]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Monitor: avoid skipping checks on external arrays
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 /* internal representation of IMSM metadata */
237 struct intel_super {
238 union {
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
241 };
242 size_t len; /* size of the 'buf' allocation */
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
245 int updates_pending; /* count of pending updates for mdmon */
246 int current_vol; /* index of raid device undergoing creation */
247 __u32 create_offset; /* common start for 'current_vol' */
248 __u32 random; /* random data for seeding new family numbers */
249 struct intel_dev *devlist;
250 struct dl {
251 struct dl *next;
252 int index;
253 __u8 serial[MAX_RAID_SERIAL_LEN];
254 int major, minor;
255 char *devname;
256 struct imsm_disk disk;
257 int fd;
258 int extent_cnt;
259 struct extent *e; /* for determining freespace @ create */
260 int raiddisk; /* slot to fill in autolayout */
261 } *disks;
262 struct dl *add; /* list of disks to add while mdmon active */
263 struct dl *missing; /* disks removed while we weren't looking */
264 struct bbm_log *bbm_log;
265 const char *hba; /* device path of the raid controller for this metadata */
266 const struct imsm_orom *orom; /* platform firmware support */
267 struct intel_super *next; /* (temp) list for disambiguating family_num */
268 };
269
270 struct intel_disk {
271 struct imsm_disk disk;
272 #define IMSM_UNKNOWN_OWNER (-1)
273 int owner;
274 struct intel_disk *next;
275 };
276
277 struct extent {
278 unsigned long long start, size;
279 };
280
281 /* definition of messages passed to imsm_process_update */
282 enum imsm_update_type {
283 update_activate_spare,
284 update_create_array,
285 update_kill_array,
286 update_rename_array,
287 update_add_disk,
288 };
289
290 struct imsm_update_activate_spare {
291 enum imsm_update_type type;
292 struct dl *dl;
293 int slot;
294 int array;
295 struct imsm_update_activate_spare *next;
296 };
297
298 struct disk_info {
299 __u8 serial[MAX_RAID_SERIAL_LEN];
300 };
301
302 struct imsm_update_create_array {
303 enum imsm_update_type type;
304 int dev_idx;
305 struct imsm_dev dev;
306 };
307
308 struct imsm_update_kill_array {
309 enum imsm_update_type type;
310 int dev_idx;
311 };
312
313 struct imsm_update_rename_array {
314 enum imsm_update_type type;
315 __u8 name[MAX_RAID_SERIAL_LEN];
316 int dev_idx;
317 };
318
319 struct imsm_update_add_disk {
320 enum imsm_update_type type;
321 };
322
323 static struct supertype *match_metadata_desc_imsm(char *arg)
324 {
325 struct supertype *st;
326
327 if (strcmp(arg, "imsm") != 0 &&
328 strcmp(arg, "default") != 0
329 )
330 return NULL;
331
332 st = malloc(sizeof(*st));
333 if (!st)
334 return NULL;
335 memset(st, 0, sizeof(*st));
336 st->container_dev = NoMdDev;
337 st->ss = &super_imsm;
338 st->max_devs = IMSM_MAX_DEVICES;
339 st->minor_version = 0;
340 st->sb = NULL;
341 return st;
342 }
343
344 #ifndef MDASSEMBLE
345 static __u8 *get_imsm_version(struct imsm_super *mpb)
346 {
347 return &mpb->sig[MPB_SIG_LEN];
348 }
349 #endif
350
351 /* retrieve a disk directly from the anchor when the anchor is known to be
352 * up-to-date, currently only at load time
353 */
354 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
355 {
356 if (index >= mpb->num_disks)
357 return NULL;
358 return &mpb->disk[index];
359 }
360
361 /* retrieve a disk from the parsed metadata */
362 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
363 {
364 struct dl *d;
365
366 for (d = super->disks; d; d = d->next)
367 if (d->index == index)
368 return &d->disk;
369
370 return NULL;
371 }
372
373 /* generate a checksum directly from the anchor when the anchor is known to be
374 * up-to-date, currently only at load or write_super after coalescing
375 */
376 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
377 {
378 __u32 end = mpb->mpb_size / sizeof(end);
379 __u32 *p = (__u32 *) mpb;
380 __u32 sum = 0;
381
382 while (end--) {
383 sum += __le32_to_cpu(*p);
384 p++;
385 }
386
387 return sum - __le32_to_cpu(mpb->check_sum);
388 }
389
390 static size_t sizeof_imsm_map(struct imsm_map *map)
391 {
392 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
393 }
394
395 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
396 {
397 struct imsm_map *map = &dev->vol.map[0];
398
399 if (second_map && !dev->vol.migr_state)
400 return NULL;
401 else if (second_map) {
402 void *ptr = map;
403
404 return ptr + sizeof_imsm_map(map);
405 } else
406 return map;
407
408 }
409
410 /* return the size of the device.
