]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: Calculate reservation for a spare based on active disks in container
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* RAID map configuration infos. */
110 struct imsm_map {
111 __u32 pba_of_lba0; /* start address of partition */
112 __u32 blocks_per_member;/* blocks per member */
113 __u32 num_data_stripes; /* number of data stripes */
114 __u16 blocks_per_strip;
115 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
116 #define IMSM_T_STATE_NORMAL 0
117 #define IMSM_T_STATE_UNINITIALIZED 1
118 #define IMSM_T_STATE_DEGRADED 2
119 #define IMSM_T_STATE_FAILED 3
120 __u8 raid_level;
121 #define IMSM_T_RAID0 0
122 #define IMSM_T_RAID1 1
123 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
124 __u8 num_members; /* number of member disks */
125 __u8 num_domains; /* number of parity domains */
126 __u8 failed_disk_num; /* valid only when state is degraded */
127 __u8 ddf;
128 __u32 filler[7]; /* expansion area */
129 #define IMSM_ORD_REBUILD (1 << 24)
130 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
131 * top byte contains some flags
132 */
133 } __attribute__ ((packed));
134
135 struct imsm_vol {
136 __u32 curr_migr_unit;
137 __u32 checkpoint_id; /* id to access curr_migr_unit */
138 __u8 migr_state; /* Normal or Migrating */
139 #define MIGR_INIT 0
140 #define MIGR_REBUILD 1
141 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
142 #define MIGR_GEN_MIGR 3
143 #define MIGR_STATE_CHANGE 4
144 #define MIGR_REPAIR 5
145 __u8 migr_type; /* Initializing, Rebuilding, ... */
146 __u8 dirty;
147 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
148 __u16 verify_errors; /* number of mismatches */
149 __u16 bad_blocks; /* number of bad blocks during verify */
150 __u32 filler[4];
151 struct imsm_map map[1];
152 /* here comes another one if migr_state */
153 } __attribute__ ((packed));
154
155 struct imsm_dev {
156 __u8 volume[MAX_RAID_SERIAL_LEN];
157 __u32 size_low;
158 __u32 size_high;
159 #define DEV_BOOTABLE __cpu_to_le32(0x01)
160 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
161 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
162 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
163 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
164 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
165 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
166 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
167 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
168 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
169 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
170 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
171 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
172 __u32 status; /* Persistent RaidDev status */
173 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
174 __u8 migr_priority;
175 __u8 num_sub_vols;
176 __u8 tid;
177 __u8 cng_master_disk;
178 __u16 cache_policy;
179 __u8 cng_state;
180 __u8 cng_sub_state;
181 #define IMSM_DEV_FILLERS 10
182 __u32 filler[IMSM_DEV_FILLERS];
183 struct imsm_vol vol;
184 } __attribute__ ((packed));
185
186 struct imsm_super {
187 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
188 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
189 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
190 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
191 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
192 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
193 __u32 attributes; /* 0x34 - 0x37 */
194 __u8 num_disks; /* 0x38 Number of configured disks */
195 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
196 __u8 error_log_pos; /* 0x3A */
197 __u8 fill[1]; /* 0x3B */
198 __u32 cache_size; /* 0x3c - 0x40 in mb */
199 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
200 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
201 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
202 #define IMSM_FILLERS 35
203 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
204 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
205 /* here comes imsm_dev[num_raid_devs] */
206 /* here comes BBM logs */
207 } __attribute__ ((packed));
208
209 #define BBM_LOG_MAX_ENTRIES 254
210
211 struct bbm_log_entry {
212 __u64 defective_block_start;
213 #define UNREADABLE 0xFFFFFFFF
214 __u32 spare_block_offset;
215 __u16 remapped_marked_count;
216 __u16 disk_ordinal;
217 } __attribute__ ((__packed__));
218
219 struct bbm_log {
220 __u32 signature; /* 0xABADB10C */
221 __u32 entry_count;
222 __u32 reserved_spare_block_count; /* 0 */
223 __u32 reserved; /* 0xFFFF */
224 __u64 first_spare_lba;
225 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
226 } __attribute__ ((__packed__));
227
228
229 #ifndef MDASSEMBLE
230 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
231 #endif
232
233 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
234
235 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
236
237 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
238 * be recovered using srcMap */
239 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
240 * already been migrated and must
241 * be recovered from checkpoint area */
242 struct migr_record {
243 __u32 rec_status; /* Status used to determine how to restart
244 * migration in case it aborts
245 * in some fashion */
246 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
247 __u32 family_num; /* Family number of MPB
248 * containing the RaidDev
249 * that is migrating */
250 __u32 ascending_migr; /* True if migrating in increasing
251 * order of lbas */
252 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
253 __u32 dest_depth_per_unit; /* Num member blocks each destMap
254 * member disk
255 * advances per unit-of-operation */
256 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
257 __u32 dest_1st_member_lba; /* First member lba on first
258 * stripe of destination */
259 __u32 num_migr_units; /* Total num migration units-of-op */
260 __u32 post_migr_vol_cap; /* Size of volume after
261 * migration completes */
262 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
263 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
264 * migration ckpt record was read from
265 * (for recovered migrations) */
266 } __attribute__ ((__packed__));
267
268 static __u8 migr_type(struct imsm_dev *dev)
269 {
270 if (dev->vol.migr_type == MIGR_VERIFY &&
271 dev->status & DEV_VERIFY_AND_FIX)
272 return MIGR_REPAIR;
273 else
274 return dev->vol.migr_type;
275 }
276
277 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
278 {
279 /* for compatibility with older oroms convert MIGR_REPAIR, into
280 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
281 */
282 if (migr_type == MIGR_REPAIR) {
283 dev->vol.migr_type = MIGR_VERIFY;
284 dev->status |= DEV_VERIFY_AND_FIX;
285 } else {
286 dev->vol.migr_type = migr_type;
287 dev->status &= ~DEV_VERIFY_AND_FIX;
288 }
289 }
290
291 static unsigned int sector_count(__u32 bytes)
292 {
293 return ((bytes + (512-1)) & (~(512-1))) / 512;
294 }
295
296 static unsigned int mpb_sectors(struct imsm_super *mpb)
297 {
298 return sector_count(__le32_to_cpu(mpb->mpb_size));
299 }
300
301 struct intel_dev {
302 struct imsm_dev *dev;
303 struct intel_dev *next;
304 unsigned index;
305 };
306
307 struct intel_hba {
308 enum sys_dev_type type;
309 char *path;
310 char *pci_id;
311 struct intel_hba *next;
312 };
313
314 enum action {
315 DISK_REMOVE = 1,
316 DISK_ADD
317 };
318 /* internal representation of IMSM metadata */
319 struct intel_super {
320 union {
321 void *buf; /* O_DIRECT buffer for reading/writing metadata */
322 struct imsm_super *anchor; /* immovable parameters */
323 };
324 union {
325 void *migr_rec_buf; /* buffer for I/O operations */
326 struct migr_record *migr_rec; /* migration record */
327 };
328 size_t len; /* size of the 'buf' allocation */
329 void *next_buf; /* for realloc'ing buf from the manager */
330 size_t next_len;
331 int updates_pending; /* count of pending updates for mdmon */
332 int current_vol; /* index of raid device undergoing creation */
333 __u32 create_offset; /* common start for 'current_vol' */
334 __u32 random; /* random data for seeding new family numbers */
335 struct intel_dev *devlist;
336 struct dl {
337 struct dl *next;
338 int index;
339 __u8 serial[MAX_RAID_SERIAL_LEN];
340 int major, minor;
341 char *devname;
342 struct imsm_disk disk;
343 int fd;
344 int extent_cnt;
345 struct extent *e; /* for determining freespace @ create */
346 int raiddisk; /* slot to fill in autolayout */
347 enum action action;
348 } *disks, *current_disk;
349 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
350 active */
351 struct dl *missing; /* disks removed while we weren't looking */
352 struct bbm_log *bbm_log;
353 struct intel_hba *hba; /* device path of the raid controller for this metadata */
354 const struct imsm_orom *orom; /* platform firmware support */
355 struct intel_super *next; /* (temp) list for disambiguating family_num */
356 };
357
358 struct intel_disk {
359 struct imsm_disk disk;
360 #define IMSM_UNKNOWN_OWNER (-1)
361 int owner;
362 struct intel_disk *next;
363 };
364
365 struct extent {
366 unsigned long long start, size;
367 };
368
369 /* definitions of reshape process types */
370 enum imsm_reshape_type {
371 CH_TAKEOVER,
372 CH_MIGRATION,
373 };
374
375 /* definition of messages passed to imsm_process_update */
376 enum imsm_update_type {
377 update_activate_spare,
378 update_create_array,
379 update_kill_array,
380 update_rename_array,
381 update_add_remove_disk,
382 update_reshape_container_disks,
383 update_reshape_migration,
384 update_takeover,
385 update_general_migration_checkpoint,
386 };
387
388 struct imsm_update_activate_spare {
389 enum imsm_update_type type;
390 struct dl *dl;
391 int slot;
392 int array;
393 struct imsm_update_activate_spare *next;
394 };
395
396 struct geo_params {
397 int dev_id;
398 char *dev_name;
399 long long size;
400 int level;
401 int layout;
402 int chunksize;
403 int raid_disks;
404 };
405
406 enum takeover_direction {
407 R10_TO_R0,
408 R0_TO_R10
409 };
410 struct imsm_update_takeover {
411 enum imsm_update_type type;
412 int subarray;
413 enum takeover_direction direction;
414 };
415
416 struct imsm_update_reshape {
417 enum imsm_update_type type;
418 int old_raid_disks;
419 int new_raid_disks;
420
421 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
422 };
423
424 struct imsm_update_reshape_migration {
425 enum imsm_update_type type;
426 int old_raid_disks;
427 int new_raid_disks;
428 /* fields for array migration changes
429 */
430 int subdev;
431 int new_level;
432 int new_layout;
433 int new_chunksize;
434
435 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
436 };
437
438 struct imsm_update_general_migration_checkpoint {
439 enum imsm_update_type type;
440 __u32 curr_migr_unit;
441 };
442
443 struct disk_info {
444 __u8 serial[MAX_RAID_SERIAL_LEN];
445 };
446
447 struct imsm_update_create_array {
448 enum imsm_update_type type;
449 int dev_idx;
450 struct imsm_dev dev;
451 };
452
453 struct imsm_update_kill_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 };
457
458 struct imsm_update_rename_array {
459 enum imsm_update_type type;
460 __u8 name[MAX_RAID_SERIAL_LEN];
461 int dev_idx;
462 };
463
464 struct imsm_update_add_remove_disk {
465 enum imsm_update_type type;
466 };
467
468
469 static const char *_sys_dev_type[] = {
470 [SYS_DEV_UNKNOWN] = "Unknown",
471 [SYS_DEV_SAS] = "SAS",
472 [SYS_DEV_SATA] = "SATA"
473 };
474
475 const char *get_sys_dev_type(enum sys_dev_type type)
476 {
477 if (type >= SYS_DEV_MAX)
478 type = SYS_DEV_UNKNOWN;
479
480 return _sys_dev_type[type];
481 }
482
483 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
484 {
485 struct intel_hba *result = malloc(sizeof(*result));
486 if (result) {
487 result->type = device->type;
488 result->path = strdup(device->path);
489 result->next = NULL;
490 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
491 result->pci_id++;
492 }
493 return result;
494 }
495
496 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
497 {
498 struct intel_hba *result=NULL;
499 for (result = hba; result; result = result->next) {
500 if (result->type == device->type && strcmp(result->path, device->path) == 0)
501 break;
502 }
503 return result;
504 }
505
506 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
507 {
508 struct intel_hba *hba;
509
510 /* check if disk attached to Intel HBA */
511 hba = find_intel_hba(super->hba, device);
512 if (hba != NULL)
513 return 1;
514 /* Check if HBA is already attached to super */
515 if (super->hba == NULL) {
516 super->hba = alloc_intel_hba(device);
517 return 1;
518 }
519
520 hba = super->hba;
521 /* Intel metadata allows for all disks attached to the same type HBA.
522 * Do not sypport odf HBA types mixing
523 */
524 if (device->type != hba->type)
525 return 2;
526
527 while (hba->next)
528 hba = hba->next;
529
530 hba->next = alloc_intel_hba(device);
531 return 1;
532 }
533
534 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
535 {
536 struct sys_dev *list, *elem, *prev;
537 char *disk_path;
538
539 if ((list = find_intel_devices()) == NULL)
540 return 0;
541
542 if (fd < 0)
543 disk_path = (char *) devname;
544 else
545 disk_path = diskfd_to_devpath(fd);
546
547 if (!disk_path) {
548 free_sys_dev(&list);
549 return 0;
550 }
551
552 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
553 if (path_attached_to_hba(disk_path, elem->path)) {
554 if (prev == NULL)
555 list = list->next;
556 else
557 prev->next = elem->next;
558 elem->next = NULL;
559 if (disk_path != devname)
560 free(disk_path);
561 free_sys_dev(&list);
562 return elem;
563 }
564 }
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568
569 return NULL;
570 }
571
572
573 static int find_intel_hba_capability(int fd, struct intel_super *super,
574 char *devname);
575
576 static struct supertype *match_metadata_desc_imsm(char *arg)
577 {
578 struct supertype *st;
579
580 if (strcmp(arg, "imsm") != 0 &&
581 strcmp(arg, "default") != 0
582 )
583 return NULL;
584
585 st = malloc(sizeof(*st));
586 if (!st)
587 return NULL;
588 memset(st, 0, sizeof(*st));
589 st->container_dev = NoMdDev;
590 st->ss = &super_imsm;
591 st->max_devs = IMSM_MAX_DEVICES;
592 st->minor_version = 0;
593 st->sb = NULL;
594 return st;
595 }
596
597 #ifndef MDASSEMBLE
598 static __u8 *get_imsm_version(struct imsm_super *mpb)
599 {
600 return &mpb->sig[MPB_SIG_LEN];
601 }
602 #endif
603
604 /* retrieve a disk directly from the anchor when the anchor is known to be
605 * up-to-date, currently only at load time
606 */
607 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
608 {
609 if (index >= mpb->num_disks)
610 return NULL;
611 return &mpb->disk[index];
612 }
613
614 /* retrieve the disk description based on a index of the disk
615 * in the sub-array
616 */
617 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
618 {
619 struct dl *d;
620
621 for (d = super->disks; d; d = d->next)
622 if (d->index == index)
623 return d;
624
625 return NULL;
626 }
627 /* retrieve a disk from the parsed metadata */
628 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
629 {
630 struct dl *dl;
631
632 dl = get_imsm_dl_disk(super, index);
633 if (dl)
634 return &dl->disk;
635
636 return NULL;
637 }
638
639 /* generate a checksum directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load or write_super after coalescing
641 */
642 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
643 {
644 __u32 end = mpb->mpb_size / sizeof(end);
645 __u32 *p = (__u32 *) mpb;
646 __u32 sum = 0;
647
648 while (end--) {
649 sum += __le32_to_cpu(*p);
650 p++;
651 }
652
653 return sum - __le32_to_cpu(mpb->check_sum);
654 }
655
656 static size_t sizeof_imsm_map(struct imsm_map *map)
657 {
658 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
659 }
660
661 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
662 {
663 /* A device can have 2 maps if it is in the middle of a migration.
664 * If second_map is:
665 * 0 - we return the first map
666 * 1 - we return the second map if it exists, else NULL
667 * -1 - we return the second map if it exists, else the first
668 */
669 struct imsm_map *map = &dev->vol.map[0];
670
671 if (second_map == 1 && !dev->vol.migr_state)
672 return NULL;
673 else if (second_map == 1 ||
674 (second_map < 0 && dev->vol.migr_state)) {
675 void *ptr = map;
676
677 return ptr + sizeof_imsm_map(map);
678 } else
679 return map;
680
681 }
682
683 /* return the size of the device.
684 * migr_state increases the returned size if map[0] were to be duplicated
685 */
686 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
687 {
688 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
689 sizeof_imsm_map(get_imsm_map(dev, 0));
690
691 /* migrating means an additional map */
692 if (dev->vol.migr_state)
693 size += sizeof_imsm_map(get_imsm_map(dev, 1));
694 else if (migr_state)
695 size += sizeof_imsm_map(get_imsm_map(dev, 0));
696
697 return size;
698 }
699
700 #ifndef MDASSEMBLE
701 /* retrieve disk serial number list from a metadata update */
702 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
703 {
704 void *u = update;
705 struct disk_info *inf;
706
707 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
708 sizeof_imsm_dev(&update->dev, 0);
709
710 return inf;
711 }
712 #endif
713
714 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
715 {
716 int offset;
717 int i;
718 void *_mpb = mpb;
719
720 if (index >= mpb->num_raid_devs)
721 return NULL;
722
723 /* devices start after all disks */
724 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
725
726 for (i = 0; i <= index; i++)
727 if (i == index)
728 return _mpb + offset;
729 else
730 offset += sizeof_imsm_dev(_mpb + offset, 0);
731
732 return NULL;
733 }
734
735 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
736 {
737 struct intel_dev *dv;
738
739 if (index >= super->anchor->num_raid_devs)
740 return NULL;
741 for (dv = super->devlist; dv; dv = dv->next)
742 if (dv->index == index)
743 return dv->dev;
744 return NULL;
745 }
746
747 /*
748 * for second_map:
749 * == 0 get first map
750 * == 1 get second map
751 * == -1 than get map according to the current migr_state
752 */
753 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
754 int slot,
755 int second_map)
756 {
757 struct imsm_map *map;
758
759 map = get_imsm_map(dev, second_map);
760
761 /* top byte identifies disk under rebuild */
762 return __le32_to_cpu(map->disk_ord_tbl[slot]);
763 }
764
765 #define ord_to_idx(ord) (((ord) << 8) >> 8)
766 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
767 {
768 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
769
770 return ord_to_idx(ord);
771 }
772
773 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
774 {
775 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
776 }
777
778 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
779 {
780 int slot;
781 __u32 ord;
782
783 for (slot = 0; slot < map->num_members; slot++) {
784 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
785 if (ord_to_idx(ord) == idx)
786 return slot;
787 }
788
789 return -1;
790 }
791
792 static int get_imsm_raid_level(struct imsm_map *map)
793 {
794 if (map->raid_level == 1) {
795 if (map->num_members == 2)
796 return 1;
797 else
798 return 10;
799 }
800
801 return map->raid_level;
802 }
803
804 static int cmp_extent(const void *av, const void *bv)
805 {
806 const struct extent *a = av;
807 const struct extent *b = bv;
808 if (a->start < b->start)
809 return -1;
810 if (a->start > b->start)
811 return 1;
812 return 0;
813 }
814
815 static int count_memberships(struct dl *dl, struct intel_super *super)
816 {
817 int memberships = 0;
818 int i;
819
820 for (i = 0; i < super->anchor->num_raid_devs; i++) {
821 struct imsm_dev *dev = get_imsm_dev(super, i);
822 struct imsm_map *map = get_imsm_map(dev, 0);
823
824 if (get_imsm_disk_slot(map, dl->index) >= 0)
825 memberships++;
826 }
827
828 return memberships;
829 }
830
831 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
832
833 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
834 {
835 /* find a list of used extents on the given physical device */
836 struct extent *rv, *e;
837 int i;
838 int memberships = count_memberships(dl, super);
839 __u32 reservation;
840
841 /* trim the reserved area for spares, so they can join any array
842 * regardless of whether the OROM has assigned sectors from the
843 * IMSM_RESERVED_SECTORS region
844 */
845 if (dl->index == -1)
846 reservation = imsm_min_reserved_sectors(super);
847 else
848 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
849
850 rv = malloc(sizeof(struct extent) * (memberships + 1));
851 if (!rv)
852 return NULL;
853 e = rv;
854
855 for (i = 0; i < super->anchor->num_raid_devs; i++) {
856 struct imsm_dev *dev = get_imsm_dev(super, i);
857 struct imsm_map *map = get_imsm_map(dev, 0);
858
859 if (get_imsm_disk_slot(map, dl->index) >= 0) {
860 e->start = __le32_to_cpu(map->pba_of_lba0);
861 e->size = __le32_to_cpu(map->blocks_per_member);
862 e++;
863 }
864 }
865 qsort(rv, memberships, sizeof(*rv), cmp_extent);
866
867 /* determine the start of the metadata
868 * when no raid devices are defined use the default
869 * ...otherwise allow the metadata to truncate the value
870 * as is the case with older versions of imsm
871 */
872 if (memberships) {
873 struct extent *last = &rv[memberships - 1];
874 __u32 remainder;
875
876 remainder = __le32_to_cpu(dl->disk.total_blocks) -
877 (last->start + last->size);
878 /* round down to 1k block to satisfy precision of the kernel
879 * 'size' interface
880 */
881 remainder &= ~1UL;
882 /* make sure remainder is still sane */
883 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
884 remainder = ROUND_UP(super->len, 512) >> 9;
885 if (reservation > remainder)
886 reservation = remainder;
887 }
888 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
889 e->size = 0;
890 return rv;
891 }
892
893 /* try to determine how much space is reserved for metadata from
894 * the last get_extents() entry, otherwise fallback to the
895 * default
896 */
897 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
898 {
899 struct extent *e;
900 int i;
901 __u32 rv;
902
903 /* for spares just return a minimal reservation which will grow
904 * once the spare is picked up by an array
905 */
906 if (dl->index == -1)
907 return MPB_SECTOR_CNT;
908
909 e = get_extents(super, dl);
910 if (!e)
911 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
912
913 /* scroll to last entry */
914 for (i = 0; e[i].size; i++)
915 continue;
916
917 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
918
919 free(e);
920
921 return rv;
922 }
923
924 static int is_spare(struct imsm_disk *disk)
925 {
926 return (disk->status & SPARE_DISK) == SPARE_DISK;
927 }
928
929 static int is_configured(struct imsm_disk *disk)
930 {
931 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
932 }
933
934 static int is_failed(struct imsm_disk *disk)
935 {
936 return (disk->status & FAILED_DISK) == FAILED_DISK;
937 }
938
939 /* try to determine how much space is reserved for metadata from
940 * the last get_extents() entry on the smallest active disk,
941 * otherwise fallback to the default
942 */
943 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
944 {
945 struct extent *e;
946 int i;
947 __u32 min_active, remainder;
948 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
949 struct dl *dl, *dl_min = NULL;
950
951 if (!super)
952 return rv;
953
954 min_active = 0;
955 for (dl = super->disks; dl; dl = dl->next) {
956 if (dl->index < 0)
957 continue;
958 if (dl->disk.total_blocks < min_active || min_active == 0) {
959 dl_min = dl;
960 min_active = dl->disk.total_blocks;
961 }
962 }
963 if (!dl_min)
964 return rv;
965
966 /* find last lba used by subarrays on the smallest active disk */
967 e = get_extents(super, dl_min);
968 if (!e)
969 return rv;
970 for (i = 0; e[i].size; i++)
971 continue;
972
973 remainder = min_active - e[i].start;
974 free(e);
975
976 /* to give priority to recovery we should not require full
977 IMSM_RESERVED_SECTORS from the spare */
978 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
979
980 /* if real reservation is smaller use that value */
981 return (remainder < rv) ? remainder : rv;
982 }
983
984 /* Return minimum size of a spare that can be used in this array*/
985 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
986 {
987 struct intel_super *super = st->sb;
988 struct dl *dl;
989 struct extent *e;
990 int i;
991 unsigned long long rv = 0;
992 __u32 reservation;
993
994 if (!super)
995 return rv;
996 /* find first active disk in array */
997 dl = super->disks;
998 while (dl && (is_failed(&dl->disk) || dl->index == -1))
999 dl = dl->next;
1000 if (!dl)
1001 return rv;
1002 /* find last lba used by subarrays */
1003 e = get_extents(super, dl);
1004 if (!e)
1005 return rv;
1006 for (i = 0; e[i].size; i++)
1007 continue;
1008 if (i > 0)
1009 rv = e[i-1].start + e[i-1].size;
1010 reservation = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
1011 free(e);
1012
1013 /* add the amount of space needed for metadata */
1014 rv = rv + imsm_min_reserved_sectors(super);
1015
1016 return rv * 512;
1017 }
1018
1019 #ifndef MDASSEMBLE
1020 static __u64 blocks_per_migr_unit(struct intel_super *super,
1021 struct imsm_dev *dev);
1022
1023 static void print_imsm_dev(struct intel_super *super,
1024 struct imsm_dev *dev,
1025 char *uuid,
1026 int disk_idx)
1027 {
1028 __u64 sz;
1029 int slot, i;
1030 struct imsm_map *map = get_imsm_map(dev, 0);
1031 struct imsm_map *map2 = get_imsm_map(dev, 1);
1032 __u32 ord;
1033
1034 printf("\n");
1035 printf("[%.16s]:\n", dev->volume);
1036 printf(" UUID : %s\n", uuid);
1037 printf(" RAID Level : %d", get_imsm_raid_level(map));
1038 if (map2)
1039 printf(" <-- %d", get_imsm_raid_level(map2));
1040 printf("\n");
1041 printf(" Members : %d", map->num_members);
1042 if (map2)
1043 printf(" <-- %d", map2->num_members);
1044 printf("\n");
1045 printf(" Slots : [");
1046 for (i = 0; i < map->num_members; i++) {
1047 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1048 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1049 }
1050 printf("]");
1051 if (map2) {
1052 printf(" <-- [");
1053 for (i = 0; i < map2->num_members; i++) {
1054 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1055 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1056 }
1057 printf("]");
1058 }
1059 printf("\n");
1060 printf(" Failed disk : ");
1061 if (map->failed_disk_num == 0xff)
1062 printf("none");
1063 else
1064 printf("%i", map->failed_disk_num);
1065 printf("\n");
1066 slot = get_imsm_disk_slot(map, disk_idx);
1067 if (slot >= 0) {
1068 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1069 printf(" This Slot : %d%s\n", slot,
1070 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1071 } else
1072 printf(" This Slot : ?\n");
1073 sz = __le32_to_cpu(dev->size_high);
1074 sz <<= 32;
1075 sz += __le32_to_cpu(dev->size_low);
1076 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 sz = __le32_to_cpu(map->blocks_per_member);
1079 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1080 human_size(sz * 512));
1081 printf(" Sector Offset : %u\n",
1082 __le32_to_cpu(map->pba_of_lba0));
1083 printf(" Num Stripes : %u\n",
1084 __le32_to_cpu(map->num_data_stripes));
1085 printf(" Chunk Size : %u KiB",
1086 __le16_to_cpu(map->blocks_per_strip) / 2);
1087 if (map2)
1088 printf(" <-- %u KiB",
1089 __le16_to_cpu(map2->blocks_per_strip) / 2);
1090 printf("\n");
1091 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1092 printf(" Migrate State : ");
1093 if (dev->vol.migr_state) {
1094 if (migr_type(dev) == MIGR_INIT)
1095 printf("initialize\n");
1096 else if (migr_type(dev) == MIGR_REBUILD)
1097 printf("rebuild\n");
1098 else if (migr_type(dev) == MIGR_VERIFY)
1099 printf("check\n");
1100 else if (migr_type(dev) == MIGR_GEN_MIGR)
1101 printf("general migration\n");
1102 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1103 printf("state change\n");
1104 else if (migr_type(dev) == MIGR_REPAIR)
1105 printf("repair\n");
1106 else
1107 printf("<unknown:%d>\n", migr_type(dev));
1108 } else
1109 printf("idle\n");
1110 printf(" Map State : %s", map_state_str[map->map_state]);
1111 if (dev->vol.migr_state) {
1112 struct imsm_map *map = get_imsm_map(dev, 1);
1113
1114 printf(" <-- %s", map_state_str[map->map_state]);
1115 printf("\n Checkpoint : %u (%llu)",
1116 __le32_to_cpu(dev->vol.curr_migr_unit),
1117 (unsigned long long)blocks_per_migr_unit(super, dev));
1118 }
1119 printf("\n");
1120 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1121 }
1122
1123 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1124 {
1125 char str[MAX_RAID_SERIAL_LEN + 1];
1126 __u64 sz;
1127
1128 if (index < -1 || !disk)
1129 return;
1130
1131 printf("\n");
1132 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1133 if (index >= 0)
1134 printf(" Disk%02d Serial : %s\n", index, str);
1135 else
1136 printf(" Disk Serial : %s\n", str);
1137 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1138 is_configured(disk) ? " active" : "",
1139 is_failed(disk) ? " failed" : "");
1140 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1141 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1142 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1143 human_size(sz * 512));
1144 }
1145
1146 static int is_gen_migration(struct imsm_dev *dev);
1147
1148 void examine_migr_rec_imsm(struct intel_super *super)
1149 {
1150 struct migr_record *migr_rec = super->migr_rec;
1151 struct imsm_super *mpb = super->anchor;
1152 int i;
1153
1154 for (i = 0; i < mpb->num_raid_devs; i++) {
1155 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1156 if (is_gen_migration(dev) == 0)
1157 continue;
1158
1159 printf("\nMigration Record Information:");
1160 if (super->disks->index > 1) {
1161 printf(" Empty\n ");
1162 printf("Examine one of first two disks in array\n");
1163 break;
1164 }
1165 printf("\n Status : ");
1166 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1167 printf("Normal\n");
1168 else
1169 printf("Contains Data\n");
1170 printf(" Current Unit : %u\n",
1171 __le32_to_cpu(migr_rec->curr_migr_unit));
1172 printf(" Family : %u\n",
1173 __le32_to_cpu(migr_rec->family_num));
1174 printf(" Ascending : %u\n",
1175 __le32_to_cpu(migr_rec->ascending_migr));
1176 printf(" Blocks Per Unit : %u\n",
1177 __le32_to_cpu(migr_rec->blocks_per_unit));
1178 printf(" Dest. Depth Per Unit : %u\n",
1179 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1180 printf(" Checkpoint Area pba : %u\n",
1181 __le32_to_cpu(migr_rec->ckpt_area_pba));
1182 printf(" First member lba : %u\n",
1183 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1184 printf(" Total Number of Units : %u\n",
1185 __le32_to_cpu(migr_rec->num_migr_units));
1186 printf(" Size of volume : %u\n",
1187 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1188 printf(" Expansion space for LBA64 : %u\n",
1189 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1190 printf(" Record was read from : %u\n",
1191 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1192
1193 break;
1194 }
1195 }
1196 #endif /* MDASSEMBLE */
1197 /*******************************************************************************
1198 * function: imsm_check_attributes
1199 * Description: Function checks if features represented by attributes flags
1200 * are supported by mdadm.
