]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: correct start offset handling at create time
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
34 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
35 #define MPB_VERSION_RAID5 "1.2.02"
36 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
37 #define MPB_VERSION_CNG "1.2.06"
38 #define MPB_VERSION_ATTRIBS "1.3.00"
39 #define MAX_SIGNATURE_LENGTH 32
40 #define MAX_RAID_SERIAL_LEN 16
41
42 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
43 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
44 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
47 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
48 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
49 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
50 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
51
52 #define MPB_SECTOR_CNT 418
53 #define IMSM_RESERVED_SECTORS 4096
54
55 /* Disk configuration info. */
56 #define IMSM_MAX_DEVICES 255
57 struct imsm_disk {
58 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
59 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
60 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
61 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
62 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
63 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
64 #define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
65 __u32 status; /* 0xF0 - 0xF3 */
66 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
67 #define IMSM_DISK_FILLERS 4
68 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
69 };
70
71 /* RAID map configuration infos. */
72 struct imsm_map {
73 __u32 pba_of_lba0; /* start address of partition */
74 __u32 blocks_per_member;/* blocks per member */
75 __u32 num_data_stripes; /* number of data stripes */
76 __u16 blocks_per_strip;
77 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
78 #define IMSM_T_STATE_NORMAL 0
79 #define IMSM_T_STATE_UNINITIALIZED 1
80 #define IMSM_T_STATE_DEGRADED 2
81 #define IMSM_T_STATE_FAILED 3
82 __u8 raid_level;
83 #define IMSM_T_RAID0 0
84 #define IMSM_T_RAID1 1
85 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
86 __u8 num_members; /* number of member disks */
87 __u8 num_domains; /* number of parity domains */
88 __u8 failed_disk_num; /* valid only when state is degraded */
89 __u8 reserved[1];
90 __u32 filler[7]; /* expansion area */
91 #define IMSM_ORD_REBUILD (1 << 24)
92 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
93 * top byte contains some flags
94 */
95 } __attribute__ ((packed));
96
97 struct imsm_vol {
98 __u32 curr_migr_unit;
99 __u32 checkpoint_id; /* id to access curr_migr_unit */
100 __u8 migr_state; /* Normal or Migrating */
101 #define MIGR_INIT 0
102 #define MIGR_REBUILD 1
103 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
104 #define MIGR_GEN_MIGR 3
105 #define MIGR_STATE_CHANGE 4
106 __u8 migr_type; /* Initializing, Rebuilding, ... */
107 __u8 dirty;
108 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
109 __u16 verify_errors; /* number of mismatches */
110 __u16 bad_blocks; /* number of bad blocks during verify */
111 __u32 filler[4];
112 struct imsm_map map[1];
113 /* here comes another one if migr_state */
114 } __attribute__ ((packed));
115
116 struct imsm_dev {
117 __u8 volume[MAX_RAID_SERIAL_LEN];
118 __u32 size_low;
119 __u32 size_high;
120 #define DEV_BOOTABLE __cpu_to_le32(0x01)
121 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
122 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
123 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
124 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
125 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
126 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
127 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
128 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
129 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
130 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
131 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
132 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
133 __u32 status; /* Persistent RaidDev status */
134 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
135 __u8 migr_priority;
136 __u8 num_sub_vols;
137 __u8 tid;
138 __u8 cng_master_disk;
139 __u16 cache_policy;
140 __u8 cng_state;
141 __u8 cng_sub_state;
142 #define IMSM_DEV_FILLERS 10
143 __u32 filler[IMSM_DEV_FILLERS];
144 struct imsm_vol vol;
145 } __attribute__ ((packed));
146
147 struct imsm_super {
148 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
149 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
150 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
151 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
152 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
153 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
154 __u32 attributes; /* 0x34 - 0x37 */
155 __u8 num_disks; /* 0x38 Number of configured disks */
156 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
157 __u8 error_log_pos; /* 0x3A */
158 __u8 fill[1]; /* 0x3B */
159 __u32 cache_size; /* 0x3c - 0x40 in mb */
160 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
161 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
162 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
163 #define IMSM_FILLERS 35
164 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
165 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
166 /* here comes imsm_dev[num_raid_devs] */
167 /* here comes BBM logs */
168 } __attribute__ ((packed));
169
170 #define BBM_LOG_MAX_ENTRIES 254
171
172 struct bbm_log_entry {
173 __u64 defective_block_start;
174 #define UNREADABLE 0xFFFFFFFF
175 __u32 spare_block_offset;
176 __u16 remapped_marked_count;
177 __u16 disk_ordinal;
178 } __attribute__ ((__packed__));
179
180 struct bbm_log {
181 __u32 signature; /* 0xABADB10C */
182 __u32 entry_count;
183 __u32 reserved_spare_block_count; /* 0 */
184 __u32 reserved; /* 0xFFFF */
185 __u64 first_spare_lba;
186 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
187 } __attribute__ ((__packed__));
188
189
190 #ifndef MDASSEMBLE
191 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
192 #endif
193
194 static unsigned int sector_count(__u32 bytes)
195 {
196 return ((bytes + (512-1)) & (~(512-1))) / 512;
197 }
198
199 static unsigned int mpb_sectors(struct imsm_super *mpb)
200 {
201 return sector_count(__le32_to_cpu(mpb->mpb_size));
202 }
203
204 /* internal representation of IMSM metadata */
205 struct intel_super {
206 union {
207 void *buf; /* O_DIRECT buffer for reading/writing metadata */
208 struct imsm_super *anchor; /* immovable parameters */
209 };
210 size_t len; /* size of the 'buf' allocation */
211 void *next_buf; /* for realloc'ing buf from the manager */
212 size_t next_len;
213 int updates_pending; /* count of pending updates for mdmon */
214 int creating_imsm; /* flag to indicate container creation */
215 int current_vol; /* index of raid device undergoing creation */
216 __u32 create_offset; /* common start for 'current_vol' */
217 #define IMSM_MAX_RAID_DEVS 2
218 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
219 struct dl {
220 struct dl *next;
221 int index;
222 __u8 serial[MAX_RAID_SERIAL_LEN];
223 int major, minor;
224 char *devname;
225 struct imsm_disk disk;
226 int fd;
227 int extent_cnt;
228 struct extent *e; /* for determining freespace @ create */
229 } *disks;
230 struct dl *add; /* list of disks to add while mdmon active */
231 struct dl *missing; /* disks removed while we weren't looking */
232 struct bbm_log *bbm_log;
233 };
234
235 struct extent {
236 unsigned long long start, size;
237 };
238
239 /* definition of messages passed to imsm_process_update */
240 enum imsm_update_type {
241 update_activate_spare,
242 update_create_array,
243 update_add_disk,
244 };
245
246 struct imsm_update_activate_spare {
247 enum imsm_update_type type;
248 struct dl *dl;
249 int slot;
250 int array;
251 struct imsm_update_activate_spare *next;
252 };
253
254 struct imsm_update_create_array {
255 enum imsm_update_type type;
256 int dev_idx;
257 struct imsm_dev dev;
258 };
259
260 struct imsm_update_add_disk {
261 enum imsm_update_type type;
262 };
263
264 static struct supertype *match_metadata_desc_imsm(char *arg)
265 {
266 struct supertype *st;
267
268 if (strcmp(arg, "imsm") != 0 &&
269 strcmp(arg, "default") != 0
270 )
271 return NULL;
272
273 st = malloc(sizeof(*st));
274 memset(st, 0, sizeof(*st));
275 st->ss = &super_imsm;
276 st->max_devs = IMSM_MAX_DEVICES;
277 st->minor_version = 0;
278 st->sb = NULL;
279 return st;
280 }
281
282 #ifndef MDASSEMBLE
283 static __u8 *get_imsm_version(struct imsm_super *mpb)
284 {
285 return &mpb->sig[MPB_SIG_LEN];
286 }
287 #endif
288
289 /* retrieve a disk directly from the anchor when the anchor is known to be
290 * up-to-date, currently only at load time
291 */
292 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
293 {
294 if (index >= mpb->num_disks)
295 return NULL;
296 return &mpb->disk[index];
297 }
298
299 #ifndef MDASSEMBLE
300 /* retrieve a disk from the parsed metadata */
301 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
302 {
303 struct dl *d;
304
305 for (d = super->disks; d; d = d->next)
306 if (d->index == index)
307 return &d->disk;
308
309 return NULL;
310 }
311 #endif
312
313 /* generate a checksum directly from the anchor when the anchor is known to be
314 * up-to-date, currently only at load or write_super after coalescing
315 */
316 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
317 {
318 __u32 end = mpb->mpb_size / sizeof(end);
319 __u32 *p = (__u32 *) mpb;
320 __u32 sum = 0;
321
322 while (end--) {
323 sum += __le32_to_cpu(*p);
324 p++;
325 }
326
327 return sum - __le32_to_cpu(mpb->check_sum);
328 }
329
330 static size_t sizeof_imsm_map(struct imsm_map *map)
331 {
332 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
333 }
334
335 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
336 {
337 struct imsm_map *map = &dev->vol.map[0];
338
339 if (second_map && !dev->vol.migr_state)
340 return NULL;
341 else if (second_map) {
342 void *ptr = map;
343
344 return ptr + sizeof_imsm_map(map);
345 } else
346 return map;
347
348 }
349
350 /* return the size of the device.
351 * migr_state increases the returned size if map[0] were to be duplicated
352 */
353 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
354 {
355 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
356 sizeof_imsm_map(get_imsm_map(dev, 0));
357
358 /* migrating means an additional map */
359 if (dev->vol.migr_state)
360 size += sizeof_imsm_map(get_imsm_map(dev, 1));
361 else if (migr_state)
362 size += sizeof_imsm_map(get_imsm_map(dev, 0));
363
364 return size;
365 }
366
367 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
368 {
369 int offset;
370 int i;
371 void *_mpb = mpb;
372
373 if (index >= mpb->num_raid_devs)
374 return NULL;
375
376 /* devices start after all disks */
377 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
378
379 for (i = 0; i <= index; i++)
380 if (i == index)
381 return _mpb + offset;
382 else
383 offset += sizeof_imsm_dev(_mpb + offset, 0);
384
385 return NULL;
386 }
387
388 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
389 {
390 if (index >= super->anchor->num_raid_devs)
391 return NULL;
392 return super->dev_tbl[index];
393 }
394
395 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
396 {
397 struct imsm_map *map;
398
399 if (dev->vol.migr_state)
400 map = get_imsm_map(dev, 1);
401 else
402 map = get_imsm_map(dev, 0);
403
404 /* top byte identifies disk under rebuild */
405 return __le32_to_cpu(map->disk_ord_tbl[slot]);
406 }
407
408 #define ord_to_idx(ord) (((ord) << 8) >> 8)
409 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
410 {
411 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
412
413 return ord_to_idx(ord);
414 }
415
416 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
417 {
418 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
419 }
420
421 static int get_imsm_raid_level(struct imsm_map *map)
422 {
423 if (map->raid_level == 1) {
424 if (map->num_members == 2)
425 return 1;
426 else
427 return 10;
428 }
429
430 return map->raid_level;
431 }
432
433 static int cmp_extent(const void *av, const void *bv)
434 {
435 const struct extent *a = av;
436 const struct extent *b = bv;
437 if (a->start < b->start)
438 return -1;
439 if (a->start > b->start)
440 return 1;
441 return 0;
442 }
443
444 static int count_memberships(struct dl *dl, struct intel_super *super)
445 {
446 int memberships = 0;
447 int i, j;
448
449 for (i = 0; i < super->anchor->num_raid_devs; i++) {
450 struct imsm_dev *dev = get_imsm_dev(super, i);
451 struct imsm_map *map = get_imsm_map(dev, 0);
452
453 for (j = 0; j < map->num_members; j++) {
454 __u32 index = get_imsm_disk_idx(dev, j);
455
456 if (index == dl->index)
457 memberships++;
458 }
459 }
460
461 return memberships;
462 }
463
464 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
465 {
466 /* find a list of used extents on the given physical device */
467 struct extent *rv, *e;
468 int i, j;
469 int memberships = count_memberships(dl, super);
470 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
471
472 rv = malloc(sizeof(struct extent) * (memberships + 1));
473 if (!rv)
474 return NULL;
475 e = rv;
476
477 for (i = 0; i < super->anchor->num_raid_devs; i++) {
478 struct imsm_dev *dev = get_imsm_dev(super, i);
479 struct imsm_map *map = get_imsm_map(dev, 0);
480
481 for (j = 0; j < map->num_members; j++) {
482 __u32 index = get_imsm_disk_idx(dev, j);
483
484 if (index == dl->index) {
485 e->start = __le32_to_cpu(map->pba_of_lba0);
486 e->size = __le32_to_cpu(map->blocks_per_member);
487 e++;
488 }
489 }
490 }
491 qsort(rv, memberships, sizeof(*rv), cmp_extent);
492
493 /* determine the start of the metadata
494 * when no raid devices are defined use the default
495 * ...otherwise allow the metadata to truncate the value
496 * as is the case with older versions of imsm
497 */
498 if (memberships) {
499 struct extent *last = &rv[memberships - 1];
500 __u32 remainder;
501
502 remainder = __le32_to_cpu(dl->disk.total_blocks) -
503 (last->start + last->size);
504 /* round down to 1k block to satisfy precision of the kernel
505 * 'size' interface
506 */
507 remainder &= ~1UL;