411 * migr_state increases the returned size if map[0] were to be duplicated
412 */
413 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
414 {
415 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
416 sizeof_imsm_map(get_imsm_map(dev, 0));
417
418 /* migrating means an additional map */
419 if (dev->vol.migr_state)
420 size += sizeof_imsm_map(get_imsm_map(dev, 1));
421 else if (migr_state)
422 size += sizeof_imsm_map(get_imsm_map(dev, 0));
423
424 return size;
425 }
426
427 #ifndef MDASSEMBLE
428 /* retrieve disk serial number list from a metadata update */
429 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
430 {
431 void *u = update;
432 struct disk_info *inf;
433
434 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
435 sizeof_imsm_dev(&update->dev, 0);
436
437 return inf;
438 }
439 #endif
440
441 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
442 {
443 int offset;
444 int i;
445 void *_mpb = mpb;
446
447 if (index >= mpb->num_raid_devs)
448 return NULL;
449
450 /* devices start after all disks */
451 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
452
453 for (i = 0; i <= index; i++)
454 if (i == index)
455 return _mpb + offset;
456 else
457 offset += sizeof_imsm_dev(_mpb + offset, 0);
458
459 return NULL;
460 }
461
462 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
463 {
464 struct intel_dev *dv;
465
466 if (index >= super->anchor->num_raid_devs)
467 return NULL;
468 for (dv = super->devlist; dv; dv = dv->next)
469 if (dv->index == index)
470 return dv->dev;
471 return NULL;
472 }
473
474 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
475 {
476 struct imsm_map *map;
477
478 if (dev->vol.migr_state)
479 map = get_imsm_map(dev, 1);
480 else
481 map = get_imsm_map(dev, 0);
482
483 /* top byte identifies disk under rebuild */
484 return __le32_to_cpu(map->disk_ord_tbl[slot]);
485 }
486
487 #define ord_to_idx(ord) (((ord) << 8) >> 8)
488 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
489 {
490 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
491
492 return ord_to_idx(ord);
493 }
494
495 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
496 {
497 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
498 }
499
500 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
501 {
502 int slot;
503 __u32 ord;
504
505 for (slot = 0; slot < map->num_members; slot++) {
506 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
507 if (ord_to_idx(ord) == idx)
508 return slot;
509 }
510
511 return -1;
512 }
513
514 static int get_imsm_raid_level(struct imsm_map *map)
515 {
516 if (map->raid_level == 1) {
517 if (map->num_members == 2)
518 return 1;
519 else
520 return 10;
521 }
522
523 return map->raid_level;
524 }
525
526 static int cmp_extent(const void *av, const void *bv)
527 {
528 const struct extent *a = av;
529 const struct extent *b = bv;
530 if (a->start < b->start)
531 return -1;
532 if (a->start > b->start)
533 return 1;
534 return 0;
535 }
536
537 static int count_memberships(struct dl *dl, struct intel_super *super)
538 {
539 int memberships = 0;
540 int i;
541
542 for (i = 0; i < super->anchor->num_raid_devs; i++) {
543 struct imsm_dev *dev = get_imsm_dev(super, i);
544 struct imsm_map *map = get_imsm_map(dev, 0);
545
546 if (get_imsm_disk_slot(map, dl->index) >= 0)
547 memberships++;
548 }
549
550 return memberships;
551 }
552
553 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
554 {
555 /* find a list of used extents on the given physical device */
556 struct extent *rv, *e;
557 int i;
558 int memberships = count_memberships(dl, super);
559 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
560
561 rv = malloc(sizeof(struct extent) * (memberships + 1));
562 if (!rv)
563 return NULL;
564 e = rv;
565
566 for (i = 0; i < super->anchor->num_raid_devs; i++) {
567 struct imsm_dev *dev = get_imsm_dev(super, i);
568 struct imsm_map *map = get_imsm_map(dev, 0);
569
570 if (get_imsm_disk_slot(map, dl->index) >= 0) {
571 e->start = __le32_to_cpu(map->pba_of_lba0);
572 e->size = __le32_to_cpu(map->blocks_per_member);
573 e++;
574 }
575 }
576 qsort(rv, memberships, sizeof(*rv), cmp_extent);
577
578 /* determine the start of the metadata
579 * when no raid devices are defined use the default
580 * ...otherwise allow the metadata to truncate the value
581 * as is the case with older versions of imsm
582 */
583 if (memberships) {
584 struct extent *last = &rv[memberships - 1];
585 __u32 remainder;
586
587 remainder = __le32_to_cpu(dl->disk.total_blocks) -
588 (last->start + last->size);
589 /* round down to 1k block to satisfy precision of the kernel
590 * 'size' interface
591 */
592 remainder &= ~1UL;
593 /* make sure remainder is still sane */
