]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
super-intel: Avoid gcc-8.1 complaining about truncating snprintf()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
86
87 /* Define attributes that are unused but not harmful */
88 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
89
90 #define MPB_SECTOR_CNT 2210
91 #define IMSM_RESERVED_SECTORS 8192
92 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
93 #define SECT_PER_MB_SHIFT 11
94 #define MAX_SECTOR_SIZE 4096
95 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
98
99 /* Disk configuration info. */
100 #define IMSM_MAX_DEVICES 255
101 struct imsm_disk {
102 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
103 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
104 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
105 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
106 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
107 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
108 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
109 __u32 status; /* 0xF0 - 0xF3 */
110 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
111 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
112 #define IMSM_DISK_FILLERS 3
113 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
114 };
115
116 /* map selector for map managment
117 */
118 #define MAP_0 0
119 #define MAP_1 1
120 #define MAP_X -1
121
122 /* RAID map configuration infos. */
123 struct imsm_map {
124 __u32 pba_of_lba0_lo; /* start address of partition */
125 __u32 blocks_per_member_lo;/* blocks per member */
126 __u32 num_data_stripes_lo; /* number of data stripes */
127 __u16 blocks_per_strip;
128 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
129 #define IMSM_T_STATE_NORMAL 0
130 #define IMSM_T_STATE_UNINITIALIZED 1
131 #define IMSM_T_STATE_DEGRADED 2
132 #define IMSM_T_STATE_FAILED 3
133 __u8 raid_level;
134 #define IMSM_T_RAID0 0
135 #define IMSM_T_RAID1 1
136 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
137 __u8 num_members; /* number of member disks */
138 __u8 num_domains; /* number of parity domains */
139 __u8 failed_disk_num; /* valid only when state is degraded */
140 __u8 ddf;
141 __u32 pba_of_lba0_hi;
142 __u32 blocks_per_member_hi;
143 __u32 num_data_stripes_hi;
144 __u32 filler[4]; /* expansion area */
145 #define IMSM_ORD_REBUILD (1 << 24)
146 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
147 * top byte contains some flags
148 */
149 } __attribute__ ((packed));
150
151 struct imsm_vol {
152 __u32 curr_migr_unit;
153 __u32 checkpoint_id; /* id to access curr_migr_unit */
154 __u8 migr_state; /* Normal or Migrating */
155 #define MIGR_INIT 0
156 #define MIGR_REBUILD 1
157 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
158 #define MIGR_GEN_MIGR 3
159 #define MIGR_STATE_CHANGE 4
160 #define MIGR_REPAIR 5
161 __u8 migr_type; /* Initializing, Rebuilding, ... */
162 #define RAIDVOL_CLEAN 0
163 #define RAIDVOL_DIRTY 1
164 #define RAIDVOL_DSRECORD_VALID 2
165 __u8 dirty;
166 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
167 __u16 verify_errors; /* number of mismatches */
168 __u16 bad_blocks; /* number of bad blocks during verify */
169 __u32 filler[4];
170 struct imsm_map map[1];
171 /* here comes another one if migr_state */
172 } __attribute__ ((packed));
173
174 struct imsm_dev {
175 __u8 volume[MAX_RAID_SERIAL_LEN];
176 __u32 size_low;
177 __u32 size_high;
178 #define DEV_BOOTABLE __cpu_to_le32(0x01)
179 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
180 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
181 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
182 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
183 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
184 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
185 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
186 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
187 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
188 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
189 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
190 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
191 __u32 status; /* Persistent RaidDev status */
192 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
193 __u8 migr_priority;
194 __u8 num_sub_vols;
195 __u8 tid;
196 __u8 cng_master_disk;
197 __u16 cache_policy;
198 __u8 cng_state;
199 __u8 cng_sub_state;
200 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
201
202 /* NVM_EN */
203 __u8 nv_cache_mode;
204 __u8 nv_cache_flags;
205
206 /* Unique Volume Id of the NvCache Volume associated with this volume */
207 __u32 nvc_vol_orig_family_num;
208 __u16 nvc_vol_raid_dev_num;
209
210 #define RWH_OFF 0
211 #define RWH_DISTRIBUTED 1
212 #define RWH_JOURNALING_DRIVE 2
213 #define RWH_MULTIPLE_DISTRIBUTED 3
214 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
215 #define RWH_MULTIPLE_OFF 5
216 __u8 rwh_policy; /* Raid Write Hole Policy */
217 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
218 __u8 filler1;
219
220 #define IMSM_DEV_FILLERS 3
221 __u32 filler[IMSM_DEV_FILLERS];
222 struct imsm_vol vol;
223 } __attribute__ ((packed));
224
225 struct imsm_super {
226 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
227 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
228 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
229 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
230 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
231 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
232 __u32 attributes; /* 0x34 - 0x37 */
233 __u8 num_disks; /* 0x38 Number of configured disks */
234 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
235 __u8 error_log_pos; /* 0x3A */
236 __u8 fill[1]; /* 0x3B */
237 __u32 cache_size; /* 0x3c - 0x40 in mb */
238 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
239 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
240 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
241 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
242 * volume IDs for raid_dev created in this array
243 * (starts at 1)
244 */
245 __u16 filler1; /* 0x4E - 0x4F */
246 #define IMSM_FILLERS 34
247 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
248 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
249 /* here comes imsm_dev[num_raid_devs] */
250 /* here comes BBM logs */
251 } __attribute__ ((packed));
252
253 #define BBM_LOG_MAX_ENTRIES 254
254 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
255 #define BBM_LOG_SIGNATURE 0xabadb10c
256
257 struct bbm_log_block_addr {
258 __u16 w1;
259 __u32 dw1;
260 } __attribute__ ((__packed__));
261
262 struct bbm_log_entry {
263 __u8 marked_count; /* Number of blocks marked - 1 */
264 __u8 disk_ordinal; /* Disk entry within the imsm_super */
265 struct bbm_log_block_addr defective_block_start;
266 } __attribute__ ((__packed__));
267
268 struct bbm_log {
269 __u32 signature; /* 0xABADB10C */
270 __u32 entry_count;
271 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
272 } __attribute__ ((__packed__));
273
274 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
275
276 #define BLOCKS_PER_KB (1024/512)
277
278 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
279
280 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
281
282 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
283 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
284 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
285 */
286
287 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
288 * be recovered using srcMap */
289 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
290 * already been migrated and must
291 * be recovered from checkpoint area */
292
293 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
294
295 struct migr_record {
296 __u32 rec_status; /* Status used to determine how to restart
297 * migration in case it aborts
298 * in some fashion */
299 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
300 __u32 family_num; /* Family number of MPB
301 * containing the RaidDev
302 * that is migrating */
303 __u32 ascending_migr; /* True if migrating in increasing
304 * order of lbas */
305 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
306 __u32 dest_depth_per_unit; /* Num member blocks each destMap
307 * member disk
308 * advances per unit-of-operation */
309 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
310 __u32 dest_1st_member_lba; /* First member lba on first
311 * stripe of destination */
312 __u32 num_migr_units; /* Total num migration units-of-op */
313 __u32 post_migr_vol_cap; /* Size of volume after
314 * migration completes */
315 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
316 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
317 * migration ckpt record was read from
318 * (for recovered migrations) */
319 } __attribute__ ((__packed__));
320
321 struct md_list {
322 /* usage marker:
323 * 1: load metadata
324 * 2: metadata does not match
325 * 4: already checked
326 */
327 int used;
328 char *devname;
329 int found;
330 int container;
331 dev_t st_rdev;
332 struct md_list *next;
333 };
334
335 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
336
337 static __u8 migr_type(struct imsm_dev *dev)
338 {
339 if (dev->vol.migr_type == MIGR_VERIFY &&
340 dev->status & DEV_VERIFY_AND_FIX)
341 return MIGR_REPAIR;
342 else
343 return dev->vol.migr_type;
344 }
345
346 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
347 {
348 /* for compatibility with older oroms convert MIGR_REPAIR, into
349 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
350 */
351 if (migr_type == MIGR_REPAIR) {
352 dev->vol.migr_type = MIGR_VERIFY;
353 dev->status |= DEV_VERIFY_AND_FIX;
354 } else {
355 dev->vol.migr_type = migr_type;
356 dev->status &= ~DEV_VERIFY_AND_FIX;
357 }
358 }
359
360 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
361 {
362 return ROUND_UP(bytes, sector_size) / sector_size;
363 }
364
365 static unsigned int mpb_sectors(struct imsm_super *mpb,
366 unsigned int sector_size)
367 {
368 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
369 }
370
371 struct intel_dev {
372 struct imsm_dev *dev;
373 struct intel_dev *next;
374 unsigned index;
375 };
376
377 struct intel_hba {
378 enum sys_dev_type type;
379 char *path;
380 char *pci_id;
381 struct intel_hba *next;
382 };
383
384 enum action {
385 DISK_REMOVE = 1,
386 DISK_ADD
387 };
388 /* internal representation of IMSM metadata */
389 struct intel_super {
390 union {
391 void *buf; /* O_DIRECT buffer for reading/writing metadata */
392 struct imsm_super *anchor; /* immovable parameters */
393 };
394 union {
395 void *migr_rec_buf; /* buffer for I/O operations */
396 struct migr_record *migr_rec; /* migration record */
397 };
398 int clean_migration_record_by_mdmon; /* when reshape is switched to next
399 array, it indicates that mdmon is allowed to clean migration
400 record */
401 size_t len; /* size of the 'buf' allocation */
402 size_t extra_space; /* extra space in 'buf' that is not used yet */
403 void *next_buf; /* for realloc'ing buf from the manager */
404 size_t next_len;
405 int updates_pending; /* count of pending updates for mdmon */
406 int current_vol; /* index of raid device undergoing creation */
407 unsigned long long create_offset; /* common start for 'current_vol' */
408 __u32 random; /* random data for seeding new family numbers */
409 struct intel_dev *devlist;
410 unsigned int sector_size; /* sector size of used member drives */
411 struct dl {
412 struct dl *next;
413 int index;
414 __u8 serial[MAX_RAID_SERIAL_LEN];
415 int major, minor;
416 char *devname;
417 struct imsm_disk disk;
418 int fd;
419 int extent_cnt;
420 struct extent *e; /* for determining freespace @ create */
421 int raiddisk; /* slot to fill in autolayout */
422 enum action action;
423 } *disks, *current_disk;
424 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
425 active */
426 struct dl *missing; /* disks removed while we weren't looking */
427 struct bbm_log *bbm_log;
428 struct intel_hba *hba; /* device path of the raid controller for this metadata */
429 const struct imsm_orom *orom; /* platform firmware support */
430 struct intel_super *next; /* (temp) list for disambiguating family_num */
431 struct md_bb bb; /* memory for get_bad_blocks call */
432 };
433
434 struct intel_disk {
435 struct imsm_disk disk;
436 #define IMSM_UNKNOWN_OWNER (-1)
437 int owner;
438 struct intel_disk *next;
439 };
440
441 struct extent {
442 unsigned long long start, size;
443 };
444
445 /* definitions of reshape process types */
446 enum imsm_reshape_type {
447 CH_TAKEOVER,
448 CH_MIGRATION,
449 CH_ARRAY_SIZE,
450 };
451
452 /* definition of messages passed to imsm_process_update */
453 enum imsm_update_type {
454 update_activate_spare,
455 update_create_array,
456 update_kill_array,
457 update_rename_array,
458 update_add_remove_disk,
459 update_reshape_container_disks,
460 update_reshape_migration,
461 update_takeover,
462 update_general_migration_checkpoint,
463 update_size_change,
464 update_prealloc_badblocks_mem,
465 update_rwh_policy,
466 };
467
468 struct imsm_update_activate_spare {
469 enum imsm_update_type type;
470 struct dl *dl;
471 int slot;
472 int array;
473 struct imsm_update_activate_spare *next;
474 };
475
476 struct geo_params {
477 char devnm[32];
478 char *dev_name;
479 unsigned long long size;
480 int level;
481 int layout;
482 int chunksize;
483 int raid_disks;
484 };
485
486 enum takeover_direction {
487 R10_TO_R0,
488 R0_TO_R10
489 };
490 struct imsm_update_takeover {
491 enum imsm_update_type type;
492 int subarray;
493 enum takeover_direction direction;
494 };
495
496 struct imsm_update_reshape {
497 enum imsm_update_type type;
498 int old_raid_disks;
499 int new_raid_disks;
500
501 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
502 };
503
504 struct imsm_update_reshape_migration {
505 enum imsm_update_type type;
506 int old_raid_disks;
507 int new_raid_disks;
508 /* fields for array migration changes
509 */
510 int subdev;
511 int new_level;
512 int new_layout;
513 int new_chunksize;
514
515 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
516 };
517
518 struct imsm_update_size_change {
519 enum imsm_update_type type;
520 int subdev;
521 long long new_size;
522 };
523
524 struct imsm_update_general_migration_checkpoint {
525 enum imsm_update_type type;
526 __u32 curr_migr_unit;
527 };
528
529 struct disk_info {
530 __u8 serial[MAX_RAID_SERIAL_LEN];
531 };
532
533 struct imsm_update_create_array {
534 enum imsm_update_type type;
535 int dev_idx;
536 struct imsm_dev dev;
537 };
538
539 struct imsm_update_kill_array {
540 enum imsm_update_type type;
541 int dev_idx;
542 };
543
544 struct imsm_update_rename_array {
545 enum imsm_update_type type;
546 __u8 name[MAX_RAID_SERIAL_LEN];
547 int dev_idx;
548 };
549
550 struct imsm_update_add_remove_disk {
551 enum imsm_update_type type;
552 };
553
554 struct imsm_update_prealloc_bb_mem {
555 enum imsm_update_type type;
556 };
557
558 struct imsm_update_rwh_policy {
559 enum imsm_update_type type;
560 int new_policy;
561 int dev_idx;
562 };
563
564 static const char *_sys_dev_type[] = {
565 [SYS_DEV_UNKNOWN] = "Unknown",
566 [SYS_DEV_SAS] = "SAS",
567 [SYS_DEV_SATA] = "SATA",
568 [SYS_DEV_NVME] = "NVMe",
569 [SYS_DEV_VMD] = "VMD"
570 };
571
572 const char *get_sys_dev_type(enum sys_dev_type type)
573 {
574 if (type >= SYS_DEV_MAX)
575 type = SYS_DEV_UNKNOWN;
576
577 return _sys_dev_type[type];
578 }
579
580 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
581 {
582 struct intel_hba *result = xmalloc(sizeof(*result));
583
584 result->type = device->type;
585 result->path = xstrdup(device->path);
586 result->next = NULL;
587 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
588 result->pci_id++;
589
590 return result;
591 }
592
593 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
594 {
595 struct intel_hba *result;
596
597 for (result = hba; result; result = result->next) {
598 if (result->type == device->type && strcmp(result->path, device->path) == 0)
599 break;
600 }
601 return result;
602 }
603
604 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
605 {
606 struct intel_hba *hba;
607
608 /* check if disk attached to Intel HBA */
609 hba = find_intel_hba(super->hba, device);
610 if (hba != NULL)
611 return 1;
612 /* Check if HBA is already attached to super */
613 if (super->hba == NULL) {
614 super->hba = alloc_intel_hba(device);
615 return 1;
616 }
617
618 hba = super->hba;
619 /* Intel metadata allows for all disks attached to the same type HBA.
620 * Do not support HBA types mixing
621 */
622 if (device->type != hba->type)
623 return 2;
624
625 /* Multiple same type HBAs can be used if they share the same OROM */
626 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
627
628 if (device_orom != super->orom)
629 return 2;
630
631 while (hba->next)
632 hba = hba->next;
633
634 hba->next = alloc_intel_hba(device);
635 return 1;
636 }
637
638 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
639 {
640 struct sys_dev *list, *elem;
641 char *disk_path;
642
643 if ((list = find_intel_devices()) == NULL)
644 return 0;
645
646 if (fd < 0)
647 disk_path = (char *) devname;
648 else
649 disk_path = diskfd_to_devpath(fd);
650
651 if (!disk_path)
652 return 0;
653
654 for (elem = list; elem; elem = elem->next)
655 if (path_attached_to_hba(disk_path, elem->path))
656 return elem;
657
658 if (disk_path != devname)
659 free(disk_path);
660
661 return NULL;
662 }
663
664 static int find_intel_hba_capability(int fd, struct intel_super *super,
665 char *devname);
666
667 static struct supertype *match_metadata_desc_imsm(char *arg)
668 {
669 struct supertype *st;
670
671 if (strcmp(arg, "imsm") != 0 &&
672 strcmp(arg, "default") != 0
673 )
674 return NULL;
675
676 st = xcalloc(1, sizeof(*st));
677 st->ss = &super_imsm;
678 st->max_devs = IMSM_MAX_DEVICES;
679 st->minor_version = 0;
680 st->sb = NULL;
681 return st;
682 }
683
684 static __u8 *get_imsm_version(struct imsm_super *mpb)
685 {
686 return &mpb->sig[MPB_SIG_LEN];
687 }
688
689 /* retrieve a disk directly from the anchor when the anchor is known to be
690 * up-to-date, currently only at load time
691 */
692 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
693 {
694 if (index >= mpb->num_disks)
695 return NULL;
696 return &mpb->disk[index];
697 }
698
699 /* retrieve the disk description based on a index of the disk
700 * in the sub-array
701 */
702 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
703 {
704 struct dl *d;
705
706 for (d = super->disks; d; d = d->next)
707 if (d->index == index)
708 return d;
709
710 return NULL;
711 }
712 /* retrieve a disk from the parsed metadata */
713 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
714 {
715 struct dl *dl;
716
717 dl = get_imsm_dl_disk(super, index);
718 if (dl)
719 return &dl->disk;
720
721 return NULL;
722 }
723
724 /* generate a checksum directly from the anchor when the anchor is known to be
725 * up-to-date, currently only at load or write_super after coalescing
726 */
727 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
728 {
729 __u32 end = mpb->mpb_size / sizeof(end);
730 __u32 *p = (__u32 *) mpb;
731 __u32 sum = 0;
732
733 while (end--) {
734 sum += __le32_to_cpu(*p);
735 p++;
736 }
737
738 return sum - __le32_to_cpu(mpb->check_sum);
739 }
740
741 static size_t sizeof_imsm_map(struct imsm_map *map)
742 {
743 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
744 }
745
746 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
747 {
748 /* A device can have 2 maps if it is in the middle of a migration.
749 * If second_map is:
750 * MAP_0 - we return the first map
751 * MAP_1 - we return the second map if it exists, else NULL
752 * MAP_X - we return the second map if it exists, else the first
753 */
754 struct imsm_map *map = &dev->vol.map[0];
755 struct imsm_map *map2 = NULL;
756
757 if (dev->vol.migr_state)
758 map2 = (void *)map + sizeof_imsm_map(map);
759
760 switch (second_map) {
761 case MAP_0:
762 break;
763 case MAP_1:
764 map = map2;
765 break;
766 case MAP_X:
767 if (map2)
768 map = map2;
769 break;
770 default:
771 map = NULL;
772 }
773 return map;
774
775 }
776
777 /* return the size of the device.
778 * migr_state increases the returned size if map[0] were to be duplicated
779 */
780 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
781 {
782 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
783 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
784
785 /* migrating means an additional map */
786 if (dev->vol.migr_state)
787 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
788 else if (migr_state)
789 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
790
791 return size;
792 }
793
794 /* retrieve disk serial number list from a metadata update */
795 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
796 {
797 void *u = update;
798 struct disk_info *inf;
799
800 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
801 sizeof_imsm_dev(&update->dev, 0);
802
803 return inf;
804 }
805
806 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
807 {
808 int offset;
809 int i;
810 void *_mpb = mpb;
811
812 if (index >= mpb->num_raid_devs)
813 return NULL;
814
815 /* devices start after all disks */
816 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
817
818 for (i = 0; i <= index; i++)
819 if (i == index)
820 return _mpb + offset;
821 else
822 offset += sizeof_imsm_dev(_mpb + offset, 0);
823
824 return NULL;
825 }
826
827 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
828 {
829 struct intel_dev *dv;
830
831 if (index >= super->anchor->num_raid_devs)
832 return NULL;
833 for (dv = super->devlist; dv; dv = dv->next)
834 if (dv->index == index)
835 return dv->dev;
836 return NULL;
837 }
838
839 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
840 *addr)
841 {
842 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
843 __le16_to_cpu(addr->w1));
844 }
845
846 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
847 {
848 struct bbm_log_block_addr addr;
849
850 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
851 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
852 return addr;
853 }
854
855 /* get size of the bbm log */
856 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
857 {
858 if (!log || log->entry_count == 0)
859 return 0;
860
861 return sizeof(log->signature) +
862 sizeof(log->entry_count) +
863 log->entry_count * sizeof(struct bbm_log_entry);
864 }
865
866 /* check if bad block is not partially stored in bbm log */
867 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
868 long long sector, const int length, __u32 *pos)
869 {
870 __u32 i;
871
872 for (i = *pos; i < log->entry_count; i++) {
873 struct bbm_log_entry *entry = &log->marked_block_entries[i];
874 unsigned long long bb_start;
875 unsigned long long bb_end;
876
877 bb_start = __le48_to_cpu(&entry->defective_block_start);
878 bb_end = bb_start + (entry->marked_count + 1);
879
880 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
881 (bb_end <= sector + length)) {
882 *pos = i;
883 return 1;
884 }
885 }
886 return 0;
887 }
888
889 /* record new bad block in bbm log */
890 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
891 long long sector, int length)
892 {
893 int new_bb = 0;
894 __u32 pos = 0;
895 struct bbm_log_entry *entry = NULL;
896
897 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
898 struct bbm_log_entry *e = &log->marked_block_entries[pos];
899
900 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
901 (__le48_to_cpu(&e->defective_block_start) == sector)) {
902 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
903 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
904 pos = pos + 1;
905 continue;
906 }
907 entry = e;
908 break;
909 }
910
911 if (entry) {
912 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
913 BBM_LOG_MAX_LBA_ENTRY_VAL;
914 entry->defective_block_start = __cpu_to_le48(sector);
915 entry->marked_count = cnt - 1;
916 if (cnt == length)
917 return 1;
918 sector += cnt;
919 length -= cnt;
920 }
921
922 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
925 return 0;
926
927 while (length > 0) {
928 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
929 BBM_LOG_MAX_LBA_ENTRY_VAL;
930 struct bbm_log_entry *entry =
931 &log->marked_block_entries[log->entry_count];
932
933 entry->defective_block_start = __cpu_to_le48(sector);
934 entry->marked_count = cnt - 1;
935 entry->disk_ordinal = idx;
936
937 sector += cnt;
938 length -= cnt;
939
940 log->entry_count++;
941 }
942
943 return new_bb;
944 }
945
946 /* clear all bad blocks for given disk */
947 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
948 {
949 __u32 i = 0;
950
951 while (i < log->entry_count) {
952 struct bbm_log_entry *entries = log->marked_block_entries;
953
954 if (entries[i].disk_ordinal == idx) {
955 if (i < log->entry_count - 1)
956 entries[i] = entries[log->entry_count - 1];
957 log->entry_count--;
958 } else {
959 i++;
960 }
961 }
962 }
963
964 /* clear given bad block */
965 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
966 long long sector, const int length) {
967 __u32 i = 0;
968
969 while (i < log->entry_count) {
970 struct bbm_log_entry *entries = log->marked_block_entries;
971
972 if ((entries[i].disk_ordinal == idx) &&
973 (__le48_to_cpu(&entries[i].defective_block_start) ==
974 sector) && (entries[i].marked_count + 1 == length)) {
975 if (i < log->entry_count - 1)
976 entries[i] = entries[log->entry_count - 1];
977 log->entry_count--;
978 break;
979 }
980 i++;
981 }
982
983 return 1;
984 }
985
986 /* allocate and load BBM log from metadata */
987 static int load_bbm_log(struct intel_super *super)
988 {
989 struct imsm_super *mpb = super->anchor;
990 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
991
992 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
993 if (!super->bbm_log)
994 return 1;
995
996 if (bbm_log_size) {
997 struct bbm_log *log = (void *)mpb +
998 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
999
1000 __u32 entry_count;
1001
1002 if (bbm_log_size < sizeof(log->signature) +
1003 sizeof(log->entry_count))
1004 return 2;
1005
1006 entry_count = __le32_to_cpu(log->entry_count);
1007 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1008 (entry_count > BBM_LOG_MAX_ENTRIES))
1009 return 3;
1010
1011 if (bbm_log_size !=
1012 sizeof(log->signature) + sizeof(log->entry_count) +
1013 entry_count * sizeof(struct bbm_log_entry))
1014 return 4;
1015
1016 memcpy(super->bbm_log, log, bbm_log_size);
1017 } else {
1018 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1019 super->bbm_log->entry_count = 0;
1020 }
1021
1022 return 0;
1023 }
1024
1025 /* checks if bad block is within volume boundaries */
1026 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1027 const unsigned long long start_sector,
1028 const unsigned long long size)
1029 {
1030 unsigned long long bb_start;
1031 unsigned long long bb_end;
1032
1033 bb_start = __le48_to_cpu(&entry->defective_block_start);
1034 bb_end = bb_start + (entry->marked_count + 1);
1035
1036 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1037 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1038 return 1;
1039
1040 return 0;
1041 }
1042
1043 /* get list of bad blocks on a drive for a volume */
1044 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1045 const unsigned long long start_sector,
1046 const unsigned long long size,
1047 struct md_bb *bbs)
1048 {
1049 __u32 count = 0;
1050 __u32 i;
1051
1052 for (i = 0; i < log->entry_count; i++) {
1053 const struct bbm_log_entry *ent =
1054 &log->marked_block_entries[i];
1055 struct md_bb_entry *bb;
1056
1057 if ((ent->disk_ordinal == idx) &&
1058 is_bad_block_in_volume(ent, start_sector, size)) {
1059
1060 if (!bbs->entries) {
1061 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1062 sizeof(*bb));
1063 if (!bbs->entries)
1064 break;
1065 }
1066
1067 bb = &bbs->entries[count++];
1068 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1069 bb->length = ent->marked_count + 1;
1070 }
1071 }
1072 bbs->count = count;
1073 }
1074
1075 /*
1076 * for second_map:
1077 * == MAP_0 get first map
1078 * == MAP_1 get second map
1079 * == MAP_X than get map according to the current migr_state
1080 */
1081 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1082 int slot,
1083 int second_map)
1084 {
1085 struct imsm_map *map;
1086
1087 map = get_imsm_map(dev, second_map);
1088
1089 /* top byte identifies disk under rebuild */
1090 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1091 }
1092
1093 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1094 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1095 {
1096 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1097
1098 return ord_to_idx(ord);
1099 }
1100
1101 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1102 {
1103 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1104 }
1105
1106 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
1107 {
1108 int slot;
1109 __u32 ord;
1110
1111 for (slot = 0; slot < map->num_members; slot++) {
1112 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1113 if (ord_to_idx(ord) == idx)
1114 return slot;
1115 }
1116
1117 return -1;
1118 }
1119
1120 static int get_imsm_raid_level(struct imsm_map *map)
1121 {
1122 if (map->raid_level == 1) {
1123 if (map->num_members == 2)
1124 return 1;
1125 else
1126 return 10;
1127 }
1128
1129 return map->raid_level;
1130 }
1131
1132 static int cmp_extent(const void *av, const void *bv)
1133 {
1134 const struct extent *a = av;
1135 const struct extent *b = bv;
1136 if (a->start < b->start)
1137 return -1;
1138 if (a->start > b->start)
1139 return 1;
1140 return 0;
1141 }
1142
1143 static int count_memberships(struct dl *dl, struct intel_super *super)
1144 {
1145 int memberships = 0;
1146 int i;
1147
1148 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1149 struct imsm_dev *dev = get_imsm_dev(super, i);
1150 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1151
1152 if (get_imsm_disk_slot(map, dl->index) >= 0)
1153 memberships++;
1154 }
1155
1156 return memberships;
1157 }
1158
1159 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1160
1161 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1162 {
1163 if (lo == 0 || hi == 0)
1164 return 1;
1165 *lo = __le32_to_cpu((unsigned)n);
1166 *hi = __le32_to_cpu((unsigned)(n >> 32));
1167 return 0;
1168 }
1169
1170 static unsigned long long join_u32(__u32 lo, __u32 hi)
1171 {
1172 return (unsigned long long)__le32_to_cpu(lo) |
1173 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1174 }
1175
1176 static unsigned long long total_blocks(struct imsm_disk *disk)
1177 {
1178 if (disk == NULL)
1179 return 0;
1180 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1181 }
1182
1183 static unsigned long long pba_of_lba0(struct imsm_map *map)
1184 {
1185 if (map == NULL)
1186 return 0;
1187 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1188 }
1189
1190 static unsigned long long blocks_per_member(struct imsm_map *map)
1191 {
1192 if (map == NULL)
1193 return 0;
1194 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1195 }
1196
1197 static unsigned long long num_data_stripes(struct imsm_map *map)
1198 {
1199 if (map == NULL)
1200 return 0;
1201 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1202 }
1203
1204 static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1205 {
1206 if (dev == NULL)
1207 return 0;
1208 return join_u32(dev->size_low, dev->size_high);
1209 }
1210
1211 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1212 {
1213 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1214 }
1215
1216 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1217 {
1218 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1219 }
1220
1221 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1222 {
1223 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1224 }
1225
1226 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1227 {
1228 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1229 }
1230
1231 static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1232 {
1233 split_ull(n, &dev->size_low, &dev->size_high);
1234 }
1235
1236 static unsigned long long per_dev_array_size(struct imsm_map *map)
1237 {
1238 unsigned long long array_size = 0;
1239
1240 if (map == NULL)
1241 return array_size;
1242
1243 array_size = num_data_stripes(map) * map->blocks_per_strip;
1244 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1245 array_size *= 2;
1246
1247 return array_size;
1248 }
1249
1250 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1251 {
1252 /* find a list of used extents on the given physical device */
1253 struct extent *rv, *e;
1254 int i;
1255 int memberships = count_memberships(dl, super);
1256 __u32 reservation;
1257
1258 /* trim the reserved area for spares, so they can join any array
1259 * regardless of whether the OROM has assigned sectors from the
1260 * IMSM_RESERVED_SECTORS region
1261 */
1262 if (dl->index == -1)
1263 reservation = imsm_min_reserved_sectors(super);
1264 else
1265 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1266
1267 rv = xcalloc(sizeof(struct extent), (memberships + 1));
1268 e = rv;
1269
1270 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1271 struct imsm_dev *dev = get_imsm_dev(super, i);
1272 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1273
1274 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1275 e->start = pba_of_lba0(map);
1276 e->size = per_dev_array_size(map);
1277 e++;
1278 }
1279 }
1280 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1281
1282 /* determine the start of the metadata
1283 * when no raid devices are defined use the default
1284 * ...otherwise allow the metadata to truncate the value
1285 * as is the case with older versions of imsm
1286 */
1287 if (memberships) {
1288 struct extent *last = &rv[memberships - 1];
1289 unsigned long long remainder;
1290
1291 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1292 /* round down to 1k block to satisfy precision of the kernel
1293 * 'size' interface
1294 */
1295 remainder &= ~1UL;
1296 /* make sure remainder is still sane */
1297 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1298 remainder = ROUND_UP(super->len, 512) >> 9;
1299 if (reservation > remainder)
1300 reservation = remainder;
1301 }
1302 e->start = total_blocks(&dl->disk) - reservation;
1303 e->size = 0;
1304 return rv;
1305 }
1306
1307 /* try to determine how much space is reserved for metadata from
1308 * the last get_extents() entry, otherwise fallback to the
1309 * default
1310 */
1311 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1312 {
1313 struct extent *e;
1314 int i;
1315 __u32 rv;
1316
1317 /* for spares just return a minimal reservation which will grow
1318 * once the spare is picked up by an array
1319 */
1320 if (dl->index == -1)
1321 return MPB_SECTOR_CNT;
1322
1323 e = get_extents(super, dl);
1324 if (!e)
1325 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1326
1327 /* scroll to last entry */
1328 for (i = 0; e[i].size; i++)
1329 continue;
1330
1331 rv = total_blocks(&dl->disk) - e[i].start;
1332
1333 free(e);
1334
1335 return rv;
1336 }
1337
1338 static int is_spare(struct imsm_disk *disk)
1339 {
1340 return (disk->status & SPARE_DISK) == SPARE_DISK;
1341 }
1342
1343 static int is_configured(struct imsm_disk *disk)
1344 {
1345 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1346 }
1347
1348 static int is_failed(struct imsm_disk *disk)
1349 {
1350 return (disk->status & FAILED_DISK) == FAILED_DISK;
1351 }
1352
1353 static int is_journal(struct imsm_disk *disk)
1354 {
1355 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1356 }
1357
1358 /* round array size down to closest MB and ensure it splits evenly
1359 * between members
1360 */
1361 static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1362 disk_count)
1363 {
1364 size /= disk_count;
1365 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1366 size *= disk_count;
1367
1368 return size;
1369 }
1370
1371 static int able_to_resync(int raid_level, int missing_disks)
1372 {
1373 int max_missing_disks = 0;
1374
1375 switch (raid_level) {
1376 case 10:
1377 max_missing_disks = 1;
1378 break;
1379 default:
1380 max_missing_disks = 0;
1381 }
1382 return missing_disks <= max_missing_disks;
1383 }
1384
1385 /* try to determine how much space is reserved for metadata from
1386 * the last get_extents() entry on the smallest active disk,
1387 * otherwise fallback to the default
1388 */
1389 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1390 {
1391 struct extent *e;
1392 int i;
1393 unsigned long long min_active;
1394 __u32 remainder;
1395 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1396 struct dl *dl, *dl_min = NULL;
1397
1398 if (!super)
1399 return rv;
1400
1401 min_active = 0;
1402 for (dl = super->disks; dl; dl = dl->next) {
1403 if (dl->index < 0)
1404 continue;
1405 unsigned long long blocks = total_blocks(&dl->disk);
1406 if (blocks < min_active || min_active == 0) {
1407 dl_min = dl;
1408 min_active = blocks;
1409 }
1410 }
1411 if (!dl_min)
1412 return rv;
1413
1414 /* find last lba used by subarrays on the smallest active disk */
1415 e = get_extents(super, dl_min);
1416 if (!e)
1417 return rv;
1418 for (i = 0; e[i].size; i++)
1419 continue;
1420
1421 remainder = min_active - e[i].start;
1422 free(e);
1423
1424 /* to give priority to recovery we should not require full
1425 IMSM_RESERVED_SECTORS from the spare */
1426 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1427
1428 /* if real reservation is smaller use that value */
1429 return (remainder < rv) ? remainder : rv;
1430 }
1431
1432 /*
1433 * Return minimum size of a spare and sector size
1434 * that can be used in this array
1435 */
1436 int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
1437 {
1438 struct intel_super *super = st->sb;
1439 struct dl *dl;
1440 struct extent *e;
1441 int i;
1442 unsigned long long size = 0;
1443
1444 c->min_size = 0;
1445 c->sector_size = 0;
1446
1447 if (!super)
1448 return -EINVAL;
1449 /* find first active disk in array */
1450 dl = super->disks;
1451 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1452 dl = dl->next;
1453 if (!dl)
1454 return -EINVAL;
1455 /* find last lba used by subarrays */
1456 e = get_extents(super, dl);
1457 if (!e)
1458 return -EINVAL;
1459 for (i = 0; e[i].size; i++)
1460 continue;
1461 if (i > 0)
1462 size = e[i-1].start + e[i-1].size;
1463 free(e);
1464
1465 /* add the amount of space needed for metadata */
1466 size += imsm_min_reserved_sectors(super);
1467
1468 c->min_size = size * 512;
1469 c->sector_size = super->sector_size;
1470
1471 return 0;
1472 }
1473
1474 static int is_gen_migration(struct imsm_dev *dev);
1475
1476 #define IMSM_4K_DIV 8
1477
1478 static __u64 blocks_per_migr_unit(struct intel_super *super,
1479 struct imsm_dev *dev);
1480
1481 static void print_imsm_dev(struct intel_super *super,
1482 struct imsm_dev *dev,
1483 char *uuid,
1484 int disk_idx)
1485 {
1486 __u64 sz;
1487 int slot, i;
1488 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1489 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1490 __u32 ord;
1491
1492 printf("\n");
1493 printf("[%.16s]:\n", dev->volume);
1494 printf(" UUID : %s\n", uuid);
1495 printf(" RAID Level : %d", get_imsm_raid_level(map));
1496 if (map2)
1497 printf(" <-- %d", get_imsm_raid_level(map2));
1498 printf("\n");
1499 printf(" Members : %d", map->num_members);
1500 if (map2)
1501 printf(" <-- %d", map2->num_members);
1502 printf("\n");
1503 printf(" Slots : [");
1504 for (i = 0; i < map->num_members; i++) {
1505 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1506 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1507 }
1508 printf("]");
1509 if (map2) {
1510 printf(" <-- [");
1511 for (i = 0; i < map2->num_members; i++) {
1512 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1513 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1514 }
1515 printf("]");
1516 }
1517 printf("\n");
1518 printf(" Failed disk : ");
1519 if (map->failed_disk_num == 0xff)
1520 printf("none");
1521 else
1522 printf("%i", map->failed_disk_num);
1523 printf("\n");
1524 slot = get_imsm_disk_slot(map, disk_idx);
1525 if (slot >= 0) {
1526 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1527 printf(" This Slot : %d%s\n", slot,
1528 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1529 } else
1530 printf(" This Slot : ?\n");
1531 printf(" Sector Size : %u\n", super->sector_size);
1532 sz = imsm_dev_size(dev);
1533 printf(" Array Size : %llu%s\n",
1534 (unsigned long long)sz * 512 / super->sector_size,
1535 human_size(sz * 512));
1536 sz = blocks_per_member(map);
1537 printf(" Per Dev Size : %llu%s\n",
1538 (unsigned long long)sz * 512 / super->sector_size,
1539 human_size(sz * 512));
1540 printf(" Sector Offset : %llu\n",
1541 pba_of_lba0(map));
1542 printf(" Num Stripes : %llu\n",
1543 num_data_stripes(map));
1544 printf(" Chunk Size : %u KiB",
1545 __le16_to_cpu(map->blocks_per_strip) / 2);
1546 if (map2)
1547 printf(" <-- %u KiB",
1548 __le16_to_cpu(map2->blocks_per_strip) / 2);
1549 printf("\n");
1550 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1551 printf(" Migrate State : ");
1552 if (dev->vol.migr_state) {
1553 if (migr_type(dev) == MIGR_INIT)
1554 printf("initialize\n");
1555 else if (migr_type(dev) == MIGR_REBUILD)
1556 printf("rebuild\n");
1557 else if (migr_type(dev) == MIGR_VERIFY)
1558 printf("check\n");
1559 else if (migr_type(dev) == MIGR_GEN_MIGR)
1560 printf("general migration\n");
1561 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1562 printf("state change\n");
1563 else if (migr_type(dev) == MIGR_REPAIR)
1564 printf("repair\n");
1565 else
1566 printf("<unknown:%d>\n", migr_type(dev));
1567 } else
1568 printf("idle\n");
1569 printf(" Map State : %s", map_state_str[map->map_state]);
1570 if (dev->vol.migr_state) {
1571 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1572
1573 printf(" <-- %s", map_state_str[map->map_state]);
1574 printf("\n Checkpoint : %u ",
1575 __le32_to_cpu(dev->vol.curr_migr_unit));
1576 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1577 printf("(N/A)");
1578 else
1579 printf("(%llu)", (unsigned long long)
1580 blocks_per_migr_unit(super, dev));
1581 }
1582 printf("\n");
1583 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1584 "dirty" : "clean");
1585 printf(" RWH Policy : ");
1586 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
1587 printf("off\n");
1588 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1589 printf("PPL distributed\n");
1590 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1591 printf("PPL journaling drive\n");
1592 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1593 printf("Multiple distributed PPLs\n");
1594 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1595 printf("Multiple PPLs on journaling drive\n");
1596 else
1597 printf("<unknown:%d>\n", dev->rwh_policy);
1598 }
1599
1600 static void print_imsm_disk(struct imsm_disk *disk,
1601 int index,
1602 __u32 reserved,
1603 unsigned int sector_size) {
1604 char str[MAX_RAID_SERIAL_LEN + 1];
1605 __u64 sz;
1606
1607 if (index < -1 || !disk)
1608 return;
1609
1610 printf("\n");
1611 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1612 if (index >= 0)
1613 printf(" Disk%02d Serial : %s\n", index, str);
1614 else
1615 printf(" Disk Serial : %s\n", str);
1616 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1617 is_configured(disk) ? " active" : "",
1618 is_failed(disk) ? " failed" : "",
1619 is_journal(disk) ? " journal" : "");
1620 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1621 sz = total_blocks(disk) - reserved;
1622 printf(" Usable Size : %llu%s\n",
1623 (unsigned long long)sz * 512 / sector_size,
1624 human_size(sz * 512));
1625 }
1626
1627 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1628 {
1629 struct migr_record *migr_rec = super->migr_rec;
1630
1631 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1632 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1633 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1634 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1635 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1636 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1637 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1638 }
1639
1640 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1641 {
1642 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1643 }
1644
1645 void convert_to_4k(struct intel_super *super)
1646 {
1647 struct imsm_super *mpb = super->anchor;
1648 struct imsm_disk *disk;
1649 int i;
1650 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1651
1652 for (i = 0; i < mpb->num_disks ; i++) {
1653 disk = __get_imsm_disk(mpb, i);
1654 /* disk */
1655 convert_to_4k_imsm_disk(disk);
1656 }
1657 for (i = 0; i < mpb->num_raid_devs; i++) {
1658 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1659 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1660 /* dev */
1661 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
1662 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1663
1664 /* map0 */
1665 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1666 map->blocks_per_strip /= IMSM_4K_DIV;
1667 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1668
1669 if (dev->vol.migr_state) {
1670 /* map1 */
1671 map = get_imsm_map(dev, MAP_1);
1672 set_blocks_per_member(map,
1673 blocks_per_member(map)/IMSM_4K_DIV);
1674 map->blocks_per_strip /= IMSM_4K_DIV;
1675 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1676 }
1677 }
1678 if (bbm_log_size) {
1679 struct bbm_log *log = (void *)mpb +
1680 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1681 __u32 i;
1682
1683 for (i = 0; i < log->entry_count; i++) {
1684 struct bbm_log_entry *entry =
1685 &log->marked_block_entries[i];
1686
1687 __u8 count = entry->marked_count + 1;
1688 unsigned long long sector =
1689 __le48_to_cpu(&entry->defective_block_start);
1690
1691 entry->defective_block_start =
1692 __cpu_to_le48(sector/IMSM_4K_DIV);
1693 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1694 }
1695 }
1696
1697 mpb->check_sum = __gen_imsm_checksum(mpb);
1698 }
1699
1700 void examine_migr_rec_imsm(struct intel_super *super)
1701 {
1702 struct migr_record *migr_rec = super->migr_rec;
1703 struct imsm_super *mpb = super->anchor;
1704 int i;
1705
1706 for (i = 0; i < mpb->num_raid_devs; i++) {
1707 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1708 struct imsm_map *map;
1709 int slot = -1;
1710
1711 if (is_gen_migration(dev) == 0)
1712 continue;
1713
1714 printf("\nMigration Record Information:");
1715
1716 /* first map under migration */
1717 map = get_imsm_map(dev, MAP_0);
1718 if (map)
1719 slot = get_imsm_disk_slot(map, super->disks->index);
1720 if (map == NULL || slot > 1 || slot < 0) {
1721 printf(" Empty\n ");
1722 printf("Examine one of first two disks in array\n");
1723 break;
1724 }
1725 printf("\n Status : ");
1726 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1727 printf("Normal\n");
1728 else
1729 printf("Contains Data\n");
1730 printf(" Current Unit : %u\n",
1731 __le32_to_cpu(migr_rec->curr_migr_unit));
1732 printf(" Family : %u\n",
1733 __le32_to_cpu(migr_rec->family_num));
1734 printf(" Ascending : %u\n",
1735 __le32_to_cpu(migr_rec->ascending_migr));
1736 printf(" Blocks Per Unit : %u\n",
1737 __le32_to_cpu(migr_rec->blocks_per_unit));
1738 printf(" Dest. Depth Per Unit : %u\n",
1739 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1740 printf(" Checkpoint Area pba : %u\n",
1741 __le32_to_cpu(migr_rec->ckpt_area_pba));
1742 printf(" First member lba : %u\n",
1743 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1744 printf(" Total Number of Units : %u\n",
1745 __le32_to_cpu(migr_rec->num_migr_units));
1746 printf(" Size of volume : %u\n",
1747 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1748 printf(" Expansion space for LBA64 : %u\n",
1749 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1750 printf(" Record was read from : %u\n",
1751 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1752
1753 break;
1754 }
1755 }
1756
1757 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1758 {
1759 struct migr_record *migr_rec = super->migr_rec;
1760
1761 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1762 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1763 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1764 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1765 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1766 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1767 &migr_rec->post_migr_vol_cap,
1768 &migr_rec->post_migr_vol_cap_hi);
1769 }
1770
1771 void convert_from_4k(struct intel_super *super)
1772 {
1773 struct imsm_super *mpb = super->anchor;
1774 struct imsm_disk *disk;
1775 int i;
1776 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1777
1778 for (i = 0; i < mpb->num_disks ; i++) {
1779 disk = __get_imsm_disk(mpb, i);
1780 /* disk */
1781 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1782 }
1783
1784 for (i = 0; i < mpb->num_raid_devs; i++) {
1785 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1786 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1787 /* dev */
1788 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
1789 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1790
1791 /* map0 */
1792 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1793 map->blocks_per_strip *= IMSM_4K_DIV;
1794 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1795
1796 if (dev->vol.migr_state) {
1797 /* map1 */
1798 map = get_imsm_map(dev, MAP_1);
1799 set_blocks_per_member(map,
1800 blocks_per_member(map)*IMSM_4K_DIV);
1801 map->blocks_per_strip *= IMSM_4K_DIV;
1802 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1803 }
1804 }
1805 if (bbm_log_size) {
1806 struct bbm_log *log = (void *)mpb +
1807 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1808 __u32 i;
1809
1810 for (i = 0; i < log->entry_count; i++) {
1811 struct bbm_log_entry *entry =
1812 &log->marked_block_entries[i];
1813
1814 __u8 count = entry->marked_count + 1;
1815 unsigned long long sector =
1816 __le48_to_cpu(&entry->defective_block_start);
1817
1818 entry->defective_block_start =
1819 __cpu_to_le48(sector*IMSM_4K_DIV);
1820 entry->marked_count = count*IMSM_4K_DIV - 1;
1821 }
1822 }
1823
1824 mpb->check_sum = __gen_imsm_checksum(mpb);
1825 }
1826
1827 /*******************************************************************************
1828 * function: imsm_check_attributes
1829 * Description: Function checks if features represented by attributes flags
1830 * are supported by mdadm.
