&c->conf, conf_size);
2156 write(fd, &c->conf, conf_size);
2157 } else {
2158 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2159 if (null_conf[0] != 0xff)
2160 memset(null_conf, 0xff, sizeof(null_conf));
2161 int togo = conf_size;
2162 while (togo > sizeof(null_conf)-512) {
2163 write(fd, null_aligned, sizeof(null_conf)-512);
2164 togo -= sizeof(null_conf)-512;
2165 }
2166 write(fd, null_aligned, togo);
2167 }
2168 }
2169 d->disk.crc = calc_crc(&d->disk, 512);
2170 write(fd, &d->disk, 512);
2171
2172 /* Maybe do the same for secondary */
2173
2174 lseek64(fd, (size-1)*512, SEEK_SET);
2175 write(fd, &ddf->anchor, 512);
2176 if (do_close) {
2177 close(fd);
2178 d->fd = -1;
2179 }
2180 }
2181 return 1;
2182 }
2183
2184 static int write_init_super_ddf(struct supertype *st)
2185 {
2186
2187 if (st->update_tail) {
2188 /* queue the virtual_disk and vd_config as metadata updates */
2189 struct virtual_disk *vd;
2190 struct vd_config *vc;
2191 struct ddf_super *ddf = st->sb;
2192 int len;
2193
2194 if (!ddf->currentconf) {
2195 int len = (sizeof(struct phys_disk) +
2196 sizeof(struct phys_disk_entry));
2197
2198 /* adding a disk to the container. */
2199 if (!ddf->add_list)
2200 return 0;
2201
2202 append_metadata_update(st, ddf->add_list->mdupdate, len);
2203 ddf->add_list->mdupdate = NULL;
2204 return 0;
2205 }
2206
2207 /* Newly created VD */
2208
2209 /* First the virtual disk. We have a slightly fake header */
2210 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2211 vd = malloc(len);
2212 *vd = *ddf->virt;
2213 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2214 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2215 append_metadata_update(st, vd, len);
2216
2217 /* Then the vd_config */
2218 len = ddf->conf_rec_len * 512;
2219 vc = malloc(len);
2220 memcpy(vc, &ddf->currentconf->conf, len);
2221 append_metadata_update(st, vc, len);
2222
2223 /* FIXME I need to close the fds! */
2224 return 0;
2225 } else
2226 return __write_init_super_ddf(st, 1);
2227 }
2228
2229 #endif
2230
2231 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2232 {
2233 /* We must reserve the last 32Meg */
2234 if (devsize <= 32*1024*2)
2235 return 0;
2236 return devsize - 32*1024*2;
2237 }
2238
2239 #ifndef MDASSEMBLE
2240 static int
2241 validate_geometry_ddf_container(struct supertype *st,
2242 int level, int layout, int raiddisks,
2243 int chunk, unsigned long long size,
2244 char *dev, unsigned long long *freesize,
2245 int verbose);
2246
2247 static int validate_geometry_ddf_bvd(struct supertype *st,
2248 int level, int layout, int raiddisks,
2249 int chunk, unsigned long long size,
2250 char *dev, unsigned long long *freesize,
2251 int verbose);
2252
2253 static int validate_geometry_ddf(struct supertype *st,
2254 int level, int layout, int raiddisks,
2255 int chunk, unsigned long long size,
2256 char *dev, unsigned long long *freesize,
2257 int verbose)
2258 {
2259 int fd;
2260 struct mdinfo *sra;
2261 int cfd;
2262
2263 /* ddf potentially supports lots of things, but it depends on
2264 * what devices are offered (and maybe kernel version?)
2265 * If given unused devices, we will make a container.
2266 * If given devices in a container, we will make a BVD.
2267 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2268 */
2269
2270 if (level == LEVEL_CONTAINER) {
2271 /* Must be a fresh device to add to a container */
2272 return validate_geometry_ddf_container(st, level, layout,
2273 raiddisks, chunk,
2274 size, dev, freesize,
2275 verbose);
2276 }
2277
2278 if (st->sb) {
2279 /* A container has already been opened, so we are
2280 * creating in there. Maybe a BVD, maybe an SVD.
2281 * Should make a distinction one day.
2282 */
2283 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2284 chunk, size, dev, freesize,
2285 verbose);
2286 }
2287 if (!dev) {
2288 /* Initial sanity check. Exclude illegal levels. */
2289 int i;
2290 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2291 if (ddf_level_num[i].num2 == level)
2292 break;
2293 if (ddf_level_num[i].num1 == MAXINT)
2294 return 0;
2295 /* Should check layout? etc */
2296 return 1;
2297 }
2298
2299 /* This is the first device for the array.
2300 * If it is a container, we read it in and do automagic allocations,
2301 * no other devices should be given.
2302 * Otherwise it must be a member device of a container, and we
2303 * do manual allocation.