594 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
595 remainder = ROUND_UP(super->len, 512) >> 9;
596 if (reservation > remainder)
597 reservation = remainder;
598 }
599 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
600 e->size = 0;
601 return rv;
602 }
603
604 /* try to determine how much space is reserved for metadata from
605 * the last get_extents() entry, otherwise fallback to the
606 * default
607 */
608 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
609 {
610 struct extent *e;
611 int i;
612 __u32 rv;
613
614 /* for spares just return a minimal reservation which will grow
615 * once the spare is picked up by an array
616 */
617 if (dl->index == -1)
618 return MPB_SECTOR_CNT;
619
620 e = get_extents(super, dl);
621 if (!e)
622 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
623
624 /* scroll to last entry */
625 for (i = 0; e[i].size; i++)
626 continue;
627
628 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
629
630 free(e);
631
632 return rv;
633 }
634
635 static int is_spare(struct imsm_disk *disk)
636 {
637 return (disk->status & SPARE_DISK) == SPARE_DISK;
638 }
639
640 static int is_configured(struct imsm_disk *disk)
641 {
642 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
643 }
644
645 static int is_failed(struct imsm_disk *disk)
646 {
647 return (disk->status & FAILED_DISK) == FAILED_DISK;
648 }
649
650 #ifndef MDASSEMBLE
651 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
652
653 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
654 {
655 __u64 sz;
656 int slot, i;
657 struct imsm_map *map = get_imsm_map(dev, 0);
658 __u32 ord;
659
660 printf("\n");
661 printf("[%.16s]:\n", dev->volume);
662 printf(" UUID : %s\n", uuid);
663 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
664 printf(" Members : %d\n", map->num_members);
665 printf(" Slots : [");
666 for (i = 0; i < map->num_members; i++) {
667 ord = get_imsm_ord_tbl_ent(dev, i);
668 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
669 }
670 printf("]\n");
671 slot = get_imsm_disk_slot(map, disk_idx);
672 if (slot >= 0) {
673 ord = get_imsm_ord_tbl_ent(dev, slot);
674 printf(" This Slot : %d%s\n", slot,
675 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
676 } else
677 printf(" This Slot : ?\n");
678 sz = __le32_to_cpu(dev->size_high);
679 sz <<= 32;
680 sz += __le32_to_cpu(dev->size_low);
681 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
682 human_size(sz * 512));
683 sz = __le32_to_cpu(map->blocks_per_member);
684 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
685 human_size(sz * 512));
686 printf(" Sector Offset : %u\n",
687 __le32_to_cpu(map->pba_of_lba0));
688 printf(" Num Stripes : %u\n",
689 __le32_to_cpu(map->num_data_stripes));
690 printf(" Chunk Size : %u KiB\n",
691 __le16_to_cpu(map->blocks_per_strip) / 2);
692 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
693 printf(" Migrate State : ");
694 if (dev->vol.migr_state) {
695 if (migr_type(dev) == MIGR_INIT)
696 printf("initialize\n");
697 else if (migr_type(dev) == MIGR_REBUILD)
698 printf("rebuild\n");
699 else if (migr_type(dev) == MIGR_VERIFY)
700 printf("check\n");
701 else if (migr_type(dev) == MIGR_GEN_MIGR)
702 printf("general migration\n");
703 else if (migr_type(dev) == MIGR_STATE_CHANGE)
704 printf("state change\n");
705 else if (migr_type(dev) == MIGR_REPAIR)
706 printf("repair\n");
707 else
708 printf("<unknown:%d>\n", migr_type(dev));
709 } else
710 printf("idle\n");
711 printf(" Map State : %s", map_state_str[map->map_state]);
712 if (dev->vol.migr_state) {
713 struct imsm_map *map = get_imsm_map(dev, 1);
714
715 printf(" <-- %s", map_state_str[map->map_state]);
716 printf("\n Checkpoint : %u (%llu)",
717 __le32_to_cpu(dev->vol.curr_migr_unit),
718 (unsigned long long)blocks_per_migr_unit(dev));
719 }
720 printf("\n");
721 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
722 }
723
724 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
725 {
726 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
727 char str[MAX_RAID_SERIAL_LEN + 1];
728 __u64 sz;
729
730 if (index < 0 || !disk)
731 return;
732
733 printf("\n");
734 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
735 printf(" Disk%02d Serial : %s\n", index, str);
736 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
737 is_configured(disk) ? " active" : "",
738 is_failed(disk) ? " failed" : "");
739 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
740 sz = __le32_to_cpu(disk->total_blocks) - reserved;
741 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
742 human_size(sz * 512));
743 }
744
745 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
746
747 static void examine_super_imsm(struct supertype *st, char *homehost)