1831 * Parameters:
1832 * attributes - Attributes read from metadata
1833 * Returns:
1834 * 0 - passed attributes contains unsupported features flags
1835 * 1 - all features are supported
1836 ******************************************************************************/
1837 static int imsm_check_attributes(__u32 attributes)
1838 {
1839 int ret_val = 1;
1840 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1841
1842 not_supported &= ~MPB_ATTRIB_IGNORED;
1843
1844 not_supported &= attributes;
1845 if (not_supported) {
1846 pr_err("(IMSM): Unsupported attributes : %x\n",
1847 (unsigned)__le32_to_cpu(not_supported));
1848 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1849 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1850 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1851 }
1852 if (not_supported & MPB_ATTRIB_2TB) {
1853 dprintf("\t\tMPB_ATTRIB_2TB\n");
1854 not_supported ^= MPB_ATTRIB_2TB;
1855 }
1856 if (not_supported & MPB_ATTRIB_RAID0) {
1857 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1858 not_supported ^= MPB_ATTRIB_RAID0;
1859 }
1860 if (not_supported & MPB_ATTRIB_RAID1) {
1861 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1862 not_supported ^= MPB_ATTRIB_RAID1;
1863 }
1864 if (not_supported & MPB_ATTRIB_RAID10) {
1865 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1866 not_supported ^= MPB_ATTRIB_RAID10;
1867 }
1868 if (not_supported & MPB_ATTRIB_RAID1E) {
1869 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1870 not_supported ^= MPB_ATTRIB_RAID1E;
1871 }
1872 if (not_supported & MPB_ATTRIB_RAID5) {
1873 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1874 not_supported ^= MPB_ATTRIB_RAID5;
1875 }
1876 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1877 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1878 not_supported ^= MPB_ATTRIB_RAIDCNG;
1879 }
1880 if (not_supported & MPB_ATTRIB_BBM) {
1881 dprintf("\t\tMPB_ATTRIB_BBM\n");
1882 not_supported ^= MPB_ATTRIB_BBM;
1883 }
1884 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1885 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1886 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1887 }
1888 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1889 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1890 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1891 }
1892 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1893 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1894 not_supported ^= MPB_ATTRIB_2TB_DISK;
1895 }
1896 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1897 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1898 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1899 }
1900 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1901 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1902 not_supported ^= MPB_ATTRIB_NEVER_USE;
1903 }
1904
1905 if (not_supported)
1906 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1907
1908 ret_val = 0;
1909 }
1910
1911 return ret_val;
1912 }
1913
1914 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1915
1916 static void examine_super_imsm(struct supertype *st, char *homehost)
1917 {
1918 struct intel_super *super = st->sb;
1919 struct imsm_super *mpb = super->anchor;
1920 char str[MAX_SIGNATURE_LENGTH];
1921 int i;
1922 struct mdinfo info;
1923 char nbuf[64];
1924 __u32 sum;
1925 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1926 struct dl *dl;
1927
1928 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1929 str[MPB_SIG_LEN-1] = '\0';
1930 printf(" Magic : %s\n", str);
1931 printf(" Version : %s\n", get_imsm_version(mpb));
1932 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1933 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1934 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1935 printf(" Attributes : ");
1936 if (imsm_check_attributes(mpb->attributes))
1937 printf("All supported\n");
1938 else
1939 printf("not supported\n");
1940 getinfo_super_imsm(st, &info, NULL);
1941 fname_from_uuid(st, &info, nbuf, ':');
1942 printf(" UUID : %s\n", nbuf + 5);
1943 sum = __le32_to_cpu(mpb->check_sum);
1944 printf(" Checksum : %08x %s\n", sum,
1945 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1946 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
1947 printf(" Disks : %d\n", mpb->num_disks);
1948 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1949 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1950 super->disks->index, reserved, super->sector_size);
1951 if (get_imsm_bbm_log_size(super->bbm_log)) {
1952 struct bbm_log *log = super->bbm_log;
1953
1954 printf("\n");
1955 printf("Bad Block Management Log:\n");
1956 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1957 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1958 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1959 }
1960 for (i = 0; i < mpb->num_raid_devs; i++) {
1961 struct mdinfo info;
1962 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1963
1964 super->current_vol = i;
1965 getinfo_super_imsm(st, &info, NULL);
1966 fname_from_uuid(st, &info, nbuf, ':');
1967 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1968 }
1969 for (i = 0; i < mpb->num_disks; i++) {
1970 if (i == super->disks->index)
1971 continue;
1972 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1973 super->sector_size);
1974 }
1975
1976 for (dl = super->disks; dl; dl = dl->next)
1977 if (dl->index == -1)
1978 print_imsm_disk(&dl->disk, -1, reserved,
1979 super->sector_size);
1980
1981 examine_migr_rec_imsm(super);
1982 }
1983
1984 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1985 {
1986 /* We just write a generic IMSM ARRAY entry */
1987 struct mdinfo info;
1988 char nbuf[64];
1989 struct intel_super *super = st->sb;
1990
1991 if (!super->anchor->num_raid_devs) {
1992 printf("ARRAY metadata=imsm\n");
1993 return;
1994 }
1995
1996 getinfo_super_imsm(st, &info, NULL);
1997 fname_from_uuid(st, &info, nbuf, ':');
1998 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1999 }
2000
2001 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2002 {
2003 /* We just write a generic IMSM ARRAY entry */
2004 struct mdinfo info;
2005 char nbuf[64];
2006 char nbuf1[64];
2007 struct intel_super *super = st->sb;
2008 int i;
2009
2010 if (!super->anchor->num_raid_devs)
2011 return;
2012
2013 getinfo_super_imsm(st, &info, NULL);
2014 fname_from_uuid(st, &info, nbuf, ':');
2015 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2016 struct imsm_dev *dev = get_imsm_dev(super, i);
2017
2018 super->current_vol = i;
2019 getinfo_super_imsm(st, &info, NULL);
2020 fname_from_uuid(st, &info, nbuf1, ':');
2021 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
2022 dev->volume, nbuf + 5, i, nbuf1 + 5);
2023 }
2024 }
2025
2026 static void export_examine_super_imsm(struct supertype *st)
2027 {
2028 struct intel_super *super = st->sb;
2029 struct imsm_super *mpb = super->anchor;
2030 struct mdinfo info;
2031 char nbuf[64];
2032
2033 getinfo_super_imsm(st, &info, NULL);
2034 fname_from_uuid(st, &info, nbuf, ':');
2035 printf("MD_METADATA=imsm\n");
2036 printf("MD_LEVEL=container\n");
2037 printf("MD_UUID=%s\n", nbuf+5);
2038 printf("MD_DEVICES=%u\n", mpb->num_disks);
2039 }
2040
2041 static int copy_metadata_imsm(struct supertype *st, int from, int to)
2042 {
2043 /* The second last sector of the device contains
2044 * the "struct imsm_super" metadata.
2045 * This contains mpb_size which is the size in bytes of the
2046 * extended metadata. This is located immediately before
2047 * the imsm_super.
2048 * We want to read all that, plus the last sector which
2049 * may contain a migration record, and write it all
2050 * to the target.
2051 */
2052 void *buf;
2053 unsigned long long dsize, offset;
2054 int sectors;
2055 struct imsm_super *sb;
2056 struct intel_super *super = st->sb;
2057 unsigned int sector_size = super->sector_size;
2058 unsigned int written = 0;
2059
2060 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
2061 return 1;
2062
2063 if (!get_dev_size(from, NULL, &dsize))
2064 goto err;
2065
2066 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
2067 goto err;
2068 if ((unsigned int)read(from, buf, sector_size) != sector_size)
2069 goto err;
2070 sb = buf;
2071 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2072 goto err;
2073
2074 sectors = mpb_sectors(sb, sector_size) + 2;
2075 offset = dsize - sectors * sector_size;
2076 if (lseek64(from, offset, 0) < 0 ||
2077 lseek64(to, offset, 0) < 0)
2078 goto err;
2079 while (written < sectors * sector_size) {
2080 int n = sectors*sector_size - written;
2081 if (n > 4096)
2082 n = 4096;
2083 if (read(from, buf, n) != n)
2084 goto err;
2085 if (write(to, buf, n) != n)
2086 goto err;
2087 written += n;
2088 }
2089 free(buf);
2090 return 0;
2091 err:
2092 free(buf);
2093 return 1;
2094 }
2095
2096 static void detail_super_imsm(struct supertype *st, char *homehost)
2097 {
2098 struct mdinfo info;
2099 char nbuf[64];
2100
2101 getinfo_super_imsm(st, &info, NULL);
2102 fname_from_uuid(st, &info, nbuf, ':');
2103 printf("\n UUID : %s\n", nbuf + 5);
2104 }
2105
2106 static void brief_detail_super_imsm(struct supertype *st)
2107 {
2108 struct mdinfo info;
2109 char nbuf[64];
2110 getinfo_super_imsm(st, &info, NULL);
2111 fname_from_uuid(st, &info, nbuf, ':');
2112 printf(" UUID=%s", nbuf + 5);
2113 }
2114
2115 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2116 static void fd2devname(int fd, char *name);
2117
2118 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2119 {
2120 /* dump an unsorted list of devices attached to AHCI Intel storage
2121 * controller, as well as non-connected ports
2122 */
2123 int hba_len = strlen(hba_path) + 1;
2124 struct dirent *ent;
2125 DIR *dir;
2126 char *path = NULL;
2127 int err = 0;
2128 unsigned long port_mask = (1 << port_count) - 1;
2129
2130 if (port_count > (int)sizeof(port_mask) * 8) {
2131 if (verbose > 0)
2132 pr_err("port_count %d out of range\n", port_count);
2133 return 2;
2134 }
2135
2136 /* scroll through /sys/dev/block looking for devices attached to
2137 * this hba
2138 */
2139 dir = opendir("/sys/dev/block");
2140 if (!dir)
2141 return 1;
2142
2143 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2144 int fd;
2145 char model[64];
2146 char vendor[64];
2147 char buf[1024];
2148 int major, minor;
2149 char *device;
2150 char *c;
2151 int port;
2152 int type;
2153
2154 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2155 continue;
2156 path = devt_to_devpath(makedev(major, minor));
2157 if (!path)
2158 continue;
2159 if (!path_attached_to_hba(path, hba_path)) {
2160 free(path);
2161 path = NULL;
2162 continue;
2163 }
2164
2165 /* retrieve the scsi device type */
2166 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
2167 if (verbose > 0)
2168 pr_err("failed to allocate 'device'\n");
2169 err = 2;
2170 break;
2171 }
2172 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
2173 if (load_sys(device, buf, sizeof(buf)) != 0) {
2174 if (verbose > 0)
2175 pr_err("failed to read device type for %s\n",
2176 path);
2177 err = 2;
2178 free(device);
2179 break;
2180 }
2181 type = strtoul(buf, NULL, 10);
2182
2183 /* if it's not a disk print the vendor and model */
2184 if (!(type == 0 || type == 7 || type == 14)) {
2185 vendor[0] = '\0';
2186 model[0] = '\0';
2187 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
2188 if (load_sys(device, buf, sizeof(buf)) == 0) {
2189 strncpy(vendor, buf, sizeof(vendor));
2190 vendor[sizeof(vendor) - 1] = '\0';
2191 c = (char *) &vendor[sizeof(vendor) - 1];
2192 while (isspace(*c) || *c == '\0')
2193 *c-- = '\0';
2194
2195 }
2196 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
2197 if (load_sys(device, buf, sizeof(buf)) == 0) {
2198 strncpy(model, buf, sizeof(model));
2199 model[sizeof(model) - 1] = '\0';
2200 c = (char *) &model[sizeof(model) - 1];
2201 while (isspace(*c) || *c == '\0')
2202 *c-- = '\0';
2203 }
2204
2205 if (vendor[0] && model[0])
2206 sprintf(buf, "%.64s %.64s", vendor, model);
2207 else
2208 switch (type) { /* numbers from hald/linux/device.c */
2209 case 1: sprintf(buf, "tape"); break;
2210 case 2: sprintf(buf, "printer"); break;
2211 case 3: sprintf(buf, "processor"); break;
2212 case 4:
2213 case 5: sprintf(buf, "cdrom"); break;
2214 case 6: sprintf(buf, "scanner"); break;
2215 case 8: sprintf(buf, "media_changer"); break;
2216 case 9: sprintf(buf, "comm"); break;
2217 case 12: sprintf(buf, "raid"); break;
2218 default: sprintf(buf, "unknown");
2219 }
2220 } else
2221 buf[0] = '\0';
2222 free(device);
2223
2224 /* chop device path to 'host%d' and calculate the port number */
2225 c = strchr(&path[hba_len], '/');
2226 if (!c) {
2227 if (verbose > 0)
2228 pr_err("%s - invalid path name\n", path + hba_len);
2229 err = 2;
2230 break;
2231 }
2232 *c = '\0';
2233 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2234 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2235 port -= host_base;
2236 else {
2237 if (verbose > 0) {
2238 *c = '/'; /* repair the full string */
2239 pr_err("failed to determine port number for %s\n",
2240 path);
2241 }
2242 err = 2;
2243 break;
2244 }
2245
2246 /* mark this port as used */
2247 port_mask &= ~(1 << port);
2248
2249 /* print out the device information */
2250 if (buf[0]) {
2251 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2252 continue;
2253 }
2254
2255 fd = dev_open(ent->d_name, O_RDONLY);
2256 if (fd < 0)
2257 printf(" Port%d : - disk info unavailable -\n", port);
2258 else {
2259 fd2devname(fd, buf);
2260 printf(" Port%d : %s", port, buf);
2261 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
2262 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
2263 else
2264 printf(" ()\n");
2265 close(fd);
2266 }
2267 free(path);
2268 path = NULL;
2269 }
2270 if (path)
2271 free(path);
2272 if (dir)
2273 closedir(dir);
2274 if (err == 0) {
2275 int i;
2276
2277 for (i = 0; i < port_count; i++)
2278 if (port_mask & (1 << i))
2279 printf(" Port%d : - no device attached -\n", i);
2280 }
2281
2282 return err;
2283 }
2284
2285 static int print_vmd_attached_devs(struct sys_dev *hba)
2286 {
2287 struct dirent *ent;
2288 DIR *dir;
2289 char path[292];
2290 char link[256];
2291 char *c, *rp;
2292
2293 if (hba->type != SYS_DEV_VMD)
2294 return 1;
2295
2296 /* scroll through /sys/dev/block looking for devices attached to
2297 * this hba
2298 */
2299 dir = opendir("/sys/bus/pci/drivers/nvme");
2300 if (!dir)
2301 return 1;
2302
2303 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2304 int n;
2305
2306 /* is 'ent' a device? check that the 'subsystem' link exists and
2307 * that its target matches 'bus'
2308 */
2309 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2310 ent->d_name);
2311 n = readlink(path, link, sizeof(link));
2312 if (n < 0 || n >= (int)sizeof(link))
2313 continue;
2314 link[n] = '\0';
2315 c = strrchr(link, '/');
2316 if (!c)
2317 continue;
2318 if (strncmp("pci", c+1, strlen("pci")) != 0)
2319 continue;
2320
2321 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
2322
2323 rp = realpath(path, NULL);
2324 if (!rp)
2325 continue;
2326
2327 if (path_attached_to_hba(rp, hba->path)) {
2328 printf(" NVMe under VMD : %s\n", rp);
2329 }
2330 free(rp);
2331 }
2332
2333 closedir(dir);
2334 return 0;
2335 }
2336
2337 static void print_found_intel_controllers(struct sys_dev *elem)
2338 {
2339 for (; elem; elem = elem->next) {
2340 pr_err("found Intel(R) ");
2341 if (elem->type == SYS_DEV_SATA)
2342 fprintf(stderr, "SATA ");
2343 else if (elem->type == SYS_DEV_SAS)
2344 fprintf(stderr, "SAS ");
2345 else if (elem->type == SYS_DEV_NVME)
2346 fprintf(stderr, "NVMe ");
2347
2348 if (elem->type == SYS_DEV_VMD)
2349 fprintf(stderr, "VMD domain");
2350 else
2351 fprintf(stderr, "RAID controller");
2352
2353 if (elem->pci_id)
2354 fprintf(stderr, " at %s", elem->pci_id);
2355 fprintf(stderr, ".\n");
2356 }
2357 fflush(stderr);
2358 }
2359
2360 static int ahci_get_port_count(const char *hba_path, int *port_count)
2361 {
2362 struct dirent *ent;
2363 DIR *dir;
2364 int host_base = -1;
2365
2366 *port_count = 0;
2367 if ((dir = opendir(hba_path)) == NULL)
2368 return -1;
2369
2370 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2371 int host;
2372
2373 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2374 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2375 continue;
2376 if (*port_count == 0)
2377 host_base = host;
2378 else if (host < host_base)
2379 host_base = host;
2380
2381 if (host + 1 > *port_count + host_base)
2382 *port_count = host + 1 - host_base;
2383 }
2384 closedir(dir);
2385 return host_base;
2386 }
2387
2388 static void print_imsm_capability(const struct imsm_orom *orom)
2389 {
2390 printf(" Platform : Intel(R) ");
2391 if (orom->capabilities == 0 && orom->driver_features == 0)
2392 printf("Matrix Storage Manager\n");
2393 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2394 printf("Virtual RAID on CPU\n");
2395 else
2396 printf("Rapid Storage Technology%s\n",
2397 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2398 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2399 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2400 orom->minor_ver, orom->hotfix_ver, orom->build);
2401 printf(" RAID Levels :%s%s%s%s%s\n",
2402 imsm_orom_has_raid0(orom) ? " raid0" : "",
2403 imsm_orom_has_raid1(orom) ? " raid1" : "",
2404 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2405 imsm_orom_has_raid10(orom) ? " raid10" : "",
2406 imsm_orom_has_raid5(orom) ? " raid5" : "");
2407 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2408 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2409 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2410 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2411 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2412 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2413 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2414 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2415 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2416 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2417 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2418 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2419 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2420 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2421 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2422 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2423 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2424 printf(" 2TB volumes :%s supported\n",
2425 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2426 printf(" 2TB disks :%s supported\n",
2427 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2428 printf(" Max Disks : %d\n", orom->tds);
2429 printf(" Max Volumes : %d per array, %d per %s\n",
2430 orom->vpa, orom->vphba,
2431 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2432 return;
2433 }
2434
2435 static void print_imsm_capability_export(const struct imsm_orom *orom)
2436 {
2437 printf("MD_FIRMWARE_TYPE=imsm\n");
2438 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2439 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2440 orom->hotfix_ver, orom->build);
2441 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2442 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2443 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2444 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2445 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2446 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2447 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2448 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2449 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2450 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2451 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2452 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2453 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2454 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2455 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2456 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2457 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2458 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2459 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2460 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2461 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2462 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2463 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2464 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2465 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2466 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2467 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2468 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2469 }
2470
2471 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2472 {
2473 /* There are two components to imsm platform support, the ahci SATA
2474 * controller and the option-rom. To find the SATA controller we
2475 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2476 * controller with the Intel vendor id is present. This approach
2477 * allows mdadm to leverage the kernel's ahci detection logic, with the
2478 * caveat that if ahci.ko is not loaded mdadm will not be able to
2479 * detect platform raid capabilities. The option-rom resides in a
2480 * platform "Adapter ROM". We scan for its signature to retrieve the
2481 * platform capabilities. If raid support is disabled in the BIOS the
2482 * option-rom capability structure will not be available.
2483 */
2484 struct sys_dev *list, *hba;
2485 int host_base = 0;
2486 int port_count = 0;
2487 int result=1;
2488
2489 if (enumerate_only) {
2490 if (check_env("IMSM_NO_PLATFORM"))
2491 return 0;
2492 list = find_intel_devices();
2493 if (!list)
2494 return 2;
2495 for (hba = list; hba; hba = hba->next) {
2496 if (find_imsm_capability(hba)) {
2497 result = 0;
2498 break;
2499 }
2500 else
2501 result = 2;
2502 }
2503 return result;
2504 }
2505
2506 list = find_intel_devices();
2507 if (!list) {
2508 if (verbose > 0)
2509 pr_err("no active Intel(R) RAID controller found.\n");
2510 return 2;
2511 } else if (verbose > 0)
2512 print_found_intel_controllers(list);
2513
2514 for (hba = list; hba; hba = hba->next) {
2515 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2516 continue;
2517 if (!find_imsm_capability(hba)) {
2518 char buf[PATH_MAX];
2519 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2520 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2521 get_sys_dev_type(hba->type));
2522 continue;
2523 }
2524 result = 0;
2525 }
2526
2527 if (controller_path && result == 1) {
2528 pr_err("no active Intel(R) RAID controller found under %s\n",
2529 controller_path);
2530 return result;
2531 }
2532
2533 const struct orom_entry *entry;
2534
2535 for (entry = orom_entries; entry; entry = entry->next) {
2536 if (entry->type == SYS_DEV_VMD) {
2537 print_imsm_capability(&entry->orom);
2538 printf(" 3rd party NVMe :%s supported\n",
2539 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2540 for (hba = list; hba; hba = hba->next) {
2541 if (hba->type == SYS_DEV_VMD) {
2542 char buf[PATH_MAX];
2543 printf(" I/O Controller : %s (%s)\n",
2544 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2545 if (print_vmd_attached_devs(hba)) {
2546 if (verbose > 0)
2547 pr_err("failed to get devices attached to VMD domain.\n");
2548 result |= 2;
2549 }
2550 }
2551 }
2552 printf("\n");
2553 continue;
2554 }
2555
2556 print_imsm_capability(&entry->orom);
2557 if (entry->type == SYS_DEV_NVME) {
2558 for (hba = list; hba; hba = hba->next) {
2559 if (hba->type == SYS_DEV_NVME)
2560 printf(" NVMe Device : %s\n", hba->path);
2561 }
2562 printf("\n");
2563 continue;
2564 }
2565
2566 struct devid_list *devid;
2567 for (devid = entry->devid_list; devid; devid = devid->next) {
2568 hba = device_by_id(devid->devid);
2569 if (!hba)
2570 continue;
2571
2572 printf(" I/O Controller : %s (%s)\n",
2573 hba->path, get_sys_dev_type(hba->type));
2574 if (hba->type == SYS_DEV_SATA) {
2575 host_base = ahci_get_port_count(hba->path, &port_count);
2576 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2577 if (verbose > 0)
2578 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2579 result |= 2;
2580 }
2581 }
2582 }
2583 printf("\n");
2584 }
2585
2586 return result;
2587 }
2588
2589 static int export_detail_platform_imsm(int verbose, char *controller_path)
2590 {
2591 struct sys_dev *list, *hba;
2592 int result=1;
2593
2594 list = find_intel_devices();
2595 if (!list) {
2596 if (verbose > 0)
2597 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2598 result = 2;
2599 return result;
2600 }
2601
2602 for (hba = list; hba; hba = hba->next) {
2603 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2604 continue;
2605 if (!find_imsm_capability(hba) && verbose > 0) {
2606 char buf[PATH_MAX];
2607 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2608 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2609 }
2610 else
2611 result = 0;
2612 }
2613
2614 const struct orom_entry *entry;
2615
2616 for (entry = orom_entries; entry; entry = entry->next) {
2617 if (entry->type == SYS_DEV_VMD) {
2618 for (hba = list; hba; hba = hba->next)
2619 print_imsm_capability_export(&entry->orom);
2620 continue;
2621 }
2622 print_imsm_capability_export(&entry->orom);
2623 }
2624
2625 return result;
2626 }
2627
2628 static int match_home_imsm(struct supertype *st, char *homehost)
2629 {
2630 /* the imsm metadata format does not specify any host
2631 * identification information. We return -1 since we can never
2632 * confirm nor deny whether a given array is "meant" for this
2633 * host. We rely on compare_super and the 'family_num' fields to
2634 * exclude member disks that do not belong, and we rely on
2635 * mdadm.conf to specify the arrays that should be assembled.
2636 * Auto-assembly may still pick up "foreign" arrays.
2637 */
2638
2639 return -1;
2640 }
2641
2642 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2643 {
2644 /* The uuid returned here is used for:
2645 * uuid to put into bitmap file (Create, Grow)
2646 * uuid for backup header when saving critical section (Grow)
2647 * comparing uuids when re-adding a device into an array
2648 * In these cases the uuid required is that of the data-array,
2649 * not the device-set.
2650 * uuid to recognise same set when adding a missing device back
2651 * to an array. This is a uuid for the device-set.
2652 *
2653 * For each of these we can make do with a truncated
2654 * or hashed uuid rather than the original, as long as
2655 * everyone agrees.
2656 * In each case the uuid required is that of the data-array,
2657 * not the device-set.
2658 */
2659 /* imsm does not track uuid's so we synthesis one using sha1 on
2660 * - The signature (Which is constant for all imsm array, but no matter)
2661 * - the orig_family_num of the container
2662 * - the index number of the volume
2663 * - the 'serial' number of the volume.
2664 * Hopefully these are all constant.
2665 */
2666 struct intel_super *super = st->sb;
2667
2668 char buf[20];
2669 struct sha1_ctx ctx;
2670 struct imsm_dev *dev = NULL;
2671 __u32 family_num;
2672
2673 /* some mdadm versions failed to set ->orig_family_num, in which
2674 * case fall back to ->family_num. orig_family_num will be
2675 * fixed up with the first metadata update.
2676 */
2677 family_num = super->anchor->orig_family_num;
2678 if (family_num == 0)
2679 family_num = super->anchor->family_num;
2680 sha1_init_ctx(&ctx);
2681 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2682 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2683 if (super->current_vol >= 0)
2684 dev = get_imsm_dev(super, super->current_vol);
2685 if (dev) {
2686 __u32 vol = super->current_vol;
2687 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2688 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2689 }
2690 sha1_finish_ctx(&ctx, buf);
2691 memcpy(uuid, buf, 4*4);
2692 }
2693
2694 #if 0
2695 static void
2696 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2697 {
2698 __u8 *v = get_imsm_version(mpb);
2699 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2700 char major[] = { 0, 0, 0 };
2701 char minor[] = { 0 ,0, 0 };
2702 char patch[] = { 0, 0, 0 };
2703 char *ver_parse[] = { major, minor, patch };
2704 int i, j;
2705
2706 i = j = 0;
2707 while (*v != '\0' && v < end) {
2708 if (*v != '.' && j < 2)
2709 ver_parse[i][j++] = *v;
2710 else {
2711 i++;
2712 j = 0;
2713 }
2714 v++;
2715 }
2716
2717 *m = strtol(minor, NULL, 0);
2718 *p = strtol(patch, NULL, 0);
2719 }
2720 #endif
2721
2722 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2723 {
2724 /* migr_strip_size when repairing or initializing parity */
2725 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2726 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2727
2728 switch (get_imsm_raid_level(map)) {
2729 case 5:
2730 case 10:
2731 return chunk;
2732 default:
2733 return 128*1024 >> 9;
2734 }
2735 }
2736
2737 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2738 {
2739 /* migr_strip_size when rebuilding a degraded disk, no idea why
2740 * this is different than migr_strip_size_resync(), but it's good
2741 * to be compatible
2742 */
2743 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2744 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2745
2746 switch (get_imsm_raid_level(map)) {
2747 case 1:
2748 case 10:
2749 if (map->num_members % map->num_domains == 0)
2750 return 128*1024 >> 9;
2751 else
2752 return chunk;
2753 case 5:
2754 return max((__u32) 64*1024 >> 9, chunk);
2755 default:
2756 return 128*1024 >> 9;
2757 }
2758 }
2759
2760 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2761 {
2762 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2763 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2764 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2765 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2766
2767 return max((__u32) 1, hi_chunk / lo_chunk);
2768 }
2769
2770 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2771 {
2772 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2773 int level = get_imsm_raid_level(lo);
2774
2775 if (level == 1 || level == 10) {
2776 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2777
2778 return hi->num_domains;
2779 } else
2780 return num_stripes_per_unit_resync(dev);
2781 }
2782
2783 static __u8 imsm_num_data_members(struct imsm_map *map)
2784 {
2785 /* named 'imsm_' because raid0, raid1 and raid10
2786 * counter-intuitively have the same number of data disks
2787 */
2788 switch (get_imsm_raid_level(map)) {
2789 case 0:
2790 return map->num_members;
2791 break;
2792 case 1:
2793 case 10:
2794 return map->num_members/2;
2795 case 5:
2796 return map->num_members - 1;
2797 default:
2798 dprintf("unsupported raid level\n");
2799 return 0;
2800 }
2801 }
2802
2803 static unsigned long long calc_component_size(struct imsm_map *map,
2804 struct imsm_dev *dev)
2805 {
2806 unsigned long long component_size;
2807 unsigned long long dev_size = imsm_dev_size(dev);
2808 unsigned long long calc_dev_size = 0;
2809 unsigned int member_disks = imsm_num_data_members(map);
2810
2811 if (member_disks == 0)
2812 return 0;
2813
2814 component_size = per_dev_array_size(map);
2815 calc_dev_size = component_size * member_disks;
2816
2817 /* Component size is rounded to 1MB so difference between size from
2818 * metadata and size calculated from num_data_stripes equals up to
2819 * 2048 blocks per each device. If the difference is higher it means
2820 * that array size was expanded and num_data_stripes was not updated.
2821 */
2822 if ((unsigned int)abs(calc_dev_size - dev_size) >
2823 (1 << SECT_PER_MB_SHIFT) * member_disks) {
2824 component_size = dev_size / member_disks;
2825 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
2826 component_size / map->blocks_per_strip,
2827 num_data_stripes(map));
2828 }
2829
2830 return component_size;
2831 }
2832
2833 static __u32 parity_segment_depth(struct imsm_dev *dev)
2834 {
2835 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2836 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2837
2838 switch(get_imsm_raid_level(map)) {
2839 case 1:
2840 case 10:
2841 return chunk * map->num_domains;
2842 case 5:
2843 return chunk * map->num_members;
2844 default:
2845 return chunk;
2846 }
2847 }
2848
2849 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2850 {
2851 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2852 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2853 __u32 strip = block / chunk;
2854
2855 switch (get_imsm_raid_level(map)) {
2856 case 1:
2857 case 10: {
2858 __u32 vol_strip = (strip * map->num_domains) + 1;
2859 __u32 vol_stripe = vol_strip / map->num_members;
2860
2861 return vol_stripe * chunk + block % chunk;
2862 } case 5: {
2863 __u32 stripe = strip / (map->num_members - 1);
2864
2865 return stripe * chunk + block % chunk;
2866 }
2867 default:
2868 return 0;
2869 }
2870 }
2871
2872 static __u64 blocks_per_migr_unit(struct intel_super *super,
2873 struct imsm_dev *dev)
2874 {
2875 /* calculate the conversion factor between per member 'blocks'
2876 * (md/{resync,rebuild}_start) and imsm migration units, return
2877 * 0 for the 'not migrating' and 'unsupported migration' cases
2878 */
2879 if (!dev->vol.migr_state)
2880 return 0;
2881
2882 switch (migr_type(dev)) {
2883 case MIGR_GEN_MIGR: {
2884 struct migr_record *migr_rec = super->migr_rec;
2885 return __le32_to_cpu(migr_rec->blocks_per_unit);
2886 }
2887 case MIGR_VERIFY:
2888 case MIGR_REPAIR:
2889 case MIGR_INIT: {
2890 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2891 __u32 stripes_per_unit;
2892 __u32 blocks_per_unit;
2893 __u32 parity_depth;
2894 __u32 migr_chunk;
2895 __u32 block_map;
2896 __u32 block_rel;
2897 __u32 segment;
2898 __u32 stripe;
2899 __u8 disks;
2900
2901 /* yes, this is really the translation of migr_units to
2902 * per-member blocks in the 'resync' case
2903 */
2904 stripes_per_unit = num_stripes_per_unit_resync(dev);
2905 migr_chunk = migr_strip_blocks_resync(dev);
2906 disks = imsm_num_data_members(map);
2907 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2908 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2909 segment = blocks_per_unit / stripe;
2910 block_rel = blocks_per_unit - segment * stripe;
2911 parity_depth = parity_segment_depth(dev);
2912 block_map = map_migr_block(dev, block_rel);
2913 return block_map + parity_depth * segment;
2914 }
2915 case MIGR_REBUILD: {
2916 __u32 stripes_per_unit;
2917 __u32 migr_chunk;
2918
2919 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2920 migr_chunk = migr_strip_blocks_rebuild(dev);
2921 return migr_chunk * stripes_per_unit;
2922 }
2923 case MIGR_STATE_CHANGE:
2924 default:
2925 return 0;
2926 }
2927 }
2928
2929 static int imsm_level_to_layout(int level)
2930 {
2931 switch (level) {
2932 case 0:
2933 case 1:
2934 return 0;
2935 case 5:
2936 case 6:
2937 return ALGORITHM_LEFT_ASYMMETRIC;
2938 case 10:
2939 return 0x102;
2940 }
2941 return UnSet;
2942 }
2943
2944 /*******************************************************************************
2945 * Function: read_imsm_migr_rec
2946 * Description: Function reads imsm migration record from last sector of disk
2947 * Parameters:
2948 * fd : disk descriptor
2949 * super : metadata info
2950 * Returns:
2951 * 0 : success,
2952 * -1 : fail
2953 ******************************************************************************/
2954 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2955 {
2956 int ret_val = -1;
2957 unsigned int sector_size = super->sector_size;
2958 unsigned long long dsize;
2959
2960 get_dev_size(fd, NULL, &dsize);
2961 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2962 SEEK_SET) < 0) {
2963 pr_err("Cannot seek to anchor block: %s\n",
2964 strerror(errno));
2965 goto out;
2966 }
2967 if ((unsigned int)read(fd, super->migr_rec_buf,
2968 MIGR_REC_BUF_SECTORS*sector_size) !=
2969 MIGR_REC_BUF_SECTORS*sector_size) {
2970 pr_err("Cannot read migr record block: %s\n",
2971 strerror(errno));
2972 goto out;
2973 }
2974 ret_val = 0;
2975 if (sector_size == 4096)
2976 convert_from_4k_imsm_migr_rec(super);
2977
2978 out:
2979 return ret_val;
2980 }
2981
2982 static struct imsm_dev *imsm_get_device_during_migration(
2983 struct intel_super *super)
2984 {
2985
2986 struct intel_dev *dv;
2987
2988 for (dv = super->devlist; dv; dv = dv->next) {
2989 if (is_gen_migration(dv->dev))
2990 return dv->dev;
2991 }
2992 return NULL;
2993 }
2994
2995 /*******************************************************************************
2996 * Function: load_imsm_migr_rec
2997 * Description: Function reads imsm migration record (it is stored at the last
2998 * sector of disk)
2999 * Parameters:
3000 * super : imsm internal array info
3001 * info : general array info
3002 * Returns:
3003 * 0 : success
3004 * -1 : fail
3005 * -2 : no migration in progress
3006 ******************************************************************************/
3007 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
3008 {
3009 struct mdinfo *sd;
3010 struct dl *dl;
3011 char nm[30];
3012 int retval = -1;
3013 int fd = -1;
3014 struct imsm_dev *dev;
3015 struct imsm_map *map;
3016 int slot = -1;
3017
3018 /* find map under migration */
3019 dev = imsm_get_device_during_migration(super);
3020 /* nothing to load,no migration in progress?
3021 */
3022 if (dev == NULL)
3023 return -2;
3024
3025 if (info) {
3026 for (sd = info->devs ; sd ; sd = sd->next) {
3027 /* read only from one of the first two slots */
3028 if ((sd->disk.raid_disk < 0) ||
3029 (sd->disk.raid_disk > 1))
3030 continue;
3031
3032 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3033 fd = dev_open(nm, O_RDONLY);
3034 if (fd >= 0)
3035 break;
3036 }
3037 }
3038 if (fd < 0) {
3039 map = get_imsm_map(dev, MAP_0);
3040 for (dl = super->disks; dl; dl = dl->next) {
3041 /* skip spare and failed disks
3042 */
3043 if (dl->index < 0)
3044 continue;
3045 /* read only from one of the first two slots */
3046 if (map)
3047 slot = get_imsm_disk_slot(map, dl->index);
3048 if (map == NULL || slot > 1 || slot < 0)
3049 continue;
3050 sprintf(nm, "%d:%d", dl->major, dl->minor);
3051 fd = dev_open(nm, O_RDONLY);
3052 if (fd >= 0)
3053 break;
3054 }
3055 }
3056 if (fd < 0)
3057 goto out;
3058 retval = read_imsm_migr_rec(fd, super);
3059
3060 out:
3061 if (fd >= 0)
3062 close(fd);
3063 return retval;
3064 }
3065
3066 /*******************************************************************************
3067 * function: imsm_create_metadata_checkpoint_update
3068 * Description: It creates update for checkpoint change.
3069 * Parameters:
3070 * super : imsm internal array info
3071 * u : pointer to prepared update
3072 * Returns:
3073 * Uptate length.
3074 * If length is equal to 0, input pointer u contains no update
3075 ******************************************************************************/
3076 static int imsm_create_metadata_checkpoint_update(
3077 struct intel_super *super,
3078 struct imsm_update_general_migration_checkpoint **u)
3079 {
3080
3081 int update_memory_size = 0;
3082
3083 dprintf("(enter)\n");
3084
3085 if (u == NULL)
3086 return 0;
3087 *u = NULL;
3088
3089 /* size of all update data without anchor */
3090 update_memory_size =
3091 sizeof(struct imsm_update_general_migration_checkpoint);
3092
3093 *u = xcalloc(1, update_memory_size);
3094 if (*u == NULL) {
3095 dprintf("error: cannot get memory\n");
3096 return 0;
3097 }
3098 (*u)->type = update_general_migration_checkpoint;
3099 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
3100 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
3101
3102 return update_memory_size;
3103 }
3104
3105 static void imsm_update_metadata_locally(struct supertype *st,
3106 void *buf, int len);
3107
3108 /*******************************************************************************
3109 * Function: write_imsm_migr_rec
3110 * Description: Function writes imsm migration record
3111 * (at the last sector of disk)
3112 * Parameters:
3113 * super : imsm internal array info
3114 * Returns:
3115 * 0 : success
3116 * -1 : if fail
3117 ******************************************************************************/
3118 static int write_imsm_migr_rec(struct supertype *st)
3119 {
3120 struct intel_super *super = st->sb;
3121 unsigned int sector_size = super->sector_size;
3122 unsigned long long dsize;
3123 char nm[30];
3124 int fd = -1;
3125 int retval = -1;
3126 struct dl *sd;
3127 int len;
3128 struct imsm_update_general_migration_checkpoint *u;
3129 struct imsm_dev *dev;
3130 struct imsm_map *map;
3131
3132 /* find map under migration */
3133 dev = imsm_get_device_during_migration(super);
3134 /* if no migration, write buffer anyway to clear migr_record
3135 * on disk based on first available device
3136 */
3137 if (dev == NULL)
3138 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3139 super->current_vol);
3140
3141 map = get_imsm_map(dev, MAP_0);
3142
3143 if (sector_size == 4096)
3144 convert_to_4k_imsm_migr_rec(super);
3145 for (sd = super->disks ; sd ; sd = sd->next) {
3146 int slot = -1;
3147
3148 /* skip failed and spare devices */
3149 if (sd->index < 0)
3150 continue;
3151 /* write to 2 first slots only */
3152 if (map)
3153 slot = get_imsm_disk_slot(map, sd->index);
3154 if (map == NULL || slot > 1 || slot < 0)
3155 continue;
3156
3157 sprintf(nm, "%d:%d", sd->major, sd->minor);
3158 fd = dev_open(nm, O_RDWR);
3159 if (fd < 0)
3160 continue;
3161 get_dev_size(fd, NULL, &dsize);
3162 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3163 SEEK_SET) < 0) {
3164 pr_err("Cannot seek to anchor block: %s\n",
3165 strerror(errno));
3166 goto out;
3167 }
3168 if ((unsigned int)write(fd, super->migr_rec_buf,
3169 MIGR_REC_BUF_SECTORS*sector_size) !=
3170 MIGR_REC_BUF_SECTORS*sector_size) {
3171 pr_err("Cannot write migr record block: %s\n",
3172 strerror(errno));
3173 goto out;
3174 }
3175 close(fd);
3176 fd = -1;
3177 }
3178 if (sector_size == 4096)
3179 convert_from_4k_imsm_migr_rec(super);
3180 /* update checkpoint information in metadata */
3181 len = imsm_create_metadata_checkpoint_update(super, &u);
3182 if (len <= 0) {
3183 dprintf("imsm: Cannot prepare update\n");
3184 goto out;
3185 }
3186 /* update metadata locally */
3187 imsm_update_metadata_locally(st, u, len);
3188 /* and possibly remotely */
3189 if (st->update_tail) {
3190 append_metadata_update(st, u, len);
3191 /* during reshape we do all work inside metadata handler
3192 * manage_reshape(), so metadata update has to be triggered
3193 * insida it
3194 */
3195 flush_metadata_updates(st);
3196 st->update_tail = &st->updates;
3197 } else
3198 free(u);
3199
3200 retval = 0;
3201 out:
3202 if (fd >= 0)
3203 close(fd);
3204 return retval;
3205 }
3206
3207 /* spare/missing disks activations are not allowe when
3208 * array/container performs reshape operation, because
3209 * all arrays in container works on the same disks set
3210 */
3211 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3212 {
3213 int rv = 0;
3214 struct intel_dev *i_dev;
3215 struct imsm_dev *dev;
3216
3217 /* check whole container
3218 */
3219 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3220 dev = i_dev->dev;
3221 if (is_gen_migration(dev)) {
3222 /* No repair during any migration in container
3223 */
3224 rv = 1;
3225 break;
3226 }
3227 }
3228 return rv;
3229 }
3230 static unsigned long long imsm_component_size_alignment_check(int level,
3231 int chunk_size,
3232 unsigned int sector_size,
3233 unsigned long long component_size)
3234 {
3235 unsigned int component_size_alignment;
3236
3237 /* check component size alignment
3238 */
3239 component_size_alignment = component_size % (chunk_size/sector_size);
3240
3241 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
3242 level, chunk_size, component_size,
3243 component_size_alignment);
3244
3245 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3246 dprintf("imsm: reported component size aligned from %llu ",
3247 component_size);
3248 component_size -= component_size_alignment;
3249 dprintf_cont("to %llu (%i).\n",
3250 component_size, component_size_alignment);
3251 }
3252
3253 return component_size;
3254 }
3255
3256 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3257 {
3258 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3259 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3260
3261 return pba_of_lba0(map) +
3262 (num_data_stripes(map) * map->blocks_per_strip);
3263 }
3264
3265 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3266 {
3267 struct intel_super *super = st->sb;
3268 struct migr_record *migr_rec = super->migr_rec;
3269 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3270 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3271 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3272 struct imsm_map *map_to_analyse = map;
3273 struct dl *dl;
3274 int map_disks = info->array.raid_disks;
3275
3276 memset(info, 0, sizeof(*info));
3277 if (prev_map)
3278 map_to_analyse = prev_map;
3279
3280 dl = super->current_disk;
3281
3282 info->container_member = super->current_vol;
3283 info->array.raid_disks = map->num_members;
3284 info->array.level = get_imsm_raid_level(map_to_analyse);
3285 info->array.layout = imsm_level_to_layout(info->array.level);
3286 info->array.md_minor = -1;
3287 info->array.ctime = 0;
3288 info->array.utime = 0;
3289 info->array.chunk_size =
3290 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3291 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3292 info->custom_array_size = imsm_dev_size(dev);
3293 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3294
3295 if (is_gen_migration(dev)) {
3296 info->reshape_active = 1;
3297 info->new_level = get_imsm_raid_level(map);
3298 info->new_layout = imsm_level_to_layout(info->new_level);
3299 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3300 info->delta_disks = map->num_members - prev_map->num_members;
3301 if (info->delta_disks) {
3302 /* this needs to be applied to every array
3303 * in the container.