508 /* make sure remainder is still sane */
509 if (remainder < ROUND_UP(super->len, 512) >> 9)
510 remainder = ROUND_UP(super->len, 512) >> 9;
511 if (reservation > remainder)
512 reservation = remainder;
513 }
514 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
515 e->size = 0;
516 return rv;
517 }
518
519 /* try to determine how much space is reserved for metadata from
520 * the last get_extents() entry, otherwise fallback to the
521 * default
522 */
523 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
524 {
525 struct extent *e;
526 int i;
527 __u32 rv;
528
529 /* for spares just return a minimal reservation which will grow
530 * once the spare is picked up by an array
531 */
532 if (dl->index == -1)
533 return MPB_SECTOR_CNT;
534
535 e = get_extents(super, dl);
536 if (!e)
537 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
538
539 /* scroll to last entry */
540 for (i = 0; e[i].size; i++)
541 continue;
542
543 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
544
545 free(e);
546
547 return rv;
548 }
549
550 #ifndef MDASSEMBLE
551 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
552 {
553 __u64 sz;
554 int slot;
555 struct imsm_map *map = get_imsm_map(dev, 0);
556 __u32 ord;
557
558 printf("\n");
559 printf("[%.16s]:\n", dev->volume);
560 printf(" UUID : %s\n", uuid);
561 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
562 printf(" Members : %d\n", map->num_members);
563 for (slot = 0; slot < map->num_members; slot++)
564 if (disk_idx== get_imsm_disk_idx(dev, slot))
565 break;
566 if (slot < map->num_members) {
567 ord = get_imsm_ord_tbl_ent(dev, slot);
568 printf(" This Slot : %d%s\n", slot,
569 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
570 } else
571 printf(" This Slot : ?\n");
572 sz = __le32_to_cpu(dev->size_high);
573 sz <<= 32;
574 sz += __le32_to_cpu(dev->size_low);
575 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
576 human_size(sz * 512));
577 sz = __le32_to_cpu(map->blocks_per_member);
578 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
579 human_size(sz * 512));
580 printf(" Sector Offset : %u\n",
581 __le32_to_cpu(map->pba_of_lba0));
582 printf(" Num Stripes : %u\n",
583 __le32_to_cpu(map->num_data_stripes));
584 printf(" Chunk Size : %u KiB\n",
585 __le16_to_cpu(map->blocks_per_strip) / 2);
586 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
587 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
588 if (dev->vol.migr_state)
589 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
590 printf("\n");
591 printf(" Map State : %s", map_state_str[map->map_state]);
592 if (dev->vol.migr_state) {
593 struct imsm_map *map = get_imsm_map(dev, 1);
594 printf(" <-- %s", map_state_str[map->map_state]);
595 }
596 printf("\n");
597 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
598 }
599
600 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
601 {
602 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
603 char str[MAX_RAID_SERIAL_LEN + 1];
604 __u32 s;
605 __u64 sz;
606
607 if (index < 0)
608 return;
609
610 printf("\n");
611 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
612 printf(" Disk%02d Serial : %s\n", index, str);
613 s = disk->status;
614 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
615 s&CONFIGURED_DISK ? " active" : "",
616 s&FAILED_DISK ? " failed" : "",
617 s&USABLE_DISK ? " usable" : "");
618 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
619 sz = __le32_to_cpu(disk->total_blocks) - reserved;
620 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
621 human_size(sz * 512));
622 }
623
624 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
625
626 static void examine_super_imsm(struct supertype *st, char *homehost)
627 {
628 struct intel_super *super = st->sb;
629 struct imsm_super *mpb = super->anchor;
630 char str[MAX_SIGNATURE_LENGTH];
631 int i;
632 struct mdinfo info;
633 char nbuf[64];
634 __u32 sum;
635 __u32 reserved = imsm_reserved_sectors(super, super->disks);
636
637
638 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
639 printf(" Magic : %s\n", str);
640 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
641 printf(" Version : %s\n", get_imsm_version(mpb));
642 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
643 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
644 getinfo_super_imsm(st, &info);
645 fname_from_uuid(st, &info, nbuf,'-');
646 printf(" UUID : %s\n", nbuf + 5);
647 sum = __le32_to_cpu(mpb->check_sum);
648 printf(" Checksum : %08x %s\n", sum,
649 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
650 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
651 printf(" Disks : %d\n", mpb->num_disks);
652 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
653 print_imsm_disk(mpb, super->disks->index, reserved);
654 if (super->bbm_log) {
655 struct bbm_log *log = super->bbm_log;
656
657 printf("\n");
658 printf("Bad Block Management Log:\n");
659 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
660 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
661 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
662 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
663 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
664 }
665 for (i = 0; i < mpb->num_raid_devs; i++) {
666 struct mdinfo info;
667 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
668
669 super->current_vol = i;
670 getinfo_super_imsm(st, &info);
671 fname_from_uuid(st, &info, nbuf, '-');
672 print_imsm_dev(dev, nbuf + 5, super->disks->index);
673 }
674 for (i = 0; i < mpb->num_disks; i++) {
675 if (i == super->disks->index)
676 continue;
677 print_imsm_disk(mpb, i, reserved);
678 }
679 }
680
681 static void brief_examine_super_imsm(struct supertype *st)
682 {
683 /* We just write a generic IMSM ARRAY entry */
684 struct mdinfo info;
685 char nbuf[64];
686 char nbuf1[64];
687 struct intel_super *super = st->sb;
688 int i;
689
690 if (!super->anchor->num_raid_devs)
691 return;
692
693 getinfo_super_imsm(st, &info);
694 fname_from_uuid(st, &info, nbuf,'-');
695 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
696 for (i = 0; i < super->anchor->num_raid_devs; i++) {
697 struct imsm_dev *dev = get_imsm_dev(super, i);
698
699 super->current_vol = i;
700 getinfo_super_imsm(st, &info);
701 fname_from_uuid(st, &info, nbuf1,'-');
702 printf("ARRAY /dev/md/%.16s container=%s\n"
703 " member=%d auto=mdp UUID=%s\n",
704 dev->volume, nbuf + 5, i, nbuf1 + 5);
705 }
706 }
707
708 static void detail_super_imsm(struct supertype *st, char *homehost)
709 {
710 struct mdinfo info;
711 char nbuf[64];
712
713 getinfo_super_imsm(st, &info);
714 fname_from_uuid(st, &info, nbuf,'-');
715 printf("\n UUID : %s\n", nbuf + 5);
716 }
717
718 static void brief_detail_super_imsm(struct supertype *st)
719 {
720 struct mdinfo info;
721 char nbuf[64];
722 getinfo_super_imsm(st, &info);
723 fname_from_uuid(st, &info, nbuf,'-');
724 printf(" UUID=%s", nbuf + 5);
725 }
726 #endif
727
728 static int match_home_imsm(struct supertype *st, char *homehost)
729 {
730 /* the imsm metadata format does not specify any host
731 * identification information. We return -1 since we can never
732 * confirm nor deny whether a given array is "meant" for this
733 * host. We rely on compare_super and the 'family_num' field to
734 * exclude member disks that do not belong, and we rely on
735 * mdadm.conf to specify the arrays that should be assembled.
736 * Auto-assembly may still pick up "foreign" arrays.
737 */
738
739 return -1;
740 }
741
742 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
743 {
744 /* The uuid returned here is used for:
745 * uuid to put into bitmap file (Create, Grow)
746 * uuid for backup header when saving critical section (Grow)
747 * comparing uuids when re-adding a device into an array
748 * In these cases the uuid required is that of the data-array,
749 * not the device-set.
750 * uuid to recognise same set when adding a missing device back
751 * to an array. This is a uuid for the device-set.
752 *
753 * For each of these we can make do with a truncated
754 * or hashed uuid rather than the original, as long as
755 * everyone agrees.
756 * In each case the uuid required is that of the data-array,
757 * not the device-set.
758 */
759 /* imsm does not track uuid's so we synthesis one using sha1 on
760 * - The signature (Which is constant for all imsm array, but no matter)
761 * - the family_num of the container
762 * - the index number of the volume
763 * - the 'serial' number of the volume.
764 * Hopefully these are all constant.
765 */
766 struct intel_super *super = st->sb;
767
768 char buf[20];
769 struct sha1_ctx ctx;
770 struct imsm_dev *dev = NULL;
771
772 sha1_init_ctx(&ctx);
773 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
774 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
775 if (super->current_vol >= 0)
776 dev = get_imsm_dev(super, super->current_vol);
777 if (dev) {
778 __u32 vol = super->current_vol;
779 sha1_process_bytes(&vol, sizeof(vol), &ctx);
780 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
781 }
782 sha1_finish_ctx(&ctx, buf);
783 memcpy(uuid, buf, 4*4);
784 }
785
786 #if 0
787 static void
788 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
789 {
790 __u8 *v = get_imsm_version(mpb);
791 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
792 char major[] = { 0, 0, 0 };
793 char minor[] = { 0 ,0, 0 };
794 char patch[] = { 0, 0, 0 };
795 char *ver_parse[] = { major, minor, patch };
796 int i, j;
797
798 i = j = 0;
799 while (*v != '\0' && v < end) {
800 if (*v != '.' && j < 2)
801 ver_parse[i][j++] = *v;
802 else {
803 i++;
804 j = 0;
805 }
806 v++;
807 }
808
809 *m = strtol(minor, NULL, 0);
810 *p = strtol(patch, NULL, 0);
811 }
812 #endif
813
814 static int imsm_level_to_layout(int level)
815 {
816 switch (level) {
817 case 0:
818 case 1:
819 return 0;
820 case 5:
821 case 6:
822 return ALGORITHM_LEFT_ASYMMETRIC;
823 case 10:
824 return 0x102;
825 }
826 return -1;
827 }
828
829 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
830 {
831 struct intel_super *super = st->sb;
832 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
833 struct imsm_map *map = get_imsm_map(dev, 0);
834
835 info->container_member = super->current_vol;
836 info->array.raid_disks = map->num_members;
837 info->array.level = get_imsm_raid_level(map);
838 info->array.layout = imsm_level_to_layout(info->array.level);
839 info->array.md_minor = -1;
840 info->array.ctime = 0;
841 info->array.utime = 0;
842 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
843 info->array.state = !dev->vol.dirty;
844
845 info->disk.major = 0;
846 info->disk.minor = 0;
847
848 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
849 info->component_size = __le32_to_cpu(map->blocks_per_member);
850 memset(info->uuid, 0, sizeof(info->uuid));
851
852 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
853 info->resync_start = 0;
854 else if (dev->vol.migr_state)
855 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
856 else
857 info->resync_start = ~0ULL;
858
859 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
860 info->name[MAX_RAID_SERIAL_LEN] = 0;
861
862 info->array.major_version = -1;
863 info->array.minor_version = -2;
864 sprintf(info->text_version, "/%s/%d",
865 devnum2devname(st->container_dev),
866 info->container_member);
867 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
868 uuid_from_super_imsm(st, info->uuid);
869 }
870
871
872 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
873 {
874 struct intel_super *super = st->sb;
875 struct imsm_disk *disk;
876 __u32 s;
877
878 if (super->current_vol >= 0) {
879 getinfo_super_imsm_volume(st, info);
880 return;
881 }
882
883 /* Set raid_disks to zero so that Assemble will always pull in valid
884 * spares
885 */
886 info->array.raid_disks = 0;
887 info->array.level = LEVEL_CONTAINER;
888 info->array.layout = 0;
889 info->array.md_minor = -1;
890 info->array.ctime = 0; /* N/A for imsm */
891 info->array.utime = 0;
892 info->array.chunk_size = 0;
893
894 info->disk.major = 0;
895 info->disk.minor = 0;
896 info->disk.raid_disk = -1;
897 info->reshape_active = 0;
898 info->array.major_version = -1;
899 info->array.minor_version = -2;
900 strcpy(info->text_version, "imsm");
901 info->safe_mode_delay = 0;
902 info->disk.number = -1;
903 info->disk.state = 0;
904 info->name[0] = 0;
905
906 if (super->disks) {
907 __u32 reserved = imsm_reserved_sectors(super, super->disks);
908
909 disk = &super->disks->disk;
910 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
911 info->component_size = reserved;
912 s = disk->status;
913 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
914 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
915 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
916 }
917
918 /* only call uuid_from_super_imsm when this disk is part of a populated container,
919 * ->compare_super may have updated the 'num_raid_devs' field for spares
920 */
921 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
922 uuid_from_super_imsm(st, info->uuid);
923 else
924 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
925 }
926
927 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
928 char *update, char *devname, int verbose,
929 int uuid_set, char *homehost)
930 {
931 /* FIXME */
932
933 /* For 'assemble' and 'force' we need to return non-zero if any
934 * change was made. For others, the return value is ignored.
935 * Update options are:
936 * force-one : This device looks a bit old but needs to be included,
937 * update age info appropriately.
938 * assemble: clear any 'faulty' flag to allow this device to
939 * be assembled.
940 * force-array: Array is degraded but being forced, mark it clean
941 * if that will be needed to assemble it.
942 *
943 * newdev: not used ????
944 * grow: Array has gained a new device - this is currently for
945 * linear only
946 * resync: mark as dirty so a resync will happen.
947 * name: update the name - preserving the homehost
948 *
949 * Following are not relevant for this imsm:
950 * sparc2.2 : update from old dodgey metadata
951 * super-minor: change the preferred_minor number
952 * summaries: update redundant counters.
953 * uuid: Change the uuid of the array to match watch is given
954 * homehost: update the recorded homehost
955 * _reshape_progress: record new reshape_progress position.