748 {
749 struct intel_super *super = st->sb;
750 struct imsm_super *mpb = super->anchor;
751 char str[MAX_SIGNATURE_LENGTH];
752 int i;
753 struct mdinfo info;
754 char nbuf[64];
755 __u32 sum;
756 __u32 reserved = imsm_reserved_sectors(super, super->disks);
757
758
759 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
760 printf(" Magic : %s\n", str);
761 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
762 printf(" Version : %s\n", get_imsm_version(mpb));
763 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
764 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
765 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
766 getinfo_super_imsm(st, &info, NULL);
767 fname_from_uuid(st, &info, nbuf, ':');
768 printf(" UUID : %s\n", nbuf + 5);
769 sum = __le32_to_cpu(mpb->check_sum);
770 printf(" Checksum : %08x %s\n", sum,
771 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
772 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
773 printf(" Disks : %d\n", mpb->num_disks);
774 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
775 print_imsm_disk(mpb, super->disks->index, reserved);
776 if (super->bbm_log) {
777 struct bbm_log *log = super->bbm_log;
778
779 printf("\n");
780 printf("Bad Block Management Log:\n");
781 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
782 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
783 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
784 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
785 printf(" First Spare : %llx\n",
786 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
787 }
788 for (i = 0; i < mpb->num_raid_devs; i++) {
789 struct mdinfo info;
790 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
791
792 super->current_vol = i;
793 getinfo_super_imsm(st, &info, NULL);
794 fname_from_uuid(st, &info, nbuf, ':');
795 print_imsm_dev(dev, nbuf + 5, super->disks->index);
796 }
797 for (i = 0; i < mpb->num_disks; i++) {
798 if (i == super->disks->index)
799 continue;
800 print_imsm_disk(mpb, i, reserved);
801 }
802 }
803
804 static void brief_examine_super_imsm(struct supertype *st, int verbose)
805 {
806 /* We just write a generic IMSM ARRAY entry */
807 struct mdinfo info;
808 char nbuf[64];
809 struct intel_super *super = st->sb;
810
811 if (!super->anchor->num_raid_devs) {
812 printf("ARRAY metadata=imsm\n");
813 return;
814 }
815
816 getinfo_super_imsm(st, &info, NULL);
817 fname_from_uuid(st, &info, nbuf, ':');
818 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
819 }
820
821 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
822 {
823 /* We just write a generic IMSM ARRAY entry */
824 struct mdinfo info;
825 char nbuf[64];
826 char nbuf1[64];
827 struct intel_super *super = st->sb;
828 int i;
829
830 if (!super->anchor->num_raid_devs)
831 return;
832
833 getinfo_super_imsm(st, &info, NULL);
834 fname_from_uuid(st, &info, nbuf, ':');
835 for (i = 0; i < super->anchor->num_raid_devs; i++) {
836 struct imsm_dev *dev = get_imsm_dev(super, i);
837
838 super->current_vol = i;
839 getinfo_super_imsm(st, &info, NULL);
840 fname_from_uuid(st, &info, nbuf1, ':');
841 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
842 dev->volume, nbuf + 5, i, nbuf1 + 5);
843 }
844 }
845
846 static void export_examine_super_imsm(struct supertype *st)
847 {
848 struct intel_super *super = st->sb;
849 struct imsm_super *mpb = super->anchor;
850 struct mdinfo info;
851 char nbuf[64];
852
853 getinfo_super_imsm(st, &info, NULL);
854 fname_from_uuid(st, &info, nbuf, ':');
855 printf("MD_METADATA=imsm\n");
856 printf("MD_LEVEL=container\n");
857 printf("MD_UUID=%s\n", nbuf+5);
858 printf("MD_DEVICES=%u\n", mpb->num_disks);
859 }
860
861 static void detail_super_imsm(struct supertype *st, char *homehost)
862 {
863 struct mdinfo info;
864 char nbuf[64];
865
866 getinfo_super_imsm(st, &info, NULL);
867 fname_from_uuid(st, &info, nbuf, ':');
868 printf("\n UUID : %s\n", nbuf + 5);
869 }
870
871 static void brief_detail_super_imsm(struct supertype *st)
872 {
873 struct mdinfo info;
874 char nbuf[64];
875 getinfo_super_imsm(st, &info, NULL);
876 fname_from_uuid(st, &info, nbuf, ':');
877 printf(" UUID=%s", nbuf + 5);
878 }
879
880 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
881 static void fd2devname(int fd, char *name);
882
883 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
884 {
885 /* dump an unsorted list of devices attached to ahci, as well as
886 * non-connected ports
887 */
888 int hba_len = strlen(hba_path) + 1;
889 struct dirent *ent;
890 DIR *dir;
891 char *path = NULL;
892 int err = 0;
893 unsigned long port_mask = (1 << port_count) - 1;
894
895 if (port_count > (int)sizeof(port_mask) * 8) {