2304 * Later we should check for a BVD and make an SVD.
2305 */
2306 fd = open(dev, O_RDONLY|O_EXCL, 0);
2307 if (fd >= 0) {
2308 sra = sysfs_read(fd, 0, GET_VERSION);
2309 close(fd);
2310 if (sra && sra->array.major_version == -1 &&
2311 strcmp(sra->text_version, "ddf") == 0) {
2312
2313 /* load super */
2314 /* find space for 'n' devices. */
2315 /* remember the devices */
2316 /* Somehow return the fact that we have enough */
2317 }
2318
2319 if (verbose)
2320 fprintf(stderr,
2321 Name ": ddf: Cannot create this array "
2322 "on device %s\n",
2323 dev);
2324 return 0;
2325 }
2326 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2327 if (verbose)
2328 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2329 dev, strerror(errno));
2330 return 0;
2331 }
2332 /* Well, it is in use by someone, maybe a 'ddf' container. */
2333 cfd = open_container(fd);
2334 if (cfd < 0) {
2335 close(fd);
2336 if (verbose)
2337 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2338 dev, strerror(EBUSY));
2339 return 0;
2340 }
2341 sra = sysfs_read(cfd, 0, GET_VERSION);
2342 close(fd);
2343 if (sra && sra->array.major_version == -1 &&
2344 strcmp(sra->text_version, "ddf") == 0) {
2345 /* This is a member of a ddf container. Load the container
2346 * and try to create a bvd
2347 */
2348 struct ddf_super *ddf;
2349 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2350 st->sb = ddf;
2351 st->container_dev = fd2devnum(cfd);
2352 close(cfd);
2353 return validate_geometry_ddf_bvd(st, level, layout,
2354 raiddisks, chunk, size,
2355 dev, freesize,
2356 verbose);
2357 }
2358 close(cfd);
2359 } else /* device may belong to a different container */
2360 return 0;
2361
2362 return 1;
2363 }
2364
2365 static int
2366 validate_geometry_ddf_container(struct supertype *st,
2367 int level, int layout, int raiddisks,
2368 int chunk, unsigned long long size,
2369 char *dev, unsigned long long *freesize,
2370 int verbose)
2371 {
2372 int fd;
2373 unsigned long long ldsize;
2374
2375 if (level != LEVEL_CONTAINER)
2376 return 0;
2377 if (!dev)
2378 return 1;
2379
2380 fd = open(dev, O_RDONLY|O_EXCL, 0);
2381 if (fd < 0) {
2382 if (verbose)
2383 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2384 dev, strerror(errno));
2385 return 0;
2386 }
2387 if (!get_dev_size(fd, dev, &ldsize)) {
2388 close(fd);
2389 return 0;
2390 }
2391 close(fd);
2392
2393 *freesize = avail_size_ddf(st, ldsize >> 9);
2394
2395 return 1;
2396 }
2397
2398 static int validate_geometry_ddf_bvd(struct supertype *st,
2399 int level, int layout, int raiddisks,
2400 int chunk, unsigned long long size,
2401 char *dev, unsigned long long *freesize,
2402 int verbose)
2403 {
2404 struct stat stb;
2405 struct ddf_super *ddf = st->sb;
2406 struct dl *dl;
2407 unsigned long long pos = 0;
2408 unsigned long long maxsize;
2409 struct extent *e;
2410 int i;
2411 /* ddf/bvd supports lots of things, but not containers */
2412 if (level == LEVEL_CONTAINER)
2413 return 0;
2414 /* We must have the container info already read in. */
2415 if (!ddf)
2416 return 0;
2417
2418 if (!dev) {
2419 /* General test: make sure there is space for
2420 * 'raiddisks' device extents of size 'size'.