1201 * Parameters:
1202 * attributes - Attributes read from metadata
1203 * Returns:
1204 * 0 - passed attributes contains unsupported features flags
1205 * 1 - all features are supported
1206 ******************************************************************************/
1207 static int imsm_check_attributes(__u32 attributes)
1208 {
1209 int ret_val = 1;
1210 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1211
1212 not_supported &= ~MPB_ATTRIB_IGNORED;
1213
1214 not_supported &= attributes;
1215 if (not_supported) {
1216 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1217 (unsigned)__le32_to_cpu(not_supported));
1218 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1219 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1220 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1221 }
1222 if (not_supported & MPB_ATTRIB_2TB) {
1223 dprintf("\t\tMPB_ATTRIB_2TB\n");
1224 not_supported ^= MPB_ATTRIB_2TB;
1225 }
1226 if (not_supported & MPB_ATTRIB_RAID0) {
1227 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1228 not_supported ^= MPB_ATTRIB_RAID0;
1229 }
1230 if (not_supported & MPB_ATTRIB_RAID1) {
1231 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1232 not_supported ^= MPB_ATTRIB_RAID1;
1233 }
1234 if (not_supported & MPB_ATTRIB_RAID10) {
1235 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1236 not_supported ^= MPB_ATTRIB_RAID10;
1237 }
1238 if (not_supported & MPB_ATTRIB_RAID1E) {
1239 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1240 not_supported ^= MPB_ATTRIB_RAID1E;
1241 }
1242 if (not_supported & MPB_ATTRIB_RAID5) {
1243 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1244 not_supported ^= MPB_ATTRIB_RAID5;
1245 }
1246 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1247 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1248 not_supported ^= MPB_ATTRIB_RAIDCNG;
1249 }
1250 if (not_supported & MPB_ATTRIB_BBM) {
1251 dprintf("\t\tMPB_ATTRIB_BBM\n");
1252 not_supported ^= MPB_ATTRIB_BBM;
1253 }
1254 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1255 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1256 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1257 }
1258 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1259 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1260 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1261 }
1262 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1263 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1264 not_supported ^= MPB_ATTRIB_2TB_DISK;
1265 }
1266 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1267 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1268 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1269 }
1270 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1271 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1272 not_supported ^= MPB_ATTRIB_NEVER_USE;
1273 }
1274
1275 if (not_supported)
1276 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1277
1278 ret_val = 0;
1279 }
1280
1281 return ret_val;
1282 }
1283
1284 #ifndef MDASSEMBLE
1285 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1286
1287 static void examine_super_imsm(struct supertype *st, char *homehost)
1288 {
1289 struct intel_super *super = st->sb;
1290 struct imsm_super *mpb = super->anchor;
1291 char str[MAX_SIGNATURE_LENGTH];
1292 int i;
1293 struct mdinfo info;
1294 char nbuf[64];
1295 __u32 sum;
1296 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1297 struct dl *dl;
1298
1299 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1300 printf(" Magic : %s\n", str);
1301 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1302 printf(" Version : %s\n", get_imsm_version(mpb));
1303 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1304 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1305 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1306 printf(" Attributes : ");
1307 if (imsm_check_attributes(mpb->attributes))
1308 printf("All supported\n");
1309 else
1310 printf("not supported\n");
1311 getinfo_super_imsm(st, &info, NULL);
1312 fname_from_uuid(st, &info, nbuf, ':');
1313 printf(" UUID : %s\n", nbuf + 5);
1314 sum = __le32_to_cpu(mpb->check_sum);
1315 printf(" Checksum : %08x %s\n", sum,
1316 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1317 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1318 printf(" Disks : %d\n", mpb->num_disks);
1319 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1320 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1321 if (super->bbm_log) {
1322 struct bbm_log *log = super->bbm_log;
1323
1324 printf("\n");
1325 printf("Bad Block Management Log:\n");
1326 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1327 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1328 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1329 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1330 printf(" First Spare : %llx\n",
1331 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1332 }
1333 for (i = 0; i < mpb->num_raid_devs; i++) {
1334 struct mdinfo info;
1335 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1336
1337 super->current_vol = i;
1338 getinfo_super_imsm(st, &info, NULL);
1339 fname_from_uuid(st, &info, nbuf, ':');
1340 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1341 }
1342 for (i = 0; i < mpb->num_disks; i++) {
1343 if (i == super->disks->index)
1344 continue;
1345 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1346 }
1347
1348 for (dl = super->disks; dl; dl = dl->next)
1349 if (dl->index == -1)
1350 print_imsm_disk(&dl->disk, -1, reserved);
1351
1352 examine_migr_rec_imsm(super);
1353 }
1354
1355 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1356 {
1357 /* We just write a generic IMSM ARRAY entry */
1358 struct mdinfo info;
1359 char nbuf[64];
1360 struct intel_super *super = st->sb;
1361
1362 if (!super->anchor->num_raid_devs) {
1363 printf("ARRAY metadata=imsm\n");
1364 return;
1365 }
1366
1367 getinfo_super_imsm(st, &info, NULL);
1368 fname_from_uuid(st, &info, nbuf, ':');
1369 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1370 }
1371
1372 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1373 {
1374 /* We just write a generic IMSM ARRAY entry */
1375 struct mdinfo info;
1376 char nbuf[64];
1377 char nbuf1[64];
1378 struct intel_super *super = st->sb;
1379 int i;
1380
1381 if (!super->anchor->num_raid_devs)
1382 return;
1383
1384 getinfo_super_imsm(st, &info, NULL);
1385 fname_from_uuid(st, &info, nbuf, ':');
1386 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1387 struct imsm_dev *dev = get_imsm_dev(super, i);
1388
1389 super->current_vol = i;
1390 getinfo_super_imsm(st, &info, NULL);
1391 fname_from_uuid(st, &info, nbuf1, ':');
1392 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1393 dev->volume, nbuf + 5, i, nbuf1 + 5);
1394 }
1395 }
1396
1397 static void export_examine_super_imsm(struct supertype *st)
1398 {
1399 struct intel_super *super = st->sb;
1400 struct imsm_super *mpb = super->anchor;
1401 struct mdinfo info;
1402 char nbuf[64];
1403
1404 getinfo_super_imsm(st, &info, NULL);
1405 fname_from_uuid(st, &info, nbuf, ':');
1406 printf("MD_METADATA=imsm\n");
1407 printf("MD_LEVEL=container\n");
1408 printf("MD_UUID=%s\n", nbuf+5);
1409 printf("MD_DEVICES=%u\n", mpb->num_disks);
1410 }
1411
1412 static void detail_super_imsm(struct supertype *st, char *homehost)
1413 {
1414 struct mdinfo info;
1415 char nbuf[64];
1416
1417 getinfo_super_imsm(st, &info, NULL);
1418 fname_from_uuid(st, &info, nbuf, ':');
1419 printf("\n UUID : %s\n", nbuf + 5);
1420 }
1421
1422 static void brief_detail_super_imsm(struct supertype *st)
1423 {
1424 struct mdinfo info;
1425 char nbuf[64];
1426 getinfo_super_imsm(st, &info, NULL);
1427 fname_from_uuid(st, &info, nbuf, ':');
1428 printf(" UUID=%s", nbuf + 5);
1429 }
1430
1431 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1432 static void fd2devname(int fd, char *name);
1433
1434 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1435 {
1436 /* dump an unsorted list of devices attached to AHCI Intel storage
1437 * controller, as well as non-connected ports
1438 */
1439 int hba_len = strlen(hba_path) + 1;
1440 struct dirent *ent;
1441 DIR *dir;
1442 char *path = NULL;
1443 int err = 0;
1444 unsigned long port_mask = (1 << port_count) - 1;
1445
1446 if (port_count > (int)sizeof(port_mask) * 8) {
1447 if (verbose)
1448 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1449 return 2;
1450 }
1451
1452 /* scroll through /sys/dev/block looking for devices attached to
1453 * this hba
1454 */
1455 dir = opendir("/sys/dev/block");
1456 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1457 int fd;
1458 char model[64];
1459 char vendor[64];
1460 char buf[1024];
1461 int major, minor;
1462 char *device;
1463 char *c;
1464 int port;
1465 int type;
1466
1467 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1468 continue;
1469 path = devt_to_devpath(makedev(major, minor));
1470 if (!path)
1471 continue;
1472 if (!path_attached_to_hba(path, hba_path)) {
1473 free(path);
1474 path = NULL;
1475 continue;
1476 }
1477
1478 /* retrieve the scsi device type */
1479 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1480 if (verbose)
1481 fprintf(stderr, Name ": failed to allocate 'device'\n");
1482 err = 2;
1483 break;
1484 }
1485 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1486 if (load_sys(device, buf) != 0) {
1487 if (verbose)
1488 fprintf(stderr, Name ": failed to read device type for %s\n",
1489 path);
1490 err = 2;
1491 free(device);
1492 break;
1493 }
1494 type = strtoul(buf, NULL, 10);
1495
1496 /* if it's not a disk print the vendor and model */
1497 if (!(type == 0 || type == 7 || type == 14)) {
1498 vendor[0] = '\0';
1499 model[0] = '\0';
1500 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1501 if (load_sys(device, buf) == 0) {
1502 strncpy(vendor, buf, sizeof(vendor));
1503 vendor[sizeof(vendor) - 1] = '\0';
1504 c = (char *) &vendor[sizeof(vendor) - 1];
1505 while (isspace(*c) || *c == '\0')
1506 *c-- = '\0';
1507
1508 }
1509 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1510 if (load_sys(device, buf) == 0) {
1511 strncpy(model, buf, sizeof(model));
1512 model[sizeof(model) - 1] = '\0';
1513 c = (char *) &model[sizeof(model) - 1];
1514 while (isspace(*c) || *c == '\0')
1515 *c-- = '\0';
1516 }
1517
1518 if (vendor[0] && model[0])
1519 sprintf(buf, "%.64s %.64s", vendor, model);
1520 else
1521 switch (type) { /* numbers from hald/linux/device.c */
1522 case 1: sprintf(buf, "tape"); break;
1523 case 2: sprintf(buf, "printer"); break;
1524 case 3: sprintf(buf, "processor"); break;
1525 case 4:
1526 case 5: sprintf(buf, "cdrom"); break;
1527 case 6: sprintf(buf, "scanner"); break;
1528 case 8: sprintf(buf, "media_changer"); break;
1529 case 9: sprintf(buf, "comm"); break;
1530 case 12: sprintf(buf, "raid"); break;
1531 default: sprintf(buf, "unknown");
1532 }
1533 } else
1534 buf[0] = '\0';
1535 free(device);
1536
1537 /* chop device path to 'host%d' and calculate the port number */
1538 c = strchr(&path[hba_len], '/');
1539 if (!c) {
1540 if (verbose)
1541 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1542 err = 2;
1543 break;
1544 }
1545 *c = '\0';
1546 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1547 port -= host_base;
1548 else {
1549 if (verbose) {
1550 *c = '/'; /* repair the full string */
1551 fprintf(stderr, Name ": failed to determine port number for %s\n",
1552 path);
1553 }
1554 err = 2;
1555 break;
1556 }
1557
1558 /* mark this port as used */
1559 port_mask &= ~(1 << port);
1560
1561 /* print out the device information */
1562 if (buf[0]) {
1563 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1564 continue;
1565 }
1566
1567 fd = dev_open(ent->d_name, O_RDONLY);
1568 if (fd < 0)
1569 printf(" Port%d : - disk info unavailable -\n", port);
1570 else {
1571 fd2devname(fd, buf);
1572 printf(" Port%d : %s", port, buf);
1573 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1574 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1575 else
1576 printf(" ()\n");
1577 }
1578 close(fd);
1579 free(path);
1580 path = NULL;
1581 }
1582 if (path)
1583 free(path);
1584 if (dir)
1585 closedir(dir);
1586 if (err == 0) {
1587 int i;
1588
1589 for (i = 0; i < port_count; i++)
1590 if (port_mask & (1 << i))
1591 printf(" Port%d : - no device attached -\n", i);
1592 }
1593
1594 return err;
1595 }
1596
1597 static void print_found_intel_controllers(struct sys_dev *elem)
1598 {
1599 for (; elem; elem = elem->next) {
1600 fprintf(stderr, Name ": found Intel(R) ");
1601 if (elem->type == SYS_DEV_SATA)
1602 fprintf(stderr, "SATA ");
1603 else if (elem->type == SYS_DEV_SAS)
1604 fprintf(stderr, "SAS ");
1605 fprintf(stderr, "RAID controller");
1606 if (elem->pci_id)
1607 fprintf(stderr, " at %s", elem->pci_id);
1608 fprintf(stderr, ".\n");
1609 }
1610 fflush(stderr);
1611 }
1612
1613 static int ahci_get_port_count(const char *hba_path, int *port_count)
1614 {
1615 struct dirent *ent;
1616 DIR *dir;
1617 int host_base = -1;
1618
1619 *port_count = 0;
1620 if ((dir = opendir(hba_path)) == NULL)
1621 return -1;
1622
1623 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1624 int host;
1625
1626 if (sscanf(ent->d_name, "host%d", &host) != 1)
1627 continue;
1628 if (*port_count == 0)
1629 host_base = host;
1630 else if (host < host_base)
1631 host_base = host;
1632
1633 if (host + 1 > *port_count + host_base)
1634 *port_count = host + 1 - host_base;
1635 }
1636 closedir(dir);
1637 return host_base;
1638 }
1639
1640 static void print_imsm_capability(const struct imsm_orom *orom)
1641 {
1642 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1643 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1644 orom->hotfix_ver, orom->build);
1645 printf(" RAID Levels :%s%s%s%s%s\n",
1646 imsm_orom_has_raid0(orom) ? " raid0" : "",
1647 imsm_orom_has_raid1(orom) ? " raid1" : "",
1648 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1649 imsm_orom_has_raid10(orom) ? " raid10" : "",
1650 imsm_orom_has_raid5(orom) ? " raid5" : "");
1651 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1652 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1653 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1654 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1655 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1656 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1657 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1658 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1659 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1660 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1661 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1662 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1663 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1664 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1665 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1666 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1667 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1668 printf(" Max Disks : %d\n", orom->tds);
1669 printf(" Max Volumes : %d\n", orom->vpa);
1670 return;
1671 }
1672
1673 static int detail_platform_imsm(int verbose, int enumerate_only)
1674 {
1675 /* There are two components to imsm platform support, the ahci SATA
1676 * controller and the option-rom. To find the SATA controller we
1677 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1678 * controller with the Intel vendor id is present. This approach
1679 * allows mdadm to leverage the kernel's ahci detection logic, with the
1680 * caveat that if ahci.ko is not loaded mdadm will not be able to
1681 * detect platform raid capabilities. The option-rom resides in a
1682 * platform "Adapter ROM". We scan for its signature to retrieve the
1683 * platform capabilities. If raid support is disabled in the BIOS the
1684 * option-rom capability structure will not be available.
1685 */
1686 const struct imsm_orom *orom;
1687 struct sys_dev *list, *hba;
1688 int host_base = 0;
1689 int port_count = 0;
1690 int result=0;
1691
1692 if (enumerate_only) {
1693 if (check_env("IMSM_NO_PLATFORM"))
1694 return 0;
1695 list = find_intel_devices();
1696 if (!list)
1697 return 2;
1698 for (hba = list; hba; hba = hba->next) {
1699 orom = find_imsm_capability(hba->type);
1700 if (!orom) {
1701 result = 2;
1702 break;
1703 }
1704 }
1705 free_sys_dev(&list);
1706 return result;
1707 }
1708
1709 list = find_intel_devices();
1710 if (!list) {
1711 if (verbose)
1712 fprintf(stderr, Name ": no active Intel(R) RAID "
1713 "controller found.\n");
1714 free_sys_dev(&list);
1715 return 2;
1716 } else if (verbose)
1717 print_found_intel_controllers(list);
1718
1719 for (hba = list; hba; hba = hba->next) {
1720 orom = find_imsm_capability(hba->type);
1721 if (!orom)
1722 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1723 hba->path, get_sys_dev_type(hba->type));
1724 else
1725 print_imsm_capability(orom);
1726 }
1727
1728 for (hba = list; hba; hba = hba->next) {
1729 printf(" I/O Controller : %s (%s)\n",
1730 hba->path, get_sys_dev_type(hba->type));
1731
1732 if (hba->type == SYS_DEV_SATA) {
1733 host_base = ahci_get_port_count(hba->path, &port_count);
1734 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1735 if (verbose)
1736 fprintf(stderr, Name ": failed to enumerate "
1737 "ports on SATA controller at %s.", hba->pci_id);
1738 result |= 2;
1739 }
1740 }
1741 }
1742
1743 free_sys_dev(&list);
1744 return result;
1745 }
1746 #endif
1747
1748 static int match_home_imsm(struct supertype *st, char *homehost)
1749 {
1750 /* the imsm metadata format does not specify any host
1751 * identification information. We return -1 since we can never
1752 * confirm nor deny whether a given array is "meant" for this
1753 * host. We rely on compare_super and the 'family_num' fields to
1754 * exclude member disks that do not belong, and we rely on
1755 * mdadm.conf to specify the arrays that should be assembled.
1756 * Auto-assembly may still pick up "foreign" arrays.
1757 */
1758
1759 return -1;
1760 }
1761
1762 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1763 {
1764 /* The uuid returned here is used for:
1765 * uuid to put into bitmap file (Create, Grow)
1766 * uuid for backup header when saving critical section (Grow)
1767 * comparing uuids when re-adding a device into an array
1768 * In these cases the uuid required is that of the data-array,
1769 * not the device-set.
1770 * uuid to recognise same set when adding a missing device back
1771 * to an array. This is a uuid for the device-set.
1772 *
1773 * For each of these we can make do with a truncated
1774 * or hashed uuid rather than the original, as long as
1775 * everyone agrees.
1776 * In each case the uuid required is that of the data-array,
1777 * not the device-set.
1778 */
1779 /* imsm does not track uuid's so we synthesis one using sha1 on
1780 * - The signature (Which is constant for all imsm array, but no matter)
1781 * - the orig_family_num of the container
1782 * - the index number of the volume
1783 * - the 'serial' number of the volume.
1784 * Hopefully these are all constant.
1785 */
1786 struct intel_super *super = st->sb;
1787
1788 char buf[20];
1789 struct sha1_ctx ctx;
1790 struct imsm_dev *dev = NULL;
1791 __u32 family_num;
1792
1793 /* some mdadm versions failed to set ->orig_family_num, in which
1794 * case fall back to ->family_num. orig_family_num will be
1795 * fixed up with the first metadata update.
1796 */
1797 family_num = super->anchor->orig_family_num;
1798 if (family_num == 0)
1799 family_num = super->anchor->family_num;
1800 sha1_init_ctx(&ctx);
1801 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1802 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1803 if (super->current_vol >= 0)
1804 dev = get_imsm_dev(super, super->current_vol);
1805 if (dev) {
1806 __u32 vol = super->current_vol;
1807 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1808 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1809 }
1810 sha1_finish_ctx(&ctx, buf);
1811 memcpy(uuid, buf, 4*4);
1812 }
1813
1814 #if 0
1815 static void
1816 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1817 {
1818 __u8 *v = get_imsm_version(mpb);
1819 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1820 char major[] = { 0, 0, 0 };
1821 char minor[] = { 0 ,0, 0 };
1822 char patch[] = { 0, 0, 0 };
1823 char *ver_parse[] = { major, minor, patch };
1824 int i, j;
1825
1826 i = j = 0;
1827 while (*v != '\0' && v < end) {
1828 if (*v != '.' && j < 2)
1829 ver_parse[i][j++] = *v;
1830 else {
1831 i++;
1832 j = 0;
1833 }
1834 v++;
1835 }
1836
1837 *m = strtol(minor, NULL, 0);
1838 *p = strtol(patch, NULL, 0);
1839 }
1840 #endif
1841
1842 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1843 {
1844 /* migr_strip_size when repairing or initializing parity */
1845 struct imsm_map *map = get_imsm_map(dev, 0);
1846 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1847
1848 switch (get_imsm_raid_level(map)) {
1849 case 5:
1850 case 10:
1851 return chunk;
1852 default:
1853 return 128*1024 >> 9;
1854 }
1855 }
1856
1857 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1858 {
1859 /* migr_strip_size when rebuilding a degraded disk, no idea why
1860 * this is different than migr_strip_size_resync(), but it's good
1861 * to be compatible
1862 */
1863 struct imsm_map *map = get_imsm_map(dev, 1);
1864 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1865
1866 switch (get_imsm_raid_level(map)) {
1867 case 1:
1868 case 10:
1869 if (map->num_members % map->num_domains == 0)
1870 return 128*1024 >> 9;
1871 else
1872 return chunk;
1873 case 5:
1874 return max((__u32) 64*1024 >> 9, chunk);
1875 default:
1876 return 128*1024 >> 9;
1877 }
1878 }
1879
1880 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1881 {
1882 struct imsm_map *lo = get_imsm_map(dev, 0);
1883 struct imsm_map *hi = get_imsm_map(dev, 1);
1884 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1885 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1886
1887 return max((__u32) 1, hi_chunk / lo_chunk);
1888 }
1889
1890 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1891 {
1892 struct imsm_map *lo = get_imsm_map(dev, 0);
1893 int level = get_imsm_raid_level(lo);
1894
1895 if (level == 1 || level == 10) {
1896 struct imsm_map *hi = get_imsm_map(dev, 1);
1897
1898 return hi->num_domains;
1899 } else
1900 return num_stripes_per_unit_resync(dev);
1901 }
1902
1903 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1904 {
1905 /* named 'imsm_' because raid0, raid1 and raid10
1906 * counter-intuitively have the same number of data disks
1907 */
1908 struct imsm_map *map = get_imsm_map(dev, second_map);
1909
1910 switch (get_imsm_raid_level(map)) {
1911 case 0:
1912 case 1:
1913 case 10:
1914 return map->num_members;
1915 case 5:
1916 return map->num_members - 1;
1917 default:
1918 dprintf("%s: unsupported raid level\n", __func__);
1919 return 0;
1920 }
1921 }
1922
1923 static __u32 parity_segment_depth(struct imsm_dev *dev)
1924 {
1925 struct imsm_map *map = get_imsm_map(dev, 0);
1926 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1927
1928 switch(get_imsm_raid_level(map)) {
1929 case 1:
1930 case 10:
1931 return chunk * map->num_domains;
1932 case 5:
1933 return chunk * map->num_members;
1934 default:
1935 return chunk;
1936 }
1937 }
1938
1939 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1940 {
1941 struct imsm_map *map = get_imsm_map(dev, 1);
1942 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1943 __u32 strip = block / chunk;
1944
1945 switch (get_imsm_raid_level(map)) {
1946 case 1:
1947 case 10: {
1948 __u32 vol_strip = (strip * map->num_domains) + 1;
1949 __u32 vol_stripe = vol_strip / map->num_members;
1950
1951 return vol_stripe * chunk + block % chunk;
1952 } case 5: {
1953 __u32 stripe = strip / (map->num_members - 1);
1954
1955 return stripe * chunk + block % chunk;
1956 }
1957 default:
1958 return 0;
1959 }
1960 }
1961
1962 static __u64 blocks_per_migr_unit(struct intel_super *super,
1963 struct imsm_dev *dev)
1964 {
1965 /* calculate the conversion factor between per member 'blocks'
1966 * (md/{resync,rebuild}_start) and imsm migration units, return
1967 * 0 for the 'not migrating' and 'unsupported migration' cases
1968 */
1969 if (!dev->vol.migr_state)
1970 return 0;
1971
1972 switch (migr_type(dev)) {
1973 case MIGR_GEN_MIGR: {
1974 struct migr_record *migr_rec = super->migr_rec;
1975 return __le32_to_cpu(migr_rec->blocks_per_unit);
1976 }
1977 case MIGR_VERIFY:
1978 case MIGR_REPAIR:
1979 case MIGR_INIT: {
1980 struct imsm_map *map = get_imsm_map(dev, 0);
1981 __u32 stripes_per_unit;
1982 __u32 blocks_per_unit;
1983 __u32 parity_depth;
1984 __u32 migr_chunk;
1985 __u32 block_map;
1986 __u32 block_rel;
1987 __u32 segment;
1988 __u32 stripe;
1989 __u8 disks;
1990
1991 /* yes, this is really the translation of migr_units to
1992 * per-member blocks in the 'resync' case
1993 */
1994 stripes_per_unit = num_stripes_per_unit_resync(dev);
1995 migr_chunk = migr_strip_blocks_resync(dev);
1996 disks = imsm_num_data_members(dev, 0);
1997 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1998 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1999 segment = blocks_per_unit / stripe;
2000 block_rel = blocks_per_unit - segment * stripe;
2001 parity_depth = parity_segment_depth(dev);
2002 block_map = map_migr_block(dev, block_rel);
2003 return block_map + parity_depth * segment;
2004 }
2005 case MIGR_REBUILD: {
2006 __u32 stripes_per_unit;
2007 __u32 migr_chunk;
2008
2009 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2010 migr_chunk = migr_strip_blocks_rebuild(dev);
2011 return migr_chunk * stripes_per_unit;
2012 }
2013 case MIGR_STATE_CHANGE:
2014 default:
2015 return 0;
2016 }
2017 }
2018
2019 static int imsm_level_to_layout(int level)
2020 {
2021 switch (level) {
2022 case 0:
2023 case 1:
2024 return 0;
2025 case 5:
2026 case 6:
2027 return ALGORITHM_LEFT_ASYMMETRIC;
2028 case 10:
2029 return 0x102;
2030 }
2031 return UnSet;
2032 }
2033
2034 /*******************************************************************************
2035 * Function: read_imsm_migr_rec
2036 * Description: Function reads imsm migration record from last sector of disk
2037 * Parameters:
2038 * fd : disk descriptor
2039 * super : metadata info
2040 * Returns:
2041 * 0 : success,
2042 * -1 : fail
2043 ******************************************************************************/
2044 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2045 {
2046 int ret_val = -1;
2047 unsigned long long dsize;
2048
2049 get_dev_size(fd, NULL, &dsize);
2050 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2051 fprintf(stderr,
2052 Name ": Cannot seek to anchor block: %s\n",
2053 strerror(errno));
2054 goto out;
2055 }
2056 if (read(fd, super->migr_rec_buf, 512) != 512) {
2057 fprintf(stderr,
2058 Name ": Cannot read migr record block: %s\n",
2059 strerror(errno));
2060 goto out;
2061 }
2062 ret_val = 0;
2063
2064 out:
2065 return ret_val;
2066 }
2067
2068 /*******************************************************************************
2069 * Function: load_imsm_migr_rec
2070 * Description: Function reads imsm migration record (it is stored at the last
2071 * sector of disk)
2072 * Parameters:
2073 * super : imsm internal array info
2074 * info : general array info
2075 * Returns:
2076 * 0 : success
2077 * -1 : fail
2078 ******************************************************************************/
2079 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2080 {
2081 struct mdinfo *sd;
2082 struct dl *dl = NULL;
2083 char nm[30];
2084 int retval = -1;
2085 int fd = -1;
2086
2087 if (info) {
2088 for (sd = info->devs ; sd ; sd = sd->next) {
2089 /* read only from one of the first two slots */
2090 if ((sd->disk.raid_disk > 1) ||
2091 (sd->disk.raid_disk < 0))
2092 continue;
2093 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2094 fd = dev_open(nm, O_RDONLY);
2095 if (fd >= 0)
2096 break;
2097 }
2098 }
2099 if (fd < 0) {
2100 for (dl = super->disks; dl; dl = dl->next) {
2101 /* read only from one of the first two slots */
2102 if (dl->index > 1)
2103 continue;
2104 sprintf(nm, "%d:%d", dl->major, dl->minor);
2105 fd = dev_open(nm, O_RDONLY);
2106 if (fd >= 0)
2107 break;
2108 }
2109 }
2110 if (fd < 0)
2111 goto out;
2112 retval = read_imsm_migr_rec(fd, super);
2113
2114 out:
2115 if (fd >= 0)
2116 close(fd);
2117 return retval;
2118 }
2119
2120 #ifndef MDASSEMBLE
2121 /*******************************************************************************
2122 * function: imsm_create_metadata_checkpoint_update
2123 * Description: It creates update for checkpoint change.
2124 * Parameters:
2125 * super : imsm internal array info
2126 * u : pointer to prepared update
2127 * Returns:
2128 * Uptate length.
2129 * If length is equal to 0, input pointer u contains no update
2130 ******************************************************************************/
2131 static int imsm_create_metadata_checkpoint_update(
2132 struct intel_super *super,
2133 struct imsm_update_general_migration_checkpoint **u)
2134 {
2135
2136 int update_memory_size = 0;
2137
2138 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2139
2140 if (u == NULL)
2141 return 0;
2142 *u = NULL;
2143
2144 /* size of all update data without anchor */
2145 update_memory_size =
2146 sizeof(struct imsm_update_general_migration_checkpoint);
2147
2148 *u = calloc(1, update_memory_size);
2149 if (*u == NULL) {
2150 dprintf("error: cannot get memory for "
2151 "imsm_create_metadata_checkpoint_update update\n");
2152 return 0;
2153 }
2154 (*u)->type = update_general_migration_checkpoint;
2155 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2156 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2157 (*u)->curr_migr_unit);
2158
2159 return update_memory_size;
2160 }
2161
2162
2163 static void imsm_update_metadata_locally(struct supertype *st,
2164 void *buf, int len);
2165
2166 /*******************************************************************************
2167 * Function: write_imsm_migr_rec
2168 * Description: Function writes imsm migration record
2169 * (at the last sector of disk)
2170 * Parameters:
2171 * super : imsm internal array info
2172 * Returns:
2173 * 0 : success
2174 * -1 : if fail
2175 ******************************************************************************/
2176 static int write_imsm_migr_rec(struct supertype *st)
2177 {
2178 struct intel_super *super = st->sb;
2179 unsigned long long dsize;
2180 char nm[30];
2181 int fd = -1;
2182 int retval = -1;
2183 struct dl *sd;
2184 int len;
2185 struct imsm_update_general_migration_checkpoint *u;
2186
2187 for (sd = super->disks ; sd ; sd = sd->next) {
2188 /* write to 2 first slots only */
2189 if ((sd->index < 0) || (sd->index > 1))
2190 continue;
2191 sprintf(nm, "%d:%d", sd->major, sd->minor);
2192 fd = dev_open(nm, O_RDWR);
2193 if (fd < 0)
2194 continue;
2195 get_dev_size(fd, NULL, &dsize);
2196 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2197 fprintf(stderr,
2198 Name ": Cannot seek to anchor block: %s\n",
2199 strerror(errno));
2200 goto out;
2201 }
2202 if (write(fd, super->migr_rec_buf, 512) != 512) {
2203 fprintf(stderr,
2204 Name ": Cannot write migr record block: %s\n",
2205 strerror(errno));
2206 goto out;
2207 }
2208 close(fd);
2209 fd = -1;
2210 }
2211 /* update checkpoint information in metadata */
2212 len = imsm_create_metadata_checkpoint_update(super, &u);
2213
2214 if (len <= 0) {
2215 dprintf("imsm: Cannot prepare update\n");
2216 goto out;
2217 }
2218 /* update metadata locally */
2219 imsm_update_metadata_locally(st, u, len);
2220 /* and possibly remotely */
2221 if (st->update_tail) {
2222 append_metadata_update(st, u, len);
2223 /* during reshape we do all work inside metadata handler
2224 * manage_reshape(), so metadata update has to be triggered
2225 * insida it
2226 */
2227 flush_metadata_updates(st);
2228 st->update_tail = &st->updates;
2229 } else
2230 free(u);
2231
2232 retval = 0;
2233 out:
2234 if (fd >= 0)
2235 close(fd);
2236 return retval;
2237 }
2238 #endif /* MDASSEMBLE */
2239
2240 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2241 {
2242 struct intel_super *super = st->sb;
2243 struct migr_record *migr_rec = super->migr_rec;
2244 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2245 struct imsm_map *map = get_imsm_map(dev, 0);
2246 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2247 struct imsm_map *map_to_analyse = map;
2248 struct dl *dl;
2249 char *devname;
2250 unsigned int component_size_alligment;
2251 int map_disks = info->array.raid_disks;
2252
2253 memset(info, 0, sizeof(*info));
2254 if (prev_map)
2255 map_to_analyse = prev_map;
2256
2257 dl = super->current_disk;
2258
2259 info->container_member = super->current_vol;
2260 info->array.raid_disks = map->num_members;
2261 info->array.level = get_imsm_raid_level(map_to_analyse);
2262 info->array.layout = imsm_level_to_layout(info->array.level);
2263 info->array.md_minor = -1;
2264 info->array.ctime = 0;
2265 info->array.utime = 0;
2266 info->array.chunk_size =
2267 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2268 info->array.state = !dev->vol.dirty;
2269 info->custom_array_size = __le32_to_cpu(dev->size_high);
2270 info->custom_array_size <<= 32;
2271 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2272 if (prev_map && map->map_state == prev_map->map_state) {
2273 info->reshape_active = 1;
2274 info->new_level = get_imsm_raid_level(map);
2275 info->new_layout = imsm_level_to_layout(info->new_level);
2276 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2277 info->delta_disks = map->num_members - prev_map->num_members;
2278 if (info->delta_disks) {
2279 /* this needs to be applied to every array
2280 * in the container.
2281 */
2282 info->reshape_active = 2;
2283 }
2284 /* We shape information that we give to md might have to be
2285 * modify to cope with md's requirement for reshaping arrays.
2286 * For example, when reshaping a RAID0, md requires it to be
2287 * presented as a degraded RAID4.
2288 * Also if a RAID0 is migrating to a RAID5 we need to specify
2289 * the array as already being RAID5, but the 'before' layout
2290 * is a RAID4-like layout.
2291 */
2292 switch (info->array.level) {
2293 case 0:
2294 switch(info->new_level) {
2295 case 0:
2296 /* conversion is happening as RAID4 */
2297 info->array.level = 4;
2298 info->array.raid_disks += 1;
2299 break;
2300 case 5:
2301 /* conversion is happening as RAID5 */
2302 info->array.level = 5;
2303 info->array.layout = ALGORITHM_PARITY_N;
2304 info->delta_disks -= 1;
2305 break;
2306 default:
2307 /* FIXME error message */
2308 info->array.level = UnSet;
2309 break;
2310 }
2311 break;
2312 }
2313 } else {
2314 info->new_level = UnSet;
2315 info->new_layout = UnSet;
2316 info->new_chunk = info->array.chunk_size;
2317 info->delta_disks = 0;
2318 }
2319
2320 if (dl) {
2321 info->disk.major = dl->major;
2322 info->disk.minor = dl->minor;
2323 info->disk.number = dl->index;
2324 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2325 dl->index);
2326 }
2327
2328 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2329 info->component_size =
2330 __le32_to_cpu(map_to_analyse->blocks_per_member);
2331
2332 /* check component size aligment
2333 */
2334 component_size_alligment =
2335 info->component_size % (info->array.chunk_size/512);
2336
2337 if (component_size_alligment &&
2338 (info->array.level != 1) && (info->array.level != UnSet)) {
2339 dprintf("imsm: reported component size alligned from %llu ",
2340 info->component_size);
2341 info->component_size -= component_size_alligment;
2342 dprintf("to %llu (%i).\n",
2343 info->component_size, component_size_alligment);
2344 }
2345
2346 memset(info->uuid, 0, sizeof(info->uuid));
2347 info->recovery_start = MaxSector;
2348
2349 info->reshape_progress = 0;
2350 info->resync_start = MaxSector;
2351 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2352 dev->vol.dirty) {
2353 info->resync_start = 0;
2354 }
2355 if (dev->vol.migr_state) {
2356 switch (migr_type(dev)) {
2357 case MIGR_REPAIR:
2358 case MIGR_INIT: {
2359 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2360 dev);
2361 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2362
2363 info->resync_start = blocks_per_unit * units;
2364 break;
2365 }
2366 case MIGR_GEN_MIGR: {
2367 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2368 dev);
2369 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2370 unsigned long long array_blocks;
2371 int used_disks;
2372
2373 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2374 (units <
2375 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2376 (super->migr_rec->rec_status ==
2377 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2378 units++;
2379
2380 info->reshape_progress = blocks_per_unit * units;
2381
2382 dprintf("IMSM: General Migration checkpoint : %llu "
2383 "(%llu) -> read reshape progress : %llu\n",
2384 (unsigned long long)units,
2385 (unsigned long long)blocks_per_unit,
2386 info->reshape_progress);
2387
2388 used_disks = imsm_num_data_members(dev, 1);
2389 if (used_disks > 0) {
2390 array_blocks = map->blocks_per_member *
2391 used_disks;
2392 /* round array size down to closest MB
2393 */
2394 info->custom_array_size = (array_blocks
2395 >> SECT_PER_MB_SHIFT)
2396 << SECT_PER_MB_SHIFT;
2397 }
2398 }
2399 case MIGR_VERIFY:
2400 /* we could emulate the checkpointing of
2401 * 'sync_action=check' migrations, but for now
2402 * we just immediately complete them
2403 */
2404 case MIGR_REBUILD:
2405 /* this is handled by container_content_imsm() */
2406 case MIGR_STATE_CHANGE:
2407 /* FIXME handle other migrations */
2408 default:
2409 /* we are not dirty, so... */
2410 info->resync_start = MaxSector;
2411 }
2412 }
2413
2414 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2415 info->name[MAX_RAID_SERIAL_LEN] = 0;
2416
2417 info->array.major_version = -1;
2418 info->array.minor_version = -2;
2419 devname = devnum2devname(st->container_dev);
2420 *info->text_version = '\0';
2421 if (devname)
2422 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2423 free(devname);
2424 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2425 uuid_from_super_imsm(st, info->uuid);
2426
2427 if (dmap) {
2428 int i, j;
2429 for (i=0; i<map_disks; i++) {
2430 dmap[i] = 0;
2431 if (i < info->array.raid_disks) {
2432 struct imsm_disk *dsk;
2433 j = get_imsm_disk_idx(dev, i, -1);
2434 dsk = get_imsm_disk(super, j);
2435 if (dsk && (dsk->status & CONFIGURED_DISK))
2436 dmap[i] = 1;
2437 }
2438 }
2439 }
2440 }
2441
2442 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2443 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2444
2445 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2446 {
2447 struct dl *d;
2448
2449 for (d = super->missing; d; d = d->next)
2450 if (d->index == index)
2451 return &d->disk;
2452 return NULL;
2453 }
2454
2455 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2456 {
2457 struct intel_super *super = st->sb;
2458 struct imsm_disk *disk;
2459 int map_disks = info->array.raid_disks;
2460 int max_enough = -1;
2461 int i;
2462 struct imsm_super *mpb;
2463
2464 if (super->current_vol >= 0) {
2465 getinfo_super_imsm_volume(st, info, map);
2466 return;
2467 }
2468 memset(info, 0, sizeof(*info));
2469
2470 /* Set raid_disks to zero so that Assemble will always pull in valid
2471 * spares
2472 */
2473 info->array.raid_disks = 0;
2474 info->array.level = LEVEL_CONTAINER;
2475 info->array.layout = 0;
2476 info->array.md_minor = -1;
2477 info->array.ctime = 0; /* N/A for imsm */
2478 info->array.utime = 0;
2479 info->array.chunk_size = 0;
2480
2481 info->disk.major = 0;
2482 info->disk.minor = 0;
2483 info->disk.raid_disk = -1;
2484 info->reshape_active = 0;
2485 info->array.major_version = -1;
2486 info->array.minor_version = -2;
2487 strcpy(info->text_version, "imsm");
2488 info->safe_mode_delay = 0;
2489 info->disk.number = -1;
2490 info->disk.state = 0;
2491 info->name[0] = 0;
2492 info->recovery_start = MaxSector;
2493
2494 /* do we have the all the insync disks that we expect? */
2495 mpb = super->anchor;
2496
2497 for (i = 0; i < mpb->num_raid_devs; i++) {
2498 struct imsm_dev *dev = get_imsm_dev(super, i);
2499 int failed, enough, j, missing = 0;
2500 struct imsm_map *map;
2501 __u8 state;
2502
2503 failed = imsm_count_failed(super, dev);
2504 state = imsm_check_degraded(super, dev, failed);
2505 map = get_imsm_map(dev, dev->vol.migr_state);
2506
2507 /* any newly missing disks?