3304 */
3305 info->reshape_active = CONTAINER_RESHAPE;
3306 }
3307 /* We shape information that we give to md might have to be
3308 * modify to cope with md's requirement for reshaping arrays.
3309 * For example, when reshaping a RAID0, md requires it to be
3310 * presented as a degraded RAID4.
3311 * Also if a RAID0 is migrating to a RAID5 we need to specify
3312 * the array as already being RAID5, but the 'before' layout
3313 * is a RAID4-like layout.
3314 */
3315 switch (info->array.level) {
3316 case 0:
3317 switch(info->new_level) {
3318 case 0:
3319 /* conversion is happening as RAID4 */
3320 info->array.level = 4;
3321 info->array.raid_disks += 1;
3322 break;
3323 case 5:
3324 /* conversion is happening as RAID5 */
3325 info->array.level = 5;
3326 info->array.layout = ALGORITHM_PARITY_N;
3327 info->delta_disks -= 1;
3328 break;
3329 default:
3330 /* FIXME error message */
3331 info->array.level = UnSet;
3332 break;
3333 }
3334 break;
3335 }
3336 } else {
3337 info->new_level = UnSet;
3338 info->new_layout = UnSet;
3339 info->new_chunk = info->array.chunk_size;
3340 info->delta_disks = 0;
3341 }
3342
3343 if (dl) {
3344 info->disk.major = dl->major;
3345 info->disk.minor = dl->minor;
3346 info->disk.number = dl->index;
3347 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3348 dl->index);
3349 }
3350
3351 info->data_offset = pba_of_lba0(map_to_analyse);
3352 info->component_size = calc_component_size(map, dev);
3353 info->component_size = imsm_component_size_alignment_check(
3354 info->array.level,
3355 info->array.chunk_size,
3356 super->sector_size,
3357 info->component_size);
3358 info->bb.supported = 1;
3359
3360 memset(info->uuid, 0, sizeof(info->uuid));
3361 info->recovery_start = MaxSector;
3362
3363 if (info->array.level == 5 &&
3364 (dev->rwh_policy == RWH_DISTRIBUTED ||
3365 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
3366 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3367 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3368 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3369 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3370 else
3371 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3372 >> 9;
3373 } else if (info->array.level <= 0) {
3374 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3375 } else {
3376 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3377 }
3378
3379 info->reshape_progress = 0;
3380 info->resync_start = MaxSector;
3381 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3382 !(info->array.state & 1)) &&
3383 imsm_reshape_blocks_arrays_changes(super) == 0) {
3384 info->resync_start = 0;
3385 }
3386 if (dev->vol.migr_state) {
3387 switch (migr_type(dev)) {
3388 case MIGR_REPAIR:
3389 case MIGR_INIT: {
3390 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3391 dev);
3392 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3393
3394 info->resync_start = blocks_per_unit * units;
3395 break;
3396 }
3397 case MIGR_GEN_MIGR: {
3398 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3399 dev);
3400 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
3401 unsigned long long array_blocks;
3402 int used_disks;
3403
3404 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3405 (units <
3406 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3407 (super->migr_rec->rec_status ==
3408 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3409 units++;
3410
3411 info->reshape_progress = blocks_per_unit * units;
3412
3413 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3414 (unsigned long long)units,
3415 (unsigned long long)blocks_per_unit,
3416 info->reshape_progress);
3417
3418 used_disks = imsm_num_data_members(prev_map);
3419 if (used_disks > 0) {
3420 array_blocks = per_dev_array_size(map) *
3421 used_disks;
3422 info->custom_array_size =
3423 round_size_to_mb(array_blocks,
3424 used_disks);
3425
3426 }
3427 }
3428 case MIGR_VERIFY:
3429 /* we could emulate the checkpointing of
3430 * 'sync_action=check' migrations, but for now
3431 * we just immediately complete them
3432 */
3433 case MIGR_REBUILD:
3434 /* this is handled by container_content_imsm() */
3435 case MIGR_STATE_CHANGE:
3436 /* FIXME handle other migrations */
3437 default:
3438 /* we are not dirty, so... */
3439 info->resync_start = MaxSector;
3440 }
3441 }
3442
3443 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3444 info->name[MAX_RAID_SERIAL_LEN] = 0;
3445
3446 info->array.major_version = -1;
3447 info->array.minor_version = -2;
3448 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3449 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3450 uuid_from_super_imsm(st, info->uuid);
3451
3452 if (dmap) {
3453 int i, j;
3454 for (i=0; i<map_disks; i++) {
3455 dmap[i] = 0;
3456 if (i < info->array.raid_disks) {
3457 struct imsm_disk *dsk;
3458 j = get_imsm_disk_idx(dev, i, MAP_X);
3459 dsk = get_imsm_disk(super, j);
3460 if (dsk && (dsk->status & CONFIGURED_DISK))
3461 dmap[i] = 1;
3462 }
3463 }
3464 }
3465 }
3466
3467 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3468 int failed, int look_in_map);
3469
3470 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3471 int look_in_map);
3472
3473 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3474 {
3475 if (is_gen_migration(dev)) {
3476 int failed;
3477 __u8 map_state;
3478 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3479
3480 failed = imsm_count_failed(super, dev, MAP_1);
3481 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3482 if (map2->map_state != map_state) {
3483 map2->map_state = map_state;
3484 super->updates_pending++;
3485 }
3486 }
3487 }
3488
3489 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3490 {
3491 struct dl *d;
3492
3493 for (d = super->missing; d; d = d->next)
3494 if (d->index == index)
3495 return &d->disk;
3496 return NULL;
3497 }
3498
3499 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3500 {
3501 struct intel_super *super = st->sb;
3502 struct imsm_disk *disk;
3503 int map_disks = info->array.raid_disks;
3504 int max_enough = -1;
3505 int i;
3506 struct imsm_super *mpb;
3507
3508 if (super->current_vol >= 0) {
3509 getinfo_super_imsm_volume(st, info, map);
3510 return;
3511 }
3512 memset(info, 0, sizeof(*info));
3513
3514 /* Set raid_disks to zero so that Assemble will always pull in valid
3515 * spares
3516 */
3517 info->array.raid_disks = 0;
3518 info->array.level = LEVEL_CONTAINER;
3519 info->array.layout = 0;
3520 info->array.md_minor = -1;
3521 info->array.ctime = 0; /* N/A for imsm */
3522 info->array.utime = 0;
3523 info->array.chunk_size = 0;
3524
3525 info->disk.major = 0;
3526 info->disk.minor = 0;
3527 info->disk.raid_disk = -1;
3528 info->reshape_active = 0;
3529 info->array.major_version = -1;
3530 info->array.minor_version = -2;
3531 strcpy(info->text_version, "imsm");
3532 info->safe_mode_delay = 0;
3533 info->disk.number = -1;
3534 info->disk.state = 0;
3535 info->name[0] = 0;
3536 info->recovery_start = MaxSector;
3537 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3538 info->bb.supported = 1;
3539
3540 /* do we have the all the insync disks that we expect? */
3541 mpb = super->anchor;
3542 info->events = __le32_to_cpu(mpb->generation_num);
3543
3544 for (i = 0; i < mpb->num_raid_devs; i++) {
3545 struct imsm_dev *dev = get_imsm_dev(super, i);
3546 int failed, enough, j, missing = 0;
3547 struct imsm_map *map;
3548 __u8 state;
3549
3550 failed = imsm_count_failed(super, dev, MAP_0);
3551 state = imsm_check_degraded(super, dev, failed, MAP_0);
3552 map = get_imsm_map(dev, MAP_0);
3553
3554 /* any newly missing disks?
3555 * (catches single-degraded vs double-degraded)
3556 */
3557 for (j = 0; j < map->num_members; j++) {
3558 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3559 __u32 idx = ord_to_idx(ord);
3560
3561 if (super->disks && super->disks->index == (int)idx)
3562 info->disk.raid_disk = j;
3563
3564 if (!(ord & IMSM_ORD_REBUILD) &&
3565 get_imsm_missing(super, idx)) {
3566 missing = 1;
3567 break;
3568 }
3569 }
3570
3571 if (state == IMSM_T_STATE_FAILED)
3572 enough = -1;
3573 else if (state == IMSM_T_STATE_DEGRADED &&
3574 (state != map->map_state || missing))
3575 enough = 0;
3576 else /* we're normal, or already degraded */
3577 enough = 1;
3578 if (is_gen_migration(dev) && missing) {
3579 /* during general migration we need all disks
3580 * that process is running on.
3581 * No new missing disk is allowed.
3582 */
3583 max_enough = -1;
3584 enough = -1;
3585 /* no more checks necessary
3586 */
3587 break;
3588 }
3589 /* in the missing/failed disk case check to see
3590 * if at least one array is runnable
3591 */
3592 max_enough = max(max_enough, enough);
3593 }
3594 dprintf("enough: %d\n", max_enough);
3595 info->container_enough = max_enough;
3596
3597 if (super->disks) {
3598 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3599
3600 disk = &super->disks->disk;
3601 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3602 info->component_size = reserved;
3603 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3604 /* we don't change info->disk.raid_disk here because
3605 * this state will be finalized in mdmon after we have
3606 * found the 'most fresh' version of the metadata
3607 */
3608 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3609 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3610 0 : (1 << MD_DISK_SYNC);
3611 }
3612
3613 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3614 * ->compare_super may have updated the 'num_raid_devs' field for spares
3615 */
3616 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3617 uuid_from_super_imsm(st, info->uuid);
3618 else
3619 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3620
3621 /* I don't know how to compute 'map' on imsm, so use safe default */
3622 if (map) {
3623 int i;
3624 for (i = 0; i < map_disks; i++)
3625 map[i] = 1;
3626 }
3627
3628 }
3629
3630 /* allocates memory and fills disk in mdinfo structure
3631 * for each disk in array */
3632 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3633 {
3634 struct mdinfo *mddev;
3635 struct intel_super *super = st->sb;
3636 struct imsm_disk *disk;
3637 int count = 0;
3638 struct dl *dl;
3639 if (!super || !super->disks)
3640 return NULL;
3641 dl = super->disks;
3642 mddev = xcalloc(1, sizeof(*mddev));
3643 while (dl) {
3644 struct mdinfo *tmp;
3645 disk = &dl->disk;
3646 tmp = xcalloc(1, sizeof(*tmp));
3647 if (mddev->devs)
3648 tmp->next = mddev->devs;
3649 mddev->devs = tmp;
3650 tmp->disk.number = count++;
3651 tmp->disk.major = dl->major;
3652 tmp->disk.minor = dl->minor;
3653 tmp->disk.state = is_configured(disk) ?
3654 (1 << MD_DISK_ACTIVE) : 0;
3655 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3656 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3657 tmp->disk.raid_disk = -1;
3658 dl = dl->next;
3659 }
3660 return mddev;
3661 }
3662
3663 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3664 char *update, char *devname, int verbose,
3665 int uuid_set, char *homehost)
3666 {
3667 /* For 'assemble' and 'force' we need to return non-zero if any
3668 * change was made. For others, the return value is ignored.
3669 * Update options are:
3670 * force-one : This device looks a bit old but needs to be included,
3671 * update age info appropriately.
3672 * assemble: clear any 'faulty' flag to allow this device to
3673 * be assembled.
3674 * force-array: Array is degraded but being forced, mark it clean
3675 * if that will be needed to assemble it.
3676 *
3677 * newdev: not used ????
3678 * grow: Array has gained a new device - this is currently for
3679 * linear only
3680 * resync: mark as dirty so a resync will happen.
3681 * name: update the name - preserving the homehost
3682 * uuid: Change the uuid of the array to match watch is given
3683 *
3684 * Following are not relevant for this imsm:
3685 * sparc2.2 : update from old dodgey metadata
3686 * super-minor: change the preferred_minor number
3687 * summaries: update redundant counters.
3688 * homehost: update the recorded homehost
3689 * _reshape_progress: record new reshape_progress position.
3690 */
3691 int rv = 1;
3692 struct intel_super *super = st->sb;
3693 struct imsm_super *mpb;
3694
3695 /* we can only update container info */
3696 if (!super || super->current_vol >= 0 || !super->anchor)
3697 return 1;
3698
3699 mpb = super->anchor;
3700
3701 if (strcmp(update, "uuid") == 0) {
3702 /* We take this to mean that the family_num should be updated.
3703 * However that is much smaller than the uuid so we cannot really
3704 * allow an explicit uuid to be given. And it is hard to reliably
3705 * know if one was.
3706 * So if !uuid_set we know the current uuid is random and just used
3707 * the first 'int' and copy it to the other 3 positions.
3708 * Otherwise we require the 4 'int's to be the same as would be the
3709 * case if we are using a random uuid. So an explicit uuid will be
3710 * accepted as long as all for ints are the same... which shouldn't hurt
3711 */
3712 if (!uuid_set) {
3713 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3714 rv = 0;
3715 } else {
3716 if (info->uuid[0] != info->uuid[1] ||
3717 info->uuid[1] != info->uuid[2] ||
3718 info->uuid[2] != info->uuid[3])
3719 rv = -1;
3720 else
3721 rv = 0;
3722 }
3723 if (rv == 0)
3724 mpb->orig_family_num = info->uuid[0];
3725 } else if (strcmp(update, "assemble") == 0)
3726 rv = 0;
3727 else
3728 rv = -1;
3729
3730 /* successful update? recompute checksum */
3731 if (rv == 0)
3732 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3733
3734 return rv;
3735 }
3736
3737 static size_t disks_to_mpb_size(int disks)
3738 {
3739 size_t size;
3740
3741 size = sizeof(struct imsm_super);
3742 size += (disks - 1) * sizeof(struct imsm_disk);
3743 size += 2 * sizeof(struct imsm_dev);
3744 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3745 size += (4 - 2) * sizeof(struct imsm_map);
3746 /* 4 possible disk_ord_tbl's */
3747 size += 4 * (disks - 1) * sizeof(__u32);
3748 /* maximum bbm log */
3749 size += sizeof(struct bbm_log);
3750
3751 return size;
3752 }
3753
3754 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3755 unsigned long long data_offset)
3756 {
3757 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3758 return 0;
3759
3760 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3761 }
3762
3763 static void free_devlist(struct intel_super *super)
3764 {
3765 struct intel_dev *dv;
3766
3767 while (super->devlist) {
3768 dv = super->devlist->next;
3769 free(super->devlist->dev);
3770 free(super->devlist);
3771 super->devlist = dv;
3772 }
3773 }
3774
3775 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3776 {
3777 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3778 }
3779
3780 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3781 {
3782 /*
3783 * return:
3784 * 0 same, or first was empty, and second was copied
3785 * 1 second had wrong number
3786 * 2 wrong uuid
3787 * 3 wrong other info
3788 */
3789 struct intel_super *first = st->sb;
3790 struct intel_super *sec = tst->sb;
3791
3792 if (!first) {
3793 st->sb = tst->sb;
3794 tst->sb = NULL;
3795 return 0;
3796 }
3797 /* in platform dependent environment test if the disks
3798 * use the same Intel hba
3799 * If not on Intel hba at all, allow anything.
3800 */
3801 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3802 if (first->hba->type != sec->hba->type) {
3803 fprintf(stderr,
3804 "HBAs of devices do not match %s != %s\n",
3805 get_sys_dev_type(first->hba->type),
3806 get_sys_dev_type(sec->hba->type));
3807 return 3;
3808 }
3809 if (first->orom != sec->orom) {
3810 fprintf(stderr,
3811 "HBAs of devices do not match %s != %s\n",
3812 first->hba->pci_id, sec->hba->pci_id);
3813 return 3;
3814 }
3815 }
3816
3817 /* if an anchor does not have num_raid_devs set then it is a free
3818 * floating spare
3819 */
3820 if (first->anchor->num_raid_devs > 0 &&
3821 sec->anchor->num_raid_devs > 0) {
3822 /* Determine if these disks might ever have been
3823 * related. Further disambiguation can only take place
3824 * in load_super_imsm_all
3825 */
3826 __u32 first_family = first->anchor->orig_family_num;
3827 __u32 sec_family = sec->anchor->orig_family_num;
3828
3829 if (memcmp(first->anchor->sig, sec->anchor->sig,
3830 MAX_SIGNATURE_LENGTH) != 0)
3831 return 3;
3832
3833 if (first_family == 0)
3834 first_family = first->anchor->family_num;
3835 if (sec_family == 0)
3836 sec_family = sec->anchor->family_num;
3837
3838 if (first_family != sec_family)
3839 return 3;
3840
3841 }
3842
3843 /* if 'first' is a spare promote it to a populated mpb with sec's
3844 * family number
3845 */
3846 if (first->anchor->num_raid_devs == 0 &&
3847 sec->anchor->num_raid_devs > 0) {
3848 int i;
3849 struct intel_dev *dv;
3850 struct imsm_dev *dev;
3851
3852 /* we need to copy raid device info from sec if an allocation
3853 * fails here we don't associate the spare
3854 */
3855 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3856 dv = xmalloc(sizeof(*dv));
3857 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3858 dv->dev = dev;
3859 dv->index = i;
3860 dv->next = first->devlist;
3861 first->devlist = dv;
3862 }
3863 if (i < sec->anchor->num_raid_devs) {
3864 /* allocation failure */
3865 free_devlist(first);
3866 pr_err("imsm: failed to associate spare\n");
3867 return 3;
3868 }
3869 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3870 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3871 first->anchor->family_num = sec->anchor->family_num;
3872 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3873 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3874 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3875 }
3876
3877 return 0;
3878 }
3879
3880 static void fd2devname(int fd, char *name)
3881 {
3882 struct stat st;
3883 char path[256];
3884 char dname[PATH_MAX];
3885 char *nm;
3886 int rv;
3887
3888 name[0] = '\0';
3889 if (fstat(fd, &st) != 0)
3890 return;
3891 sprintf(path, "/sys/dev/block/%d:%d",
3892 major(st.st_rdev), minor(st.st_rdev));
3893
3894 rv = readlink(path, dname, sizeof(dname)-1);
3895 if (rv <= 0)
3896 return;
3897
3898 dname[rv] = '\0';
3899 nm = strrchr(dname, '/');
3900 if (nm) {
3901 nm++;
3902 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3903 }
3904 }
3905
3906 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3907 {
3908 char path[60];
3909 char *name = fd2kname(fd);
3910
3911 if (!name)
3912 return 1;
3913
3914 if (strncmp(name, "nvme", 4) != 0)
3915 return 1;
3916
3917 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3918
3919 return load_sys(path, buf, buf_len);
3920 }
3921
3922 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3923
3924 static int imsm_read_serial(int fd, char *devname,
3925 __u8 serial[MAX_RAID_SERIAL_LEN])
3926 {
3927 char buf[50];
3928 int rv;
3929 int len;
3930 char *dest;
3931 char *src;
3932 unsigned int i;
3933
3934 memset(buf, 0, sizeof(buf));
3935
3936 rv = nvme_get_serial(fd, buf, sizeof(buf));
3937
3938 if (rv)
3939 rv = scsi_get_serial(fd, buf, sizeof(buf));
3940
3941 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3942 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3943 fd2devname(fd, (char *) serial);
3944 return 0;
3945 }
3946
3947 if (rv != 0) {
3948 if (devname)
3949 pr_err("Failed to retrieve serial for %s\n",
3950 devname);
3951 return rv;
3952 }
3953
3954 /* trim all whitespace and non-printable characters and convert
3955 * ':' to ';'
3956 */
3957 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3958 src = &buf[i];
3959 if (*src > 0x20) {
3960 /* ':' is reserved for use in placeholder serial
3961 * numbers for missing disks
3962 */
3963 if (*src == ':')
3964 *dest++ = ';';
3965 else
3966 *dest++ = *src;
3967 }
3968 }
3969 len = dest - buf;
3970 dest = buf;
3971
3972 /* truncate leading characters */
3973 if (len > MAX_RAID_SERIAL_LEN) {
3974 dest += len - MAX_RAID_SERIAL_LEN;
3975 len = MAX_RAID_SERIAL_LEN;
3976 }
3977
3978 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3979 memcpy(serial, dest, len);
3980
3981 return 0;
3982 }
3983
3984 static int serialcmp(__u8 *s1, __u8 *s2)
3985 {
3986 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3987 }
3988
3989 static void serialcpy(__u8 *dest, __u8 *src)
3990 {
3991 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3992 }
3993
3994 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3995 {
3996 struct dl *dl;
3997
3998 for (dl = super->disks; dl; dl = dl->next)
3999 if (serialcmp(dl->serial, serial) == 0)
4000 break;
4001
4002 return dl;
4003 }
4004
4005 static struct imsm_disk *
4006 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4007 {
4008 int i;
4009
4010 for (i = 0; i < mpb->num_disks; i++) {
4011 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4012
4013 if (serialcmp(disk->serial, serial) == 0) {
4014 if (idx)
4015 *idx = i;
4016 return disk;
4017 }
4018 }
4019
4020 return NULL;
4021 }
4022
4023 static int
4024 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4025 {
4026 struct imsm_disk *disk;
4027 struct dl *dl;
4028 struct stat stb;
4029 int rv;
4030 char name[40];
4031 __u8 serial[MAX_RAID_SERIAL_LEN];
4032
4033 rv = imsm_read_serial(fd, devname, serial);
4034
4035 if (rv != 0)
4036 return 2;
4037
4038 dl = xcalloc(1, sizeof(*dl));
4039
4040 fstat(fd, &stb);
4041 dl->major = major(stb.st_rdev);
4042 dl->minor = minor(stb.st_rdev);
4043 dl->next = super->disks;
4044 dl->fd = keep_fd ? fd : -1;
4045 assert(super->disks == NULL);
4046 super->disks = dl;
4047 serialcpy(dl->serial, serial);
4048 dl->index = -2;
4049 dl->e = NULL;
4050 fd2devname(fd, name);
4051 if (devname)
4052 dl->devname = xstrdup(devname);
4053 else
4054 dl->devname = xstrdup(name);
4055
4056 /* look up this disk's index in the current anchor */
4057 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4058 if (disk) {
4059 dl->disk = *disk;
4060 /* only set index on disks that are a member of a
4061 * populated contianer, i.e. one with raid_devs
4062 */
4063 if (is_failed(&dl->disk))
4064 dl->index = -2;
4065 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
4066 dl->index = -1;
4067 }
4068
4069 return 0;
4070 }
4071
4072 /* When migrating map0 contains the 'destination' state while map1
4073 * contains the current state. When not migrating map0 contains the
4074 * current state. This routine assumes that map[0].map_state is set to
4075 * the current array state before being called.
4076 *
4077 * Migration is indicated by one of the following states
4078 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
4079 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
4080 * map1state=unitialized)
4081 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
4082 * map1state=normal)
4083 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
4084 * map1state=degraded)
4085 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4086 * map1state=normal)
4087 */
4088 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4089 __u8 to_state, int migr_type)
4090 {
4091 struct imsm_map *dest;
4092 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4093
4094 dev->vol.migr_state = 1;
4095 set_migr_type(dev, migr_type);
4096 dev->vol.curr_migr_unit = 0;
4097 dest = get_imsm_map(dev, MAP_1);
4098
4099 /* duplicate and then set the target end state in map[0] */
4100 memcpy(dest, src, sizeof_imsm_map(src));
4101 if (migr_type == MIGR_GEN_MIGR) {
4102 __u32 ord;
4103 int i;
4104
4105 for (i = 0; i < src->num_members; i++) {
4106 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4107 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4108 }
4109 }
4110
4111 if (migr_type == MIGR_GEN_MIGR)
4112 /* Clear migration record */
4113 memset(super->migr_rec, 0, sizeof(struct migr_record));
4114
4115 src->map_state = to_state;
4116 }
4117
4118 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4119 __u8 map_state)
4120 {
4121 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4122 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4123 MAP_0 : MAP_1);
4124 int i, j;
4125
4126 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4127 * completed in the last migration.
4128 *
4129 * FIXME add support for raid-level-migration
4130 */
4131 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4132 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4133 /* when final map state is other than expected
4134 * merge maps (not for migration)
4135 */
4136 int failed;
4137
4138 for (i = 0; i < prev->num_members; i++)
4139 for (j = 0; j < map->num_members; j++)
4140 /* during online capacity expansion
4141 * disks position can be changed
4142 * if takeover is used
4143 */
4144 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4145 ord_to_idx(prev->disk_ord_tbl[i])) {
4146 map->disk_ord_tbl[j] |=
4147 prev->disk_ord_tbl[i];
4148 break;
4149 }
4150 failed = imsm_count_failed(super, dev, MAP_0);
4151 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4152 }
4153
4154 dev->vol.migr_state = 0;
4155 set_migr_type(dev, 0);
4156 dev->vol.curr_migr_unit = 0;
4157 map->map_state = map_state;
4158 }
4159
4160 static int parse_raid_devices(struct intel_super *super)
4161 {
4162 int i;
4163 struct imsm_dev *dev_new;
4164 size_t len, len_migr;
4165 size_t max_len = 0;
4166 size_t space_needed = 0;
4167 struct imsm_super *mpb = super->anchor;
4168
4169 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4170 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4171 struct intel_dev *dv;
4172
4173 len = sizeof_imsm_dev(dev_iter, 0);
4174 len_migr = sizeof_imsm_dev(dev_iter, 1);
4175 if (len_migr > len)
4176 space_needed += len_migr - len;
4177
4178 dv = xmalloc(sizeof(*dv));
4179 if (max_len < len_migr)
4180 max_len = len_migr;
4181 if (max_len > len_migr)
4182 space_needed += max_len - len_migr;
4183 dev_new = xmalloc(max_len);
4184 imsm_copy_dev(dev_new, dev_iter);
4185 dv->dev = dev_new;
4186 dv->index = i;
4187 dv->next = super->devlist;
4188 super->devlist = dv;
4189 }
4190
4191 /* ensure that super->buf is large enough when all raid devices
4192 * are migrating
4193 */
4194 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4195 void *buf;
4196
4197 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4198 super->sector_size);
4199 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4200 return 1;
4201
4202 memcpy(buf, super->buf, super->len);
4203 memset(buf + super->len, 0, len - super->len);
4204 free(super->buf);
4205 super->buf = buf;
4206 super->len = len;
4207 }
4208
4209 super->extra_space += space_needed;
4210
4211 return 0;
4212 }
4213
4214 /*******************************************************************************
4215 * Function: check_mpb_migr_compatibility
4216 * Description: Function checks for unsupported migration features:
4217 * - migration optimization area (pba_of_lba0)
4218 * - descending reshape (ascending_migr)
4219 * Parameters:
4220 * super : imsm metadata information
4221 * Returns:
4222 * 0 : migration is compatible
4223 * -1 : migration is not compatible
4224 ******************************************************************************/
4225 int check_mpb_migr_compatibility(struct intel_super *super)
4226 {
4227 struct imsm_map *map0, *map1;
4228 struct migr_record *migr_rec = super->migr_rec;
4229 int i;
4230
4231 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4232 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4233
4234 if (dev_iter &&
4235 dev_iter->vol.migr_state == 1 &&
4236 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4237 /* This device is migrating */
4238 map0 = get_imsm_map(dev_iter, MAP_0);
4239 map1 = get_imsm_map(dev_iter, MAP_1);
4240 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4241 /* migration optimization area was used */
4242 return -1;
4243 if (migr_rec->ascending_migr == 0 &&
4244 migr_rec->dest_depth_per_unit > 0)
4245 /* descending reshape not supported yet */
4246 return -1;
4247 }
4248 }
4249 return 0;
4250 }
4251
4252 static void __free_imsm(struct intel_super *super, int free_disks);
4253
4254 /* load_imsm_mpb - read matrix metadata
4255 * allocates super->mpb to be freed by free_imsm
4256 */
4257 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4258 {
4259 unsigned long long dsize;
4260 unsigned long long sectors;
4261 unsigned int sector_size = super->sector_size;
4262 struct stat;
4263 struct imsm_super *anchor;
4264 __u32 check_sum;
4265
4266 get_dev_size(fd, NULL, &dsize);
4267 if (dsize < 2*sector_size) {
4268 if (devname)
4269 pr_err("%s: device to small for imsm\n",
4270 devname);
4271 return 1;
4272 }
4273
4274 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4275 if (devname)
4276 pr_err("Cannot seek to anchor block on %s: %s\n",
4277 devname, strerror(errno));
4278 return 1;
4279 }
4280
4281 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4282 if (devname)
4283 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4284 return 1;
4285 }
4286 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4287 if (devname)
4288 pr_err("Cannot read anchor block on %s: %s\n",
4289 devname, strerror(errno));
4290 free(anchor);
4291 return 1;
4292 }
4293
4294 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4295 if (devname)
4296 pr_err("no IMSM anchor on %s\n", devname);
4297 free(anchor);
4298 return 2;
4299 }
4300
4301 __free_imsm(super, 0);
4302 /* reload capability and hba */
4303
4304 /* capability and hba must be updated with new super allocation */
4305 find_intel_hba_capability(fd, super, devname);
4306 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4307 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4308 if (devname)
4309 pr_err("unable to allocate %zu byte mpb buffer\n",
4310 super->len);
4311 free(anchor);
4312 return 2;
4313 }
4314 memcpy(super->buf, anchor, sector_size);
4315
4316 sectors = mpb_sectors(anchor, sector_size) - 1;
4317 free(anchor);
4318
4319 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4320 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
4321 pr_err("could not allocate migr_rec buffer\n");
4322 free(super->buf);
4323 return 2;
4324 }
4325 super->clean_migration_record_by_mdmon = 0;
4326
4327 if (!sectors) {
4328 check_sum = __gen_imsm_checksum(super->anchor);
4329 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4330 if (devname)
4331 pr_err("IMSM checksum %x != %x on %s\n",
4332 check_sum,
4333 __le32_to_cpu(super->anchor->check_sum),
4334 devname);
4335 return 2;
4336 }
4337
4338 return 0;
4339 }
4340
4341 /* read the extended mpb */
4342 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4343 if (devname)
4344 pr_err("Cannot seek to extended mpb on %s: %s\n",
4345 devname, strerror(errno));
4346 return 1;
4347 }
4348
4349 if ((unsigned int)read(fd, super->buf + sector_size,
4350 super->len - sector_size) != super->len - sector_size) {
4351 if (devname)
4352 pr_err("Cannot read extended mpb on %s: %s\n",
4353 devname, strerror(errno));
4354 return 2;
4355 }
4356
4357 check_sum = __gen_imsm_checksum(super->anchor);
4358 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4359 if (devname)
4360 pr_err("IMSM checksum %x != %x on %s\n",
4361 check_sum, __le32_to_cpu(super->anchor->check_sum),
4362 devname);
4363 return 3;
4364 }
4365
4366 return 0;
4367 }
4368
4369 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4370
4371 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4372 static void clear_hi(struct intel_super *super)
4373 {
4374 struct imsm_super *mpb = super->anchor;
4375 int i, n;
4376 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4377 return;
4378 for (i = 0; i < mpb->num_disks; ++i) {
4379 struct imsm_disk *disk = &mpb->disk[i];
4380 disk->total_blocks_hi = 0;
4381 }
4382 for (i = 0; i < mpb->num_raid_devs; ++i) {
4383 struct imsm_dev *dev = get_imsm_dev(super, i);
4384 if (!dev)
4385 return;
4386 for (n = 0; n < 2; ++n) {
4387 struct imsm_map *map = get_imsm_map(dev, n);
4388 if (!map)
4389 continue;
4390 map->pba_of_lba0_hi = 0;
4391 map->blocks_per_member_hi = 0;
4392 map->num_data_stripes_hi = 0;
4393 }
4394 }
4395 }
4396
4397 static int
4398 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4399 {
4400 int err;
4401
4402 err = load_imsm_mpb(fd, super, devname);
4403 if (err)
4404 return err;
4405 if (super->sector_size == 4096)
4406 convert_from_4k(super);
4407 err = load_imsm_disk(fd, super, devname, keep_fd);
4408 if (err)
4409 return err;
4410 err = parse_raid_devices(super);
4411 if (err)
4412 return err;
4413 err = load_bbm_log(super);
4414 clear_hi(super);
4415 return err;
4416 }
4417
4418 static void __free_imsm_disk(struct dl *d)
4419 {
4420 if (d->fd >= 0)
4421 close(d->fd);
4422 if (d->devname)
4423 free(d->devname);
4424 if (d->e)
4425 free(d->e);
4426 free(d);
4427
4428 }
4429
4430 static void free_imsm_disks(struct intel_super *super)
4431 {
4432 struct dl *d;
4433
4434 while (super->disks) {
4435 d = super->disks;
4436 super->disks = d->next;
4437 __free_imsm_disk(d);
4438 }
4439 while (super->disk_mgmt_list) {
4440 d = super->disk_mgmt_list;
4441 super->disk_mgmt_list = d->next;
4442 __free_imsm_disk(d);
4443 }
4444 while (super->missing) {
4445 d = super->missing;
4446 super->missing = d->next;
4447 __free_imsm_disk(d);
4448 }
4449
4450 }
4451
4452 /* free all the pieces hanging off of a super pointer */
4453 static void __free_imsm(struct intel_super *super, int free_disks)
4454 {
4455 struct intel_hba *elem, *next;
4456
4457 if (super->buf) {
4458 free(super->buf);
4459 super->buf = NULL;
4460 }
4461 /* unlink capability description */
4462 super->orom = NULL;
4463 if (super->migr_rec_buf) {
4464 free(super->migr_rec_buf);
4465 super->migr_rec_buf = NULL;
4466 }
4467 if (free_disks)
4468 free_imsm_disks(super);
4469 free_devlist(super);
4470 elem = super->hba;
4471 while (elem) {
4472 if (elem->path)
4473 free((void *)elem->path);
4474 next = elem->next;
4475 free(elem);
4476 elem = next;
4477 }
4478 if (super->bbm_log)
4479 free(super->bbm_log);
4480 super->hba = NULL;
4481 }
4482
4483 static void free_imsm(struct intel_super *super)
4484 {
4485 __free_imsm(super, 1);
4486 free(super->bb.entries);
4487 free(super);
4488 }
4489
4490 static void free_super_imsm(struct supertype *st)
4491 {
4492 struct intel_super *super = st->sb;
4493
4494 if (!super)
4495 return;
4496
4497 free_imsm(super);
4498 st->sb = NULL;
4499 }
4500
4501 static struct intel_super *alloc_super(void)
4502 {
4503 struct intel_super *super = xcalloc(1, sizeof(*super));
4504
4505 super->current_vol = -1;
4506 super->create_offset = ~((unsigned long long) 0);
4507
4508 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4509 sizeof(struct md_bb_entry));
4510 if (!super->bb.entries) {
4511 free(super);
4512 return NULL;
4513 }
4514
4515 return super;
4516 }
4517
4518 /*
4519 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4520 */
4521 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4522 {
4523 struct sys_dev *hba_name;
4524 int rv = 0;
4525
4526 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4527 super->orom = NULL;
4528 super->hba = NULL;
4529 return 0;
4530 }
4531 hba_name = find_disk_attached_hba(fd, NULL);
4532 if (!hba_name) {
4533 if (devname)
4534 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4535 devname);
4536 return 1;
4537 }
4538 rv = attach_hba_to_super(super, hba_name);
4539 if (rv == 2) {
4540 if (devname) {
4541 struct intel_hba *hba = super->hba;
4542
4543 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4544 " but the container is assigned to Intel(R) %s %s (",
4545 devname,
4546 get_sys_dev_type(hba_name->type),
4547 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4548 hba_name->pci_id ? : "Err!",
4549 get_sys_dev_type(super->hba->type),
4550 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4551
4552 while (hba) {
4553 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4554 if (hba->next)
4555 fprintf(stderr, ", ");
4556 hba = hba->next;
4557 }
4558 fprintf(stderr, ").\n"
4559 " Mixing devices attached to different controllers is not allowed.\n");
4560 }
4561 return 2;
4562 }
4563 super->orom = find_imsm_capability(hba_name);
4564 if (!super->orom)
4565 return 3;
4566
4567 return 0;
4568 }
4569
4570 /* find_missing - helper routine for load_super_imsm_all that identifies
4571 * disks that have disappeared from the system. This routine relies on
4572 * the mpb being uptodate, which it is at load time.
4573 */
4574 static int find_missing(struct intel_super *super)
4575 {
4576 int i;
4577 struct imsm_super *mpb = super->anchor;
4578 struct dl *dl;
4579 struct imsm_disk *disk;
4580
4581 for (i = 0; i < mpb->num_disks; i++) {
4582 disk = __get_imsm_disk(mpb, i);
4583 dl = serial_to_dl(disk->serial, super);
4584 if (dl)
4585 continue;
4586
4587 dl = xmalloc(sizeof(*dl));
4588 dl->major = 0;
4589 dl->minor = 0;
4590 dl->fd = -1;
4591 dl->devname = xstrdup("missing");
4592 dl->index = i;
4593 serialcpy(dl->serial, disk->serial);
4594 dl->disk = *disk;
4595 dl->e = NULL;
4596 dl->next = super->missing;
4597 super->missing = dl;
4598 }
4599
4600 return 0;
4601 }
4602
4603 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4604 {
4605 struct intel_disk *idisk = disk_list;
4606
4607 while (idisk) {
4608 if (serialcmp(idisk->disk.serial, serial) == 0)
4609 break;
4610 idisk = idisk->next;
4611 }
4612
4613 return idisk;
4614 }
4615
4616 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4617 struct intel_super *super,
4618 struct intel_disk **disk_list)
4619 {
4620 struct imsm_disk *d = &super->disks->disk;
4621 struct imsm_super *mpb = super->anchor;
4622 int i, j;
4623
4624 for (i = 0; i < tbl_size; i++) {
4625 struct imsm_super *tbl_mpb = table[i]->anchor;
4626 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4627
4628 if (tbl_mpb->family_num == mpb->family_num) {
4629 if (tbl_mpb->check_sum == mpb->check_sum) {
4630 dprintf("mpb from %d:%d matches %d:%d\n",
4631 super->disks->major,
4632 super->disks->minor,
4633 table[i]->disks->major,
4634 table[i]->disks->minor);
4635 break;
4636 }
4637
4638 if (((is_configured(d) && !is_configured(tbl_d)) ||
4639 is_configured(d) == is_configured(tbl_d)) &&
4640 tbl_mpb->generation_num < mpb->generation_num) {
4641 /* current version of the mpb is a
4642 * better candidate than the one in
4643 * super_table, but copy over "cross
4644 * generational" status
4645 */
4646 struct intel_disk *idisk;
4647
4648 dprintf("mpb from %d:%d replaces %d:%d\n",
4649 super->disks->major,
4650 super->disks->minor,
4651 table[i]->disks->major,
4652 table[i]->disks->minor);
4653
4654 idisk = disk_list_get(tbl_d->serial, *disk_list);
4655 if (idisk && is_failed(&idisk->disk))
4656 tbl_d->status |= FAILED_DISK;
4657 break;
4658 } else {
4659 struct intel_disk *idisk;
4660 struct imsm_disk *disk;
4661
4662 /* tbl_mpb is more up to date, but copy
4663 * over cross generational status before
4664 * returning
4665 */
4666 disk = __serial_to_disk(d->serial, mpb, NULL);
4667 if (disk && is_failed(disk))
4668 d->status |= FAILED_DISK;
4669
4670 idisk = disk_list_get(d->serial, *disk_list);
4671 if (idisk) {
4672 idisk->owner = i;
4673 if (disk && is_configured(disk))
4674 idisk->disk.status |= CONFIGURED_DISK;
4675 }
4676
4677 dprintf("mpb from %d:%d prefer %d:%d\n",
4678 super->disks->major,
4679 super->disks->minor,
4680 table[i]->disks->major,
4681 table[i]->disks->minor);
4682
4683 return tbl_size;
4684 }
4685 }
4686 }
4687
4688 if (i >= tbl_size)
4689 table[tbl_size++] = super;
4690 else
4691 table[i] = super;
4692
4693 /* update/extend the merged list of imsm_disk records */
4694 for (j = 0; j < mpb->num_disks; j++) {
4695 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4696 struct intel_disk *idisk;
4697
4698 idisk = disk_list_get(disk->serial, *disk_list);
4699 if (idisk) {
4700 idisk->disk.status |= disk->status;
4701 if (is_configured(&idisk->disk) ||
4702 is_failed(&idisk->disk))
4703 idisk->disk.status &= ~(SPARE_DISK);
4704 } else {
4705 idisk = xcalloc(1, sizeof(*idisk));
4706 idisk->owner = IMSM_UNKNOWN_OWNER;
4707 idisk->disk = *disk;
4708 idisk->next = *disk_list;
4709 *disk_list = idisk;
4710 }
4711
4712 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4713 idisk->owner = i;
4714 }
4715
4716 return tbl_size;
4717 }
4718
4719 static struct intel_super *
4720 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4721 const int owner)
4722 {
4723 struct imsm_super *mpb = super->anchor;
4724 int ok_count = 0;
4725 int i;
4726
4727 for (i = 0; i < mpb->num_disks; i++) {
4728 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4729 struct intel_disk *idisk;
4730
4731 idisk = disk_list_get(disk->serial, disk_list);
4732 if (idisk) {
4733 if (idisk->owner == owner ||
4734 idisk->owner == IMSM_UNKNOWN_OWNER)
4735 ok_count++;
4736 else
4737 dprintf("'%.16s' owner %d != %d\n",
4738 disk->serial, idisk->owner,
4739 owner);
4740 } else {
4741 dprintf("unknown disk %x [%d]: %.16s\n",
4742 __le32_to_cpu(mpb->family_num), i,
4743 disk->serial);
4744 break;
4745 }
4746 }
4747
4748 if (ok_count == mpb->num_disks)
4749 return super;
4750 return NULL;
4751 }
4752
4753 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4754 {
4755 struct intel_super *s;
4756
4757 for (s = super_list; s; s = s->next) {
4758 if (family_num != s->anchor->family_num)
4759 continue;
4760 pr_err("Conflict, offlining family %#x on '%s'\n",
4761 __le32_to_cpu(family_num), s->disks->devname);
4762 }
4763 }
4764
4765 static struct intel_super *
4766 imsm_thunderdome(struct intel_super **super_list, int len)
4767 {
4768 struct intel_super *super_table[len];
4769 struct intel_disk *disk_list = NULL;
4770 struct intel_super *champion, *spare;
4771 struct intel_super *s, **del;
4772 int tbl_size = 0;
4773 int conflict;
4774 int i;
4775
4776 memset(super_table, 0, sizeof(super_table));
4777 for (s = *super_list; s; s = s->next)
4778 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4779
4780 for (i = 0; i < tbl_size; i++) {
4781 struct imsm_disk *d;
4782 struct intel_disk *idisk;
4783 struct imsm_super *mpb = super_table[i]->anchor;
4784
4785 s = super_table[i];
4786 d = &s->disks->disk;
4787
4788 /* 'd' must appear in merged disk list for its
4789 * configuration to be valid
4790 */
4791 idisk = disk_list_get(d->serial, disk_list);
4792 if (idisk && idisk->owner == i)
4793 s = validate_members(s, disk_list, i);
4794 else
4795 s = NULL;
4796
4797 if (!s)
4798 dprintf("marking family: %#x from %d:%d offline\n",
4799 mpb->family_num,
4800 super_table[i]->disks->major,
4801 super_table[i]->disks->minor);
4802 super_table[i] = s;
4803 }
4804
4805 /* This is where the mdadm implementation differs from the Windows
4806 * driver which has no strict concept of a container. We can only
4807 * assemble one family from a container, so when returning a prodigal
4808 * array member to this system the code will not be able to disambiguate
4809 * the container contents that should be assembled ("foreign" versus
4810 * "local"). It requires user intervention to set the orig_family_num
4811 * to a new value to establish a new container. The Windows driver in
4812 * this situation fixes up the volume name in place and manages the
4813 * foreign array as an independent entity.