2421 */
2422 unsigned long long minsize = size;
2423 int dcnt = 0;
2424 if (minsize == 0)
2425 minsize = 8;
2426 for (dl = ddf->dlist; dl ; dl = dl->next)
2427 {
2428 int found = 0;
2429 pos = 0;
2430
2431 i = 0;
2432 e = get_extents(ddf, dl);
2433 if (!e) continue;
2434 do {
2435 unsigned long long esize;
2436 esize = e[i].start - pos;
2437 if (esize >= minsize)
2438 found = 1;
2439 pos = e[i].start + e[i].size;
2440 i++;
2441 } while (e[i-1].size);
2442 if (found)
2443 dcnt++;
2444 free(e);
2445 }
2446 if (dcnt < raiddisks) {
2447 if (verbose)
2448 fprintf(stderr,
2449 Name ": ddf: Not enough devices with "
2450 "space for this array (%d < %d)\n",
2451 dcnt, raiddisks);
2452 return 0;
2453 }
2454 return 1;
2455 }
2456 /* This device must be a member of the set */
2457 if (stat(dev, &stb) < 0)
2458 return 0;
2459 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2460 return 0;
2461 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2462 if (dl->major == major(stb.st_rdev) &&
2463 dl->minor == minor(stb.st_rdev))
2464 break;
2465 }
2466 if (!dl) {
2467 if (verbose)
2468 fprintf(stderr, Name ": ddf: %s is not in the "
2469 "same DDF set\n",
2470 dev);
2471 return 0;
2472 }
2473 e = get_extents(ddf, dl);
2474 maxsize = 0;
2475 i = 0;
2476 if (e) do {
2477 unsigned long long esize;
2478 esize = e[i].start - pos;
2479 if (esize >= maxsize)
2480 maxsize = esize;
2481 pos = e[i].start + e[i].size;
2482 i++;
2483 } while (e[i-1].size);
2484 *freesize = maxsize;
2485 // FIXME here I am
2486
2487 return 1;
2488 }
2489
2490 static int load_super_ddf_all(struct supertype *st, int fd,
2491 void **sbp, char *devname, int keep_fd)
2492 {
2493 struct mdinfo *sra;
2494 struct ddf_super *super;
2495 struct mdinfo *sd, *best = NULL;
2496 int bestseq = 0;
2497 int seq;
2498 char nm[20];
2499 int dfd;
2500
2501 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2502 if (!sra)
2503 return 1;
2504 if (sra->array.major_version != -1 ||
2505 sra->array.minor_version != -2 ||
2506 strcmp(sra->text_version, "ddf") != 0)
2507 return 1;
2508
2509 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2510 return 1;
2511 memset(super, 0, sizeof(*super));
2512
2513 /* first, try each device, and choose the best ddf */
2514 for (sd = sra->devs ; sd ; sd = sd->next) {
2515 int rv;
2516 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2517 dfd = dev_open(nm, O_RDONLY);
2518 if (dfd < 0)
2519 return 2;
2520 rv = load_ddf_headers(dfd, super, NULL);
2521 close(dfd);
2522 if (rv == 0) {
2523 seq = __be32_to_cpu(super->active->seq);
2524 if (super->active->openflag)
2525 seq--;
2526 if (!best || seq > bestseq) {
2527 bestseq = seq;
2528 best = sd;
2529 }
2530 }
2531 }
2532 if (!best)
2533 return 1;
2534 /* OK, load this ddf */
2535 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2536 dfd = dev_open(nm, O_RDONLY);
2537 if (dfd < 0)
2538 return 1;
2539 load_ddf_headers(dfd, super, NULL);
2540 load_ddf_global(dfd, super, NULL);
2541 close(dfd);
2542 /* Now we need the device-local bits */
2543 for (sd = sra->devs ; sd ; sd = sd->next) {
2544 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2545 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2546 if (dfd < 0)
2547 return 2;
2548 load_ddf_headers(dfd, super, NULL);
2549 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2550 if (!keep_fd) close(dfd);
2551 }
2552 if (st->subarray[0]) {
2553 struct vcl *v;
2554
2555 for (v = super->conflist; v; v = v->next)
2556 if (v->vcnum == atoi(st->subarray))
2557 super->currentconf = v;
2558 if (!super->currentconf)
2559 return 1;
2560 }
2561 *sbp = super;
2562 if (st->ss == NULL) {
2563 st->ss = &super_ddf;
2564 st->minor_version = 0;
2565 st->max_devs = 512;
2566 st->container_dev = fd2devnum(fd);
2567 }
2568 st->loaded_container = 1;
2569 return 0;
2570 }
2571 #endif /* MDASSEMBLE */
2572
2573 static struct mdinfo *container_content_ddf(struct supertype *st)
2574 {
2575 /* Given a container loaded by load_super_ddf_all,
2576 * extract information about all the arrays into
2577 * an mdinfo tree.
2578 *
2579 * For each vcl in conflist: create an mdinfo, fill it in,
2580 * then look for matching devices (phys_refnum) in dlist
2581 * and create appropriate device mdinfo.