896 if (verbose)
897 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
898 return 2;
899 }
900
901 /* scroll through /sys/dev/block looking for devices attached to
902 * this hba
903 */
904 dir = opendir("/sys/dev/block");
905 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
906 int fd;
907 char model[64];
908 char vendor[64];
909 char buf[1024];
910 int major, minor;
911 char *device;
912 char *c;
913 int port;
914 int type;
915
916 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
917 continue;
918 path = devt_to_devpath(makedev(major, minor));
919 if (!path)
920 continue;
921 if (!path_attached_to_hba(path, hba_path)) {
922 free(path);
923 path = NULL;
924 continue;
925 }
926
927 /* retrieve the scsi device type */
928 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
929 if (verbose)
930 fprintf(stderr, Name ": failed to allocate 'device'\n");
931 err = 2;
932 break;
933 }
934 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
935 if (load_sys(device, buf) != 0) {
936 if (verbose)
937 fprintf(stderr, Name ": failed to read device type for %s\n",
938 path);
939 err = 2;
940 free(device);
941 break;
942 }
943 type = strtoul(buf, NULL, 10);
944
945 /* if it's not a disk print the vendor and model */
946 if (!(type == 0 || type == 7 || type == 14)) {
947 vendor[0] = '\0';
948 model[0] = '\0';
949 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
950 if (load_sys(device, buf) == 0) {
951 strncpy(vendor, buf, sizeof(vendor));
952 vendor[sizeof(vendor) - 1] = '\0';
953 c = (char *) &vendor[sizeof(vendor) - 1];
954 while (isspace(*c) || *c == '\0')
955 *c-- = '\0';
956
957 }
958 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
959 if (load_sys(device, buf) == 0) {
960 strncpy(model, buf, sizeof(model));
961 model[sizeof(model) - 1] = '\0';
962 c = (char *) &model[sizeof(model) - 1];
963 while (isspace(*c) || *c == '\0')
964 *c-- = '\0';
965 }
966
967 if (vendor[0] && model[0])
968 sprintf(buf, "%.64s %.64s", vendor, model);
969 else
970 switch (type) { /* numbers from hald/linux/device.c */
971 case 1: sprintf(buf, "tape"); break;
972 case 2: sprintf(buf, "printer"); break;
973 case 3: sprintf(buf, "processor"); break;
974 case 4:
975 case 5: sprintf(buf, "cdrom"); break;
976 case 6: sprintf(buf, "scanner"); break;
977 case 8: sprintf(buf, "media_changer"); break;
978 case 9: sprintf(buf, "comm"); break;
979 case 12: sprintf(buf, "raid"); break;
980 default: sprintf(buf, "unknown");
981 }
982 } else
983 buf[0] = '\0';
984 free(device);
985
986 /* chop device path to 'host%d' and calculate the port number */
987 c = strchr(&path[hba_len], '/');
988 if (!c) {
989 if (verbose)
990 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
991 err = 2;
992 break;
993 }
994 *c = '\0';
995 if (sscanf(&path[hba_len], "host%d", &port) == 1)
996 port -= host_base;
997 else {
998 if (verbose) {
999 *c = '/'; /* repair the full string */
1000 fprintf(stderr, Name ": failed to determine port number for %s\n",
1001 path);
1002 }
1003 err = 2;
1004 break;
1005 }
1006
1007 /* mark this port as used */
1008 port_mask &= ~(1 << port);
1009
1010 /* print out the device information */
1011 if (buf[0]) {
1012 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1013 continue;
1014 }
1015
1016 fd = dev_open(ent->d_name, O_RDONLY);
1017 if (fd < 0)
1018 printf(" Port%d : - disk info unavailable -\n", port);
1019 else {
1020 fd2devname(fd, buf);
1021 printf(" Port%d : %s", port, buf);
1022 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1023 printf(" (%s)\n", buf);
1024 else
1025 printf("()\n");
1026 }
1027 close(fd);
1028 free(path);
1029 path = NULL;
1030 }
1031 if (path)
1032 free(path);
1033 if (dir)
1034 closedir(dir);
1035 if (err == 0) {
1036 int i;
1037
1038 for (i = 0; i < port_count; i++)
1039 if (port_mask & (1 << i))
1040 printf(" Port%d : - no device attached -\n", i);
1041 }
1042
1043 return err;
1044 }
1045
1046 static int detail_platform_imsm(int verbose, int enumerate_only)
1047 {
1048 /* There are two components to imsm platform support, the ahci SATA
1049 * controller and the option-rom. To find the SATA controller we
1050 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1051 * controller with the Intel vendor id is present. This approach
1052 * allows mdadm to leverage the kernel's ahci detection logic, with the
1053 * caveat that if ahci.ko is not loaded mdadm will not be able to
1054 * detect platform raid capabilities. The option-rom resides in a
1055 * platform "Adapter ROM". We scan for its signature to retrieve the
1056 * platform capabilities. If raid support is disabled in the BIOS the
1057 * option-rom capability structure will not be available.