4814 */
4815 s = NULL;
4816 spare = NULL;
4817 conflict = 0;
4818 for (i = 0; i < tbl_size; i++) {
4819 struct intel_super *tbl_ent = super_table[i];
4820 int is_spare = 0;
4821
4822 if (!tbl_ent)
4823 continue;
4824
4825 if (tbl_ent->anchor->num_raid_devs == 0) {
4826 spare = tbl_ent;
4827 is_spare = 1;
4828 }
4829
4830 if (s && !is_spare) {
4831 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4832 conflict++;
4833 } else if (!s && !is_spare)
4834 s = tbl_ent;
4835 }
4836
4837 if (!s)
4838 s = spare;
4839 if (!s) {
4840 champion = NULL;
4841 goto out;
4842 }
4843 champion = s;
4844
4845 if (conflict)
4846 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4847 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4848
4849 /* collect all dl's onto 'champion', and update them to
4850 * champion's version of the status
4851 */
4852 for (s = *super_list; s; s = s->next) {
4853 struct imsm_super *mpb = champion->anchor;
4854 struct dl *dl = s->disks;
4855
4856 if (s == champion)
4857 continue;
4858
4859 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4860
4861 for (i = 0; i < mpb->num_disks; i++) {
4862 struct imsm_disk *disk;
4863
4864 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4865 if (disk) {
4866 dl->disk = *disk;
4867 /* only set index on disks that are a member of
4868 * a populated contianer, i.e. one with
4869 * raid_devs
4870 */
4871 if (is_failed(&dl->disk))
4872 dl->index = -2;
4873 else if (is_spare(&dl->disk))
4874 dl->index = -1;
4875 break;
4876 }
4877 }
4878
4879 if (i >= mpb->num_disks) {
4880 struct intel_disk *idisk;
4881
4882 idisk = disk_list_get(dl->serial, disk_list);
4883 if (idisk && is_spare(&idisk->disk) &&
4884 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4885 dl->index = -1;
4886 else {
4887 dl->index = -2;
4888 continue;
4889 }
4890 }
4891
4892 dl->next = champion->disks;
4893 champion->disks = dl;
4894 s->disks = NULL;
4895 }
4896
4897 /* delete 'champion' from super_list */
4898 for (del = super_list; *del; ) {
4899 if (*del == champion) {
4900 *del = (*del)->next;
4901 break;
4902 } else
4903 del = &(*del)->next;
4904 }
4905 champion->next = NULL;
4906
4907 out:
4908 while (disk_list) {
4909 struct intel_disk *idisk = disk_list;
4910
4911 disk_list = disk_list->next;
4912 free(idisk);
4913 }
4914
4915 return champion;
4916 }
4917
4918 static int
4919 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4920 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4921 int major, int minor, int keep_fd);
4922 static int
4923 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4924 int *max, int keep_fd);
4925
4926 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4927 char *devname, struct md_list *devlist,
4928 int keep_fd)
4929 {
4930 struct intel_super *super_list = NULL;
4931 struct intel_super *super = NULL;
4932 int err = 0;
4933 int i = 0;
4934
4935 if (fd >= 0)
4936 /* 'fd' is an opened container */
4937 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4938 else
4939 /* get super block from devlist devices */
4940 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4941 if (err)
4942 goto error;
4943 /* all mpbs enter, maybe one leaves */
4944 super = imsm_thunderdome(&super_list, i);
4945 if (!super) {
4946 err = 1;
4947 goto error;
4948 }
4949
4950 if (find_missing(super) != 0) {
4951 free_imsm(super);
4952 err = 2;
4953 goto error;
4954 }
4955
4956 /* load migration record */
4957 err = load_imsm_migr_rec(super, NULL);
4958 if (err == -1) {
4959 /* migration is in progress,
4960 * but migr_rec cannot be loaded,
4961 */
4962 err = 4;
4963 goto error;
4964 }
4965
4966 /* Check migration compatibility */
4967 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4968 pr_err("Unsupported migration detected");
4969 if (devname)
4970 fprintf(stderr, " on %s\n", devname);
4971 else
4972 fprintf(stderr, " (IMSM).\n");
4973
4974 err = 5;
4975 goto error;
4976 }
4977
4978 err = 0;
4979
4980 error:
4981 while (super_list) {
4982 struct intel_super *s = super_list;
4983
4984 super_list = super_list->next;
4985 free_imsm(s);
4986 }
4987
4988 if (err)
4989 return err;
4990
4991 *sbp = super;
4992 if (fd >= 0)
4993 strcpy(st->container_devnm, fd2devnm(fd));
4994 else
4995 st->container_devnm[0] = 0;
4996 if (err == 0 && st->ss == NULL) {
4997 st->ss = &super_imsm;
4998 st->minor_version = 0;
4999 st->max_devs = IMSM_MAX_DEVICES;
5000 }
5001 return 0;
5002 }
5003
5004 static int
5005 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5006 int *max, int keep_fd)
5007 {
5008 struct md_list *tmpdev;
5009 int err = 0;
5010 int i = 0;
5011
5012 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5013 if (tmpdev->used != 1)
5014 continue;
5015 if (tmpdev->container == 1) {
5016 int lmax = 0;
5017 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5018 if (fd < 0) {
5019 pr_err("cannot open device %s: %s\n",
5020 tmpdev->devname, strerror(errno));
5021 err = 8;
5022 goto error;
5023 }
5024 err = get_sra_super_block(fd, super_list,
5025 tmpdev->devname, &lmax,
5026 keep_fd);
5027 i += lmax;
5028 close(fd);
5029 if (err) {
5030 err = 7;
5031 goto error;
5032 }
5033 } else {
5034 int major = major(tmpdev->st_rdev);
5035 int minor = minor(tmpdev->st_rdev);
5036 err = get_super_block(super_list,
5037 NULL,
5038 tmpdev->devname,
5039 major, minor,
5040 keep_fd);
5041 i++;
5042 if (err) {
5043 err = 6;
5044 goto error;
5045 }
5046 }
5047 }
5048 error:
5049 *max = i;
5050 return err;
5051 }
5052
5053 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5054 int major, int minor, int keep_fd)
5055 {
5056 struct intel_super *s;
5057 char nm[32];
5058 int dfd = -1;
5059 int err = 0;
5060 int retry;
5061
5062 s = alloc_super();
5063 if (!s) {
5064 err = 1;
5065 goto error;
5066 }
5067
5068 sprintf(nm, "%d:%d", major, minor);
5069 dfd = dev_open(nm, O_RDWR);
5070 if (dfd < 0) {
5071 err = 2;
5072 goto error;
5073 }
5074
5075 get_dev_sector_size(dfd, NULL, &s->sector_size);
5076 find_intel_hba_capability(dfd, s, devname);
5077 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5078
5079 /* retry the load if we might have raced against mdmon */
5080 if (err == 3 && devnm && mdmon_running(devnm))
5081 for (retry = 0; retry < 3; retry++) {
5082 usleep(3000);
5083 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5084 if (err != 3)
5085 break;
5086 }
5087 error:
5088 if (!err) {
5089 s->next = *super_list;
5090 *super_list = s;
5091 } else {
5092 if (s)
5093 free_imsm(s);
5094 if (dfd >= 0)
5095 close(dfd);
5096 }
5097 if (dfd >= 0 && !keep_fd)
5098 close(dfd);
5099 return err;
5100
5101 }
5102
5103 static int
5104 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5105 {
5106 struct mdinfo *sra;
5107 char *devnm;
5108 struct mdinfo *sd;
5109 int err = 0;
5110 int i = 0;
5111 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5112 if (!sra)
5113 return 1;
5114
5115 if (sra->array.major_version != -1 ||
5116 sra->array.minor_version != -2 ||
5117 strcmp(sra->text_version, "imsm") != 0) {
5118 err = 1;
5119 goto error;
5120 }
5121 /* load all mpbs */
5122 devnm = fd2devnm(fd);
5123 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5124 if (get_super_block(super_list, devnm, devname,
5125 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5126 err = 7;
5127 goto error;
5128 }
5129 }
5130 error:
5131 sysfs_free(sra);
5132 *max = i;
5133 return err;
5134 }
5135
5136 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5137 {
5138 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5139 }
5140
5141 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5142 {
5143 struct intel_super *super;
5144 int rv;
5145 int retry;
5146
5147 if (test_partition(fd))
5148 /* IMSM not allowed on partitions */
5149 return 1;
5150
5151 free_super_imsm(st);
5152
5153 super = alloc_super();
5154 get_dev_sector_size(fd, NULL, &super->sector_size);
5155 if (!super)
5156 return 1;
5157 /* Load hba and capabilities if they exist.
5158 * But do not preclude loading metadata in case capabilities or hba are
5159 * non-compliant and ignore_hw_compat is set.
5160 */
5161 rv = find_intel_hba_capability(fd, super, devname);
5162 /* no orom/efi or non-intel hba of the disk */
5163 if (rv != 0 && st->ignore_hw_compat == 0) {
5164 if (devname)
5165 pr_err("No OROM/EFI properties for %s\n", devname);
5166 free_imsm(super);
5167 return 2;
5168 }
5169 rv = load_and_parse_mpb(fd, super, devname, 0);
5170
5171 /* retry the load if we might have raced against mdmon */
5172 if (rv == 3) {
5173 struct mdstat_ent *mdstat = NULL;
5174 char *name = fd2kname(fd);
5175
5176 if (name)
5177 mdstat = mdstat_by_component(name);
5178
5179 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5180 for (retry = 0; retry < 3; retry++) {
5181 usleep(3000);
5182 rv = load_and_parse_mpb(fd, super, devname, 0);
5183 if (rv != 3)
5184 break;
5185 }
5186 }
5187
5188 free_mdstat(mdstat);
5189 }
5190
5191 if (rv) {
5192 if (devname)
5193 pr_err("Failed to load all information sections on %s\n", devname);
5194 free_imsm(super);
5195 return rv;
5196 }
5197
5198 st->sb = super;
5199 if (st->ss == NULL) {
5200 st->ss = &super_imsm;
5201 st->minor_version = 0;
5202 st->max_devs = IMSM_MAX_DEVICES;
5203 }
5204
5205 /* load migration record */
5206 if (load_imsm_migr_rec(super, NULL) == 0) {
5207 /* Check for unsupported migration features */
5208 if (check_mpb_migr_compatibility(super) != 0) {
5209 pr_err("Unsupported migration detected");
5210 if (devname)
5211 fprintf(stderr, " on %s\n", devname);
5212 else
5213 fprintf(stderr, " (IMSM).\n");
5214 return 3;
5215 }
5216 }
5217
5218 return 0;
5219 }
5220
5221 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5222 {
5223 if (info->level == 1)
5224 return 128;
5225 return info->chunk_size >> 9;
5226 }
5227
5228 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5229 unsigned long long size)
5230 {
5231 if (info->level == 1)
5232 return size * 2;
5233 else
5234 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5235 }
5236
5237 static void imsm_update_version_info(struct intel_super *super)
5238 {
5239 /* update the version and attributes */
5240 struct imsm_super *mpb = super->anchor;
5241 char *version;
5242 struct imsm_dev *dev;
5243 struct imsm_map *map;
5244 int i;
5245
5246 for (i = 0; i < mpb->num_raid_devs; i++) {
5247 dev = get_imsm_dev(super, i);
5248 map = get_imsm_map(dev, MAP_0);
5249 if (__le32_to_cpu(dev->size_high) > 0)
5250 mpb->attributes |= MPB_ATTRIB_2TB;
5251
5252 /* FIXME detect when an array spans a port multiplier */
5253 #if 0
5254 mpb->attributes |= MPB_ATTRIB_PM;
5255 #endif
5256
5257 if (mpb->num_raid_devs > 1 ||
5258 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5259 version = MPB_VERSION_ATTRIBS;
5260 switch (get_imsm_raid_level(map)) {
5261 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5262 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5263 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5264 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5265 }
5266 } else {
5267 if (map->num_members >= 5)
5268 version = MPB_VERSION_5OR6_DISK_ARRAY;
5269 else if (dev->status == DEV_CLONE_N_GO)
5270 version = MPB_VERSION_CNG;
5271 else if (get_imsm_raid_level(map) == 5)
5272 version = MPB_VERSION_RAID5;
5273 else if (map->num_members >= 3)
5274 version = MPB_VERSION_3OR4_DISK_ARRAY;
5275 else if (get_imsm_raid_level(map) == 1)
5276 version = MPB_VERSION_RAID1;
5277 else
5278 version = MPB_VERSION_RAID0;
5279 }
5280 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5281 }
5282 }
5283
5284 static int check_name(struct intel_super *super, char *name, int quiet)
5285 {
5286 struct imsm_super *mpb = super->anchor;
5287 char *reason = NULL;
5288 int i;
5289
5290 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5291 reason = "must be 16 characters or less";
5292
5293 for (i = 0; i < mpb->num_raid_devs; i++) {
5294 struct imsm_dev *dev = get_imsm_dev(super, i);
5295
5296 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5297 reason = "already exists";
5298 break;
5299 }
5300 }
5301
5302 if (reason && !quiet)
5303 pr_err("imsm volume name %s\n", reason);
5304
5305 return !reason;
5306 }
5307
5308 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5309 struct shape *s, char *name,
5310 char *homehost, int *uuid,
5311 long long data_offset)
5312 {
5313 /* We are creating a volume inside a pre-existing container.
5314 * so st->sb is already set.
5315 */
5316 struct intel_super *super = st->sb;
5317 unsigned int sector_size = super->sector_size;
5318 struct imsm_super *mpb = super->anchor;
5319 struct intel_dev *dv;
5320 struct imsm_dev *dev;
5321 struct imsm_vol *vol;
5322 struct imsm_map *map;
5323 int idx = mpb->num_raid_devs;
5324 int i;
5325 int namelen;
5326 unsigned long long array_blocks;
5327 size_t size_old, size_new;
5328 unsigned long long num_data_stripes;
5329 unsigned int data_disks;
5330 unsigned long long size_per_member;
5331
5332 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5333 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5334 return 0;
5335 }
5336
5337 /* ensure the mpb is large enough for the new data */
5338 size_old = __le32_to_cpu(mpb->mpb_size);
5339 size_new = disks_to_mpb_size(info->nr_disks);
5340 if (size_new > size_old) {
5341 void *mpb_new;
5342 size_t size_round = ROUND_UP(size_new, sector_size);
5343
5344 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5345 pr_err("could not allocate new mpb\n");
5346 return 0;
5347 }
5348 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5349 MIGR_REC_BUF_SECTORS*
5350 MAX_SECTOR_SIZE) != 0) {
5351 pr_err("could not allocate migr_rec buffer\n");
5352 free(super->buf);
5353 free(super);
5354 free(mpb_new);
5355 return 0;
5356 }
5357 memcpy(mpb_new, mpb, size_old);
5358 free(mpb);
5359 mpb = mpb_new;
5360 super->anchor = mpb_new;
5361 mpb->mpb_size = __cpu_to_le32(size_new);
5362 memset(mpb_new + size_old, 0, size_round - size_old);
5363 super->len = size_round;
5364 }
5365 super->current_vol = idx;
5366
5367 /* handle 'failed_disks' by either:
5368 * a) create dummy disk entries in the table if this the first
5369 * volume in the array. We add them here as this is the only
5370 * opportunity to add them. add_to_super_imsm_volume()
5371 * handles the non-failed disks and continues incrementing
5372 * mpb->num_disks.
5373 * b) validate that 'failed_disks' matches the current number
5374 * of missing disks if the container is populated
5375 */
5376 if (super->current_vol == 0) {
5377 mpb->num_disks = 0;
5378 for (i = 0; i < info->failed_disks; i++) {
5379 struct imsm_disk *disk;
5380
5381 mpb->num_disks++;
5382 disk = __get_imsm_disk(mpb, i);
5383 disk->status = CONFIGURED_DISK | FAILED_DISK;
5384 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5385 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5386 "missing:%d", (__u8)i);
5387 }
5388 find_missing(super);
5389 } else {
5390 int missing = 0;
5391 struct dl *d;
5392
5393 for (d = super->missing; d; d = d->next)
5394 missing++;
5395 if (info->failed_disks > missing) {
5396 pr_err("unable to add 'missing' disk to container\n");
5397 return 0;
5398 }
5399 }
5400
5401 if (!check_name(super, name, 0))
5402 return 0;
5403 dv = xmalloc(sizeof(*dv));
5404 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5405 /*
5406 * Explicitly allow truncating to not confuse gcc's
5407 * -Werror=stringop-truncation
5408 */
5409 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5410 memcpy(dev->volume, name, namelen);
5411 array_blocks = calc_array_size(info->level, info->raid_disks,
5412 info->layout, info->chunk_size,
5413 s->size * BLOCKS_PER_KB);
5414 data_disks = get_data_disks(info->level, info->layout,
5415 info->raid_disks);
5416 array_blocks = round_size_to_mb(array_blocks, data_disks);
5417 size_per_member = array_blocks / data_disks;
5418
5419 set_imsm_dev_size(dev, array_blocks);
5420 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5421 vol = &dev->vol;
5422 vol->migr_state = 0;
5423 set_migr_type(dev, MIGR_INIT);
5424 vol->dirty = !info->state;
5425 vol->curr_migr_unit = 0;
5426 map = get_imsm_map(dev, MAP_0);
5427 set_pba_of_lba0(map, super->create_offset);
5428 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5429 map->failed_disk_num = ~0;
5430 if (info->level > 0)
5431 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5432 : IMSM_T_STATE_UNINITIALIZED);
5433 else
5434 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5435 IMSM_T_STATE_NORMAL;
5436 map->ddf = 1;
5437
5438 if (info->level == 1 && info->raid_disks > 2) {
5439 free(dev);
5440 free(dv);
5441 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5442 return 0;
5443 }
5444
5445 map->raid_level = info->level;
5446 if (info->level == 10) {
5447 map->raid_level = 1;
5448 map->num_domains = info->raid_disks / 2;
5449 } else if (info->level == 1)
5450 map->num_domains = info->raid_disks;
5451 else
5452 map->num_domains = 1;
5453
5454 /* info->size is only int so use the 'size' parameter instead */
5455 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5456 num_data_stripes /= map->num_domains;
5457 set_num_data_stripes(map, num_data_stripes);
5458
5459 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5460 set_blocks_per_member(map, info_to_blocks_per_member(info,
5461 size_per_member /
5462 BLOCKS_PER_KB));
5463
5464 map->num_members = info->raid_disks;
5465 for (i = 0; i < map->num_members; i++) {
5466 /* initialized in add_to_super */
5467 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5468 }
5469 mpb->num_raid_devs++;
5470 mpb->num_raid_devs_created++;
5471 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5472
5473 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5474 dev->rwh_policy = RWH_MULTIPLE_OFF;
5475 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5476 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
5477 } else {
5478 free(dev);
5479 free(dv);
5480 pr_err("imsm does not support consistency policy %s\n",
5481 map_num(consistency_policies, s->consistency_policy));
5482 return 0;
5483 }
5484
5485 dv->dev = dev;
5486 dv->index = super->current_vol;
5487 dv->next = super->devlist;
5488 super->devlist = dv;
5489
5490 imsm_update_version_info(super);
5491
5492 return 1;
5493 }
5494
5495 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5496 struct shape *s, char *name,
5497 char *homehost, int *uuid,
5498 unsigned long long data_offset)
5499 {
5500 /* This is primarily called by Create when creating a new array.
5501 * We will then get add_to_super called for each component, and then
5502 * write_init_super called to write it out to each device.
5503 * For IMSM, Create can create on fresh devices or on a pre-existing
5504 * array.
5505 * To create on a pre-existing array a different method will be called.
5506 * This one is just for fresh drives.
5507 */
5508 struct intel_super *super;
5509 struct imsm_super *mpb;
5510 size_t mpb_size;
5511 char *version;
5512
5513 if (data_offset != INVALID_SECTORS) {
5514 pr_err("data-offset not supported by imsm\n");
5515 return 0;
5516 }
5517
5518 if (st->sb)
5519 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5520 data_offset);
5521
5522 if (info)
5523 mpb_size = disks_to_mpb_size(info->nr_disks);
5524 else
5525 mpb_size = MAX_SECTOR_SIZE;
5526
5527 super = alloc_super();
5528 if (super &&
5529 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5530 free_imsm(super);
5531 super = NULL;
5532 }
5533 if (!super) {
5534 pr_err("could not allocate superblock\n");
5535 return 0;
5536 }
5537 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5538 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5539 pr_err("could not allocate migr_rec buffer\n");
5540 free(super->buf);
5541 free_imsm(super);
5542 return 0;
5543 }
5544 memset(super->buf, 0, mpb_size);
5545 mpb = super->buf;
5546 mpb->mpb_size = __cpu_to_le32(mpb_size);
5547 st->sb = super;
5548
5549 if (info == NULL) {
5550 /* zeroing superblock */
5551 return 0;
5552 }
5553
5554 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5555
5556 version = (char *) mpb->sig;
5557 strcpy(version, MPB_SIGNATURE);
5558 version += strlen(MPB_SIGNATURE);
5559 strcpy(version, MPB_VERSION_RAID0);
5560
5561 return 1;
5562 }
5563
5564 static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5565 {
5566 unsigned int member_sector_size;
5567
5568 if (dl->fd < 0) {
5569 pr_err("Invalid file descriptor for %s\n", dl->devname);
5570 return 0;
5571 }
5572
5573 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5574 return 0;
5575 if (member_sector_size != super->sector_size)
5576 return 0;
5577 return 1;
5578 }
5579
5580 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5581 int fd, char *devname)
5582 {
5583 struct intel_super *super = st->sb;
5584 struct imsm_super *mpb = super->anchor;
5585 struct imsm_disk *_disk;
5586 struct imsm_dev *dev;
5587 struct imsm_map *map;
5588 struct dl *dl, *df;
5589 int slot;
5590
5591 dev = get_imsm_dev(super, super->current_vol);
5592 map = get_imsm_map(dev, MAP_0);
5593
5594 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5595 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5596 devname);
5597 return 1;
5598 }
5599
5600 if (fd == -1) {
5601 /* we're doing autolayout so grab the pre-marked (in
5602 * validate_geometry) raid_disk
5603 */
5604 for (dl = super->disks; dl; dl = dl->next)
5605 if (dl->raiddisk == dk->raid_disk)
5606 break;
5607 } else {
5608 for (dl = super->disks; dl ; dl = dl->next)
5609 if (dl->major == dk->major &&
5610 dl->minor == dk->minor)
5611 break;
5612 }
5613
5614 if (!dl) {
5615 pr_err("%s is not a member of the same container\n", devname);
5616 return 1;
5617 }
5618
5619 if (!drive_validate_sector_size(super, dl)) {
5620 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5621 return 1;
5622 }
5623
5624 /* add a pristine spare to the metadata */
5625 if (dl->index < 0) {
5626 dl->index = super->anchor->num_disks;
5627 super->anchor->num_disks++;
5628 }
5629 /* Check the device has not already been added */
5630 slot = get_imsm_disk_slot(map, dl->index);
5631 if (slot >= 0 &&
5632 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5633 pr_err("%s has been included in this array twice\n",
5634 devname);
5635 return 1;
5636 }
5637 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5638 dl->disk.status = CONFIGURED_DISK;
5639
5640 /* update size of 'missing' disks to be at least as large as the
5641 * largest acitve member (we only have dummy missing disks when
5642 * creating the first volume)
5643 */
5644 if (super->current_vol == 0) {
5645 for (df = super->missing; df; df = df->next) {
5646 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5647 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5648 _disk = __get_imsm_disk(mpb, df->index);
5649 *_disk = df->disk;
5650 }
5651 }
5652
5653 /* refresh unset/failed slots to point to valid 'missing' entries */
5654 for (df = super->missing; df; df = df->next)
5655 for (slot = 0; slot < mpb->num_disks; slot++) {
5656 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5657
5658 if ((ord & IMSM_ORD_REBUILD) == 0)
5659 continue;
5660 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5661 if (is_gen_migration(dev)) {
5662 struct imsm_map *map2 = get_imsm_map(dev,
5663 MAP_1);
5664 int slot2 = get_imsm_disk_slot(map2, df->index);
5665 if (slot2 < map2->num_members && slot2 >= 0) {
5666 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5667 slot2,
5668 MAP_1);
5669 if ((unsigned)df->index ==
5670 ord_to_idx(ord2))
5671 set_imsm_ord_tbl_ent(map2,
5672 slot2,
5673 df->index |
5674 IMSM_ORD_REBUILD);
5675 }
5676 }
5677 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5678 break;
5679 }
5680
5681 /* if we are creating the first raid device update the family number */
5682 if (super->current_vol == 0) {
5683 __u32 sum;
5684 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5685
5686 _disk = __get_imsm_disk(mpb, dl->index);
5687 if (!_dev || !_disk) {
5688 pr_err("BUG mpb setup error\n");
5689 return 1;
5690 }
5691 *_dev = *dev;
5692 *_disk = dl->disk;
5693 sum = random32();
5694 sum += __gen_imsm_checksum(mpb);
5695 mpb->family_num = __cpu_to_le32(sum);
5696 mpb->orig_family_num = mpb->family_num;
5697 }
5698 super->current_disk = dl;
5699 return 0;
5700 }
5701
5702 /* mark_spare()
5703 * Function marks disk as spare and restores disk serial
5704 * in case it was previously marked as failed by takeover operation
5705 * reruns:
5706 * -1 : critical error
5707 * 0 : disk is marked as spare but serial is not set
5708 * 1 : success
5709 */
5710 int mark_spare(struct dl *disk)
5711 {
5712 __u8 serial[MAX_RAID_SERIAL_LEN];
5713 int ret_val = -1;
5714
5715 if (!disk)
5716 return ret_val;
5717
5718 ret_val = 0;
5719 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5720 /* Restore disk serial number, because takeover marks disk
5721 * as failed and adds to serial ':0' before it becomes
5722 * a spare disk.
5723 */
5724 serialcpy(disk->serial, serial);
5725 serialcpy(disk->disk.serial, serial);
5726 ret_val = 1;
5727 }
5728 disk->disk.status = SPARE_DISK;
5729 disk->index = -1;
5730
5731 return ret_val;
5732 }
5733
5734 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5735 int fd, char *devname,
5736 unsigned long long data_offset)
5737 {
5738 struct intel_super *super = st->sb;
5739 struct dl *dd;
5740 unsigned long long size;
5741 unsigned int member_sector_size;
5742 __u32 id;
5743 int rv;
5744 struct stat stb;
5745
5746 /* If we are on an RAID enabled platform check that the disk is
5747 * attached to the raid controller.
5748 * We do not need to test disks attachment for container based additions,
5749 * they shall be already tested when container was created/assembled.
5750 */
5751 rv = find_intel_hba_capability(fd, super, devname);
5752 /* no orom/efi or non-intel hba of the disk */
5753 if (rv != 0) {
5754 dprintf("capability: %p fd: %d ret: %d\n",
5755 super->orom, fd, rv);
5756 return 1;
5757 }
5758
5759 if (super->current_vol >= 0)
5760 return add_to_super_imsm_volume(st, dk, fd, devname);
5761
5762 fstat(fd, &stb);
5763 dd = xcalloc(sizeof(*dd), 1);
5764 dd->major = major(stb.st_rdev);
5765 dd->minor = minor(stb.st_rdev);
5766 dd->devname = devname ? xstrdup(devname) : NULL;
5767 dd->fd = fd;
5768 dd->e = NULL;
5769 dd->action = DISK_ADD;
5770 rv = imsm_read_serial(fd, devname, dd->serial);
5771 if (rv) {
5772 pr_err("failed to retrieve scsi serial, aborting\n");
5773 if (dd->devname)
5774 free(dd->devname);
5775 free(dd);
5776 abort();
5777 }
5778 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5779 (super->hba->type == SYS_DEV_VMD))) {
5780 int i;
5781 char *devpath = diskfd_to_devpath(fd);
5782 char controller_path[PATH_MAX];
5783
5784 if (!devpath) {
5785 pr_err("failed to get devpath, aborting\n");
5786 if (dd->devname)
5787 free(dd->devname);
5788 free(dd);
5789 return 1;
5790 }
5791
5792 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5793 free(devpath);
5794
5795 if (devpath_to_vendor(controller_path) == 0x8086) {
5796 /*
5797 * If Intel's NVMe drive has serial ended with
5798 * "-A","-B","-1" or "-2" it means that this is "x8"
5799 * device (double drive on single PCIe card).
5800 * User should be warned about potential data loss.
5801 */
5802 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5803 /* Skip empty character at the end */
5804 if (dd->serial[i] == 0)
5805 continue;
5806
5807 if (((dd->serial[i] == 'A') ||
5808 (dd->serial[i] == 'B') ||
5809 (dd->serial[i] == '1') ||
5810 (dd->serial[i] == '2')) &&
5811 (dd->serial[i-1] == '-'))
5812 pr_err("\tThe action you are about to take may put your data at risk.\n"
5813 "\tPlease note that x8 devices may consist of two separate x4 devices "
5814 "located on a single PCIe port.\n"
5815 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5816 break;
5817 }
5818 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5819 !imsm_orom_has_tpv_support(super->orom)) {
5820 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5821 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
5822 free(dd->devname);
5823 free(dd);
5824 return 1;
5825 }
5826 }
5827
5828 get_dev_size(fd, NULL, &size);
5829 get_dev_sector_size(fd, NULL, &member_sector_size);
5830
5831 if (super->sector_size == 0) {
5832 /* this a first device, so sector_size is not set yet */
5833 super->sector_size = member_sector_size;
5834 }
5835
5836 /* clear migr_rec when adding disk to container */
5837 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5838 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
5839 SEEK_SET) >= 0) {
5840 if ((unsigned int)write(fd, super->migr_rec_buf,
5841 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5842 MIGR_REC_BUF_SECTORS*member_sector_size)
5843 perror("Write migr_rec failed");
5844 }
5845
5846 size /= 512;
5847 serialcpy(dd->disk.serial, dd->serial);
5848 set_total_blocks(&dd->disk, size);
5849 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5850 struct imsm_super *mpb = super->anchor;
5851 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5852 }
5853 mark_spare(dd);
5854 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5855 dd->disk.scsi_id = __cpu_to_le32(id);
5856 else
5857 dd->disk.scsi_id = __cpu_to_le32(0);
5858
5859 if (st->update_tail) {
5860 dd->next = super->disk_mgmt_list;
5861 super->disk_mgmt_list = dd;
5862 } else {
5863 dd->next = super->disks;
5864 super->disks = dd;
5865 super->updates_pending++;
5866 }
5867
5868 return 0;
5869 }
5870
5871 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5872 {
5873 struct intel_super *super = st->sb;
5874 struct dl *dd;
5875
5876 /* remove from super works only in mdmon - for communication
5877 * manager - monitor. Check if communication memory buffer
5878 * is prepared.
5879 */
5880 if (!st->update_tail) {
5881 pr_err("shall be used in mdmon context only\n");
5882 return 1;
5883 }
5884 dd = xcalloc(1, sizeof(*dd));
5885 dd->major = dk->major;
5886 dd->minor = dk->minor;
5887 dd->fd = -1;
5888 mark_spare(dd);
5889 dd->action = DISK_REMOVE;
5890
5891 dd->next = super->disk_mgmt_list;
5892 super->disk_mgmt_list = dd;
5893
5894 return 0;
5895 }
5896
5897 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5898
5899 static union {
5900 char buf[MAX_SECTOR_SIZE];
5901 struct imsm_super anchor;
5902 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5903
5904 /* spare records have their own family number and do not have any defined raid
5905 * devices
5906 */
5907 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5908 {
5909 struct imsm_super *mpb = super->anchor;
5910 struct imsm_super *spare = &spare_record.anchor;
5911 __u32 sum;
5912 struct dl *d;
5913
5914 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5915 spare->generation_num = __cpu_to_le32(1UL);
5916 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5917 spare->num_disks = 1;
5918 spare->num_raid_devs = 0;
5919 spare->cache_size = mpb->cache_size;
5920 spare->pwr_cycle_count = __cpu_to_le32(1);
5921
5922 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5923 MPB_SIGNATURE MPB_VERSION_RAID0);
5924
5925 for (d = super->disks; d; d = d->next) {
5926 if (d->index != -1)
5927 continue;
5928
5929 spare->disk[0] = d->disk;
5930 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5931 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5932
5933 if (super->sector_size == 4096)
5934 convert_to_4k_imsm_disk(&spare->disk[0]);
5935
5936 sum = __gen_imsm_checksum(spare);
5937 spare->family_num = __cpu_to_le32(sum);
5938 spare->orig_family_num = 0;
5939 sum = __gen_imsm_checksum(spare);
5940 spare->check_sum = __cpu_to_le32(sum);
5941
5942 if (store_imsm_mpb(d->fd, spare)) {
5943 pr_err("failed for device %d:%d %s\n",
5944 d->major, d->minor, strerror(errno));
5945 return 1;
5946 }
5947 if (doclose) {
5948 close(d->fd);
5949 d->fd = -1;
5950 }
5951 }
5952
5953 return 0;
5954 }
5955
5956 static int write_super_imsm(struct supertype *st, int doclose)
5957 {
5958 struct intel_super *super = st->sb;
5959 unsigned int sector_size = super->sector_size;
5960 struct imsm_super *mpb = super->anchor;
5961 struct dl *d;
5962 __u32 generation;
5963 __u32 sum;
5964 int spares = 0;
5965 int i;
5966 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5967 int num_disks = 0;
5968 int clear_migration_record = 1;
5969 __u32 bbm_log_size;
5970
5971 /* 'generation' is incremented everytime the metadata is written */
5972 generation = __le32_to_cpu(mpb->generation_num);
5973 generation++;
5974 mpb->generation_num = __cpu_to_le32(generation);
5975
5976 /* fix up cases where previous mdadm releases failed to set
5977 * orig_family_num
5978 */
5979 if (mpb->orig_family_num == 0)
5980 mpb->orig_family_num = mpb->family_num;
5981
5982 for (d = super->disks; d; d = d->next) {
5983 if (d->index == -1)
5984 spares++;
5985 else {
5986 mpb->disk[d->index] = d->disk;
5987 num_disks++;
5988 }
5989 }
5990 for (d = super->missing; d; d = d->next) {
5991 mpb->disk[d->index] = d->disk;
5992 num_disks++;
5993 }
5994 mpb->num_disks = num_disks;
5995 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5996
5997 for (i = 0; i < mpb->num_raid_devs; i++) {
5998 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5999 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6000 if (dev && dev2) {
6001 imsm_copy_dev(dev, dev2);
6002 mpb_size += sizeof_imsm_dev(dev, 0);
6003 }
6004 if (is_gen_migration(dev2))
6005 clear_migration_record = 0;
6006 }
6007
6008 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6009
6010 if (bbm_log_size) {
6011 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6012 mpb->attributes |= MPB_ATTRIB_BBM;
6013 } else
6014 mpb->attributes &= ~MPB_ATTRIB_BBM;
6015
6016 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6017 mpb_size += bbm_log_size;
6018 mpb->mpb_size = __cpu_to_le32(mpb_size);
6019
6020 #ifdef DEBUG
6021 assert(super->len == 0 || mpb_size <= super->len);
6022 #endif
6023
6024 /* recalculate checksum */
6025 sum = __gen_imsm_checksum(mpb);
6026 mpb->check_sum = __cpu_to_le32(sum);
6027
6028 if (super->clean_migration_record_by_mdmon) {
6029 clear_migration_record = 1;
6030 super->clean_migration_record_by_mdmon = 0;
6031 }
6032 if (clear_migration_record)
6033 memset(super->migr_rec_buf, 0,
6034 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6035
6036 if (sector_size == 4096)
6037 convert_to_4k(super);
6038
6039 /* write the mpb for disks that compose raid devices */
6040 for (d = super->disks; d ; d = d->next) {
6041 if (d->index < 0 || is_failed(&d->disk))
6042 continue;
6043
6044 if (clear_migration_record) {
6045 unsigned long long dsize;
6046
6047 get_dev_size(d->fd, NULL, &dsize);
6048 if (lseek64(d->fd, dsize - sector_size,
6049 SEEK_SET) >= 0) {
6050 if ((unsigned int)write(d->fd,
6051 super->migr_rec_buf,
6052 MIGR_REC_BUF_SECTORS*sector_size) !=
6053 MIGR_REC_BUF_SECTORS*sector_size)
6054 perror("Write migr_rec failed");
6055 }
6056 }
6057
6058 if (store_imsm_mpb(d->fd, mpb))
6059 fprintf(stderr,
6060 "failed for device %d:%d (fd: %d)%s\n",
6061 d->major, d->minor,
6062 d->fd, strerror(errno));
6063
6064 if (doclose) {
6065 close(d->fd);
6066 d->fd = -1;
6067 }
6068 }
6069
6070 if (spares)
6071 return write_super_imsm_spares(super, doclose);
6072
6073 return 0;
6074 }
6075
6076 static int create_array(struct supertype *st, int dev_idx)
6077 {
6078 size_t len;
6079 struct imsm_update_create_array *u;
6080 struct intel_super *super = st->sb;
6081 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
6082 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6083 struct disk_info *inf;
6084 struct imsm_disk *disk;
6085 int i;
6086
6087 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6088 sizeof(*inf) * map->num_members;
6089 u = xmalloc(len);
6090 u->type = update_create_array;
6091 u->dev_idx = dev_idx;
6092 imsm_copy_dev(&u->dev, dev);
6093 inf = get_disk_info(u);
6094 for (i = 0; i < map->num_members; i++) {
6095 int idx = get_imsm_disk_idx(dev, i, MAP_X);
6096
6097 disk = get_imsm_disk(super, idx);
6098 if (!disk)
6099 disk = get_imsm_missing(super, idx);
6100 serialcpy(inf[i].serial, disk->serial);
6101 }
6102 append_metadata_update(st, u, len);
6103
6104 return 0;
6105 }
6106
6107 static int mgmt_disk(struct supertype *st)
6108 {
6109 struct intel_super *super = st->sb;
6110 size_t len;
6111 struct imsm_update_add_remove_disk *u;
6112
6113 if (!super->disk_mgmt_list)
6114 return 0;
6115
6116 len = sizeof(*u);
6117 u = xmalloc(len);
6118 u->type = update_add_remove_disk;
6119 append_metadata_update(st, u, len);
6120
6121 return 0;
6122 }
6123
6124 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6125
6126 static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6127 {
6128 struct ppl_header *ppl_hdr = buf;
6129 int ret;
6130
6131 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6132
6133 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6134 ret = -errno;
6135 perror("Failed to seek to PPL header location");
6136 return ret;
6137 }
6138
6139 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6140 ret = -errno;
6141 perror("Write PPL header failed");
6142 return ret;
6143 }
6144
6145 fsync(fd);
6146
6147 return 0;
6148 }
6149
6150 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6151 {
6152 struct intel_super *super = st->sb;
6153 void *buf;
6154 struct ppl_header *ppl_hdr;
6155 int ret;
6156
6157 /* first clear entire ppl space */
6158 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6159 if (ret)
6160 return ret;
6161
6162 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
6163 if (ret) {
6164 pr_err("Failed to allocate PPL header buffer\n");
6165 return -ret;
6166 }
6167
6168 memset(buf, 0, PPL_HEADER_SIZE);
6169 ppl_hdr = buf;
6170 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6171 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6172
6173 if (info->mismatch_cnt) {
6174 /*
6175 * We are overwriting an invalid ppl. Make one entry with wrong
6176 * checksum to prevent the kernel from skipping resync.
6177 */
6178 ppl_hdr->entries_count = __cpu_to_le32(1);
6179 ppl_hdr->entries[0].checksum = ~0;
6180 }
6181
6182 ret = write_ppl_header(info->ppl_sector, fd, buf);
6183
6184 free(buf);
6185 return ret;
6186 }
6187
6188 static int is_rebuilding(struct imsm_dev *dev);
6189
6190 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6191 struct mdinfo *disk)
6192 {
6193 struct intel_super *super = st->sb;
6194 struct dl *d;
6195 void *buf_orig, *buf, *buf_prev = NULL;
6196 int ret = 0;
6197 struct ppl_header *ppl_hdr = NULL;
6198 __u32 crc;
6199 struct imsm_dev *dev;
6200 __u32 idx;
6201 unsigned int i;
6202 unsigned long long ppl_offset = 0;
6203 unsigned long long prev_gen_num = 0;
6204
6205 if (disk->disk.raid_disk < 0)
6206 return 0;
6207
6208 dev = get_imsm_dev(super, info->container_member);
6209 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
6210 d = get_imsm_dl_disk(super, idx);
6211
6212 if (!d || d->index < 0 || is_failed(&d->disk))
6213 return 0;
6214
6215 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6216 pr_err("Failed to allocate PPL header buffer\n");
6217 return -1;
6218 }
6219 buf = buf_orig;
6220
6221 ret = 1;
6222 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6223 void *tmp;
6224
6225 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
6226
6227 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6228 SEEK_SET) < 0) {
6229 perror("Failed to seek to PPL header location");
6230 ret = -1;
6231 break;
6232 }
6233
6234 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6235 perror("Read PPL header failed");
6236 ret = -1;
6237 break;
6238 }
6239
6240 ppl_hdr = buf;
6241
6242 crc = __le32_to_cpu(ppl_hdr->checksum);
6243 ppl_hdr->checksum = 0;
6244
6245 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6246 dprintf("Wrong PPL header checksum on %s\n",
6247 d->devname);
6248 break;
6249 }
6250
6251 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6252 /* previous was newest, it was already checked */
6253 break;
6254 }
6255
6256 if ((__le32_to_cpu(ppl_hdr->signature) !=
6257 super->anchor->orig_family_num)) {
6258 dprintf("Wrong PPL header signature on %s\n",
6259 d->devname);
6260 ret = 1;
6261 break;
6262 }
6263
6264 ret = 0;
6265 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
6266
6267 ppl_offset += PPL_HEADER_SIZE;
6268 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6269 ppl_offset +=
6270 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
6271
6272 if (!buf_prev)
6273 buf_prev = buf + PPL_HEADER_SIZE;
6274 tmp = buf_prev;
6275 buf_prev = buf;
6276 buf = tmp;
6277 }
6278
6279 if (buf_prev) {
6280 buf = buf_prev;
6281 ppl_hdr = buf_prev;
6282 }
6283
6284 /*
6285 * Update metadata to use mutliple PPLs area (1MB).