2582 */
2583 struct ddf_super *ddf = st->sb;
2584 struct mdinfo *rest = NULL;
2585 struct vcl *vc;
2586
2587 for (vc = ddf->conflist ; vc ; vc=vc->next)
2588 {
2589 int i;
2590 struct mdinfo *this;
2591 this = malloc(sizeof(*this));
2592 memset(this, 0, sizeof(*this));
2593 this->next = rest;
2594 rest = this;
2595
2596 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2597 this->array.raid_disks =
2598 __be16_to_cpu(vc->conf.prim_elmnt_count);
2599 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2600 this->array.raid_disks);
2601 this->array.md_minor = -1;
2602 this->array.major_version = -1;
2603 this->array.minor_version = -2;
2604 this->array.ctime = DECADE +
2605 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2606 this->array.utime = DECADE +
2607 __be32_to_cpu(vc->conf.timestamp);
2608 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2609
2610 i = vc->vcnum;
2611 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2612 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2613 DDF_init_full) {
2614 this->array.state = 0;
2615 this->resync_start = 0;
2616 } else {
2617 this->array.state = 1;
2618 this->resync_start = ~0ULL;
2619 }
2620 memcpy(this->name, ddf->virt->entries[i].name, 32);
2621 this->name[32]=0;
2622
2623 memset(this->uuid, 0, sizeof(this->uuid));
2624 this->component_size = __be64_to_cpu(vc->conf.blocks);
2625 this->array.size = this->component_size / 2;
2626 this->container_member = i;
2627
2628 ddf->currentconf = vc;
2629 uuid_from_super_ddf(st, this->uuid);
2630 ddf->currentconf = NULL;
2631
2632 sprintf(this->text_version, "/%s/%d",
2633 devnum2devname(st->container_dev),
2634 this->container_member);
2635
2636 for (i=0 ; i < ddf->mppe ; i++) {
2637 struct mdinfo *dev;
2638 struct dl *d;
2639
2640 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2641 continue;
2642
2643 this->array.working_disks++;
2644
2645 for (d = ddf->dlist; d ; d=d->next)
2646 if (d->disk.refnum == vc->conf.phys_refnum[i])
2647 break;
2648 if (d == NULL)
2649 break;
2650
2651 dev = malloc(sizeof(*dev));
2652 memset(dev, 0, sizeof(*dev));
2653 dev->next = this->devs;
2654 this->devs = dev;
2655
2656 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2657 dev->disk.major = d->major;
2658 dev->disk.minor = d->minor;
2659 dev->disk.raid_disk = i;
2660 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2661
2662 dev->events = __be32_to_cpu(ddf->primary.seq);
2663 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2664 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2665 if (d->devname)
2666 strcpy(dev->name, d->devname);
2667 }
2668 }
2669 return rest;
2670 }
2671
2672 static int store_zero_ddf(struct supertype *st, int fd)
2673 {
2674 unsigned long long dsize;
2675 void *buf;
2676
2677 if (!get_dev_size(fd, NULL, &dsize))
2678 return 1;
2679
2680 posix_memalign(&buf, 512, 512);
2681 memset(buf, 0, 512);
2682
2683 lseek64(fd, dsize-512, 0);
2684 write(fd, buf, 512);
2685 free(buf);
2686 return 0;
2687 }
2688
2689 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2690 {
2691 /*
2692 * return:
2693 * 0 same, or first was empty, and second was copied
2694 * 1 second had wrong number
2695 * 2 wrong uuid
2696 * 3 wrong other info
2697 */
2698 struct ddf_super *first = st->sb;
2699 struct ddf_super *second = tst->sb;
2700
2701 if (!first) {
2702 st->sb = tst->sb;
2703 tst->sb = NULL;
2704 return 0;
2705 }
2706
2707 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2708 return 2;
2709
2710 /* FIXME should I look at anything else? */
2711 return 0;
2712 }
2713
2714 #ifndef MDASSEMBLE
2715 /*
2716 * A new array 'a' has been started which claims to be instance 'inst'
2717 * within container 'c'.
2718 * We need to confirm that the array matches the metadata in 'c' so
2719 * that we don't corrupt any metadata.
2720 */
2721 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2722 {
2723 dprintf("ddf: open_new %s\n", inst);
2724 a->info.container_member = atoi(inst);
2725 return 0;
2726 }
2727
2728 /*
2729 * The array 'a' is to be marked clean in the metadata.
2730 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2731 * clean up to the point (in sectors). If that cannot be recorded in the
2732 * metadata, then leave it as dirty.
2733 *
2734 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2735 * !global! virtual_disk.virtual_entry structure.
2736 */
2737 static int ddf_set_array_state(struct active_array *a, int consistent)
2738 {
2739 struct ddf_super *ddf = a->container->sb;
2740 int inst = a->info.container_member;
2741 int old = ddf->virt->entries[inst].state;
2742 if (consistent == 2) {
2743 /* Should check if a recovery should be started FIXME */
2744 consistent = 1;
2745 if (a->resync_start != ~0ULL)
2746 consistent = 0;
2747 }
2748 if (consistent)
2749 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2750 else
2751 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2752 if (old != ddf->virt->entries[inst].state)
2753 ddf->updates_pending = 1;
2754
2755 old = ddf->virt->entries[inst].init_state;
2756 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2757 if (a->resync_start == ~0ULL)
2758 ddf->virt->entries[inst].init_state |= DDF_init_full;
2759 else if (a->resync_start == 0)
2760 ddf->virt->entries[inst].init_state |= DDF_init_not;
2761 else
2762 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2763 if (old != ddf->virt->entries[inst].init_state)
2764 ddf->updates_pending = 1;
2765
2766 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2767 a->resync_start);
2768 return consistent;
2769 }
2770
2771 /*
2772 * The state of each disk is stored in the global phys_disk structure
2773 * in phys_disk.entries[n].state.