956 */
957 int rv = 0;
958 //struct intel_super *super = st->sb;
959 //struct imsm_super *mpb = super->mpb;
960
961 if (strcmp(update, "grow") == 0) {
962 }
963 if (strcmp(update, "resync") == 0) {
964 /* dev->vol.dirty = 1; */
965 }
966
967 /* IMSM has no concept of UUID or homehost */
968
969 return rv;
970 }
971
972 static size_t disks_to_mpb_size(int disks)
973 {
974 size_t size;
975
976 size = sizeof(struct imsm_super);
977 size += (disks - 1) * sizeof(struct imsm_disk);
978 size += 2 * sizeof(struct imsm_dev);
979 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
980 size += (4 - 2) * sizeof(struct imsm_map);
981 /* 4 possible disk_ord_tbl's */
982 size += 4 * (disks - 1) * sizeof(__u32);
983
984 return size;
985 }
986
987 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
988 {
989 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
990 return 0;
991
992 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
993 }
994
995 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
996 {
997 /*
998 * return:
999 * 0 same, or first was empty, and second was copied
1000 * 1 second had wrong number
1001 * 2 wrong uuid
1002 * 3 wrong other info
1003 */
1004 struct intel_super *first = st->sb;
1005 struct intel_super *sec = tst->sb;
1006
1007 if (!first) {
1008 st->sb = tst->sb;
1009 tst->sb = NULL;
1010 return 0;
1011 }
1012
1013 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
1014 return 3;
1015
1016 /* if an anchor does not have num_raid_devs set then it is a free
1017 * floating spare
1018 */
1019 if (first->anchor->num_raid_devs > 0 &&
1020 sec->anchor->num_raid_devs > 0) {
1021 if (first->anchor->family_num != sec->anchor->family_num)
1022 return 3;
1023 }
1024
1025 /* if 'first' is a spare promote it to a populated mpb with sec's
1026 * family number
1027 */
1028 if (first->anchor->num_raid_devs == 0 &&
1029 sec->anchor->num_raid_devs > 0) {
1030 int i;
1031
1032 /* we need to copy raid device info from sec if an allocation
1033 * fails here we don't associate the spare
1034 */
1035 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1036 first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
1037 if (!first->dev_tbl) {
1038 while (--i >= 0) {
1039 free(first->dev_tbl[i]);
1040 first->dev_tbl[i] = NULL;
1041 }
1042 fprintf(stderr, "imsm: failed to associate spare\n");
1043 return 3;
1044 }
1045 *first->dev_tbl[i] = *sec->dev_tbl[i];
1046 }
1047
1048 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1049 first->anchor->family_num = sec->anchor->family_num;
1050 }
1051
1052 return 0;
1053 }
1054
1055 static void fd2devname(int fd, char *name)
1056 {
1057 struct stat st;
1058 char path[256];
1059 char dname[100];
1060 char *nm;
1061 int rv;
1062
1063 name[0] = '\0';
1064 if (fstat(fd, &st) != 0)
1065 return;
1066 sprintf(path, "/sys/dev/block/%d:%d",
1067 major(st.st_rdev), minor(st.st_rdev));
1068
1069 rv = readlink(path, dname, sizeof(dname));
1070 if (rv <= 0)
1071 return;
1072
1073 dname[rv] = '\0';
1074 nm = strrchr(dname, '/');
1075 nm++;
1076 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1077 }
1078
1079
1080 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1081
1082 static int imsm_read_serial(int fd, char *devname,
1083 __u8 serial[MAX_RAID_SERIAL_LEN])
1084 {
1085 unsigned char scsi_serial[255];
1086 int rv;
1087 int rsp_len;
1088 int len;
1089 char *c, *rsp_buf;
1090
1091 memset(scsi_serial, 0, sizeof(scsi_serial));
1092
1093 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1094
1095 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1096 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1097 fd2devname(fd, (char *) serial);
1098 return 0;
1099 }
1100
1101 if (rv != 0) {
1102 if (devname)
1103 fprintf(stderr,
1104 Name ": Failed to retrieve serial for %s\n",
1105 devname);
1106 return rv;
1107 }
1108
1109 /* trim leading whitespace */
1110 rsp_len = scsi_serial[3];
1111 rsp_buf = (char *) &scsi_serial[4];
1112 c = rsp_buf;
1113 while (isspace(*c))
1114 c++;
1115
1116 /* truncate len to the end of rsp_buf if necessary */
1117 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1118 len = rsp_len - (c - rsp_buf);
1119 else
1120 len = MAX_RAID_SERIAL_LEN;
1121
1122 /* initialize the buffer and copy rsp_buf characters */
1123 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1124 memcpy(serial, c, len);
1125
1126 /* trim trailing whitespace starting with the last character copied */
1127 c = (char *) &serial[len - 1];
1128 while (isspace(*c) || *c == '\0')
1129 *c-- = '\0';
1130
1131 return 0;
1132 }
1133
1134 static int serialcmp(__u8 *s1, __u8 *s2)
1135 {
1136 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1137 }
1138
1139 static void serialcpy(__u8 *dest, __u8 *src)
1140 {
1141 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1142 }
1143
1144 static int
1145 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1146 {
1147 struct dl *dl;
1148 struct stat stb;
1149 int rv;
1150 int i;
1151 int alloc = 1;
1152 __u8 serial[MAX_RAID_SERIAL_LEN];
1153
1154 rv = imsm_read_serial(fd, devname, serial);
1155
1156 if (rv != 0)
1157 return 2;
1158
1159 /* check if this is a disk we have seen before. it may be a spare in
1160 * super->disks while the current anchor believes it is a raid member,
1161 * check if we need to update dl->index
1162 */
1163 for (dl = super->disks; dl; dl = dl->next)
1164 if (serialcmp(dl->serial, serial) == 0)
1165 break;
1166
1167 if (!dl)
1168 dl = malloc(sizeof(*dl));
1169 else
1170 alloc = 0;
1171
1172 if (!dl) {
1173 if (devname)
1174 fprintf(stderr,
1175 Name ": failed to allocate disk buffer for %s\n",
1176 devname);
1177 return 2;
1178 }
1179
1180 if (alloc) {
1181 fstat(fd, &stb);
1182 dl->major = major(stb.st_rdev);
1183 dl->minor = minor(stb.st_rdev);
1184 dl->next = super->disks;
1185 dl->fd = keep_fd ? fd : -1;
1186 dl->devname = devname ? strdup(devname) : NULL;
1187 serialcpy(dl->serial, serial);
1188 dl->index = -2;
1189 dl->e = NULL;
1190 } else if (keep_fd) {
1191 close(dl->fd);
1192 dl->fd = fd;
1193 }
1194
1195 /* look up this disk's index in the current anchor */
1196 for (i = 0; i < super->anchor->num_disks; i++) {
1197 struct imsm_disk *disk_iter;
1198
1199 disk_iter = __get_imsm_disk(super->anchor, i);
1200
1201 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1202 dl->disk = *disk_iter;
1203 /* only set index on disks that are a member of a
1204 * populated contianer, i.e. one with raid_devs
1205 */
1206 if (dl->disk.status & FAILED_DISK)
1207 dl->index = -2;
1208 else if (dl->disk.status & SPARE_DISK)
1209 dl->index = -1;
1210 else
1211 dl->index = i;
1212
1213 break;
1214 }
1215 }
1216
1217 /* no match, maybe a stale failed drive */
1218 if (i == super->anchor->num_disks && dl->index >= 0) {
1219 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1220 if (dl->disk.status & FAILED_DISK)
1221 dl->index = -2;
1222 }
1223
1224 if (alloc)
1225 super->disks = dl;
1226
1227 return 0;
1228 }
1229
1230 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1231 {
1232 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1233 }
1234
1235 #ifndef MDASSEMBLE
1236 /* When migrating map0 contains the 'destination' state while map1
1237 * contains the current state. When not migrating map0 contains the
1238 * current state. This routine assumes that map[0].map_state is set to
1239 * the current array state before being called.
1240 *
1241 * Migration is indicated by one of the following states
1242 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1243 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1244 * map1state=unitialized)
1245 * 3/ Verify (Resync) (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1246 * map1state=normal)
1247 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1248 * map1state=degraded)
1249 */
1250 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1251 {
1252 struct imsm_map *dest;
1253 struct imsm_map *src = get_imsm_map(dev, 0);
1254
1255 dev->vol.migr_state = 1;
1256 dev->vol.migr_type = rebuild_resync;
1257 dev->vol.curr_migr_unit = 0;
1258 dest = get_imsm_map(dev, 1);
1259
1260 memcpy(dest, src, sizeof_imsm_map(src));
1261 src->map_state = to_state;
1262 }
1263
1264 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1265 {
1266 struct imsm_map *map = get_imsm_map(dev, 0);
1267
1268 dev->vol.migr_state = 0;
1269 dev->vol.curr_migr_unit = 0;
1270 map->map_state = map_state;
1271 }
1272 #endif
1273
1274 static int parse_raid_devices(struct intel_super *super)
1275 {
1276 int i;
1277 struct imsm_dev *dev_new;
1278 size_t len, len_migr;
1279 size_t space_needed = 0;
1280 struct imsm_super *mpb = super->anchor;
1281
1282 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1283 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1284
1285 len = sizeof_imsm_dev(dev_iter, 0);
1286 len_migr = sizeof_imsm_dev(dev_iter, 1);
1287 if (len_migr > len)
1288 space_needed += len_migr - len;
1289
1290 dev_new = malloc(len_migr);
1291 if (!dev_new)
1292 return 1;
1293 imsm_copy_dev(dev_new, dev_iter);
1294 super->dev_tbl[i] = dev_new;
1295 }
1296
1297 /* ensure that super->buf is large enough when all raid devices
1298 * are migrating
1299 */
1300 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1301 void *buf;
1302
1303 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1304 if (posix_memalign(&buf, 512, len) != 0)
1305 return 1;
1306
1307 memcpy(buf, super->buf, len);
1308 free(super->buf);
1309 super->buf = buf;
1310 super->len = len;
1311 }
1312
1313 return 0;
1314 }
1315
1316 /* retrieve a pointer to the bbm log which starts after all raid devices */
1317 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1318 {
1319 void *ptr = NULL;
1320
1321 if (__le32_to_cpu(mpb->bbm_log_size)) {
1322 ptr = mpb;
1323 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1324 }
1325
1326 return ptr;
1327 }
1328
1329 static void __free_imsm(struct intel_super *super, int free_disks);
1330
1331 /* load_imsm_mpb - read matrix metadata
1332 * allocates super->mpb to be freed by free_super
1333 */
1334 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1335 {
1336 unsigned long long dsize;
1337 unsigned long long sectors;
1338 struct stat;
1339 struct imsm_super *anchor;
1340 __u32 check_sum;
1341 int rc;
1342
1343 get_dev_size(fd, NULL, &dsize);
1344
1345 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1346 if (devname)
1347 fprintf(stderr,
1348 Name ": Cannot seek to anchor block on %s: %s\n",
1349 devname, strerror(errno));
1350 return 1;
1351 }
1352
1353 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1354 if (devname)
1355 fprintf(stderr,
1356 Name ": Failed to allocate imsm anchor buffer"
1357 " on %s\n", devname);
1358 return 1;
1359 }
1360 if (read(fd, anchor, 512) != 512) {
1361 if (devname)
1362 fprintf(stderr,
1363 Name ": Cannot read anchor block on %s: %s\n",
1364 devname, strerror(errno));
1365 free(anchor);
1366 return 1;
1367 }
1368
1369 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1370 if (devname)
1371 fprintf(stderr,
1372 Name ": no IMSM anchor on %s\n", devname);
1373 free(anchor);
1374 return 2;
1375 }
1376
1377 __free_imsm(super, 0);
1378 super->len = ROUND_UP(anchor->mpb_size, 512);
1379 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1380 if (devname)
1381 fprintf(stderr,
1382 Name ": unable to allocate %zu byte mpb buffer\n",
1383 super->len);
1384 free(anchor);
1385 return 2;
1386 }
1387 memcpy(super->buf, anchor, 512);
1388
1389 sectors = mpb_sectors(anchor) - 1;
1390 free(anchor);
1391 if (!sectors) {
1392 rc = load_imsm_disk(fd, super, devname, 0);
1393 if (rc == 0)
1394 rc = parse_raid_devices(super);
1395 return rc;
1396 }
1397
1398 /* read the extended mpb */
1399 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1400 if (devname)
1401 fprintf(stderr,
1402 Name ": Cannot seek to extended mpb on %s: %s\n",
1403 devname, strerror(errno));
1404 return 1;
1405 }
1406
1407 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1408 if (devname)
1409 fprintf(stderr,
1410 Name ": Cannot read extended mpb on %s: %s\n",
1411 devname, strerror(errno));
1412 return 2;
1413 }
1414
1415 check_sum = __gen_imsm_checksum(super->anchor);
1416 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1417 if (devname)
1418 fprintf(stderr,
1419 Name ": IMSM checksum %x != %x on %s\n",
1420 check_sum, __le32_to_cpu(super->anchor->check_sum),
1421 devname);
1422 return 2;
1423 }
1424
1425 /* FIXME the BBM log is disk specific so we cannot use this global
1426 * buffer for all disks. Ok for now since we only look at the global
1427 * bbm_log_size parameter to gate assembly
1428 */
1429 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1430
1431 rc = load_imsm_disk(fd, super, devname, 0);
1432 if (rc == 0)
1433 rc = parse_raid_devices(super);
1434
1435 return rc;
1436 }
1437
1438 static void __free_imsm_disk(struct dl *d)
1439 {
1440 if (d->fd >= 0)
1441 close(d->fd);
1442 if (d->devname)
1443 free(d->devname);
1444 if (d->e)
1445 free(d->e);
1446 free(d);
1447
1448 }
1449 static void free_imsm_disks(struct intel_super *super)
1450 {
1451 struct dl *d;
1452
1453 while (super->disks) {
1454 d = super->disks;
1455 super->disks = d->next;
1456 __free_imsm_disk(d);
1457 }
1458 while (super->missing) {
1459 d = super->missing;
1460 super->missing = d->next;
1461 __free_imsm_disk(d);
1462 }
1463
1464 }
1465
1466 /* free all the pieces hanging off of a super pointer */
1467 static void __free_imsm(struct intel_super *super, int free_disks)
1468 {
1469 int i;
1470
1471 if (super->buf) {
1472 free(super->buf);
1473 super->buf = NULL;
1474 }
1475 if (free_disks)
1476 free_imsm_disks(super);
1477 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1478 if (super->dev_tbl[i]) {
1479 free(super->dev_tbl[i]);
1480 super->dev_tbl[i] = NULL;
1481 }
1482 }
1483
1484 static void free_imsm(struct intel_super *super)
1485 {
1486 __free_imsm(super, 1);
1487 free(super);
1488 }
1489
1490 static void free_super_imsm(struct supertype *st)
1491 {
1492 struct intel_super *super = st->sb;
1493
1494 if (!super)
1495 return;
1496
1497 free_imsm(super);
1498 st->sb = NULL;
1499 }
1500
1501 static struct intel_super *alloc_super(int creating_imsm)
1502 {
1503 struct intel_super *super = malloc(sizeof(*super));
1504
1505 if (super) {
1506 memset(super, 0, sizeof(*super));
1507 super->creating_imsm = creating_imsm;
1508 super->current_vol = -1;
1509 super->create_offset = ~((__u32 ) 0);
1510 }
1511
1512 return super;
1513 }
1514
1515 #ifndef MDASSEMBLE
1516 /* find_missing - helper routine for load_super_imsm_all that identifies
1517 * disks that have disappeared from the system. This routine relies on
1518 * the mpb being uptodate, which it is at load time.