6286 * This is done once for all RAID members
6287 */
6288 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6289 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6290 char subarray[20];
6291 struct mdinfo *member_dev;
6292
6293 sprintf(subarray, "%d", info->container_member);
6294
6295 if (mdmon_running(st->container_devnm))
6296 st->update_tail = &st->updates;
6297
6298 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6299 pr_err("Failed to update subarray %s\n",
6300 subarray);
6301 } else {
6302 if (st->update_tail)
6303 flush_metadata_updates(st);
6304 else
6305 st->ss->sync_metadata(st);
6306 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6307 for (member_dev = info->devs; member_dev;
6308 member_dev = member_dev->next)
6309 member_dev->ppl_size =
6310 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6311 }
6312 }
6313
6314 if (ret == 1) {
6315 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6316
6317 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6318 (map->map_state == IMSM_T_STATE_NORMAL &&
6319 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
6320 (is_rebuilding(dev) &&
6321 dev->vol.curr_migr_unit == 0 &&
6322 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
6323 ret = st->ss->write_init_ppl(st, info, d->fd);
6324 else
6325 info->mismatch_cnt++;
6326 } else if (ret == 0 &&
6327 ppl_hdr->entries_count == 0 &&
6328 is_rebuilding(dev) &&
6329 info->resync_start == 0) {
6330 /*
6331 * The header has no entries - add a single empty entry and
6332 * rewrite the header to prevent the kernel from going into
6333 * resync after an interrupted rebuild.
6334 */
6335 ppl_hdr->entries_count = __cpu_to_le32(1);
6336 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
6337 }
6338
6339 free(buf_orig);
6340
6341 return ret;
6342 }
6343
6344 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6345 {
6346 struct intel_super *super = st->sb;
6347 struct dl *d;
6348 int ret = 0;
6349
6350 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6351 info->array.level != 5)
6352 return 0;
6353
6354 for (d = super->disks; d ; d = d->next) {
6355 if (d->index < 0 || is_failed(&d->disk))
6356 continue;
6357
6358 ret = st->ss->write_init_ppl(st, info, d->fd);
6359 if (ret)
6360 break;
6361 }
6362
6363 return ret;
6364 }
6365
6366 static int write_init_super_imsm(struct supertype *st)
6367 {
6368 struct intel_super *super = st->sb;
6369 int current_vol = super->current_vol;
6370 int rv = 0;
6371 struct mdinfo info;
6372
6373 getinfo_super_imsm(st, &info, NULL);
6374
6375 /* we are done with current_vol reset it to point st at the container */
6376 super->current_vol = -1;
6377
6378 if (st->update_tail) {
6379 /* queue the recently created array / added disk
6380 * as a metadata update */
6381
6382 /* determine if we are creating a volume or adding a disk */
6383 if (current_vol < 0) {
6384 /* in the mgmt (add/remove) disk case we are running
6385 * in mdmon context, so don't close fd's
6386 */
6387 rv = mgmt_disk(st);
6388 } else {
6389 rv = write_init_ppl_imsm_all(st, &info);
6390 if (!rv)
6391 rv = create_array(st, current_vol);
6392 }
6393 } else {
6394 struct dl *d;
6395 for (d = super->disks; d; d = d->next)
6396 Kill(d->devname, NULL, 0, -1, 1);
6397 if (current_vol >= 0)
6398 rv = write_init_ppl_imsm_all(st, &info);
6399 if (!rv)
6400 rv = write_super_imsm(st, 1);
6401 }
6402
6403 return rv;
6404 }
6405
6406 static int store_super_imsm(struct supertype *st, int fd)
6407 {
6408 struct intel_super *super = st->sb;
6409 struct imsm_super *mpb = super ? super->anchor : NULL;
6410
6411 if (!mpb)
6412 return 1;
6413
6414 if (super->sector_size == 4096)
6415 convert_to_4k(super);
6416 return store_imsm_mpb(fd, mpb);
6417 }
6418
6419 static int validate_geometry_imsm_container(struct supertype *st, int level,
6420 int layout, int raiddisks, int chunk,
6421 unsigned long long size,
6422 unsigned long long data_offset,
6423 char *dev,
6424 unsigned long long *freesize,
6425 int verbose)
6426 {
6427 int fd;
6428 unsigned long long ldsize;
6429 struct intel_super *super;
6430 int rv = 0;
6431
6432 if (level != LEVEL_CONTAINER)
6433 return 0;
6434 if (!dev)
6435 return 1;
6436
6437 fd = open(dev, O_RDONLY|O_EXCL, 0);
6438 if (fd < 0) {
6439 if (verbose > 0)
6440 pr_err("imsm: Cannot open %s: %s\n",
6441 dev, strerror(errno));
6442 return 0;
6443 }
6444 if (!get_dev_size(fd, dev, &ldsize)) {
6445 close(fd);
6446 return 0;
6447 }
6448
6449 /* capabilities retrieve could be possible
6450 * note that there is no fd for the disks in array.
6451 */
6452 super = alloc_super();
6453 if (!super) {
6454 close(fd);
6455 return 0;
6456 }
6457 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6458 close(fd);
6459 free_imsm(super);
6460 return 0;
6461 }
6462
6463 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6464 if (rv != 0) {
6465 #if DEBUG
6466 char str[256];
6467 fd2devname(fd, str);
6468 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6469 fd, str, super->orom, rv, raiddisks);
6470 #endif
6471 /* no orom/efi or non-intel hba of the disk */
6472 close(fd);
6473 free_imsm(super);
6474 return 0;
6475 }
6476 close(fd);
6477 if (super->orom) {
6478 if (raiddisks > super->orom->tds) {
6479 if (verbose)
6480 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6481 raiddisks, super->orom->tds);
6482 free_imsm(super);
6483 return 0;
6484 }
6485 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6486 (ldsize >> 9) >> 32 > 0) {
6487 if (verbose)
6488 pr_err("%s exceeds maximum platform supported size\n", dev);
6489 free_imsm(super);
6490 return 0;
6491 }
6492 }
6493
6494 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6495 free_imsm(super);
6496
6497 return 1;
6498 }
6499
6500 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6501 {
6502 const unsigned long long base_start = e[*idx].start;
6503 unsigned long long end = base_start + e[*idx].size;
6504 int i;
6505
6506 if (base_start == end)
6507 return 0;
6508
6509 *idx = *idx + 1;
6510 for (i = *idx; i < num_extents; i++) {
6511 /* extend overlapping extents */
6512 if (e[i].start >= base_start &&
6513 e[i].start <= end) {
6514 if (e[i].size == 0)
6515 return 0;
6516 if (e[i].start + e[i].size > end)
6517 end = e[i].start + e[i].size;
6518 } else if (e[i].start > end) {
6519 *idx = i;
6520 break;
6521 }
6522 }
6523
6524 return end - base_start;
6525 }
6526
6527 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6528 {
6529 /* build a composite disk with all known extents and generate a new
6530 * 'maxsize' given the "all disks in an array must share a common start
6531 * offset" constraint
6532 */
6533 struct extent *e = xcalloc(sum_extents, sizeof(*e));
6534 struct dl *dl;
6535 int i, j;
6536 int start_extent;
6537 unsigned long long pos;
6538 unsigned long long start = 0;
6539 unsigned long long maxsize;
6540 unsigned long reserve;
6541
6542 /* coalesce and sort all extents. also, check to see if we need to
6543 * reserve space between member arrays
6544 */
6545 j = 0;
6546 for (dl = super->disks; dl; dl = dl->next) {
6547 if (!dl->e)
6548 continue;
6549 for (i = 0; i < dl->extent_cnt; i++)
6550 e[j++] = dl->e[i];
6551 }
6552 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6553
6554 /* merge extents */
6555 i = 0;
6556 j = 0;
6557 while (i < sum_extents) {
6558 e[j].start = e[i].start;
6559 e[j].size = find_size(e, &i, sum_extents);
6560 j++;
6561 if (e[j-1].size == 0)
6562 break;
6563 }
6564
6565 pos = 0;
6566 maxsize = 0;
6567 start_extent = 0;
6568 i = 0;
6569 do {
6570 unsigned long long esize;
6571
6572 esize = e[i].start - pos;
6573 if (esize >= maxsize) {
6574 maxsize = esize;
6575 start = pos;
6576 start_extent = i;
6577 }
6578 pos = e[i].start + e[i].size;
6579 i++;
6580 } while (e[i-1].size);
6581 free(e);
6582
6583 if (maxsize == 0)
6584 return 0;
6585
6586 /* FIXME assumes volume at offset 0 is the first volume in a
6587 * container
6588 */
6589 if (start_extent > 0)
6590 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6591 else
6592 reserve = 0;
6593
6594 if (maxsize < reserve)
6595 return 0;
6596
6597 super->create_offset = ~((unsigned long long) 0);
6598 if (start + reserve > super->create_offset)
6599 return 0; /* start overflows create_offset */
6600 super->create_offset = start + reserve;
6601
6602 return maxsize - reserve;
6603 }
6604
6605 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6606 {
6607 if (level < 0 || level == 6 || level == 4)
6608 return 0;
6609
6610 /* if we have an orom prevent invalid raid levels */
6611 if (orom)
6612 switch (level) {
6613 case 0: return imsm_orom_has_raid0(orom);
6614 case 1:
6615 if (raiddisks > 2)
6616 return imsm_orom_has_raid1e(orom);
6617 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6618 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6619 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6620 }
6621 else
6622 return 1; /* not on an Intel RAID platform so anything goes */
6623
6624 return 0;
6625 }
6626
6627 static int
6628 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6629 int dpa, int verbose)
6630 {
6631 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6632 struct mdstat_ent *memb;
6633 int count = 0;
6634 int num = 0;
6635 struct md_list *dv;
6636 int found;
6637
6638 for (memb = mdstat ; memb ; memb = memb->next) {
6639 if (memb->metadata_version &&
6640 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6641 (strcmp(&memb->metadata_version[9], name) == 0) &&
6642 !is_subarray(memb->metadata_version+9) &&
6643 memb->members) {
6644 struct dev_member *dev = memb->members;
6645 int fd = -1;
6646 while(dev && (fd < 0)) {
6647 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6648 num = sprintf(path, "%s%s", "/dev/", dev->name);
6649 if (num > 0)
6650 fd = open(path, O_RDONLY, 0);
6651 if (num <= 0 || fd < 0) {
6652 pr_vrb("Cannot open %s: %s\n",
6653 dev->name, strerror(errno));
6654 }
6655 free(path);
6656 dev = dev->next;
6657 }
6658 found = 0;
6659 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
6660 struct mdstat_ent *vol;
6661 for (vol = mdstat ; vol ; vol = vol->next) {
6662 if (vol->active > 0 &&
6663 vol->metadata_version &&
6664 is_container_member(vol, memb->devnm)) {
6665 found++;
6666 count++;
6667 }
6668 }
6669 if (*devlist && (found < dpa)) {
6670 dv = xcalloc(1, sizeof(*dv));
6671 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6672 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
6673 dv->found = found;
6674 dv->used = 0;
6675 dv->next = *devlist;
6676 *devlist = dv;
6677 }
6678 }
6679 if (fd >= 0)
6680 close(fd);
6681 }
6682 }
6683 free_mdstat(mdstat);
6684 return count;
6685 }
6686
6687 #ifdef DEBUG_LOOP
6688 static struct md_list*
6689 get_loop_devices(void)
6690 {
6691 int i;
6692 struct md_list *devlist = NULL;
6693 struct md_list *dv;
6694
6695 for(i = 0; i < 12; i++) {
6696 dv = xcalloc(1, sizeof(*dv));
6697 dv->devname = xmalloc(40);
6698 sprintf(dv->devname, "/dev/loop%d", i);
6699 dv->next = devlist;
6700 devlist = dv;
6701 }
6702 return devlist;
6703 }
6704 #endif
6705
6706 static struct md_list*
6707 get_devices(const char *hba_path)
6708 {
6709 struct md_list *devlist = NULL;
6710 struct md_list *dv;
6711 struct dirent *ent;
6712 DIR *dir;
6713 int err = 0;
6714
6715 #if DEBUG_LOOP
6716 devlist = get_loop_devices();
6717 return devlist;
6718 #endif
6719 /* scroll through /sys/dev/block looking for devices attached to
6720 * this hba
6721 */
6722 dir = opendir("/sys/dev/block");
6723 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6724 int fd;
6725 char buf[1024];
6726 int major, minor;
6727 char *path = NULL;
6728 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6729 continue;
6730 path = devt_to_devpath(makedev(major, minor));
6731 if (!path)
6732 continue;
6733 if (!path_attached_to_hba(path, hba_path)) {
6734 free(path);
6735 path = NULL;
6736 continue;
6737 }
6738 free(path);
6739 path = NULL;
6740 fd = dev_open(ent->d_name, O_RDONLY);
6741 if (fd >= 0) {
6742 fd2devname(fd, buf);
6743 close(fd);
6744 } else {
6745 pr_err("cannot open device: %s\n",
6746 ent->d_name);
6747 continue;
6748 }
6749
6750 dv = xcalloc(1, sizeof(*dv));
6751 dv->devname = xstrdup(buf);
6752 dv->next = devlist;
6753 devlist = dv;
6754 }
6755 if (err) {
6756 while(devlist) {
6757 dv = devlist;
6758 devlist = devlist->next;
6759 free(dv->devname);
6760 free(dv);
6761 }
6762 }
6763 closedir(dir);
6764 return devlist;
6765 }
6766
6767 static int
6768 count_volumes_list(struct md_list *devlist, char *homehost,
6769 int verbose, int *found)
6770 {
6771 struct md_list *tmpdev;
6772 int count = 0;
6773 struct supertype *st;
6774
6775 /* first walk the list of devices to find a consistent set
6776 * that match the criterea, if that is possible.
6777 * We flag the ones we like with 'used'.
6778 */
6779 *found = 0;
6780 st = match_metadata_desc_imsm("imsm");
6781 if (st == NULL) {
6782 pr_vrb("cannot allocate memory for imsm supertype\n");
6783 return 0;
6784 }
6785
6786 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6787 char *devname = tmpdev->devname;
6788 dev_t rdev;
6789 struct supertype *tst;
6790 int dfd;
6791 if (tmpdev->used > 1)
6792 continue;
6793 tst = dup_super(st);
6794 if (tst == NULL) {
6795 pr_vrb("cannot allocate memory for imsm supertype\n");
6796 goto err_1;
6797 }
6798 tmpdev->container = 0;
6799 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6800 if (dfd < 0) {
6801 dprintf("cannot open device %s: %s\n",
6802 devname, strerror(errno));
6803 tmpdev->used = 2;
6804 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
6805 tmpdev->used = 2;
6806 } else if (must_be_container(dfd)) {
6807 struct supertype *cst;
6808 cst = super_by_fd(dfd, NULL);
6809 if (cst == NULL) {
6810 dprintf("cannot recognize container type %s\n",
6811 devname);
6812 tmpdev->used = 2;
6813 } else if (tst->ss != st->ss) {
6814 dprintf("non-imsm container - ignore it: %s\n",
6815 devname);
6816 tmpdev->used = 2;
6817 } else if (!tst->ss->load_container ||
6818 tst->ss->load_container(tst, dfd, NULL))
6819 tmpdev->used = 2;
6820 else {
6821 tmpdev->container = 1;
6822 }
6823 if (cst)
6824 cst->ss->free_super(cst);
6825 } else {
6826 tmpdev->st_rdev = rdev;
6827 if (tst->ss->load_super(tst,dfd, NULL)) {
6828 dprintf("no RAID superblock on %s\n",
6829 devname);
6830 tmpdev->used = 2;
6831 } else if (tst->ss->compare_super == NULL) {
6832 dprintf("Cannot assemble %s metadata on %s\n",
6833 tst->ss->name, devname);
6834 tmpdev->used = 2;
6835 }
6836 }
6837 if (dfd >= 0)
6838 close(dfd);
6839 if (tmpdev->used == 2 || tmpdev->used == 4) {
6840 /* Ignore unrecognised devices during auto-assembly */
6841 goto loop;
6842 }
6843 else {
6844 struct mdinfo info;
6845 tst->ss->getinfo_super(tst, &info, NULL);
6846
6847 if (st->minor_version == -1)
6848 st->minor_version = tst->minor_version;
6849
6850 if (memcmp(info.uuid, uuid_zero,
6851 sizeof(int[4])) == 0) {
6852 /* this is a floating spare. It cannot define
6853 * an array unless there are no more arrays of
6854 * this type to be found. It can be included
6855 * in an array of this type though.
6856 */
6857 tmpdev->used = 3;
6858 goto loop;
6859 }
6860
6861 if (st->ss != tst->ss ||
6862 st->minor_version != tst->minor_version ||
6863 st->ss->compare_super(st, tst) != 0) {
6864 /* Some mismatch. If exactly one array matches this host,
6865 * we can resolve on that one.
6866 * Or, if we are auto assembling, we just ignore the second
6867 * for now.
6868 */
6869 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6870 devname);
6871 goto loop;
6872 }
6873 tmpdev->used = 1;
6874 *found = 1;
6875 dprintf("found: devname: %s\n", devname);
6876 }
6877 loop:
6878 if (tst)
6879 tst->ss->free_super(tst);
6880 }
6881 if (*found != 0) {
6882 int err;
6883 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6884 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6885 for (iter = head; iter; iter = iter->next) {
6886 dprintf("content->text_version: %s vol\n",
6887 iter->text_version);
6888 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6889 /* do not assemble arrays with unsupported
6890 configurations */
6891 dprintf("Cannot activate member %s.\n",
6892 iter->text_version);
6893 } else
6894 count++;
6895 }
6896 sysfs_free(head);
6897
6898 } else {
6899 dprintf("No valid super block on device list: err: %d %p\n",
6900 err, st->sb);
6901 }
6902 } else {
6903 dprintf("no more devices to examine\n");
6904 }
6905
6906 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6907 if (tmpdev->used == 1 && tmpdev->found) {
6908 if (count) {
6909 if (count < tmpdev->found)
6910 count = 0;
6911 else
6912 count -= tmpdev->found;
6913 }
6914 }
6915 if (tmpdev->used == 1)
6916 tmpdev->used = 4;
6917 }
6918 err_1:
6919 if (st)
6920 st->ss->free_super(st);
6921 return count;
6922 }
6923
6924 static int __count_volumes(char *hba_path, int dpa, int verbose,
6925 int cmp_hba_path)
6926 {
6927 struct sys_dev *idev, *intel_devices = find_intel_devices();
6928 int count = 0;
6929 const struct orom_entry *entry;
6930 struct devid_list *dv, *devid_list;
6931
6932 if (!hba_path)
6933 return 0;
6934
6935 for (idev = intel_devices; idev; idev = idev->next) {
6936 if (strstr(idev->path, hba_path))
6937 break;
6938 }
6939
6940 if (!idev || !idev->dev_id)
6941 return 0;
6942
6943 entry = get_orom_entry_by_device_id(idev->dev_id);
6944
6945 if (!entry || !entry->devid_list)
6946 return 0;
6947
6948 devid_list = entry->devid_list;
6949 for (dv = devid_list; dv; dv = dv->next) {
6950 struct md_list *devlist;
6951 struct sys_dev *device = NULL;
6952 char *hpath;
6953 int found = 0;
6954
6955 if (cmp_hba_path)
6956 device = device_by_id_and_path(dv->devid, hba_path);
6957 else
6958 device = device_by_id(dv->devid);
6959
6960 if (device)
6961 hpath = device->path;
6962 else
6963 return 0;
6964
6965 devlist = get_devices(hpath);
6966 /* if no intel devices return zero volumes */
6967 if (devlist == NULL)
6968 return 0;
6969
6970 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6971 verbose);
6972 dprintf("path: %s active arrays: %d\n", hpath, count);
6973 if (devlist == NULL)
6974 return 0;
6975 do {
6976 found = 0;
6977 count += count_volumes_list(devlist,
6978 NULL,
6979 verbose,
6980 &found);
6981 dprintf("found %d count: %d\n", found, count);
6982 } while (found);
6983
6984 dprintf("path: %s total number of volumes: %d\n", hpath, count);
6985
6986 while (devlist) {
6987 struct md_list *dv = devlist;
6988 devlist = devlist->next;
6989 free(dv->devname);
6990 free(dv);
6991 }
6992 }
6993 return count;
6994 }
6995
6996 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6997 {
6998 if (!hba)
6999 return 0;
7000 if (hba->type == SYS_DEV_VMD) {
7001 struct sys_dev *dev;
7002 int count = 0;
7003
7004 for (dev = find_intel_devices(); dev; dev = dev->next) {
7005 if (dev->type == SYS_DEV_VMD)
7006 count += __count_volumes(dev->path, dpa,
7007 verbose, 1);
7008 }
7009 return count;
7010 }
7011 return __count_volumes(hba->path, dpa, verbose, 0);
7012 }
7013
7014 static int imsm_default_chunk(const struct imsm_orom *orom)
7015 {
7016 /* up to 512 if the plaform supports it, otherwise the platform max.
7017 * 128 if no platform detected
7018 */
7019 int fs = max(7, orom ? fls(orom->sss) : 0);
7020
7021 return min(512, (1 << fs));
7022 }
7023
7024 static int
7025 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
7026 int raiddisks, int *chunk, unsigned long long size, int verbose)
7027 {
7028 /* check/set platform and metadata limits/defaults */
7029 if (super->orom && raiddisks > super->orom->dpa) {
7030 pr_vrb("platform supports a maximum of %d disks per array\n",
7031 super->orom->dpa);
7032 return 0;
7033 }
7034
7035 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
7036 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
7037 pr_vrb("platform does not support raid%d with %d disk%s\n",
7038 level, raiddisks, raiddisks > 1 ? "s" : "");
7039 return 0;
7040 }
7041
7042 if (*chunk == 0 || *chunk == UnSet)
7043 *chunk = imsm_default_chunk(super->orom);
7044
7045 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7046 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
7047 return 0;
7048 }
7049
7050 if (layout != imsm_level_to_layout(level)) {
7051 if (level == 5)
7052 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
7053 else if (level == 10)
7054 pr_vrb("imsm raid 10 only supports the n2 layout\n");
7055 else
7056 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
7057 layout, level);
7058 return 0;
7059 }
7060
7061 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
7062 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
7063 pr_vrb("platform does not support a volume size over 2TB\n");
7064 return 0;
7065 }
7066
7067 return 1;
7068 }
7069
7070 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
7071 * FIX ME add ahci details
7072 */
7073 static int validate_geometry_imsm_volume(struct supertype *st, int level,
7074 int layout, int raiddisks, int *chunk,
7075 unsigned long long size,
7076 unsigned long long data_offset,
7077 char *dev,
7078 unsigned long long *freesize,
7079 int verbose)
7080 {
7081 dev_t rdev;
7082 struct intel_super *super = st->sb;
7083 struct imsm_super *mpb;
7084 struct dl *dl;
7085 unsigned long long pos = 0;
7086 unsigned long long maxsize;
7087 struct extent *e;
7088 int i;
7089
7090 /* We must have the container info already read in. */
7091 if (!super)
7092 return 0;
7093
7094 mpb = super->anchor;
7095
7096 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7097 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
7098 return 0;
7099 }
7100 if (!dev) {
7101 /* General test: make sure there is space for
7102 * 'raiddisks' device extents of size 'size' at a given
7103 * offset
7104 */
7105 unsigned long long minsize = size;
7106 unsigned long long start_offset = MaxSector;
7107 int dcnt = 0;
7108 if (minsize == 0)
7109 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7110 for (dl = super->disks; dl ; dl = dl->next) {
7111 int found = 0;
7112
7113 pos = 0;
7114 i = 0;
7115 e = get_extents(super, dl);
7116 if (!e) continue;
7117 do {
7118 unsigned long long esize;
7119 esize = e[i].start - pos;
7120 if (esize >= minsize)
7121 found = 1;
7122 if (found && start_offset == MaxSector) {
7123 start_offset = pos;
7124 break;
7125 } else if (found && pos != start_offset) {
7126 found = 0;
7127 break;
7128 }
7129 pos = e[i].start + e[i].size;
7130 i++;
7131 } while (e[i-1].size);
7132 if (found)
7133 dcnt++;
7134 free(e);
7135 }
7136 if (dcnt < raiddisks) {
7137 if (verbose)
7138 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
7139 dcnt, raiddisks);
7140 return 0;
7141 }
7142 return 1;
7143 }
7144
7145 /* This device must be a member of the set */
7146 if (!stat_is_blkdev(dev, &rdev))
7147 return 0;
7148 for (dl = super->disks ; dl ; dl = dl->next) {
7149 if (dl->major == (int)major(rdev) &&
7150 dl->minor == (int)minor(rdev))
7151 break;
7152 }
7153 if (!dl) {
7154 if (verbose)
7155 pr_err("%s is not in the same imsm set\n", dev);
7156 return 0;
7157 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7158 /* If a volume is present then the current creation attempt
7159 * cannot incorporate new spares because the orom may not
7160 * understand this configuration (all member disks must be
7161 * members of each array in the container).
7162 */
7163 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7164 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7165 return 0;
7166 } else if (super->orom && mpb->num_raid_devs > 0 &&
7167 mpb->num_disks != raiddisks) {
7168 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7169 return 0;
7170 }
7171
7172 /* retrieve the largest free space block */
7173 e = get_extents(super, dl);
7174 maxsize = 0;
7175 i = 0;
7176 if (e) {
7177 do {
7178 unsigned long long esize;
7179
7180 esize = e[i].start - pos;
7181 if (esize >= maxsize)
7182 maxsize = esize;
7183 pos = e[i].start + e[i].size;
7184 i++;
7185 } while (e[i-1].size);
7186 dl->e = e;
7187 dl->extent_cnt = i;
7188 } else {
7189 if (verbose)
7190 pr_err("unable to determine free space for: %s\n",
7191 dev);
7192 return 0;
7193 }
7194 if (maxsize < size) {
7195 if (verbose)
7196 pr_err("%s not enough space (%llu < %llu)\n",
7197 dev, maxsize, size);
7198 return 0;
7199 }
7200
7201 /* count total number of extents for merge */
7202 i = 0;
7203 for (dl = super->disks; dl; dl = dl->next)
7204 if (dl->e)
7205 i += dl->extent_cnt;
7206
7207 maxsize = merge_extents(super, i);
7208
7209 if (!check_env("IMSM_NO_PLATFORM") &&
7210 mpb->num_raid_devs > 0 && size && size != maxsize) {
7211 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
7212 return 0;
7213 }
7214
7215 if (maxsize < size || maxsize == 0) {
7216 if (verbose) {
7217 if (maxsize == 0)
7218 pr_err("no free space left on device. Aborting...\n");
7219 else
7220 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7221 maxsize, size);
7222 }
7223 return 0;
7224 }
7225
7226 *freesize = maxsize;
7227
7228 if (super->orom) {
7229 int count = count_volumes(super->hba,
7230 super->orom->dpa, verbose);
7231 if (super->orom->vphba <= count) {
7232 pr_vrb("platform does not support more than %d raid volumes.\n",
7233 super->orom->vphba);
7234 return 0;
7235 }
7236 }
7237 return 1;
7238 }
7239
7240 static int imsm_get_free_size(struct supertype *st, int raiddisks,
7241 unsigned long long size, int chunk,
7242 unsigned long long *freesize)
7243 {
7244 struct intel_super *super = st->sb;
7245 struct imsm_super *mpb = super->anchor;
7246 struct dl *dl;
7247 int i;
7248 int extent_cnt;
7249 struct extent *e;
7250 unsigned long long maxsize;
7251 unsigned long long minsize;
7252 int cnt;
7253 int used;
7254
7255 /* find the largest common start free region of the possible disks */
7256 used = 0;
7257 extent_cnt = 0;
7258 cnt = 0;
7259 for (dl = super->disks; dl; dl = dl->next) {
7260 dl->raiddisk = -1;
7261
7262 if (dl->index >= 0)
7263 used++;
7264
7265 /* don't activate new spares if we are orom constrained
7266 * and there is already a volume active in the container
7267 */
7268 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7269 continue;
7270
7271 e = get_extents(super, dl);
7272 if (!e)
7273 continue;
7274 for (i = 1; e[i-1].size; i++)
7275 ;
7276 dl->e = e;
7277 dl->extent_cnt = i;
7278 extent_cnt += i;
7279 cnt++;
7280 }
7281
7282 maxsize = merge_extents(super, extent_cnt);
7283 minsize = size;
7284 if (size == 0)
7285 /* chunk is in K */
7286 minsize = chunk * 2;
7287
7288 if (cnt < raiddisks ||
7289 (super->orom && used && used != raiddisks) ||
7290 maxsize < minsize ||
7291 maxsize == 0) {
7292 pr_err("not enough devices with space to create array.\n");
7293 return 0; /* No enough free spaces large enough */
7294 }
7295
7296 if (size == 0) {
7297 size = maxsize;
7298 if (chunk) {
7299 size /= 2 * chunk;
7300 size *= 2 * chunk;
7301 }
7302 maxsize = size;
7303 }
7304 if (!check_env("IMSM_NO_PLATFORM") &&
7305 mpb->num_raid_devs > 0 && size && size != maxsize) {
7306 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
7307 return 0;
7308 }
7309 cnt = 0;
7310 for (dl = super->disks; dl; dl = dl->next)
7311 if (dl->e)
7312 dl->raiddisk = cnt++;
7313
7314 *freesize = size;
7315
7316 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7317
7318 return 1;
7319 }
7320
7321 static int reserve_space(struct supertype *st, int raiddisks,
7322 unsigned long long size, int chunk,
7323 unsigned long long *freesize)
7324 {
7325 struct intel_super *super = st->sb;
7326 struct dl *dl;
7327 int cnt;
7328 int rv = 0;
7329
7330 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7331 if (rv) {
7332 cnt = 0;
7333 for (dl = super->disks; dl; dl = dl->next)
7334 if (dl->e)
7335 dl->raiddisk = cnt++;
7336 rv = 1;
7337 }
7338
7339 return rv;
7340 }
7341
7342 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7343 int raiddisks, int *chunk, unsigned long long size,
7344 unsigned long long data_offset,
7345 char *dev, unsigned long long *freesize,
7346 int consistency_policy, int verbose)
7347 {
7348 int fd, cfd;
7349 struct mdinfo *sra;
7350 int is_member = 0;
7351
7352 /* load capability
7353 * if given unused devices create a container
7354 * if given given devices in a container create a member volume
7355 */
7356 if (level == LEVEL_CONTAINER) {
7357 /* Must be a fresh device to add to a container */
7358 return validate_geometry_imsm_container(st, level, layout,
7359 raiddisks,
7360 *chunk,
7361 size, data_offset,
7362 dev, freesize,
7363 verbose);
7364 }
7365
7366 if (size && ((size < 1024) || (*chunk != UnSet &&
7367 size < (unsigned long long) *chunk))) {
7368 pr_err("Given size must be greater than 1M and chunk size.\n");
7369 /* Depends on algorithm in Create.c :
7370 * if container was given (dev == NULL) return -1,
7371 * if block device was given ( dev != NULL) return 0.
7372 */
7373 return dev ? -1 : 0;
7374 }
7375
7376 if (!dev) {
7377 if (st->sb) {
7378 struct intel_super *super = st->sb;
7379 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7380 raiddisks, chunk, size,
7381 verbose))
7382 return 0;
7383 /* we are being asked to automatically layout a
7384 * new volume based on the current contents of
7385 * the container. If the the parameters can be
7386 * satisfied reserve_space will record the disks,
7387 * start offset, and size of the volume to be
7388 * created. add_to_super and getinfo_super
7389 * detect when autolayout is in progress.
7390 */
7391 /* assuming that freesize is always given when array is
7392 created */
7393 if (super->orom && freesize) {
7394 int count;
7395 count = count_volumes(super->hba,
7396 super->orom->dpa, verbose);
7397 if (super->orom->vphba <= count) {
7398 pr_vrb("platform does not support more than %d raid volumes.\n",
7399 super->orom->vphba);
7400 return 0;
7401 }
7402 }
7403 if (freesize)
7404 return reserve_space(st, raiddisks, size,
7405 *chunk, freesize);
7406 }
7407 return 1;
7408 }
7409 if (st->sb) {
7410 /* creating in a given container */
7411 return validate_geometry_imsm_volume(st, level, layout,
7412 raiddisks, chunk, size,
7413 data_offset,
7414 dev, freesize, verbose);
7415 }
7416
7417 /* This device needs to be a device in an 'imsm' container */
7418 fd = open(dev, O_RDONLY|O_EXCL, 0);
7419 if (fd >= 0) {
7420 if (verbose)
7421 pr_err("Cannot create this array on device %s\n",
7422 dev);
7423 close(fd);
7424 return 0;
7425 }
7426 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7427 if (verbose)
7428 pr_err("Cannot open %s: %s\n",
7429 dev, strerror(errno));
7430 return 0;
7431 }
7432 /* Well, it is in use by someone, maybe an 'imsm' container. */
7433 cfd = open_container(fd);
7434 close(fd);
7435 if (cfd < 0) {
7436 if (verbose)
7437 pr_err("Cannot use %s: It is busy\n",
7438 dev);
7439 return 0;
7440 }
7441 sra = sysfs_read(cfd, NULL, GET_VERSION);
7442 if (sra && sra->array.major_version == -1 &&
7443 strcmp(sra->text_version, "imsm") == 0)
7444 is_member = 1;
7445 sysfs_free(sra);
7446 if (is_member) {
7447 /* This is a member of a imsm container. Load the container
7448 * and try to create a volume
7449 */
7450 struct intel_super *super;
7451
7452 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7453 st->sb = super;
7454 strcpy(st->container_devnm, fd2devnm(cfd));
7455 close(cfd);
7456 return validate_geometry_imsm_volume(st, level, layout,
7457 raiddisks, chunk,
7458 size, data_offset, dev,
7459 freesize, 1)
7460 ? 1 : -1;
7461 }
7462 }
7463
7464 if (verbose)
7465 pr_err("failed container membership check\n");
7466
7467 close(cfd);
7468 return 0;
7469 }
7470
7471 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7472 {
7473 struct intel_super *super = st->sb;
7474
7475 if (level && *level == UnSet)
7476 *level = LEVEL_CONTAINER;
7477
7478 if (level && layout && *layout == UnSet)
7479 *layout = imsm_level_to_layout(*level);
7480
7481 if (chunk && (*chunk == UnSet || *chunk == 0))
7482 *chunk = imsm_default_chunk(super->orom);
7483 }
7484
7485 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7486
7487 static int kill_subarray_imsm(struct supertype *st)
7488 {
7489 /* remove the subarray currently referenced by ->current_vol */
7490 __u8 i;
7491 struct intel_dev **dp;
7492 struct intel_super *super = st->sb;
7493 __u8 current_vol = super->current_vol;
7494 struct imsm_super *mpb = super->anchor;
7495
7496 if (super->current_vol < 0)
7497 return 2;
7498 super->current_vol = -1; /* invalidate subarray cursor */
7499
7500 /* block deletions that would change the uuid of active subarrays
7501 *
7502 * FIXME when immutable ids are available, but note that we'll
7503 * also need to fixup the invalidated/active subarray indexes in
7504 * mdstat
7505 */
7506 for (i = 0; i < mpb->num_raid_devs; i++) {
7507 char subarray[4];
7508
7509 if (i < current_vol)
7510 continue;
7511 sprintf(subarray, "%u", i);
7512 if (is_subarray_active(subarray, st->devnm)) {
7513 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7514 current_vol, i);
7515
7516 return 2;
7517 }
7518 }
7519
7520 if (st->update_tail) {
7521 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7522
7523 u->type = update_kill_array;
7524 u->dev_idx = current_vol;
7525 append_metadata_update(st, u, sizeof(*u));
7526
7527 return 0;
7528 }
7529
7530 for (dp = &super->devlist; *dp;)
7531 if ((*dp)->index == current_vol) {
7532 *dp = (*dp)->next;
7533 } else {
7534 handle_missing(super, (*dp)->dev);
7535 if ((*dp)->index > current_vol)
7536 (*dp)->index--;
7537 dp = &(*dp)->next;
7538 }
7539
7540 /* no more raid devices, all active components are now spares,
7541 * but of course failed are still failed
7542 */
7543 if (--mpb->num_raid_devs == 0) {
7544 struct dl *d;
7545
7546 for (d = super->disks; d; d = d->next)
7547 if (d->index > -2)
7548 mark_spare(d);
7549 }
7550
7551 super->updates_pending++;
7552
7553 return 0;
7554 }
7555
7556 static int update_subarray_imsm(struct supertype *st, char *subarray,
7557 char *update, struct mddev_ident *ident)
7558 {
7559 /* update the subarray currently referenced by ->current_vol */
7560 struct intel_super *super = st->sb;
7561 struct imsm_super *mpb = super->anchor;
7562
7563 if (strcmp(update, "name") == 0) {
7564 char *name = ident->name;
7565 char *ep;
7566 int vol;
7567
7568 if (is_subarray_active(subarray, st->devnm)) {
7569 pr_err("Unable to update name of active subarray\n");
7570 return 2;
7571 }
7572
7573 if (!check_name(super, name, 0))
7574 return 2;
7575
7576 vol = strtoul(subarray, &ep, 10);
7577 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7578 return 2;
7579
7580 if (st->update_tail) {
7581 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7582
7583 u->type = update_rename_array;
7584 u->dev_idx = vol;
7585 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7586 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7587 append_metadata_update(st, u, sizeof(*u));
7588 } else {
7589 struct imsm_dev *dev;
7590 int i;
7591
7592 dev = get_imsm_dev(super, vol);
7593 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7594 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
7595 for (i = 0; i < mpb->num_raid_devs; i++) {
7596 dev = get_imsm_dev(super, i);
7597 handle_missing(super, dev);
7598 }
7599 super->updates_pending++;
7600 }
7601 } else if (strcmp(update, "ppl") == 0 ||
7602 strcmp(update, "no-ppl") == 0) {
7603 int new_policy;
7604 char *ep;
7605 int vol = strtoul(subarray, &ep, 10);
7606
7607 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7608 return 2;
7609
7610 if (strcmp(update, "ppl") == 0)
7611 new_policy = RWH_MULTIPLE_DISTRIBUTED;
7612 else
7613 new_policy = RWH_MULTIPLE_OFF;
7614
7615 if (st->update_tail) {
7616 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7617
7618 u->type = update_rwh_policy;
7619 u->dev_idx = vol;
7620 u->new_policy = new_policy;
7621 append_metadata_update(st, u, sizeof(*u));
7622 } else {
7623 struct imsm_dev *dev;
7624
7625 dev = get_imsm_dev(super, vol);
7626 dev->rwh_policy = new_policy;
7627 super->updates_pending++;
7628 }
7629 } else
7630 return 2;
7631
7632 return 0;
7633 }
7634
7635 static int is_gen_migration(struct imsm_dev *dev)
7636 {
7637 if (dev == NULL)
7638 return 0;
7639
7640 if (!dev->vol.migr_state)
7641 return 0;
7642
7643 if (migr_type(dev) == MIGR_GEN_MIGR)
7644 return 1;
7645
7646 return 0;
7647 }
7648
7649 static int is_rebuilding(struct imsm_dev *dev)
7650 {
7651 struct imsm_map *migr_map;
7652
7653 if (!dev->vol.migr_state)
7654 return 0;
7655
7656 if (migr_type(dev) != MIGR_REBUILD)
7657 return 0;
7658
7659 migr_map = get_imsm_map(dev, MAP_1);
7660
7661 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7662 return 1;
7663 else
7664 return 0;
7665 }
7666
7667 static int is_initializing(struct imsm_dev *dev)
7668 {
7669 struct imsm_map *migr_map;
7670
7671 if (!dev->vol.migr_state)
7672 return 0;
7673
7674 if (migr_type(dev) != MIGR_INIT)
7675 return 0;
7676
7677 migr_map = get_imsm_map(dev, MAP_1);
7678
7679 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7680 return 1;
7681
7682 return 0;
7683 }
7684
7685 static void update_recovery_start(struct intel_super *super,
7686 struct imsm_dev *dev,
7687 struct mdinfo *array)
7688 {
7689 struct mdinfo *rebuild = NULL;
7690 struct mdinfo *d;
7691 __u32 units;
7692
7693 if (!is_rebuilding(dev))
7694 return;
7695
7696 /* Find the rebuild target, but punt on the dual rebuild case */
7697 for (d = array->devs; d; d = d->next)
7698 if (d->recovery_start == 0) {
7699 if (rebuild)
7700 return;
7701 rebuild = d;
7702 }
7703
7704 if (!rebuild) {
7705 /* (?) none of the disks are marked with
7706 * IMSM_ORD_REBUILD, so assume they are missing and the
7707 * disk_ord_tbl was not correctly updated
7708 */
7709 dprintf("failed to locate out-of-sync disk\n");
7710 return;
7711 }
7712
7713 units = __le32_to_cpu(dev->vol.curr_migr_unit);
7714 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
7715 }
7716
7717 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
7718
7719 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
7720 {
7721 /* Given a container loaded by load_super_imsm_all,
7722 * extract information about all the arrays into
7723 * an mdinfo tree.
7724 * If 'subarray' is given, just extract info about that array.
7725 *
7726 * For each imsm_dev create an mdinfo, fill it in,
7727 * then look for matching devices in super->disks
7728 * and create appropriate device mdinfo.