2774 * This makes various combinations awkward.
2775 * - When a device fails in any array, it must be failed in all arrays
2776 * that include a part of this device.
2777 * - When a component is rebuilding, we cannot include it officially in the
2778 * array unless this is the only array that uses the device.
2779 *
2780 * So: when transitioning:
2781 * Online -> failed, just set failed flag. monitor will propagate
2782 * spare -> online, the device might need to be added to the array.
2783 * spare -> failed, just set failed. Don't worry if in array or not.
2784 */
2785 static void ddf_set_disk(struct active_array *a, int n, int state)
2786 {
2787 struct ddf_super *ddf = a->container->sb;
2788 int inst = a->info.container_member;
2789 struct vd_config *vc = find_vdcr(ddf, inst);
2790 int pd = find_phys(ddf, vc->phys_refnum[n]);
2791 int i, st, working;
2792
2793 if (vc == NULL) {
2794 dprintf("ddf: cannot find instance %d!!\n", inst);
2795 return;
2796 }
2797 if (pd < 0) {
2798 /* disk doesn't currently exist. If it is now in_sync,
2799 * insert it. */
2800 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2801 /* Find dev 'n' in a->info->devs, determine the
2802 * ddf refnum, and set vc->phys_refnum and update
2803 * phys->entries[]
2804 */
2805 /* FIXME */
2806 }
2807 } else {
2808 int old = ddf->phys->entries[pd].state;
2809 if (state & DS_FAULTY)
2810 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2811 if (state & DS_INSYNC) {
2812 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2813 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2814 }
2815 if (old != ddf->phys->entries[pd].state)
2816 ddf->updates_pending = 1;
2817 }
2818
2819 dprintf("ddf: set_disk %d to %x\n", n, state);
2820
2821 /* Now we need to check the state of the array and update
2822 * virtual_disk.entries[n].state.
2823 * It needs to be one of "optimal", "degraded", "failed".
2824 * I don't understand 'deleted' or 'missing'.
2825 */
2826 working = 0;
2827 for (i=0; i < a->info.array.raid_disks; i++) {
2828 pd = find_phys(ddf, vc->phys_refnum[i]);
2829 if (pd < 0)
2830 continue;
2831 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2832 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2833 == DDF_Online)
2834 working++;
2835 }
2836 state = DDF_state_degraded;
2837 if (working == a->info.array.raid_disks)
2838 state = DDF_state_optimal;
2839 else switch(vc->prl) {
2840 case DDF_RAID0:
2841 case DDF_CONCAT:
2842 case DDF_JBOD:
2843 state = DDF_state_failed;
2844 break;
2845 case DDF_RAID1:
2846 if (working == 0)
2847 state = DDF_state_failed;
2848 break;
2849 case DDF_RAID4:
2850 case DDF_RAID5:
2851 if (working < a->info.array.raid_disks-1)
2852 state = DDF_state_failed;
2853 break;
2854 case DDF_RAID6:
2855 if (working < a->info.array.raid_disks-2)
2856 state = DDF_state_failed;
2857 else if (working == a->info.array.raid_disks-1)
2858 state = DDF_state_part_optimal;
2859 break;
2860 }
2861
2862 if (ddf->virt->entries[inst].state !=
2863 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2864 | state)) {
2865
2866 ddf->virt->entries[inst].state =
2867 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2868 | state;
2869 ddf->updates_pending = 1;
2870 }
2871
2872 }
2873
2874 static void ddf_sync_metadata(struct supertype *st)
2875 {
2876
2877 /*
2878 * Write all data to all devices.
2879 * Later, we might be able to track whether only local changes
2880 * have been made, or whether any global data has been changed,
2881 * but ddf is sufficiently weird that it probably always
2882 * changes global data ....
2883 */
2884 struct ddf_super *ddf = st->sb;
2885 if (!ddf->updates_pending)
2886 return;
2887 ddf->updates_pending = 0;
2888 __write_init_super_ddf(st, 0);
2889 dprintf("ddf: sync_metadata\n");
2890 }
2891
2892 static void ddf_process_update(struct supertype *st,
2893 struct metadata_update *update)
2894 {
2895 /* Apply this update to the metadata.
2896 * The first 4 bytes are a DDF_*_MAGIC which guides
2897 * our actions.
2898 * Possible update are:
2899 * DDF_PHYS_RECORDS_MAGIC
2900 * Add a new physical device. Changes to this record
2901 * only happen implicitly.
2902 * used_pdes is the device number.
2903 * DDF_VIRT_RECORDS_MAGIC
2904 * Add a new VD. Possibly also change the 'access' bits.
2905 * populated_vdes is the entry number.