1519 */
1520 static int find_missing(struct intel_super *super)
1521 {
1522 int i;
1523 struct imsm_super *mpb = super->anchor;
1524 struct dl *dl;
1525 struct imsm_disk *disk;
1526
1527 for (i = 0; i < mpb->num_disks; i++) {
1528 disk = __get_imsm_disk(mpb, i);
1529 for (dl = super->disks; dl; dl = dl->next)
1530 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1531 break;
1532 if (dl)
1533 continue;
1534 /* ok we have a 'disk' without a live entry in
1535 * super->disks
1536 */
1537 if (disk->status & FAILED_DISK || !(disk->status & USABLE_DISK))
1538 continue; /* never mind, already marked */
1539
1540 dl = malloc(sizeof(*dl));
1541 if (!dl)
1542 return 1;
1543 dl->major = 0;
1544 dl->minor = 0;
1545 dl->fd = -1;
1546 dl->devname = strdup("missing");
1547 dl->index = i;
1548 serialcpy(dl->serial, disk->serial);
1549 dl->disk = *disk;
1550 dl->next = super->missing;
1551 super->missing = dl;
1552 }
1553
1554 return 0;
1555 }
1556
1557 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1558 char *devname, int keep_fd)
1559 {
1560 struct mdinfo *sra;
1561 struct intel_super *super;
1562 struct mdinfo *sd, *best = NULL;
1563 __u32 bestgen = 0;
1564 __u32 gen;
1565 char nm[20];
1566 int dfd;
1567 int rv;
1568
1569 /* check if this disk is a member of an active array */
1570 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1571 if (!sra)
1572 return 1;
1573
1574 if (sra->array.major_version != -1 ||
1575 sra->array.minor_version != -2 ||
1576 strcmp(sra->text_version, "imsm") != 0)
1577 return 1;
1578
1579 super = alloc_super(0);
1580 if (!super)
1581 return 1;
1582
1583 /* find the most up to date disk in this array, skipping spares */
1584 for (sd = sra->devs; sd; sd = sd->next) {
1585 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1586 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1587 if (!dfd) {
1588 free_imsm(super);
1589 return 2;
1590 }
1591 rv = load_imsm_mpb(dfd, super, NULL);
1592 if (!keep_fd)
1593 close(dfd);
1594 if (rv == 0) {
1595 if (super->anchor->num_raid_devs == 0)
1596 gen = 0;
1597 else
1598 gen = __le32_to_cpu(super->anchor->generation_num);
1599 if (!best || gen > bestgen) {
1600 bestgen = gen;
1601 best = sd;
1602 }
1603 } else {
1604 free_imsm(super);
1605 return 2;
1606 }
1607 }
1608
1609 if (!best) {
1610 free_imsm(super);
1611 return 1;
1612 }
1613
1614 /* load the most up to date anchor */
1615 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1616 dfd = dev_open(nm, O_RDONLY);
1617 if (!dfd) {
1618 free_imsm(super);
1619 return 1;
1620 }
1621 rv = load_imsm_mpb(dfd, super, NULL);
1622 close(dfd);
1623 if (rv != 0) {
1624 free_imsm(super);
1625 return 2;
1626 }
1627
1628 /* re-parse the disk list with the current anchor */
1629 for (sd = sra->devs ; sd ; sd = sd->next) {
1630 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1631 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1632 if (!dfd) {
1633 free_imsm(super);
1634 return 2;
1635 }
1636 load_imsm_disk(dfd, super, NULL, keep_fd);
1637 if (!keep_fd)
1638 close(dfd);
1639 }
1640
1641
1642 if (find_missing(super) != 0) {
1643 free_imsm(super);
1644 return 2;
1645 }
1646
1647 if (st->subarray[0]) {
1648 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1649 super->current_vol = atoi(st->subarray);
1650 else
1651 return 1;
1652 }
1653
1654 *sbp = super;
1655 st->container_dev = fd2devnum(fd);
1656 if (st->ss == NULL) {
1657 st->ss = &super_imsm;
1658 st->minor_version = 0;
1659 st->max_devs = IMSM_MAX_DEVICES;
1660 }
1661 st->loaded_container = 1;
1662
1663 return 0;
1664 }
1665 #endif
1666
1667 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1668 {
1669 struct intel_super *super;
1670 int rv;
1671
1672 #ifndef MDASSEMBLE
1673 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1674 return 0;
1675 #endif
1676 if (st->subarray[0])
1677 return 1; /* FIXME */
1678
1679 super = alloc_super(0);
1680 if (!super) {
1681 fprintf(stderr,
1682 Name ": malloc of %zu failed.\n",
1683 sizeof(*super));
1684 return 1;
1685 }
1686
1687 rv = load_imsm_mpb(fd, super, devname);
1688
1689 if (rv) {
1690 if (devname)
1691 fprintf(stderr,
1692 Name ": Failed to load all information "
1693 "sections on %s\n", devname);
1694 free_imsm(super);
1695 return rv;
1696 }
1697
1698 st->sb = super;
1699 if (st->ss == NULL) {
1700 st->ss = &super_imsm;
1701 st->minor_version = 0;
1702 st->max_devs = IMSM_MAX_DEVICES;
1703 }
1704 st->loaded_container = 0;
1705
1706 return 0;
1707 }
1708
1709 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1710 {
1711 if (info->level == 1)
1712 return 128;
1713 return info->chunk_size >> 9;
1714 }
1715
1716 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1717 {
1718 __u32 num_stripes;
1719
1720 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1721 if (info->level == 1)
1722 num_stripes /= 2;
1723
1724 return num_stripes;
1725 }
1726
1727 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1728 {
1729 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1730 }
1731
1732 static void imsm_update_version_info(struct intel_super *super)
1733 {
1734 /* update the version and attributes */
1735 struct imsm_super *mpb = super->anchor;
1736 char *version;
1737 struct imsm_dev *dev;
1738 struct imsm_map *map;
1739 int i;
1740
1741 for (i = 0; i < mpb->num_raid_devs; i++) {
1742 dev = get_imsm_dev(super, i);
1743 map = get_imsm_map(dev, 0);
1744 if (__le32_to_cpu(dev->size_high) > 0)
1745 mpb->attributes |= MPB_ATTRIB_2TB;
1746
1747 /* FIXME detect when an array spans a port multiplier */
1748 #if 0
1749 mpb->attributes |= MPB_ATTRIB_PM;
1750 #endif
1751
1752 if (mpb->num_raid_devs > 1 ||
1753 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
1754 version = MPB_VERSION_ATTRIBS;
1755 switch (get_imsm_raid_level(map)) {
1756 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
1757 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
1758 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
1759 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
1760 }
1761 } else {
1762 if (map->num_members >= 5)
1763 version = MPB_VERSION_5OR6_DISK_ARRAY;
1764 else if (dev->status == DEV_CLONE_N_GO)
1765 version = MPB_VERSION_CNG;
1766 else if (get_imsm_raid_level(map) == 5)
1767 version = MPB_VERSION_RAID5;
1768 else if (map->num_members >= 3)
1769 version = MPB_VERSION_3OR4_DISK_ARRAY;
1770 else if (get_imsm_raid_level(map) == 1)
1771 version = MPB_VERSION_RAID1;
1772 else
1773 version = MPB_VERSION_RAID0;
1774 }
1775 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
1776 }
1777 }
1778
1779 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1780 unsigned long long size, char *name,
1781 char *homehost, int *uuid)
1782 {
1783 /* We are creating a volume inside a pre-existing container.
1784 * so st->sb is already set.
1785 */
1786 struct intel_super *super = st->sb;
1787 struct imsm_super *mpb = super->anchor;
1788 struct imsm_dev *dev;
1789 struct imsm_vol *vol;
1790 struct imsm_map *map;
1791 int idx = mpb->num_raid_devs;
1792 int i;
1793 unsigned long long array_blocks;
1794 size_t size_old, size_new;
1795
1796 if (mpb->num_raid_devs >= 2) {
1797 fprintf(stderr, Name": This imsm-container already has the "
1798 "maximum of 2 volumes\n");
1799 return 0;
1800 }
1801
1802 /* ensure the mpb is large enough for the new data */
1803 size_old = __le32_to_cpu(mpb->mpb_size);
1804 size_new = disks_to_mpb_size(info->nr_disks);
1805 if (size_new > size_old) {
1806 void *mpb_new;
1807 size_t size_round = ROUND_UP(size_new, 512);
1808
1809 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1810 fprintf(stderr, Name": could not allocate new mpb\n");
1811 return 0;
1812 }
1813 memcpy(mpb_new, mpb, size_old);
1814 free(mpb);
1815 mpb = mpb_new;
1816 super->anchor = mpb_new;
1817 mpb->mpb_size = __cpu_to_le32(size_new);
1818 memset(mpb_new + size_old, 0, size_round - size_old);
1819 }
1820 super->current_vol = idx;
1821 /* when creating the first raid device in this container set num_disks
1822 * to zero, i.e. delete this spare and add raid member devices in
1823 * add_to_super_imsm_volume()
1824 */
1825 if (super->current_vol == 0)
1826 mpb->num_disks = 0;
1827 sprintf(st->subarray, "%d", idx);
1828 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1829 if (!dev) {
1830 fprintf(stderr, Name": could not allocate raid device\n");
1831 return 0;
1832 }
1833 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1834 if (info->level == 1)
1835 array_blocks = info_to_blocks_per_member(info);
1836 else
1837 array_blocks = calc_array_size(info->level, info->raid_disks,
1838 info->layout, info->chunk_size,
1839 info->size*2);
1840 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1841 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1842 dev->status = __cpu_to_le32(0);
1843 dev->reserved_blocks = __cpu_to_le32(0);
1844 vol = &dev->vol;
1845 vol->migr_state = 0;
1846 vol->migr_type = MIGR_INIT;
1847 vol->dirty = 0;
1848 vol->curr_migr_unit = 0;
1849 map = get_imsm_map(dev, 0);
1850 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
1851 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1852 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1853 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1854 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1855 IMSM_T_STATE_NORMAL;
1856
1857 if (info->level == 1 && info->raid_disks > 2) {
1858 fprintf(stderr, Name": imsm does not support more than 2 disks"
1859 "in a raid1 volume\n");
1860 return 0;
1861 }
1862 if (info->level == 10) {
1863 map->raid_level = 1;
1864 map->num_domains = info->raid_disks / 2;
1865 } else {
1866 map->raid_level = info->level;
1867 map->num_domains = !!map->raid_level;
1868 }
1869
1870 map->num_members = info->raid_disks;
1871 for (i = 0; i < map->num_members; i++) {
1872 /* initialized in add_to_super */
1873 set_imsm_ord_tbl_ent(map, i, 0);
1874 }
1875 mpb->num_raid_devs++;
1876 super->dev_tbl[super->current_vol] = dev;
1877
1878 imsm_update_version_info(super);
1879
1880 return 1;
1881 }
1882
1883 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1884 unsigned long long size, char *name,
1885 char *homehost, int *uuid)
1886 {
1887 /* This is primarily called by Create when creating a new array.
1888 * We will then get add_to_super called for each component, and then
1889 * write_init_super called to write it out to each device.
1890 * For IMSM, Create can create on fresh devices or on a pre-existing
1891 * array.