2508 * (catches single-degraded vs double-degraded)
2509 */
2510 for (j = 0; j < map->num_members; j++) {
2511 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2512 __u32 idx = ord_to_idx(ord);
2513
2514 if (!(ord & IMSM_ORD_REBUILD) &&
2515 get_imsm_missing(super, idx)) {
2516 missing = 1;
2517 break;
2518 }
2519 }
2520
2521 if (state == IMSM_T_STATE_FAILED)
2522 enough = -1;
2523 else if (state == IMSM_T_STATE_DEGRADED &&
2524 (state != map->map_state || missing))
2525 enough = 0;
2526 else /* we're normal, or already degraded */
2527 enough = 1;
2528
2529 /* in the missing/failed disk case check to see
2530 * if at least one array is runnable
2531 */
2532 max_enough = max(max_enough, enough);
2533 }
2534 dprintf("%s: enough: %d\n", __func__, max_enough);
2535 info->container_enough = max_enough;
2536
2537 if (super->disks) {
2538 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2539
2540 disk = &super->disks->disk;
2541 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2542 info->component_size = reserved;
2543 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2544 /* we don't change info->disk.raid_disk here because
2545 * this state will be finalized in mdmon after we have
2546 * found the 'most fresh' version of the metadata
2547 */
2548 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2549 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2550 }
2551
2552 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2553 * ->compare_super may have updated the 'num_raid_devs' field for spares
2554 */
2555 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2556 uuid_from_super_imsm(st, info->uuid);
2557 else
2558 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2559
2560 /* I don't know how to compute 'map' on imsm, so use safe default */
2561 if (map) {
2562 int i;
2563 for (i = 0; i < map_disks; i++)
2564 map[i] = 1;
2565 }
2566
2567 }
2568
2569 /* allocates memory and fills disk in mdinfo structure
2570 * for each disk in array */
2571 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2572 {
2573 struct mdinfo *mddev = NULL;
2574 struct intel_super *super = st->sb;
2575 struct imsm_disk *disk;
2576 int count = 0;
2577 struct dl *dl;
2578 if (!super || !super->disks)
2579 return NULL;
2580 dl = super->disks;
2581 mddev = malloc(sizeof(*mddev));
2582 if (!mddev) {
2583 fprintf(stderr, Name ": Failed to allocate memory.\n");
2584 return NULL;
2585 }
2586 memset(mddev, 0, sizeof(*mddev));
2587 while (dl) {
2588 struct mdinfo *tmp;
2589 disk = &dl->disk;
2590 tmp = malloc(sizeof(*tmp));
2591 if (!tmp) {
2592 fprintf(stderr, Name ": Failed to allocate memory.\n");
2593 if (mddev)
2594 sysfs_free(mddev);
2595 return NULL;
2596 }
2597 memset(tmp, 0, sizeof(*tmp));
2598 if (mddev->devs)
2599 tmp->next = mddev->devs;
2600 mddev->devs = tmp;
2601 tmp->disk.number = count++;
2602 tmp->disk.major = dl->major;
2603 tmp->disk.minor = dl->minor;
2604 tmp->disk.state = is_configured(disk) ?
2605 (1 << MD_DISK_ACTIVE) : 0;
2606 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2607 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2608 tmp->disk.raid_disk = -1;
2609 dl = dl->next;
2610 }
2611 return mddev;
2612 }
2613
2614 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2615 char *update, char *devname, int verbose,
2616 int uuid_set, char *homehost)
2617 {
2618 /* For 'assemble' and 'force' we need to return non-zero if any
2619 * change was made. For others, the return value is ignored.
2620 * Update options are:
2621 * force-one : This device looks a bit old but needs to be included,
2622 * update age info appropriately.
2623 * assemble: clear any 'faulty' flag to allow this device to
2624 * be assembled.
2625 * force-array: Array is degraded but being forced, mark it clean
2626 * if that will be needed to assemble it.
2627 *
2628 * newdev: not used ????
2629 * grow: Array has gained a new device - this is currently for
2630 * linear only
2631 * resync: mark as dirty so a resync will happen.
2632 * name: update the name - preserving the homehost
2633 * uuid: Change the uuid of the array to match watch is given
2634 *
2635 * Following are not relevant for this imsm:
2636 * sparc2.2 : update from old dodgey metadata
2637 * super-minor: change the preferred_minor number
2638 * summaries: update redundant counters.
2639 * homehost: update the recorded homehost
2640 * _reshape_progress: record new reshape_progress position.
2641 */
2642 int rv = 1;
2643 struct intel_super *super = st->sb;
2644 struct imsm_super *mpb;
2645
2646 /* we can only update container info */
2647 if (!super || super->current_vol >= 0 || !super->anchor)
2648 return 1;
2649
2650 mpb = super->anchor;
2651
2652 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2653 rv = -1;
2654 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2655 mpb->orig_family_num = *((__u32 *) info->update_private);
2656 rv = 0;
2657 } else if (strcmp(update, "uuid") == 0) {
2658 __u32 *new_family = malloc(sizeof(*new_family));
2659
2660 /* update orig_family_number with the incoming random
2661 * data, report the new effective uuid, and store the
2662 * new orig_family_num for future updates.
2663 */
2664 if (new_family) {
2665 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2666 uuid_from_super_imsm(st, info->uuid);
2667 *new_family = mpb->orig_family_num;
2668 info->update_private = new_family;
2669 rv = 0;
2670 }
2671 } else if (strcmp(update, "assemble") == 0)
2672 rv = 0;
2673 else
2674 rv = -1;
2675
2676 /* successful update? recompute checksum */
2677 if (rv == 0)
2678 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2679
2680 return rv;
2681 }
2682
2683 static size_t disks_to_mpb_size(int disks)
2684 {
2685 size_t size;
2686
2687 size = sizeof(struct imsm_super);
2688 size += (disks - 1) * sizeof(struct imsm_disk);
2689 size += 2 * sizeof(struct imsm_dev);
2690 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2691 size += (4 - 2) * sizeof(struct imsm_map);
2692 /* 4 possible disk_ord_tbl's */
2693 size += 4 * (disks - 1) * sizeof(__u32);
2694
2695 return size;
2696 }
2697
2698 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2699 {
2700 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2701 return 0;
2702
2703 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2704 }
2705
2706 static void free_devlist(struct intel_super *super)
2707 {
2708 struct intel_dev *dv;
2709
2710 while (super->devlist) {
2711 dv = super->devlist->next;
2712 free(super->devlist->dev);
2713 free(super->devlist);
2714 super->devlist = dv;
2715 }
2716 }
2717
2718 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2719 {
2720 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2721 }
2722
2723 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2724 {
2725 /*
2726 * return:
2727 * 0 same, or first was empty, and second was copied
2728 * 1 second had wrong number
2729 * 2 wrong uuid
2730 * 3 wrong other info
2731 */
2732 struct intel_super *first = st->sb;
2733 struct intel_super *sec = tst->sb;
2734
2735 if (!first) {
2736 st->sb = tst->sb;
2737 tst->sb = NULL;
2738 return 0;
2739 }
2740 /* in platform dependent environment test if the disks
2741 * use the same Intel hba
2742 */
2743 if (!check_env("IMSM_NO_PLATFORM")) {
2744 if (!first->hba || !sec->hba ||
2745 (first->hba->type != sec->hba->type)) {
2746 fprintf(stderr,
2747 "HBAs of devices does not match %s != %s\n",
2748 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2749 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2750 return 3;
2751 }
2752 }
2753
2754 /* if an anchor does not have num_raid_devs set then it is a free
2755 * floating spare
2756 */
2757 if (first->anchor->num_raid_devs > 0 &&
2758 sec->anchor->num_raid_devs > 0) {
2759 /* Determine if these disks might ever have been
2760 * related. Further disambiguation can only take place
2761 * in load_super_imsm_all
2762 */
2763 __u32 first_family = first->anchor->orig_family_num;
2764 __u32 sec_family = sec->anchor->orig_family_num;
2765
2766 if (memcmp(first->anchor->sig, sec->anchor->sig,
2767 MAX_SIGNATURE_LENGTH) != 0)
2768 return 3;
2769
2770 if (first_family == 0)
2771 first_family = first->anchor->family_num;
2772 if (sec_family == 0)
2773 sec_family = sec->anchor->family_num;
2774
2775 if (first_family != sec_family)
2776 return 3;
2777
2778 }
2779
2780
2781 /* if 'first' is a spare promote it to a populated mpb with sec's
2782 * family number
2783 */
2784 if (first->anchor->num_raid_devs == 0 &&
2785 sec->anchor->num_raid_devs > 0) {
2786 int i;
2787 struct intel_dev *dv;
2788 struct imsm_dev *dev;
2789
2790 /* we need to copy raid device info from sec if an allocation
2791 * fails here we don't associate the spare
2792 */
2793 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2794 dv = malloc(sizeof(*dv));
2795 if (!dv)
2796 break;
2797 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2798 if (!dev) {
2799 free(dv);
2800 break;
2801 }
2802 dv->dev = dev;
2803 dv->index = i;
2804 dv->next = first->devlist;
2805 first->devlist = dv;
2806 }
2807 if (i < sec->anchor->num_raid_devs) {
2808 /* allocation failure */
2809 free_devlist(first);
2810 fprintf(stderr, "imsm: failed to associate spare\n");
2811 return 3;
2812 }
2813 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2814 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2815 first->anchor->family_num = sec->anchor->family_num;
2816 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2817 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2818 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2819 }
2820
2821 return 0;
2822 }
2823
2824 static void fd2devname(int fd, char *name)
2825 {
2826 struct stat st;
2827 char path[256];
2828 char dname[PATH_MAX];
2829 char *nm;
2830 int rv;
2831
2832 name[0] = '\0';
2833 if (fstat(fd, &st) != 0)
2834 return;
2835 sprintf(path, "/sys/dev/block/%d:%d",
2836 major(st.st_rdev), minor(st.st_rdev));
2837
2838 rv = readlink(path, dname, sizeof(dname));
2839 if (rv <= 0)
2840 return;
2841
2842 dname[rv] = '\0';
2843 nm = strrchr(dname, '/');
2844 nm++;
2845 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2846 }
2847
2848 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2849
2850 static int imsm_read_serial(int fd, char *devname,
2851 __u8 serial[MAX_RAID_SERIAL_LEN])
2852 {
2853 unsigned char scsi_serial[255];
2854 int rv;
2855 int rsp_len;
2856 int len;
2857 char *dest;
2858 char *src;
2859 char *rsp_buf;
2860 int i;
2861
2862 memset(scsi_serial, 0, sizeof(scsi_serial));
2863
2864 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2865
2866 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2867 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2868 fd2devname(fd, (char *) serial);
2869 return 0;
2870 }
2871
2872 if (rv != 0) {
2873 if (devname)
2874 fprintf(stderr,
2875 Name ": Failed to retrieve serial for %s\n",
2876 devname);
2877 return rv;
2878 }
2879
2880 rsp_len = scsi_serial[3];
2881 if (!rsp_len) {
2882 if (devname)
2883 fprintf(stderr,
2884 Name ": Failed to retrieve serial for %s\n",
2885 devname);
2886 return 2;
2887 }
2888 rsp_buf = (char *) &scsi_serial[4];
2889
2890 /* trim all whitespace and non-printable characters and convert
2891 * ':' to ';'
2892 */
2893 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2894 src = &rsp_buf[i];
2895 if (*src > 0x20) {
2896 /* ':' is reserved for use in placeholder serial
2897 * numbers for missing disks
2898 */
2899 if (*src == ':')
2900 *dest++ = ';';
2901 else
2902 *dest++ = *src;
2903 }
2904 }
2905 len = dest - rsp_buf;
2906 dest = rsp_buf;
2907
2908 /* truncate leading characters */
2909 if (len > MAX_RAID_SERIAL_LEN) {
2910 dest += len - MAX_RAID_SERIAL_LEN;
2911 len = MAX_RAID_SERIAL_LEN;
2912 }
2913
2914 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2915 memcpy(serial, dest, len);
2916
2917 return 0;
2918 }
2919
2920 static int serialcmp(__u8 *s1, __u8 *s2)
2921 {
2922 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2923 }
2924
2925 static void serialcpy(__u8 *dest, __u8 *src)
2926 {
2927 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2928 }
2929
2930 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2931 {
2932 struct dl *dl;
2933
2934 for (dl = super->disks; dl; dl = dl->next)
2935 if (serialcmp(dl->serial, serial) == 0)
2936 break;
2937
2938 return dl;
2939 }
2940
2941 static struct imsm_disk *
2942 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2943 {
2944 int i;
2945
2946 for (i = 0; i < mpb->num_disks; i++) {
2947 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2948
2949 if (serialcmp(disk->serial, serial) == 0) {
2950 if (idx)
2951 *idx = i;
2952 return disk;
2953 }
2954 }
2955
2956 return NULL;
2957 }
2958
2959 static int
2960 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2961 {
2962 struct imsm_disk *disk;
2963 struct dl *dl;
2964 struct stat stb;
2965 int rv;
2966 char name[40];
2967 __u8 serial[MAX_RAID_SERIAL_LEN];
2968
2969 rv = imsm_read_serial(fd, devname, serial);
2970
2971 if (rv != 0)
2972 return 2;
2973
2974 dl = calloc(1, sizeof(*dl));
2975 if (!dl) {
2976 if (devname)
2977 fprintf(stderr,
2978 Name ": failed to allocate disk buffer for %s\n",
2979 devname);
2980 return 2;
2981 }
2982
2983 fstat(fd, &stb);
2984 dl->major = major(stb.st_rdev);
2985 dl->minor = minor(stb.st_rdev);
2986 dl->next = super->disks;
2987 dl->fd = keep_fd ? fd : -1;
2988 assert(super->disks == NULL);
2989 super->disks = dl;
2990 serialcpy(dl->serial, serial);
2991 dl->index = -2;
2992 dl->e = NULL;
2993 fd2devname(fd, name);
2994 if (devname)
2995 dl->devname = strdup(devname);
2996 else
2997 dl->devname = strdup(name);
2998
2999 /* look up this disk's index in the current anchor */
3000 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3001 if (disk) {
3002 dl->disk = *disk;
3003 /* only set index on disks that are a member of a
3004 * populated contianer, i.e. one with raid_devs
3005 */
3006 if (is_failed(&dl->disk))
3007 dl->index = -2;
3008 else if (is_spare(&dl->disk))
3009 dl->index = -1;
3010 }
3011
3012 return 0;
3013 }
3014
3015 #ifndef MDASSEMBLE
3016 /* When migrating map0 contains the 'destination' state while map1
3017 * contains the current state. When not migrating map0 contains the
3018 * current state. This routine assumes that map[0].map_state is set to
3019 * the current array state before being called.
3020 *
3021 * Migration is indicated by one of the following states
3022 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3023 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3024 * map1state=unitialized)
3025 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3026 * map1state=normal)
3027 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3028 * map1state=degraded)
3029 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3030 * map1state=normal)
3031 */
3032 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3033 __u8 to_state, int migr_type)
3034 {
3035 struct imsm_map *dest;
3036 struct imsm_map *src = get_imsm_map(dev, 0);
3037
3038 dev->vol.migr_state = 1;
3039 set_migr_type(dev, migr_type);
3040 dev->vol.curr_migr_unit = 0;
3041 dest = get_imsm_map(dev, 1);
3042
3043 /* duplicate and then set the target end state in map[0] */
3044 memcpy(dest, src, sizeof_imsm_map(src));
3045 if ((migr_type == MIGR_REBUILD) ||
3046 (migr_type == MIGR_GEN_MIGR)) {
3047 __u32 ord;
3048 int i;
3049
3050 for (i = 0; i < src->num_members; i++) {
3051 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3052 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3053 }
3054 }
3055
3056 if (migr_type == MIGR_GEN_MIGR)
3057 /* Clear migration record */
3058 memset(super->migr_rec, 0, sizeof(struct migr_record));
3059
3060 src->map_state = to_state;
3061 }
3062
3063 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3064 {
3065 struct imsm_map *map = get_imsm_map(dev, 0);
3066 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3067 int i, j;
3068
3069 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3070 * completed in the last migration.
3071 *
3072 * FIXME add support for raid-level-migration
3073 */
3074 for (i = 0; i < prev->num_members; i++)
3075 for (j = 0; j < map->num_members; j++)
3076 /* during online capacity expansion
3077 * disks position can be changed if takeover is used
3078 */
3079 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3080 ord_to_idx(prev->disk_ord_tbl[i])) {
3081 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3082 break;
3083 }
3084
3085 dev->vol.migr_state = 0;
3086 dev->vol.migr_type = 0;
3087 dev->vol.curr_migr_unit = 0;
3088 map->map_state = map_state;
3089 }
3090 #endif
3091
3092 static int parse_raid_devices(struct intel_super *super)
3093 {
3094 int i;
3095 struct imsm_dev *dev_new;
3096 size_t len, len_migr;
3097 size_t max_len = 0;
3098 size_t space_needed = 0;
3099 struct imsm_super *mpb = super->anchor;
3100
3101 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3102 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3103 struct intel_dev *dv;
3104
3105 len = sizeof_imsm_dev(dev_iter, 0);
3106 len_migr = sizeof_imsm_dev(dev_iter, 1);
3107 if (len_migr > len)
3108 space_needed += len_migr - len;
3109
3110 dv = malloc(sizeof(*dv));
3111 if (!dv)
3112 return 1;
3113 if (max_len < len_migr)
3114 max_len = len_migr;
3115 if (max_len > len_migr)
3116 space_needed += max_len - len_migr;
3117 dev_new = malloc(max_len);
3118 if (!dev_new) {
3119 free(dv);
3120 return 1;
3121 }
3122 imsm_copy_dev(dev_new, dev_iter);
3123 dv->dev = dev_new;
3124 dv->index = i;
3125 dv->next = super->devlist;
3126 super->devlist = dv;
3127 }
3128
3129 /* ensure that super->buf is large enough when all raid devices
3130 * are migrating
3131 */
3132 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3133 void *buf;
3134
3135 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3136 if (posix_memalign(&buf, 512, len) != 0)
3137 return 1;
3138
3139 memcpy(buf, super->buf, super->len);
3140 memset(buf + super->len, 0, len - super->len);
3141 free(super->buf);
3142 super->buf = buf;
3143 super->len = len;
3144 }
3145
3146 return 0;
3147 }
3148
3149 /* retrieve a pointer to the bbm log which starts after all raid devices */
3150 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3151 {
3152 void *ptr = NULL;
3153
3154 if (__le32_to_cpu(mpb->bbm_log_size)) {
3155 ptr = mpb;
3156 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3157 }
3158
3159 return ptr;
3160 }
3161
3162 /*******************************************************************************
3163 * Function: check_mpb_migr_compatibility
3164 * Description: Function checks for unsupported migration features:
3165 * - migration optimization area (pba_of_lba0)
3166 * - descending reshape (ascending_migr)
3167 * Parameters:
3168 * super : imsm metadata information
3169 * Returns:
3170 * 0 : migration is compatible
3171 * -1 : migration is not compatible
3172 ******************************************************************************/
3173 int check_mpb_migr_compatibility(struct intel_super *super)
3174 {
3175 struct imsm_map *map0, *map1;
3176 struct migr_record *migr_rec = super->migr_rec;
3177 int i;
3178
3179 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3180 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3181
3182 if (dev_iter &&
3183 dev_iter->vol.migr_state == 1 &&
3184 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3185 /* This device is migrating */
3186 map0 = get_imsm_map(dev_iter, 0);
3187 map1 = get_imsm_map(dev_iter, 1);
3188 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3189 /* migration optimization area was used */
3190 return -1;
3191 if (migr_rec->ascending_migr == 0
3192 && migr_rec->dest_depth_per_unit > 0)
3193 /* descending reshape not supported yet */
3194 return -1;
3195 }
3196 }
3197 return 0;
3198 }
3199
3200 static void __free_imsm(struct intel_super *super, int free_disks);
3201
3202 /* load_imsm_mpb - read matrix metadata
3203 * allocates super->mpb to be freed by free_imsm
3204 */
3205 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3206 {
3207 unsigned long long dsize;
3208 unsigned long long sectors;
3209 struct stat;
3210 struct imsm_super *anchor;
3211 __u32 check_sum;
3212
3213 get_dev_size(fd, NULL, &dsize);
3214 if (dsize < 1024) {
3215 if (devname)
3216 fprintf(stderr,
3217 Name ": %s: device to small for imsm\n",
3218 devname);
3219 return 1;
3220 }
3221
3222 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3223 if (devname)
3224 fprintf(stderr, Name
3225 ": Cannot seek to anchor block on %s: %s\n",
3226 devname, strerror(errno));
3227 return 1;
3228 }
3229
3230 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3231 if (devname)
3232 fprintf(stderr,
3233 Name ": Failed to allocate imsm anchor buffer"
3234 " on %s\n", devname);
3235 return 1;
3236 }
3237 if (read(fd, anchor, 512) != 512) {
3238 if (devname)
3239 fprintf(stderr,
3240 Name ": Cannot read anchor block on %s: %s\n",
3241 devname, strerror(errno));
3242 free(anchor);
3243 return 1;
3244 }
3245
3246 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3247 if (devname)
3248 fprintf(stderr,
3249 Name ": no IMSM anchor on %s\n", devname);
3250 free(anchor);
3251 return 2;
3252 }
3253
3254 __free_imsm(super, 0);
3255 /* reload capability and hba */
3256
3257 /* capability and hba must be updated with new super allocation */
3258 find_intel_hba_capability(fd, super, devname);
3259 super->len = ROUND_UP(anchor->mpb_size, 512);
3260 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3261 if (devname)
3262 fprintf(stderr,
3263 Name ": unable to allocate %zu byte mpb buffer\n",
3264 super->len);
3265 free(anchor);
3266 return 2;
3267 }
3268 memcpy(super->buf, anchor, 512);
3269
3270 sectors = mpb_sectors(anchor) - 1;
3271 free(anchor);
3272
3273 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3274 fprintf(stderr, Name
3275 ": %s could not allocate migr_rec buffer\n", __func__);
3276 free(super->buf);
3277 return 2;
3278 }
3279
3280 if (!sectors) {
3281 check_sum = __gen_imsm_checksum(super->anchor);
3282 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3283 if (devname)
3284 fprintf(stderr,
3285 Name ": IMSM checksum %x != %x on %s\n",
3286 check_sum,
3287 __le32_to_cpu(super->anchor->check_sum),
3288 devname);
3289 return 2;
3290 }
3291
3292 return 0;
3293 }
3294
3295 /* read the extended mpb */
3296 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3297 if (devname)
3298 fprintf(stderr,
3299 Name ": Cannot seek to extended mpb on %s: %s\n",
3300 devname, strerror(errno));
3301 return 1;
3302 }
3303
3304 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3305 if (devname)
3306 fprintf(stderr,
3307 Name ": Cannot read extended mpb on %s: %s\n",
3308 devname, strerror(errno));
3309 return 2;
3310 }
3311
3312 check_sum = __gen_imsm_checksum(super->anchor);
3313 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3314 if (devname)
3315 fprintf(stderr,
3316 Name ": IMSM checksum %x != %x on %s\n",
3317 check_sum, __le32_to_cpu(super->anchor->check_sum),
3318 devname);
3319 return 3;
3320 }
3321
3322 /* FIXME the BBM log is disk specific so we cannot use this global
3323 * buffer for all disks. Ok for now since we only look at the global
3324 * bbm_log_size parameter to gate assembly
3325 */
3326 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3327
3328 return 0;
3329 }
3330
3331 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3332
3333 static int
3334 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3335 {
3336 int err;
3337
3338 err = load_imsm_mpb(fd, super, devname);
3339 if (err)
3340 return err;
3341 err = load_imsm_disk(fd, super, devname, keep_fd);
3342 if (err)
3343 return err;
3344 err = parse_raid_devices(super);
3345
3346 return err;
3347 }
3348
3349 static void __free_imsm_disk(struct dl *d)
3350 {
3351 if (d->fd >= 0)
3352 close(d->fd);
3353 if (d->devname)
3354 free(d->devname);
3355 if (d->e)
3356 free(d->e);
3357 free(d);
3358
3359 }
3360
3361 static void free_imsm_disks(struct intel_super *super)
3362 {
3363 struct dl *d;
3364
3365 while (super->disks) {
3366 d = super->disks;
3367 super->disks = d->next;
3368 __free_imsm_disk(d);
3369 }
3370 while (super->disk_mgmt_list) {
3371 d = super->disk_mgmt_list;
3372 super->disk_mgmt_list = d->next;
3373 __free_imsm_disk(d);
3374 }
3375 while (super->missing) {
3376 d = super->missing;
3377 super->missing = d->next;
3378 __free_imsm_disk(d);
3379 }
3380
3381 }
3382
3383 /* free all the pieces hanging off of a super pointer */
3384 static void __free_imsm(struct intel_super *super, int free_disks)
3385 {
3386 struct intel_hba *elem, *next;
3387
3388 if (super->buf) {
3389 free(super->buf);
3390 super->buf = NULL;
3391 }
3392 /* unlink capability description */
3393 super->orom = NULL;
3394 if (super->migr_rec_buf) {
3395 free(super->migr_rec_buf);
3396 super->migr_rec_buf = NULL;
3397 }
3398 if (free_disks)
3399 free_imsm_disks(super);
3400 free_devlist(super);
3401 elem = super->hba;
3402 while (elem) {
3403 if (elem->path)
3404 free((void *)elem->path);
3405 next = elem->next;
3406 free(elem);
3407 elem = next;
3408 }
3409 super->hba = NULL;
3410 }
3411
3412 static void free_imsm(struct intel_super *super)
3413 {
3414 __free_imsm(super, 1);
3415 free(super);
3416 }
3417
3418 static void free_super_imsm(struct supertype *st)
3419 {
3420 struct intel_super *super = st->sb;
3421
3422 if (!super)
3423 return;
3424
3425 free_imsm(super);
3426 st->sb = NULL;
3427 }
3428
3429 static struct intel_super *alloc_super(void)
3430 {
3431 struct intel_super *super = malloc(sizeof(*super));
3432
3433 if (super) {
3434 memset(super, 0, sizeof(*super));
3435 super->current_vol = -1;
3436 super->create_offset = ~((__u32 ) 0);
3437 }
3438 return super;
3439 }
3440
3441 /*
3442 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3443 */
3444 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3445 {
3446 struct sys_dev *hba_name;
3447 int rv = 0;
3448
3449 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3450 super->orom = NULL;
3451 super->hba = NULL;
3452 return 0;
3453 }
3454 hba_name = find_disk_attached_hba(fd, NULL);
3455 if (!hba_name) {
3456 if (devname)
3457 fprintf(stderr,
3458 Name ": %s is not attached to Intel(R) RAID controller.\n",
3459 devname);
3460 return 1;
3461 }
3462 rv = attach_hba_to_super(super, hba_name);
3463 if (rv == 2) {
3464 if (devname) {
3465 struct intel_hba *hba = super->hba;
3466
3467 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3468 "controller (%s),\n"
3469 " but the container is assigned to Intel(R) "
3470 "%s RAID controller (",
3471 devname,
3472 hba_name->path,
3473 hba_name->pci_id ? : "Err!",
3474 get_sys_dev_type(hba_name->type));
3475
3476 while (hba) {
3477 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3478 if (hba->next)
3479 fprintf(stderr, ", ");
3480 hba = hba->next;
3481 }
3482
3483 fprintf(stderr, ").\n"
3484 " Mixing devices attached to different controllers "
3485 "is not allowed.\n");
3486 }
3487 free_sys_dev(&hba_name);
3488 return 2;
3489 }
3490 super->orom = find_imsm_capability(hba_name->type);
3491 free_sys_dev(&hba_name);
3492 if (!super->orom)
3493 return 3;
3494 return 0;
3495 }
3496
3497 /* find_missing - helper routine for load_super_imsm_all that identifies
3498 * disks that have disappeared from the system. This routine relies on
3499 * the mpb being uptodate, which it is at load time.