2906 * DDF_VD_CONF_MAGIC
2907 * New or updated VD. the VIRT_RECORD must already
2908 * exist. For an update, phys_refnum and lba_offset
2909 * (at least) are updated, and the VD_CONF must
2910 * be written to precisely those devices listed with
2911 * a phys_refnum.
2912 * DDF_SPARE_ASSIGN_MAGIC
2913 * replacement Spare Assignment Record... but for which device?
2914 *
2915 * So, e.g.:
2916 * - to create a new array, we send a VIRT_RECORD and
2917 * a VD_CONF. Then assemble and start the array.
2918 * - to activate a spare we send a VD_CONF to add the phys_refnum
2919 * and offset. This will also mark the spare as active with
2920 * a spare-assignment record.
2921 */
2922 struct ddf_super *ddf = st->sb;
2923 __u32 *magic = (__u32*)update->buf;
2924 struct phys_disk *pd;
2925 struct virtual_disk *vd;
2926 struct vd_config *vc;
2927 struct vcl *vcl;
2928 struct dl *dl;
2929 int mppe;
2930 int ent;
2931
2932 dprintf("Process update %x\n", *magic);
2933
2934 switch (*magic) {
2935 case DDF_PHYS_RECORDS_MAGIC:
2936
2937 if (update->len != (sizeof(struct phys_disk) +
2938 sizeof(struct phys_disk_entry)))
2939 return;
2940 pd = (struct phys_disk*)update->buf;
2941
2942 ent = __be16_to_cpu(pd->used_pdes);
2943 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2944 return;
2945 if (!all_ff(ddf->phys->entries[ent].guid))
2946 return;
2947 ddf->phys->entries[ent] = pd->entries[0];
2948 ddf->phys->used_pdes = __cpu_to_be16(1 +
2949 __be16_to_cpu(ddf->phys->used_pdes));
2950 ddf->updates_pending = 1;
2951 if (ddf->add_list) {
2952 struct active_array *a;
2953 struct dl *al = ddf->add_list;
2954 ddf->add_list = al->next;
2955
2956 al->next = ddf->dlist;
2957 ddf->dlist = al;
2958
2959 /* As a device has been added, we should check
2960 * for any degraded devices that might make
2961 * use of this spare */
2962 for (a = st->arrays ; a; a=a->next)
2963 a->check_degraded = 1;
2964 }
2965 break;
2966
2967 case DDF_VIRT_RECORDS_MAGIC:
2968
2969 if (update->len != (sizeof(struct virtual_disk) +
2970 sizeof(struct virtual_entry)))
2971 return;
2972 vd = (struct virtual_disk*)update->buf;
2973
2974 ent = __be16_to_cpu(vd->populated_vdes);
2975 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2976 return;
2977 if (!all_ff(ddf->virt->entries[ent].guid))
2978 return;
2979 ddf->virt->entries[ent] = vd->entries[0];
2980 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2981 __be16_to_cpu(ddf->virt->populated_vdes));
2982 ddf->updates_pending = 1;
2983 break;
2984
2985 case DDF_VD_CONF_MAGIC:
2986 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2987
2988 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2989 if (update->len != ddf->conf_rec_len * 512)
2990 return;
2991 vc = (struct vd_config*)update->buf;
2992 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2993 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2994 break;
2995 dprintf("vcl = %p\n", vcl);
2996 if (vcl) {
2997 /* An update, just copy the phys_refnum and lba_offset
2998 * fields
2999 */
3000 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3001 mppe * (sizeof(__u32) + sizeof(__u64)));
3002 } else {
3003 /* A new VD_CONF */
3004 vcl = update->space;
3005 update->space = NULL;
3006 vcl->next = ddf->conflist;
3007 memcpy(&vcl->conf, vc, update->len);
3008 vcl->lba_offset = (__u64*)
3009 &vcl->conf.phys_refnum[mppe];
3010 ddf->conflist = vcl;
3011 }
3012 /* Now make sure vlist is correct for each dl. */
3013 for (dl = ddf->dlist; dl; dl = dl->next) {
3014 int dn;
3015 int vn = 0;
3016 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3017 for (dn=0; dn < ddf->mppe ; dn++)
3018 if (vcl->conf.phys_refnum[dn] ==
3019 dl->disk.refnum) {
3020 dprintf("dev %d has %p at %d\n",
3021 dl->pdnum, vcl, vn);
3022 dl->vlist[vn++] = vcl;
3023 break;
3024 }
3025 while (vn < ddf->max_part)
3026 dl->vlist[vn++] = NULL;
3027 if (dl->vlist[0]) {
3028 ddf->phys->entries[dl->pdnum].type &=
3029 ~__cpu_to_be16(DDF_Global_Spare);
3030 ddf->phys->entries[dl->pdnum].type |=
3031 __cpu_to_be16(DDF_Active_in_VD);
3032 }
3033 if (dl->spare) {
3034 ddf->phys->entries[dl->pdnum].type &=
3035 ~__cpu_to_be16(DDF_Global_Spare);
3036 ddf->phys->entries[dl->pdnum].type |=
3037 __cpu_to_be16(DDF_Spare);
3038 }
3039 if (!dl->vlist[0] && !dl->spare) {
3040 ddf->phys->entries[dl->pdnum].type |=
3041 __cpu_to_be16(DDF_Global_Spare);
3042 ddf->phys->entries[dl->pdnum].type &=
3043 ~__cpu_to_be16(DDF_Spare |
3044 DDF_Active_in_VD);
3045 }
3046 }
3047 ddf->updates_pending = 1;
3048 break;
3049 case DDF_SPARE_ASSIGN_MAGIC:
3050 default: break;
3051 }
3052 }
3053
3054 static void ddf_prepare_update(struct supertype *st,
3055 struct metadata_update *update)
3056 {
3057 /* This update arrived at managemon.