1892 * To create on a pre-existing array a different method will be called.
1893 * This one is just for fresh drives.
1894 */
1895 struct intel_super *super;
1896 struct imsm_super *mpb;
1897 size_t mpb_size;
1898 char *version;
1899
1900 if (!info) {
1901 st->sb = NULL;
1902 return 0;
1903 }
1904 if (st->sb)
1905 return init_super_imsm_volume(st, info, size, name, homehost,
1906 uuid);
1907
1908 super = alloc_super(1);
1909 if (!super)
1910 return 0;
1911 mpb_size = disks_to_mpb_size(info->nr_disks);
1912 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1913 free(super);
1914 return 0;
1915 }
1916 mpb = super->buf;
1917 memset(mpb, 0, mpb_size);
1918
1919 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
1920
1921 version = (char *) mpb->sig;
1922 strcpy(version, MPB_SIGNATURE);
1923 version += strlen(MPB_SIGNATURE);
1924 strcpy(version, MPB_VERSION_RAID0);
1925 mpb->mpb_size = mpb_size;
1926
1927 st->sb = super;
1928 return 1;
1929 }
1930
1931 #ifndef MDASSEMBLE
1932 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1933 int fd, char *devname)
1934 {
1935 struct intel_super *super = st->sb;
1936 struct imsm_super *mpb = super->anchor;
1937 struct dl *dl;
1938 struct imsm_dev *dev;
1939 struct imsm_map *map;
1940
1941 dev = get_imsm_dev(super, super->current_vol);
1942 map = get_imsm_map(dev, 0);
1943
1944 if (! (dk->state & (1<<MD_DISK_SYNC))) {
1945 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
1946 devname);
1947 return 1;
1948 }
1949
1950 for (dl = super->disks; dl ; dl = dl->next)
1951 if (dl->major == dk->major &&
1952 dl->minor == dk->minor)
1953 break;
1954
1955 if (!dl) {
1956 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
1957 return 1;
1958 }
1959
1960 /* add a pristine spare to the metadata */
1961 if (dl->index < 0) {
1962 dl->index = super->anchor->num_disks;
1963 super->anchor->num_disks++;
1964 }
1965 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1966 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
1967
1968 /* if we are creating the first raid device update the family number */
1969 if (super->current_vol == 0) {
1970 __u32 sum;
1971 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1972 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1973
1974 *_dev = *dev;
1975 *_disk = dl->disk;
1976 sum = __gen_imsm_checksum(mpb);
1977 mpb->family_num = __cpu_to_le32(sum);
1978 }
1979
1980 return 0;
1981 }
1982
1983 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1984 int fd, char *devname)
1985 {
1986 struct intel_super *super = st->sb;
1987 struct dl *dd;
1988 unsigned long long size;
1989 __u32 id;
1990 int rv;
1991 struct stat stb;
1992
1993 if (super->current_vol >= 0)
1994 return add_to_super_imsm_volume(st, dk, fd, devname);
1995
1996 fstat(fd, &stb);
1997 dd = malloc(sizeof(*dd));
1998 if (!dd) {
1999 fprintf(stderr,
2000 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2001 return 1;
2002 }
2003 memset(dd, 0, sizeof(*dd));
2004 dd->major = major(stb.st_rdev);
2005 dd->minor = minor(stb.st_rdev);
2006 dd->index = -1;
2007 dd->devname = devname ? strdup(devname) : NULL;
2008 dd->fd = fd;
2009 rv = imsm_read_serial(fd, devname, dd->serial);
2010 if (rv) {
2011 fprintf(stderr,
2012 Name ": failed to retrieve scsi serial, aborting\n");
2013 free(dd);
2014 abort();
2015 }
2016
2017 get_dev_size(fd, NULL, &size);
2018 size /= 512;
2019 serialcpy(dd->disk.serial, dd->serial);
2020 dd->disk.total_blocks = __cpu_to_le32(size);
2021 dd->disk.status = USABLE_DISK | SPARE_DISK;
2022 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
2023 dd->disk.scsi_id = __cpu_to_le32(id);
2024 else
2025 dd->disk.scsi_id = __cpu_to_le32(0);
2026
2027 if (st->update_tail) {
2028 dd->next = super->add;
2029 super->add = dd;
2030 } else {
2031 dd->next = super->disks;
2032 super->disks = dd;
2033 }
2034
2035 return 0;
2036 }
2037
2038 static int store_imsm_mpb(int fd, struct intel_super *super);
2039
2040 /* spare records have their own family number and do not have any defined raid
2041 * devices
2042 */
2043 static int write_super_imsm_spares(struct intel_super *super, int doclose)
2044 {
2045 struct imsm_super mpb_save;
2046 struct imsm_super *mpb = super->anchor;
2047 __u32 sum;
2048 struct dl *d;
2049
2050 mpb_save = *mpb;
2051 mpb->num_raid_devs = 0;
2052 mpb->num_disks = 1;
2053 mpb->mpb_size = sizeof(struct imsm_super);
2054 mpb->generation_num = __cpu_to_le32(1UL);
2055
2056 for (d = super->disks; d; d = d->next) {
2057 if (d->index != -1)
2058 continue;
2059
2060 mpb->disk[0] = d->disk;
2061 sum = __gen_imsm_checksum(mpb);
2062 mpb->family_num = __cpu_to_le32(sum);
2063 sum = __gen_imsm_checksum(mpb);
2064 mpb->check_sum = __cpu_to_le32(sum);
2065
2066 if (store_imsm_mpb(d->fd, super)) {
2067 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2068 __func__, d->major, d->minor, strerror(errno));
2069 *mpb = mpb_save;
2070 return 1;
2071 }
2072 if (doclose) {
2073 close(d->fd);
2074 d->fd = -1;
2075 }
2076 }
2077
2078 *mpb = mpb_save;
2079 return 0;
2080 }
2081
2082 static int write_super_imsm(struct intel_super *super, int doclose)
2083 {
2084 struct imsm_super *mpb = super->anchor;
2085 struct dl *d;
2086 __u32 generation;
2087 __u32 sum;
2088 int spares = 0;
2089 int i;
2090 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2091
2092 /* 'generation' is incremented everytime the metadata is written */
2093 generation = __le32_to_cpu(mpb->generation_num);
2094 generation++;
2095 mpb->generation_num = __cpu_to_le32(generation);
2096
2097 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2098 for (d = super->disks; d; d = d->next) {
2099 if (d->index == -1)
2100 spares++;
2101 else
2102 mpb->disk[d->index] = d->disk;
2103 }
2104 for (d = super->missing; d; d = d->next)
2105 mpb->disk[d->index] = d->disk;
2106
2107 for (i = 0; i < mpb->num_raid_devs; i++) {
2108 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2109
2110 imsm_copy_dev(dev, super->dev_tbl[i]);
2111 mpb_size += sizeof_imsm_dev(dev, 0);
2112 }
2113 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2114 mpb->mpb_size = __cpu_to_le32(mpb_size);
2115
2116 /* recalculate checksum */
2117 sum = __gen_imsm_checksum(mpb);
2118 mpb->check_sum = __cpu_to_le32(sum);
2119
2120 /* write the mpb for disks that compose raid devices */
2121 for (d = super->disks; d ; d = d->next) {
2122 if (d->index < 0)
2123 continue;
2124 if (store_imsm_mpb(d->fd, super))
2125 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2126 __func__, d->major, d->minor, strerror(errno));
2127 if (doclose) {
2128 close(d->fd);
2129 d->fd = -1;
2130 }
2131 }
2132
2133 if (spares)
2134 return write_super_imsm_spares(super, doclose);
2135
2136 return 0;
2137 }
2138
2139
2140 static int create_array(struct supertype *st)
2141 {
2142 size_t len;
2143 struct imsm_update_create_array *u;
2144 struct intel_super *super = st->sb;
2145 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2146
2147 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
2148 u = malloc(len);
2149 if (!u) {
2150 fprintf(stderr, "%s: failed to allocate update buffer\n",
2151 __func__);
2152 return 1;
2153 }
2154
2155 u->type = update_create_array;
2156 u->dev_idx = super->current_vol;
2157 imsm_copy_dev(&u->dev, dev);
2158 append_metadata_update(st, u, len);
2159
2160 return 0;
2161 }
2162
2163 static int _add_disk(struct supertype *st)
2164 {
2165 struct intel_super *super = st->sb;
2166 size_t len;
2167 struct imsm_update_add_disk *u;
2168
2169 if (!super->add)
2170 return 0;
2171
2172 len = sizeof(*u);
2173 u = malloc(len);
2174 if (!u) {
2175 fprintf(stderr, "%s: failed to allocate update buffer\n",
2176 __func__);
2177 return 1;
2178 }
2179
2180 u->type = update_add_disk;
2181 append_metadata_update(st, u, len);
2182
2183 return 0;
2184 }
2185
2186 static int write_init_super_imsm(struct supertype *st)
2187 {
2188 if (st->update_tail) {
2189 /* queue the recently created array / added disk
2190 * as a metadata update */
2191 struct intel_super *super = st->sb;
2192 struct dl *d;
2193 int rv;
2194
2195 /* determine if we are creating a volume or adding a disk */
2196 if (super->current_vol < 0) {
2197 /* in the add disk case we are running in mdmon
2198 * context, so don't close fd's
2199 */
2200 return _add_disk(st);
2201 } else
2202 rv = create_array(st);
2203
2204 for (d = super->disks; d ; d = d->next) {
2205 close(d->fd);
2206 d->fd = -1;
2207 }
2208
2209 return rv;
2210 } else
2211 return write_super_imsm(st->sb, 1);
2212 }
2213 #endif
2214
2215 static int store_zero_imsm(struct supertype *st, int fd)
2216 {
2217 unsigned long long dsize;
2218 void *buf;
2219
2220 get_dev_size(fd, NULL, &dsize);
2221
2222 /* first block is stored on second to last sector of the disk */
2223 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2224 return 1;
2225
2226 if (posix_memalign(&buf, 512, 512) != 0)
2227 return 1;
2228
2229 memset(buf, 0, 512);
2230 if (write(fd, buf, 512) != 512)
2231 return 1;
2232 return 0;
2233 }
2234
2235 static int imsm_bbm_log_size(struct imsm_super *mpb)
2236 {
2237 return __le32_to_cpu(mpb->bbm_log_size);
2238 }
2239
2240 #ifndef MDASSEMBLE
2241 static int validate_geometry_imsm_container(struct supertype *st, int level,
2242 int layout, int raiddisks, int chunk,
2243 unsigned long long size, char *dev,
2244 unsigned long long *freesize,
2245 int verbose)
2246 {
2247 int fd;
2248 unsigned long long ldsize;
2249
2250 if (level != LEVEL_CONTAINER)
2251 return 0;
2252 if (!dev)
2253 return 1;
2254
2255 fd = open(dev, O_RDONLY|O_EXCL, 0);
2256 if (fd < 0) {
2257 if (verbose)
2258 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2259 dev, strerror(errno));
2260 return 0;
2261 }
2262 if (!get_dev_size(fd, dev, &ldsize)) {
2263 close(fd);
2264 return 0;
2265 }
2266 close(fd);
2267
2268 *freesize = avail_size_imsm(st, ldsize >> 9);
2269
2270 return 1;
2271 }
2272
2273 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
2274 {
2275 const unsigned long long base_start = e[*idx].start;
2276 unsigned long long end = base_start + e[*idx].size;
2277 int i;
2278
2279 if (base_start == end)
2280 return 0;
2281
2282 *idx = *idx + 1;
2283 for (i = *idx; i < num_extents; i++) {
2284 /* extend overlapping extents */
2285 if (e[i].start >= base_start &&
2286 e[i].start <= end) {
2287 if (e[i].size == 0)
2288 return 0;
2289 if (e[i].start + e[i].size > end)
2290 end = e[i].start + e[i].size;
2291 } else if (e[i].start > end) {
2292 *idx = i;
2293 break;
2294 }
2295 }
2296
2297 return end - base_start;
2298 }
2299
2300 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
2301 {
2302 /* build a composite disk with all known extents and generate a new
2303 * 'maxsize' given the "all disks in an array must share a common start
2304 * offset" constraint
2305 */
2306 struct extent *e = calloc(sum_extents, sizeof(*e));
2307 struct dl *dl;
2308 int i, j;
2309 int start_extent;
2310 unsigned long long pos;
2311 unsigned long long start;
2312 unsigned long long maxsize;
2313 unsigned long reserve;
2314
2315 if (!e)
2316 return ~0ULL; /* error */
2317
2318 /* coalesce and sort all extents. also, check to see if we need to
2319 * reserve space between member arrays
2320 */
2321 j = 0;
2322 for (dl = super->disks; dl; dl = dl->next) {
2323 if (!dl->e)
2324 continue;
2325 for (i = 0; i < dl->extent_cnt; i++)
2326 e[j++] = dl->e[i];
2327 }
2328 qsort(e, sum_extents, sizeof(*e), cmp_extent);
2329
2330 /* merge extents */
2331 i = 0;
2332 j = 0;
2333 while (i < sum_extents) {
2334 e[j].start = e[i].start;
2335 e[j].size = find_size(e, &i, sum_extents);
2336 j++;
2337 if (e[j-1].size == 0)
2338 break;
2339 }
2340
2341 pos = 0;
2342 maxsize = 0;
2343 start_extent = 0;
2344 i = 0;
2345 do {
2346 unsigned long long esize;
2347
2348 esize = e[i].start - pos;
2349 if (esize >= maxsize) {
2350 maxsize = esize;
2351 start = pos;
2352 start_extent = i;
2353 }
2354 pos = e[i].start + e[i].size;
2355 i++;
2356 } while (e[i-1].size);
2357 free(e);
2358
2359 if (start_extent > 0)
2360 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
2361 else
2362 reserve = 0;
2363
2364 if (maxsize < reserve)
2365 return ~0ULL;
2366
2367 super->create_offset = ~((__u32) 0);
2368 if (start + reserve > super->create_offset)
2369 return ~0ULL; /* start overflows create_offset */
2370 super->create_offset = start + reserve;
2371
2372 return maxsize - reserve;
2373 }
2374
2375 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2376 * FIX ME add ahci details
2377 */
2378 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2379 int layout, int raiddisks, int chunk,