3500 */
3501 static int find_missing(struct intel_super *super)
3502 {
3503 int i;
3504 struct imsm_super *mpb = super->anchor;
3505 struct dl *dl;
3506 struct imsm_disk *disk;
3507
3508 for (i = 0; i < mpb->num_disks; i++) {
3509 disk = __get_imsm_disk(mpb, i);
3510 dl = serial_to_dl(disk->serial, super);
3511 if (dl)
3512 continue;
3513
3514 dl = malloc(sizeof(*dl));
3515 if (!dl)
3516 return 1;
3517 dl->major = 0;
3518 dl->minor = 0;
3519 dl->fd = -1;
3520 dl->devname = strdup("missing");
3521 dl->index = i;
3522 serialcpy(dl->serial, disk->serial);
3523 dl->disk = *disk;
3524 dl->e = NULL;
3525 dl->next = super->missing;
3526 super->missing = dl;
3527 }
3528
3529 return 0;
3530 }
3531
3532 #ifndef MDASSEMBLE
3533 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3534 {
3535 struct intel_disk *idisk = disk_list;
3536
3537 while (idisk) {
3538 if (serialcmp(idisk->disk.serial, serial) == 0)
3539 break;
3540 idisk = idisk->next;
3541 }
3542
3543 return idisk;
3544 }
3545
3546 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3547 struct intel_super *super,
3548 struct intel_disk **disk_list)
3549 {
3550 struct imsm_disk *d = &super->disks->disk;
3551 struct imsm_super *mpb = super->anchor;
3552 int i, j;
3553
3554 for (i = 0; i < tbl_size; i++) {
3555 struct imsm_super *tbl_mpb = table[i]->anchor;
3556 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3557
3558 if (tbl_mpb->family_num == mpb->family_num) {
3559 if (tbl_mpb->check_sum == mpb->check_sum) {
3560 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3561 __func__, super->disks->major,
3562 super->disks->minor,
3563 table[i]->disks->major,
3564 table[i]->disks->minor);
3565 break;
3566 }
3567
3568 if (((is_configured(d) && !is_configured(tbl_d)) ||
3569 is_configured(d) == is_configured(tbl_d)) &&
3570 tbl_mpb->generation_num < mpb->generation_num) {
3571 /* current version of the mpb is a
3572 * better candidate than the one in
3573 * super_table, but copy over "cross
3574 * generational" status
3575 */
3576 struct intel_disk *idisk;
3577
3578 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3579 __func__, super->disks->major,
3580 super->disks->minor,
3581 table[i]->disks->major,
3582 table[i]->disks->minor);
3583
3584 idisk = disk_list_get(tbl_d->serial, *disk_list);
3585 if (idisk && is_failed(&idisk->disk))
3586 tbl_d->status |= FAILED_DISK;
3587 break;
3588 } else {
3589 struct intel_disk *idisk;
3590 struct imsm_disk *disk;
3591
3592 /* tbl_mpb is more up to date, but copy
3593 * over cross generational status before
3594 * returning
3595 */
3596 disk = __serial_to_disk(d->serial, mpb, NULL);
3597 if (disk && is_failed(disk))
3598 d->status |= FAILED_DISK;
3599
3600 idisk = disk_list_get(d->serial, *disk_list);
3601 if (idisk) {
3602 idisk->owner = i;
3603 if (disk && is_configured(disk))
3604 idisk->disk.status |= CONFIGURED_DISK;
3605 }
3606
3607 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3608 __func__, super->disks->major,
3609 super->disks->minor,
3610 table[i]->disks->major,
3611 table[i]->disks->minor);
3612
3613 return tbl_size;
3614 }
3615 }
3616 }
3617
3618 if (i >= tbl_size)
3619 table[tbl_size++] = super;
3620 else
3621 table[i] = super;
3622
3623 /* update/extend the merged list of imsm_disk records */
3624 for (j = 0; j < mpb->num_disks; j++) {
3625 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3626 struct intel_disk *idisk;
3627
3628 idisk = disk_list_get(disk->serial, *disk_list);
3629 if (idisk) {
3630 idisk->disk.status |= disk->status;
3631 if (is_configured(&idisk->disk) ||
3632 is_failed(&idisk->disk))
3633 idisk->disk.status &= ~(SPARE_DISK);
3634 } else {
3635 idisk = calloc(1, sizeof(*idisk));
3636 if (!idisk)
3637 return -1;
3638 idisk->owner = IMSM_UNKNOWN_OWNER;
3639 idisk->disk = *disk;
3640 idisk->next = *disk_list;
3641 *disk_list = idisk;
3642 }
3643
3644 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3645 idisk->owner = i;
3646 }
3647
3648 return tbl_size;
3649 }
3650
3651 static struct intel_super *
3652 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3653 const int owner)
3654 {
3655 struct imsm_super *mpb = super->anchor;
3656 int ok_count = 0;
3657 int i;
3658
3659 for (i = 0; i < mpb->num_disks; i++) {
3660 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3661 struct intel_disk *idisk;
3662
3663 idisk = disk_list_get(disk->serial, disk_list);
3664 if (idisk) {
3665 if (idisk->owner == owner ||
3666 idisk->owner == IMSM_UNKNOWN_OWNER)
3667 ok_count++;
3668 else
3669 dprintf("%s: '%.16s' owner %d != %d\n",
3670 __func__, disk->serial, idisk->owner,
3671 owner);
3672 } else {
3673 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3674 __func__, __le32_to_cpu(mpb->family_num), i,
3675 disk->serial);
3676 break;
3677 }
3678 }
3679
3680 if (ok_count == mpb->num_disks)
3681 return super;
3682 return NULL;
3683 }
3684
3685 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3686 {
3687 struct intel_super *s;
3688
3689 for (s = super_list; s; s = s->next) {
3690 if (family_num != s->anchor->family_num)
3691 continue;
3692 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3693 __le32_to_cpu(family_num), s->disks->devname);
3694 }
3695 }
3696
3697 static struct intel_super *
3698 imsm_thunderdome(struct intel_super **super_list, int len)
3699 {
3700 struct intel_super *super_table[len];
3701 struct intel_disk *disk_list = NULL;
3702 struct intel_super *champion, *spare;
3703 struct intel_super *s, **del;
3704 int tbl_size = 0;
3705 int conflict;
3706 int i;
3707
3708 memset(super_table, 0, sizeof(super_table));
3709 for (s = *super_list; s; s = s->next)
3710 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3711
3712 for (i = 0; i < tbl_size; i++) {
3713 struct imsm_disk *d;
3714 struct intel_disk *idisk;
3715 struct imsm_super *mpb = super_table[i]->anchor;
3716
3717 s = super_table[i];
3718 d = &s->disks->disk;
3719
3720 /* 'd' must appear in merged disk list for its
3721 * configuration to be valid
3722 */
3723 idisk = disk_list_get(d->serial, disk_list);
3724 if (idisk && idisk->owner == i)
3725 s = validate_members(s, disk_list, i);
3726 else
3727 s = NULL;
3728
3729 if (!s)
3730 dprintf("%s: marking family: %#x from %d:%d offline\n",
3731 __func__, mpb->family_num,
3732 super_table[i]->disks->major,
3733 super_table[i]->disks->minor);
3734 super_table[i] = s;
3735 }
3736
3737 /* This is where the mdadm implementation differs from the Windows
3738 * driver which has no strict concept of a container. We can only
3739 * assemble one family from a container, so when returning a prodigal
3740 * array member to this system the code will not be able to disambiguate
3741 * the container contents that should be assembled ("foreign" versus
3742 * "local"). It requires user intervention to set the orig_family_num
3743 * to a new value to establish a new container. The Windows driver in
3744 * this situation fixes up the volume name in place and manages the
3745 * foreign array as an independent entity.
3746 */
3747 s = NULL;
3748 spare = NULL;
3749 conflict = 0;
3750 for (i = 0; i < tbl_size; i++) {
3751 struct intel_super *tbl_ent = super_table[i];
3752 int is_spare = 0;
3753
3754 if (!tbl_ent)
3755 continue;
3756
3757 if (tbl_ent->anchor->num_raid_devs == 0) {
3758 spare = tbl_ent;
3759 is_spare = 1;
3760 }
3761
3762 if (s && !is_spare) {
3763 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3764 conflict++;
3765 } else if (!s && !is_spare)
3766 s = tbl_ent;
3767 }
3768
3769 if (!s)
3770 s = spare;
3771 if (!s) {
3772 champion = NULL;
3773 goto out;
3774 }
3775 champion = s;
3776
3777 if (conflict)
3778 fprintf(stderr, "Chose family %#x on '%s', "
3779 "assemble conflicts to new container with '--update=uuid'\n",
3780 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3781
3782 /* collect all dl's onto 'champion', and update them to
3783 * champion's version of the status
3784 */
3785 for (s = *super_list; s; s = s->next) {
3786 struct imsm_super *mpb = champion->anchor;
3787 struct dl *dl = s->disks;
3788
3789 if (s == champion)
3790 continue;
3791
3792 for (i = 0; i < mpb->num_disks; i++) {
3793 struct imsm_disk *disk;
3794
3795 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3796 if (disk) {
3797 dl->disk = *disk;
3798 /* only set index on disks that are a member of
3799 * a populated contianer, i.e. one with
3800 * raid_devs
3801 */
3802 if (is_failed(&dl->disk))
3803 dl->index = -2;
3804 else if (is_spare(&dl->disk))
3805 dl->index = -1;
3806 break;
3807 }
3808 }
3809
3810 if (i >= mpb->num_disks) {
3811 struct intel_disk *idisk;
3812
3813 idisk = disk_list_get(dl->serial, disk_list);
3814 if (idisk && is_spare(&idisk->disk) &&
3815 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3816 dl->index = -1;
3817 else {
3818 dl->index = -2;
3819 continue;
3820 }
3821 }
3822
3823 dl->next = champion->disks;
3824 champion->disks = dl;
3825 s->disks = NULL;
3826 }
3827
3828 /* delete 'champion' from super_list */
3829 for (del = super_list; *del; ) {
3830 if (*del == champion) {
3831 *del = (*del)->next;
3832 break;
3833 } else
3834 del = &(*del)->next;
3835 }
3836 champion->next = NULL;
3837
3838 out:
3839 while (disk_list) {
3840 struct intel_disk *idisk = disk_list;
3841
3842 disk_list = disk_list->next;
3843 free(idisk);
3844 }
3845
3846 return champion;
3847 }
3848
3849 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3850 char *devname)
3851 {
3852 struct mdinfo *sra;
3853 struct intel_super *super_list = NULL;
3854 struct intel_super *super = NULL;
3855 int devnum = fd2devnum(fd);
3856 struct mdinfo *sd;
3857 int retry;
3858 int err = 0;
3859 int i;
3860
3861 /* check if 'fd' an opened container */
3862 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3863 if (!sra)
3864 return 1;
3865
3866 if (sra->array.major_version != -1 ||
3867 sra->array.minor_version != -2 ||
3868 strcmp(sra->text_version, "imsm") != 0) {
3869 err = 1;
3870 goto error;
3871 }
3872 /* load all mpbs */
3873 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3874 struct intel_super *s = alloc_super();
3875 char nm[32];
3876 int dfd;
3877 int rv;
3878
3879 err = 1;
3880 if (!s)
3881 goto error;
3882 s->next = super_list;
3883 super_list = s;
3884
3885 err = 2;
3886 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3887 dfd = dev_open(nm, O_RDWR);
3888 if (dfd < 0)
3889 goto error;
3890
3891 rv = find_intel_hba_capability(dfd, s, devname);
3892 /* no orom/efi or non-intel hba of the disk */
3893 if (rv != 0)
3894 goto error;
3895
3896 err = load_and_parse_mpb(dfd, s, NULL, 1);
3897
3898 /* retry the load if we might have raced against mdmon */
3899 if (err == 3 && mdmon_running(devnum))
3900 for (retry = 0; retry < 3; retry++) {
3901 usleep(3000);
3902 err = load_and_parse_mpb(dfd, s, NULL, 1);
3903 if (err != 3)
3904 break;
3905 }
3906 if (err)
3907 goto error;
3908 }
3909
3910 /* all mpbs enter, maybe one leaves */
3911 super = imsm_thunderdome(&super_list, i);
3912 if (!super) {
3913 err = 1;
3914 goto error;
3915 }
3916
3917 if (find_missing(super) != 0) {
3918 free_imsm(super);
3919 err = 2;
3920 goto error;
3921 }
3922
3923 /* load migration record */
3924 err = load_imsm_migr_rec(super, NULL);
3925 if (err) {
3926 err = 4;
3927 goto error;
3928 }
3929
3930 /* Check migration compatibility */
3931 if (check_mpb_migr_compatibility(super) != 0) {
3932 fprintf(stderr, Name ": Unsupported migration detected");
3933 if (devname)
3934 fprintf(stderr, " on %s\n", devname);
3935 else
3936 fprintf(stderr, " (IMSM).\n");
3937
3938 err = 5;
3939 goto error;
3940 }
3941
3942 err = 0;
3943
3944 error:
3945 while (super_list) {
3946 struct intel_super *s = super_list;
3947
3948 super_list = super_list->next;
3949 free_imsm(s);
3950 }
3951 sysfs_free(sra);
3952
3953 if (err)
3954 return err;
3955
3956 *sbp = super;
3957 st->container_dev = devnum;
3958 if (err == 0 && st->ss == NULL) {
3959 st->ss = &super_imsm;
3960 st->minor_version = 0;
3961 st->max_devs = IMSM_MAX_DEVICES;
3962 }
3963 return 0;
3964 }
3965
3966 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3967 {
3968 return load_super_imsm_all(st, fd, &st->sb, devname);
3969 }
3970 #endif
3971
3972 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3973 {
3974 struct intel_super *super;
3975 int rv;
3976
3977 if (test_partition(fd))
3978 /* IMSM not allowed on partitions */
3979 return 1;
3980
3981 free_super_imsm(st);
3982
3983 super = alloc_super();
3984 if (!super) {
3985 fprintf(stderr,
3986 Name ": malloc of %zu failed.\n",
3987 sizeof(*super));
3988 return 1;
3989 }
3990 /* Load hba and capabilities if they exist.
3991 * But do not preclude loading metadata in case capabilities or hba are
3992 * non-compliant and ignore_hw_compat is set.
3993 */
3994 rv = find_intel_hba_capability(fd, super, devname);
3995 /* no orom/efi or non-intel hba of the disk */
3996 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3997 if (devname)
3998 fprintf(stderr,
3999 Name ": No OROM/EFI properties for %s\n", devname);
4000 free_imsm(super);
4001 return 2;
4002 }
4003 rv = load_and_parse_mpb(fd, super, devname, 0);
4004
4005 if (rv) {
4006 if (devname)
4007 fprintf(stderr,
4008 Name ": Failed to load all information "
4009 "sections on %s\n", devname);
4010 free_imsm(super);
4011 return rv;
4012 }
4013
4014 st->sb = super;
4015 if (st->ss == NULL) {
4016 st->ss = &super_imsm;
4017 st->minor_version = 0;
4018 st->max_devs = IMSM_MAX_DEVICES;
4019 }
4020
4021 /* load migration record */
4022 if (load_imsm_migr_rec(super, NULL) == 0) {
4023 /* Check for unsupported migration features */
4024 if (check_mpb_migr_compatibility(super) != 0) {
4025 fprintf(stderr,
4026 Name ": Unsupported migration detected");
4027 if (devname)
4028 fprintf(stderr, " on %s\n", devname);
4029 else
4030 fprintf(stderr, " (IMSM).\n");
4031 return 3;
4032 }
4033 }
4034
4035 return 0;
4036 }
4037
4038 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4039 {
4040 if (info->level == 1)
4041 return 128;
4042 return info->chunk_size >> 9;
4043 }
4044
4045 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4046 {
4047 __u32 num_stripes;
4048
4049 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4050 num_stripes /= num_domains;
4051
4052 return num_stripes;
4053 }
4054
4055 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4056 {
4057 if (info->level == 1)
4058 return info->size * 2;
4059 else
4060 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4061 }
4062
4063 static void imsm_update_version_info(struct intel_super *super)
4064 {
4065 /* update the version and attributes */
4066 struct imsm_super *mpb = super->anchor;
4067 char *version;
4068 struct imsm_dev *dev;
4069 struct imsm_map *map;
4070 int i;
4071
4072 for (i = 0; i < mpb->num_raid_devs; i++) {
4073 dev = get_imsm_dev(super, i);
4074 map = get_imsm_map(dev, 0);
4075 if (__le32_to_cpu(dev->size_high) > 0)
4076 mpb->attributes |= MPB_ATTRIB_2TB;
4077
4078 /* FIXME detect when an array spans a port multiplier */
4079 #if 0
4080 mpb->attributes |= MPB_ATTRIB_PM;
4081 #endif
4082
4083 if (mpb->num_raid_devs > 1 ||
4084 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4085 version = MPB_VERSION_ATTRIBS;
4086 switch (get_imsm_raid_level(map)) {
4087 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4088 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4089 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4090 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4091 }
4092 } else {
4093 if (map->num_members >= 5)
4094 version = MPB_VERSION_5OR6_DISK_ARRAY;
4095 else if (dev->status == DEV_CLONE_N_GO)
4096 version = MPB_VERSION_CNG;
4097 else if (get_imsm_raid_level(map) == 5)
4098 version = MPB_VERSION_RAID5;
4099 else if (map->num_members >= 3)
4100 version = MPB_VERSION_3OR4_DISK_ARRAY;
4101 else if (get_imsm_raid_level(map) == 1)
4102 version = MPB_VERSION_RAID1;
4103 else
4104 version = MPB_VERSION_RAID0;
4105 }
4106 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4107 }
4108 }
4109
4110 static int check_name(struct intel_super *super, char *name, int quiet)
4111 {
4112 struct imsm_super *mpb = super->anchor;
4113 char *reason = NULL;
4114 int i;
4115
4116 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4117 reason = "must be 16 characters or less";
4118
4119 for (i = 0; i < mpb->num_raid_devs; i++) {
4120 struct imsm_dev *dev = get_imsm_dev(super, i);
4121
4122 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4123 reason = "already exists";
4124 break;
4125 }
4126 }
4127
4128 if (reason && !quiet)
4129 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4130
4131 return !reason;
4132 }
4133
4134 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4135 unsigned long long size, char *name,
4136 char *homehost, int *uuid)
4137 {
4138 /* We are creating a volume inside a pre-existing container.
4139 * so st->sb is already set.
4140 */
4141 struct intel_super *super = st->sb;
4142 struct imsm_super *mpb = super->anchor;
4143 struct intel_dev *dv;
4144 struct imsm_dev *dev;
4145 struct imsm_vol *vol;
4146 struct imsm_map *map;
4147 int idx = mpb->num_raid_devs;
4148 int i;
4149 unsigned long long array_blocks;
4150 size_t size_old, size_new;
4151 __u32 num_data_stripes;
4152
4153 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4154 fprintf(stderr, Name": This imsm-container already has the "
4155 "maximum of %d volumes\n", super->orom->vpa);
4156 return 0;
4157 }
4158
4159 /* ensure the mpb is large enough for the new data */
4160 size_old = __le32_to_cpu(mpb->mpb_size);
4161 size_new = disks_to_mpb_size(info->nr_disks);
4162 if (size_new > size_old) {
4163 void *mpb_new;
4164 size_t size_round = ROUND_UP(size_new, 512);
4165
4166 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4167 fprintf(stderr, Name": could not allocate new mpb\n");
4168 return 0;
4169 }
4170 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4171 fprintf(stderr, Name
4172 ": %s could not allocate migr_rec buffer\n",
4173 __func__);
4174 free(super->buf);
4175 free(super);
4176 return 0;
4177 }
4178 memcpy(mpb_new, mpb, size_old);
4179 free(mpb);
4180 mpb = mpb_new;
4181 super->anchor = mpb_new;
4182 mpb->mpb_size = __cpu_to_le32(size_new);
4183 memset(mpb_new + size_old, 0, size_round - size_old);
4184 }
4185 super->current_vol = idx;
4186
4187 /* handle 'failed_disks' by either:
4188 * a) create dummy disk entries in the table if this the first
4189 * volume in the array. We add them here as this is the only
4190 * opportunity to add them. add_to_super_imsm_volume()
4191 * handles the non-failed disks and continues incrementing
4192 * mpb->num_disks.
4193 * b) validate that 'failed_disks' matches the current number
4194 * of missing disks if the container is populated
4195 */
4196 if (super->current_vol == 0) {
4197 mpb->num_disks = 0;
4198 for (i = 0; i < info->failed_disks; i++) {
4199 struct imsm_disk *disk;
4200
4201 mpb->num_disks++;
4202 disk = __get_imsm_disk(mpb, i);
4203 disk->status = CONFIGURED_DISK | FAILED_DISK;
4204 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4205 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4206 "missing:%d", i);
4207 }
4208 find_missing(super);
4209 } else {
4210 int missing = 0;
4211 struct dl *d;
4212
4213 for (d = super->missing; d; d = d->next)
4214 missing++;
4215 if (info->failed_disks > missing) {
4216 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4217 return 0;
4218 }
4219 }
4220
4221 if (!check_name(super, name, 0))
4222 return 0;
4223 dv = malloc(sizeof(*dv));
4224 if (!dv) {
4225 fprintf(stderr, Name ": failed to allocate device list entry\n");
4226 return 0;
4227 }
4228 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4229 if (!dev) {
4230 free(dv);
4231 fprintf(stderr, Name": could not allocate raid device\n");
4232 return 0;
4233 }
4234
4235 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4236 if (info->level == 1)
4237 array_blocks = info_to_blocks_per_member(info);
4238 else
4239 array_blocks = calc_array_size(info->level, info->raid_disks,
4240 info->layout, info->chunk_size,
4241 info->size*2);
4242 /* round array size down to closest MB */
4243 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4244
4245 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4246 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4247 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4248 vol = &dev->vol;
4249 vol->migr_state = 0;
4250 set_migr_type(dev, MIGR_INIT);
4251 vol->dirty = !info->state;
4252 vol->curr_migr_unit = 0;
4253 map = get_imsm_map(dev, 0);
4254 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4255 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4256 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4257 map->failed_disk_num = ~0;
4258 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4259 map->ddf = 1;
4260
4261 if (info->level == 1 && info->raid_disks > 2) {
4262 free(dev);
4263 free(dv);
4264 fprintf(stderr, Name": imsm does not support more than 2 disks"
4265 "in a raid1 volume\n");
4266 return 0;
4267 }
4268
4269 map->raid_level = info->level;
4270 if (info->level == 10) {
4271 map->raid_level = 1;
4272 map->num_domains = info->raid_disks / 2;
4273 } else if (info->level == 1)
4274 map->num_domains = info->raid_disks;
4275 else
4276 map->num_domains = 1;
4277
4278 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4279 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4280
4281 map->num_members = info->raid_disks;
4282 for (i = 0; i < map->num_members; i++) {
4283 /* initialized in add_to_super */
4284 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4285 }
4286 mpb->num_raid_devs++;
4287
4288 dv->dev = dev;
4289 dv->index = super->current_vol;
4290 dv->next = super->devlist;
4291 super->devlist = dv;
4292
4293 imsm_update_version_info(super);
4294
4295 return 1;
4296 }
4297
4298 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4299 unsigned long long size, char *name,
4300 char *homehost, int *uuid)
4301 {
4302 /* This is primarily called by Create when creating a new array.
4303 * We will then get add_to_super called for each component, and then
4304 * write_init_super called to write it out to each device.
4305 * For IMSM, Create can create on fresh devices or on a pre-existing
4306 * array.
4307 * To create on a pre-existing array a different method will be called.
4308 * This one is just for fresh drives.
4309 */
4310 struct intel_super *super;
4311 struct imsm_super *mpb;
4312 size_t mpb_size;
4313 char *version;
4314
4315 if (st->sb)
4316 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4317
4318 if (info)
4319 mpb_size = disks_to_mpb_size(info->nr_disks);
4320 else
4321 mpb_size = 512;
4322
4323 super = alloc_super();
4324 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4325 free(super);
4326 super = NULL;
4327 }
4328 if (!super) {
4329 fprintf(stderr, Name
4330 ": %s could not allocate superblock\n", __func__);
4331 return 0;
4332 }
4333 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4334 fprintf(stderr, Name
4335 ": %s could not allocate migr_rec buffer\n", __func__);
4336 free(super->buf);
4337 free(super);
4338 return 0;
4339 }
4340 memset(super->buf, 0, mpb_size);
4341 mpb = super->buf;
4342 mpb->mpb_size = __cpu_to_le32(mpb_size);
4343 st->sb = super;
4344
4345 if (info == NULL) {
4346 /* zeroing superblock */
4347 return 0;
4348 }
4349
4350 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4351
4352 version = (char *) mpb->sig;
4353 strcpy(version, MPB_SIGNATURE);
4354 version += strlen(MPB_SIGNATURE);
4355 strcpy(version, MPB_VERSION_RAID0);
4356
4357 return 1;
4358 }
4359
4360 #ifndef MDASSEMBLE
4361 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4362 int fd, char *devname)
4363 {
4364 struct intel_super *super = st->sb;
4365 struct imsm_super *mpb = super->anchor;
4366 struct imsm_disk *_disk;
4367 struct imsm_dev *dev;
4368 struct imsm_map *map;
4369 struct dl *dl, *df;
4370 int slot;
4371
4372 dev = get_imsm_dev(super, super->current_vol);
4373 map = get_imsm_map(dev, 0);
4374
4375 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4376 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4377 devname);
4378 return 1;
4379 }
4380
4381 if (fd == -1) {
4382 /* we're doing autolayout so grab the pre-marked (in
4383 * validate_geometry) raid_disk
4384 */
4385 for (dl = super->disks; dl; dl = dl->next)
4386 if (dl->raiddisk == dk->raid_disk)
4387 break;
4388 } else {
4389 for (dl = super->disks; dl ; dl = dl->next)
4390 if (dl->major == dk->major &&
4391 dl->minor == dk->minor)
4392 break;
4393 }
4394
4395 if (!dl) {
4396 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4397 return 1;
4398 }
4399
4400 /* add a pristine spare to the metadata */
4401 if (dl->index < 0) {
4402 dl->index = super->anchor->num_disks;
4403 super->anchor->num_disks++;
4404 }
4405 /* Check the device has not already been added */
4406 slot = get_imsm_disk_slot(map, dl->index);
4407 if (slot >= 0 &&
4408 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4409 fprintf(stderr, Name ": %s has been included in this array twice\n",
4410 devname);
4411 return 1;
4412 }
4413 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4414 dl->disk.status = CONFIGURED_DISK;
4415
4416 /* update size of 'missing' disks to be at least as large as the
4417 * largest acitve member (we only have dummy missing disks when
4418 * creating the first volume)
4419 */
4420 if (super->current_vol == 0) {
4421 for (df = super->missing; df; df = df->next) {
4422 if (dl->disk.total_blocks > df->disk.total_blocks)
4423 df->disk.total_blocks = dl->disk.total_blocks;
4424 _disk = __get_imsm_disk(mpb, df->index);
4425 *_disk = df->disk;
4426 }
4427 }
4428
4429 /* refresh unset/failed slots to point to valid 'missing' entries */
4430 for (df = super->missing; df; df = df->next)
4431 for (slot = 0; slot < mpb->num_disks; slot++) {
4432 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4433
4434 if ((ord & IMSM_ORD_REBUILD) == 0)
4435 continue;
4436 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4437 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4438 break;
4439 }
4440
4441 /* if we are creating the first raid device update the family number */
4442 if (super->current_vol == 0) {
4443 __u32 sum;
4444 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4445
4446 _disk = __get_imsm_disk(mpb, dl->index);
4447 if (!_dev || !_disk) {
4448 fprintf(stderr, Name ": BUG mpb setup error\n");
4449 return 1;
4450 }
4451 *_dev = *dev;
4452 *_disk = dl->disk;
4453 sum = random32();
4454 sum += __gen_imsm_checksum(mpb);
4455 mpb->family_num = __cpu_to_le32(sum);
4456 mpb->orig_family_num = mpb->family_num;
4457 }
4458 super->current_disk = dl;
4459 return 0;
4460 }
4461
4462 /* mark_spare()
4463 * Function marks disk as spare and restores disk serial
4464 * in case it was previously marked as failed by takeover operation
4465 * reruns:
4466 * -1 : critical error
4467 * 0 : disk is marked as spare but serial is not set
4468 * 1 : success
4469 */
4470 int mark_spare(struct dl *disk)
4471 {
4472 __u8 serial[MAX_RAID_SERIAL_LEN];
4473 int ret_val = -1;
4474
4475 if (!disk)
4476 return ret_val;
4477
4478 ret_val = 0;
4479 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4480 /* Restore disk serial number, because takeover marks disk
4481 * as failed and adds to serial ':0' before it becomes
4482 * a spare disk.
4483 */
4484 serialcpy(disk->serial, serial);
4485 serialcpy(disk->disk.serial, serial);
4486 ret_val = 1;
4487 }
4488 disk->disk.status = SPARE_DISK;
4489 disk->index = -1;
4490
4491 return ret_val;
4492 }
4493
4494 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4495 int fd, char *devname)
4496 {
4497 struct intel_super *super = st->sb;
4498 struct dl *dd;
4499 unsigned long long size;
4500 __u32 id;
4501 int rv;
4502 struct stat stb;
4503
4504 /* If we are on an RAID enabled platform check that the disk is
4505 * attached to the raid controller.
4506 * We do not need to test disks attachment for container based additions,
4507 * they shall be already tested when container was created/assembled.
4508 */
4509 rv = find_intel_hba_capability(fd, super, devname);
4510 /* no orom/efi or non-intel hba of the disk */
4511 if (rv != 0) {
4512 dprintf("capability: %p fd: %d ret: %d\n",
4513 super->orom, fd, rv);
4514 return 1;
4515 }
4516
4517 if (super->current_vol >= 0)
4518 return add_to_super_imsm_volume(st, dk, fd, devname);
4519
4520 fstat(fd, &stb);
4521 dd = malloc(sizeof(*dd));
4522 if (!dd) {
4523 fprintf(stderr,
4524 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4525 return 1;
4526 }
4527 memset(dd, 0, sizeof(*dd));
4528 dd->major = major(stb.st_rdev);
4529 dd->minor = minor(stb.st_rdev);
4530 dd->devname = devname ? strdup(devname) : NULL;
4531 dd->fd = fd;
4532 dd->e = NULL;
4533 dd->action = DISK_ADD;
4534 rv = imsm_read_serial(fd, devname, dd->serial);
4535 if (rv) {
4536 fprintf(stderr,
4537 Name ": failed to retrieve scsi serial, aborting\n");
4538 free(dd);
4539 abort();
4540 }
4541
4542 get_dev_size(fd, NULL, &size);
4543 size /= 512;
4544 serialcpy(dd->disk.serial, dd->serial);
4545 dd->disk.total_blocks = __cpu_to_le32(size);
4546 mark_spare(dd);
4547 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4548 dd->disk.scsi_id = __cpu_to_le32(id);
4549 else
4550 dd->disk.scsi_id = __cpu_to_le32(0);
4551
4552 if (st->update_tail) {
4553 dd->next = super->disk_mgmt_list;
4554 super->disk_mgmt_list = dd;
4555 } else {
4556 dd->next = super->disks;
4557 super->disks = dd;
4558 super->updates_pending++;
4559 }
4560
4561 return 0;
4562 }
4563
4564
4565 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4566 {
4567 struct intel_super *super = st->sb;
4568 struct dl *dd;
4569
4570 /* remove from super works only in mdmon - for communication
4571 * manager - monitor. Check if communication memory buffer
4572 * is prepared.
4573 */
4574 if (!st->update_tail) {
4575 fprintf(stderr,
4576 Name ": %s shall be used in mdmon context only"
4577 "(line %d).\n", __func__, __LINE__);
4578 return 1;
4579 }
4580 dd = malloc(sizeof(*dd));
4581 if (!dd) {
4582 fprintf(stderr,
4583 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4584 return 1;
4585 }
4586 memset(dd, 0, sizeof(*dd));
4587 dd->major = dk->major;
4588 dd->minor = dk->minor;
4589 dd->fd = -1;
4590 mark_spare(dd);
4591 dd->action = DISK_REMOVE;
4592
4593 dd->next = super->disk_mgmt_list;
4594 super->disk_mgmt_list = dd;
4595
4596
4597 return 0;
4598 }
4599
4600 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4601
4602 static union {
4603 char buf[512];
4604 struct imsm_super anchor;
4605 } spare_record __attribute__ ((aligned(512)));
4606
4607 /* spare records have their own family number and do not have any defined raid
4608 * devices
4609 */
4610 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4611 {
4612 struct imsm_super *mpb = super->anchor;
4613 struct imsm_super *spare = &spare_record.anchor;
4614 __u32 sum;
4615 struct dl *d;
4616
4617 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4618 spare->generation_num = __cpu_to_le32(1UL),
4619 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4620 spare->num_disks = 1,
4621 spare->num_raid_devs = 0,
4622 spare->cache_size = mpb->cache_size,
4623 spare->pwr_cycle_count = __cpu_to_le32(1),
4624
4625 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4626 MPB_SIGNATURE MPB_VERSION_RAID0);
4627
4628 for (d = super->disks; d; d = d->next) {
4629 if (d->index != -1)
4630 continue;
4631
4632 spare->disk[0] = d->disk;
4633 sum = __gen_imsm_checksum(spare);
4634 spare->family_num = __cpu_to_le32(sum);
4635 spare->orig_family_num = 0;
4636 sum = __gen_imsm_checksum(spare);
4637 spare->check_sum = __cpu_to_le32(sum);
4638
4639 if (store_imsm_mpb(d->fd, spare)) {
4640 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4641 __func__, d->major, d->minor, strerror(errno));
4642 return 1;
4643 }
4644 if (doclose) {
4645 close(d->fd);
4646 d->fd = -1;
4647 }
4648 }
4649
4650 return 0;
4651 }
4652
4653 static int write_super_imsm(struct supertype *st, int doclose)
4654 {
4655 struct intel_super *super = st->sb;
4656 struct imsm_super *mpb = super->anchor;
4657 struct dl *d;
4658 __u32 generation;
4659 __u32 sum;
4660 int spares = 0;
4661 int i;
4662 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4663 int num_disks = 0;
4664 int clear_migration_record = 1;
4665
4666 /* 'generation' is incremented everytime the metadata is written */
4667 generation = __le32_to_cpu(mpb->generation_num);
4668 generation++;
4669 mpb->generation_num = __cpu_to_le32(generation);
4670
4671 /* fix up cases where previous mdadm releases failed to set
4672 * orig_family_num
4673 */
4674 if (mpb->orig_family_num == 0)
4675 mpb->orig_family_num = mpb->family_num;
4676
4677 for (d = super->disks; d; d = d->next) {
4678 if (d->index == -1)
4679 spares++;
4680 else {
4681 mpb->disk[d->index] = d->disk;
4682 num_disks++;
4683 }
4684 }
4685 for (d = super->missing; d; d = d->next) {
4686 mpb->disk[d->index] = d->disk;
4687 num_disks++;
4688 }
4689 mpb->num_disks = num_disks;
4690 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4691
4692 for (i = 0; i < mpb->num_raid_devs; i++) {
4693 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4694 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4695 if (dev && dev2) {
4696 imsm_copy_dev(dev, dev2);
4697 mpb_size += sizeof_imsm_dev(dev, 0);
4698 }
4699 if (is_gen_migration(dev2))
4700 clear_migration_record = 0;
4701 }
4702 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4703 mpb->mpb_size = __cpu_to_le32(mpb_size);
4704
4705 /* recalculate checksum */
4706 sum = __gen_imsm_checksum(mpb);
4707 mpb->check_sum = __cpu_to_le32(sum);
4708
4709 if (clear_migration_record)
4710 memset(super->migr_rec_buf, 0, 512);
4711
4712 /* write the mpb for disks that compose raid devices */
4713 for (d = super->disks; d ; d = d->next) {
4714 if (d->index < 0 || is_failed(&d->disk))
4715 continue;
4716 if (store_imsm_mpb(d->fd, mpb))
4717 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4718 __func__, d->major, d->minor, strerror(errno));
4719 if (clear_migration_record) {
4720 unsigned long long dsize;
4721
4722 get_dev_size(d->fd, NULL, &dsize);
4723 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4724 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4725 perror("Write migr_rec failed");
4726 }
4727 }
4728 if (doclose) {
4729 close(d->fd);
4730 d->fd = -1;
4731 }
4732 }
4733
4734 if (spares)
4735 return write_super_imsm_spares(super, doclose);
4736
4737 return 0;
4738 }
4739
4740
4741 static int create_array(struct supertype *st, int dev_idx)
4742 {
4743 size_t len;
4744 struct imsm_update_create_array *u;
4745 struct intel_super *super = st->sb;
4746 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4747 struct imsm_map *map = get_imsm_map(dev, 0);
4748 struct disk_info *inf;
4749 struct imsm_disk *disk;
4750 int i;
4751
4752 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4753 sizeof(*inf) * map->num_members;
4754 u = malloc(len);
4755 if (!u) {
4756 fprintf(stderr, "%s: failed to allocate update buffer\n",
4757 __func__);
4758 return 1;
4759 }
4760
4761 u->type = update_create_array;
4762 u->dev_idx = dev_idx;
4763 imsm_copy_dev(&u->dev, dev);
4764 inf = get_disk_info(u);
4765 for (i = 0; i < map->num_members; i++) {
4766 int idx = get_imsm_disk_idx(dev, i, -1);
4767
4768 disk = get_imsm_disk(super, idx);
4769 serialcpy(inf[i].serial, disk->serial);
4770 }
4771 append_metadata_update(st, u, len);
4772
4773 return 0;
4774 }
4775
4776 static int mgmt_disk(struct supertype *st)
4777 {
4778 struct intel_super *super = st->sb;
4779 size_t len;
4780 struct imsm_update_add_remove_disk *u;
4781
4782 if (!super->disk_mgmt_list)
4783 return 0;
4784
4785 len = sizeof(*u);
4786 u = malloc(len);
4787 if (!u) {
4788 fprintf(stderr, "%s: failed to allocate update buffer\n",
4789 __func__);
4790 return 1;
4791 }
4792
4793 u->type = update_add_remove_disk;
4794 append_metadata_update(st, u, len);
4795
4796 return 0;
4797 }
4798
4799 static int write_init_super_imsm(struct supertype *st)
4800 {
4801 struct intel_super *super = st->sb;
4802 int current_vol = super->current_vol;
4803
4804 /* we are done with current_vol reset it to point st at the container */
4805 super->current_vol = -1;
4806
4807 if (st->update_tail) {
4808 /* queue the recently created array / added disk
4809 * as a metadata update */
4810 int rv;
4811
4812 /* determine if we are creating a volume or adding a disk */
4813 if (current_vol < 0) {
4814 /* in the mgmt (add/remove) disk case we are running
4815 * in mdmon context, so don't close fd's
4816 */
4817 return mgmt_disk(st);
4818 } else
4819 rv = create_array(st, current_vol);
4820
4821 return rv;
4822 } else {
4823 struct dl *d;
4824 for (d = super->disks; d; d = d->next)
4825 Kill(d->devname, NULL, 0, 1, 1);
4826 return write_super_imsm(st, 1);
4827 }
4828 }
4829 #endif
4830
4831 static int store_super_imsm(struct supertype *st, int fd)
4832 {
4833 struct intel_super *super = st->sb;
4834 struct imsm_super *mpb = super ? super->anchor : NULL;
4835
4836 if (!mpb)
4837 return 1;
4838
4839 #ifndef MDASSEMBLE
4840 return store_imsm_mpb(fd, mpb);
4841 #else
4842 return 1;
4843 #endif
4844 }
4845
4846 static int imsm_bbm_log_size(struct imsm_super *mpb)
4847 {
4848 return __le32_to_cpu(mpb->bbm_log_size);
4849 }
4850
4851 #ifndef MDASSEMBLE
4852 static int validate_geometry_imsm_container(struct supertype *st, int level,
4853 int layout, int raiddisks, int chunk,
4854 unsigned long long size, char *dev,
4855 unsigned long long *freesize,
4856 int verbose)
4857 {
4858 int fd;
4859 unsigned long long ldsize;
4860 struct intel_super *super=NULL;
4861 int rv = 0;
4862
4863 if (level != LEVEL_CONTAINER)
4864 return 0;
4865 if (!dev)
4866 return 1;
4867
4868 fd = open(dev, O_RDONLY|O_EXCL, 0);
4869 if (fd < 0) {
4870 if (verbose)
4871 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4872 dev, strerror(errno));
4873 return 0;
4874 }
4875 if (!get_dev_size(fd, dev, &ldsize)) {
4876 close(fd);
4877 return 0;
4878 }
4879
4880 /* capabilities retrieve could be possible
4881 * note that there is no fd for the disks in array.