7729 */
7730 struct intel_super *super = st->sb;
7731 struct imsm_super *mpb = super->anchor;
7732 struct mdinfo *rest = NULL;
7733 unsigned int i;
7734 int sb_errors = 0;
7735 struct dl *d;
7736 int spare_disks = 0;
7737
7738 /* do not assemble arrays when not all attributes are supported */
7739 if (imsm_check_attributes(mpb->attributes) == 0) {
7740 sb_errors = 1;
7741 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
7742 }
7743
7744 /* count spare devices, not used in maps
7745 */
7746 for (d = super->disks; d; d = d->next)
7747 if (d->index == -1)
7748 spare_disks++;
7749
7750 for (i = 0; i < mpb->num_raid_devs; i++) {
7751 struct imsm_dev *dev;
7752 struct imsm_map *map;
7753 struct imsm_map *map2;
7754 struct mdinfo *this;
7755 int slot;
7756 int chunk;
7757 char *ep;
7758 int level;
7759
7760 if (subarray &&
7761 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7762 continue;
7763
7764 dev = get_imsm_dev(super, i);
7765 map = get_imsm_map(dev, MAP_0);
7766 map2 = get_imsm_map(dev, MAP_1);
7767 level = get_imsm_raid_level(map);
7768
7769 /* do not publish arrays that are in the middle of an
7770 * unsupported migration
7771 */
7772 if (dev->vol.migr_state &&
7773 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7774 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
7775 dev->volume);
7776 continue;
7777 }
7778 /* do not publish arrays that are not support by controller's
7779 * OROM/EFI
7780 */
7781
7782 this = xmalloc(sizeof(*this));
7783
7784 super->current_vol = i;
7785 getinfo_super_imsm_volume(st, this, NULL);
7786 this->next = rest;
7787 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7788 /* mdadm does not support all metadata features- set the bit in all arrays state */
7789 if (!validate_geometry_imsm_orom(super,
7790 level, /* RAID level */
7791 imsm_level_to_layout(level),
7792 map->num_members, /* raid disks */
7793 &chunk, imsm_dev_size(dev),
7794 1 /* verbose */)) {
7795 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
7796 dev->volume);
7797 this->array.state |=
7798 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7799 (1<<MD_SB_BLOCK_VOLUME);
7800 }
7801
7802 /* if array has bad blocks, set suitable bit in all arrays state */
7803 if (sb_errors)
7804 this->array.state |=
7805 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7806 (1<<MD_SB_BLOCK_VOLUME);
7807
7808 for (slot = 0 ; slot < map->num_members; slot++) {
7809 unsigned long long recovery_start;
7810 struct mdinfo *info_d;
7811 struct dl *d;
7812 int idx;
7813 int skip;
7814 __u32 ord;
7815 int missing = 0;
7816
7817 skip = 0;
7818 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7819 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
7820 for (d = super->disks; d ; d = d->next)
7821 if (d->index == idx)
7822 break;
7823
7824 recovery_start = MaxSector;
7825 if (d == NULL)
7826 skip = 1;
7827 if (d && is_failed(&d->disk))
7828 skip = 1;
7829 if (!skip && (ord & IMSM_ORD_REBUILD))
7830 recovery_start = 0;
7831
7832 /*
7833 * if we skip some disks the array will be assmebled degraded;
7834 * reset resync start to avoid a dirty-degraded
7835 * situation when performing the intial sync
7836 */
7837 if (skip)
7838 missing++;
7839
7840 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
7841 if ((!able_to_resync(level, missing) ||
7842 recovery_start == 0))
7843 this->resync_start = MaxSector;
7844 } else {
7845 /*
7846 * FIXME handle dirty degraded
7847 */
7848 }
7849
7850 if (skip)
7851 continue;
7852
7853 info_d = xcalloc(1, sizeof(*info_d));
7854 info_d->next = this->devs;
7855 this->devs = info_d;
7856
7857 info_d->disk.number = d->index;
7858 info_d->disk.major = d->major;
7859 info_d->disk.minor = d->minor;
7860 info_d->disk.raid_disk = slot;
7861 info_d->recovery_start = recovery_start;
7862 if (map2) {
7863 if (slot < map2->num_members)
7864 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7865 else
7866 this->array.spare_disks++;
7867 } else {
7868 if (slot < map->num_members)
7869 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7870 else
7871 this->array.spare_disks++;
7872 }
7873 if (info_d->recovery_start == MaxSector)
7874 this->array.working_disks++;
7875
7876 info_d->events = __le32_to_cpu(mpb->generation_num);
7877 info_d->data_offset = pba_of_lba0(map);
7878 info_d->component_size = calc_component_size(map, dev);
7879
7880 if (map->raid_level == 5) {
7881 info_d->ppl_sector = this->ppl_sector;
7882 info_d->ppl_size = this->ppl_size;
7883 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
7884 recovery_start == 0)
7885 this->resync_start = 0;
7886 }
7887
7888 info_d->bb.supported = 1;
7889 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7890 info_d->data_offset,
7891 info_d->component_size,
7892 &info_d->bb);
7893 }
7894 /* now that the disk list is up-to-date fixup recovery_start */
7895 update_recovery_start(super, dev, this);
7896 this->array.spare_disks += spare_disks;
7897
7898 /* check for reshape */
7899 if (this->reshape_active == 1)
7900 recover_backup_imsm(st, this);
7901 rest = this;
7902 }
7903
7904 return rest;
7905 }
7906
7907 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7908 int failed, int look_in_map)
7909 {
7910 struct imsm_map *map;
7911
7912 map = get_imsm_map(dev, look_in_map);
7913
7914 if (!failed)
7915 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
7916 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
7917
7918 switch (get_imsm_raid_level(map)) {
7919 case 0:
7920 return IMSM_T_STATE_FAILED;
7921 break;
7922 case 1:
7923 if (failed < map->num_members)
7924 return IMSM_T_STATE_DEGRADED;
7925 else
7926 return IMSM_T_STATE_FAILED;
7927 break;
7928 case 10:
7929 {
7930 /**
7931 * check to see if any mirrors have failed, otherwise we
7932 * are degraded. Even numbered slots are mirrored on
7933 * slot+1
7934 */
7935 int i;
7936 /* gcc -Os complains that this is unused */
7937 int insync = insync;
7938
7939 for (i = 0; i < map->num_members; i++) {
7940 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
7941 int idx = ord_to_idx(ord);
7942 struct imsm_disk *disk;
7943
7944 /* reset the potential in-sync count on even-numbered
7945 * slots. num_copies is always 2 for imsm raid10
7946 */
7947 if ((i & 1) == 0)
7948 insync = 2;
7949
7950 disk = get_imsm_disk(super, idx);
7951 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7952 insync--;
7953
7954 /* no in-sync disks left in this mirror the
7955 * array has failed
7956 */
7957 if (insync == 0)
7958 return IMSM_T_STATE_FAILED;
7959 }
7960
7961 return IMSM_T_STATE_DEGRADED;
7962 }
7963 case 5:
7964 if (failed < 2)
7965 return IMSM_T_STATE_DEGRADED;
7966 else
7967 return IMSM_T_STATE_FAILED;
7968 break;
7969 default:
7970 break;
7971 }
7972
7973 return map->map_state;
7974 }
7975
7976 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7977 int look_in_map)
7978 {
7979 int i;
7980 int failed = 0;
7981 struct imsm_disk *disk;
7982 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7983 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7984 struct imsm_map *map_for_loop;
7985 __u32 ord;
7986 int idx;
7987 int idx_1;
7988
7989 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7990 * disks that are being rebuilt. New failures are recorded to
7991 * map[0]. So we look through all the disks we started with and
7992 * see if any failures are still present, or if any new ones
7993 * have arrived
7994 */
7995 map_for_loop = map;
7996 if (prev && (map->num_members < prev->num_members))
7997 map_for_loop = prev;
7998
7999 for (i = 0; i < map_for_loop->num_members; i++) {
8000 idx_1 = -255;
8001 /* when MAP_X is passed both maps failures are counted
8002 */
8003 if (prev &&
8004 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8005 i < prev->num_members) {
8006 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8007 idx_1 = ord_to_idx(ord);
8008
8009 disk = get_imsm_disk(super, idx_1);
8010 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8011 failed++;
8012 }
8013 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8014 i < map->num_members) {
8015 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8016 idx = ord_to_idx(ord);
8017
8018 if (idx != idx_1) {
8019 disk = get_imsm_disk(super, idx);
8020 if (!disk || is_failed(disk) ||
8021 ord & IMSM_ORD_REBUILD)
8022 failed++;
8023 }
8024 }
8025 }
8026
8027 return failed;
8028 }
8029
8030 static int imsm_open_new(struct supertype *c, struct active_array *a,
8031 char *inst)
8032 {
8033 struct intel_super *super = c->sb;
8034 struct imsm_super *mpb = super->anchor;
8035 struct imsm_update_prealloc_bb_mem u;
8036
8037 if (atoi(inst) >= mpb->num_raid_devs) {
8038 pr_err("subarry index %d, out of range\n", atoi(inst));
8039 return -ENODEV;
8040 }
8041
8042 dprintf("imsm: open_new %s\n", inst);
8043 a->info.container_member = atoi(inst);
8044
8045 u.type = update_prealloc_badblocks_mem;
8046 imsm_update_metadata_locally(c, &u, sizeof(u));
8047
8048 return 0;
8049 }
8050
8051 static int is_resyncing(struct imsm_dev *dev)
8052 {
8053 struct imsm_map *migr_map;
8054
8055 if (!dev->vol.migr_state)
8056 return 0;
8057
8058 if (migr_type(dev) == MIGR_INIT ||
8059 migr_type(dev) == MIGR_REPAIR)
8060 return 1;
8061
8062 if (migr_type(dev) == MIGR_GEN_MIGR)
8063 return 0;
8064
8065 migr_map = get_imsm_map(dev, MAP_1);
8066
8067 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8068 dev->vol.migr_type != MIGR_GEN_MIGR)
8069 return 1;
8070 else
8071 return 0;
8072 }
8073
8074 /* return true if we recorded new information */
8075 static int mark_failure(struct intel_super *super,
8076 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8077 {
8078 __u32 ord;
8079 int slot;
8080 struct imsm_map *map;
8081 char buf[MAX_RAID_SERIAL_LEN+3];
8082 unsigned int len, shift = 0;
8083
8084 /* new failures are always set in map[0] */
8085 map = get_imsm_map(dev, MAP_0);
8086
8087 slot = get_imsm_disk_slot(map, idx);
8088 if (slot < 0)
8089 return 0;
8090
8091 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
8092 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
8093 return 0;
8094
8095 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8096 buf[MAX_RAID_SERIAL_LEN] = '\000';
8097 strcat(buf, ":0");
8098 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8099 shift = len - MAX_RAID_SERIAL_LEN + 1;
8100 memcpy(disk->serial, &buf[shift], len + 1 - shift);
8101
8102 disk->status |= FAILED_DISK;
8103 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
8104 /* mark failures in second map if second map exists and this disk
8105 * in this slot.
8106 * This is valid for migration, initialization and rebuild
8107 */
8108 if (dev->vol.migr_state) {
8109 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
8110 int slot2 = get_imsm_disk_slot(map2, idx);
8111
8112 if (slot2 < map2->num_members && slot2 >= 0)
8113 set_imsm_ord_tbl_ent(map2, slot2,
8114 idx | IMSM_ORD_REBUILD);
8115 }
8116 if (map->failed_disk_num == 0xff)
8117 map->failed_disk_num = slot;
8118
8119 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8120
8121 return 1;
8122 }
8123
8124 static void mark_missing(struct intel_super *super,
8125 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8126 {
8127 mark_failure(super, dev, disk, idx);
8128
8129 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8130 return;
8131
8132 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8133 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8134 }
8135
8136 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8137 {
8138 struct dl *dl;
8139
8140 if (!super->missing)
8141 return;
8142
8143 /* When orom adds replacement for missing disk it does
8144 * not remove entry of missing disk, but just updates map with
8145 * new added disk. So it is not enough just to test if there is
8146 * any missing disk, we have to look if there are any failed disks
8147 * in map to stop migration */
8148
8149 dprintf("imsm: mark missing\n");
8150 /* end process for initialization and rebuild only
8151 */
8152 if (is_gen_migration(dev) == 0) {
8153 int failed = imsm_count_failed(super, dev, MAP_0);
8154
8155 if (failed) {
8156 __u8 map_state;
8157 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8158 struct imsm_map *map1;
8159 int i, ord, ord_map1;
8160 int rebuilt = 1;
8161
8162 for (i = 0; i < map->num_members; i++) {
8163 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8164 if (!(ord & IMSM_ORD_REBUILD))
8165 continue;
8166
8167 map1 = get_imsm_map(dev, MAP_1);
8168 if (!map1)
8169 continue;
8170
8171 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8172 if (ord_map1 & IMSM_ORD_REBUILD)
8173 rebuilt = 0;
8174 }
8175
8176 if (rebuilt) {
8177 map_state = imsm_check_degraded(super, dev,
8178 failed, MAP_0);
8179 end_migration(dev, super, map_state);
8180 }
8181 }
8182 }
8183 for (dl = super->missing; dl; dl = dl->next)
8184 mark_missing(super, dev, &dl->disk, dl->index);
8185 super->updates_pending++;
8186 }
8187
8188 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8189 long long new_size)
8190 {
8191 unsigned long long array_blocks;
8192 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8193 int used_disks = imsm_num_data_members(map);
8194
8195 if (used_disks == 0) {
8196 /* when problems occures
8197 * return current array_blocks value
8198 */
8199 array_blocks = imsm_dev_size(dev);
8200
8201 return array_blocks;
8202 }
8203
8204 /* set array size in metadata
8205 */
8206 if (new_size <= 0)
8207 /* OLCE size change is caused by added disks
8208 */
8209 array_blocks = per_dev_array_size(map) * used_disks;
8210 else
8211 /* Online Volume Size Change
8212 * Using available free space
8213 */
8214 array_blocks = new_size;
8215
8216 array_blocks = round_size_to_mb(array_blocks, used_disks);
8217 set_imsm_dev_size(dev, array_blocks);
8218
8219 return array_blocks;
8220 }
8221
8222 static void imsm_set_disk(struct active_array *a, int n, int state);
8223
8224 static void imsm_progress_container_reshape(struct intel_super *super)
8225 {
8226 /* if no device has a migr_state, but some device has a
8227 * different number of members than the previous device, start
8228 * changing the number of devices in this device to match
8229 * previous.
8230 */
8231 struct imsm_super *mpb = super->anchor;
8232 int prev_disks = -1;
8233 int i;
8234 int copy_map_size;
8235
8236 for (i = 0; i < mpb->num_raid_devs; i++) {
8237 struct imsm_dev *dev = get_imsm_dev(super, i);
8238 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8239 struct imsm_map *map2;
8240 int prev_num_members;
8241
8242 if (dev->vol.migr_state)
8243 return;
8244
8245 if (prev_disks == -1)
8246 prev_disks = map->num_members;
8247 if (prev_disks == map->num_members)
8248 continue;
8249
8250 /* OK, this array needs to enter reshape mode.
8251 * i.e it needs a migr_state
8252 */
8253
8254 copy_map_size = sizeof_imsm_map(map);
8255 prev_num_members = map->num_members;
8256 map->num_members = prev_disks;
8257 dev->vol.migr_state = 1;
8258 dev->vol.curr_migr_unit = 0;
8259 set_migr_type(dev, MIGR_GEN_MIGR);
8260 for (i = prev_num_members;
8261 i < map->num_members; i++)
8262 set_imsm_ord_tbl_ent(map, i, i);
8263 map2 = get_imsm_map(dev, MAP_1);
8264 /* Copy the current map */
8265 memcpy(map2, map, copy_map_size);
8266 map2->num_members = prev_num_members;
8267
8268 imsm_set_array_size(dev, -1);
8269 super->clean_migration_record_by_mdmon = 1;
8270 super->updates_pending++;
8271 }
8272 }
8273
8274 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8275 * states are handled in imsm_set_disk() with one exception, when a
8276 * resync is stopped due to a new failure this routine will set the
8277 * 'degraded' state for the array.
8278 */
8279 static int imsm_set_array_state(struct active_array *a, int consistent)
8280 {
8281 int inst = a->info.container_member;
8282 struct intel_super *super = a->container->sb;
8283 struct imsm_dev *dev = get_imsm_dev(super, inst);
8284 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8285 int failed = imsm_count_failed(super, dev, MAP_0);
8286 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8287 __u32 blocks_per_unit;
8288
8289 if (dev->vol.migr_state &&
8290 dev->vol.migr_type == MIGR_GEN_MIGR) {
8291 /* array state change is blocked due to reshape action
8292 * We might need to
8293 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8294 * - finish the reshape (if last_checkpoint is big and action != reshape)
8295 * - update curr_migr_unit
8296 */
8297 if (a->curr_action == reshape) {
8298 /* still reshaping, maybe update curr_migr_unit */
8299 goto mark_checkpoint;
8300 } else {
8301 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8302 /* for some reason we aborted the reshape.
8303 *
8304 * disable automatic metadata rollback
8305 * user action is required to recover process
8306 */
8307 if (0) {
8308 struct imsm_map *map2 =
8309 get_imsm_map(dev, MAP_1);
8310 dev->vol.migr_state = 0;
8311 set_migr_type(dev, 0);
8312 dev->vol.curr_migr_unit = 0;
8313 memcpy(map, map2,
8314 sizeof_imsm_map(map2));
8315 super->updates_pending++;
8316 }
8317 }
8318 if (a->last_checkpoint >= a->info.component_size) {
8319 unsigned long long array_blocks;
8320 int used_disks;
8321 struct mdinfo *mdi;
8322
8323 used_disks = imsm_num_data_members(map);
8324 if (used_disks > 0) {
8325 array_blocks =
8326 per_dev_array_size(map) *
8327 used_disks;
8328 array_blocks =
8329 round_size_to_mb(array_blocks,
8330 used_disks);
8331 a->info.custom_array_size = array_blocks;
8332 /* encourage manager to update array
8333 * size
8334 */
8335
8336 a->check_reshape = 1;
8337 }
8338 /* finalize online capacity expansion/reshape */
8339 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8340 imsm_set_disk(a,
8341 mdi->disk.raid_disk,
8342 mdi->curr_state);
8343
8344 imsm_progress_container_reshape(super);
8345 }
8346 }
8347 }
8348
8349 /* before we activate this array handle any missing disks */
8350 if (consistent == 2)
8351 handle_missing(super, dev);
8352
8353 if (consistent == 2 &&
8354 (!is_resync_complete(&a->info) ||
8355 map_state != IMSM_T_STATE_NORMAL ||
8356 dev->vol.migr_state))
8357 consistent = 0;
8358
8359 if (is_resync_complete(&a->info)) {
8360 /* complete intialization / resync,
8361 * recovery and interrupted recovery is completed in
8362 * ->set_disk
8363 */
8364 if (is_resyncing(dev)) {
8365 dprintf("imsm: mark resync done\n");
8366 end_migration(dev, super, map_state);
8367 super->updates_pending++;
8368 a->last_checkpoint = 0;
8369 }
8370 } else if ((!is_resyncing(dev) && !failed) &&
8371 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8372 /* mark the start of the init process if nothing is failed */
8373 dprintf("imsm: mark resync start\n");
8374 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8375 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8376 else
8377 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8378 super->updates_pending++;
8379 }
8380
8381 mark_checkpoint:
8382 /* skip checkpointing for general migration,
8383 * it is controlled in mdadm
8384 */
8385 if (is_gen_migration(dev))
8386 goto skip_mark_checkpoint;
8387
8388 /* check if we can update curr_migr_unit from resync_start, recovery_start */
8389 blocks_per_unit = blocks_per_migr_unit(super, dev);
8390 if (blocks_per_unit) {
8391 __u32 units32;
8392 __u64 units;
8393
8394 units = a->last_checkpoint / blocks_per_unit;
8395 units32 = units;
8396
8397 /* check that we did not overflow 32-bits, and that
8398 * curr_migr_unit needs updating
8399 */
8400 if (units32 == units &&
8401 units32 != 0 &&
8402 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8403 dprintf("imsm: mark checkpoint (%u)\n", units32);
8404 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8405 super->updates_pending++;
8406 }
8407 }
8408
8409 skip_mark_checkpoint:
8410 /* mark dirty / clean */
8411 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8412 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8413 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8414 if (consistent) {
8415 dev->vol.dirty = RAIDVOL_CLEAN;
8416 } else {
8417 dev->vol.dirty = RAIDVOL_DIRTY;
8418 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8419 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
8420 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8421 }
8422 super->updates_pending++;
8423 }
8424
8425 return consistent;
8426 }
8427
8428 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8429 {
8430 int inst = a->info.container_member;
8431 struct intel_super *super = a->container->sb;
8432 struct imsm_dev *dev = get_imsm_dev(super, inst);
8433 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8434
8435 if (slot > map->num_members) {
8436 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8437 slot, map->num_members - 1);
8438 return -1;
8439 }
8440
8441 if (slot < 0)
8442 return -1;
8443
8444 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8445 }
8446
8447 static void imsm_set_disk(struct active_array *a, int n, int state)
8448 {
8449 int inst = a->info.container_member;
8450 struct intel_super *super = a->container->sb;
8451 struct imsm_dev *dev = get_imsm_dev(super, inst);
8452 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8453 struct imsm_disk *disk;
8454 struct mdinfo *mdi;
8455 int recovery_not_finished = 0;
8456 int failed;
8457 int ord;
8458 __u8 map_state;
8459 int rebuild_done = 0;
8460 int i;
8461
8462 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
8463 if (ord < 0)
8464 return;
8465
8466 dprintf("imsm: set_disk %d:%x\n", n, state);
8467 disk = get_imsm_disk(super, ord_to_idx(ord));
8468
8469 /* check for new failures */
8470 if (state & DS_FAULTY) {
8471 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8472 super->updates_pending++;
8473 }
8474
8475 /* check if in_sync */
8476 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8477 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8478
8479 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8480 rebuild_done = 1;
8481 super->updates_pending++;
8482 }
8483
8484 failed = imsm_count_failed(super, dev, MAP_0);
8485 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8486
8487 /* check if recovery complete, newly degraded, or failed */
8488 dprintf("imsm: Detected transition to state ");
8489 switch (map_state) {
8490 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8491 dprintf("normal: ");
8492 if (is_rebuilding(dev)) {
8493 dprintf_cont("while rebuilding");
8494 /* check if recovery is really finished */
8495 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8496 if (mdi->recovery_start != MaxSector) {
8497 recovery_not_finished = 1;
8498 break;
8499 }
8500 if (recovery_not_finished) {
8501 dprintf_cont("\n");
8502 dprintf("Rebuild has not finished yet, state not changed");
8503 if (a->last_checkpoint < mdi->recovery_start) {
8504 a->last_checkpoint = mdi->recovery_start;
8505 super->updates_pending++;
8506 }
8507 break;
8508 }
8509 end_migration(dev, super, map_state);
8510 map = get_imsm_map(dev, MAP_0);
8511 map->failed_disk_num = ~0;
8512 super->updates_pending++;
8513 a->last_checkpoint = 0;
8514 break;
8515 }
8516 if (is_gen_migration(dev)) {
8517 dprintf_cont("while general migration");
8518 if (a->last_checkpoint >= a->info.component_size)
8519 end_migration(dev, super, map_state);
8520 else
8521 map->map_state = map_state;
8522 map = get_imsm_map(dev, MAP_0);
8523 map->failed_disk_num = ~0;
8524 super->updates_pending++;
8525 break;
8526 }
8527 break;
8528 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8529 dprintf_cont("degraded: ");
8530 if (map->map_state != map_state && !dev->vol.migr_state) {
8531 dprintf_cont("mark degraded");
8532 map->map_state = map_state;
8533 super->updates_pending++;
8534 a->last_checkpoint = 0;
8535 break;
8536 }
8537 if (is_rebuilding(dev)) {
8538 dprintf_cont("while rebuilding.");
8539 if (map->map_state != map_state) {
8540 dprintf_cont(" Map state change");
8541 end_migration(dev, super, map_state);
8542 super->updates_pending++;
8543 } else if (!rebuild_done) {
8544 break;
8545 }
8546
8547 /* check if recovery is really finished */
8548 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8549 if (mdi->recovery_start != MaxSector) {
8550 recovery_not_finished = 1;
8551 break;
8552 }
8553 if (recovery_not_finished) {
8554 dprintf_cont("\n");
8555 dprintf("Rebuild has not finished yet, state not changed");
8556 if (a->last_checkpoint < mdi->recovery_start) {
8557 a->last_checkpoint =
8558 mdi->recovery_start;
8559 super->updates_pending++;
8560 }
8561 break;
8562 }
8563
8564 dprintf_cont(" Rebuild done, still degraded");
8565 dev->vol.migr_state = 0;
8566 set_migr_type(dev, 0);
8567 dev->vol.curr_migr_unit = 0;
8568
8569 for (i = 0; i < map->num_members; i++) {
8570 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8571
8572 if (idx & IMSM_ORD_REBUILD)
8573 map->failed_disk_num = i;
8574 }
8575 super->updates_pending++;
8576 break;
8577 }
8578 if (is_gen_migration(dev)) {
8579 dprintf_cont("while general migration");
8580 if (a->last_checkpoint >= a->info.component_size)
8581 end_migration(dev, super, map_state);
8582 else {
8583 map->map_state = map_state;
8584 manage_second_map(super, dev);
8585 }
8586 super->updates_pending++;
8587 break;
8588 }
8589 if (is_initializing(dev)) {
8590 dprintf_cont("while initialization.");
8591 map->map_state = map_state;
8592 super->updates_pending++;
8593 break;
8594 }
8595 break;
8596 case IMSM_T_STATE_FAILED: /* transition to failed state */
8597 dprintf_cont("failed: ");
8598 if (is_gen_migration(dev)) {
8599 dprintf_cont("while general migration");
8600 map->map_state = map_state;
8601 super->updates_pending++;
8602 break;
8603 }
8604 if (map->map_state != map_state) {
8605 dprintf_cont("mark failed");
8606 end_migration(dev, super, map_state);
8607 super->updates_pending++;
8608 a->last_checkpoint = 0;
8609 break;
8610 }
8611 break;
8612 default:
8613 dprintf_cont("state %i\n", map_state);
8614 }
8615 dprintf_cont("\n");
8616 }
8617
8618 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8619 {
8620 void *buf = mpb;
8621 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8622 unsigned long long dsize;
8623 unsigned long long sectors;
8624 unsigned int sector_size;
8625
8626 get_dev_sector_size(fd, NULL, &sector_size);
8627 get_dev_size(fd, NULL, &dsize);
8628
8629 if (mpb_size > sector_size) {
8630 /* -1 to account for anchor */
8631 sectors = mpb_sectors(mpb, sector_size) - 1;
8632
8633 /* write the extended mpb to the sectors preceeding the anchor */
8634 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8635 SEEK_SET) < 0)
8636 return 1;
8637
8638 if ((unsigned long long)write(fd, buf + sector_size,
8639 sector_size * sectors) != sector_size * sectors)
8640 return 1;
8641 }
8642
8643 /* first block is stored on second to last sector of the disk */
8644 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8645 return 1;
8646
8647 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
8648 return 1;
8649
8650 return 0;
8651 }
8652
8653 static void imsm_sync_metadata(struct supertype *container)
8654 {
8655 struct intel_super *super = container->sb;
8656
8657 dprintf("sync metadata: %d\n", super->updates_pending);
8658 if (!super->updates_pending)
8659 return;
8660
8661 write_super_imsm(container, 0);
8662
8663 super->updates_pending = 0;
8664 }
8665
8666 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8667 {
8668 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8669 int i = get_imsm_disk_idx(dev, idx, MAP_X);
8670 struct dl *dl;
8671
8672 for (dl = super->disks; dl; dl = dl->next)
8673 if (dl->index == i)
8674 break;
8675
8676 if (dl && is_failed(&dl->disk))
8677 dl = NULL;
8678
8679 if (dl)
8680 dprintf("found %x:%x\n", dl->major, dl->minor);
8681
8682 return dl;
8683 }
8684
8685 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8686 struct active_array *a, int activate_new,
8687 struct mdinfo *additional_test_list)
8688 {
8689 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8690 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
8691 struct imsm_super *mpb = super->anchor;
8692 struct imsm_map *map;
8693 unsigned long long pos;
8694 struct mdinfo *d;
8695 struct extent *ex;
8696 int i, j;
8697 int found;
8698 __u32 array_start = 0;
8699 __u32 array_end = 0;
8700 struct dl *dl;
8701 struct mdinfo *test_list;
8702
8703 for (dl = super->disks; dl; dl = dl->next) {
8704 /* If in this array, skip */
8705 for (d = a->info.devs ; d ; d = d->next)
8706 if (d->state_fd >= 0 &&
8707 d->disk.major == dl->major &&
8708 d->disk.minor == dl->minor) {
8709 dprintf("%x:%x already in array\n",
8710 dl->major, dl->minor);
8711 break;
8712 }
8713 if (d)
8714 continue;
8715 test_list = additional_test_list;
8716 while (test_list) {
8717 if (test_list->disk.major == dl->major &&
8718 test_list->disk.minor == dl->minor) {
8719 dprintf("%x:%x already in additional test list\n",
8720 dl->major, dl->minor);
8721 break;
8722 }
8723 test_list = test_list->next;
8724 }
8725 if (test_list)
8726 continue;
8727
8728 /* skip in use or failed drives */
8729 if (is_failed(&dl->disk) || idx == dl->index ||
8730 dl->index == -2) {
8731 dprintf("%x:%x status (failed: %d index: %d)\n",
8732 dl->major, dl->minor, is_failed(&dl->disk), idx);
8733 continue;
8734 }
8735
8736 /* skip pure spares when we are looking for partially
8737 * assimilated drives
8738 */
8739 if (dl->index == -1 && !activate_new)
8740 continue;
8741
8742 if (!drive_validate_sector_size(super, dl))
8743 continue;
8744
8745 /* Does this unused device have the requisite free space?
8746 * It needs to be able to cover all member volumes
8747 */
8748 ex = get_extents(super, dl);
8749 if (!ex) {
8750 dprintf("cannot get extents\n");
8751 continue;
8752 }
8753 for (i = 0; i < mpb->num_raid_devs; i++) {
8754 dev = get_imsm_dev(super, i);
8755 map = get_imsm_map(dev, MAP_0);
8756
8757 /* check if this disk is already a member of
8758 * this array
8759 */
8760 if (get_imsm_disk_slot(map, dl->index) >= 0)
8761 continue;
8762
8763 found = 0;
8764 j = 0;
8765 pos = 0;
8766 array_start = pba_of_lba0(map);
8767 array_end = array_start +
8768 per_dev_array_size(map) - 1;
8769
8770 do {
8771 /* check that we can start at pba_of_lba0 with
8772 * num_data_stripes*blocks_per_stripe of space
8773 */
8774 if (array_start >= pos && array_end < ex[j].start) {
8775 found = 1;
8776 break;
8777 }
8778 pos = ex[j].start + ex[j].size;
8779 j++;
8780 } while (ex[j-1].size);
8781
8782 if (!found)
8783 break;
8784 }
8785
8786 free(ex);
8787 if (i < mpb->num_raid_devs) {
8788 dprintf("%x:%x does not have %u to %u available\n",
8789 dl->major, dl->minor, array_start, array_end);
8790 /* No room */
8791 continue;
8792 }
8793 return dl;
8794 }
8795
8796 return dl;
8797 }
8798
8799 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8800 {
8801 struct imsm_dev *dev2;
8802 struct imsm_map *map;
8803 struct dl *idisk;
8804 int slot;
8805 int idx;
8806 __u8 state;
8807
8808 dev2 = get_imsm_dev(cont->sb, dev_idx);
8809 if (dev2) {
8810 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
8811 if (state == IMSM_T_STATE_FAILED) {
8812 map = get_imsm_map(dev2, MAP_0);
8813 if (!map)
8814 return 1;
8815 for (slot = 0; slot < map->num_members; slot++) {
8816 /*
8817 * Check if failed disks are deleted from intel
8818 * disk list or are marked to be deleted
8819 */
8820 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
8821 idisk = get_imsm_dl_disk(cont->sb, idx);
8822 /*
8823 * Do not rebuild the array if failed disks
8824 * from failed sub-array are not removed from
8825 * container.
8826 */
8827 if (idisk &&
8828 is_failed(&idisk->disk) &&
8829 (idisk->action != DISK_REMOVE))
8830 return 0;
8831 }
8832 }
8833 }
8834 return 1;
8835 }
8836
8837 static struct mdinfo *imsm_activate_spare(struct active_array *a,
8838 struct metadata_update **updates)
8839 {
8840 /**
8841 * Find a device with unused free space and use it to replace a
8842 * failed/vacant region in an array. We replace failed regions one a
8843 * array at a time. The result is that a new spare disk will be added
8844 * to the first failed array and after the monitor has finished
8845 * propagating failures the remainder will be consumed.
8846 *
8847 * FIXME add a capability for mdmon to request spares from another
8848 * container.
8849 */
8850
8851 struct intel_super *super = a->container->sb;
8852 int inst = a->info.container_member;
8853 struct imsm_dev *dev = get_imsm_dev(super, inst);
8854 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8855 int failed = a->info.array.raid_disks;
8856 struct mdinfo *rv = NULL;
8857 struct mdinfo *d;
8858 struct mdinfo *di;
8859 struct metadata_update *mu;
8860 struct dl *dl;
8861 struct imsm_update_activate_spare *u;
8862 int num_spares = 0;
8863 int i;
8864 int allowed;
8865
8866 for (d = a->info.devs ; d ; d = d->next) {
8867 if ((d->curr_state & DS_FAULTY) &&
8868 d->state_fd >= 0)
8869 /* wait for Removal to happen */
8870 return NULL;
8871 if (d->state_fd >= 0)
8872 failed--;
8873 }
8874
8875 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8876 inst, failed, a->info.array.raid_disks, a->info.array.level);
8877
8878 if (imsm_reshape_blocks_arrays_changes(super))
8879 return NULL;
8880
8881 /* Cannot activate another spare if rebuild is in progress already
8882 */
8883 if (is_rebuilding(dev)) {
8884 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
8885 return NULL;
8886 }
8887
8888 if (a->info.array.level == 4)
8889 /* No repair for takeovered array
8890 * imsm doesn't support raid4
8891 */
8892 return NULL;
8893
8894 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8895 IMSM_T_STATE_DEGRADED)
8896 return NULL;
8897
8898 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8899 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8900 return NULL;
8901 }
8902
8903 /*
8904 * If there are any failed disks check state of the other volume.
8905 * Block rebuild if the another one is failed until failed disks
8906 * are removed from container.
8907 */
8908 if (failed) {
8909 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
8910 MAX_RAID_SERIAL_LEN, dev->volume);
8911 /* check if states of the other volumes allow for rebuild */
8912 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8913 if (i != inst) {
8914 allowed = imsm_rebuild_allowed(a->container,
8915 i, failed);
8916 if (!allowed)
8917 return NULL;
8918 }
8919 }
8920 }
8921
8922 /* For each slot, if it is not working, find a spare */
8923 for (i = 0; i < a->info.array.raid_disks; i++) {
8924 for (d = a->info.devs ; d ; d = d->next)
8925 if (d->disk.raid_disk == i)
8926 break;
8927 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8928 if (d && (d->state_fd >= 0))
8929 continue;
8930
8931 /*
8932 * OK, this device needs recovery. Try to re-add the
8933 * previous occupant of this slot, if this fails see if
8934 * we can continue the assimilation of a spare that was
8935 * partially assimilated, finally try to activate a new
8936 * spare.
8937 */
8938 dl = imsm_readd(super, i, a);
8939 if (!dl)
8940 dl = imsm_add_spare(super, i, a, 0, rv);
8941 if (!dl)
8942 dl = imsm_add_spare(super, i, a, 1, rv);
8943 if (!dl)
8944 continue;
8945
8946 /* found a usable disk with enough space */
8947 di = xcalloc(1, sizeof(*di));
8948
8949 /* dl->index will be -1 in the case we are activating a
8950 * pristine spare. imsm_process_update() will create a
8951 * new index in this case. Once a disk is found to be
8952 * failed in all member arrays it is kicked from the
8953 * metadata
8954 */
8955 di->disk.number = dl->index;
8956
8957 /* (ab)use di->devs to store a pointer to the device
8958 * we chose
8959 */
8960 di->devs = (struct mdinfo *) dl;
8961
8962 di->disk.raid_disk = i;
8963 di->disk.major = dl->major;
8964 di->disk.minor = dl->minor;
8965 di->disk.state = 0;
8966 di->recovery_start = 0;
8967 di->data_offset = pba_of_lba0(map);
8968 di->component_size = a->info.component_size;
8969 di->container_member = inst;
8970 di->bb.supported = 1;
8971 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
8972 di->ppl_sector = get_ppl_sector(super, inst);
8973 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
8974 }
8975 super->random = random32();
8976 di->next = rv;
8977 rv = di;
8978 num_spares++;
8979 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8980 i, di->data_offset);
8981 }
8982
8983 if (!rv)
8984 /* No spares found */
8985 return rv;
8986 /* Now 'rv' has a list of devices to return.
8987 * Create a metadata_update record to update the
8988 * disk_ord_tbl for the array
8989 */
8990 mu = xmalloc(sizeof(*mu));
8991 mu->buf = xcalloc(num_spares,
8992 sizeof(struct imsm_update_activate_spare));
8993 mu->space = NULL;
8994 mu->space_list = NULL;
8995 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8996 mu->next = *updates;
8997 u = (struct imsm_update_activate_spare *) mu->buf;
8998
8999 for (di = rv ; di ; di = di->next) {
9000 u->type = update_activate_spare;
9001 u->dl = (struct dl *) di->devs;
9002 di->devs = NULL;
9003 u->slot = di->disk.raid_disk;
9004 u->array = inst;
9005 u->next = u + 1;
9006 u++;
9007 }
9008 (u-1)->next = NULL;
9009 *updates = mu;
9010
9011 return rv;
9012 }
9013
9014 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
9015 {
9016 struct imsm_dev *dev = get_imsm_dev(super, idx);
9017 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9018 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
9019 struct disk_info *inf = get_disk_info(u);
9020 struct imsm_disk *disk;
9021 int i;
9022 int j;
9023
9024 for (i = 0; i < map->num_members; i++) {
9025 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
9026 for (j = 0; j < new_map->num_members; j++)
9027 if (serialcmp(disk->serial, inf[j].serial) == 0)
9028 return 1;
9029 }
9030
9031 return 0;
9032 }
9033
9034 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9035 {
9036 struct dl *dl;
9037
9038 for (dl = super->disks; dl; dl = dl->next)
9039 if (dl->major == major && dl->minor == minor)
9040 return dl;
9041 return NULL;
9042 }
9043
9044 static int remove_disk_super(struct intel_super *super, int major, int minor)
9045 {
9046 struct dl *prev;
9047 struct dl *dl;
9048
9049 prev = NULL;
9050 for (dl = super->disks; dl; dl = dl->next) {
9051 if (dl->major == major && dl->minor == minor) {
9052 /* remove */
9053 if (prev)
9054 prev->next = dl->next;
9055 else
9056 super->disks = dl->next;
9057 dl->next = NULL;
9058 __free_imsm_disk(dl);
9059 dprintf("removed %x:%x\n", major, minor);
9060 break;
9061 }
9062 prev = dl;
9063 }
9064 return 0;
9065 }
9066
9067 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
9068
9069 static int add_remove_disk_update(struct intel_super *super)
9070 {
9071 int check_degraded = 0;
9072 struct dl *disk;
9073
9074 /* add/remove some spares to/from the metadata/contrainer */
9075 while (super->disk_mgmt_list) {
9076 struct dl *disk_cfg;
9077
9078 disk_cfg = super->disk_mgmt_list;
9079 super->disk_mgmt_list = disk_cfg->next;
9080 disk_cfg->next = NULL;
9081
9082 if (disk_cfg->action == DISK_ADD) {
9083 disk_cfg->next = super->disks;
9084 super->disks = disk_cfg;
9085 check_degraded = 1;
9086 dprintf("added %x:%x\n",
9087 disk_cfg->major, disk_cfg->minor);
9088 } else if (disk_cfg->action == DISK_REMOVE) {
9089 dprintf("Disk remove action processed: %x.%x\n",
9090 disk_cfg->major, disk_cfg->minor);
9091 disk = get_disk_super(super,
9092 disk_cfg->major,
9093 disk_cfg->minor);
9094 if (disk) {
9095 /* store action status */
9096 disk->action = DISK_REMOVE;
9097 /* remove spare disks only */
9098 if (disk->index == -1) {
9099 remove_disk_super(super,
9100 disk_cfg->major,
9101 disk_cfg->minor);
9102 }
9103 }
9104 /* release allocate disk structure */
9105 __free_imsm_disk(disk_cfg);
9106 }
9107 }
9108 return check_degraded;
9109 }
9110
9111 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9112 struct intel_super *super,
9113 void ***space_list)
9114 {
9115 struct intel_dev *id;
9116 void **tofree = NULL;
9117 int ret_val = 0;
9118
9119 dprintf("(enter)\n");
9120 if (u->subdev < 0 || u->subdev > 1) {
9121 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9122 return ret_val;
9123 }
9124 if (space_list == NULL || *space_list == NULL) {
9125 dprintf("imsm: Error: Memory is not allocated\n");
9126 return ret_val;
9127 }
9128
9129 for (id = super->devlist ; id; id = id->next) {
9130 if (id->index == (unsigned)u->subdev) {
9131 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9132 struct imsm_map *map;
9133 struct imsm_dev *new_dev =
9134 (struct imsm_dev *)*space_list;
9135 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
9136 int to_state;
9137 struct dl *new_disk;
9138
9139 if (new_dev == NULL)
9140 return ret_val;
9141 *space_list = **space_list;
9142 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
9143 map = get_imsm_map(new_dev, MAP_0);
9144 if (migr_map) {
9145 dprintf("imsm: Error: migration in progress");
9146 return ret_val;
9147 }
9148
9149 to_state = map->map_state;
9150 if ((u->new_level == 5) && (map->raid_level == 0)) {
9151 map->num_members++;
9152 /* this should not happen */
9153 if (u->new_disks[0] < 0) {
9154 map->failed_disk_num =
9155 map->num_members - 1;
9156 to_state = IMSM_T_STATE_DEGRADED;
9157 } else
9158 to_state = IMSM_T_STATE_NORMAL;
9159 }
9160 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
9161 if (u->new_level > -1)
9162 map->raid_level = u->new_level;
9163 migr_map = get_imsm_map(new_dev, MAP_1);
9164 if ((u->new_level == 5) &&
9165 (migr_map->raid_level == 0)) {
9166 int ord = map->num_members - 1;
9167 migr_map->num_members--;
9168 if (u->new_disks[0] < 0)
9169 ord |= IMSM_ORD_REBUILD;
9170 set_imsm_ord_tbl_ent(map,
9171 map->num_members - 1,
9172 ord);
9173 }
9174 id->dev = new_dev;
9175 tofree = (void **)dev;
9176
9177 /* update chunk size
9178 */
9179 if (u->new_chunksize > 0) {
9180 unsigned long long num_data_stripes;
9181 struct imsm_map *dest_map =
9182 get_imsm_map(dev, MAP_0);
9183 int used_disks =
9184 imsm_num_data_members(dest_map);
9185
9186 if (used_disks == 0)
9187 return ret_val;
9188
9189 map->blocks_per_strip =
9190 __cpu_to_le16(u->new_chunksize * 2);
9191 num_data_stripes =
9192 imsm_dev_size(dev) / used_disks;
9193 num_data_stripes /= map->blocks_per_strip;
9194 num_data_stripes /= map->num_domains;
9195 set_num_data_stripes(map, num_data_stripes);
9196 }
9197
9198 /* ensure blocks_per_member has valid value
9199 */
9200 set_blocks_per_member(map,
9201 per_dev_array_size(map) +
9202 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9203
9204 /* add disk
9205 */
9206 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9207 migr_map->raid_level == map->raid_level)
9208 goto skip_disk_add;
9209
9210 if (u->new_disks[0] >= 0) {
9211 /* use passes spare
9212 */
9213 new_disk = get_disk_super(super,
9214 major(u->new_disks[0]),
9215 minor(u->new_disks[0]));
9216 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9217 major(u->new_disks[0]),
9218 minor(u->new_disks[0]),
9219 new_disk, new_disk->index);
9220 if (new_disk == NULL)
9221 goto error_disk_add;
9222
9223 new_disk->index = map->num_members - 1;
9224 /* slot to fill in autolayout
9225 */
9226 new_disk->raiddisk = new_disk->index;
9227 new_disk->disk.status |= CONFIGURED_DISK;
9228 new_disk->disk.status &= ~SPARE_DISK;
9229 } else
9230 goto error_disk_add;
9231
9232 skip_disk_add:
9233 *tofree = *space_list;
9234 /* calculate new size
9235 */
9236 imsm_set_array_size(new_dev, -1);
9237
9238 ret_val = 1;
9239 }
9240 }
9241
9242 if (tofree)
9243 *space_list = tofree;
9244 return ret_val;
9245
9246 error_disk_add:
9247 dprintf("Error: imsm: Cannot find disk.\n");
9248 return ret_val;
9249 }
9250
9251 static int apply_size_change_update(struct imsm_update_size_change *u,
9252 struct intel_super *super)
9253 {
9254 struct intel_dev *id;
9255 int ret_val = 0;
9256
9257 dprintf("(enter)\n");
9258 if (u->subdev < 0 || u->subdev > 1) {
9259 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9260 return ret_val;
9261 }
9262
9263 for (id = super->devlist ; id; id = id->next) {
9264 if (id->index == (unsigned)u->subdev) {
9265 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9266 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9267 int used_disks = imsm_num_data_members(map);
9268 unsigned long long blocks_per_member;
9269 unsigned long long num_data_stripes;
9270 unsigned long long new_size_per_disk;
9271
9272 if (used_disks == 0)
9273 return 0;
9274
9275 /* calculate new size
9276 */
9277 new_size_per_disk = u->new_size / used_disks;
9278 blocks_per_member = new_size_per_disk +
9279 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9280 num_data_stripes = new_size_per_disk /
9281 map->blocks_per_strip;
9282 num_data_stripes /= map->num_domains;
9283 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
9284 u->new_size, new_size_per_disk,
9285 num_data_stripes);
9286 set_blocks_per_member(map, blocks_per_member);
9287 set_num_data_stripes(map, num_data_stripes);
9288 imsm_set_array_size(dev, u->new_size);
9289
9290 ret_val = 1;
9291 break;
9292 }
9293 }
9294
9295 return ret_val;
9296 }
9297
9298 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
9299 struct intel_super *super,
9300 struct active_array *active_array)
9301 {
9302 struct imsm_super *mpb = super->anchor;
9303 struct imsm_dev *dev = get_imsm_dev(super, u->array);
9304 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9305 struct imsm_map *migr_map;
9306 struct active_array *a;
9307 struct imsm_disk *disk;
9308 __u8 to_state;
9309 struct dl *dl;
9310 unsigned int found;
9311 int failed;
9312 int victim;
9313 int i;
9314 int second_map_created = 0;
9315
9316 for (; u; u = u->next) {
9317 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9318
9319 if (victim < 0)
9320 return 0;
9321
9322 for (dl = super->disks; dl; dl = dl->next)
9323 if (dl == u->dl)
9324 break;
9325
9326 if (!dl) {
9327 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9328 u->dl->index);
9329 return 0;
9330 }
9331
9332 /* count failures (excluding rebuilds and the victim)
9333 * to determine map[0] state
9334 */
9335 failed = 0;
9336 for (i = 0; i < map->num_members; i++) {
9337 if (i == u->slot)
9338 continue;
9339 disk = get_imsm_disk(super,
9340 get_imsm_disk_idx(dev, i, MAP_X));
9341 if (!disk || is_failed(disk))
9342 failed++;
9343 }
9344
9345 /* adding a pristine spare, assign a new index */
9346 if (dl->index < 0) {
9347 dl->index = super->anchor->num_disks;
9348 super->anchor->num_disks++;
9349 }
9350 disk = &dl->disk;
9351 disk->status |= CONFIGURED_DISK;
9352 disk->status &= ~SPARE_DISK;
9353
9354 /* mark rebuild */
9355 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9356 if (!second_map_created) {
9357 second_map_created = 1;
9358 map->map_state = IMSM_T_STATE_DEGRADED;
9359 migrate(dev, super, to_state, MIGR_REBUILD);
9360 } else
9361 map->map_state = to_state;
9362 migr_map = get_imsm_map(dev, MAP_1);
9363 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9364 set_imsm_ord_tbl_ent(migr_map, u->slot,
9365 dl->index | IMSM_ORD_REBUILD);
9366
9367 /* update the family_num to mark a new container
9368 * generation, being careful to record the existing
9369 * family_num in orig_family_num to clean up after
9370 * earlier mdadm versions that neglected to set it.