3058 * We are about to pass it to monitor.
3059 * If a malloc is needed, do it here.
3060 */
3061 struct ddf_super *ddf = st->sb;
3062 __u32 *magic = (__u32*)update->buf;
3063 if (*magic == DDF_VD_CONF_MAGIC)
3064 posix_memalign(&update->space, 512,
3065 offsetof(struct vcl, conf)
3066 + ddf->conf_rec_len * 512);
3067 }
3068
3069 /*
3070 * Check if the array 'a' is degraded but not failed.
3071 * If it is, find as many spares as are available and needed and
3072 * arrange for their inclusion.
3073 * We only choose devices which are not already in the array,
3074 * and prefer those with a spare-assignment to this array.
3075 * otherwise we choose global spares - assuming always that
3076 * there is enough room.
3077 * For each spare that we assign, we return an 'mdinfo' which
3078 * describes the position for the device in the array.
3079 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3080 * the new phys_refnum and lba_offset values.
3081 *
3082 * Only worry about BVDs at the moment.
3083 */
3084 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3085 struct metadata_update **updates)
3086 {
3087 int working = 0;
3088 struct mdinfo *d;
3089 struct ddf_super *ddf = a->container->sb;
3090 int global_ok = 0;
3091 struct mdinfo *rv = NULL;
3092 struct mdinfo *di;
3093 struct metadata_update *mu;
3094 struct dl *dl;
3095 int i;
3096 struct vd_config *vc;
3097 __u64 *lba;
3098
3099 for (d = a->info.devs ; d ; d = d->next) {
3100 if ((d->curr_state & DS_FAULTY) &&
3101 d->state_fd >= 0)
3102 /* wait for Removal to happen */
3103 return NULL;
3104 if (d->state_fd >= 0)
3105 working ++;
3106 }
3107
3108 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3109 a->info.array.level);
3110 if (working == a->info.array.raid_disks)
3111 return NULL; /* array not degraded */
3112 switch (a->info.array.level) {
3113 case 1:
3114 if (working == 0)
3115 return NULL; /* failed */
3116 break;
3117 case 4:
3118 case 5:
3119 if (working < a->info.array.raid_disks - 1)
3120 return NULL; /* failed */
3121 break;
3122 case 6:
3123 if (working < a->info.array.raid_disks - 2)
3124 return NULL; /* failed */
3125 break;
3126 default: /* concat or stripe */
3127 return NULL; /* failed */
3128 }
3129
3130 /* For each slot, if it is not working, find a spare */
3131 dl = ddf->dlist;
3132 for (i = 0; i < a->info.array.raid_disks; i++) {
3133 for (d = a->info.devs ; d ; d = d->next)
3134 if (d->disk.raid_disk == i)
3135 break;
3136 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3137 if (d && (d->state_fd >= 0))
3138 continue;
3139
3140 /* OK, this device needs recovery. Find a spare */
3141 again:
3142 for ( ; dl ; dl = dl->next) {
3143 unsigned long long esize;
3144 unsigned long long pos;
3145 struct mdinfo *d2;
3146 int is_global = 0;
3147 int is_dedicated = 0;
3148 struct extent *ex;
3149 int j;
3150 /* If in this array, skip */
3151 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3152 if (d2->disk.major == dl->major &&
3153 d2->disk.minor == dl->minor) {
3154 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3155 break;
3156 }
3157 if (d2)
3158 continue;
3159 if (ddf->phys->entries[dl->pdnum].type &
3160 __cpu_to_be16(DDF_Spare)) {
3161 /* Check spare assign record */
3162 if (dl->spare) {
3163 if (dl->spare->type & DDF_spare_dedicated) {
3164 /* check spare_ents for guid */
3165 for (j = 0 ;
3166 j < __be16_to_cpu(dl->spare->populated);
3167 j++) {
3168 if (memcmp(dl->spare->spare_ents[j].guid,
3169 ddf->virt->entries[a->info.container_member].guid,
3170 DDF_GUID_LEN) == 0)
3171 is_dedicated = 1;
3172 }
3173 } else
3174 is_global = 1;
3175 }
3176 } else if (ddf->phys->entries[dl->pdnum].type &
3177 __cpu_to_be16(DDF_Global_Spare)) {
3178 is_global = 1;
3179 }
3180 if ( ! (is_dedicated ||
3181 (is_global && global_ok))) {
3182 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3183 is_dedicated, is_global);
3184 continue;
3185 }
3186
3187 /* We are allowed to use this device - is there space?