4882 */
4883 super = alloc_super();
4884 if (!super) {
4885 fprintf(stderr,
4886 Name ": malloc of %zu failed.\n",
4887 sizeof(*super));
4888 close(fd);
4889 return 0;
4890 }
4891
4892 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4893 if (rv != 0) {
4894 #if DEBUG
4895 char str[256];
4896 fd2devname(fd, str);
4897 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4898 fd, str, super->orom, rv, raiddisks);
4899 #endif
4900 /* no orom/efi or non-intel hba of the disk */
4901 close(fd);
4902 free_imsm(super);
4903 return 0;
4904 }
4905 close(fd);
4906 if (super->orom && raiddisks > super->orom->tds) {
4907 if (verbose)
4908 fprintf(stderr, Name ": %d exceeds maximum number of"
4909 " platform supported disks: %d\n",
4910 raiddisks, super->orom->tds);
4911
4912 free_imsm(super);
4913 return 0;
4914 }
4915
4916 *freesize = avail_size_imsm(st, ldsize >> 9);
4917 free_imsm(super);
4918
4919 return 1;
4920 }
4921
4922 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4923 {
4924 const unsigned long long base_start = e[*idx].start;
4925 unsigned long long end = base_start + e[*idx].size;
4926 int i;
4927
4928 if (base_start == end)
4929 return 0;
4930
4931 *idx = *idx + 1;
4932 for (i = *idx; i < num_extents; i++) {
4933 /* extend overlapping extents */
4934 if (e[i].start >= base_start &&
4935 e[i].start <= end) {
4936 if (e[i].size == 0)
4937 return 0;
4938 if (e[i].start + e[i].size > end)
4939 end = e[i].start + e[i].size;
4940 } else if (e[i].start > end) {
4941 *idx = i;
4942 break;
4943 }
4944 }
4945
4946 return end - base_start;
4947 }
4948
4949 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4950 {
4951 /* build a composite disk with all known extents and generate a new
4952 * 'maxsize' given the "all disks in an array must share a common start
4953 * offset" constraint
4954 */
4955 struct extent *e = calloc(sum_extents, sizeof(*e));
4956 struct dl *dl;
4957 int i, j;
4958 int start_extent;
4959 unsigned long long pos;
4960 unsigned long long start = 0;
4961 unsigned long long maxsize;
4962 unsigned long reserve;
4963
4964 if (!e)
4965 return 0;
4966
4967 /* coalesce and sort all extents. also, check to see if we need to
4968 * reserve space between member arrays
4969 */
4970 j = 0;
4971 for (dl = super->disks; dl; dl = dl->next) {
4972 if (!dl->e)
4973 continue;
4974 for (i = 0; i < dl->extent_cnt; i++)
4975 e[j++] = dl->e[i];
4976 }
4977 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4978
4979 /* merge extents */
4980 i = 0;
4981 j = 0;
4982 while (i < sum_extents) {
4983 e[j].start = e[i].start;
4984 e[j].size = find_size(e, &i, sum_extents);
4985 j++;
4986 if (e[j-1].size == 0)
4987 break;
4988 }
4989
4990 pos = 0;
4991 maxsize = 0;
4992 start_extent = 0;
4993 i = 0;
4994 do {
4995 unsigned long long esize;
4996
4997 esize = e[i].start - pos;
4998 if (esize >= maxsize) {
4999 maxsize = esize;
5000 start = pos;
5001 start_extent = i;
5002 }
5003 pos = e[i].start + e[i].size;
5004 i++;
5005 } while (e[i-1].size);
5006 free(e);
5007
5008 if (maxsize == 0)
5009 return 0;
5010
5011 /* FIXME assumes volume at offset 0 is the first volume in a
5012 * container
5013 */
5014 if (start_extent > 0)
5015 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5016 else
5017 reserve = 0;
5018
5019 if (maxsize < reserve)
5020 return 0;
5021
5022 super->create_offset = ~((__u32) 0);
5023 if (start + reserve > super->create_offset)
5024 return 0; /* start overflows create_offset */
5025 super->create_offset = start + reserve;
5026
5027 return maxsize - reserve;
5028 }
5029
5030 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5031 {
5032 if (level < 0 || level == 6 || level == 4)
5033 return 0;
5034
5035 /* if we have an orom prevent invalid raid levels */
5036 if (orom)
5037 switch (level) {
5038 case 0: return imsm_orom_has_raid0(orom);
5039 case 1:
5040 if (raiddisks > 2)
5041 return imsm_orom_has_raid1e(orom);
5042 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5043 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5044 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5045 }
5046 else
5047 return 1; /* not on an Intel RAID platform so anything goes */
5048
5049 return 0;
5050 }
5051
5052 static int imsm_default_chunk(const struct imsm_orom *orom)
5053 {
5054 /* up to 512 if the plaform supports it, otherwise the platform max.
5055 * 128 if no platform detected
5056 */
5057 int fs = max(7, orom ? fls(orom->sss) : 0);
5058
5059 return min(512, (1 << fs));
5060 }
5061
5062 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5063 static int
5064 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5065 int raiddisks, int *chunk, int verbose)
5066 {
5067 /* check/set platform and metadata limits/defaults */
5068 if (super->orom && raiddisks > super->orom->dpa) {
5069 pr_vrb(": platform supports a maximum of %d disks per array\n",
5070 super->orom->dpa);
5071 return 0;
5072 }
5073
5074 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5075 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5076 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5077 level, raiddisks, raiddisks > 1 ? "s" : "");
5078 return 0;
5079 }
5080
5081 if (chunk && (*chunk == 0 || *chunk == UnSet))
5082 *chunk = imsm_default_chunk(super->orom);
5083
5084 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5085 pr_vrb(": platform does not support a chunk size of: "
5086 "%d\n", *chunk);
5087 return 0;
5088 }
5089
5090 if (layout != imsm_level_to_layout(level)) {
5091 if (level == 5)
5092 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5093 else if (level == 10)
5094 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5095 else
5096 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5097 layout, level);
5098 return 0;
5099 }
5100 return 1;
5101 }
5102
5103 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5104 * FIX ME add ahci details
5105 */
5106 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5107 int layout, int raiddisks, int *chunk,
5108 unsigned long long size, char *dev,
5109 unsigned long long *freesize,
5110 int verbose)
5111 {
5112 struct stat stb;
5113 struct intel_super *super = st->sb;
5114 struct imsm_super *mpb = super->anchor;
5115 struct dl *dl;
5116 unsigned long long pos = 0;
5117 unsigned long long maxsize;
5118 struct extent *e;
5119 int i;
5120
5121 /* We must have the container info already read in. */
5122 if (!super)
5123 return 0;
5124
5125 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5126 fprintf(stderr, Name ": the option-rom requires all "
5127 "member disks to be a member of all volumes.\n");
5128 return 0;
5129 }
5130
5131 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5132 fprintf(stderr, Name ": RAID gemetry validation failed. "
5133 "Cannot proceed with the action(s).\n");
5134 return 0;
5135 }
5136 if (!dev) {
5137 /* General test: make sure there is space for
5138 * 'raiddisks' device extents of size 'size' at a given
5139 * offset
5140 */
5141 unsigned long long minsize = size;
5142 unsigned long long start_offset = MaxSector;
5143 int dcnt = 0;
5144 if (minsize == 0)
5145 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5146 for (dl = super->disks; dl ; dl = dl->next) {
5147 int found = 0;
5148
5149 pos = 0;
5150 i = 0;
5151 e = get_extents(super, dl);
5152 if (!e) continue;
5153 do {
5154 unsigned long long esize;
5155 esize = e[i].start - pos;
5156 if (esize >= minsize)
5157 found = 1;
5158 if (found && start_offset == MaxSector) {
5159 start_offset = pos;
5160 break;
5161 } else if (found && pos != start_offset) {
5162 found = 0;
5163 break;
5164 }
5165 pos = e[i].start + e[i].size;
5166 i++;
5167 } while (e[i-1].size);
5168 if (found)
5169 dcnt++;
5170 free(e);
5171 }
5172 if (dcnt < raiddisks) {
5173 if (verbose)
5174 fprintf(stderr, Name ": imsm: Not enough "
5175 "devices with space for this array "
5176 "(%d < %d)\n",
5177 dcnt, raiddisks);
5178 return 0;
5179 }
5180 return 1;
5181 }
5182
5183 /* This device must be a member of the set */
5184 if (stat(dev, &stb) < 0)
5185 return 0;
5186 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5187 return 0;
5188 for (dl = super->disks ; dl ; dl = dl->next) {
5189 if (dl->major == (int)major(stb.st_rdev) &&
5190 dl->minor == (int)minor(stb.st_rdev))
5191 break;
5192 }
5193 if (!dl) {
5194 if (verbose)
5195 fprintf(stderr, Name ": %s is not in the "
5196 "same imsm set\n", dev);
5197 return 0;
5198 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5199 /* If a volume is present then the current creation attempt
5200 * cannot incorporate new spares because the orom may not
5201 * understand this configuration (all member disks must be
5202 * members of each array in the container).
5203 */
5204 fprintf(stderr, Name ": %s is a spare and a volume"
5205 " is already defined for this container\n", dev);
5206 fprintf(stderr, Name ": The option-rom requires all member"
5207 " disks to be a member of all volumes\n");
5208 return 0;
5209 }
5210
5211 /* retrieve the largest free space block */
5212 e = get_extents(super, dl);
5213 maxsize = 0;
5214 i = 0;
5215 if (e) {
5216 do {
5217 unsigned long long esize;
5218
5219 esize = e[i].start - pos;
5220 if (esize >= maxsize)
5221 maxsize = esize;
5222 pos = e[i].start + e[i].size;
5223 i++;
5224 } while (e[i-1].size);
5225 dl->e = e;
5226 dl->extent_cnt = i;
5227 } else {
5228 if (verbose)
5229 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5230 dev);
5231 return 0;
5232 }
5233 if (maxsize < size) {
5234 if (verbose)
5235 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5236 dev, maxsize, size);
5237 return 0;
5238 }
5239
5240 /* count total number of extents for merge */
5241 i = 0;
5242 for (dl = super->disks; dl; dl = dl->next)
5243 if (dl->e)
5244 i += dl->extent_cnt;
5245
5246 maxsize = merge_extents(super, i);
5247 if (maxsize < size || maxsize == 0) {
5248 if (verbose)
5249 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5250 maxsize, size);
5251 return 0;
5252 }
5253
5254 *freesize = maxsize;
5255
5256 return 1;
5257 }
5258
5259 static int reserve_space(struct supertype *st, int raiddisks,
5260 unsigned long long size, int chunk,
5261 unsigned long long *freesize)
5262 {
5263 struct intel_super *super = st->sb;
5264 struct imsm_super *mpb = super->anchor;
5265 struct dl *dl;
5266 int i;
5267 int extent_cnt;
5268 struct extent *e;
5269 unsigned long long maxsize;
5270 unsigned long long minsize;
5271 int cnt;
5272 int used;
5273
5274 /* find the largest common start free region of the possible disks */
5275 used = 0;
5276 extent_cnt = 0;
5277 cnt = 0;
5278 for (dl = super->disks; dl; dl = dl->next) {
5279 dl->raiddisk = -1;
5280
5281 if (dl->index >= 0)
5282 used++;
5283
5284 /* don't activate new spares if we are orom constrained
5285 * and there is already a volume active in the container
5286 */
5287 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5288 continue;
5289
5290 e = get_extents(super, dl);
5291 if (!e)
5292 continue;
5293 for (i = 1; e[i-1].size; i++)
5294 ;
5295 dl->e = e;
5296 dl->extent_cnt = i;
5297 extent_cnt += i;
5298 cnt++;
5299 }
5300
5301 maxsize = merge_extents(super, extent_cnt);
5302 minsize = size;
5303 if (size == 0)
5304 /* chunk is in K */
5305 minsize = chunk * 2;
5306
5307 if (cnt < raiddisks ||
5308 (super->orom && used && used != raiddisks) ||
5309 maxsize < minsize ||
5310 maxsize == 0) {
5311 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5312 return 0; /* No enough free spaces large enough */
5313 }
5314
5315 if (size == 0) {
5316 size = maxsize;
5317 if (chunk) {
5318 size /= 2 * chunk;
5319 size *= 2 * chunk;
5320 }
5321 }
5322
5323 cnt = 0;
5324 for (dl = super->disks; dl; dl = dl->next)
5325 if (dl->e)
5326 dl->raiddisk = cnt++;
5327
5328 *freesize = size;
5329
5330 return 1;
5331 }
5332
5333 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5334 int raiddisks, int *chunk, unsigned long long size,
5335 char *dev, unsigned long long *freesize,
5336 int verbose)
5337 {
5338 int fd, cfd;
5339 struct mdinfo *sra;
5340 int is_member = 0;
5341
5342 /* load capability
5343 * if given unused devices create a container
5344 * if given given devices in a container create a member volume
5345 */
5346 if (level == LEVEL_CONTAINER) {
5347 /* Must be a fresh device to add to a container */
5348 return validate_geometry_imsm_container(st, level, layout,
5349 raiddisks,
5350 chunk?*chunk:0, size,
5351 dev, freesize,
5352 verbose);
5353 }
5354
5355 if (!dev) {
5356 if (st->sb && freesize) {
5357 /* we are being asked to automatically layout a
5358 * new volume based on the current contents of
5359 * the container. If the the parameters can be
5360 * satisfied reserve_space will record the disks,
5361 * start offset, and size of the volume to be
5362 * created. add_to_super and getinfo_super
5363 * detect when autolayout is in progress.
5364 */
5365 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5366 raiddisks, chunk,
5367 verbose))
5368 return 0;
5369 return reserve_space(st, raiddisks, size,
5370 chunk?*chunk:0, freesize);
5371 }
5372 return 1;
5373 }
5374 if (st->sb) {
5375 /* creating in a given container */
5376 return validate_geometry_imsm_volume(st, level, layout,
5377 raiddisks, chunk, size,
5378 dev, freesize, verbose);
5379 }
5380
5381 /* This device needs to be a device in an 'imsm' container */
5382 fd = open(dev, O_RDONLY|O_EXCL, 0);
5383 if (fd >= 0) {
5384 if (verbose)
5385 fprintf(stderr,
5386 Name ": Cannot create this array on device %s\n",
5387 dev);
5388 close(fd);
5389 return 0;
5390 }
5391 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5392 if (verbose)
5393 fprintf(stderr, Name ": Cannot open %s: %s\n",
5394 dev, strerror(errno));
5395 return 0;
5396 }
5397 /* Well, it is in use by someone, maybe an 'imsm' container. */
5398 cfd = open_container(fd);
5399 close(fd);
5400 if (cfd < 0) {
5401 if (verbose)
5402 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5403 dev);
5404 return 0;
5405 }
5406 sra = sysfs_read(cfd, 0, GET_VERSION);
5407 if (sra && sra->array.major_version == -1 &&
5408 strcmp(sra->text_version, "imsm") == 0)
5409 is_member = 1;
5410 sysfs_free(sra);
5411 if (is_member) {
5412 /* This is a member of a imsm container. Load the container
5413 * and try to create a volume
5414 */
5415 struct intel_super *super;
5416
5417 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5418 st->sb = super;
5419 st->container_dev = fd2devnum(cfd);
5420 close(cfd);
5421 return validate_geometry_imsm_volume(st, level, layout,
5422 raiddisks, chunk,
5423 size, dev,
5424 freesize, 1)
5425 ? 1 : -1;
5426 }
5427 }
5428
5429 if (verbose)
5430 fprintf(stderr, Name ": failed container membership check\n");
5431
5432 close(cfd);
5433 return 0;
5434 }
5435
5436 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5437 {
5438 struct intel_super *super = st->sb;
5439
5440 if (level && *level == UnSet)
5441 *level = LEVEL_CONTAINER;
5442
5443 if (level && layout && *layout == UnSet)
5444 *layout = imsm_level_to_layout(*level);
5445
5446 if (chunk && (*chunk == UnSet || *chunk == 0))
5447 *chunk = imsm_default_chunk(super->orom);
5448 }
5449
5450 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5451
5452 static int kill_subarray_imsm(struct supertype *st)
5453 {
5454 /* remove the subarray currently referenced by ->current_vol */
5455 __u8 i;
5456 struct intel_dev **dp;
5457 struct intel_super *super = st->sb;
5458 __u8 current_vol = super->current_vol;
5459 struct imsm_super *mpb = super->anchor;
5460
5461 if (super->current_vol < 0)
5462 return 2;
5463 super->current_vol = -1; /* invalidate subarray cursor */
5464
5465 /* block deletions that would change the uuid of active subarrays
5466 *
5467 * FIXME when immutable ids are available, but note that we'll
5468 * also need to fixup the invalidated/active subarray indexes in
5469 * mdstat
5470 */
5471 for (i = 0; i < mpb->num_raid_devs; i++) {
5472 char subarray[4];
5473
5474 if (i < current_vol)
5475 continue;
5476 sprintf(subarray, "%u", i);
5477 if (is_subarray_active(subarray, st->devname)) {
5478 fprintf(stderr,
5479 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5480 current_vol, i);
5481
5482 return 2;
5483 }
5484 }
5485
5486 if (st->update_tail) {
5487 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5488
5489 if (!u)
5490 return 2;
5491 u->type = update_kill_array;
5492 u->dev_idx = current_vol;
5493 append_metadata_update(st, u, sizeof(*u));
5494
5495 return 0;
5496 }
5497
5498 for (dp = &super->devlist; *dp;)
5499 if ((*dp)->index == current_vol) {
5500 *dp = (*dp)->next;
5501 } else {
5502 handle_missing(super, (*dp)->dev);
5503 if ((*dp)->index > current_vol)
5504 (*dp)->index--;
5505 dp = &(*dp)->next;
5506 }
5507
5508 /* no more raid devices, all active components are now spares,
5509 * but of course failed are still failed
5510 */
5511 if (--mpb->num_raid_devs == 0) {
5512 struct dl *d;
5513
5514 for (d = super->disks; d; d = d->next)
5515 if (d->index > -2)
5516 mark_spare(d);
5517 }
5518
5519 super->updates_pending++;
5520
5521 return 0;
5522 }
5523
5524 static int update_subarray_imsm(struct supertype *st, char *subarray,
5525 char *update, struct mddev_ident *ident)
5526 {
5527 /* update the subarray currently referenced by ->current_vol */
5528 struct intel_super *super = st->sb;
5529 struct imsm_super *mpb = super->anchor;
5530
5531 if (strcmp(update, "name") == 0) {
5532 char *name = ident->name;
5533 char *ep;
5534 int vol;
5535
5536 if (is_subarray_active(subarray, st->devname)) {
5537 fprintf(stderr,
5538 Name ": Unable to update name of active subarray\n");
5539 return 2;
5540 }
5541
5542 if (!check_name(super, name, 0))
5543 return 2;
5544
5545 vol = strtoul(subarray, &ep, 10);
5546 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5547 return 2;
5548
5549 if (st->update_tail) {
5550 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5551
5552 if (!u)
5553 return 2;
5554 u->type = update_rename_array;
5555 u->dev_idx = vol;
5556 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5557 append_metadata_update(st, u, sizeof(*u));
5558 } else {
5559 struct imsm_dev *dev;
5560 int i;
5561
5562 dev = get_imsm_dev(super, vol);
5563 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5564 for (i = 0; i < mpb->num_raid_devs; i++) {
5565 dev = get_imsm_dev(super, i);
5566 handle_missing(super, dev);
5567 }
5568 super->updates_pending++;
5569 }
5570 } else
5571 return 2;
5572
5573 return 0;
5574 }
5575
5576 static int is_gen_migration(struct imsm_dev *dev)
5577 {
5578 if (dev == NULL)
5579 return 0;
5580
5581 if (!dev->vol.migr_state)
5582 return 0;
5583
5584 if (migr_type(dev) == MIGR_GEN_MIGR)
5585 return 1;
5586
5587 return 0;
5588 }
5589 #endif /* MDASSEMBLE */
5590
5591 static int is_rebuilding(struct imsm_dev *dev)
5592 {
5593 struct imsm_map *migr_map;
5594
5595 if (!dev->vol.migr_state)
5596 return 0;
5597
5598 if (migr_type(dev) != MIGR_REBUILD)
5599 return 0;
5600
5601 migr_map = get_imsm_map(dev, 1);
5602
5603 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5604 return 1;
5605 else
5606 return 0;
5607 }
5608
5609 static void update_recovery_start(struct intel_super *super,
5610 struct imsm_dev *dev,
5611 struct mdinfo *array)
5612 {
5613 struct mdinfo *rebuild = NULL;
5614 struct mdinfo *d;
5615 __u32 units;
5616
5617 if (!is_rebuilding(dev))
5618 return;
5619
5620 /* Find the rebuild target, but punt on the dual rebuild case */
5621 for (d = array->devs; d; d = d->next)
5622 if (d->recovery_start == 0) {
5623 if (rebuild)
5624 return;
5625 rebuild = d;
5626 }
5627
5628 if (!rebuild) {
5629 /* (?) none of the disks are marked with
5630 * IMSM_ORD_REBUILD, so assume they are missing and the
5631 * disk_ord_tbl was not correctly updated
5632 */
5633 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5634 return;
5635 }
5636
5637 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5638 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5639 }
5640
5641 #ifndef MDASSEMBLE
5642 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5643 #endif
5644
5645 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5646 {
5647 /* Given a container loaded by load_super_imsm_all,
5648 * extract information about all the arrays into
5649 * an mdinfo tree.
5650 * If 'subarray' is given, just extract info about that array.
5651 *
5652 * For each imsm_dev create an mdinfo, fill it in,
5653 * then look for matching devices in super->disks
5654 * and create appropriate device mdinfo.
5655 */
5656 struct intel_super *super = st->sb;
5657 struct imsm_super *mpb = super->anchor;
5658 struct mdinfo *rest = NULL;
5659 unsigned int i;
5660 int bbm_errors = 0;
5661 struct dl *d;
5662 int spare_disks = 0;
5663
5664 /* do not assemble arrays when not all attributes are supported */
5665 if (imsm_check_attributes(mpb->attributes) == 0) {
5666 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5667 "due to attributes incompatibility.\n");
5668 return NULL;
5669 }
5670
5671 /* check for bad blocks */
5672 if (imsm_bbm_log_size(super->anchor))
5673 bbm_errors = 1;
5674
5675 /* count spare devices, not used in maps
5676 */
5677 for (d = super->disks; d; d = d->next)
5678 if (d->index == -1)
5679 spare_disks++;
5680
5681 for (i = 0; i < mpb->num_raid_devs; i++) {
5682 struct imsm_dev *dev;
5683 struct imsm_map *map;
5684 struct imsm_map *map2;
5685 struct mdinfo *this;
5686 int slot, chunk;
5687 char *ep;
5688
5689 if (subarray &&
5690 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5691 continue;
5692
5693 dev = get_imsm_dev(super, i);
5694 map = get_imsm_map(dev, 0);
5695 map2 = get_imsm_map(dev, 1);
5696
5697 /* do not publish arrays that are in the middle of an
5698 * unsupported migration
5699 */
5700 if (dev->vol.migr_state &&
5701 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5702 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5703 " unsupported migration in progress\n",
5704 dev->volume);
5705 continue;
5706 }
5707 /* do not publish arrays that are not support by controller's
5708 * OROM/EFI
5709 */
5710
5711 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5712 #ifndef MDASSEMBLE
5713 if (!validate_geometry_imsm_orom(super,
5714 get_imsm_raid_level(map), /* RAID level */
5715 imsm_level_to_layout(get_imsm_raid_level(map)),
5716 map->num_members, /* raid disks */
5717 &chunk,
5718 1 /* verbose */)) {
5719 fprintf(stderr, Name ": RAID gemetry validation failed. "
5720 "Cannot proceed with the action(s).\n");
5721 continue;
5722 }
5723 #endif /* MDASSEMBLE */
5724 this = malloc(sizeof(*this));
5725 if (!this) {
5726 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5727 sizeof(*this));
5728 break;
5729 }
5730
5731 super->current_vol = i;
5732 getinfo_super_imsm_volume(st, this, NULL);
5733 this->next = rest;
5734 for (slot = 0 ; slot < map->num_members; slot++) {
5735 unsigned long long recovery_start;
5736 struct mdinfo *info_d;
5737 struct dl *d;
5738 int idx;
5739 int skip;
5740 __u32 ord;
5741
5742 skip = 0;
5743 idx = get_imsm_disk_idx(dev, slot, 0);
5744 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5745 for (d = super->disks; d ; d = d->next)
5746 if (d->index == idx)
5747 break;
5748
5749 recovery_start = MaxSector;
5750 if (d == NULL)
5751 skip = 1;
5752 if (d && is_failed(&d->disk))
5753 skip = 1;
5754 if (ord & IMSM_ORD_REBUILD)
5755 recovery_start = 0;
5756
5757 /*
5758 * if we skip some disks the array will be assmebled degraded;
5759 * reset resync start to avoid a dirty-degraded
5760 * situation when performing the intial sync
5761 *
5762 * FIXME handle dirty degraded
5763 */
5764 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5765 this->resync_start = MaxSector;
5766 if (skip)
5767 continue;
5768
5769 info_d = calloc(1, sizeof(*info_d));
5770 if (!info_d) {
5771 fprintf(stderr, Name ": failed to allocate disk"
5772 " for volume %.16s\n", dev->volume);
5773 info_d = this->devs;
5774 while (info_d) {
5775 struct mdinfo *d = info_d->next;
5776
5777 free(info_d);
5778 info_d = d;
5779 }
5780 free(this);
5781 this = rest;
5782 break;
5783 }
5784 info_d->next = this->devs;
5785 this->devs = info_d;
5786
5787 info_d->disk.number = d->index;
5788 info_d->disk.major = d->major;
5789 info_d->disk.minor = d->minor;
5790 info_d->disk.raid_disk = slot;
5791 info_d->recovery_start = recovery_start;
5792 if (map2) {
5793 if (slot < map2->num_members)
5794 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5795 else
5796 this->array.spare_disks++;
5797 } else {
5798 if (slot < map->num_members)
5799 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5800 else
5801 this->array.spare_disks++;
5802 }
5803 if (info_d->recovery_start == MaxSector)
5804 this->array.working_disks++;
5805
5806 info_d->events = __le32_to_cpu(mpb->generation_num);
5807 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5808 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5809 }
5810 /* now that the disk list is up-to-date fixup recovery_start */
5811 update_recovery_start(super, dev, this);
5812 this->array.spare_disks += spare_disks;
5813
5814 #ifndef MDASSEMBLE
5815 /* check for reshape */
5816 if (this->reshape_active == 1)
5817 recover_backup_imsm(st, this);
5818 #endif
5819 rest = this;
5820 }
5821
5822 /* if array has bad blocks, set suitable bit in array status */
5823 if (bbm_errors)
5824 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5825
5826 return rest;
5827 }
5828
5829
5830 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5831 {
5832 struct imsm_map *map = get_imsm_map(dev, 0);
5833
5834 if (!failed)
5835 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5836 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5837
5838 switch (get_imsm_raid_level(map)) {
5839 case 0:
5840 return IMSM_T_STATE_FAILED;
5841 break;
5842 case 1:
5843 if (failed < map->num_members)
5844 return IMSM_T_STATE_DEGRADED;
5845 else
5846 return IMSM_T_STATE_FAILED;
5847 break;
5848 case 10:
5849 {
5850 /**
5851 * check to see if any mirrors have failed, otherwise we
5852 * are degraded. Even numbered slots are mirrored on
5853 * slot+1
5854 */
5855 int i;
5856 /* gcc -Os complains that this is unused */
5857 int insync = insync;
5858
5859 for (i = 0; i < map->num_members; i++) {
5860 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5861 int idx = ord_to_idx(ord);
5862 struct imsm_disk *disk;
5863
5864 /* reset the potential in-sync count on even-numbered
5865 * slots. num_copies is always 2 for imsm raid10
5866 */
5867 if ((i & 1) == 0)
5868 insync = 2;
5869
5870 disk = get_imsm_disk(super, idx);
5871 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5872 insync--;
5873
5874 /* no in-sync disks left in this mirror the
5875 * array has failed
5876 */
5877 if (insync == 0)
5878 return IMSM_T_STATE_FAILED;
5879 }
5880
5881 return IMSM_T_STATE_DEGRADED;
5882 }
5883 case 5:
5884 if (failed < 2)
5885 return IMSM_T_STATE_DEGRADED;
5886 else
5887 return IMSM_T_STATE_FAILED;
5888 break;
5889 default:
5890 break;
5891 }
5892
5893 return map->map_state;
5894 }
5895
5896 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5897 {
5898 int i;
5899 int failed = 0;
5900 struct imsm_disk *disk;
5901 struct imsm_map *map = get_imsm_map(dev, 0);
5902 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5903 __u32 ord;
5904 int idx;
5905
5906 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5907 * disks that are being rebuilt. New failures are recorded to
5908 * map[0]. So we look through all the disks we started with and
5909 * see if any failures are still present, or if any new ones
5910 * have arrived
5911 *
5912 * FIXME add support for online capacity expansion and
5913 * raid-level-migration
5914 */
5915 for (i = 0; i < prev->num_members; i++) {
5916 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5917 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5918 idx = ord_to_idx(ord);
5919
5920 disk = get_imsm_disk(super, idx);
5921 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5922 failed++;
5923 }
5924
5925 return failed;
5926 }
5927
5928 #ifndef MDASSEMBLE
5929 static int imsm_open_new(struct supertype *c, struct active_array *a,
5930 char *inst)
5931 {
5932 struct intel_super *super = c->sb;
5933 struct imsm_super *mpb = super->anchor;
5934
5935 if (atoi(inst) >= mpb->num_raid_devs) {
5936 fprintf(stderr, "%s: subarry index %d, out of range\n",
5937 __func__, atoi(inst));
5938 return -ENODEV;
5939 }
5940
5941 dprintf("imsm: open_new %s\n", inst);
5942 a->info.container_member = atoi(inst);
5943 return 0;
5944 }
5945
5946 static int is_resyncing(struct imsm_dev *dev)
5947 {
5948 struct imsm_map *migr_map;
5949
5950 if (!dev->vol.migr_state)
5951 return 0;
5952
5953 if (migr_type(dev) == MIGR_INIT ||
5954 migr_type(dev) == MIGR_REPAIR)
5955 return 1;
5956
5957 if (migr_type(dev) == MIGR_GEN_MIGR)
5958 return 0;
5959
5960 migr_map = get_imsm_map(dev, 1);
5961
5962 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5963 (dev->vol.migr_type != MIGR_GEN_MIGR))
5964 return 1;
5965 else
5966 return 0;
5967 }
5968
5969 /* return true if we recorded new information */
5970 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5971 {
5972 __u32 ord;
5973 int slot;
5974 struct imsm_map *map;
5975 char buf[MAX_RAID_SERIAL_LEN+3];
5976 unsigned int len, shift = 0;
5977
5978 /* new failures are always set in map[0] */
5979 map = get_imsm_map(dev, 0);
5980
5981 slot = get_imsm_disk_slot(map, idx);
5982 if (slot < 0)
5983 return 0;
5984
5985 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5986 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5987 return 0;
5988
5989 sprintf(buf, "%s:0", disk->serial);
5990 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
5991 shift = len - MAX_RAID_SERIAL_LEN + 1;
5992 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
5993
5994 disk->status |= FAILED_DISK;
5995 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5996 if (map->failed_disk_num == 0xff)
5997 map->failed_disk_num = slot;
5998 return 1;
5999 }
6000
6001 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6002 {
6003 mark_failure(dev, disk, idx);
6004
6005 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6006 return;
6007
6008 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6009 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6010 }
6011
6012 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6013 {
6014 __u8 map_state;
6015 struct dl *dl;
6016 int failed;
6017
6018 if (!super->missing)
6019 return;
6020 failed = imsm_count_failed(super, dev);
6021 map_state = imsm_check_degraded(super, dev, failed);
6022
6023 dprintf("imsm: mark missing\n");
6024 end_migration(dev, map_state);
6025 for (dl = super->missing; dl; dl = dl->next)
6026 mark_missing(dev, &dl->disk, dl->index);
6027 super->updates_pending++;
6028 }
6029
6030 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6031 {
6032 int used_disks = imsm_num_data_members(dev, 0);
6033 unsigned long long array_blocks;
6034 struct imsm_map *map;
6035
6036 if (used_disks == 0) {
6037 /* when problems occures
6038 * return current array_blocks value
6039 */
6040 array_blocks = __le32_to_cpu(dev->size_high);
6041 array_blocks = array_blocks << 32;
6042 array_blocks += __le32_to_cpu(dev->size_low);
6043
6044 return array_blocks;
6045 }
6046
6047 /* set array size in metadata
6048 */
6049 map = get_imsm_map(dev, 0);
6050 array_blocks = map->blocks_per_member * used_disks;
6051
6052 /* round array size down to closest MB
6053 */
6054 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6055 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6056 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6057
6058 return array_blocks;
6059 }
6060
6061 static void imsm_set_disk(struct active_array *a, int n, int state);
6062
6063 static void imsm_progress_container_reshape(struct intel_super *super)
6064 {
6065 /* if no device has a migr_state, but some device has a
6066 * different number of members than the previous device, start
6067 * changing the number of devices in this device to match
6068 * previous.