2380 unsigned long long size, char *dev,
2381 unsigned long long *freesize,
2382 int verbose)
2383 {
2384 struct stat stb;
2385 struct intel_super *super = st->sb;
2386 struct dl *dl;
2387 unsigned long long pos = 0;
2388 unsigned long long maxsize;
2389 struct extent *e;
2390 int i;
2391
2392 if (level == LEVEL_CONTAINER)
2393 return 0;
2394
2395 if (level == 1 && raiddisks > 2) {
2396 if (verbose)
2397 fprintf(stderr, Name ": imsm does not support more "
2398 "than 2 in a raid1 configuration\n");
2399 return 0;
2400 }
2401
2402 /* We must have the container info already read in. */
2403 if (!super)
2404 return 0;
2405
2406 if (!dev) {
2407 /* General test: make sure there is space for
2408 * 'raiddisks' device extents of size 'size' at a given
2409 * offset
2410 */
2411 unsigned long long minsize = size*2 /* convert to blocks */;
2412 unsigned long long start_offset = ~0ULL;
2413 int dcnt = 0;
2414 if (minsize == 0)
2415 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2416 for (dl = super->disks; dl ; dl = dl->next) {
2417 int found = 0;
2418
2419 pos = 0;
2420 i = 0;
2421 e = get_extents(super, dl);
2422 if (!e) continue;
2423 do {
2424 unsigned long long esize;
2425 esize = e[i].start - pos;
2426 if (esize >= minsize)
2427 found = 1;
2428 if (found && start_offset == ~0ULL) {
2429 start_offset = pos;
2430 break;
2431 } else if (found && pos != start_offset) {
2432 found = 0;
2433 break;
2434 }
2435 pos = e[i].start + e[i].size;
2436 i++;
2437 } while (e[i-1].size);
2438 if (found)
2439 dcnt++;
2440 free(e);
2441 }
2442 if (dcnt < raiddisks) {
2443 if (verbose)
2444 fprintf(stderr, Name ": imsm: Not enough "
2445 "devices with space for this array "
2446 "(%d < %d)\n",
2447 dcnt, raiddisks);
2448 return 0;
2449 }
2450 return 1;
2451 }
2452
2453 /* This device must be a member of the set */
2454 if (stat(dev, &stb) < 0)
2455 return 0;
2456 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2457 return 0;
2458 for (dl = super->disks ; dl ; dl = dl->next) {
2459 if (dl->major == major(stb.st_rdev) &&
2460 dl->minor == minor(stb.st_rdev))
2461 break;
2462 }
2463 if (!dl) {
2464 if (verbose)
2465 fprintf(stderr, Name ": %s is not in the "
2466 "same imsm set\n", dev);
2467 return 0;
2468 }
2469
2470 /* retrieve the largest free space block */
2471 e = get_extents(super, dl);
2472 maxsize = 0;
2473 i = 0;
2474 if (e) {
2475 do {
2476 unsigned long long esize;
2477
2478 esize = e[i].start - pos;
2479 if (esize >= maxsize)
2480 maxsize = esize;
2481 pos = e[i].start + e[i].size;
2482 i++;
2483 } while (e[i-1].size);
2484 dl->e = e;
2485 dl->extent_cnt = i;
2486 } else {
2487 if (verbose)
2488 fprintf(stderr, Name ": unable to determine free space for: %s\n",
2489 dev);
2490 return 0;
2491 }
2492 if (maxsize < size) {
2493 if (verbose)
2494 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
2495 dev, maxsize, size);
2496 return 0;
2497 }
2498
2499 /* count total number of extents for merge */
2500 i = 0;
2501 for (dl = super->disks; dl; dl = dl->next)
2502 if (dl->e)
2503 i += dl->extent_cnt;
2504
2505 maxsize = merge_extents(super, i);
2506 if (maxsize < size) {
2507 if (verbose)
2508 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
2509 maxsize, size);
2510 return 0;
2511 } else if (maxsize == ~0ULL) {
2512 if (verbose)
2513 fprintf(stderr, Name ": failed to merge %d extents\n", i);
2514 return 0;
2515 }
2516
2517 *freesize = maxsize;
2518
2519 return 1;
2520 }
2521
2522 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2523 int raiddisks, int chunk, unsigned long long size,
2524 char *dev, unsigned long long *freesize,
2525 int verbose)
2526 {
2527 int fd, cfd;
2528 struct mdinfo *sra;
2529
2530 /* if given unused devices create a container
2531 * if given given devices in a container create a member volume
2532 */
2533 if (level == LEVEL_CONTAINER) {
2534 /* Must be a fresh device to add to a container */
2535 return validate_geometry_imsm_container(st, level, layout,
2536 raiddisks, chunk, size,
2537 dev, freesize,
2538 verbose);
2539 }
2540
2541 if (st->sb) {
2542 /* creating in a given container */
2543 return validate_geometry_imsm_volume(st, level, layout,
2544 raiddisks, chunk, size,
2545 dev, freesize, verbose);
2546 }
2547
2548 /* limit creation to the following levels */
2549 if (!dev)
2550 switch (level) {
2551 case 0:
2552 case 1:
2553 case 10:
2554 case 5:
2555 break;
2556 default:
2557 return 1;
2558 }
2559
2560 /* This device needs to be a device in an 'imsm' container */
2561 fd = open(dev, O_RDONLY|O_EXCL, 0);
2562 if (fd >= 0) {
2563 if (verbose)
2564 fprintf(stderr,
2565 Name ": Cannot create this array on device %s\n",
2566 dev);
2567 close(fd);
2568 return 0;
2569 }
2570 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2571 if (verbose)
2572 fprintf(stderr, Name ": Cannot open %s: %s\n",
2573 dev, strerror(errno));
2574 return 0;
2575 }
2576 /* Well, it is in use by someone, maybe an 'imsm' container. */
2577 cfd = open_container(fd);
2578 if (cfd < 0) {
2579 close(fd);
2580 if (verbose)
2581 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2582 dev);
2583 return 0;
2584 }
2585 sra = sysfs_read(cfd, 0, GET_VERSION);
2586 close(fd);
2587 if (sra && sra->array.major_version == -1 &&
2588 strcmp(sra->text_version, "imsm") == 0) {
2589 /* This is a member of a imsm container. Load the container
2590 * and try to create a volume
2591 */
2592 struct intel_super *super;
2593
2594 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2595 st->sb = super;
2596 st->container_dev = fd2devnum(cfd);
2597 close(cfd);
2598 return validate_geometry_imsm_volume(st, level, layout,
2599 raiddisks, chunk,
2600 size, dev,
2601 freesize, verbose);
2602 }
2603 close(cfd);
2604 } else /* may belong to another container */
2605 return 0;
2606
2607 return 1;
2608 }
2609 #endif /* MDASSEMBLE */
2610
2611 static struct mdinfo *container_content_imsm(struct supertype *st)
2612 {
2613 /* Given a container loaded by load_super_imsm_all,
2614 * extract information about all the arrays into
2615 * an mdinfo tree.
2616 *
2617 * For each imsm_dev create an mdinfo, fill it in,
2618 * then look for matching devices in super->disks
2619 * and create appropriate device mdinfo.
2620 */
2621 struct intel_super *super = st->sb;
2622 struct imsm_super *mpb = super->anchor;
2623 struct mdinfo *rest = NULL;
2624 int i;
2625
2626 /* do not assemble arrays that might have bad blocks */
2627 if (imsm_bbm_log_size(super->anchor)) {
2628 fprintf(stderr, Name ": BBM log found in metadata. "
2629 "Cannot activate array(s).\n");
2630 return NULL;
2631 }
2632
2633 for (i = 0; i < mpb->num_raid_devs; i++) {
2634 struct imsm_dev *dev = get_imsm_dev(super, i);
2635 struct imsm_map *map = get_imsm_map(dev, 0);
2636 struct mdinfo *this;
2637 int slot;
2638
2639 this = malloc(sizeof(*this));
2640 memset(this, 0, sizeof(*this));
2641 this->next = rest;
2642
2643 super->current_vol = i;
2644 getinfo_super_imsm_volume(st, this);
2645 for (slot = 0 ; slot < map->num_members; slot++) {
2646 struct mdinfo *info_d;
2647 struct dl *d;
2648 int idx;
2649 int skip;
2650 __u32 s;
2651 __u32 ord;
2652
2653 skip = 0;
2654 idx = get_imsm_disk_idx(dev, slot);
2655 ord = get_imsm_ord_tbl_ent(dev, slot);
2656 for (d = super->disks; d ; d = d->next)
2657 if (d->index == idx)
2658 break;
2659
2660 if (d == NULL)
2661 skip = 1;
2662
2663 s = d ? d->disk.status : 0;
2664 if (s & FAILED_DISK)
2665 skip = 1;
2666 if (!(s & USABLE_DISK))
2667 skip = 1;
2668 if (ord & IMSM_ORD_REBUILD)
2669 skip = 1;
2670
2671 /*
2672 * if we skip some disks the array will be assmebled degraded;
2673 * reset resync start to avoid a dirty-degraded situation
2674 *
2675 * FIXME handle dirty degraded
2676 */
2677 if (skip && !dev->vol.dirty)
2678 this->resync_start = ~0ULL;
2679 if (skip)
2680 continue;
2681
2682 info_d = malloc(sizeof(*info_d));
2683 if (!info_d) {
2684 fprintf(stderr, Name ": failed to allocate disk"
2685 " for volume %s\n", (char *) dev->volume);
2686 free(this);
2687 this = rest;
2688 break;
2689 }
2690 memset(info_d, 0, sizeof(*info_d));
2691 info_d->next = this->devs;
2692 this->devs = info_d;
2693
2694 info_d->disk.number = d->index;
2695 info_d->disk.major = d->major;
2696 info_d->disk.minor = d->minor;
2697 info_d->disk.raid_disk = slot;
2698
2699 this->array.working_disks++;
2700
2701 info_d->events = __le32_to_cpu(mpb->generation_num);
2702 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2703 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2704 if (d->devname)
2705 strcpy(info_d->name, d->devname);
2706 }
2707 rest = this;
2708 }
2709
2710 return rest;
2711 }
2712
2713
2714 #ifndef MDASSEMBLE
2715 static int imsm_open_new(struct supertype *c, struct active_array *a,
2716 char *inst)
2717 {
2718 struct intel_super *super = c->sb;
2719 struct imsm_super *mpb = super->anchor;
2720
2721 if (atoi(inst) >= mpb->num_raid_devs) {
2722 fprintf(stderr, "%s: subarry index %d, out of range\n",
2723 __func__, atoi(inst));
2724 return -ENODEV;
2725 }
2726
2727 dprintf("imsm: open_new %s\n", inst);
2728 a->info.container_member = atoi(inst);
2729 return 0;
2730 }
2731
2732 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2733 {
2734 struct imsm_map *map = get_imsm_map(dev, 0);
2735
2736 if (!failed)
2737 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2738 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2739
2740 switch (get_imsm_raid_level(map)) {
2741 case 0:
2742 return IMSM_T_STATE_FAILED;
2743 break;
2744 case 1:
2745 if (failed < map->num_members)
2746 return IMSM_T_STATE_DEGRADED;
2747 else
2748 return IMSM_T_STATE_FAILED;
2749 break;
2750 case 10:
2751 {
2752 /**
2753 * check to see if any mirrors have failed, otherwise we
2754 * are degraded. Even numbered slots are mirrored on
2755 * slot+1
2756 */
2757 int i;
2758 /* gcc -Os complains that this is unused */
2759 int insync = insync;
2760
2761 for (i = 0; i < map->num_members; i++) {
2762 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2763 int idx = ord_to_idx(ord);
2764 struct imsm_disk *disk;
2765
2766 /* reset the potential in-sync count on even-numbered
2767 * slots. num_copies is always 2 for imsm raid10
2768 */
2769 if ((i & 1) == 0)
2770 insync = 2;
2771
2772 disk = get_imsm_disk(super, idx);
2773 if (!disk || disk->status & FAILED_DISK ||
2774 ord & IMSM_ORD_REBUILD)
2775 insync--;
2776
2777 /* no in-sync disks left in this mirror the
2778 * array has failed
2779 */
2780 if (insync == 0)
2781 return IMSM_T_STATE_FAILED;
2782 }
2783
2784 return IMSM_T_STATE_DEGRADED;
2785 }
2786 case 5:
2787 if (failed < 2)
2788 return IMSM_T_STATE_DEGRADED;
2789 else
2790 return IMSM_T_STATE_FAILED;
2791 break;
2792 default:
2793 break;
2794 }
2795
2796 return map->map_state;
2797 }
2798
2799 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2800 {
2801 int i;
2802 int failed = 0;
2803 struct imsm_disk *disk;
2804 struct imsm_map *map = get_imsm_map(dev, 0);
2805
2806 for (i = 0; i < map->num_members; i++) {
2807 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2808 int idx = ord_to_idx(ord);
2809
2810 disk = get_imsm_disk(super, idx);
2811 if (!disk || disk->status & FAILED_DISK ||
2812 ord & IMSM_ORD_REBUILD)
2813 failed++;
2814 }
2815
2816 return failed;
2817 }
2818
2819 static int is_resyncing(struct imsm_dev *dev)
2820 {
2821 struct imsm_map *migr_map;
2822
2823 if (!dev->vol.migr_state)
2824 return 0;
2825
2826 if (dev->vol.migr_type == MIGR_INIT)
2827 return 1;
2828
2829 migr_map = get_imsm_map(dev, 1);
2830
2831 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2832 return 1;
2833 else
2834 return 0;
2835 }
2836
2837 static int is_rebuilding(struct imsm_dev *dev)
2838 {
2839 struct imsm_map *migr_map;
2840
2841 if (!dev->vol.migr_state)
2842 return 0;
2843
2844 if (dev->vol.migr_type != MIGR_REBUILD)
2845 return 0;
2846
2847 migr_map = get_imsm_map(dev, 1);
2848
2849 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2850 return 1;
2851 else
2852 return 0;
2853 }
2854
2855 static void mark_failure(struct imsm_disk *disk)
2856 {
2857 if (disk->status & FAILED_DISK)
2858 return;
2859 disk->status |= FAILED_DISK;
2860 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2861 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2862 }
2863
2864 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2865 * states are handled in imsm_set_disk() with one exception, when a
2866 * resync is stopped due to a new failure this routine will set the
2867 * 'degraded' state for the array.