9371 */
9372 if (mpb->orig_family_num == 0)
9373 mpb->orig_family_num = mpb->family_num;
9374 mpb->family_num += super->random;
9375
9376 /* count arrays using the victim in the metadata */
9377 found = 0;
9378 for (a = active_array; a ; a = a->next) {
9379 dev = get_imsm_dev(super, a->info.container_member);
9380 map = get_imsm_map(dev, MAP_0);
9381
9382 if (get_imsm_disk_slot(map, victim) >= 0)
9383 found++;
9384 }
9385
9386 /* delete the victim if it is no longer being
9387 * utilized anywhere
9388 */
9389 if (!found) {
9390 struct dl **dlp;
9391
9392 /* We know that 'manager' isn't touching anything,
9393 * so it is safe to delete
9394 */
9395 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9396 if ((*dlp)->index == victim)
9397 break;
9398
9399 /* victim may be on the missing list */
9400 if (!*dlp)
9401 for (dlp = &super->missing; *dlp;
9402 dlp = &(*dlp)->next)
9403 if ((*dlp)->index == victim)
9404 break;
9405 imsm_delete(super, dlp, victim);
9406 }
9407 }
9408
9409 return 1;
9410 }
9411
9412 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9413 struct intel_super *super,
9414 void ***space_list)
9415 {
9416 struct dl *new_disk;
9417 struct intel_dev *id;
9418 int i;
9419 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9420 int disk_count = u->old_raid_disks;
9421 void **tofree = NULL;
9422 int devices_to_reshape = 1;
9423 struct imsm_super *mpb = super->anchor;
9424 int ret_val = 0;
9425 unsigned int dev_id;
9426
9427 dprintf("(enter)\n");
9428
9429 /* enable spares to use in array */
9430 for (i = 0; i < delta_disks; i++) {
9431 new_disk = get_disk_super(super,
9432 major(u->new_disks[i]),
9433 minor(u->new_disks[i]));
9434 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9435 major(u->new_disks[i]), minor(u->new_disks[i]),
9436 new_disk, new_disk->index);
9437 if (new_disk == NULL ||
9438 (new_disk->index >= 0 &&
9439 new_disk->index < u->old_raid_disks))
9440 goto update_reshape_exit;
9441 new_disk->index = disk_count++;
9442 /* slot to fill in autolayout
9443 */
9444 new_disk->raiddisk = new_disk->index;
9445 new_disk->disk.status |=
9446 CONFIGURED_DISK;
9447 new_disk->disk.status &= ~SPARE_DISK;
9448 }
9449
9450 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9451 mpb->num_raid_devs);
9452 /* manage changes in volume
9453 */
9454 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9455 void **sp = *space_list;
9456 struct imsm_dev *newdev;
9457 struct imsm_map *newmap, *oldmap;
9458
9459 for (id = super->devlist ; id; id = id->next) {
9460 if (id->index == dev_id)
9461 break;
9462 }
9463 if (id == NULL)
9464 break;
9465 if (!sp)
9466 continue;
9467 *space_list = *sp;
9468 newdev = (void*)sp;
9469 /* Copy the dev, but not (all of) the map */
9470 memcpy(newdev, id->dev, sizeof(*newdev));
9471 oldmap = get_imsm_map(id->dev, MAP_0);
9472 newmap = get_imsm_map(newdev, MAP_0);
9473 /* Copy the current map */
9474 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9475 /* update one device only
9476 */
9477 if (devices_to_reshape) {
9478 dprintf("imsm: modifying subdev: %i\n",
9479 id->index);
9480 devices_to_reshape--;
9481 newdev->vol.migr_state = 1;
9482 newdev->vol.curr_migr_unit = 0;
9483 set_migr_type(newdev, MIGR_GEN_MIGR);
9484 newmap->num_members = u->new_raid_disks;
9485 for (i = 0; i < delta_disks; i++) {
9486 set_imsm_ord_tbl_ent(newmap,
9487 u->old_raid_disks + i,
9488 u->old_raid_disks + i);
9489 }
9490 /* New map is correct, now need to save old map
9491 */
9492 newmap = get_imsm_map(newdev, MAP_1);
9493 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9494
9495 imsm_set_array_size(newdev, -1);
9496 }
9497
9498 sp = (void **)id->dev;
9499 id->dev = newdev;
9500 *sp = tofree;
9501 tofree = sp;
9502
9503 /* Clear migration record */
9504 memset(super->migr_rec, 0, sizeof(struct migr_record));
9505 }
9506 if (tofree)
9507 *space_list = tofree;
9508 ret_val = 1;
9509
9510 update_reshape_exit:
9511
9512 return ret_val;
9513 }
9514
9515 static int apply_takeover_update(struct imsm_update_takeover *u,
9516 struct intel_super *super,
9517 void ***space_list)
9518 {
9519 struct imsm_dev *dev = NULL;
9520 struct intel_dev *dv;
9521 struct imsm_dev *dev_new;
9522 struct imsm_map *map;
9523 struct dl *dm, *du;
9524 int i;
9525
9526 for (dv = super->devlist; dv; dv = dv->next)
9527 if (dv->index == (unsigned int)u->subarray) {
9528 dev = dv->dev;
9529 break;
9530 }
9531
9532 if (dev == NULL)
9533 return 0;
9534
9535 map = get_imsm_map(dev, MAP_0);
9536
9537 if (u->direction == R10_TO_R0) {
9538 unsigned long long num_data_stripes;
9539
9540 map->num_domains = 1;
9541 num_data_stripes = imsm_dev_size(dev) / 2;
9542 num_data_stripes /= map->blocks_per_strip;
9543 num_data_stripes /= map->num_domains;
9544 set_num_data_stripes(map, num_data_stripes);
9545
9546 /* Number of failed disks must be half of initial disk number */
9547 if (imsm_count_failed(super, dev, MAP_0) !=
9548 (map->num_members / 2))
9549 return 0;
9550
9551 /* iterate through devices to mark removed disks as spare */
9552 for (dm = super->disks; dm; dm = dm->next) {
9553 if (dm->disk.status & FAILED_DISK) {
9554 int idx = dm->index;
9555 /* update indexes on the disk list */
9556 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9557 the index values will end up being correct.... NB */
9558 for (du = super->disks; du; du = du->next)
9559 if (du->index > idx)
9560 du->index--;
9561 /* mark as spare disk */
9562 mark_spare(dm);
9563 }
9564 }
9565 /* update map */
9566 map->num_members = map->num_members / 2;
9567 map->map_state = IMSM_T_STATE_NORMAL;
9568 map->num_domains = 1;
9569 map->raid_level = 0;
9570 map->failed_disk_num = -1;
9571 }
9572
9573 if (u->direction == R0_TO_R10) {
9574 void **space;
9575 /* update slots in current disk list */
9576 for (dm = super->disks; dm; dm = dm->next) {
9577 if (dm->index >= 0)
9578 dm->index *= 2;
9579 }
9580 /* create new *missing* disks */
9581 for (i = 0; i < map->num_members; i++) {
9582 space = *space_list;
9583 if (!space)
9584 continue;
9585 *space_list = *space;
9586 du = (void *)space;
9587 memcpy(du, super->disks, sizeof(*du));
9588 du->fd = -1;
9589 du->minor = 0;
9590 du->major = 0;
9591 du->index = (i * 2) + 1;
9592 sprintf((char *)du->disk.serial,
9593 " MISSING_%d", du->index);
9594 sprintf((char *)du->serial,
9595 "MISSING_%d", du->index);
9596 du->next = super->missing;
9597 super->missing = du;
9598 }
9599 /* create new dev and map */
9600 space = *space_list;
9601 if (!space)
9602 return 0;
9603 *space_list = *space;
9604 dev_new = (void *)space;
9605 memcpy(dev_new, dev, sizeof(*dev));
9606 /* update new map */
9607 map = get_imsm_map(dev_new, MAP_0);
9608 map->num_members = map->num_members * 2;
9609 map->map_state = IMSM_T_STATE_DEGRADED;
9610 map->num_domains = 2;
9611 map->raid_level = 1;
9612 /* replace dev<->dev_new */
9613 dv->dev = dev_new;
9614 }
9615 /* update disk order table */
9616 for (du = super->disks; du; du = du->next)
9617 if (du->index >= 0)
9618 set_imsm_ord_tbl_ent(map, du->index, du->index);
9619 for (du = super->missing; du; du = du->next)
9620 if (du->index >= 0) {
9621 set_imsm_ord_tbl_ent(map, du->index, du->index);
9622 mark_missing(super, dv->dev, &du->disk, du->index);
9623 }
9624
9625 return 1;
9626 }
9627
9628 static void imsm_process_update(struct supertype *st,
9629 struct metadata_update *update)
9630 {
9631 /**
9632 * crack open the metadata_update envelope to find the update record
9633 * update can be one of:
9634 * update_reshape_container_disks - all the arrays in the container
9635 * are being reshaped to have more devices. We need to mark
9636 * the arrays for general migration and convert selected spares
9637 * into active devices.
9638 * update_activate_spare - a spare device has replaced a failed
9639 * device in an array, update the disk_ord_tbl. If this disk is
9640 * present in all member arrays then also clear the SPARE_DISK
9641 * flag
9642 * update_create_array
9643 * update_kill_array
9644 * update_rename_array
9645 * update_add_remove_disk
9646 */
9647 struct intel_super *super = st->sb;
9648 struct imsm_super *mpb;
9649 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9650
9651 /* update requires a larger buf but the allocation failed */
9652 if (super->next_len && !super->next_buf) {
9653 super->next_len = 0;
9654 return;
9655 }
9656
9657 if (super->next_buf) {
9658 memcpy(super->next_buf, super->buf, super->len);
9659 free(super->buf);
9660 super->len = super->next_len;
9661 super->buf = super->next_buf;
9662
9663 super->next_len = 0;
9664 super->next_buf = NULL;
9665 }
9666
9667 mpb = super->anchor;
9668
9669 switch (type) {
9670 case update_general_migration_checkpoint: {
9671 struct intel_dev *id;
9672 struct imsm_update_general_migration_checkpoint *u =
9673 (void *)update->buf;
9674
9675 dprintf("called for update_general_migration_checkpoint\n");
9676
9677 /* find device under general migration */
9678 for (id = super->devlist ; id; id = id->next) {
9679 if (is_gen_migration(id->dev)) {
9680 id->dev->vol.curr_migr_unit =
9681 __cpu_to_le32(u->curr_migr_unit);
9682 super->updates_pending++;
9683 }
9684 }
9685 break;
9686 }
9687 case update_takeover: {
9688 struct imsm_update_takeover *u = (void *)update->buf;
9689 if (apply_takeover_update(u, super, &update->space_list)) {
9690 imsm_update_version_info(super);
9691 super->updates_pending++;
9692 }
9693 break;
9694 }
9695
9696 case update_reshape_container_disks: {
9697 struct imsm_update_reshape *u = (void *)update->buf;
9698 if (apply_reshape_container_disks_update(
9699 u, super, &update->space_list))
9700 super->updates_pending++;
9701 break;
9702 }
9703 case update_reshape_migration: {
9704 struct imsm_update_reshape_migration *u = (void *)update->buf;
9705 if (apply_reshape_migration_update(
9706 u, super, &update->space_list))
9707 super->updates_pending++;
9708 break;
9709 }
9710 case update_size_change: {
9711 struct imsm_update_size_change *u = (void *)update->buf;
9712 if (apply_size_change_update(u, super))
9713 super->updates_pending++;
9714 break;
9715 }
9716 case update_activate_spare: {
9717 struct imsm_update_activate_spare *u = (void *) update->buf;
9718 if (apply_update_activate_spare(u, super, st->arrays))
9719 super->updates_pending++;
9720 break;
9721 }
9722 case update_create_array: {
9723 /* someone wants to create a new array, we need to be aware of
9724 * a few races/collisions:
9725 * 1/ 'Create' called by two separate instances of mdadm
9726 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9727 * devices that have since been assimilated via
9728 * activate_spare.
9729 * In the event this update can not be carried out mdadm will
9730 * (FIX ME) notice that its update did not take hold.
9731 */
9732 struct imsm_update_create_array *u = (void *) update->buf;
9733 struct intel_dev *dv;
9734 struct imsm_dev *dev;
9735 struct imsm_map *map, *new_map;
9736 unsigned long long start, end;
9737 unsigned long long new_start, new_end;
9738 int i;
9739 struct disk_info *inf;
9740 struct dl *dl;
9741
9742 /* handle racing creates: first come first serve */
9743 if (u->dev_idx < mpb->num_raid_devs) {
9744 dprintf("subarray %d already defined\n", u->dev_idx);
9745 goto create_error;
9746 }
9747
9748 /* check update is next in sequence */
9749 if (u->dev_idx != mpb->num_raid_devs) {
9750 dprintf("can not create array %d expected index %d\n",
9751 u->dev_idx, mpb->num_raid_devs);
9752 goto create_error;
9753 }
9754
9755 new_map = get_imsm_map(&u->dev, MAP_0);
9756 new_start = pba_of_lba0(new_map);
9757 new_end = new_start + per_dev_array_size(new_map);
9758 inf = get_disk_info(u);
9759
9760 /* handle activate_spare versus create race:
9761 * check to make sure that overlapping arrays do not include
9762 * overalpping disks
9763 */
9764 for (i = 0; i < mpb->num_raid_devs; i++) {
9765 dev = get_imsm_dev(super, i);
9766 map = get_imsm_map(dev, MAP_0);
9767 start = pba_of_lba0(map);
9768 end = start + per_dev_array_size(map);
9769 if ((new_start >= start && new_start <= end) ||
9770 (start >= new_start && start <= new_end))
9771 /* overlap */;
9772 else
9773 continue;
9774
9775 if (disks_overlap(super, i, u)) {
9776 dprintf("arrays overlap\n");
9777 goto create_error;
9778 }
9779 }
9780
9781 /* check that prepare update was successful */
9782 if (!update->space) {
9783 dprintf("prepare update failed\n");
9784 goto create_error;
9785 }
9786
9787 /* check that all disks are still active before committing
9788 * changes. FIXME: could we instead handle this by creating a
9789 * degraded array? That's probably not what the user expects,
9790 * so better to drop this update on the floor.
9791 */
9792 for (i = 0; i < new_map->num_members; i++) {
9793 dl = serial_to_dl(inf[i].serial, super);
9794 if (!dl) {
9795 dprintf("disk disappeared\n");
9796 goto create_error;
9797 }
9798 }
9799
9800 super->updates_pending++;
9801
9802 /* convert spares to members and fixup ord_tbl */
9803 for (i = 0; i < new_map->num_members; i++) {
9804 dl = serial_to_dl(inf[i].serial, super);
9805 if (dl->index == -1) {
9806 dl->index = mpb->num_disks;
9807 mpb->num_disks++;
9808 dl->disk.status |= CONFIGURED_DISK;
9809 dl->disk.status &= ~SPARE_DISK;
9810 }
9811 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9812 }
9813
9814 dv = update->space;
9815 dev = dv->dev;
9816 update->space = NULL;
9817 imsm_copy_dev(dev, &u->dev);
9818 dv->index = u->dev_idx;
9819 dv->next = super->devlist;
9820 super->devlist = dv;
9821 mpb->num_raid_devs++;
9822
9823 imsm_update_version_info(super);
9824 break;
9825 create_error:
9826 /* mdmon knows how to release update->space, but not
9827 * ((struct intel_dev *) update->space)->dev
9828 */
9829 if (update->space) {
9830 dv = update->space;
9831 free(dv->dev);
9832 }
9833 break;
9834 }
9835 case update_kill_array: {
9836 struct imsm_update_kill_array *u = (void *) update->buf;
9837 int victim = u->dev_idx;
9838 struct active_array *a;
9839 struct intel_dev **dp;
9840 struct imsm_dev *dev;
9841
9842 /* sanity check that we are not affecting the uuid of
9843 * active arrays, or deleting an active array
9844 *
9845 * FIXME when immutable ids are available, but note that
9846 * we'll also need to fixup the invalidated/active
9847 * subarray indexes in mdstat
9848 */
9849 for (a = st->arrays; a; a = a->next)
9850 if (a->info.container_member >= victim)
9851 break;
9852 /* by definition if mdmon is running at least one array
9853 * is active in the container, so checking
9854 * mpb->num_raid_devs is just extra paranoia
9855 */
9856 dev = get_imsm_dev(super, victim);
9857 if (a || !dev || mpb->num_raid_devs == 1) {
9858 dprintf("failed to delete subarray-%d\n", victim);
9859 break;
9860 }
9861
9862 for (dp = &super->devlist; *dp;)
9863 if ((*dp)->index == (unsigned)super->current_vol) {
9864 *dp = (*dp)->next;
9865 } else {
9866 if ((*dp)->index > (unsigned)victim)
9867 (*dp)->index--;
9868 dp = &(*dp)->next;
9869 }
9870 mpb->num_raid_devs--;
9871 super->updates_pending++;
9872 break;
9873 }
9874 case update_rename_array: {
9875 struct imsm_update_rename_array *u = (void *) update->buf;
9876 char name[MAX_RAID_SERIAL_LEN+1];
9877 int target = u->dev_idx;
9878 struct active_array *a;
9879 struct imsm_dev *dev;
9880
9881 /* sanity check that we are not affecting the uuid of
9882 * an active array
9883 */
9884 memset(name, 0, sizeof(name));
9885 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9886 name[MAX_RAID_SERIAL_LEN] = '\0';
9887 for (a = st->arrays; a; a = a->next)
9888 if (a->info.container_member == target)
9889 break;
9890 dev = get_imsm_dev(super, u->dev_idx);
9891 if (a || !dev || !check_name(super, name, 1)) {
9892 dprintf("failed to rename subarray-%d\n", target);
9893 break;
9894 }
9895
9896 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
9897 super->updates_pending++;
9898 break;
9899 }
9900 case update_add_remove_disk: {
9901 /* we may be able to repair some arrays if disks are
9902 * being added, check the status of add_remove_disk
9903 * if discs has been added.
9904 */
9905 if (add_remove_disk_update(super)) {
9906 struct active_array *a;
9907
9908 super->updates_pending++;
9909 for (a = st->arrays; a; a = a->next)
9910 a->check_degraded = 1;
9911 }
9912 break;
9913 }
9914 case update_prealloc_badblocks_mem:
9915 break;
9916 case update_rwh_policy: {
9917 struct imsm_update_rwh_policy *u = (void *)update->buf;
9918 int target = u->dev_idx;
9919 struct imsm_dev *dev = get_imsm_dev(super, target);
9920 if (!dev) {
9921 dprintf("could not find subarray-%d\n", target);
9922 break;
9923 }
9924
9925 if (dev->rwh_policy != u->new_policy) {
9926 dev->rwh_policy = u->new_policy;
9927 super->updates_pending++;
9928 }
9929 break;
9930 }
9931 default:
9932 pr_err("error: unsuported process update type:(type: %d)\n", type);
9933 }
9934 }
9935
9936 static struct mdinfo *get_spares_for_grow(struct supertype *st);
9937
9938 static int imsm_prepare_update(struct supertype *st,
9939 struct metadata_update *update)
9940 {
9941 /**
9942 * Allocate space to hold new disk entries, raid-device entries or a new
9943 * mpb if necessary. The manager synchronously waits for updates to
9944 * complete in the monitor, so new mpb buffers allocated here can be
9945 * integrated by the monitor thread without worrying about live pointers
9946 * in the manager thread.
9947 */
9948 enum imsm_update_type type;
9949 struct intel_super *super = st->sb;
9950 unsigned int sector_size = super->sector_size;
9951 struct imsm_super *mpb = super->anchor;
9952 size_t buf_len;
9953 size_t len = 0;
9954
9955 if (update->len < (int)sizeof(type))
9956 return 0;
9957
9958 type = *(enum imsm_update_type *) update->buf;
9959
9960 switch (type) {
9961 case update_general_migration_checkpoint:
9962 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9963 return 0;
9964 dprintf("called for update_general_migration_checkpoint\n");
9965 break;
9966 case update_takeover: {
9967 struct imsm_update_takeover *u = (void *)update->buf;
9968 if (update->len < (int)sizeof(*u))
9969 return 0;
9970 if (u->direction == R0_TO_R10) {
9971 void **tail = (void **)&update->space_list;
9972 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
9973 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9974 int num_members = map->num_members;
9975 void *space;
9976 int size, i;
9977 /* allocate memory for added disks */
9978 for (i = 0; i < num_members; i++) {
9979 size = sizeof(struct dl);
9980 space = xmalloc(size);
9981 *tail = space;
9982 tail = space;
9983 *tail = NULL;
9984 }
9985 /* allocate memory for new device */
9986 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9987 (num_members * sizeof(__u32));
9988 space = xmalloc(size);
9989 *tail = space;
9990 tail = space;
9991 *tail = NULL;
9992 len = disks_to_mpb_size(num_members * 2);
9993 }
9994
9995 break;
9996 }
9997 case update_reshape_container_disks: {
9998 /* Every raid device in the container is about to
9999 * gain some more devices, and we will enter a
10000 * reconfiguration.
10001 * So each 'imsm_map' will be bigger, and the imsm_vol
10002 * will now hold 2 of them.
10003 * Thus we need new 'struct imsm_dev' allocations sized
10004 * as sizeof_imsm_dev but with more devices in both maps.
10005 */
10006 struct imsm_update_reshape *u = (void *)update->buf;
10007 struct intel_dev *dl;
10008 void **space_tail = (void**)&update->space_list;
10009
10010 if (update->len < (int)sizeof(*u))
10011 return 0;
10012
10013 dprintf("for update_reshape\n");
10014
10015 for (dl = super->devlist; dl; dl = dl->next) {
10016 int size = sizeof_imsm_dev(dl->dev, 1);
10017 void *s;
10018 if (u->new_raid_disks > u->old_raid_disks)
10019 size += sizeof(__u32)*2*
10020 (u->new_raid_disks - u->old_raid_disks);
10021 s = xmalloc(size);
10022 *space_tail = s;
10023 space_tail = s;
10024 *space_tail = NULL;
10025 }
10026
10027 len = disks_to_mpb_size(u->new_raid_disks);
10028 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10029 break;
10030 }
10031 case update_reshape_migration: {
10032 /* for migration level 0->5 we need to add disks
10033 * so the same as for container operation we will copy
10034 * device to the bigger location.
10035 * in memory prepared device and new disk area are prepared
10036 * for usage in process update
10037 */
10038 struct imsm_update_reshape_migration *u = (void *)update->buf;
10039 struct intel_dev *id;
10040 void **space_tail = (void **)&update->space_list;
10041 int size;
10042 void *s;
10043 int current_level = -1;
10044
10045 if (update->len < (int)sizeof(*u))
10046 return 0;
10047
10048 dprintf("for update_reshape\n");
10049
10050 /* add space for bigger array in update
10051 */
10052 for (id = super->devlist; id; id = id->next) {
10053 if (id->index == (unsigned)u->subdev) {
10054 size = sizeof_imsm_dev(id->dev, 1);
10055 if (u->new_raid_disks > u->old_raid_disks)
10056 size += sizeof(__u32)*2*
10057 (u->new_raid_disks - u->old_raid_disks);
10058 s = xmalloc(size);
10059 *space_tail = s;
10060 space_tail = s;
10061 *space_tail = NULL;
10062 break;
10063 }
10064 }
10065 if (update->space_list == NULL)
10066 break;
10067
10068 /* add space for disk in update
10069 */
10070 size = sizeof(struct dl);
10071 s = xmalloc(size);
10072 *space_tail = s;
10073 space_tail = s;
10074 *space_tail = NULL;
10075
10076 /* add spare device to update
10077 */
10078 for (id = super->devlist ; id; id = id->next)
10079 if (id->index == (unsigned)u->subdev) {
10080 struct imsm_dev *dev;
10081 struct imsm_map *map;
10082
10083 dev = get_imsm_dev(super, u->subdev);
10084 map = get_imsm_map(dev, MAP_0);
10085 current_level = map->raid_level;
10086 break;
10087 }
10088 if (u->new_level == 5 && u->new_level != current_level) {
10089 struct mdinfo *spares;
10090
10091 spares = get_spares_for_grow(st);
10092 if (spares) {
10093 struct dl *dl;
10094 struct mdinfo *dev;
10095
10096 dev = spares->devs;
10097 if (dev) {
10098 u->new_disks[0] =
10099 makedev(dev->disk.major,
10100 dev->disk.minor);
10101 dl = get_disk_super(super,
10102 dev->disk.major,
10103 dev->disk.minor);
10104 dl->index = u->old_raid_disks;
10105 dev = dev->next;
10106 }
10107 sysfs_free(spares);
10108 }
10109 }
10110 len = disks_to_mpb_size(u->new_raid_disks);
10111 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10112 break;
10113 }
10114 case update_size_change: {
10115 if (update->len < (int)sizeof(struct imsm_update_size_change))
10116 return 0;
10117 break;
10118 }
10119 case update_activate_spare: {
10120 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10121 return 0;
10122 break;
10123 }
10124 case update_create_array: {
10125 struct imsm_update_create_array *u = (void *) update->buf;
10126 struct intel_dev *dv;
10127 struct imsm_dev *dev = &u->dev;
10128 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10129 struct dl *dl;
10130 struct disk_info *inf;
10131 int i;
10132 int activate = 0;
10133
10134 if (update->len < (int)sizeof(*u))
10135 return 0;
10136
10137 inf = get_disk_info(u);
10138 len = sizeof_imsm_dev(dev, 1);
10139 /* allocate a new super->devlist entry */
10140 dv = xmalloc(sizeof(*dv));
10141 dv->dev = xmalloc(len);
10142 update->space = dv;
10143
10144 /* count how many spares will be converted to members */
10145 for (i = 0; i < map->num_members; i++) {
10146 dl = serial_to_dl(inf[i].serial, super);
10147 if (!dl) {
10148 /* hmm maybe it failed?, nothing we can do about
10149 * it here
10150 */
10151 continue;
10152 }
10153 if (count_memberships(dl, super) == 0)
10154 activate++;
10155 }
10156 len += activate * sizeof(struct imsm_disk);
10157 break;
10158 }
10159 case update_kill_array: {
10160 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10161 return 0;
10162 break;
10163 }
10164 case update_rename_array: {
10165 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10166 return 0;
10167 break;
10168 }
10169 case update_add_remove_disk:
10170 /* no update->len needed */
10171 break;
10172 case update_prealloc_badblocks_mem:
10173 super->extra_space += sizeof(struct bbm_log) -
10174 get_imsm_bbm_log_size(super->bbm_log);
10175 break;
10176 case update_rwh_policy: {
10177 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10178 return 0;
10179 break;
10180 }
10181 default:
10182 return 0;
10183 }
10184
10185 /* check if we need a larger metadata buffer */
10186 if (super->next_buf)
10187 buf_len = super->next_len;
10188 else
10189 buf_len = super->len;
10190
10191 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
10192 /* ok we need a larger buf than what is currently allocated
10193 * if this allocation fails process_update will notice that
10194 * ->next_len is set and ->next_buf is NULL
10195 */
10196 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10197 super->extra_space + len, sector_size);
10198 if (super->next_buf)
10199 free(super->next_buf);
10200
10201 super->next_len = buf_len;
10202 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
10203 memset(super->next_buf, 0, buf_len);
10204 else
10205 super->next_buf = NULL;
10206 }
10207 return 1;
10208 }
10209
10210 /* must be called while manager is quiesced */
10211 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
10212 {
10213 struct imsm_super *mpb = super->anchor;
10214 struct dl *iter;
10215 struct imsm_dev *dev;
10216 struct imsm_map *map;
10217 unsigned int i, j, num_members;
10218 __u32 ord, ord_map0;
10219 struct bbm_log *log = super->bbm_log;
10220
10221 dprintf("deleting device[%d] from imsm_super\n", index);
10222
10223 /* shift all indexes down one */
10224 for (iter = super->disks; iter; iter = iter->next)
10225 if (iter->index > (int)index)
10226 iter->index--;
10227 for (iter = super->missing; iter; iter = iter->next)
10228 if (iter->index > (int)index)
10229 iter->index--;
10230
10231 for (i = 0; i < mpb->num_raid_devs; i++) {
10232 dev = get_imsm_dev(super, i);
10233 map = get_imsm_map(dev, MAP_0);
10234 num_members = map->num_members;
10235 for (j = 0; j < num_members; j++) {
10236 /* update ord entries being careful not to propagate
10237 * ord-flags to the first map
10238 */
10239 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
10240 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
10241
10242 if (ord_to_idx(ord) <= index)
10243 continue;
10244
10245 map = get_imsm_map(dev, MAP_0);
10246 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
10247 map = get_imsm_map(dev, MAP_1);
10248 if (map)
10249 set_imsm_ord_tbl_ent(map, j, ord - 1);
10250 }
10251 }
10252
10253 for (i = 0; i < log->entry_count; i++) {
10254 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10255
10256 if (entry->disk_ordinal <= index)
10257 continue;
10258 entry->disk_ordinal--;
10259 }
10260
10261 mpb->num_disks--;
10262 super->updates_pending++;
10263 if (*dlp) {
10264 struct dl *dl = *dlp;
10265
10266 *dlp = (*dlp)->next;
10267 __free_imsm_disk(dl);
10268 }
10269 }
10270
10271 static void close_targets(int *targets, int new_disks)
10272 {
10273 int i;
10274
10275 if (!targets)
10276 return;
10277
10278 for (i = 0; i < new_disks; i++) {
10279 if (targets[i] >= 0) {
10280 close(targets[i]);
10281 targets[i] = -1;
10282 }
10283 }
10284 }
10285
10286 static int imsm_get_allowed_degradation(int level, int raid_disks,
10287 struct intel_super *super,
10288 struct imsm_dev *dev)
10289 {
10290 switch (level) {
10291 case 1:
10292 case 10:{
10293 int ret_val = 0;
10294 struct imsm_map *map;
10295 int i;
10296
10297 ret_val = raid_disks/2;
10298 /* check map if all disks pairs not failed
10299 * in both maps
10300 */
10301 map = get_imsm_map(dev, MAP_0);
10302 for (i = 0; i < ret_val; i++) {
10303 int degradation = 0;
10304 if (get_imsm_disk(super, i) == NULL)
10305 degradation++;
10306 if (get_imsm_disk(super, i + 1) == NULL)
10307 degradation++;
10308 if (degradation == 2)
10309 return 0;
10310 }
10311 map = get_imsm_map(dev, MAP_1);
10312 /* if there is no second map
10313 * result can be returned
10314 */
10315 if (map == NULL)
10316 return ret_val;
10317 /* check degradation in second map
10318 */
10319 for (i = 0; i < ret_val; i++) {
10320 int degradation = 0;
10321 if (get_imsm_disk(super, i) == NULL)
10322 degradation++;
10323 if (get_imsm_disk(super, i + 1) == NULL)
10324 degradation++;
10325 if (degradation == 2)
10326 return 0;
10327 }
10328 return ret_val;
10329 }
10330 case 5:
10331 return 1;
10332 case 6:
10333 return 2;
10334 default:
10335 return 0;
10336 }
10337 }
10338
10339 /*******************************************************************************
10340 * Function: open_backup_targets
10341 * Description: Function opens file descriptors for all devices given in
10342 * info->devs
10343 * Parameters:
10344 * info : general array info
10345 * raid_disks : number of disks
10346 * raid_fds : table of device's file descriptors
10347 * super : intel super for raid10 degradation check
10348 * dev : intel device for raid10 degradation check
10349 * Returns:
10350 * 0 : success
10351 * -1 : fail
10352 ******************************************************************************/
10353 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10354 struct intel_super *super, struct imsm_dev *dev)
10355 {
10356 struct mdinfo *sd;
10357 int i;
10358 int opened = 0;
10359
10360 for (i = 0; i < raid_disks; i++)
10361 raid_fds[i] = -1;
10362
10363 for (sd = info->devs ; sd ; sd = sd->next) {
10364 char *dn;
10365
10366 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10367 dprintf("disk is faulty!!\n");
10368 continue;
10369 }
10370
10371 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
10372 continue;
10373
10374 dn = map_dev(sd->disk.major,
10375 sd->disk.minor, 1);
10376 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10377 if (raid_fds[sd->disk.raid_disk] < 0) {
10378 pr_err("cannot open component\n");
10379 continue;
10380 }
10381 opened++;
10382 }
10383 /* check if maximum array degradation level is not exceeded
10384 */
10385 if ((raid_disks - opened) >
10386 imsm_get_allowed_degradation(info->new_level, raid_disks,
10387 super, dev)) {
10388 pr_err("Not enough disks can be opened.\n");
10389 close_targets(raid_fds, raid_disks);
10390 return -2;
10391 }
10392 return 0;
10393 }
10394
10395 /*******************************************************************************
10396 * Function: validate_container_imsm
10397 * Description: This routine validates container after assemble,
10398 * eg. if devices in container are under the same controller.
10399 *
10400 * Parameters:
10401 * info : linked list with info about devices used in array
10402 * Returns:
10403 * 1 : HBA mismatch
10404 * 0 : Success
10405 ******************************************************************************/
10406 int validate_container_imsm(struct mdinfo *info)
10407 {
10408 if (check_env("IMSM_NO_PLATFORM"))
10409 return 0;
10410
10411 struct sys_dev *idev;
10412 struct sys_dev *hba = NULL;
10413 struct sys_dev *intel_devices = find_intel_devices();
10414 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10415 info->disk.minor));
10416
10417 for (idev = intel_devices; idev; idev = idev->next) {
10418 if (dev_path && strstr(dev_path, idev->path)) {
10419 hba = idev;
10420 break;
10421 }
10422 }
10423 if (dev_path)
10424 free(dev_path);
10425
10426 if (!hba) {
10427 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10428 devid2kname(makedev(info->disk.major, info->disk.minor)));
10429 return 1;
10430 }
10431
10432 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10433 struct mdinfo *dev;
10434
10435 for (dev = info->next; dev; dev = dev->next) {
10436 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10437
10438 struct sys_dev *hba2 = NULL;
10439 for (idev = intel_devices; idev; idev = idev->next) {
10440 if (dev_path && strstr(dev_path, idev->path)) {
10441 hba2 = idev;
10442 break;
10443 }
10444 }
10445 if (dev_path)
10446 free(dev_path);
10447
10448 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10449 get_orom_by_device_id(hba2->dev_id);
10450
10451 if (hba2 && hba->type != hba2->type) {
10452 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10453 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10454 return 1;
10455 }
10456
10457 if (orom != orom2) {
10458 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10459 " This operation is not supported and can lead to data loss.\n");
10460 return 1;
10461 }
10462
10463 if (!orom) {
10464 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10465 " This operation is not supported and can lead to data loss.\n");
10466 return 1;
10467 }
10468 }
10469
10470 return 0;
10471 }
10472
10473 /*******************************************************************************
10474 * Function: imsm_record_badblock
10475 * Description: This routine stores new bad block record in BBM log
10476 *
10477 * Parameters:
10478 * a : array containing a bad block
10479 * slot : disk number containing a bad block
10480 * sector : bad block sector
10481 * length : bad block sectors range
10482 * Returns:
10483 * 1 : Success
10484 * 0 : Error
10485 ******************************************************************************/
10486 static int imsm_record_badblock(struct active_array *a, int slot,
10487 unsigned long long sector, int length)
10488 {
10489 struct intel_super *super = a->container->sb;
10490 int ord;
10491 int ret;
10492
10493 ord = imsm_disk_slot_to_ord(a, slot);
10494 if (ord < 0)
10495 return 0;
10496
10497 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10498 length);
10499 if (ret)
10500 super->updates_pending++;
10501
10502 return ret;
10503 }
10504 /*******************************************************************************
10505 * Function: imsm_clear_badblock
10506 * Description: This routine clears bad block record from BBM log
10507 *
10508 * Parameters:
10509 * a : array containing a bad block
10510 * slot : disk number containing a bad block
10511 * sector : bad block sector
10512 * length : bad block sectors range
10513 * Returns:
10514 * 1 : Success
10515 * 0 : Error
10516 ******************************************************************************/
10517 static int imsm_clear_badblock(struct active_array *a, int slot,
10518 unsigned long long sector, int length)
10519 {
10520 struct intel_super *super = a->container->sb;
10521 int ord;
10522 int ret;
10523
10524 ord = imsm_disk_slot_to_ord(a, slot);
10525 if (ord < 0)
10526 return 0;
10527
10528 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10529 if (ret)
10530 super->updates_pending++;
10531
10532 return ret;
10533 }
10534 /*******************************************************************************
10535 * Function: imsm_get_badblocks
10536 * Description: This routine get list of bad blocks for an array
10537 *
10538 * Parameters:
10539 * a : array
10540 * slot : disk number
10541 * Returns:
10542 * bb : structure containing bad blocks
10543 * NULL : error
10544 ******************************************************************************/
10545 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10546 {
10547 int inst = a->info.container_member;
10548 struct intel_super *super = a->container->sb;
10549 struct imsm_dev *dev = get_imsm_dev(super, inst);
10550 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10551 int ord;
10552
10553 ord = imsm_disk_slot_to_ord(a, slot);
10554 if (ord < 0)
10555 return NULL;
10556
10557 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10558 per_dev_array_size(map), &super->bb);
10559
10560 return &super->bb;
10561 }
10562 /*******************************************************************************
10563 * Function: examine_badblocks_imsm
10564 * Description: Prints list of bad blocks on a disk to the standard output
10565 *
10566 * Parameters:
10567 * st : metadata handler
10568 * fd : open file descriptor for device
10569 * devname : device name
10570 * Returns:
10571 * 0 : Success
10572 * 1 : Error
10573 ******************************************************************************/
10574 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10575 {
10576 struct intel_super *super = st->sb;
10577 struct bbm_log *log = super->bbm_log;
10578 struct dl *d = NULL;
10579 int any = 0;
10580
10581 for (d = super->disks; d ; d = d->next) {
10582 if (strcmp(d->devname, devname) == 0)
10583 break;
10584 }
10585
10586 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10587 pr_err("%s doesn't appear to be part of a raid array\n",
10588 devname);
10589 return 1;
10590 }
10591
10592 if (log != NULL) {
10593 unsigned int i;
10594 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10595
10596 for (i = 0; i < log->entry_count; i++) {
10597 if (entry[i].disk_ordinal == d->index) {
10598 unsigned long long sector = __le48_to_cpu(
10599 &entry[i].defective_block_start);
10600 int cnt = entry[i].marked_count + 1;
10601
10602 if (!any) {
10603 printf("Bad-blocks on %s:\n", devname);
10604 any = 1;
10605 }
10606
10607 printf("%20llu for %d sectors\n", sector, cnt);
10608 }
10609 }
10610 }
10611
10612 if (!any)
10613 printf("No bad-blocks list configured on %s\n", devname);
10614
10615 return 0;
10616 }
10617 /*******************************************************************************
10618 * Function: init_migr_record_imsm
10619 * Description: Function inits imsm migration record
10620 * Parameters:
10621 * super : imsm internal array info
10622 * dev : device under migration
10623 * info : general array info to find the smallest device
10624 * Returns:
10625 * none
10626 ******************************************************************************/
10627 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10628 struct mdinfo *info)
10629 {
10630 struct intel_super *super = st->sb;
10631 struct migr_record *migr_rec = super->migr_rec;
10632 int new_data_disks;
10633 unsigned long long dsize, dev_sectors;
10634 long long unsigned min_dev_sectors = -1LLU;
10635 struct mdinfo *sd;
10636 char nm[30];
10637 int fd;
10638 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10639 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10640 unsigned long long num_migr_units;
10641 unsigned long long array_blocks;
10642
10643 memset(migr_rec, 0, sizeof(struct migr_record));
10644 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10645
10646 /* only ascending reshape supported now */
10647 migr_rec->ascending_migr = __cpu_to_le32(1);
10648
10649 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10650 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10651 migr_rec->dest_depth_per_unit *=
10652 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10653 new_data_disks = imsm_num_data_members(map_dest);
10654 migr_rec->blocks_per_unit =
10655 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10656 migr_rec->dest_depth_per_unit =
10657 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10658 array_blocks = info->component_size * new_data_disks;
10659 num_migr_units =
10660 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10661
10662 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10663 num_migr_units++;
10664 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10665
10666 migr_rec->post_migr_vol_cap = dev->size_low;
10667 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10668
10669 /* Find the smallest dev */
10670 for (sd = info->devs ; sd ; sd = sd->next) {
10671 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10672 fd = dev_open(nm, O_RDONLY);
10673 if (fd < 0)
10674 continue;
10675 get_dev_size(fd, NULL, &dsize);
10676 dev_sectors = dsize / 512;
10677 if (dev_sectors < min_dev_sectors)
10678 min_dev_sectors = dev_sectors;
10679 close(fd);
10680 }
10681 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10682 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10683
10684 write_imsm_migr_rec(st);
10685
10686 return;
10687 }
10688
10689 /*******************************************************************************
10690 * Function: save_backup_imsm
10691 * Description: Function saves critical data stripes to Migration Copy Area
10692 * and updates the current migration unit status.
10693 * Use restore_stripes() to form a destination stripe,
10694 * and to write it to the Copy Area.
10695 * Parameters:
10696 * st : supertype information
10697 * dev : imsm device that backup is saved for
10698 * info : general array info
10699 * buf : input buffer
10700 * length : length of data to backup (blocks_per_unit)
10701 * Returns:
10702 * 0 : success
10703 *, -1 : fail
10704 ******************************************************************************/
10705 int save_backup_imsm(struct supertype *st,
10706 struct imsm_dev *dev,
10707 struct mdinfo *info,
10708 void *buf,
10709 int length)
10710 {
10711 int rv = -1;
10712 struct intel_super *super = st->sb;
10713 unsigned long long *target_offsets;
10714 int *targets;
10715 int i;
10716 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10717 int new_disks = map_dest->num_members;
10718 int dest_layout = 0;
10719 int dest_chunk;
10720 unsigned long long start;
10721 int data_disks = imsm_num_data_members(map_dest);
10722
10723 targets = xmalloc(new_disks * sizeof(int));
10724
10725 for (i = 0; i < new_disks; i++)
10726 targets[i] = -1;
10727
10728 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
10729
10730 start = info->reshape_progress * 512;
10731 for (i = 0; i < new_disks; i++) {
10732 target_offsets[i] = (unsigned long long)
10733 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
10734 /* move back copy area adderss, it will be moved forward
10735 * in restore_stripes() using start input variable
10736 */
10737 target_offsets[i] -= start/data_disks;
10738 }
10739
10740 if (open_backup_targets(info, new_disks, targets,
10741 super, dev))
10742 goto abort;
10743
10744 dest_layout = imsm_level_to_layout(map_dest->raid_level);
10745 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10746
10747 if (restore_stripes(targets, /* list of dest devices */
10748 target_offsets, /* migration record offsets */
10749 new_disks,
10750 dest_chunk,
10751 map_dest->raid_level,
10752 dest_layout,
10753 -1, /* source backup file descriptor */
10754 0, /* input buf offset
10755 * always 0 buf is already offseted */
10756 start,
10757 length,
10758 buf) != 0) {
10759 pr_err("Error restoring stripes\n");
10760 goto abort;
10761 }
10762
10763 rv = 0;
10764
10765 abort:
10766 if (targets) {
10767 close_targets(targets, new_disks);
10768 free(targets);
10769 }
10770 free(target_offsets);
10771
10772 return rv;
10773 }
10774
10775 /*******************************************************************************
10776 * Function: save_checkpoint_imsm
10777 * Description: Function called for current unit status update
10778 * in the migration record. It writes it to disk.