6069 */
6070 struct imsm_super *mpb = super->anchor;
6071 int prev_disks = -1;
6072 int i;
6073 int copy_map_size;
6074
6075 for (i = 0; i < mpb->num_raid_devs; i++) {
6076 struct imsm_dev *dev = get_imsm_dev(super, i);
6077 struct imsm_map *map = get_imsm_map(dev, 0);
6078 struct imsm_map *map2;
6079 int prev_num_members;
6080
6081 if (dev->vol.migr_state)
6082 return;
6083
6084 if (prev_disks == -1)
6085 prev_disks = map->num_members;
6086 if (prev_disks == map->num_members)
6087 continue;
6088
6089 /* OK, this array needs to enter reshape mode.
6090 * i.e it needs a migr_state
6091 */
6092
6093 copy_map_size = sizeof_imsm_map(map);
6094 prev_num_members = map->num_members;
6095 map->num_members = prev_disks;
6096 dev->vol.migr_state = 1;
6097 dev->vol.curr_migr_unit = 0;
6098 dev->vol.migr_type = MIGR_GEN_MIGR;
6099 for (i = prev_num_members;
6100 i < map->num_members; i++)
6101 set_imsm_ord_tbl_ent(map, i, i);
6102 map2 = get_imsm_map(dev, 1);
6103 /* Copy the current map */
6104 memcpy(map2, map, copy_map_size);
6105 map2->num_members = prev_num_members;
6106
6107 imsm_set_array_size(dev);
6108 super->updates_pending++;
6109 }
6110 }
6111
6112 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6113 * states are handled in imsm_set_disk() with one exception, when a
6114 * resync is stopped due to a new failure this routine will set the
6115 * 'degraded' state for the array.
6116 */
6117 static int imsm_set_array_state(struct active_array *a, int consistent)
6118 {
6119 int inst = a->info.container_member;
6120 struct intel_super *super = a->container->sb;
6121 struct imsm_dev *dev = get_imsm_dev(super, inst);
6122 struct imsm_map *map = get_imsm_map(dev, 0);
6123 int failed = imsm_count_failed(super, dev);
6124 __u8 map_state = imsm_check_degraded(super, dev, failed);
6125 __u32 blocks_per_unit;
6126
6127 if (dev->vol.migr_state &&
6128 dev->vol.migr_type == MIGR_GEN_MIGR) {
6129 /* array state change is blocked due to reshape action
6130 * We might need to
6131 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6132 * - finish the reshape (if last_checkpoint is big and action != reshape)
6133 * - update curr_migr_unit
6134 */
6135 if (a->curr_action == reshape) {
6136 /* still reshaping, maybe update curr_migr_unit */
6137 goto mark_checkpoint;
6138 } else {
6139 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6140 /* for some reason we aborted the reshape.
6141 *
6142 * disable automatic metadata rollback
6143 * user action is required to recover process
6144 */
6145 if (0) {
6146 struct imsm_map *map2 = get_imsm_map(dev, 1);
6147 dev->vol.migr_state = 0;
6148 dev->vol.migr_type = 0;
6149 dev->vol.curr_migr_unit = 0;
6150 memcpy(map, map2, sizeof_imsm_map(map2));
6151 super->updates_pending++;
6152 }
6153 }
6154 if (a->last_checkpoint >= a->info.component_size) {
6155 unsigned long long array_blocks;
6156 int used_disks;
6157 struct mdinfo *mdi;
6158
6159 used_disks = imsm_num_data_members(dev, 0);
6160 if (used_disks > 0) {
6161 array_blocks =
6162 map->blocks_per_member *
6163 used_disks;
6164 /* round array size down to closest MB
6165 */
6166 array_blocks = (array_blocks
6167 >> SECT_PER_MB_SHIFT)
6168 << SECT_PER_MB_SHIFT;
6169 a->info.custom_array_size = array_blocks;
6170 /* encourage manager to update array
6171 * size
6172 */
6173
6174 a->check_reshape = 1;
6175 }
6176 /* finalize online capacity expansion/reshape */
6177 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6178 imsm_set_disk(a,
6179 mdi->disk.raid_disk,
6180 mdi->curr_state);
6181
6182 imsm_progress_container_reshape(super);
6183 }
6184 }
6185 }
6186
6187 /* before we activate this array handle any missing disks */
6188 if (consistent == 2)
6189 handle_missing(super, dev);
6190
6191 if (consistent == 2 &&
6192 (!is_resync_complete(&a->info) ||
6193 map_state != IMSM_T_STATE_NORMAL ||
6194 dev->vol.migr_state))
6195 consistent = 0;
6196
6197 if (is_resync_complete(&a->info)) {
6198 /* complete intialization / resync,
6199 * recovery and interrupted recovery is completed in
6200 * ->set_disk
6201 */
6202 if (is_resyncing(dev)) {
6203 dprintf("imsm: mark resync done\n");
6204 end_migration(dev, map_state);
6205 super->updates_pending++;
6206 a->last_checkpoint = 0;
6207 }
6208 } else if (!is_resyncing(dev) && !failed) {
6209 /* mark the start of the init process if nothing is failed */
6210 dprintf("imsm: mark resync start\n");
6211 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6212 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6213 else
6214 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6215 super->updates_pending++;
6216 }
6217
6218 mark_checkpoint:
6219 /* skip checkpointing for general migration,
6220 * it is controlled in mdadm
6221 */
6222 if (is_gen_migration(dev))
6223 goto skip_mark_checkpoint;
6224
6225 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6226 blocks_per_unit = blocks_per_migr_unit(super, dev);
6227 if (blocks_per_unit) {
6228 __u32 units32;
6229 __u64 units;
6230
6231 units = a->last_checkpoint / blocks_per_unit;
6232 units32 = units;
6233
6234 /* check that we did not overflow 32-bits, and that
6235 * curr_migr_unit needs updating
6236 */
6237 if (units32 == units &&
6238 units32 != 0 &&
6239 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6240 dprintf("imsm: mark checkpoint (%u)\n", units32);
6241 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6242 super->updates_pending++;
6243 }
6244 }
6245
6246 skip_mark_checkpoint:
6247 /* mark dirty / clean */
6248 if (dev->vol.dirty != !consistent) {
6249 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6250 if (consistent)
6251 dev->vol.dirty = 0;
6252 else
6253 dev->vol.dirty = 1;
6254 super->updates_pending++;
6255 }
6256
6257 return consistent;
6258 }
6259
6260 static void imsm_set_disk(struct active_array *a, int n, int state)
6261 {
6262 int inst = a->info.container_member;
6263 struct intel_super *super = a->container->sb;
6264 struct imsm_dev *dev = get_imsm_dev(super, inst);
6265 struct imsm_map *map = get_imsm_map(dev, 0);
6266 struct imsm_disk *disk;
6267 int failed;
6268 __u32 ord;
6269 __u8 map_state;
6270
6271 if (n > map->num_members)
6272 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6273 n, map->num_members - 1);
6274
6275 if (n < 0)
6276 return;
6277
6278 dprintf("imsm: set_disk %d:%x\n", n, state);
6279
6280 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6281 disk = get_imsm_disk(super, ord_to_idx(ord));
6282
6283 /* check for new failures */
6284 if (state & DS_FAULTY) {
6285 if (mark_failure(dev, disk, ord_to_idx(ord)))
6286 super->updates_pending++;
6287 }
6288
6289 /* check if in_sync */
6290 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6291 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6292
6293 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6294 super->updates_pending++;
6295 }
6296
6297 failed = imsm_count_failed(super, dev);
6298 map_state = imsm_check_degraded(super, dev, failed);
6299
6300 /* check if recovery complete, newly degraded, or failed */
6301 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6302 end_migration(dev, map_state);
6303 map = get_imsm_map(dev, 0);
6304 map->failed_disk_num = ~0;
6305 super->updates_pending++;
6306 a->last_checkpoint = 0;
6307 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6308 map->map_state != map_state &&
6309 !dev->vol.migr_state) {
6310 dprintf("imsm: mark degraded\n");
6311 map->map_state = map_state;
6312 super->updates_pending++;
6313 a->last_checkpoint = 0;
6314 } else if (map_state == IMSM_T_STATE_FAILED &&
6315 map->map_state != map_state) {
6316 dprintf("imsm: mark failed\n");
6317 end_migration(dev, map_state);
6318 super->updates_pending++;
6319 a->last_checkpoint = 0;
6320 } else if (is_gen_migration(dev)) {
6321 dprintf("imsm: Detected General Migration in state: ");
6322 if (map_state == IMSM_T_STATE_NORMAL) {
6323 end_migration(dev, map_state);
6324 map = get_imsm_map(dev, 0);
6325 map->failed_disk_num = ~0;
6326 dprintf("normal\n");
6327 } else {
6328 if (map_state == IMSM_T_STATE_DEGRADED) {
6329 printf("degraded\n");
6330 end_migration(dev, map_state);
6331 } else {
6332 dprintf("failed\n");
6333 }
6334 map->map_state = map_state;
6335 }
6336 super->updates_pending++;
6337 }
6338 }
6339
6340 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6341 {
6342 void *buf = mpb;
6343 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6344 unsigned long long dsize;
6345 unsigned long long sectors;
6346
6347 get_dev_size(fd, NULL, &dsize);
6348
6349 if (mpb_size > 512) {
6350 /* -1 to account for anchor */
6351 sectors = mpb_sectors(mpb) - 1;
6352
6353 /* write the extended mpb to the sectors preceeding the anchor */
6354 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6355 return 1;
6356
6357 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6358 != 512 * sectors)
6359 return 1;
6360 }
6361
6362 /* first block is stored on second to last sector of the disk */
6363 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6364 return 1;
6365
6366 if (write(fd, buf, 512) != 512)
6367 return 1;
6368
6369 return 0;
6370 }
6371
6372 static void imsm_sync_metadata(struct supertype *container)
6373 {
6374 struct intel_super *super = container->sb;
6375
6376 dprintf("sync metadata: %d\n", super->updates_pending);
6377 if (!super->updates_pending)
6378 return;
6379
6380 write_super_imsm(container, 0);
6381
6382 super->updates_pending = 0;
6383 }
6384
6385 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6386 {
6387 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6388 int i = get_imsm_disk_idx(dev, idx, -1);
6389 struct dl *dl;
6390
6391 for (dl = super->disks; dl; dl = dl->next)
6392 if (dl->index == i)
6393 break;
6394
6395 if (dl && is_failed(&dl->disk))
6396 dl = NULL;
6397
6398 if (dl)
6399 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6400
6401 return dl;
6402 }
6403
6404 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6405 struct active_array *a, int activate_new,
6406 struct mdinfo *additional_test_list)
6407 {
6408 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6409 int idx = get_imsm_disk_idx(dev, slot, -1);
6410 struct imsm_super *mpb = super->anchor;
6411 struct imsm_map *map;
6412 unsigned long long pos;
6413 struct mdinfo *d;
6414 struct extent *ex;
6415 int i, j;
6416 int found;
6417 __u32 array_start = 0;
6418 __u32 array_end = 0;
6419 struct dl *dl;
6420 struct mdinfo *test_list;
6421
6422 for (dl = super->disks; dl; dl = dl->next) {
6423 /* If in this array, skip */
6424 for (d = a->info.devs ; d ; d = d->next)
6425 if (d->state_fd >= 0 &&
6426 d->disk.major == dl->major &&
6427 d->disk.minor == dl->minor) {
6428 dprintf("%x:%x already in array\n",
6429 dl->major, dl->minor);
6430 break;
6431 }
6432 if (d)
6433 continue;
6434 test_list = additional_test_list;
6435 while (test_list) {
6436 if (test_list->disk.major == dl->major &&
6437 test_list->disk.minor == dl->minor) {
6438 dprintf("%x:%x already in additional test list\n",
6439 dl->major, dl->minor);
6440 break;
6441 }
6442 test_list = test_list->next;
6443 }
6444 if (test_list)
6445 continue;
6446
6447 /* skip in use or failed drives */
6448 if (is_failed(&dl->disk) || idx == dl->index ||
6449 dl->index == -2) {
6450 dprintf("%x:%x status (failed: %d index: %d)\n",
6451 dl->major, dl->minor, is_failed(&dl->disk), idx);
6452 continue;
6453 }
6454
6455 /* skip pure spares when we are looking for partially
6456 * assimilated drives
6457 */
6458 if (dl->index == -1 && !activate_new)
6459 continue;
6460
6461 /* Does this unused device have the requisite free space?
6462 * It needs to be able to cover all member volumes
6463 */
6464 ex = get_extents(super, dl);
6465 if (!ex) {
6466 dprintf("cannot get extents\n");
6467 continue;
6468 }
6469 for (i = 0; i < mpb->num_raid_devs; i++) {
6470 dev = get_imsm_dev(super, i);
6471 map = get_imsm_map(dev, 0);
6472
6473 /* check if this disk is already a member of
6474 * this array
6475 */
6476 if (get_imsm_disk_slot(map, dl->index) >= 0)
6477 continue;
6478
6479 found = 0;
6480 j = 0;
6481 pos = 0;
6482 array_start = __le32_to_cpu(map->pba_of_lba0);
6483 array_end = array_start +
6484 __le32_to_cpu(map->blocks_per_member) - 1;
6485
6486 do {
6487 /* check that we can start at pba_of_lba0 with
6488 * blocks_per_member of space
6489 */
6490 if (array_start >= pos && array_end < ex[j].start) {
6491 found = 1;
6492 break;
6493 }
6494 pos = ex[j].start + ex[j].size;
6495 j++;
6496 } while (ex[j-1].size);
6497
6498 if (!found)
6499 break;
6500 }
6501
6502 free(ex);
6503 if (i < mpb->num_raid_devs) {
6504 dprintf("%x:%x does not have %u to %u available\n",
6505 dl->major, dl->minor, array_start, array_end);
6506 /* No room */
6507 continue;
6508 }
6509 return dl;
6510 }
6511
6512 return dl;
6513 }
6514
6515
6516 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6517 {
6518 struct imsm_dev *dev2;
6519 struct imsm_map *map;
6520 struct dl *idisk;
6521 int slot;
6522 int idx;
6523 __u8 state;
6524
6525 dev2 = get_imsm_dev(cont->sb, dev_idx);
6526 if (dev2) {
6527 state = imsm_check_degraded(cont->sb, dev2, failed);
6528 if (state == IMSM_T_STATE_FAILED) {
6529 map = get_imsm_map(dev2, 0);
6530 if (!map)
6531 return 1;
6532 for (slot = 0; slot < map->num_members; slot++) {
6533 /*
6534 * Check if failed disks are deleted from intel
6535 * disk list or are marked to be deleted
6536 */
6537 idx = get_imsm_disk_idx(dev2, slot, -1);
6538 idisk = get_imsm_dl_disk(cont->sb, idx);
6539 /*
6540 * Do not rebuild the array if failed disks
6541 * from failed sub-array are not removed from
6542 * container.
6543 */
6544 if (idisk &&
6545 is_failed(&idisk->disk) &&
6546 (idisk->action != DISK_REMOVE))
6547 return 0;
6548 }
6549 }
6550 }
6551 return 1;
6552 }
6553
6554 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6555 struct metadata_update **updates)
6556 {
6557 /**
6558 * Find a device with unused free space and use it to replace a
6559 * failed/vacant region in an array. We replace failed regions one a
6560 * array at a time. The result is that a new spare disk will be added
6561 * to the first failed array and after the monitor has finished
6562 * propagating failures the remainder will be consumed.
6563 *
6564 * FIXME add a capability for mdmon to request spares from another
6565 * container.
6566 */
6567
6568 struct intel_super *super = a->container->sb;
6569 int inst = a->info.container_member;
6570 struct imsm_dev *dev = get_imsm_dev(super, inst);
6571 struct imsm_map *map = get_imsm_map(dev, 0);
6572 int failed = a->info.array.raid_disks;
6573 struct mdinfo *rv = NULL;
6574 struct mdinfo *d;
6575 struct mdinfo *di;
6576 struct metadata_update *mu;
6577 struct dl *dl;
6578 struct imsm_update_activate_spare *u;
6579 int num_spares = 0;
6580 int i;
6581 int allowed;
6582
6583 for (d = a->info.devs ; d ; d = d->next) {
6584 if ((d->curr_state & DS_FAULTY) &&
6585 d->state_fd >= 0)
6586 /* wait for Removal to happen */
6587 return NULL;
6588 if (d->state_fd >= 0)
6589 failed--;
6590 }
6591
6592 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6593 inst, failed, a->info.array.raid_disks, a->info.array.level);
6594
6595 if (dev->vol.migr_state &&
6596 dev->vol.migr_type == MIGR_GEN_MIGR)
6597 /* No repair during migration */
6598 return NULL;
6599
6600 if (a->info.array.level == 4)
6601 /* No repair for takeovered array
6602 * imsm doesn't support raid4
6603 */
6604 return NULL;
6605
6606 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6607 return NULL;
6608
6609 /*
6610 * If there are any failed disks check state of the other volume.
6611 * Block rebuild if the another one is failed until failed disks
6612 * are removed from container.
6613 */
6614 if (failed) {
6615 dprintf("found failed disks in %s, check if there another"
6616 "failed sub-array.\n",
6617 dev->volume);
6618 /* check if states of the other volumes allow for rebuild */
6619 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6620 if (i != inst) {
6621 allowed = imsm_rebuild_allowed(a->container,
6622 i, failed);
6623 if (!allowed)
6624 return NULL;
6625 }
6626 }
6627 }
6628
6629 /* For each slot, if it is not working, find a spare */
6630 for (i = 0; i < a->info.array.raid_disks; i++) {
6631 for (d = a->info.devs ; d ; d = d->next)
6632 if (d->disk.raid_disk == i)
6633 break;
6634 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6635 if (d && (d->state_fd >= 0))
6636 continue;
6637
6638 /*
6639 * OK, this device needs recovery. Try to re-add the
6640 * previous occupant of this slot, if this fails see if
6641 * we can continue the assimilation of a spare that was
6642 * partially assimilated, finally try to activate a new
6643 * spare.
6644 */
6645 dl = imsm_readd(super, i, a);
6646 if (!dl)
6647 dl = imsm_add_spare(super, i, a, 0, NULL);
6648 if (!dl)
6649 dl = imsm_add_spare(super, i, a, 1, NULL);
6650 if (!dl)
6651 continue;
6652
6653 /* found a usable disk with enough space */
6654 di = malloc(sizeof(*di));
6655 if (!di)
6656 continue;
6657 memset(di, 0, sizeof(*di));
6658
6659 /* dl->index will be -1 in the case we are activating a
6660 * pristine spare. imsm_process_update() will create a
6661 * new index in this case. Once a disk is found to be
6662 * failed in all member arrays it is kicked from the
6663 * metadata
6664 */
6665 di->disk.number = dl->index;
6666
6667 /* (ab)use di->devs to store a pointer to the device
6668 * we chose
6669 */
6670 di->devs = (struct mdinfo *) dl;
6671
6672 di->disk.raid_disk = i;
6673 di->disk.major = dl->major;
6674 di->disk.minor = dl->minor;
6675 di->disk.state = 0;
6676 di->recovery_start = 0;
6677 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6678 di->component_size = a->info.component_size;
6679 di->container_member = inst;
6680 super->random = random32();
6681 di->next = rv;
6682 rv = di;
6683 num_spares++;
6684 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6685 i, di->data_offset);
6686
6687 break;
6688 }
6689
6690 if (!rv)
6691 /* No spares found */
6692 return rv;
6693 /* Now 'rv' has a list of devices to return.
6694 * Create a metadata_update record to update the
6695 * disk_ord_tbl for the array
6696 */
6697 mu = malloc(sizeof(*mu));
6698 if (mu) {
6699 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6700 if (mu->buf == NULL) {
6701 free(mu);
6702 mu = NULL;
6703 }
6704 }
6705 if (!mu) {
6706 while (rv) {
6707 struct mdinfo *n = rv->next;
6708
6709 free(rv);
6710 rv = n;
6711 }
6712 return NULL;
6713 }
6714
6715 mu->space = NULL;
6716 mu->space_list = NULL;
6717 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6718 mu->next = *updates;
6719 u = (struct imsm_update_activate_spare *) mu->buf;
6720
6721 for (di = rv ; di ; di = di->next) {
6722 u->type = update_activate_spare;
6723 u->dl = (struct dl *) di->devs;
6724 di->devs = NULL;
6725 u->slot = di->disk.raid_disk;
6726 u->array = inst;
6727 u->next = u + 1;
6728 u++;
6729 }
6730 (u-1)->next = NULL;
6731 *updates = mu;
6732
6733 return rv;
6734 }
6735
6736 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6737 {
6738 struct imsm_dev *dev = get_imsm_dev(super, idx);
6739 struct imsm_map *map = get_imsm_map(dev, 0);
6740 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6741 struct disk_info *inf = get_disk_info(u);
6742 struct imsm_disk *disk;
6743 int i;
6744 int j;
6745
6746 for (i = 0; i < map->num_members; i++) {
6747 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6748 for (j = 0; j < new_map->num_members; j++)
6749 if (serialcmp(disk->serial, inf[j].serial) == 0)
6750 return 1;
6751 }
6752
6753 return 0;
6754 }
6755
6756
6757 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6758 {
6759 struct dl *dl = NULL;
6760 for (dl = super->disks; dl; dl = dl->next)
6761 if ((dl->major == major) && (dl->minor == minor))
6762 return dl;
6763 return NULL;
6764 }
6765
6766 static int remove_disk_super(struct intel_super *super, int major, int minor)
6767 {
6768 struct dl *prev = NULL;
6769 struct dl *dl;
6770
6771 prev = NULL;
6772 for (dl = super->disks; dl; dl = dl->next) {
6773 if ((dl->major == major) && (dl->minor == minor)) {
6774 /* remove */
6775 if (prev)
6776 prev->next = dl->next;
6777 else
6778 super->disks = dl->next;
6779 dl->next = NULL;
6780 __free_imsm_disk(dl);
6781 dprintf("%s: removed %x:%x\n",
6782 __func__, major, minor);
6783 break;
6784 }
6785 prev = dl;
6786 }
6787 return 0;
6788 }
6789
6790 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6791
6792 static int add_remove_disk_update(struct intel_super *super)
6793 {
6794 int check_degraded = 0;
6795 struct dl *disk = NULL;
6796 /* add/remove some spares to/from the metadata/contrainer */
6797 while (super->disk_mgmt_list) {
6798 struct dl *disk_cfg;
6799
6800 disk_cfg = super->disk_mgmt_list;
6801 super->disk_mgmt_list = disk_cfg->next;
6802 disk_cfg->next = NULL;
6803
6804 if (disk_cfg->action == DISK_ADD) {
6805 disk_cfg->next = super->disks;
6806 super->disks = disk_cfg;
6807 check_degraded = 1;
6808 dprintf("%s: added %x:%x\n",
6809 __func__, disk_cfg->major,
6810 disk_cfg->minor);
6811 } else if (disk_cfg->action == DISK_REMOVE) {
6812 dprintf("Disk remove action processed: %x.%x\n",
6813 disk_cfg->major, disk_cfg->minor);
6814 disk = get_disk_super(super,
6815 disk_cfg->major,
6816 disk_cfg->minor);
6817 if (disk) {
6818 /* store action status */
6819 disk->action = DISK_REMOVE;
6820 /* remove spare disks only */
6821 if (disk->index == -1) {
6822 remove_disk_super(super,
6823 disk_cfg->major,
6824 disk_cfg->minor);
6825 }
6826 }
6827 /* release allocate disk structure */
6828 __free_imsm_disk(disk_cfg);
6829 }
6830 }
6831 return check_degraded;
6832 }
6833
6834
6835 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6836 struct intel_super *super,
6837 void ***space_list)
6838 {
6839 struct intel_dev *id;
6840 void **tofree = NULL;
6841 int ret_val = 0;
6842
6843 dprintf("apply_reshape_migration_update()\n");
6844 if ((u->subdev < 0) ||
6845 (u->subdev > 1)) {
6846 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6847 return ret_val;
6848 }
6849 if ((space_list == NULL) || (*space_list == NULL)) {
6850 dprintf("imsm: Error: Memory is not allocated\n");
6851 return ret_val;
6852 }
6853
6854 for (id = super->devlist ; id; id = id->next) {
6855 if (id->index == (unsigned)u->subdev) {
6856 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6857 struct imsm_map *map;
6858 struct imsm_dev *new_dev =
6859 (struct imsm_dev *)*space_list;
6860 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6861 int to_state;
6862 struct dl *new_disk;
6863
6864 if (new_dev == NULL)
6865 return ret_val;
6866 *space_list = **space_list;
6867 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6868 map = get_imsm_map(new_dev, 0);
6869 if (migr_map) {
6870 dprintf("imsm: Error: migration in progress");
6871 return ret_val;
6872 }
6873
6874 to_state = map->map_state;
6875 if ((u->new_level == 5) && (map->raid_level == 0)) {
6876 map->num_members++;
6877 /* this should not happen */
6878 if (u->new_disks[0] < 0) {
6879 map->failed_disk_num =
6880 map->num_members - 1;
6881 to_state = IMSM_T_STATE_DEGRADED;
6882 } else
6883 to_state = IMSM_T_STATE_NORMAL;
6884 }
6885 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6886 if (u->new_level > -1)
6887 map->raid_level = u->new_level;
6888 migr_map = get_imsm_map(new_dev, 1);
6889 if ((u->new_level == 5) &&
6890 (migr_map->raid_level == 0)) {
6891 int ord = map->num_members - 1;
6892 migr_map->num_members--;
6893 if (u->new_disks[0] < 0)
6894 ord |= IMSM_ORD_REBUILD;
6895 set_imsm_ord_tbl_ent(map,
6896 map->num_members - 1,
6897 ord);
6898 }
6899 id->dev = new_dev;
6900 tofree = (void **)dev;
6901
6902 /* update chunk size
6903 */
6904 if (u->new_chunksize > 0)
6905 map->blocks_per_strip =
6906 __cpu_to_le16(u->new_chunksize * 2);
6907
6908 /* add disk
6909 */
6910 if ((u->new_level != 5) ||
6911 (migr_map->raid_level != 0) ||
6912 (migr_map->raid_level == map->raid_level))
6913 goto skip_disk_add;
6914
6915 if (u->new_disks[0] >= 0) {
6916 /* use passes spare
6917 */
6918 new_disk = get_disk_super(super,
6919 major(u->new_disks[0]),
6920 minor(u->new_disks[0]));
6921 dprintf("imsm: new disk for reshape is: %i:%i "
6922 "(%p, index = %i)\n",
6923 major(u->new_disks[0]),
6924 minor(u->new_disks[0]),
6925 new_disk, new_disk->index);
6926 if (new_disk == NULL)
6927 goto error_disk_add;
6928
6929 new_disk->index = map->num_members - 1;
6930 /* slot to fill in autolayout
6931 */
6932 new_disk->raiddisk = new_disk->index;
6933 new_disk->disk.status |= CONFIGURED_DISK;
6934 new_disk->disk.status &= ~SPARE_DISK;
6935 } else
6936 goto error_disk_add;
6937
6938 skip_disk_add:
6939 *tofree = *space_list;
6940 /* calculate new size
6941 */
6942 imsm_set_array_size(new_dev);
6943
6944 ret_val = 1;
6945 }
6946 }
6947
6948 if (tofree)
6949 *space_list = tofree;
6950 return ret_val;
6951
6952 error_disk_add:
6953 dprintf("Error: imsm: Cannot find disk.\n");
6954 return ret_val;
6955 }
6956
6957
6958 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6959 struct intel_super *super,
6960 void ***space_list)
6961 {
6962 struct dl *new_disk;
6963 struct intel_dev *id;
6964 int i;
6965 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6966 int disk_count = u->old_raid_disks;
6967 void **tofree = NULL;
6968 int devices_to_reshape = 1;
6969 struct imsm_super *mpb = super->anchor;
6970 int ret_val = 0;
6971 unsigned int dev_id;
6972
6973 dprintf("imsm: apply_reshape_container_disks_update()\n");
6974
6975 /* enable spares to use in array */
6976 for (i = 0; i < delta_disks; i++) {
6977 new_disk = get_disk_super(super,
6978 major(u->new_disks[i]),
6979 minor(u->new_disks[i]));
6980 dprintf("imsm: new disk for reshape is: %i:%i "
6981 "(%p, index = %i)\n",
6982 major(u->new_disks[i]), minor(u->new_disks[i]),
6983 new_disk, new_disk->index);
6984 if ((new_disk == NULL) ||
6985 ((new_disk->index >= 0) &&
6986 (new_disk->index < u->old_raid_disks)))
6987 goto update_reshape_exit;
6988 new_disk->index = disk_count++;
6989 /* slot to fill in autolayout
6990 */
6991 new_disk->raiddisk = new_disk->index;
6992 new_disk->disk.status |=
6993 CONFIGURED_DISK;
6994 new_disk->disk.status &= ~SPARE_DISK;
6995 }
6996
6997 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6998 mpb->num_raid_devs);
6999 /* manage changes in volume
7000 */
7001 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7002 void **sp = *space_list;
7003 struct imsm_dev *newdev;
7004 struct imsm_map *newmap, *oldmap;
7005
7006 for (id = super->devlist ; id; id = id->next) {
7007 if (id->index == dev_id)
7008 break;
7009 }
7010 if (id == NULL)
7011 break;
7012 if (!sp)
7013 continue;
7014 *space_list = *sp;
7015 newdev = (void*)sp;
7016 /* Copy the dev, but not (all of) the map */
7017 memcpy(newdev, id->dev, sizeof(*newdev));
7018 oldmap = get_imsm_map(id->dev, 0);
7019 newmap = get_imsm_map(newdev, 0);
7020 /* Copy the current map */
7021 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7022 /* update one device only
7023 */
7024 if (devices_to_reshape) {
7025 dprintf("imsm: modifying subdev: %i\n",
7026 id->index);
7027 devices_to_reshape--;
7028 newdev->vol.migr_state = 1;
7029 newdev->vol.curr_migr_unit = 0;
7030 newdev->vol.migr_type = MIGR_GEN_MIGR;
7031 newmap->num_members = u->new_raid_disks;
7032 for (i = 0; i < delta_disks; i++) {
7033 set_imsm_ord_tbl_ent(newmap,
7034 u->old_raid_disks + i,
7035 u->old_raid_disks + i);
7036 }
7037 /* New map is correct, now need to save old map
7038 */
7039 newmap = get_imsm_map(newdev, 1);
7040 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7041
7042 imsm_set_array_size(newdev);
7043 }
7044
7045 sp = (void **)id->dev;
7046 id->dev = newdev;
7047 *sp = tofree;
7048 tofree = sp;
7049
7050 /* Clear migration record */
7051 memset(super->migr_rec, 0, sizeof(struct migr_record));
7052 }
7053 if (tofree)
7054 *space_list = tofree;
7055 ret_val = 1;
7056
7057 update_reshape_exit:
7058
7059 return ret_val;
7060 }
7061
7062 static int apply_takeover_update(struct imsm_update_takeover *u,
7063 struct intel_super *super,
7064 void ***space_list)
7065 {
7066 struct imsm_dev *dev = NULL;
7067 struct intel_dev *dv;
7068 struct imsm_dev *dev_new;
7069 struct imsm_map *map;
7070 struct dl *dm, *du;
7071 int i;
7072
7073 for (dv = super->devlist; dv; dv = dv->next)
7074 if (dv->index == (unsigned int)u->subarray) {
7075 dev = dv->dev;
7076 break;
7077 }
7078
7079 if (dev == NULL)
7080 return 0;
7081
7082 map = get_imsm_map(dev, 0);
7083
7084 if (u->direction == R10_TO_R0) {
7085 /* Number of failed disks must be half of initial disk number */
7086 if (imsm_count_failed(super, dev) != (map->num_members / 2))
7087 return 0;
7088
7089 /* iterate through devices to mark removed disks as spare */
7090 for (dm = super->disks; dm; dm = dm->next) {
7091 if (dm->disk.status & FAILED_DISK) {
7092 int idx = dm->index;
7093 /* update indexes on the disk list */
7094 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7095 the index values will end up being correct.... NB */
7096 for (du = super->disks; du; du = du->next)
7097 if (du->index > idx)
7098 du->index--;
7099 /* mark as spare disk */
7100 mark_spare(dm);
7101 }
7102 }
7103 /* update map */
7104 map->num_members = map->num_members / 2;
7105 map->map_state = IMSM_T_STATE_NORMAL;
7106 map->num_domains = 1;
7107 map->raid_level = 0;
7108 map->failed_disk_num = -1;
7109 }
7110
7111 if (u->direction == R0_TO_R10) {
7112 void **space;
7113 /* update slots in current disk list */
7114 for (dm = super->disks; dm; dm = dm->next) {
7115 if (dm->index >= 0)
7116 dm->index *= 2;
7117 }
7118 /* create new *missing* disks */
7119 for (i = 0; i < map->num_members; i++) {
7120 space = *space_list;
7121 if (!space)
7122 continue;
7123 *space_list = *space;
7124 du = (void *)space;
7125 memcpy(du, super->disks, sizeof(*du));
7126 du->fd = -1;
7127 du->minor = 0;
7128 du->major = 0;
7129 du->index = (i * 2) + 1;
7130 sprintf((char *)du->disk.serial,
7131 " MISSING_%d", du->index);
7132 sprintf((char *)du->serial,
7133 "MISSING_%d", du->index);
7134 du->next = super->missing;
7135 super->missing = du;
7136 }
7137 /* create new dev and map */
7138 space = *space_list;
7139 if (!space)
7140 return 0;
7141 *space_list = *space;
7142 dev_new = (void *)space;
7143 memcpy(dev_new, dev, sizeof(*dev));
7144 /* update new map */
7145 map = get_imsm_map(dev_new, 0);
7146 map->num_members = map->num_members * 2;
7147 map->map_state = IMSM_T_STATE_DEGRADED;
7148 map->num_domains = 2;
7149 map->raid_level = 1;
7150 /* replace dev<->dev_new */
7151 dv->dev = dev_new;
7152 }
7153 /* update disk order table */
7154 for (du = super->disks; du; du = du->next)
7155 if (du->index >= 0)
7156 set_imsm_ord_tbl_ent(map, du->index, du->index);
7157 for (du = super->missing; du; du = du->next)
7158 if (du->index >= 0) {
7159 set_imsm_ord_tbl_ent(map, du->index, du->index);
7160 mark_missing(dv->dev, &du->disk, du->index);
7161 }
7162
7163 return 1;
7164 }
7165
7166 static void imsm_process_update(struct supertype *st,
7167 struct metadata_update *update)
7168 {
7169 /**
7170 * crack open the metadata_update envelope to find the update record
7171 * update can be one of:
7172 * update_reshape_container_disks - all the arrays in the container
7173 * are being reshaped to have more devices. We need to mark
7174 * the arrays for general migration and convert selected spares
7175 * into active devices.