1058 */
1059 const struct imsm_orom *orom;
1060 struct sys_dev *list, *hba;
1061 DIR *dir;
1062 struct dirent *ent;
1063 const char *hba_path;
1064 int host_base = 0;
1065 int port_count = 0;
1066
1067 if (enumerate_only) {
1068 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1069 return 0;
1070 return 2;
1071 }
1072
1073 list = find_driver_devices("pci", "ahci");
1074 for (hba = list; hba; hba = hba->next)
1075 if (devpath_to_vendor(hba->path) == 0x8086)
1076 break;
1077
1078 if (!hba) {
1079 if (verbose)
1080 fprintf(stderr, Name ": unable to find active ahci controller\n");
1081 free_sys_dev(&list);
1082 return 2;
1083 } else if (verbose)
1084 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1085 hba_path = hba->path;
1086 hba->path = NULL;
1087 free_sys_dev(&list);
1088
1089 orom = find_imsm_orom();
1090 if (!orom) {
1091 if (verbose)
1092 fprintf(stderr, Name ": imsm option-rom not found\n");
1093 return 2;
1094 }
1095
1096 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1097 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1098 orom->hotfix_ver, orom->build);
1099 printf(" RAID Levels :%s%s%s%s%s\n",
1100 imsm_orom_has_raid0(orom) ? " raid0" : "",
1101 imsm_orom_has_raid1(orom) ? " raid1" : "",
1102 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1103 imsm_orom_has_raid10(orom) ? " raid10" : "",
1104 imsm_orom_has_raid5(orom) ? " raid5" : "");
1105 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1106 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1107 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1108 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1109 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1110 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1111 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1112 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1113 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1114 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1115 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1116 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1117 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1118 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1119 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1120 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1121 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1122 printf(" Max Disks : %d\n", orom->tds);
1123 printf(" Max Volumes : %d\n", orom->vpa);
1124 printf(" I/O Controller : %s\n", hba_path);
1125
1126 /* find the smallest scsi host number to determine a port number base */
1127 dir = opendir(hba_path);
1128 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1129 int host;
1130
1131 if (sscanf(ent->d_name, "host%d", &host) != 1)
1132 continue;
1133 if (port_count == 0)
1134 host_base = host;
1135 else if (host < host_base)
1136 host_base = host;
1137
1138 if (host + 1 > port_count + host_base)
1139 port_count = host + 1 - host_base;
1140
1141 }
1142 if (dir)
1143 closedir(dir);
1144
1145 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1146 host_base, verbose) != 0) {
1147 if (verbose)
1148 fprintf(stderr, Name ": failed to enumerate ports\n");
1149 return 2;
1150 }
1151
1152 return 0;
1153 }
1154 #endif
1155
1156 static int match_home_imsm(struct supertype *st, char *homehost)
1157 {
1158 /* the imsm metadata format does not specify any host
1159 * identification information. We return -1 since we can never
1160 * confirm nor deny whether a given array is "meant" for this
1161 * host. We rely on compare_super and the 'family_num' fields to
1162 * exclude member disks that do not belong, and we rely on
1163 * mdadm.conf to specify the arrays that should be assembled.
1164 * Auto-assembly may still pick up "foreign" arrays.
1165 */
1166
1167 return -1;
1168 }
1169
1170 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1171 {
1172 /* The uuid returned here is used for:
1173 * uuid to put into bitmap file (Create, Grow)
1174 * uuid for backup header when saving critical section (Grow)
1175 * comparing uuids when re-adding a device into an array
1176 * In these cases the uuid required is that of the data-array,
1177 * not the device-set.
1178 * uuid to recognise same set when adding a missing device back
1179 * to an array. This is a uuid for the device-set.
1180 *
1181 * For each of these we can make do with a truncated
1182 * or hashed uuid rather than the original, as long as
1183 * everyone agrees.
1184 * In each case the uuid required is that of the data-array,
1185 * not the device-set.
1186 */
1187 /* imsm does not track uuid's so we synthesis one using sha1 on
1188 * - The signature (Which is constant for all imsm array, but no matter)
1189 * - the orig_family_num of the container
1190 * - the index number of the volume
1191 * - the 'serial' number of the volume.
1192 * Hopefully these are all constant.
1193 */
1194 struct intel_super *super = st->sb;
1195
1196 char buf[20];
1197 struct sha1_ctx ctx;
1198 struct imsm_dev *dev = NULL;
1199 __u32 family_num;
1200
1201 /* some mdadm versions failed to set ->orig_family_num, in which
1202 * case fall back to ->family_num. orig_family_num will be
1203 * fixed up with the first metadata update.