2868 */
2869 static int imsm_set_array_state(struct active_array *a, int consistent)
2870 {
2871 int inst = a->info.container_member;
2872 struct intel_super *super = a->container->sb;
2873 struct imsm_dev *dev = get_imsm_dev(super, inst);
2874 struct imsm_map *map = get_imsm_map(dev, 0);
2875 int failed = imsm_count_failed(super, dev);
2876 __u8 map_state = imsm_check_degraded(super, dev, failed);
2877
2878 /* before we activate this array handle any missing disks */
2879 if (consistent == 2 && super->missing) {
2880 struct dl *dl;
2881
2882 dprintf("imsm: mark missing\n");
2883 end_migration(dev, map_state);
2884 for (dl = super->missing; dl; dl = dl->next)
2885 mark_failure(&dl->disk);
2886 super->updates_pending++;
2887 }
2888
2889 if (consistent == 2 &&
2890 (!is_resync_complete(a) ||
2891 map_state != IMSM_T_STATE_NORMAL ||
2892 dev->vol.migr_state))
2893 consistent = 0;
2894
2895 if (is_resync_complete(a)) {
2896 /* complete intialization / resync,
2897 * recovery is completed in ->set_disk
2898 */
2899 if (is_resyncing(dev)) {
2900 dprintf("imsm: mark resync done\n");
2901 end_migration(dev, map_state);
2902 super->updates_pending++;
2903 }
2904 } else if (!is_resyncing(dev) && !failed) {
2905 /* mark the start of the init process if nothing is failed */
2906 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2907 if (map->map_state == IMSM_T_STATE_NORMAL)
2908 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REBUILD);
2909 else
2910 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
2911 super->updates_pending++;
2912 }
2913
2914 /* check if we can update the migration checkpoint */
2915 if (dev->vol.migr_state &&
2916 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2917 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2918 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2919 super->updates_pending++;
2920 }
2921
2922 /* mark dirty / clean */
2923 if (dev->vol.dirty != !consistent) {
2924 dprintf("imsm: mark '%s' (%llu)\n",
2925 consistent ? "clean" : "dirty", a->resync_start);
2926 if (consistent)
2927 dev->vol.dirty = 0;
2928 else
2929 dev->vol.dirty = 1;
2930 super->updates_pending++;
2931 }
2932 return consistent;
2933 }
2934
2935 static void imsm_set_disk(struct active_array *a, int n, int state)
2936 {
2937 int inst = a->info.container_member;
2938 struct intel_super *super = a->container->sb;
2939 struct imsm_dev *dev = get_imsm_dev(super, inst);
2940 struct imsm_map *map = get_imsm_map(dev, 0);
2941 struct imsm_disk *disk;
2942 int failed;
2943 __u32 ord;
2944 __u8 map_state;
2945
2946 if (n > map->num_members)
2947 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2948 n, map->num_members - 1);
2949
2950 if (n < 0)
2951 return;
2952
2953 dprintf("imsm: set_disk %d:%x\n", n, state);
2954
2955 ord = get_imsm_ord_tbl_ent(dev, n);
2956 disk = get_imsm_disk(super, ord_to_idx(ord));
2957
2958 /* check for new failures */
2959 if ((state & DS_FAULTY) && !(disk->status & FAILED_DISK)) {
2960 mark_failure(disk);
2961 super->updates_pending++;
2962 }
2963
2964 /* check if in_sync */
2965 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2966 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2967
2968 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2969 super->updates_pending++;
2970 }
2971
2972 failed = imsm_count_failed(super, dev);
2973 map_state = imsm_check_degraded(super, dev, failed);
2974
2975 /* check if recovery complete, newly degraded, or failed */
2976 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2977 end_migration(dev, map_state);
2978 super->updates_pending++;
2979 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2980 map->map_state != map_state &&
2981 !dev->vol.migr_state) {
2982 dprintf("imsm: mark degraded\n");
2983 map->map_state = map_state;
2984 super->updates_pending++;
2985 } else if (map_state == IMSM_T_STATE_FAILED &&
2986 map->map_state != map_state) {
2987 dprintf("imsm: mark failed\n");
2988 end_migration(dev, map_state);
2989 super->updates_pending++;
2990 }
2991 }
2992
2993 static int store_imsm_mpb(int fd, struct intel_super *super)
2994 {
2995 struct imsm_super *mpb = super->anchor;
2996 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2997 unsigned long long dsize;
2998 unsigned long long sectors;
2999
3000 get_dev_size(fd, NULL, &dsize);
3001
3002 if (mpb_size > 512) {
3003 /* -1 to account for anchor */
3004 sectors = mpb_sectors(mpb) - 1;
3005
3006 /* write the extended mpb to the sectors preceeding the anchor */
3007 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
3008 return 1;
3009
3010 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
3011 return 1;
3012 }
3013
3014 /* first block is stored on second to last sector of the disk */
3015 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3016 return 1;
3017
3018 if (write(fd, super->buf, 512) != 512)
3019 return 1;
3020
3021 return 0;
3022 }
3023
3024 static void imsm_sync_metadata(struct supertype *container)
3025 {
3026 struct intel_super *super = container->sb;
3027
3028 if (!super->updates_pending)
3029 return;
3030
3031 write_super_imsm(super, 0);
3032
3033 super->updates_pending = 0;
3034 }
3035
3036 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
3037 {
3038 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3039 int i = get_imsm_disk_idx(dev, idx);
3040 struct dl *dl;
3041
3042 for (dl = super->disks; dl; dl = dl->next)
3043 if (dl->index == i)
3044 break;
3045
3046 if (dl && dl->disk.status & FAILED_DISK)
3047 dl = NULL;
3048
3049 if (dl)
3050 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
3051
3052 return dl;
3053 }
3054
3055 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
3056 {
3057 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3058 int idx = get_imsm_disk_idx(dev, slot);
3059 struct imsm_map *map = get_imsm_map(dev, 0);
3060 unsigned long long esize;
3061 unsigned long long pos;
3062 struct mdinfo *d;
3063 struct extent *ex;
3064 int j;
3065 int found;
3066 __u32 array_start;
3067 struct dl *dl;
3068
3069 for (dl = super->disks; dl; dl = dl->next) {
3070 /* If in this array, skip */
3071 for (d = a->info.devs ; d ; d = d->next)
3072 if (d->state_fd >= 0 &&
3073 d->disk.major == dl->major &&
3074 d->disk.minor == dl->minor) {
3075 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3076 break;
3077 }
3078 if (d)
3079 continue;
3080
3081 /* skip in use or failed drives */
3082 if (dl->disk.status & FAILED_DISK || idx == dl->index) {
3083 dprintf("%x:%x status ( %s%s)\n",
3084 dl->major, dl->minor,
3085 dl->disk.status & FAILED_DISK ? "failed " : "",
3086 idx == dl->index ? "in use " : "");
3087 continue;
3088 }
3089
3090 /* Does this unused device have the requisite free space?
3091 * We need a->info.component_size sectors
3092 */
3093 ex = get_extents(super, dl);
3094 if (!ex) {
3095 dprintf("cannot get extents\n");
3096 continue;
3097 }
3098 found = 0;
3099 j = 0;
3100 pos = 0;
3101 array_start = __le32_to_cpu(map->pba_of_lba0);
3102
3103 do {
3104 /* check that we can start at pba_of_lba0 with
3105 * a->info.component_size of space
3106 */
3107 esize = ex[j].start - pos;
3108 if (array_start >= pos &&
3109 array_start + a->info.component_size < ex[j].start) {
3110 found = 1;
3111 break;
3112 }
3113 pos = ex[j].start + ex[j].size;
3114 j++;
3115
3116 } while (ex[j-1].size);
3117
3118 free(ex);
3119 if (!found) {
3120 dprintf("%x:%x does not have %llu at %d\n",
3121 dl->major, dl->minor,
3122 a->info.component_size,
3123 __le32_to_cpu(map->pba_of_lba0));
3124 /* No room */
3125 continue;
3126 } else
3127 break;
3128 }
3129
3130 return dl;
3131 }
3132
3133 static struct mdinfo *imsm_activate_spare(struct active_array *a,
3134 struct metadata_update **updates)
3135 {
3136 /**
3137 * Find a device with unused free space and use it to replace a
3138 * failed/vacant region in an array. We replace failed regions one a
3139 * array at a time. The result is that a new spare disk will be added
3140 * to the first failed array and after the monitor has finished
3141 * propagating failures the remainder will be consumed.
3142 *
3143 * FIXME add a capability for mdmon to request spares from another
3144 * container.
3145 */
3146
3147 struct intel_super *super = a->container->sb;
3148 int inst = a->info.container_member;
3149 struct imsm_dev *dev = get_imsm_dev(super, inst);
3150 struct imsm_map *map = get_imsm_map(dev, 0);
3151 int failed = a->info.array.raid_disks;
3152 struct mdinfo *rv = NULL;
3153 struct mdinfo *d;
3154 struct mdinfo *di;
3155 struct metadata_update *mu;
3156 struct dl *dl;
3157 struct imsm_update_activate_spare *u;
3158 int num_spares = 0;
3159 int i;
3160
3161 for (d = a->info.devs ; d ; d = d->next) {
3162 if ((d->curr_state & DS_FAULTY) &&
3163 d->state_fd >= 0)
3164 /* wait for Removal to happen */
3165 return NULL;
3166 if (d->state_fd >= 0)
3167 failed--;
3168 }
3169
3170 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
3171 inst, failed, a->info.array.raid_disks, a->info.array.level);
3172 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
3173 return NULL;
3174
3175 /* For each slot, if it is not working, find a spare */
3176 for (i = 0; i < a->info.array.raid_disks; i++) {
3177 for (d = a->info.devs ; d ; d = d->next)
3178 if (d->disk.raid_disk == i)
3179 break;
3180 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3181 if (d && (d->state_fd >= 0))
3182 continue;
3183
3184 /*
3185 * OK, this device needs recovery. Try to re-add the previous
3186 * occupant of this slot, if this fails add a new spare
3187 */
3188 dl = imsm_readd(super, i, a);
3189 if (!dl)
3190 dl = imsm_add_spare(super, i, a);
3191 if (!dl)
3192 continue;
3193
3194 /* found a usable disk with enough space */
3195 di = malloc(sizeof(*di));
3196 if (!di)
3197 continue;
3198 memset(di, 0, sizeof(*di));
3199
3200 /* dl->index will be -1 in the case we are activating a
3201 * pristine spare. imsm_process_update() will create a
3202 * new index in this case. Once a disk is found to be
3203 * failed in all member arrays it is kicked from the
3204 * metadata
3205 */
3206 di->disk.number = dl->index;
3207
3208 /* (ab)use di->devs to store a pointer to the device
3209 * we chose
3210 */
3211 di->devs = (struct mdinfo *) dl;
3212
3213 di->disk.raid_disk = i;
3214 di->disk.major = dl->major;
3215 di->disk.minor = dl->minor;
3216 di->disk.state = 0;
3217 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
3218 di->component_size = a->info.component_size;
3219 di->container_member = inst;
3220 di->next = rv;
3221 rv = di;
3222 num_spares++;
3223 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3224 i, di->data_offset);
3225
3226 break;
3227 }
3228
3229 if (!rv)
3230 /* No spares found */
3231 return rv;
3232 /* Now 'rv' has a list of devices to return.