7176 * update_activate_spare - a spare device has replaced a failed
7177 * device in an array, update the disk_ord_tbl. If this disk is
7178 * present in all member arrays then also clear the SPARE_DISK
7179 * flag
7180 * update_create_array
7181 * update_kill_array
7182 * update_rename_array
7183 * update_add_remove_disk
7184 */
7185 struct intel_super *super = st->sb;
7186 struct imsm_super *mpb;
7187 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7188
7189 /* update requires a larger buf but the allocation failed */
7190 if (super->next_len && !super->next_buf) {
7191 super->next_len = 0;
7192 return;
7193 }
7194
7195 if (super->next_buf) {
7196 memcpy(super->next_buf, super->buf, super->len);
7197 free(super->buf);
7198 super->len = super->next_len;
7199 super->buf = super->next_buf;
7200
7201 super->next_len = 0;
7202 super->next_buf = NULL;
7203 }
7204
7205 mpb = super->anchor;
7206
7207 switch (type) {
7208 case update_general_migration_checkpoint: {
7209 struct intel_dev *id;
7210 struct imsm_update_general_migration_checkpoint *u =
7211 (void *)update->buf;
7212
7213 dprintf("imsm: process_update() "
7214 "for update_general_migration_checkpoint called\n");
7215
7216 /* find device under general migration */
7217 for (id = super->devlist ; id; id = id->next) {
7218 if (is_gen_migration(id->dev)) {
7219 id->dev->vol.curr_migr_unit =
7220 __cpu_to_le32(u->curr_migr_unit);
7221 super->updates_pending++;
7222 }
7223 }
7224 break;
7225 }
7226 case update_takeover: {
7227 struct imsm_update_takeover *u = (void *)update->buf;
7228 if (apply_takeover_update(u, super, &update->space_list)) {
7229 imsm_update_version_info(super);
7230 super->updates_pending++;
7231 }
7232 break;
7233 }
7234
7235 case update_reshape_container_disks: {
7236 struct imsm_update_reshape *u = (void *)update->buf;
7237 if (apply_reshape_container_disks_update(
7238 u, super, &update->space_list))
7239 super->updates_pending++;
7240 break;
7241 }
7242 case update_reshape_migration: {
7243 struct imsm_update_reshape_migration *u = (void *)update->buf;
7244 if (apply_reshape_migration_update(
7245 u, super, &update->space_list))
7246 super->updates_pending++;
7247 break;
7248 }
7249 case update_activate_spare: {
7250 struct imsm_update_activate_spare *u = (void *) update->buf;
7251 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7252 struct imsm_map *map = get_imsm_map(dev, 0);
7253 struct imsm_map *migr_map;
7254 struct active_array *a;
7255 struct imsm_disk *disk;
7256 __u8 to_state;
7257 struct dl *dl;
7258 unsigned int found;
7259 int failed;
7260 int victim = get_imsm_disk_idx(dev, u->slot, -1);
7261 int i;
7262
7263 for (dl = super->disks; dl; dl = dl->next)
7264 if (dl == u->dl)
7265 break;
7266
7267 if (!dl) {
7268 fprintf(stderr, "error: imsm_activate_spare passed "
7269 "an unknown disk (index: %d)\n",
7270 u->dl->index);
7271 return;
7272 }
7273
7274 super->updates_pending++;
7275 /* count failures (excluding rebuilds and the victim)
7276 * to determine map[0] state
7277 */
7278 failed = 0;
7279 for (i = 0; i < map->num_members; i++) {
7280 if (i == u->slot)
7281 continue;
7282 disk = get_imsm_disk(super,
7283 get_imsm_disk_idx(dev, i, -1));
7284 if (!disk || is_failed(disk))
7285 failed++;
7286 }
7287
7288 /* adding a pristine spare, assign a new index */
7289 if (dl->index < 0) {
7290 dl->index = super->anchor->num_disks;
7291 super->anchor->num_disks++;
7292 }
7293 disk = &dl->disk;
7294 disk->status |= CONFIGURED_DISK;
7295 disk->status &= ~SPARE_DISK;
7296
7297 /* mark rebuild */
7298 to_state = imsm_check_degraded(super, dev, failed);
7299 map->map_state = IMSM_T_STATE_DEGRADED;
7300 migrate(dev, super, to_state, MIGR_REBUILD);
7301 migr_map = get_imsm_map(dev, 1);
7302 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7303 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7304
7305 /* update the family_num to mark a new container
7306 * generation, being careful to record the existing
7307 * family_num in orig_family_num to clean up after
7308 * earlier mdadm versions that neglected to set it.
7309 */
7310 if (mpb->orig_family_num == 0)
7311 mpb->orig_family_num = mpb->family_num;
7312 mpb->family_num += super->random;
7313
7314 /* count arrays using the victim in the metadata */
7315 found = 0;
7316 for (a = st->arrays; a ; a = a->next) {
7317 dev = get_imsm_dev(super, a->info.container_member);
7318 map = get_imsm_map(dev, 0);
7319
7320 if (get_imsm_disk_slot(map, victim) >= 0)
7321 found++;
7322 }
7323
7324 /* delete the victim if it is no longer being
7325 * utilized anywhere
7326 */
7327 if (!found) {
7328 struct dl **dlp;
7329
7330 /* We know that 'manager' isn't touching anything,
7331 * so it is safe to delete
7332 */
7333 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7334 if ((*dlp)->index == victim)
7335 break;
7336
7337 /* victim may be on the missing list */
7338 if (!*dlp)
7339 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7340 if ((*dlp)->index == victim)
7341 break;
7342 imsm_delete(super, dlp, victim);
7343 }
7344 break;
7345 }
7346 case update_create_array: {
7347 /* someone wants to create a new array, we need to be aware of
7348 * a few races/collisions:
7349 * 1/ 'Create' called by two separate instances of mdadm
7350 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7351 * devices that have since been assimilated via
7352 * activate_spare.
7353 * In the event this update can not be carried out mdadm will
7354 * (FIX ME) notice that its update did not take hold.
7355 */
7356 struct imsm_update_create_array *u = (void *) update->buf;
7357 struct intel_dev *dv;
7358 struct imsm_dev *dev;
7359 struct imsm_map *map, *new_map;
7360 unsigned long long start, end;
7361 unsigned long long new_start, new_end;
7362 int i;
7363 struct disk_info *inf;
7364 struct dl *dl;
7365
7366 /* handle racing creates: first come first serve */
7367 if (u->dev_idx < mpb->num_raid_devs) {
7368 dprintf("%s: subarray %d already defined\n",
7369 __func__, u->dev_idx);
7370 goto create_error;
7371 }
7372
7373 /* check update is next in sequence */
7374 if (u->dev_idx != mpb->num_raid_devs) {
7375 dprintf("%s: can not create array %d expected index %d\n",
7376 __func__, u->dev_idx, mpb->num_raid_devs);
7377 goto create_error;
7378 }
7379
7380 new_map = get_imsm_map(&u->dev, 0);
7381 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7382 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7383 inf = get_disk_info(u);
7384
7385 /* handle activate_spare versus create race:
7386 * check to make sure that overlapping arrays do not include
7387 * overalpping disks
7388 */
7389 for (i = 0; i < mpb->num_raid_devs; i++) {
7390 dev = get_imsm_dev(super, i);
7391 map = get_imsm_map(dev, 0);
7392 start = __le32_to_cpu(map->pba_of_lba0);
7393 end = start + __le32_to_cpu(map->blocks_per_member);
7394 if ((new_start >= start && new_start <= end) ||
7395 (start >= new_start && start <= new_end))
7396 /* overlap */;
7397 else
7398 continue;
7399
7400 if (disks_overlap(super, i, u)) {
7401 dprintf("%s: arrays overlap\n", __func__);
7402 goto create_error;
7403 }
7404 }
7405
7406 /* check that prepare update was successful */
7407 if (!update->space) {
7408 dprintf("%s: prepare update failed\n", __func__);
7409 goto create_error;
7410 }
7411
7412 /* check that all disks are still active before committing
7413 * changes. FIXME: could we instead handle this by creating a
7414 * degraded array? That's probably not what the user expects,
7415 * so better to drop this update on the floor.
7416 */
7417 for (i = 0; i < new_map->num_members; i++) {
7418 dl = serial_to_dl(inf[i].serial, super);
7419 if (!dl) {
7420 dprintf("%s: disk disappeared\n", __func__);
7421 goto create_error;
7422 }
7423 }
7424
7425 super->updates_pending++;
7426
7427 /* convert spares to members and fixup ord_tbl */
7428 for (i = 0; i < new_map->num_members; i++) {
7429 dl = serial_to_dl(inf[i].serial, super);
7430 if (dl->index == -1) {
7431 dl->index = mpb->num_disks;
7432 mpb->num_disks++;
7433 dl->disk.status |= CONFIGURED_DISK;
7434 dl->disk.status &= ~SPARE_DISK;
7435 }
7436 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7437 }
7438
7439 dv = update->space;
7440 dev = dv->dev;
7441 update->space = NULL;
7442 imsm_copy_dev(dev, &u->dev);
7443 dv->index = u->dev_idx;
7444 dv->next = super->devlist;
7445 super->devlist = dv;
7446 mpb->num_raid_devs++;
7447
7448 imsm_update_version_info(super);
7449 break;
7450 create_error:
7451 /* mdmon knows how to release update->space, but not
7452 * ((struct intel_dev *) update->space)->dev
7453 */
7454 if (update->space) {
7455 dv = update->space;
7456 free(dv->dev);
7457 }
7458 break;
7459 }
7460 case update_kill_array: {
7461 struct imsm_update_kill_array *u = (void *) update->buf;
7462 int victim = u->dev_idx;
7463 struct active_array *a;
7464 struct intel_dev **dp;
7465 struct imsm_dev *dev;
7466
7467 /* sanity check that we are not affecting the uuid of
7468 * active arrays, or deleting an active array
7469 *
7470 * FIXME when immutable ids are available, but note that
7471 * we'll also need to fixup the invalidated/active
7472 * subarray indexes in mdstat
7473 */
7474 for (a = st->arrays; a; a = a->next)
7475 if (a->info.container_member >= victim)
7476 break;
7477 /* by definition if mdmon is running at least one array
7478 * is active in the container, so checking
7479 * mpb->num_raid_devs is just extra paranoia
7480 */
7481 dev = get_imsm_dev(super, victim);
7482 if (a || !dev || mpb->num_raid_devs == 1) {
7483 dprintf("failed to delete subarray-%d\n", victim);
7484 break;
7485 }
7486
7487 for (dp = &super->devlist; *dp;)
7488 if ((*dp)->index == (unsigned)super->current_vol) {
7489 *dp = (*dp)->next;
7490 } else {
7491 if ((*dp)->index > (unsigned)victim)
7492 (*dp)->index--;
7493 dp = &(*dp)->next;
7494 }
7495 mpb->num_raid_devs--;
7496 super->updates_pending++;
7497 break;
7498 }
7499 case update_rename_array: {
7500 struct imsm_update_rename_array *u = (void *) update->buf;
7501 char name[MAX_RAID_SERIAL_LEN+1];
7502 int target = u->dev_idx;
7503 struct active_array *a;
7504 struct imsm_dev *dev;
7505
7506 /* sanity check that we are not affecting the uuid of
7507 * an active array
7508 */
7509 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7510 name[MAX_RAID_SERIAL_LEN] = '\0';
7511 for (a = st->arrays; a; a = a->next)
7512 if (a->info.container_member == target)
7513 break;
7514 dev = get_imsm_dev(super, u->dev_idx);
7515 if (a || !dev || !check_name(super, name, 1)) {
7516 dprintf("failed to rename subarray-%d\n", target);
7517 break;
7518 }
7519
7520 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7521 super->updates_pending++;
7522 break;
7523 }
7524 case update_add_remove_disk: {
7525 /* we may be able to repair some arrays if disks are
7526 * being added, check teh status of add_remove_disk
7527 * if discs has been added.
7528 */
7529 if (add_remove_disk_update(super)) {
7530 struct active_array *a;
7531
7532 super->updates_pending++;
7533 for (a = st->arrays; a; a = a->next)
7534 a->check_degraded = 1;
7535 }
7536 break;
7537 }
7538 default:
7539 fprintf(stderr, "error: unsuported process update type:"
7540 "(type: %d)\n", type);
7541 }
7542 }
7543
7544 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7545
7546 static void imsm_prepare_update(struct supertype *st,
7547 struct metadata_update *update)
7548 {
7549 /**
7550 * Allocate space to hold new disk entries, raid-device entries or a new
7551 * mpb if necessary. The manager synchronously waits for updates to
7552 * complete in the monitor, so new mpb buffers allocated here can be
7553 * integrated by the monitor thread without worrying about live pointers
7554 * in the manager thread.
7555 */
7556 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7557 struct intel_super *super = st->sb;
7558 struct imsm_super *mpb = super->anchor;
7559 size_t buf_len;
7560 size_t len = 0;
7561
7562 switch (type) {
7563 case update_general_migration_checkpoint:
7564 dprintf("imsm: prepare_update() "
7565 "for update_general_migration_checkpoint called\n");
7566 break;
7567 case update_takeover: {
7568 struct imsm_update_takeover *u = (void *)update->buf;
7569 if (u->direction == R0_TO_R10) {
7570 void **tail = (void **)&update->space_list;
7571 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7572 struct imsm_map *map = get_imsm_map(dev, 0);
7573 int num_members = map->num_members;
7574 void *space;
7575 int size, i;
7576 int err = 0;
7577 /* allocate memory for added disks */
7578 for (i = 0; i < num_members; i++) {
7579 size = sizeof(struct dl);
7580 space = malloc(size);
7581 if (!space) {
7582 err++;
7583 break;
7584 }
7585 *tail = space;
7586 tail = space;
7587 *tail = NULL;
7588 }
7589 /* allocate memory for new device */
7590 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7591 (num_members * sizeof(__u32));
7592 space = malloc(size);
7593 if (!space)
7594 err++;
7595 else {
7596 *tail = space;
7597 tail = space;
7598 *tail = NULL;
7599 }
7600 if (!err) {
7601 len = disks_to_mpb_size(num_members * 2);
7602 } else {
7603 /* if allocation didn't success, free buffer */
7604 while (update->space_list) {
7605 void **sp = update->space_list;
7606 update->space_list = *sp;
7607 free(sp);
7608 }
7609 }
7610 }
7611
7612 break;
7613 }
7614 case update_reshape_container_disks: {
7615 /* Every raid device in the container is about to
7616 * gain some more devices, and we will enter a
7617 * reconfiguration.
7618 * So each 'imsm_map' will be bigger, and the imsm_vol
7619 * will now hold 2 of them.
7620 * Thus we need new 'struct imsm_dev' allocations sized
7621 * as sizeof_imsm_dev but with more devices in both maps.
7622 */
7623 struct imsm_update_reshape *u = (void *)update->buf;
7624 struct intel_dev *dl;
7625 void **space_tail = (void**)&update->space_list;
7626
7627 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7628
7629 for (dl = super->devlist; dl; dl = dl->next) {
7630 int size = sizeof_imsm_dev(dl->dev, 1);
7631 void *s;
7632 if (u->new_raid_disks > u->old_raid_disks)
7633 size += sizeof(__u32)*2*
7634 (u->new_raid_disks - u->old_raid_disks);
7635 s = malloc(size);
7636 if (!s)
7637 break;
7638 *space_tail = s;
7639 space_tail = s;
7640 *space_tail = NULL;
7641 }
7642
7643 len = disks_to_mpb_size(u->new_raid_disks);
7644 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7645 break;
7646 }
7647 case update_reshape_migration: {
7648 /* for migration level 0->5 we need to add disks
7649 * so the same as for container operation we will copy
7650 * device to the bigger location.
7651 * in memory prepared device and new disk area are prepared
7652 * for usage in process update
7653 */
7654 struct imsm_update_reshape_migration *u = (void *)update->buf;
7655 struct intel_dev *id;
7656 void **space_tail = (void **)&update->space_list;
7657 int size;
7658 void *s;
7659 int current_level = -1;
7660
7661 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7662
7663 /* add space for bigger array in update
7664 */
7665 for (id = super->devlist; id; id = id->next) {
7666 if (id->index == (unsigned)u->subdev) {
7667 size = sizeof_imsm_dev(id->dev, 1);
7668 if (u->new_raid_disks > u->old_raid_disks)
7669 size += sizeof(__u32)*2*
7670 (u->new_raid_disks - u->old_raid_disks);
7671 s = malloc(size);
7672 if (!s)
7673 break;
7674 *space_tail = s;
7675 space_tail = s;
7676 *space_tail = NULL;
7677 break;
7678 }
7679 }
7680 if (update->space_list == NULL)
7681 break;
7682
7683 /* add space for disk in update
7684 */
7685 size = sizeof(struct dl);
7686 s = malloc(size);
7687 if (!s) {
7688 free(update->space_list);
7689 update->space_list = NULL;
7690 break;
7691 }
7692 *space_tail = s;
7693 space_tail = s;
7694 *space_tail = NULL;
7695
7696 /* add spare device to update
7697 */
7698 for (id = super->devlist ; id; id = id->next)
7699 if (id->index == (unsigned)u->subdev) {
7700 struct imsm_dev *dev;
7701 struct imsm_map *map;
7702
7703 dev = get_imsm_dev(super, u->subdev);
7704 map = get_imsm_map(dev, 0);
7705 current_level = map->raid_level;
7706 break;
7707 }
7708 if ((u->new_level == 5) && (u->new_level != current_level)) {
7709 struct mdinfo *spares;
7710
7711 spares = get_spares_for_grow(st);
7712 if (spares) {
7713 struct dl *dl;
7714 struct mdinfo *dev;
7715
7716 dev = spares->devs;
7717 if (dev) {
7718 u->new_disks[0] =
7719 makedev(dev->disk.major,
7720 dev->disk.minor);
7721 dl = get_disk_super(super,
7722 dev->disk.major,
7723 dev->disk.minor);
7724 dl->index = u->old_raid_disks;
7725 dev = dev->next;
7726 }
7727 sysfs_free(spares);
7728 }
7729 }
7730 len = disks_to_mpb_size(u->new_raid_disks);
7731 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7732 break;
7733 }
7734 case update_create_array: {
7735 struct imsm_update_create_array *u = (void *) update->buf;
7736 struct intel_dev *dv;
7737 struct imsm_dev *dev = &u->dev;
7738 struct imsm_map *map = get_imsm_map(dev, 0);
7739 struct dl *dl;
7740 struct disk_info *inf;
7741 int i;
7742 int activate = 0;
7743
7744 inf = get_disk_info(u);
7745 len = sizeof_imsm_dev(dev, 1);
7746 /* allocate a new super->devlist entry */
7747 dv = malloc(sizeof(*dv));
7748 if (dv) {
7749 dv->dev = malloc(len);
7750 if (dv->dev)
7751 update->space = dv;
7752 else {
7753 free(dv);
7754 update->space = NULL;
7755 }
7756 }
7757
7758 /* count how many spares will be converted to members */
7759 for (i = 0; i < map->num_members; i++) {
7760 dl = serial_to_dl(inf[i].serial, super);
7761 if (!dl) {
7762 /* hmm maybe it failed?, nothing we can do about
7763 * it here
7764 */
7765 continue;
7766 }
7767 if (count_memberships(dl, super) == 0)
7768 activate++;
7769 }
7770 len += activate * sizeof(struct imsm_disk);
7771 break;
7772 default:
7773 break;
7774 }
7775 }
7776
7777 /* check if we need a larger metadata buffer */
7778 if (super->next_buf)
7779 buf_len = super->next_len;
7780 else
7781 buf_len = super->len;
7782
7783 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7784 /* ok we need a larger buf than what is currently allocated
7785 * if this allocation fails process_update will notice that
7786 * ->next_len is set and ->next_buf is NULL
7787 */
7788 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7789 if (super->next_buf)
7790 free(super->next_buf);
7791
7792 super->next_len = buf_len;
7793 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7794 memset(super->next_buf, 0, buf_len);
7795 else
7796 super->next_buf = NULL;
7797 }
7798 }
7799
7800 /* must be called while manager is quiesced */
7801 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7802 {
7803 struct imsm_super *mpb = super->anchor;
7804 struct dl *iter;
7805 struct imsm_dev *dev;
7806 struct imsm_map *map;
7807 int i, j, num_members;
7808 __u32 ord;
7809
7810 dprintf("%s: deleting device[%d] from imsm_super\n",
7811 __func__, index);
7812
7813 /* shift all indexes down one */
7814 for (iter = super->disks; iter; iter = iter->next)
7815 if (iter->index > (int)index)
7816 iter->index--;
7817 for (iter = super->missing; iter; iter = iter->next)
7818 if (iter->index > (int)index)
7819 iter->index--;
7820
7821 for (i = 0; i < mpb->num_raid_devs; i++) {
7822 dev = get_imsm_dev(super, i);
7823 map = get_imsm_map(dev, 0);
7824 num_members = map->num_members;
7825 for (j = 0; j < num_members; j++) {
7826 /* update ord entries being careful not to propagate
7827 * ord-flags to the first map
7828 */
7829 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7830
7831 if (ord_to_idx(ord) <= index)
7832 continue;
7833
7834 map = get_imsm_map(dev, 0);
7835 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7836 map = get_imsm_map(dev, 1);
7837 if (map)
7838 set_imsm_ord_tbl_ent(map, j, ord - 1);
7839 }
7840 }
7841
7842 mpb->num_disks--;
7843 super->updates_pending++;
7844 if (*dlp) {
7845 struct dl *dl = *dlp;
7846
7847 *dlp = (*dlp)->next;
7848 __free_imsm_disk(dl);
7849 }
7850 }
7851 #endif /* MDASSEMBLE */
7852 /*******************************************************************************
7853 * Function: open_backup_targets
7854 * Description: Function opens file descriptors for all devices given in
7855 * info->devs
7856 * Parameters:
7857 * info : general array info
7858 * raid_disks : number of disks
7859 * raid_fds : table of device's file descriptors
7860 * Returns:
7861 * 0 : success
7862 * -1 : fail
7863 ******************************************************************************/
7864 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7865 {
7866 struct mdinfo *sd;
7867
7868 for (sd = info->devs ; sd ; sd = sd->next) {
7869 char *dn;
7870
7871 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7872 dprintf("disk is faulty!!\n");
7873 continue;
7874 }
7875
7876 if ((sd->disk.raid_disk >= raid_disks) ||
7877 (sd->disk.raid_disk < 0))
7878 continue;
7879
7880 dn = map_dev(sd->disk.major,
7881 sd->disk.minor, 1);
7882 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7883 if (raid_fds[sd->disk.raid_disk] < 0) {
7884 fprintf(stderr, "cannot open component\n");
7885 return -1;
7886 }
7887 }
7888 return 0;
7889 }
7890
7891 #ifndef MDASSEMBLE
7892 /*******************************************************************************
7893 * Function: init_migr_record_imsm
7894 * Description: Function inits imsm migration record
7895 * Parameters:
7896 * super : imsm internal array info
7897 * dev : device under migration
7898 * info : general array info to find the smallest device
7899 * Returns:
7900 * none
7901 ******************************************************************************/
7902 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7903 struct mdinfo *info)
7904 {
7905 struct intel_super *super = st->sb;
7906 struct migr_record *migr_rec = super->migr_rec;
7907 int new_data_disks;
7908 unsigned long long dsize, dev_sectors;
7909 long long unsigned min_dev_sectors = -1LLU;
7910 struct mdinfo *sd;
7911 char nm[30];
7912 int fd;
7913 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7914 struct imsm_map *map_src = get_imsm_map(dev, 1);
7915 unsigned long long num_migr_units;
7916 unsigned long long array_blocks;
7917
7918 memset(migr_rec, 0, sizeof(struct migr_record));
7919 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7920
7921 /* only ascending reshape supported now */
7922 migr_rec->ascending_migr = __cpu_to_le32(1);
7923
7924 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7925 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7926 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7927 new_data_disks = imsm_num_data_members(dev, 0);
7928 migr_rec->blocks_per_unit =
7929 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7930 migr_rec->dest_depth_per_unit =
7931 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7932 array_blocks = info->component_size * new_data_disks;
7933 num_migr_units =
7934 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7935
7936 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7937 num_migr_units++;
7938 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7939
7940 migr_rec->post_migr_vol_cap = dev->size_low;
7941 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7942
7943
7944 /* Find the smallest dev */
7945 for (sd = info->devs ; sd ; sd = sd->next) {
7946 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7947 fd = dev_open(nm, O_RDONLY);
7948 if (fd < 0)
7949 continue;
7950 get_dev_size(fd, NULL, &dsize);
7951 dev_sectors = dsize / 512;
7952 if (dev_sectors < min_dev_sectors)
7953 min_dev_sectors = dev_sectors;
7954 close(fd);
7955 }
7956 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7957 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7958
7959 write_imsm_migr_rec(st);
7960
7961 return;
7962 }
7963
7964 /*******************************************************************************
7965 * Function: save_backup_imsm
7966 * Description: Function saves critical data stripes to Migration Copy Area
7967 * and updates the current migration unit status.
7968 * Use restore_stripes() to form a destination stripe,
7969 * and to write it to the Copy Area.
7970 * Parameters:
7971 * st : supertype information
7972 * dev : imsm device that backup is saved for
7973 * info : general array info
7974 * buf : input buffer
7975 * length : length of data to backup (blocks_per_unit)
7976 * Returns:
7977 * 0 : success
7978 *, -1 : fail
7979 ******************************************************************************/
7980 int save_backup_imsm(struct supertype *st,
7981 struct imsm_dev *dev,
7982 struct mdinfo *info,
7983 void *buf,
7984 int length)
7985 {
7986 int rv = -1;
7987 struct intel_super *super = st->sb;
7988 unsigned long long *target_offsets = NULL;
7989 int *targets = NULL;
7990 int i;
7991 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7992 int new_disks = map_dest->num_members;
7993 int dest_layout = 0;
7994 int dest_chunk;
7995 unsigned long long start;
7996 int data_disks = imsm_num_data_members(dev, 0);
7997
7998 targets = malloc(new_disks * sizeof(int));
7999 if (!targets)
8000 goto abort;
8001
8002 for (i = 0; i < new_disks; i++)
8003 targets[i] = -1;
8004
8005 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8006 if (!target_offsets)
8007 goto abort;
8008
8009 start = info->reshape_progress * 512;
8010 for (i = 0; i < new_disks; i++) {
8011 target_offsets[i] = (unsigned long long)
8012 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8013 /* move back copy area adderss, it will be moved forward
8014 * in restore_stripes() using start input variable
8015 */
8016 target_offsets[i] -= start/data_disks;
8017 }
8018
8019 if (open_backup_targets(info, new_disks, targets))
8020 goto abort;
8021
8022 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8023 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8024
8025 if (restore_stripes(targets, /* list of dest devices */
8026 target_offsets, /* migration record offsets */
8027 new_disks,
8028 dest_chunk,
8029 map_dest->raid_level,
8030 dest_layout,
8031 -1, /* source backup file descriptor */
8032 0, /* input buf offset
8033 * always 0 buf is already offseted */
8034 start,
8035 length,
8036 buf) != 0) {
8037 fprintf(stderr, Name ": Error restoring stripes\n");
8038 goto abort;
8039 }
8040
8041 rv = 0;
8042
8043 abort:
8044 if (targets) {
8045 for (i = 0; i < new_disks; i++)
8046 if (targets[i] >= 0)
8047 close(targets[i]);
8048 free(targets);
8049 }
8050 free(target_offsets);
8051
8052 return rv;
8053 }
8054
8055 /*******************************************************************************
8056 * Function: save_checkpoint_imsm
8057 * Description: Function called for current unit status update
8058 * in the migration record. It writes it to disk.
8059 * Parameters:
8060 * super : imsm internal array info
8061 * info : general array info
8062 * Returns:
8063 * 0: success
8064 * 1: failure
8065 * 2: failure, means no valid migration record
8066 * / no general migration in progress /
8067 ******************************************************************************/
8068 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8069 {
8070 struct intel_super *super = st->sb;
8071 unsigned long long blocks_per_unit;
8072 unsigned long long curr_migr_unit;
8073
8074 if (load_imsm_migr_rec(super, info) != 0) {
8075 dprintf("imsm: ERROR: Cannot read migration record "
8076 "for checkpoint save.\n");
8077 return 1;
8078 }
8079
8080 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8081 if (blocks_per_unit == 0) {
8082 dprintf("imsm: no migration in progress.\n");
8083 return 2;
8084 }
8085 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8086 /* check if array is alligned to copy area
8087 * if it is not alligned, add one to current migration unit value
8088 * this can happend on array reshape finish only
8089 */
8090 if (info->reshape_progress % blocks_per_unit)
8091 curr_migr_unit++;
8092
8093 super->migr_rec->curr_migr_unit =
8094 __cpu_to_le32(curr_migr_unit);
8095 super->migr_rec->rec_status = __cpu_to_le32(state);
8096 super->migr_rec->dest_1st_member_lba =
8097 __cpu_to_le32(curr_migr_unit *
8098 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8099 if (write_imsm_migr_rec(st) < 0) {
8100 dprintf("imsm: Cannot write migration record "
8101 "outside backup area\n");
8102 return 1;
8103 }
8104
8105 return 0;
8106 }
8107
8108 /*******************************************************************************
8109 * Function: recover_backup_imsm
8110 * Description: Function recovers critical data from the Migration Copy Area
8111 * while assembling an array.