1204 */
1205 family_num = super->anchor->orig_family_num;
1206 if (family_num == 0)
1207 family_num = super->anchor->family_num;
1208 sha1_init_ctx(&ctx);
1209 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1210 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1211 if (super->current_vol >= 0)
1212 dev = get_imsm_dev(super, super->current_vol);
1213 if (dev) {
1214 __u32 vol = super->current_vol;
1215 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1216 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1217 }
1218 sha1_finish_ctx(&ctx, buf);
1219 memcpy(uuid, buf, 4*4);
1220 }
1221
1222 #if 0
1223 static void
1224 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1225 {
1226 __u8 *v = get_imsm_version(mpb);
1227 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1228 char major[] = { 0, 0, 0 };
1229 char minor[] = { 0 ,0, 0 };
1230 char patch[] = { 0, 0, 0 };
1231 char *ver_parse[] = { major, minor, patch };
1232 int i, j;
1233
1234 i = j = 0;
1235 while (*v != '\0' && v < end) {
1236 if (*v != '.' && j < 2)
1237 ver_parse[i][j++] = *v;
1238 else {
1239 i++;
1240 j = 0;
1241 }
1242 v++;
1243 }
1244
1245 *m = strtol(minor, NULL, 0);
1246 *p = strtol(patch, NULL, 0);
1247 }
1248 #endif
1249
1250 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1251 {
1252 /* migr_strip_size when repairing or initializing parity */
1253 struct imsm_map *map = get_imsm_map(dev, 0);
1254 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1255
1256 switch (get_imsm_raid_level(map)) {
1257 case 5:
1258 case 10:
1259 return chunk;
1260 default:
1261 return 128*1024 >> 9;
1262 }
1263 }
1264
1265 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1266 {
1267 /* migr_strip_size when rebuilding a degraded disk, no idea why
1268 * this is different than migr_strip_size_resync(), but it's good
1269 * to be compatible
1270 */
1271 struct imsm_map *map = get_imsm_map(dev, 1);
1272 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1273
1274 switch (get_imsm_raid_level(map)) {
1275 case 1:
1276 case 10:
1277 if (map->num_members % map->num_domains == 0)
1278 return 128*1024 >> 9;
1279 else
1280 return chunk;
1281 case 5:
1282 return max((__u32) 64*1024 >> 9, chunk);
1283 default:
1284 return 128*1024 >> 9;
1285 }
1286 }
1287
1288 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1289 {
1290 struct imsm_map *lo = get_imsm_map(dev, 0);
1291 struct imsm_map *hi = get_imsm_map(dev, 1);
1292 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1293 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1294
1295 return max((__u32) 1, hi_chunk / lo_chunk);
1296 }
1297
1298 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1299 {
1300 struct imsm_map *lo = get_imsm_map(dev, 0);
1301 int level = get_imsm_raid_level(lo);
1302
1303 if (level == 1 || level == 10) {
1304 struct imsm_map *hi = get_imsm_map(dev, 1);
1305
1306 return hi->num_domains;
1307 } else
1308 return num_stripes_per_unit_resync(dev);
1309 }
1310
1311 static __u8 imsm_num_data_members(struct imsm_dev *dev)
1312 {
1313 /* named 'imsm_' because raid0, raid1 and raid10
1314 * counter-intuitively have the same number of data disks
1315 */
1316 struct imsm_map *map = get_imsm_map(dev, 0);
1317
1318 switch (get_imsm_raid_level(map)) {
1319 case 0:
1320 case 1:
1321 case 10:
1322 return map->num_members;
1323 case 5:
1324 return map->num_members - 1;
1325 default:
1326 dprintf("%s: unsupported raid level\n", __func__);
1327 return 0;
1328 }
1329 }
1330
1331 static __u32 parity_segment_depth(struct imsm_dev *dev)
1332 {
1333 struct imsm_map *map = get_imsm_map(dev, 0);
1334 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1335
1336 switch(get_imsm_raid_level(map)) {
1337 case 1:
1338 case 10:
1339 return chunk * map->num_domains;
1340 case 5:
1341 return chunk * map->num_members;
1342 default:
1343 return chunk;
1344 }
1345 }
1346
1347 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1348 {
1349 struct imsm_map *map = get_imsm_map(dev, 1);
1350 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1351 __u32 strip = block / chunk;
1352
1353 switch (get_imsm_raid_level(map)) {
1354 case 1:
1355 case 10: {
1356 __u32 vol_strip = (strip * map->num_domains) + 1;
1357 __u32 vol_stripe = vol_strip / map->num_members;
1358
1359 return vol_stripe * chunk + block % chunk;
1360 } case 5: {
1361 __u32 stripe = strip / (map->num_members - 1);
1362
1363 return stripe * chunk + block % chunk;
1364 }
1365 default:
1366 return 0;
1367 }
1368 }
1369
1370 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1371 {
1372 /* calculate the conversion factor between per member 'blocks'
1373 * (md/{resync,rebuild}_start) and imsm migration units, return
1374 * 0 for the 'not migrating' and 'unsupported migration' cases
1375 */
1376 if (!dev->vol.migr_state)
1377 return 0;
1378
1379 switch (migr_type(dev)) {
1380 case MIGR_VERIFY:
1381 case MIGR_REPAIR:
1382 case MIGR_INIT: {
1383 struct imsm_map *map = get_imsm_map(dev, 0);
1384 __u32 stripes_per_unit;
1385 __u32 blocks_per_unit;
1386 __u32 parity_depth;
1387 __u32 migr_chunk;