3188 * We need a->info.component_size sectors */
3189 ex = get_extents(ddf, dl);
3190 if (!ex) {
3191 dprintf("cannot get extents\n");
3192 continue;
3193 }
3194 j = 0; pos = 0;
3195 esize = 0;
3196
3197 do {
3198 esize = ex[j].start - pos;
3199 if (esize >= a->info.component_size)
3200 break;
3201 pos = ex[i].start + ex[i].size;
3202 i++;
3203 } while (ex[i-1].size);
3204
3205 free(ex);
3206 if (esize < a->info.component_size) {
3207 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3208 esize, a->info.component_size);
3209 /* No room */
3210 continue;
3211 }
3212
3213 /* Cool, we have a device with some space at pos */
3214 di = malloc(sizeof(*di));
3215 memset(di, 0, sizeof(*di));
3216 di->disk.number = i;
3217 di->disk.raid_disk = i;
3218 di->disk.major = dl->major;
3219 di->disk.minor = dl->minor;
3220 di->disk.state = 0;
3221 di->data_offset = pos;
3222 di->component_size = a->info.component_size;
3223 di->container_member = dl->pdnum;
3224 di->next = rv;
3225 rv = di;
3226 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3227 i, pos);
3228
3229 break;
3230 }
3231 if (!dl && ! global_ok) {
3232 /* not enough dedicated spares, try global */
3233 global_ok = 1;
3234 dl = ddf->dlist;
3235 goto again;
3236 }
3237 }
3238
3239 if (!rv)
3240 /* No spares found */
3241 return rv;
3242 /* Now 'rv' has a list of devices to return.
3243 * Create a metadata_update record to update the
3244 * phys_refnum and lba_offset values
3245 */
3246 mu = malloc(sizeof(*mu));
3247 mu->buf = malloc(ddf->conf_rec_len * 512);
3248 posix_memalign(&mu->space, 512, sizeof(struct vcl));
3249 mu->len = ddf->conf_rec_len;
3250 mu->next = *updates;
3251 vc = find_vdcr(ddf, a->info.container_member);
3252 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3253
3254 vc = (struct vd_config*)mu->buf;
3255 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3256 for (di = rv ; di ; di = di->next) {
3257 vc->phys_refnum[di->disk.raid_disk] =
3258 ddf->phys->entries[dl->pdnum].refnum;
3259 lba[di->disk.raid_disk] = di->data_offset;
3260 }
3261 *updates = mu;
3262 return rv;
3263 }
3264 #endif /* MDASSEMBLE */
3265
3266 struct superswitch super_ddf = {
3267 #ifndef MDASSEMBLE
3268 .examine_super = examine_super_ddf,
3269 .brief_examine_super = brief_examine_super_ddf,
3270 .detail_super = detail_super_ddf,
3271 .brief_detail_super = brief_detail_super_ddf,
3272 .validate_geometry = validate_geometry_ddf,
3273 .write_init_super = write_init_super_ddf,
3274 .add_to_super = add_to_super_ddf,
3275 #endif
3276 .match_home = match_home_ddf,
3277 .uuid_from_super= uuid_from_super_ddf,
3278 .getinfo_super = getinfo_super_ddf,
3279 .update_super = update_super_ddf,
3280
3281 .avail_size = avail_size_ddf,
3282
3283 .compare_super = compare_super_ddf,
3284
3285 .load_super = load_super_ddf,
3286 .init_super = init_super_ddf,
3287 .store_super = store_zero_ddf,
3288 .free_super = free_super_ddf,
3289 .match_metadata_desc = match_metadata_desc_ddf,
3290 .container_content = container_content_ddf,
3291
3292 .external = 1,
3293
3294 #ifndef MDASSEMBLE
3295 /* for mdmon */
3296 .open_new = ddf_open_new,
3297 .set_array_state= ddf_set_array_state,
3298 .set_disk = ddf_set_disk,
3299 .sync_metadata = ddf_sync_metadata,
3300 .process_update = ddf_process_update,
3301 .prepare_update = ddf_prepare_update,
3302 .activate_spare = ddf_activate_spare,
3303 #endif
3304 };