3233 * Create a metadata_update record to update the
3234 * disk_ord_tbl for the array
3235 */
3236 mu = malloc(sizeof(*mu));
3237 if (mu) {
3238 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
3239 if (mu->buf == NULL) {
3240 free(mu);
3241 mu = NULL;
3242 }
3243 }
3244 if (!mu) {
3245 while (rv) {
3246 struct mdinfo *n = rv->next;
3247
3248 free(rv);
3249 rv = n;
3250 }
3251 return NULL;
3252 }
3253
3254 mu->space = NULL;
3255 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
3256 mu->next = *updates;
3257 u = (struct imsm_update_activate_spare *) mu->buf;
3258
3259 for (di = rv ; di ; di = di->next) {
3260 u->type = update_activate_spare;
3261 u->dl = (struct dl *) di->devs;
3262 di->devs = NULL;
3263 u->slot = di->disk.raid_disk;
3264 u->array = inst;
3265 u->next = u + 1;
3266 u++;
3267 }
3268 (u-1)->next = NULL;
3269 *updates = mu;
3270
3271 return rv;
3272 }
3273
3274 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
3275 {
3276 struct imsm_map *m1 = get_imsm_map(d1, 0);
3277 struct imsm_map *m2 = get_imsm_map(d2, 0);
3278 int i;
3279 int j;
3280 int idx;
3281
3282 for (i = 0; i < m1->num_members; i++) {
3283 idx = get_imsm_disk_idx(d1, i);
3284 for (j = 0; j < m2->num_members; j++)
3285 if (idx == get_imsm_disk_idx(d2, j))
3286 return 1;
3287 }
3288
3289 return 0;
3290 }
3291
3292 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
3293
3294 static void imsm_process_update(struct supertype *st,
3295 struct metadata_update *update)
3296 {
3297 /**
3298 * crack open the metadata_update envelope to find the update record
3299 * update can be one of:
3300 * update_activate_spare - a spare device has replaced a failed
3301 * device in an array, update the disk_ord_tbl. If this disk is
3302 * present in all member arrays then also clear the SPARE_DISK
3303 * flag
3304 */
3305 struct intel_super *super = st->sb;
3306 struct imsm_super *mpb;
3307 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3308
3309 /* update requires a larger buf but the allocation failed */
3310 if (super->next_len && !super->next_buf) {
3311 super->next_len = 0;
3312 return;
3313 }
3314
3315 if (super->next_buf) {
3316 memcpy(super->next_buf, super->buf, super->len);
3317 free(super->buf);
3318 super->len = super->next_len;
3319 super->buf = super->next_buf;
3320
3321 super->next_len = 0;
3322 super->next_buf = NULL;
3323 }
3324
3325 mpb = super->anchor;
3326
3327 switch (type) {
3328 case update_activate_spare: {
3329 struct imsm_update_activate_spare *u = (void *) update->buf;
3330 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3331 struct imsm_map *map = get_imsm_map(dev, 0);
3332 struct imsm_map *migr_map;
3333 struct active_array *a;
3334 struct imsm_disk *disk;
3335 __u8 to_state;
3336 struct dl *dl;
3337 unsigned int found;
3338 int failed;
3339 int victim = get_imsm_disk_idx(dev, u->slot);
3340 int i;
3341
3342 for (dl = super->disks; dl; dl = dl->next)
3343 if (dl == u->dl)
3344 break;
3345
3346 if (!dl) {
3347 fprintf(stderr, "error: imsm_activate_spare passed "
3348 "an unknown disk (index: %d)\n",
3349 u->dl->index);
3350 return;
3351 }
3352
3353 super->updates_pending++;
3354
3355 /* count failures (excluding rebuilds and the victim)
3356 * to determine map[0] state
3357 */
3358 failed = 0;
3359 for (i = 0; i < map->num_members; i++) {
3360 if (i == u->slot)
3361 continue;
3362 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3363 if (!disk || disk->status & FAILED_DISK)
3364 failed++;
3365 }
3366
3367 /* adding a pristine spare, assign a new index */
3368 if (dl->index < 0) {
3369 dl->index = super->anchor->num_disks;
3370 super->anchor->num_disks++;
3371 }
3372 disk = &dl->disk;
3373 disk->status |= CONFIGURED_DISK;
3374 disk->status &= ~SPARE_DISK;
3375
3376 /* mark rebuild */
3377 to_state = imsm_check_degraded(super, dev, failed);
3378 map->map_state = IMSM_T_STATE_DEGRADED;
3379 migrate(dev, to_state, MIGR_REBUILD);
3380 migr_map = get_imsm_map(dev, 1);
3381 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3382 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3383
3384 /* count arrays using the victim in the metadata */
3385 found = 0;
3386 for (a = st->arrays; a ; a = a->next) {
3387 dev = get_imsm_dev(super, a->info.container_member);
3388 for (i = 0; i < map->num_members; i++)
3389 if (victim == get_imsm_disk_idx(dev, i))
3390 found++;
3391 }
3392
3393 /* delete the victim if it is no longer being
3394 * utilized anywhere
3395 */
3396 if (!found) {
3397 struct dl **dlp;
3398
3399 /* We know that 'manager' isn't touching anything,
3400 * so it is safe to delete
3401 */
3402 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3403 if ((*dlp)->index == victim)
3404 break;
3405
3406 /* victim may be on the missing list */
3407 if (!*dlp)
3408 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3409 if ((*dlp)->index == victim)
3410 break;
3411 imsm_delete(super, dlp, victim);
3412 }
3413 break;
3414 }
3415 case update_create_array: {
3416 /* someone wants to create a new array, we need to be aware of
3417 * a few races/collisions:
3418 * 1/ 'Create' called by two separate instances of mdadm
3419 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3420 * devices that have since been assimilated via
3421 * activate_spare.
3422 * In the event this update can not be carried out mdadm will
3423 * (FIX ME) notice that its update did not take hold.
3424 */
3425 struct imsm_update_create_array *u = (void *) update->buf;
3426 struct imsm_dev *dev;
3427 struct imsm_map *map, *new_map;
3428 unsigned long long start, end;
3429 unsigned long long new_start, new_end;
3430 int i;
3431 int overlap = 0;
3432
3433 /* handle racing creates: first come first serve */
3434 if (u->dev_idx < mpb->num_raid_devs) {
3435 dprintf("%s: subarray %d already defined\n",
3436 __func__, u->dev_idx);
3437 return;
3438 }
3439
3440 /* check update is next in sequence */
3441 if (u->dev_idx != mpb->num_raid_devs) {
3442 dprintf("%s: can not create array %d expected index %d\n",
3443 __func__, u->dev_idx, mpb->num_raid_devs);
3444 return;
3445 }
3446
3447 new_map = get_imsm_map(&u->dev, 0);
3448 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3449 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3450
3451 /* handle activate_spare versus create race:
3452 * check to make sure that overlapping arrays do not include
3453 * overalpping disks
3454 */
3455 for (i = 0; i < mpb->num_raid_devs; i++) {
3456 dev = get_imsm_dev(super, i);
3457 map = get_imsm_map(dev, 0);
3458 start = __le32_to_cpu(map->pba_of_lba0);
3459 end = start + __le32_to_cpu(map->blocks_per_member);
3460 if ((new_start >= start && new_start <= end) ||
3461 (start >= new_start && start <= new_end))
3462 overlap = 1;
3463 if (overlap && disks_overlap(dev, &u->dev)) {
3464 dprintf("%s: arrays overlap\n", __func__);
3465 return;
3466 }
3467 }
3468 /* check num_members sanity */
3469 if (new_map->num_members > mpb->num_disks) {
3470 dprintf("%s: num_disks out of range\n", __func__);
3471 return;
3472 }
3473
3474 /* check that prepare update was successful */
3475 if (!update->space) {
3476 dprintf("%s: prepare update failed\n", __func__);
3477 return;
3478 }
3479
3480 super->updates_pending++;
3481 dev = update->space;
3482 map = get_imsm_map(dev, 0);
3483 update->space = NULL;
3484 imsm_copy_dev(dev, &u->dev);
3485 map = get_imsm_map(dev, 0);
3486 super->dev_tbl[u->dev_idx] = dev;
3487 mpb->num_raid_devs++;
3488
3489 /* fix up flags */
3490 for (i = 0; i < map->num_members; i++) {
3491 struct imsm_disk *disk;
3492
3493 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3494 disk->status |= CONFIGURED_DISK;
3495 disk->status &= ~SPARE_DISK;
3496 }
3497
3498 imsm_update_version_info(super);
3499
3500 break;
3501 }
3502 case update_add_disk:
3503
3504 /* we may be able to repair some arrays if disks are
3505 * being added */
3506 if (super->add) {
3507 struct active_array *a;
3508
3509 super->updates_pending++;
3510 for (a = st->arrays; a; a = a->next)
3511 a->check_degraded = 1;
3512 }
3513 /* add some spares to the metadata */
3514 while (super->add) {
3515 struct dl *al;
3516
3517 al = super->add;
3518 super->add = al->next;
3519 al->next = super->disks;
3520 super->disks = al;
3521 dprintf("%s: added %x:%x\n",
3522 __func__, al->major, al->minor);
3523 }
3524
3525 break;
3526 }
3527 }
3528
3529 static void imsm_prepare_update(struct supertype *st,
3530 struct metadata_update *update)
3531 {
3532 /**
3533 * Allocate space to hold new disk entries, raid-device entries or a new
3534 * mpb if necessary. The manager synchronously waits for updates to
3535 * complete in the monitor, so new mpb buffers allocated here can be
3536 * integrated by the monitor thread without worrying about live pointers
3537 * in the manager thread.
3538 */
3539 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3540 struct intel_super *super = st->sb;
3541 struct imsm_super *mpb = super->anchor;
3542 size_t buf_len;
3543 size_t len = 0;
3544
3545 switch (type) {
3546 case update_create_array: {
3547 struct imsm_update_create_array *u = (void *) update->buf;
3548
3549 len = sizeof_imsm_dev(&u->dev, 1);
3550 update->space = malloc(len);
3551 break;
3552 default:
3553 break;
3554 }
3555 }
3556
3557 /* check if we need a larger metadata buffer */
3558 if (super->next_buf)
3559 buf_len = super->next_len;
3560 else
3561 buf_len = super->len;
3562
3563 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3564 /* ok we need a larger buf than what is currently allocated
3565 * if this allocation fails process_update will notice that
3566 * ->next_len is set and ->next_buf is NULL
3567 */
3568 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3569 if (super->next_buf)
3570 free(super->next_buf);
3571
3572 super->next_len = buf_len;
3573 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3574 super->next_buf = NULL;
3575 }
3576 }
3577
3578 /* must be called while manager is quiesced */
3579 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3580 {
3581 struct imsm_super *mpb = super->anchor;
3582 struct dl *iter;
3583 struct imsm_dev *dev;
3584 struct imsm_map *map;
3585 int i, j, num_members;
3586 __u32 ord;
3587
3588 dprintf("%s: deleting device[%d] from imsm_super\n",
3589 __func__, index);
3590
3591 /* shift all indexes down one */
3592 for (iter = super->disks; iter; iter = iter->next)
3593 if (iter->index > index)
3594 iter->index--;
3595 for (iter = super->missing; iter; iter = iter->next)
3596 if (iter->index > index)
3597 iter->index--;
3598
3599 for (i = 0; i < mpb->num_raid_devs; i++) {
3600 dev = get_imsm_dev(super, i);
3601 map = get_imsm_map(dev, 0);
3602 num_members = map->num_members;
3603 for (j = 0; j < num_members; j++) {
3604 /* update ord entries being careful not to propagate
3605 * ord-flags to the first map
3606 */
3607 ord = get_imsm_ord_tbl_ent(dev, j);
3608
3609 if (ord_to_idx(ord) <= index)
3610 continue;
3611
3612 map = get_imsm_map(dev, 0);
3613 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3614 map = get_imsm_map(dev, 1);
3615 if (map)
3616 set_imsm_ord_tbl_ent(map, j, ord - 1);
3617 }
3618 }
3619
3620 mpb->num_disks--;
3621 super->updates_pending++;
3622 if (*dlp) {
3623 struct dl *dl = *dlp;
3624
3625 *dlp = (*dlp)->next;
3626 __free_imsm_disk(dl);
3627 }
3628 }
3629 #endif /* MDASSEMBLE */
3630
3631 struct superswitch super_imsm = {
3632 #ifndef MDASSEMBLE
3633 .examine_super = examine_super_imsm,
3634 .brief_examine_super = brief_examine_super_imsm,
3635 .detail_super = detail_super_imsm,
3636 .brief_detail_super = brief_detail_super_imsm,
3637 .write_init_super = write_init_super_imsm,
3638 .validate_geometry = validate_geometry_imsm,
3639 .add_to_super = add_to_super_imsm,
3640 #endif
3641 .match_home = match_home_imsm,
3642 .uuid_from_super= uuid_from_super_imsm,
3643 .getinfo_super = getinfo_super_imsm,
3644 .update_super = update_super_imsm,
3645
3646 .avail_size = avail_size_imsm,
3647
3648 .compare_super = compare_super_imsm,
3649
3650 .load_super = load_super_imsm,
3651 .init_super = init_super_imsm,
3652 .store_super = store_zero_imsm,
3653 .free_super = free_super_imsm,
3654 .match_metadata_desc = match_metadata_desc_imsm,
3655 .container_content = container_content_imsm,
3656
3657 .external = 1,
3658
3659 #ifndef MDASSEMBLE
3660 /* for mdmon */
3661 .open_new = imsm_open_new,
3662 .load_super = load_super_imsm,
3663 .set_array_state= imsm_set_array_state,
3664 .set_disk = imsm_set_disk,
3665 .sync_metadata = imsm_sync_metadata,
3666 .activate_spare = imsm_activate_spare,
3667 .process_update = imsm_process_update,
3668 .prepare_update = imsm_prepare_update,
3669 #endif /* MDASSEMBLE */
3670 };