10779 * Parameters:
10780 * super : imsm internal array info
10781 * info : general array info
10782 * Returns:
10783 * 0: success
10784 * 1: failure
10785 * 2: failure, means no valid migration record
10786 * / no general migration in progress /
10787 ******************************************************************************/
10788 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10789 {
10790 struct intel_super *super = st->sb;
10791 unsigned long long blocks_per_unit;
10792 unsigned long long curr_migr_unit;
10793
10794 if (load_imsm_migr_rec(super, info) != 0) {
10795 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
10796 return 1;
10797 }
10798
10799 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10800 if (blocks_per_unit == 0) {
10801 dprintf("imsm: no migration in progress.\n");
10802 return 2;
10803 }
10804 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10805 /* check if array is alligned to copy area
10806 * if it is not alligned, add one to current migration unit value
10807 * this can happend on array reshape finish only
10808 */
10809 if (info->reshape_progress % blocks_per_unit)
10810 curr_migr_unit++;
10811
10812 super->migr_rec->curr_migr_unit =
10813 __cpu_to_le32(curr_migr_unit);
10814 super->migr_rec->rec_status = __cpu_to_le32(state);
10815 super->migr_rec->dest_1st_member_lba =
10816 __cpu_to_le32(curr_migr_unit *
10817 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
10818 if (write_imsm_migr_rec(st) < 0) {
10819 dprintf("imsm: Cannot write migration record outside backup area\n");
10820 return 1;
10821 }
10822
10823 return 0;
10824 }
10825
10826 /*******************************************************************************
10827 * Function: recover_backup_imsm
10828 * Description: Function recovers critical data from the Migration Copy Area
10829 * while assembling an array.
10830 * Parameters:
10831 * super : imsm internal array info
10832 * info : general array info
10833 * Returns:
10834 * 0 : success (or there is no data to recover)
10835 * 1 : fail
10836 ******************************************************************************/
10837 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10838 {
10839 struct intel_super *super = st->sb;
10840 struct migr_record *migr_rec = super->migr_rec;
10841 struct imsm_map *map_dest;
10842 struct intel_dev *id = NULL;
10843 unsigned long long read_offset;
10844 unsigned long long write_offset;
10845 unsigned unit_len;
10846 int *targets = NULL;
10847 int new_disks, i, err;
10848 char *buf = NULL;
10849 int retval = 1;
10850 unsigned int sector_size = super->sector_size;
10851 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10852 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
10853 char buffer[20];
10854 int skipped_disks = 0;
10855
10856 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10857 if (err < 1)
10858 return 1;
10859
10860 /* recover data only during assemblation */
10861 if (strncmp(buffer, "inactive", 8) != 0)
10862 return 0;
10863 /* no data to recover */
10864 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10865 return 0;
10866 if (curr_migr_unit >= num_migr_units)
10867 return 1;
10868
10869 /* find device during reshape */
10870 for (id = super->devlist; id; id = id->next)
10871 if (is_gen_migration(id->dev))
10872 break;
10873 if (id == NULL)
10874 return 1;
10875
10876 map_dest = get_imsm_map(id->dev, MAP_0);
10877 new_disks = map_dest->num_members;
10878
10879 read_offset = (unsigned long long)
10880 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10881
10882 write_offset = ((unsigned long long)
10883 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
10884 pba_of_lba0(map_dest)) * 512;
10885
10886 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10887 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
10888 goto abort;
10889 targets = xcalloc(new_disks, sizeof(int));
10890
10891 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
10892 pr_err("Cannot open some devices belonging to array.\n");
10893 goto abort;
10894 }
10895
10896 for (i = 0; i < new_disks; i++) {
10897 if (targets[i] < 0) {
10898 skipped_disks++;
10899 continue;
10900 }
10901 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
10902 pr_err("Cannot seek to block: %s\n",
10903 strerror(errno));
10904 skipped_disks++;
10905 continue;
10906 }
10907 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
10908 pr_err("Cannot read copy area block: %s\n",
10909 strerror(errno));
10910 skipped_disks++;
10911 continue;
10912 }
10913 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
10914 pr_err("Cannot seek to block: %s\n",
10915 strerror(errno));
10916 skipped_disks++;
10917 continue;
10918 }
10919 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
10920 pr_err("Cannot restore block: %s\n",
10921 strerror(errno));
10922 skipped_disks++;
10923 continue;
10924 }
10925 }
10926
10927 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10928 new_disks,
10929 super,
10930 id->dev)) {
10931 pr_err("Cannot restore data from backup. Too many failed disks\n");
10932 goto abort;
10933 }
10934
10935 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10936 /* ignore error == 2, this can mean end of reshape here
10937 */
10938 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
10939 } else
10940 retval = 0;
10941
10942 abort:
10943 if (targets) {
10944 for (i = 0; i < new_disks; i++)
10945 if (targets[i])
10946 close(targets[i]);
10947 free(targets);
10948 }
10949 free(buf);
10950 return retval;
10951 }
10952
10953 static char disk_by_path[] = "/dev/disk/by-path/";
10954
10955 static const char *imsm_get_disk_controller_domain(const char *path)
10956 {
10957 char disk_path[PATH_MAX];
10958 char *drv=NULL;
10959 struct stat st;
10960
10961 strcpy(disk_path, disk_by_path);
10962 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10963 if (stat(disk_path, &st) == 0) {
10964 struct sys_dev* hba;
10965 char *path;
10966
10967 path = devt_to_devpath(st.st_rdev);
10968 if (path == NULL)
10969 return "unknown";
10970 hba = find_disk_attached_hba(-1, path);
10971 if (hba && hba->type == SYS_DEV_SAS)
10972 drv = "isci";
10973 else if (hba && hba->type == SYS_DEV_SATA)
10974 drv = "ahci";
10975 else if (hba && hba->type == SYS_DEV_VMD)
10976 drv = "vmd";
10977 else if (hba && hba->type == SYS_DEV_NVME)
10978 drv = "nvme";
10979 else
10980 drv = "unknown";
10981 dprintf("path: %s hba: %s attached: %s\n",
10982 path, (hba) ? hba->path : "NULL", drv);
10983 free(path);
10984 }
10985 return drv;
10986 }
10987
10988 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
10989 {
10990 static char devnm[32];
10991 char subdev_name[20];
10992 struct mdstat_ent *mdstat;
10993
10994 sprintf(subdev_name, "%d", subdev);
10995 mdstat = mdstat_by_subdev(subdev_name, container);
10996 if (!mdstat)
10997 return NULL;
10998
10999 strcpy(devnm, mdstat->devnm);
11000 free_mdstat(mdstat);
11001 return devnm;
11002 }
11003
11004 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11005 struct geo_params *geo,
11006 int *old_raid_disks,
11007 int direction)
11008 {
11009 /* currently we only support increasing the number of devices
11010 * for a container. This increases the number of device for each
11011 * member array. They must all be RAID0 or RAID5.
11012 */
11013 int ret_val = 0;
11014 struct mdinfo *info, *member;
11015 int devices_that_can_grow = 0;
11016
11017 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
11018
11019 if (geo->size > 0 ||
11020 geo->level != UnSet ||
11021 geo->layout != UnSet ||
11022 geo->chunksize != 0 ||
11023 geo->raid_disks == UnSet) {
11024 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
11025 return ret_val;
11026 }
11027
11028 if (direction == ROLLBACK_METADATA_CHANGES) {
11029 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
11030 return ret_val;
11031 }
11032
11033 info = container_content_imsm(st, NULL);
11034 for (member = info; member; member = member->next) {
11035 char *result;
11036
11037 dprintf("imsm: checking device_num: %i\n",
11038 member->container_member);
11039
11040 if (geo->raid_disks <= member->array.raid_disks) {
11041 /* we work on container for Online Capacity Expansion
11042 * only so raid_disks has to grow
11043 */
11044 dprintf("imsm: for container operation raid disks increase is required\n");
11045 break;
11046 }
11047
11048 if (info->array.level != 0 && info->array.level != 5) {
11049 /* we cannot use this container with other raid level
11050 */
11051 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
11052 info->array.level);
11053 break;
11054 } else {
11055 /* check for platform support
11056 * for this raid level configuration
11057 */
11058 struct intel_super *super = st->sb;
11059 if (!is_raid_level_supported(super->orom,
11060 member->array.level,
11061 geo->raid_disks)) {
11062 dprintf("platform does not support raid%d with %d disk%s\n",
11063 info->array.level,
11064 geo->raid_disks,
11065 geo->raid_disks > 1 ? "s" : "");
11066 break;
11067 }
11068 /* check if component size is aligned to chunk size
11069 */
11070 if (info->component_size %
11071 (info->array.chunk_size/512)) {
11072 dprintf("Component size is not aligned to chunk size\n");
11073 break;
11074 }
11075 }
11076
11077 if (*old_raid_disks &&
11078 info->array.raid_disks != *old_raid_disks)
11079 break;
11080 *old_raid_disks = info->array.raid_disks;
11081
11082 /* All raid5 and raid0 volumes in container
11083 * have to be ready for Online Capacity Expansion
11084 * so they need to be assembled. We have already
11085 * checked that no recovery etc is happening.
11086 */
11087 result = imsm_find_array_devnm_by_subdev(member->container_member,
11088 st->container_devnm);
11089 if (result == NULL) {
11090 dprintf("imsm: cannot find array\n");
11091 break;
11092 }
11093 devices_that_can_grow++;
11094 }
11095 sysfs_free(info);
11096 if (!member && devices_that_can_grow)
11097 ret_val = 1;
11098
11099 if (ret_val)
11100 dprintf("Container operation allowed\n");
11101 else
11102 dprintf("Error: %i\n", ret_val);
11103
11104 return ret_val;
11105 }
11106
11107 /* Function: get_spares_for_grow
11108 * Description: Allocates memory and creates list of spare devices
11109 * avaliable in container. Checks if spare drive size is acceptable.
11110 * Parameters: Pointer to the supertype structure
11111 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
11112 * NULL if fail
11113 */
11114 static struct mdinfo *get_spares_for_grow(struct supertype *st)
11115 {
11116 struct spare_criteria sc;
11117
11118 get_spare_criteria_imsm(st, &sc);
11119 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11120 }
11121
11122 /******************************************************************************
11123 * function: imsm_create_metadata_update_for_reshape
11124 * Function creates update for whole IMSM container.
11125 *
11126 ******************************************************************************/
11127 static int imsm_create_metadata_update_for_reshape(
11128 struct supertype *st,
11129 struct geo_params *geo,
11130 int old_raid_disks,
11131 struct imsm_update_reshape **updatep)
11132 {
11133 struct intel_super *super = st->sb;
11134 struct imsm_super *mpb = super->anchor;
11135 int update_memory_size;
11136 struct imsm_update_reshape *u;
11137 struct mdinfo *spares;
11138 int i;
11139 int delta_disks;
11140 struct mdinfo *dev;
11141
11142 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
11143
11144 delta_disks = geo->raid_disks - old_raid_disks;
11145
11146 /* size of all update data without anchor */
11147 update_memory_size = sizeof(struct imsm_update_reshape);
11148
11149 /* now add space for spare disks that we need to add. */
11150 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11151
11152 u = xcalloc(1, update_memory_size);
11153 u->type = update_reshape_container_disks;
11154 u->old_raid_disks = old_raid_disks;
11155 u->new_raid_disks = geo->raid_disks;
11156
11157 /* now get spare disks list
11158 */
11159 spares = get_spares_for_grow(st);
11160
11161 if (spares == NULL || delta_disks > spares->array.spare_disks) {
11162 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
11163 i = -1;
11164 goto abort;
11165 }
11166
11167 /* we have got spares
11168 * update disk list in imsm_disk list table in anchor
11169 */
11170 dprintf("imsm: %i spares are available.\n\n",
11171 spares->array.spare_disks);
11172
11173 dev = spares->devs;
11174 for (i = 0; i < delta_disks; i++) {
11175 struct dl *dl;
11176
11177 if (dev == NULL)
11178 break;
11179 u->new_disks[i] = makedev(dev->disk.major,
11180 dev->disk.minor);
11181 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
11182 dl->index = mpb->num_disks;
11183 mpb->num_disks++;
11184 dev = dev->next;
11185 }
11186
11187 abort:
11188 /* free spares
11189 */
11190 sysfs_free(spares);
11191
11192 dprintf("imsm: reshape update preparation :");
11193 if (i == delta_disks) {
11194 dprintf_cont(" OK\n");
11195 *updatep = u;
11196 return update_memory_size;
11197 }
11198 free(u);
11199 dprintf_cont(" Error\n");
11200
11201 return 0;
11202 }
11203
11204 /******************************************************************************
11205 * function: imsm_create_metadata_update_for_size_change()
11206 * Creates update for IMSM array for array size change.
11207 *
11208 ******************************************************************************/
11209 static int imsm_create_metadata_update_for_size_change(
11210 struct supertype *st,
11211 struct geo_params *geo,
11212 struct imsm_update_size_change **updatep)
11213 {
11214 struct intel_super *super = st->sb;
11215 int update_memory_size;
11216 struct imsm_update_size_change *u;
11217
11218 dprintf("(enter) New size = %llu\n", geo->size);
11219
11220 /* size of all update data without anchor */
11221 update_memory_size = sizeof(struct imsm_update_size_change);
11222
11223 u = xcalloc(1, update_memory_size);
11224 u->type = update_size_change;
11225 u->subdev = super->current_vol;
11226 u->new_size = geo->size;
11227
11228 dprintf("imsm: reshape update preparation : OK\n");
11229 *updatep = u;
11230
11231 return update_memory_size;
11232 }
11233
11234 /******************************************************************************
11235 * function: imsm_create_metadata_update_for_migration()
11236 * Creates update for IMSM array.
11237 *
11238 ******************************************************************************/
11239 static int imsm_create_metadata_update_for_migration(
11240 struct supertype *st,
11241 struct geo_params *geo,
11242 struct imsm_update_reshape_migration **updatep)
11243 {
11244 struct intel_super *super = st->sb;
11245 int update_memory_size;
11246 struct imsm_update_reshape_migration *u;
11247 struct imsm_dev *dev;
11248 int previous_level = -1;
11249
11250 dprintf("(enter) New Level = %i\n", geo->level);
11251
11252 /* size of all update data without anchor */
11253 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11254
11255 u = xcalloc(1, update_memory_size);
11256 u->type = update_reshape_migration;
11257 u->subdev = super->current_vol;
11258 u->new_level = geo->level;
11259 u->new_layout = geo->layout;
11260 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11261 u->new_disks[0] = -1;
11262 u->new_chunksize = -1;
11263
11264 dev = get_imsm_dev(super, u->subdev);
11265 if (dev) {
11266 struct imsm_map *map;
11267
11268 map = get_imsm_map(dev, MAP_0);
11269 if (map) {
11270 int current_chunk_size =
11271 __le16_to_cpu(map->blocks_per_strip) / 2;
11272
11273 if (geo->chunksize != current_chunk_size) {
11274 u->new_chunksize = geo->chunksize / 1024;
11275 dprintf("imsm: chunk size change from %i to %i\n",
11276 current_chunk_size, u->new_chunksize);
11277 }
11278 previous_level = map->raid_level;
11279 }
11280 }
11281 if (geo->level == 5 && previous_level == 0) {
11282 struct mdinfo *spares = NULL;
11283
11284 u->new_raid_disks++;
11285 spares = get_spares_for_grow(st);
11286 if (spares == NULL || spares->array.spare_disks < 1) {
11287 free(u);
11288 sysfs_free(spares);
11289 update_memory_size = 0;
11290 pr_err("cannot get spare device for requested migration\n");
11291 return 0;
11292 }
11293 sysfs_free(spares);
11294 }
11295 dprintf("imsm: reshape update preparation : OK\n");
11296 *updatep = u;
11297
11298 return update_memory_size;
11299 }
11300
11301 static void imsm_update_metadata_locally(struct supertype *st,
11302 void *buf, int len)
11303 {
11304 struct metadata_update mu;
11305
11306 mu.buf = buf;
11307 mu.len = len;
11308 mu.space = NULL;
11309 mu.space_list = NULL;
11310 mu.next = NULL;
11311 if (imsm_prepare_update(st, &mu))
11312 imsm_process_update(st, &mu);
11313
11314 while (mu.space_list) {
11315 void **space = mu.space_list;
11316 mu.space_list = *space;
11317 free(space);
11318 }
11319 }
11320
11321 /***************************************************************************
11322 * Function: imsm_analyze_change
11323 * Description: Function analyze change for single volume
11324 * and validate if transition is supported
11325 * Parameters: Geometry parameters, supertype structure,
11326 * metadata change direction (apply/rollback)
11327 * Returns: Operation type code on success, -1 if fail
11328 ****************************************************************************/
11329 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11330 struct geo_params *geo,
11331 int direction)
11332 {
11333 struct mdinfo info;
11334 int change = -1;
11335 int check_devs = 0;
11336 int chunk;
11337 /* number of added/removed disks in operation result */
11338 int devNumChange = 0;
11339 /* imsm compatible layout value for array geometry verification */
11340 int imsm_layout = -1;
11341 int data_disks;
11342 struct imsm_dev *dev;
11343 struct imsm_map *map;
11344 struct intel_super *super;
11345 unsigned long long current_size;
11346 unsigned long long free_size;
11347 unsigned long long max_size;
11348 int rv;
11349
11350 getinfo_super_imsm_volume(st, &info, NULL);
11351 if (geo->level != info.array.level && geo->level >= 0 &&
11352 geo->level != UnSet) {
11353 switch (info.array.level) {
11354 case 0:
11355 if (geo->level == 5) {
11356 change = CH_MIGRATION;
11357 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11358 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11359 change = -1;
11360 goto analyse_change_exit;
11361 }
11362 imsm_layout = geo->layout;
11363 check_devs = 1;
11364 devNumChange = 1; /* parity disk added */
11365 } else if (geo->level == 10) {
11366 change = CH_TAKEOVER;
11367 check_devs = 1;
11368 devNumChange = 2; /* two mirrors added */
11369 imsm_layout = 0x102; /* imsm supported layout */
11370 }
11371 break;
11372 case 1:
11373 case 10:
11374 if (geo->level == 0) {
11375 change = CH_TAKEOVER;
11376 check_devs = 1;
11377 devNumChange = -(geo->raid_disks/2);
11378 imsm_layout = 0; /* imsm raid0 layout */
11379 }
11380 break;
11381 }
11382 if (change == -1) {
11383 pr_err("Error. Level Migration from %d to %d not supported!\n",
11384 info.array.level, geo->level);
11385 goto analyse_change_exit;
11386 }
11387 } else
11388 geo->level = info.array.level;
11389
11390 if (geo->layout != info.array.layout &&
11391 (geo->layout != UnSet && geo->layout != -1)) {
11392 change = CH_MIGRATION;
11393 if (info.array.layout == 0 && info.array.level == 5 &&
11394 geo->layout == 5) {
11395 /* reshape 5 -> 4 */
11396 } else if (info.array.layout == 5 && info.array.level == 5 &&
11397 geo->layout == 0) {
11398 /* reshape 4 -> 5 */
11399 geo->layout = 0;
11400 geo->level = 5;
11401 } else {
11402 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11403 info.array.layout, geo->layout);
11404 change = -1;
11405 goto analyse_change_exit;
11406 }
11407 } else {
11408 geo->layout = info.array.layout;
11409 if (imsm_layout == -1)
11410 imsm_layout = info.array.layout;
11411 }
11412
11413 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11414 geo->chunksize != info.array.chunk_size) {
11415 if (info.array.level == 10) {
11416 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11417 change = -1;
11418 goto analyse_change_exit;
11419 } else if (info.component_size % (geo->chunksize/512)) {
11420 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11421 geo->chunksize/1024, info.component_size/2);
11422 change = -1;
11423 goto analyse_change_exit;
11424 }
11425 change = CH_MIGRATION;
11426 } else {
11427 geo->chunksize = info.array.chunk_size;
11428 }
11429
11430 chunk = geo->chunksize / 1024;
11431
11432 super = st->sb;
11433 dev = get_imsm_dev(super, super->current_vol);
11434 map = get_imsm_map(dev, MAP_0);
11435 data_disks = imsm_num_data_members(map);
11436 /* compute current size per disk member
11437 */
11438 current_size = info.custom_array_size / data_disks;
11439
11440 if (geo->size > 0 && geo->size != MAX_SIZE) {
11441 /* align component size
11442 */
11443 geo->size = imsm_component_size_alignment_check(
11444 get_imsm_raid_level(dev->vol.map),
11445 chunk * 1024, super->sector_size,
11446 geo->size * 2);
11447 if (geo->size == 0) {
11448 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
11449 current_size);
11450 goto analyse_change_exit;
11451 }
11452 }
11453
11454 if (current_size != geo->size && geo->size > 0) {
11455 if (change != -1) {
11456 pr_err("Error. Size change should be the only one at a time.\n");
11457 change = -1;
11458 goto analyse_change_exit;
11459 }
11460 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
11461 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
11462 super->current_vol, st->devnm);
11463 goto analyse_change_exit;
11464 }
11465 /* check the maximum available size
11466 */
11467 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11468 0, chunk, &free_size);
11469 if (rv == 0)
11470 /* Cannot find maximum available space
11471 */
11472 max_size = 0;
11473 else {
11474 max_size = free_size + current_size;
11475 /* align component size
11476 */
11477 max_size = imsm_component_size_alignment_check(
11478 get_imsm_raid_level(dev->vol.map),
11479 chunk * 1024, super->sector_size,
11480 max_size);
11481 }
11482 if (geo->size == MAX_SIZE) {
11483 /* requested size change to the maximum available size
11484 */
11485 if (max_size == 0) {
11486 pr_err("Error. Cannot find maximum available space.\n");
11487 change = -1;
11488 goto analyse_change_exit;
11489 } else
11490 geo->size = max_size;
11491 }
11492
11493 if (direction == ROLLBACK_METADATA_CHANGES) {
11494 /* accept size for rollback only
11495 */
11496 } else {
11497 /* round size due to metadata compatibility
11498 */
11499 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11500 << SECT_PER_MB_SHIFT;
11501 dprintf("Prepare update for size change to %llu\n",
11502 geo->size );
11503 if (current_size >= geo->size) {
11504 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
11505 current_size, geo->size);
11506 goto analyse_change_exit;
11507 }
11508 if (max_size && geo->size > max_size) {
11509 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
11510 max_size, geo->size);
11511 goto analyse_change_exit;
11512 }
11513 }
11514 geo->size *= data_disks;
11515 geo->raid_disks = dev->vol.map->num_members;
11516 change = CH_ARRAY_SIZE;
11517 }
11518 if (!validate_geometry_imsm(st,
11519 geo->level,
11520 imsm_layout,
11521 geo->raid_disks + devNumChange,
11522 &chunk,
11523 geo->size, INVALID_SECTORS,
11524 0, 0, info.consistency_policy, 1))
11525 change = -1;
11526
11527 if (check_devs) {
11528 struct intel_super *super = st->sb;
11529 struct imsm_super *mpb = super->anchor;
11530
11531 if (mpb->num_raid_devs > 1) {
11532 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
11533 geo->dev_name);
11534 change = -1;
11535 }
11536 }
11537
11538 analyse_change_exit:
11539 if (direction == ROLLBACK_METADATA_CHANGES &&
11540 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11541 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11542 change = -1;
11543 }
11544 return change;
11545 }
11546
11547 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11548 {
11549 struct intel_super *super = st->sb;
11550 struct imsm_update_takeover *u;
11551
11552 u = xmalloc(sizeof(struct imsm_update_takeover));
11553
11554 u->type = update_takeover;
11555 u->subarray = super->current_vol;
11556
11557 /* 10->0 transition */
11558 if (geo->level == 0)
11559 u->direction = R10_TO_R0;
11560
11561 /* 0->10 transition */
11562 if (geo->level == 10)
11563 u->direction = R0_TO_R10;
11564
11565 /* update metadata locally */
11566 imsm_update_metadata_locally(st, u,
11567 sizeof(struct imsm_update_takeover));
11568 /* and possibly remotely */
11569 if (st->update_tail)
11570 append_metadata_update(st, u,
11571 sizeof(struct imsm_update_takeover));
11572 else
11573 free(u);
11574
11575 return 0;
11576 }
11577
11578 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11579 int level,
11580 int layout, int chunksize, int raid_disks,
11581 int delta_disks, char *backup, char *dev,
11582 int direction, int verbose)
11583 {
11584 int ret_val = 1;
11585 struct geo_params geo;
11586
11587 dprintf("(enter)\n");
11588
11589 memset(&geo, 0, sizeof(struct geo_params));
11590
11591 geo.dev_name = dev;
11592 strcpy(geo.devnm, st->devnm);
11593 geo.size = size;
11594 geo.level = level;
11595 geo.layout = layout;
11596 geo.chunksize = chunksize;
11597 geo.raid_disks = raid_disks;
11598 if (delta_disks != UnSet)
11599 geo.raid_disks += delta_disks;
11600
11601 dprintf("for level : %i\n", geo.level);
11602 dprintf("for raid_disks : %i\n", geo.raid_disks);
11603
11604 if (experimental() == 0)
11605 return ret_val;
11606
11607 if (strcmp(st->container_devnm, st->devnm) == 0) {
11608 /* On container level we can only increase number of devices. */
11609 dprintf("imsm: info: Container operation\n");
11610 int old_raid_disks = 0;
11611
11612 if (imsm_reshape_is_allowed_on_container(
11613 st, &geo, &old_raid_disks, direction)) {
11614 struct imsm_update_reshape *u = NULL;
11615 int len;
11616
11617 len = imsm_create_metadata_update_for_reshape(
11618 st, &geo, old_raid_disks, &u);
11619
11620 if (len <= 0) {
11621 dprintf("imsm: Cannot prepare update\n");
11622 goto exit_imsm_reshape_super;
11623 }
11624
11625 ret_val = 0;
11626 /* update metadata locally */
11627 imsm_update_metadata_locally(st, u, len);
11628 /* and possibly remotely */
11629 if (st->update_tail)
11630 append_metadata_update(st, u, len);
11631 else
11632 free(u);
11633
11634 } else {
11635 pr_err("(imsm) Operation is not allowed on this container\n");
11636 }
11637 } else {
11638 /* On volume level we support following operations
11639 * - takeover: raid10 -> raid0; raid0 -> raid10
11640 * - chunk size migration
11641 * - migration: raid5 -> raid0; raid0 -> raid5
11642 */
11643 struct intel_super *super = st->sb;
11644 struct intel_dev *dev = super->devlist;
11645 int change;
11646 dprintf("imsm: info: Volume operation\n");
11647 /* find requested device */
11648 while (dev) {
11649 char *devnm =
11650 imsm_find_array_devnm_by_subdev(
11651 dev->index, st->container_devnm);
11652 if (devnm && strcmp(devnm, geo.devnm) == 0)
11653 break;
11654 dev = dev->next;
11655 }
11656 if (dev == NULL) {
11657 pr_err("Cannot find %s (%s) subarray\n",
11658 geo.dev_name, geo.devnm);
11659 goto exit_imsm_reshape_super;
11660 }
11661 super->current_vol = dev->index;
11662 change = imsm_analyze_change(st, &geo, direction);
11663 switch (change) {
11664 case CH_TAKEOVER:
11665 ret_val = imsm_takeover(st, &geo);
11666 break;
11667 case CH_MIGRATION: {
11668 struct imsm_update_reshape_migration *u = NULL;
11669 int len =
11670 imsm_create_metadata_update_for_migration(
11671 st, &geo, &u);
11672 if (len < 1) {
11673 dprintf("imsm: Cannot prepare update\n");
11674 break;
11675 }
11676 ret_val = 0;
11677 /* update metadata locally */
11678 imsm_update_metadata_locally(st, u, len);
11679 /* and possibly remotely */
11680 if (st->update_tail)
11681 append_metadata_update(st, u, len);
11682 else
11683 free(u);
11684 }
11685 break;
11686 case CH_ARRAY_SIZE: {
11687 struct imsm_update_size_change *u = NULL;
11688 int len =
11689 imsm_create_metadata_update_for_size_change(
11690 st, &geo, &u);
11691 if (len < 1) {
11692 dprintf("imsm: Cannot prepare update\n");
11693 break;
11694 }
11695 ret_val = 0;
11696 /* update metadata locally */
11697 imsm_update_metadata_locally(st, u, len);
11698 /* and possibly remotely */
11699 if (st->update_tail)
11700 append_metadata_update(st, u, len);
11701 else
11702 free(u);
11703 }
11704 break;
11705 default:
11706 ret_val = 1;
11707 }
11708 }
11709
11710 exit_imsm_reshape_super:
11711 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11712 return ret_val;
11713 }
11714
11715 #define COMPLETED_OK 0
11716 #define COMPLETED_NONE 1
11717 #define COMPLETED_DELAYED 2
11718
11719 static int read_completed(int fd, unsigned long long *val)
11720 {
11721 int ret;
11722 char buf[50];
11723
11724 ret = sysfs_fd_get_str(fd, buf, 50);
11725 if (ret < 0)
11726 return ret;
11727
11728 ret = COMPLETED_OK;
11729 if (strncmp(buf, "none", 4) == 0) {
11730 ret = COMPLETED_NONE;
11731 } else if (strncmp(buf, "delayed", 7) == 0) {
11732 ret = COMPLETED_DELAYED;
11733 } else {
11734 char *ep;
11735 *val = strtoull(buf, &ep, 0);
11736 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11737 ret = -1;
11738 }
11739 return ret;
11740 }
11741
11742 /*******************************************************************************
11743 * Function: wait_for_reshape_imsm
11744 * Description: Function writes new sync_max value and waits until
11745 * reshape process reach new position
11746 * Parameters:
11747 * sra : general array info
11748 * ndata : number of disks in new array's layout
11749 * Returns:
11750 * 0 : success,
11751 * 1 : there is no reshape in progress,
11752 * -1 : fail
11753 ******************************************************************************/
11754 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
11755 {
11756 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
11757 int retry = 3;
11758 unsigned long long completed;
11759 /* to_complete : new sync_max position */
11760 unsigned long long to_complete = sra->reshape_progress;
11761 unsigned long long position_to_set = to_complete / ndata;
11762
11763 if (fd < 0) {
11764 dprintf("cannot open reshape_position\n");
11765 return 1;
11766 }
11767
11768 do {
11769 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11770 if (!retry) {
11771 dprintf("cannot read reshape_position (no reshape in progres)\n");
11772 close(fd);
11773 return 1;
11774 }
11775 usleep(30000);
11776 } else
11777 break;
11778 } while (retry--);
11779
11780 if (completed > position_to_set) {
11781 dprintf("wrong next position to set %llu (%llu)\n",
11782 to_complete, position_to_set);
11783 close(fd);
11784 return -1;
11785 }
11786 dprintf("Position set: %llu\n", position_to_set);
11787 if (sysfs_set_num(sra, NULL, "sync_max",
11788 position_to_set) != 0) {
11789 dprintf("cannot set reshape position to %llu\n",
11790 position_to_set);
11791 close(fd);
11792 return -1;
11793 }
11794
11795 do {
11796 int rc;
11797 char action[20];
11798 int timeout = 3000;
11799
11800 sysfs_wait(fd, &timeout);
11801 if (sysfs_get_str(sra, NULL, "sync_action",
11802 action, 20) > 0 &&
11803 strncmp(action, "reshape", 7) != 0) {
11804 if (strncmp(action, "idle", 4) == 0)
11805 break;
11806 close(fd);
11807 return -1;
11808 }
11809
11810 rc = read_completed(fd, &completed);
11811 if (rc < 0) {
11812 dprintf("cannot read reshape_position (in loop)\n");
11813 close(fd);
11814 return 1;
11815 } else if (rc == COMPLETED_NONE)
11816 break;
11817 } while (completed < position_to_set);
11818
11819 close(fd);
11820 return 0;
11821 }
11822
11823 /*******************************************************************************
11824 * Function: check_degradation_change
11825 * Description: Check that array hasn't become failed.
11826 * Parameters:
11827 * info : for sysfs access
11828 * sources : source disks descriptors
11829 * degraded: previous degradation level
11830 * Returns:
11831 * degradation level
11832 ******************************************************************************/
11833 int check_degradation_change(struct mdinfo *info,
11834 int *sources,
11835 int degraded)
11836 {
11837 unsigned long long new_degraded;
11838 int rv;
11839
11840 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
11841 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
11842 /* check each device to ensure it is still working */
11843 struct mdinfo *sd;
11844 new_degraded = 0;
11845 for (sd = info->devs ; sd ; sd = sd->next) {
11846 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11847 continue;
11848 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
11849 char sbuf[100];
11850
11851 if (sysfs_get_str(info,
11852 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
11853 strstr(sbuf, "faulty") ||
11854 strstr(sbuf, "in_sync") == NULL) {
11855 /* this device is dead */
11856 sd->disk.state = (1<<MD_DISK_FAULTY);
11857 if (sd->disk.raid_disk >= 0 &&
11858 sources[sd->disk.raid_disk] >= 0) {
11859 close(sources[
11860 sd->disk.raid_disk]);
11861 sources[sd->disk.raid_disk] =
11862 -1;
11863 }
11864 new_degraded++;
11865 }
11866 }
11867 }
11868 }
11869
11870 return new_degraded;
11871 }
11872
11873 /*******************************************************************************
11874 * Function: imsm_manage_reshape
11875 * Description: Function finds array under reshape and it manages reshape
11876 * process. It creates stripes backups (if required) and sets
11877 * checkpoints.
11878 * Parameters:
11879 * afd : Backup handle (nattive) - not used
11880 * sra : general array info
11881 * reshape : reshape parameters - not used
11882 * st : supertype structure
11883 * blocks : size of critical section [blocks]
11884 * fds : table of source device descriptor
11885 * offsets : start of array (offest per devices)
11886 * dests : not used
11887 * destfd : table of destination device descriptor
11888 * destoffsets : table of destination offsets (per device)
11889 * Returns:
11890 * 1 : success, reshape is done
11891 * 0 : fail
11892 ******************************************************************************/
11893 static int imsm_manage_reshape(
11894 int afd, struct mdinfo *sra, struct reshape *reshape,
11895 struct supertype *st, unsigned long backup_blocks,
11896 int *fds, unsigned long long *offsets,
11897 int dests, int *destfd, unsigned long long *destoffsets)
11898 {
11899 int ret_val = 0;
11900 struct intel_super *super = st->sb;
11901 struct intel_dev *dv;
11902 unsigned int sector_size = super->sector_size;
11903 struct imsm_dev *dev = NULL;
11904 struct imsm_map *map_src, *map_dest;
11905 int migr_vol_qan = 0;
11906 int ndata, odata; /* [bytes] */
11907 int chunk; /* [bytes] */
11908 struct migr_record *migr_rec;
11909 char *buf = NULL;
11910 unsigned int buf_size; /* [bytes] */
11911 unsigned long long max_position; /* array size [bytes] */
11912 unsigned long long next_step; /* [blocks]/[bytes] */
11913 unsigned long long old_data_stripe_length;
11914 unsigned long long start_src; /* [bytes] */
11915 unsigned long long start; /* [bytes] */
11916 unsigned long long start_buf_shift; /* [bytes] */
11917 int degraded = 0;
11918 int source_layout = 0;
11919
11920 if (!sra)
11921 return ret_val;
11922
11923 if (!fds || !offsets)
11924 goto abort;
11925
11926 /* Find volume during the reshape */
11927 for (dv = super->devlist; dv; dv = dv->next) {
11928 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
11929 dv->dev->vol.migr_state == 1) {
11930 dev = dv->dev;
11931 migr_vol_qan++;
11932 }
11933 }
11934 /* Only one volume can migrate at the same time */
11935 if (migr_vol_qan != 1) {
11936 pr_err("%s", migr_vol_qan ?
11937 "Number of migrating volumes greater than 1\n" :
11938 "There is no volume during migrationg\n");
11939 goto abort;
11940 }
11941
11942 map_dest = get_imsm_map(dev, MAP_0);
11943 map_src = get_imsm_map(dev, MAP_1);
11944 if (map_src == NULL)
11945 goto abort;
11946
11947 ndata = imsm_num_data_members(map_dest);
11948 odata = imsm_num_data_members(map_src);
11949
11950 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
11951 old_data_stripe_length = odata * chunk;
11952
11953 migr_rec = super->migr_rec;
11954
11955 /* initialize migration record for start condition */
11956 if (sra->reshape_progress == 0)
11957 init_migr_record_imsm(st, dev, sra);
11958 else {
11959 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
11960 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
11961 goto abort;
11962 }
11963 /* Save checkpoint to update migration record for current
11964 * reshape position (in md). It can be farther than current
11965 * reshape position in metadata.
11966 */
11967 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11968 /* ignore error == 2, this can mean end of reshape here
11969 */
11970 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
11971 goto abort;
11972 }
11973 }
11974
11975 /* size for data */
11976 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11977 /* extend buffer size for parity disk */
11978 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11979 /* add space for stripe alignment */
11980 buf_size += old_data_stripe_length;
11981 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11982 dprintf("imsm: Cannot allocate checkpoint buffer\n");
11983 goto abort;
11984 }
11985
11986 max_position = sra->component_size * ndata;
11987 source_layout = imsm_level_to_layout(map_src->raid_level);
11988
11989 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11990 __le32_to_cpu(migr_rec->num_migr_units)) {
11991 /* current reshape position [blocks] */
11992 unsigned long long current_position =
11993 __le32_to_cpu(migr_rec->blocks_per_unit)
11994 * __le32_to_cpu(migr_rec->curr_migr_unit);
11995 unsigned long long border;
11996
11997 /* Check that array hasn't become failed.
11998 */
11999 degraded = check_degradation_change(sra, fds, degraded);
12000 if (degraded > 1) {
12001 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
12002 goto abort;
12003 }
12004
12005 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12006
12007 if ((current_position + next_step) > max_position)
12008 next_step = max_position - current_position;
12009
12010 start = current_position * 512;
12011
12012 /* align reading start to old geometry */
12013 start_buf_shift = start % old_data_stripe_length;
12014 start_src = start - start_buf_shift;
12015
12016 border = (start_src / odata) - (start / ndata);
12017 border /= 512;
12018 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12019 /* save critical stripes to buf
12020 * start - start address of current unit
12021 * to backup [bytes]
12022 * start_src - start address of current unit
12023 * to backup alligned to source array
12024 * [bytes]
12025 */
12026 unsigned long long next_step_filler;
12027 unsigned long long copy_length = next_step * 512;
12028
12029 /* allign copy area length to stripe in old geometry */
12030 next_step_filler = ((copy_length + start_buf_shift)
12031 % old_data_stripe_length);
12032 if (next_step_filler)
12033 next_step_filler = (old_data_stripe_length
12034 - next_step_filler);
12035 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
12036 start, start_src, copy_length,
12037 start_buf_shift, next_step_filler);
12038
12039 if (save_stripes(fds, offsets, map_src->num_members,
12040 chunk, map_src->raid_level,
12041 source_layout, 0, NULL, start_src,
12042 copy_length +
12043 next_step_filler + start_buf_shift,
12044 buf)) {
12045 dprintf("imsm: Cannot save stripes to buffer\n");
12046 goto abort;
12047 }
12048 /* Convert data to destination format and store it
12049 * in backup general migration area
12050 */
12051 if (save_backup_imsm(st, dev, sra,
12052 buf + start_buf_shift, copy_length)) {
12053 dprintf("imsm: Cannot save stripes to target devices\n");
12054 goto abort;
12055 }
12056 if (save_checkpoint_imsm(st, sra,
12057 UNIT_SRC_IN_CP_AREA)) {
12058 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
12059 goto abort;
12060 }
12061 } else {
12062 /* set next step to use whole border area */
12063 border /= next_step;
12064 if (border > 1)
12065 next_step *= border;
12066 }
12067 /* When data backed up, checkpoint stored,
12068 * kick the kernel to reshape unit of data
12069 */
12070 next_step = next_step + sra->reshape_progress;
12071 /* limit next step to array max position */
12072 if (next_step > max_position)
12073 next_step = max_position;
12074 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12075 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
12076 sra->reshape_progress = next_step;
12077
12078 /* wait until reshape finish */
12079 if (wait_for_reshape_imsm(sra, ndata)) {
12080 dprintf("wait_for_reshape_imsm returned error!\n");
12081 goto abort;
12082 }
12083 if (sigterm)
12084 goto abort;
12085
12086 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12087 /* ignore error == 2, this can mean end of reshape here
12088 */
12089 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
12090 goto abort;
12091 }
12092
12093 }
12094
12095 /* clear migr_rec on disks after successful migration */
12096 struct dl *d;
12097
12098 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
12099 for (d = super->disks; d; d = d->next) {
12100 if (d->index < 0 || is_failed(&d->disk))
12101 continue;
12102 unsigned long long dsize;
12103
12104 get_dev_size(d->fd, NULL, &dsize);
12105 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
12106 SEEK_SET) >= 0) {
12107 if ((unsigned int)write(d->fd, super->migr_rec_buf,
12108 MIGR_REC_BUF_SECTORS*sector_size) !=
12109 MIGR_REC_BUF_SECTORS*sector_size)
12110 perror("Write migr_rec failed");
12111 }
12112 }
12113
12114 /* return '1' if done */
12115 ret_val = 1;
12116 abort:
12117 free(buf);
12118 /* See Grow.c: abort_reshape() for further explanation */
12119 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12120 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12121 sysfs_set_num(sra, NULL, "suspend_lo", 0);
12122
12123 return ret_val;
12124 }
12125
12126 struct superswitch super_imsm = {
12127 .examine_super = examine_super_imsm,
12128 .brief_examine_super = brief_examine_super_imsm,
12129 .brief_examine_subarrays = brief_examine_subarrays_imsm,
12130 .export_examine_super = export_examine_super_imsm,
12131 .detail_super = detail_super_imsm,
12132 .brief_detail_super = brief_detail_super_imsm,
12133 .write_init_super = write_init_super_imsm,
12134 .validate_geometry = validate_geometry_imsm,
12135 .add_to_super = add_to_super_imsm,
12136 .remove_from_super = remove_from_super_imsm,
12137 .detail_platform = detail_platform_imsm,
12138 .export_detail_platform = export_detail_platform_imsm,
12139 .kill_subarray = kill_subarray_imsm,
12140 .update_subarray = update_subarray_imsm,
12141 .load_container = load_container_imsm,
12142 .default_geometry = default_geometry_imsm,
12143 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12144 .reshape_super = imsm_reshape_super,
12145 .manage_reshape = imsm_manage_reshape,
12146 .recover_backup = recover_backup_imsm,
12147 .copy_metadata = copy_metadata_imsm,
12148 .examine_badblocks = examine_badblocks_imsm,
12149 .match_home = match_home_imsm,
12150 .uuid_from_super= uuid_from_super_imsm,
12151 .getinfo_super = getinfo_super_imsm,
12152 .getinfo_super_disks = getinfo_super_disks_imsm,
12153 .update_super = update_super_imsm,
12154
12155 .avail_size = avail_size_imsm,
12156 .get_spare_criteria = get_spare_criteria_imsm,
12157
12158 .compare_super = compare_super_imsm,
12159
12160 .load_super = load_super_imsm,
12161 .init_super = init_super_imsm,
12162 .store_super = store_super_imsm,
12163 .free_super = free_super_imsm,
12164 .match_metadata_desc = match_metadata_desc_imsm,
12165 .container_content = container_content_imsm,
12166 .validate_container = validate_container_imsm,
12167
12168 .write_init_ppl = write_init_ppl_imsm,
12169 .validate_ppl = validate_ppl_imsm,
12170
12171 .external = 1,
12172 .name = "imsm",
12173
12174 /* for mdmon */
12175 .open_new = imsm_open_new,
12176 .set_array_state= imsm_set_array_state,
12177 .set_disk = imsm_set_disk,
12178 .sync_metadata = imsm_sync_metadata,
12179 .activate_spare = imsm_activate_spare,
12180 .process_update = imsm_process_update,
12181 .prepare_update = imsm_prepare_update,
12182 .record_bad_block = imsm_record_badblock,
12183 .clear_bad_block = imsm_clear_badblock,
12184 .get_bad_blocks = imsm_get_badblocks,
12185 };