8112 * Parameters:
8113 * super : imsm internal array info
8114 * info : general array info
8115 * Returns:
8116 * 0 : success (or there is no data to recover)
8117 * 1 : fail
8118 ******************************************************************************/
8119 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8120 {
8121 struct intel_super *super = st->sb;
8122 struct migr_record *migr_rec = super->migr_rec;
8123 struct imsm_map *map_dest = NULL;
8124 struct intel_dev *id = NULL;
8125 unsigned long long read_offset;
8126 unsigned long long write_offset;
8127 unsigned unit_len;
8128 int *targets = NULL;
8129 int new_disks, i, err;
8130 char *buf = NULL;
8131 int retval = 1;
8132 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8133 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8134 char buffer[20];
8135 int skipped_disks = 0;
8136 int max_degradation;
8137
8138 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8139 if (err < 1)
8140 return 1;
8141
8142 /* recover data only during assemblation */
8143 if (strncmp(buffer, "inactive", 8) != 0)
8144 return 0;
8145 /* no data to recover */
8146 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8147 return 0;
8148 if (curr_migr_unit >= num_migr_units)
8149 return 1;
8150
8151 /* find device during reshape */
8152 for (id = super->devlist; id; id = id->next)
8153 if (is_gen_migration(id->dev))
8154 break;
8155 if (id == NULL)
8156 return 1;
8157
8158 map_dest = get_imsm_map(id->dev, 0);
8159 new_disks = map_dest->num_members;
8160 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8161
8162 read_offset = (unsigned long long)
8163 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8164
8165 write_offset = ((unsigned long long)
8166 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8167 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8168
8169 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8170 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8171 goto abort;
8172 targets = malloc(new_disks * sizeof(int));
8173 if (!targets)
8174 goto abort;
8175
8176 open_backup_targets(info, new_disks, targets);
8177
8178 for (i = 0; i < new_disks; i++) {
8179 if (targets[i] < 0) {
8180 skipped_disks++;
8181 continue;
8182 }
8183 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8184 fprintf(stderr,
8185 Name ": Cannot seek to block: %s\n",
8186 strerror(errno));
8187 goto abort;
8188 }
8189 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8190 fprintf(stderr,
8191 Name ": Cannot read copy area block: %s\n",
8192 strerror(errno));
8193 goto abort;
8194 }
8195 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8196 fprintf(stderr,
8197 Name ": Cannot seek to block: %s\n",
8198 strerror(errno));
8199 goto abort;
8200 }
8201 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8202 fprintf(stderr,
8203 Name ": Cannot restore block: %s\n",
8204 strerror(errno));
8205 goto abort;
8206 }
8207 }
8208
8209 if (skipped_disks > max_degradation) {
8210 fprintf(stderr,
8211 Name ": Cannot restore data from backup."
8212 " Too many failed disks\n");
8213 goto abort;
8214 }
8215
8216 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8217 /* ignore error == 2, this can mean end of reshape here
8218 */
8219 dprintf("imsm: Cannot write checkpoint to "
8220 "migration record (UNIT_SRC_NORMAL) during restart\n");
8221 } else
8222 retval = 0;
8223
8224 abort:
8225 if (targets) {
8226 for (i = 0; i < new_disks; i++)
8227 if (targets[i])
8228 close(targets[i]);
8229 free(targets);
8230 }
8231 free(buf);
8232 return retval;
8233 }
8234
8235 static char disk_by_path[] = "/dev/disk/by-path/";
8236
8237 static const char *imsm_get_disk_controller_domain(const char *path)
8238 {
8239 char disk_path[PATH_MAX];
8240 char *drv=NULL;
8241 struct stat st;
8242
8243 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8244 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8245 if (stat(disk_path, &st) == 0) {
8246 struct sys_dev* hba;
8247 char *path=NULL;
8248
8249 path = devt_to_devpath(st.st_rdev);
8250 if (path == NULL)
8251 return "unknown";
8252 hba = find_disk_attached_hba(-1, path);
8253 if (hba && hba->type == SYS_DEV_SAS)
8254 drv = "isci";
8255 else if (hba && hba->type == SYS_DEV_SATA)
8256 drv = "ahci";
8257 else
8258 drv = "unknown";
8259 dprintf("path: %s hba: %s attached: %s\n",
8260 path, (hba) ? hba->path : "NULL", drv);
8261 free(path);
8262 if (hba)
8263 free_sys_dev(&hba);
8264 }
8265 return drv;
8266 }
8267
8268 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8269 {
8270 char subdev_name[20];
8271 struct mdstat_ent *mdstat;
8272
8273 sprintf(subdev_name, "%d", subdev);
8274 mdstat = mdstat_by_subdev(subdev_name, container);
8275 if (!mdstat)
8276 return -1;
8277
8278 *minor = mdstat->devnum;
8279 free_mdstat(mdstat);
8280 return 0;
8281 }
8282
8283 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8284 struct geo_params *geo,
8285 int *old_raid_disks)
8286 {
8287 /* currently we only support increasing the number of devices
8288 * for a container. This increases the number of device for each
8289 * member array. They must all be RAID0 or RAID5.
8290 */
8291 int ret_val = 0;
8292 struct mdinfo *info, *member;
8293 int devices_that_can_grow = 0;
8294
8295 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8296 "st->devnum = (%i)\n",
8297 st->devnum);
8298
8299 if (geo->size != -1 ||
8300 geo->level != UnSet ||
8301 geo->layout != UnSet ||
8302 geo->chunksize != 0 ||
8303 geo->raid_disks == UnSet) {
8304 dprintf("imsm: Container operation is allowed for "
8305 "raid disks number change only.\n");
8306 return ret_val;
8307 }
8308
8309 info = container_content_imsm(st, NULL);
8310 for (member = info; member; member = member->next) {
8311 int result;
8312 int minor;
8313
8314 dprintf("imsm: checking device_num: %i\n",
8315 member->container_member);
8316
8317 if (geo->raid_disks <= member->array.raid_disks) {
8318 /* we work on container for Online Capacity Expansion
8319 * only so raid_disks has to grow
8320 */
8321 dprintf("imsm: for container operation raid disks "
8322 "increase is required\n");
8323 break;
8324 }
8325
8326 if ((info->array.level != 0) &&
8327 (info->array.level != 5)) {
8328 /* we cannot use this container with other raid level
8329 */
8330 dprintf("imsm: for container operation wrong"
8331 " raid level (%i) detected\n",
8332 info->array.level);
8333 break;
8334 } else {
8335 /* check for platform support
8336 * for this raid level configuration
8337 */
8338 struct intel_super *super = st->sb;
8339 if (!is_raid_level_supported(super->orom,
8340 member->array.level,
8341 geo->raid_disks)) {
8342 dprintf("platform does not support raid%d with"
8343 " %d disk%s\n",
8344 info->array.level,
8345 geo->raid_disks,
8346 geo->raid_disks > 1 ? "s" : "");
8347 break;
8348 }
8349 /* check if component size is aligned to chunk size
8350 */
8351 if (info->component_size %
8352 (info->array.chunk_size/512)) {
8353 dprintf("Component size is not aligned to "
8354 "chunk size\n");
8355 break;
8356 }
8357 }
8358
8359 if (*old_raid_disks &&
8360 info->array.raid_disks != *old_raid_disks)
8361 break;
8362 *old_raid_disks = info->array.raid_disks;
8363
8364 /* All raid5 and raid0 volumes in container
8365 * have to be ready for Online Capacity Expansion
8366 * so they need to be assembled. We have already
8367 * checked that no recovery etc is happening.
8368 */
8369 result = imsm_find_array_minor_by_subdev(member->container_member,
8370 st->container_dev,
8371 &minor);
8372 if (result < 0) {
8373 dprintf("imsm: cannot find array\n");
8374 break;
8375 }
8376 devices_that_can_grow++;
8377 }
8378 sysfs_free(info);
8379 if (!member && devices_that_can_grow)
8380 ret_val = 1;
8381
8382 if (ret_val)
8383 dprintf("\tContainer operation allowed\n");
8384 else
8385 dprintf("\tError: %i\n", ret_val);
8386
8387 return ret_val;
8388 }
8389
8390 /* Function: get_spares_for_grow
8391 * Description: Allocates memory and creates list of spare devices
8392 * avaliable in container. Checks if spare drive size is acceptable.
8393 * Parameters: Pointer to the supertype structure
8394 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8395 * NULL if fail
8396 */
8397 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8398 {
8399 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8400 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8401 }
8402
8403 /******************************************************************************
8404 * function: imsm_create_metadata_update_for_reshape
8405 * Function creates update for whole IMSM container.
8406 *
8407 ******************************************************************************/
8408 static int imsm_create_metadata_update_for_reshape(
8409 struct supertype *st,
8410 struct geo_params *geo,
8411 int old_raid_disks,
8412 struct imsm_update_reshape **updatep)
8413 {
8414 struct intel_super *super = st->sb;
8415 struct imsm_super *mpb = super->anchor;
8416 int update_memory_size = 0;
8417 struct imsm_update_reshape *u = NULL;
8418 struct mdinfo *spares = NULL;
8419 int i;
8420 int delta_disks = 0;
8421 struct mdinfo *dev;
8422
8423 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8424 geo->raid_disks);
8425
8426 delta_disks = geo->raid_disks - old_raid_disks;
8427
8428 /* size of all update data without anchor */
8429 update_memory_size = sizeof(struct imsm_update_reshape);
8430
8431 /* now add space for spare disks that we need to add. */
8432 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8433
8434 u = calloc(1, update_memory_size);
8435 if (u == NULL) {
8436 dprintf("error: "
8437 "cannot get memory for imsm_update_reshape update\n");
8438 return 0;
8439 }
8440 u->type = update_reshape_container_disks;
8441 u->old_raid_disks = old_raid_disks;
8442 u->new_raid_disks = geo->raid_disks;
8443
8444 /* now get spare disks list
8445 */
8446 spares = get_spares_for_grow(st);
8447
8448 if (spares == NULL
8449 || delta_disks > spares->array.spare_disks) {
8450 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8451 "for %s.\n", geo->dev_name);
8452 i = -1;
8453 goto abort;
8454 }
8455
8456 /* we have got spares
8457 * update disk list in imsm_disk list table in anchor
8458 */
8459 dprintf("imsm: %i spares are available.\n\n",
8460 spares->array.spare_disks);
8461
8462 dev = spares->devs;
8463 for (i = 0; i < delta_disks; i++) {
8464 struct dl *dl;
8465
8466 if (dev == NULL)
8467 break;
8468 u->new_disks[i] = makedev(dev->disk.major,
8469 dev->disk.minor);
8470 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8471 dl->index = mpb->num_disks;
8472 mpb->num_disks++;
8473 dev = dev->next;
8474 }
8475
8476 abort:
8477 /* free spares
8478 */
8479 sysfs_free(spares);
8480
8481 dprintf("imsm: reshape update preparation :");
8482 if (i == delta_disks) {
8483 dprintf(" OK\n");
8484 *updatep = u;
8485 return update_memory_size;
8486 }
8487 free(u);
8488 dprintf(" Error\n");
8489
8490 return 0;
8491 }
8492
8493 /******************************************************************************
8494 * function: imsm_create_metadata_update_for_migration()
8495 * Creates update for IMSM array.
8496 *
8497 ******************************************************************************/
8498 static int imsm_create_metadata_update_for_migration(
8499 struct supertype *st,
8500 struct geo_params *geo,
8501 struct imsm_update_reshape_migration **updatep)
8502 {
8503 struct intel_super *super = st->sb;
8504 int update_memory_size = 0;
8505 struct imsm_update_reshape_migration *u = NULL;
8506 struct imsm_dev *dev;
8507 int previous_level = -1;
8508
8509 dprintf("imsm_create_metadata_update_for_migration(enter)"
8510 " New Level = %i\n", geo->level);
8511
8512 /* size of all update data without anchor */
8513 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8514
8515 u = calloc(1, update_memory_size);
8516 if (u == NULL) {
8517 dprintf("error: cannot get memory for "
8518 "imsm_create_metadata_update_for_migration\n");
8519 return 0;
8520 }
8521 u->type = update_reshape_migration;
8522 u->subdev = super->current_vol;
8523 u->new_level = geo->level;
8524 u->new_layout = geo->layout;
8525 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8526 u->new_disks[0] = -1;
8527 u->new_chunksize = -1;
8528
8529 dev = get_imsm_dev(super, u->subdev);
8530 if (dev) {
8531 struct imsm_map *map;
8532
8533 map = get_imsm_map(dev, 0);
8534 if (map) {
8535 int current_chunk_size =
8536 __le16_to_cpu(map->blocks_per_strip) / 2;
8537
8538 if (geo->chunksize != current_chunk_size) {
8539 u->new_chunksize = geo->chunksize / 1024;
8540 dprintf("imsm: "
8541 "chunk size change from %i to %i\n",
8542 current_chunk_size, u->new_chunksize);
8543 }
8544 previous_level = map->raid_level;
8545 }
8546 }
8547 if ((geo->level == 5) && (previous_level == 0)) {
8548 struct mdinfo *spares = NULL;
8549
8550 u->new_raid_disks++;
8551 spares = get_spares_for_grow(st);
8552 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8553 free(u);
8554 sysfs_free(spares);
8555 update_memory_size = 0;
8556 dprintf("error: cannot get spare device "
8557 "for requested migration");
8558 return 0;
8559 }
8560 sysfs_free(spares);
8561 }
8562 dprintf("imsm: reshape update preparation : OK\n");
8563 *updatep = u;
8564
8565 return update_memory_size;
8566 }
8567
8568 static void imsm_update_metadata_locally(struct supertype *st,
8569 void *buf, int len)
8570 {
8571 struct metadata_update mu;
8572
8573 mu.buf = buf;
8574 mu.len = len;
8575 mu.space = NULL;
8576 mu.space_list = NULL;
8577 mu.next = NULL;
8578 imsm_prepare_update(st, &mu);
8579 imsm_process_update(st, &mu);
8580
8581 while (mu.space_list) {
8582 void **space = mu.space_list;
8583 mu.space_list = *space;
8584 free(space);
8585 }
8586 }
8587
8588 /***************************************************************************
8589 * Function: imsm_analyze_change
8590 * Description: Function analyze change for single volume
8591 * and validate if transition is supported
8592 * Parameters: Geometry parameters, supertype structure
8593 * Returns: Operation type code on success, -1 if fail
8594 ****************************************************************************/
8595 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8596 struct geo_params *geo)
8597 {
8598 struct mdinfo info;
8599 int change = -1;
8600 int check_devs = 0;
8601 int chunk;
8602
8603 getinfo_super_imsm_volume(st, &info, NULL);
8604 if ((geo->level != info.array.level) &&
8605 (geo->level >= 0) &&
8606 (geo->level != UnSet)) {
8607 switch (info.array.level) {
8608 case 0:
8609 if (geo->level == 5) {
8610 change = CH_MIGRATION;
8611 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8612 fprintf(stderr,
8613 Name " Error. Requested Layout "
8614 "not supported (left-asymmetric layout "
8615 "is supported only)!\n");
8616 change = -1;
8617 goto analyse_change_exit;
8618 }
8619 check_devs = 1;
8620 }
8621 if (geo->level == 10) {
8622 change = CH_TAKEOVER;
8623 check_devs = 1;
8624 }
8625 break;
8626 case 1:
8627 if (geo->level == 0) {
8628 change = CH_TAKEOVER;
8629 check_devs = 1;
8630 }
8631 break;
8632 case 10:
8633 if (geo->level == 0) {
8634 change = CH_TAKEOVER;
8635 check_devs = 1;
8636 }
8637 break;
8638 }
8639 if (change == -1) {
8640 fprintf(stderr,
8641 Name " Error. Level Migration from %d to %d "
8642 "not supported!\n",
8643 info.array.level, geo->level);
8644 goto analyse_change_exit;
8645 }
8646 } else
8647 geo->level = info.array.level;
8648
8649 if ((geo->layout != info.array.layout)
8650 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8651 change = CH_MIGRATION;
8652 if ((info.array.layout == 0)
8653 && (info.array.level == 5)
8654 && (geo->layout == 5)) {
8655 /* reshape 5 -> 4 */
8656 } else if ((info.array.layout == 5)
8657 && (info.array.level == 5)
8658 && (geo->layout == 0)) {
8659 /* reshape 4 -> 5 */
8660 geo->layout = 0;
8661 geo->level = 5;
8662 } else {
8663 fprintf(stderr,
8664 Name " Error. Layout Migration from %d to %d "
8665 "not supported!\n",
8666 info.array.layout, geo->layout);
8667 change = -1;
8668 goto analyse_change_exit;
8669 }
8670 } else
8671 geo->layout = info.array.layout;
8672
8673 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8674 && (geo->chunksize != info.array.chunk_size))
8675 change = CH_MIGRATION;
8676 else
8677 geo->chunksize = info.array.chunk_size;
8678
8679 chunk = geo->chunksize / 1024;
8680 if (!validate_geometry_imsm(st,
8681 geo->level,
8682 geo->layout,
8683 geo->raid_disks,
8684 &chunk,
8685 geo->size,
8686 0, 0, 1))
8687 change = -1;
8688
8689 if (check_devs) {
8690 struct intel_super *super = st->sb;
8691 struct imsm_super *mpb = super->anchor;
8692
8693 if (mpb->num_raid_devs > 1) {
8694 fprintf(stderr,
8695 Name " Error. Cannot perform operation on %s"
8696 "- for this operation it MUST be single "
8697 "array in container\n",
8698 geo->dev_name);
8699 change = -1;
8700 }
8701 }
8702
8703 analyse_change_exit:
8704
8705 return change;
8706 }
8707
8708 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8709 {
8710 struct intel_super *super = st->sb;
8711 struct imsm_update_takeover *u;
8712
8713 u = malloc(sizeof(struct imsm_update_takeover));
8714 if (u == NULL)
8715 return 1;
8716
8717 u->type = update_takeover;
8718 u->subarray = super->current_vol;
8719
8720 /* 10->0 transition */
8721 if (geo->level == 0)
8722 u->direction = R10_TO_R0;
8723
8724 /* 0->10 transition */
8725 if (geo->level == 10)
8726 u->direction = R0_TO_R10;
8727
8728 /* update metadata locally */
8729 imsm_update_metadata_locally(st, u,
8730 sizeof(struct imsm_update_takeover));
8731 /* and possibly remotely */
8732 if (st->update_tail)
8733 append_metadata_update(st, u,
8734 sizeof(struct imsm_update_takeover));
8735 else
8736 free(u);
8737
8738 return 0;
8739 }
8740
8741 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8742 int layout, int chunksize, int raid_disks,
8743 int delta_disks, char *backup, char *dev,
8744 int verbose)
8745 {
8746 int ret_val = 1;
8747 struct geo_params geo;
8748
8749 dprintf("imsm: reshape_super called.\n");
8750
8751 memset(&geo, 0, sizeof(struct geo_params));
8752
8753 geo.dev_name = dev;
8754 geo.dev_id = st->devnum;
8755 geo.size = size;
8756 geo.level = level;
8757 geo.layout = layout;
8758 geo.chunksize = chunksize;
8759 geo.raid_disks = raid_disks;
8760 if (delta_disks != UnSet)
8761 geo.raid_disks += delta_disks;
8762
8763 dprintf("\tfor level : %i\n", geo.level);
8764 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8765
8766 if (experimental() == 0)
8767 return ret_val;
8768
8769 if (st->container_dev == st->devnum) {
8770 /* On container level we can only increase number of devices. */
8771 dprintf("imsm: info: Container operation\n");
8772 int old_raid_disks = 0;
8773
8774 if (imsm_reshape_is_allowed_on_container(
8775 st, &geo, &old_raid_disks)) {
8776 struct imsm_update_reshape *u = NULL;
8777 int len;
8778
8779 len = imsm_create_metadata_update_for_reshape(
8780 st, &geo, old_raid_disks, &u);
8781
8782 if (len <= 0) {
8783 dprintf("imsm: Cannot prepare update\n");
8784 goto exit_imsm_reshape_super;
8785 }
8786
8787 ret_val = 0;
8788 /* update metadata locally */
8789 imsm_update_metadata_locally(st, u, len);
8790 /* and possibly remotely */
8791 if (st->update_tail)
8792 append_metadata_update(st, u, len);
8793 else
8794 free(u);
8795
8796 } else {
8797 fprintf(stderr, Name ": (imsm) Operation "
8798 "is not allowed on this container\n");
8799 }
8800 } else {
8801 /* On volume level we support following operations
8802 * - takeover: raid10 -> raid0; raid0 -> raid10
8803 * - chunk size migration
8804 * - migration: raid5 -> raid0; raid0 -> raid5
8805 */
8806 struct intel_super *super = st->sb;
8807 struct intel_dev *dev = super->devlist;
8808 int change, devnum;
8809 dprintf("imsm: info: Volume operation\n");
8810 /* find requested device */
8811 while (dev) {
8812 if (imsm_find_array_minor_by_subdev(
8813 dev->index, st->container_dev, &devnum) == 0
8814 && devnum == geo.dev_id)
8815 break;
8816 dev = dev->next;
8817 }
8818 if (dev == NULL) {
8819 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8820 geo.dev_name, geo.dev_id);
8821 goto exit_imsm_reshape_super;
8822 }
8823 super->current_vol = dev->index;
8824 change = imsm_analyze_change(st, &geo);
8825 switch (change) {
8826 case CH_TAKEOVER:
8827 ret_val = imsm_takeover(st, &geo);
8828 break;
8829 case CH_MIGRATION: {
8830 struct imsm_update_reshape_migration *u = NULL;
8831 int len =
8832 imsm_create_metadata_update_for_migration(
8833 st, &geo, &u);
8834 if (len < 1) {
8835 dprintf("imsm: "
8836 "Cannot prepare update\n");
8837 break;
8838 }
8839 ret_val = 0;
8840 /* update metadata locally */
8841 imsm_update_metadata_locally(st, u, len);
8842 /* and possibly remotely */
8843 if (st->update_tail)
8844 append_metadata_update(st, u, len);
8845 else
8846 free(u);
8847 }
8848 break;
8849 default:
8850 ret_val = 1;
8851 }
8852 }
8853
8854 exit_imsm_reshape_super:
8855 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8856 return ret_val;
8857 }
8858
8859 /*******************************************************************************
8860 * Function: wait_for_reshape_imsm
8861 * Description: Function writes new sync_max value and waits until
8862 * reshape process reach new position
8863 * Parameters:
8864 * sra : general array info
8865 * ndata : number of disks in new array's layout
8866 * Returns:
8867 * 0 : success,
8868 * 1 : there is no reshape in progress,
8869 * -1 : fail
8870 ******************************************************************************/
8871 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8872 {
8873 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8874 unsigned long long completed;
8875 /* to_complete : new sync_max position */
8876 unsigned long long to_complete = sra->reshape_progress;
8877 unsigned long long position_to_set = to_complete / ndata;
8878
8879 if (fd < 0) {
8880 dprintf("imsm: wait_for_reshape_imsm() "
8881 "cannot open reshape_position\n");
8882 return 1;
8883 }
8884
8885 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8886 dprintf("imsm: wait_for_reshape_imsm() "
8887 "cannot read reshape_position (no reshape in progres)\n");
8888 close(fd);
8889 return 0;
8890 }
8891
8892 if (completed > to_complete) {
8893 dprintf("imsm: wait_for_reshape_imsm() "
8894 "wrong next position to set %llu (%llu)\n",
8895 to_complete, completed);
8896 close(fd);
8897 return -1;
8898 }
8899 dprintf("Position set: %llu\n", position_to_set);
8900 if (sysfs_set_num(sra, NULL, "sync_max",
8901 position_to_set) != 0) {
8902 dprintf("imsm: wait_for_reshape_imsm() "
8903 "cannot set reshape position to %llu\n",
8904 position_to_set);
8905 close(fd);
8906 return -1;
8907 }
8908
8909 do {
8910 char action[20];
8911 fd_set rfds;
8912 FD_ZERO(&rfds);
8913 FD_SET(fd, &rfds);
8914 select(fd+1, &rfds, NULL, NULL, NULL);
8915 if (sysfs_get_str(sra, NULL, "sync_action",
8916 action, 20) > 0 &&
8917 strncmp(action, "reshape", 7) != 0)
8918 break;
8919 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8920 dprintf("imsm: wait_for_reshape_imsm() "
8921 "cannot read reshape_position (in loop)\n");
8922 close(fd);
8923 return 1;
8924 }
8925 } while (completed < to_complete);
8926 close(fd);
8927 return 0;
8928
8929 }
8930
8931 /*******************************************************************************
8932 * Function: check_degradation_change
8933 * Description: Check that array hasn't become failed.
8934 * Parameters:
8935 * info : for sysfs access
8936 * sources : source disks descriptors
8937 * degraded: previous degradation level
8938 * Returns:
8939 * degradation level
8940 ******************************************************************************/
8941 int check_degradation_change(struct mdinfo *info,
8942 int *sources,
8943 int degraded)
8944 {
8945 unsigned long long new_degraded;
8946 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8947 if (new_degraded != (unsigned long long)degraded) {
8948 /* check each device to ensure it is still working */
8949 struct mdinfo *sd;
8950 new_degraded = 0;
8951 for (sd = info->devs ; sd ; sd = sd->next) {
8952 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8953 continue;
8954 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8955 char sbuf[20];
8956 if (sysfs_get_str(info,
8957 sd, "state", sbuf, 20) < 0 ||
8958 strstr(sbuf, "faulty") ||
8959 strstr(sbuf, "in_sync") == NULL) {
8960 /* this device is dead */
8961 sd->disk.state = (1<<MD_DISK_FAULTY);
8962 if (sd->disk.raid_disk >= 0 &&
8963 sources[sd->disk.raid_disk] >= 0) {
8964 close(sources[
8965 sd->disk.raid_disk]);
8966 sources[sd->disk.raid_disk] =
8967 -1;
8968 }
8969 new_degraded++;
8970 }
8971 }
8972 }
8973 }
8974
8975 return new_degraded;
8976 }
8977
8978 /*******************************************************************************
8979 * Function: imsm_manage_reshape
8980 * Description: Function finds array under reshape and it manages reshape
8981 * process. It creates stripes backups (if required) and sets
8982 * checheckpoits.
8983 * Parameters:
8984 * afd : Backup handle (nattive) - not used
8985 * sra : general array info
8986 * reshape : reshape parameters - not used
8987 * st : supertype structure
8988 * blocks : size of critical section [blocks]
8989 * fds : table of source device descriptor
8990 * offsets : start of array (offest per devices)
8991 * dests : not used
8992 * destfd : table of destination device descriptor
8993 * destoffsets : table of destination offsets (per device)
8994 * Returns:
8995 * 1 : success, reshape is done
8996 * 0 : fail
8997 ******************************************************************************/
8998 static int imsm_manage_reshape(
8999 int afd, struct mdinfo *sra, struct reshape *reshape,
9000 struct supertype *st, unsigned long backup_blocks,
9001 int *fds, unsigned long long *offsets,
9002 int dests, int *destfd, unsigned long long *destoffsets)
9003 {
9004 int ret_val = 0;
9005 struct intel_super *super = st->sb;
9006 struct intel_dev *dv = NULL;
9007 struct imsm_dev *dev = NULL;
9008 struct imsm_map *map_src;
9009 int migr_vol_qan = 0;
9010 int ndata, odata; /* [bytes] */
9011 int chunk; /* [bytes] */
9012 struct migr_record *migr_rec;
9013 char *buf = NULL;
9014 unsigned int buf_size; /* [bytes] */
9015 unsigned long long max_position; /* array size [bytes] */
9016 unsigned long long next_step; /* [blocks]/[bytes] */
9017 unsigned long long old_data_stripe_length;
9018 unsigned long long start_src; /* [bytes] */
9019 unsigned long long start; /* [bytes] */
9020 unsigned long long start_buf_shift; /* [bytes] */
9021 int degraded = 0;
9022 int source_layout = 0;
9023
9024 if (!fds || !offsets || !sra)
9025 goto abort;
9026
9027 /* Find volume during the reshape */
9028 for (dv = super->devlist; dv; dv = dv->next) {
9029 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9030 && dv->dev->vol.migr_state == 1) {
9031 dev = dv->dev;
9032 migr_vol_qan++;
9033 }
9034 }
9035 /* Only one volume can migrate at the same time */
9036 if (migr_vol_qan != 1) {
9037 fprintf(stderr, Name " : %s", migr_vol_qan ?
9038 "Number of migrating volumes greater than 1\n" :
9039 "There is no volume during migrationg\n");
9040 goto abort;
9041 }
9042
9043 map_src = get_imsm_map(dev, 1);
9044 if (map_src == NULL)
9045 goto abort;
9046
9047 ndata = imsm_num_data_members(dev, 0);
9048 odata = imsm_num_data_members(dev, 1);
9049
9050 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9051 old_data_stripe_length = odata * chunk;
9052
9053 migr_rec = super->migr_rec;
9054
9055 /* initialize migration record for start condition */
9056 if (sra->reshape_progress == 0)
9057 init_migr_record_imsm(st, dev, sra);
9058 else {
9059 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9060 dprintf("imsm: cannot restart migration when data "
9061 "are present in copy area.\n");
9062 goto abort;
9063 }
9064 }
9065
9066 /* size for data */
9067 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9068 /* extend buffer size for parity disk */
9069 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9070 /* add space for stripe aligment */
9071 buf_size += old_data_stripe_length;
9072 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9073 dprintf("imsm: Cannot allocate checpoint buffer\n");
9074 goto abort;
9075 }
9076
9077 max_position = sra->component_size * ndata;
9078 source_layout = imsm_level_to_layout(map_src->raid_level);
9079
9080 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9081 __le32_to_cpu(migr_rec->num_migr_units)) {
9082 /* current reshape position [blocks] */
9083 unsigned long long current_position =
9084 __le32_to_cpu(migr_rec->blocks_per_unit)
9085 * __le32_to_cpu(migr_rec->curr_migr_unit);
9086 unsigned long long border;
9087
9088 /* Check that array hasn't become failed.
9089 */
9090 degraded = check_degradation_change(sra, fds, degraded);
9091 if (degraded > 1) {
9092 dprintf("imsm: Abort reshape due to degradation"
9093 " level (%i)\n", degraded);
9094 goto abort;
9095 }
9096
9097 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9098
9099 if ((current_position + next_step) > max_position)
9100 next_step = max_position - current_position;
9101
9102 start = current_position * 512;
9103
9104 /* allign reading start to old geometry */
9105 start_buf_shift = start % old_data_stripe_length;
9106 start_src = start - start_buf_shift;
9107
9108 border = (start_src / odata) - (start / ndata);
9109 border /= 512;
9110 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9111 /* save critical stripes to buf
9112 * start - start address of current unit
9113 * to backup [bytes]
9114 * start_src - start address of current unit
9115 * to backup alligned to source array
9116 * [bytes]
9117 */
9118 unsigned long long next_step_filler = 0;
9119 unsigned long long copy_length = next_step * 512;
9120
9121 /* allign copy area length to stripe in old geometry */
9122 next_step_filler = ((copy_length + start_buf_shift)
9123 % old_data_stripe_length);
9124 if (next_step_filler)
9125 next_step_filler = (old_data_stripe_length
9126 - next_step_filler);
9127 dprintf("save_stripes() parameters: start = %llu,"
9128 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9129 "\tstart_in_buf_shift = %llu,"
9130 "\tnext_step_filler = %llu\n",
9131 start, start_src, copy_length,
9132 start_buf_shift, next_step_filler);
9133
9134 if (save_stripes(fds, offsets, map_src->num_members,
9135 chunk, map_src->raid_level,
9136 source_layout, 0, NULL, start_src,
9137 copy_length +
9138 next_step_filler + start_buf_shift,
9139 buf)) {
9140 dprintf("imsm: Cannot save stripes"
9141 " to buffer\n");
9142 goto abort;
9143 }
9144 /* Convert data to destination format and store it
9145 * in backup general migration area
9146 */
9147 if (save_backup_imsm(st, dev, sra,
9148 buf + start_buf_shift, copy_length)) {
9149 dprintf("imsm: Cannot save stripes to "
9150 "target devices\n");
9151 goto abort;
9152 }
9153 if (save_checkpoint_imsm(st, sra,
9154 UNIT_SRC_IN_CP_AREA)) {
9155 dprintf("imsm: Cannot write checkpoint to "
9156 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9157 goto abort;
9158 }
9159 } else {
9160 /* set next step to use whole border area */
9161 border /= next_step;
9162 if (border > 1)
9163 next_step *= border;
9164 }
9165 /* When data backed up, checkpoint stored,
9166 * kick the kernel to reshape unit of data
9167 */
9168 next_step = next_step + sra->reshape_progress;
9169 /* limit next step to array max position */
9170 if (next_step > max_position)
9171 next_step = max_position;
9172 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9173 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9174 sra->reshape_progress = next_step;
9175
9176 /* wait until reshape finish */
9177 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9178 dprintf("wait_for_reshape_imsm returned error!\n");
9179 goto abort;
9180 }
9181
9182 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9183 /* ignore error == 2, this can mean end of reshape here
9184 */
9185 dprintf("imsm: Cannot write checkpoint to "
9186 "migration record (UNIT_SRC_NORMAL)\n");
9187 goto abort;
9188 }
9189
9190 }
9191
9192 /* return '1' if done */
9193 ret_val = 1;
9194 abort:
9195 free(buf);
9196 abort_reshape(sra);
9197
9198 return ret_val;
9199 }
9200 #endif /* MDASSEMBLE */
9201
9202 struct superswitch super_imsm = {
9203 #ifndef MDASSEMBLE
9204 .examine_super = examine_super_imsm,
9205 .brief_examine_super = brief_examine_super_imsm,
9206 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9207 .export_examine_super = export_examine_super_imsm,
9208 .detail_super = detail_super_imsm,
9209 .brief_detail_super = brief_detail_super_imsm,
9210 .write_init_super = write_init_super_imsm,
9211 .validate_geometry = validate_geometry_imsm,
9212 .add_to_super = add_to_super_imsm,
9213 .remove_from_super = remove_from_super_imsm,
9214 .detail_platform = detail_platform_imsm,
9215 .kill_subarray = kill_subarray_imsm,
9216 .update_subarray = update_subarray_imsm,
9217 .load_container = load_container_imsm,
9218 .default_geometry = default_geometry_imsm,
9219 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9220 .reshape_super = imsm_reshape_super,
9221 .manage_reshape = imsm_manage_reshape,
9222 .recover_backup = recover_backup_imsm,
9223 #endif
9224 .match_home = match_home_imsm,
9225 .uuid_from_super= uuid_from_super_imsm,
9226 .getinfo_super = getinfo_super_imsm,
9227 .getinfo_super_disks = getinfo_super_disks_imsm,
9228 .update_super = update_super_imsm,
9229
9230 .avail_size = avail_size_imsm,
9231 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9232
9233 .compare_super = compare_super_imsm,
9234
9235 .load_super = load_super_imsm,
9236 .init_super = init_super_imsm,
9237 .store_super = store_super_imsm,
9238 .free_super = free_super_imsm,
9239 .match_metadata_desc = match_metadata_desc_imsm,
9240 .container_content = container_content_imsm,
9241
9242
9243 .external = 1,
9244 .name = "imsm",
9245
9246 #ifndef MDASSEMBLE
9247 /* for mdmon */
9248 .open_new = imsm_open_new,
9249 .set_array_state= imsm_set_array_state,
9250 .set_disk = imsm_set_disk,
9251 .sync_metadata = imsm_sync_metadata,
9252 .activate_spare = imsm_activate_spare,
9253 .process_update = imsm_process_update,
9254 .prepare_update = imsm_prepare_update,
9255 #endif /* MDASSEMBLE */
9256 };