1388 __u32 block_map;
1389 __u32 block_rel;
1390 __u32 segment;
1391 __u32 stripe;
1392 __u8 disks;
1393
1394 /* yes, this is really the translation of migr_units to
1395 * per-member blocks in the 'resync' case
1396 */
1397 stripes_per_unit = num_stripes_per_unit_resync(dev);
1398 migr_chunk = migr_strip_blocks_resync(dev);
1399 disks = imsm_num_data_members(dev);
1400 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1401 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1402 segment = blocks_per_unit / stripe;
1403 block_rel = blocks_per_unit - segment * stripe;
1404 parity_depth = parity_segment_depth(dev);
1405 block_map = map_migr_block(dev, block_rel);
1406 return block_map + parity_depth * segment;
1407 }
1408 case MIGR_REBUILD: {
1409 __u32 stripes_per_unit;
1410 __u32 migr_chunk;
1411
1412 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1413 migr_chunk = migr_strip_blocks_rebuild(dev);
1414 return migr_chunk * stripes_per_unit;
1415 }
1416 case MIGR_GEN_MIGR:
1417 case MIGR_STATE_CHANGE:
1418 default:
1419 return 0;
1420 }
1421 }
1422
1423 static int imsm_level_to_layout(int level)
1424 {
1425 switch (level) {
1426 case 0:
1427 case 1:
1428 return 0;
1429 case 5:
1430 case 6:
1431 return ALGORITHM_LEFT_ASYMMETRIC;
1432 case 10:
1433 return 0x102;
1434 }
1435 return UnSet;
1436 }
1437
1438 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1439 {
1440 struct intel_super *super = st->sb;
1441 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1442 struct imsm_map *map = get_imsm_map(dev, 0);
1443 struct dl *dl;
1444 char *devname;
1445 int map_disks = info->array.raid_disks;
1446
1447 for (dl = super->disks; dl; dl = dl->next)
1448 if (dl->raiddisk == info->disk.raid_disk)
1449 break;
1450 info->container_member = super->current_vol;
1451 info->array.raid_disks = map->num_members;
1452 info->array.level = get_imsm_raid_level(map);
1453 info->array.layout = imsm_level_to_layout(info->array.level);
1454 info->array.md_minor = -1;
1455 info->array.ctime = 0;
1456 info->array.utime = 0;
1457 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1458 info->array.state = !dev->vol.dirty;
1459 info->custom_array_size = __le32_to_cpu(dev->size_high);
1460 info->custom_array_size <<= 32;
1461 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1462
1463 info->disk.major = 0;
1464 info->disk.minor = 0;
1465 if (dl) {
1466 info->disk.major = dl->major;
1467 info->disk.minor = dl->minor;
1468 }
1469
1470 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1471 info->component_size = __le32_to_cpu(map->blocks_per_member);
1472 memset(info->uuid, 0, sizeof(info->uuid));
1473 info->recovery_start = MaxSector;
1474 info->reshape_active = 0;
1475
1476 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
1477 info->resync_start = 0;
1478 } else if (dev->vol.migr_state) {
1479 switch (migr_type(dev)) {
1480 case MIGR_REPAIR:
1481 case MIGR_INIT: {
1482 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1483 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1484
1485 info->resync_start = blocks_per_unit * units;
1486 break;
1487 }
1488 case MIGR_VERIFY:
1489 /* we could emulate the checkpointing of
1490 * 'sync_action=check' migrations, but for now
1491 * we just immediately complete them
1492 */
1493 case MIGR_REBUILD:
1494 /* this is handled by container_content_imsm() */
1495 case MIGR_GEN_MIGR:
1496 case MIGR_STATE_CHANGE:
1497 /* FIXME handle other migrations */
1498 default:
1499 /* we are not dirty, so... */
1500 info->resync_start = MaxSector;
1501 }
1502 } else
1503 info->resync_start = MaxSector;
1504
1505 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1506 info->name[MAX_RAID_SERIAL_LEN] = 0;
1507
1508 info->array.major_version = -1;
1509 info->array.minor_version = -2;
1510 devname = devnum2devname(st->container_dev);
1511 *info->text_version = '\0';
1512 if (devname)
1513 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1514 free(devname);
1515 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1516 uuid_from_super_imsm(st, info->uuid);
1517
1518 if (dmap) {
1519 int i, j;
1520 for (i=0; i<map_disks; i++) {
1521 dmap[i] = 0;
1522 if (i < info->array.raid_disks) {
1523 struct imsm_disk *dsk;
1524 j = get_imsm_disk_idx(dev, i);
1525 dsk = get_imsm_disk(super, j);
1526 if (dsk && (dsk->status & CONFIGURED_DISK))
1527 dmap[i] = 1;
1528 }
1529 }
1530 }
1531 }
1532
1533 /* check the config file to see if we can return a real uuid for this spare */
1534 static void fixup_container_spare_uuid(struct mdinfo *inf)
1535 {
1536 struct mddev_ident *array_list;
1537
1538 if (inf->array.level != LEVEL_CONTAINER ||
1539 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1540 return;
1541
1542 array_list = conf_get_ident(NULL);
1543
1544 for (; array_list; array_list = array_list->next) {
1545 if (array_list->uuid_set) {
1546 struct supertype *_sst; /* spare supertype */
1547 struct supertype *_cst; /* container supertype */
1548
1549 _cst = array_list->st;
1550 if (_cst)
1551 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1552 else
1553 _sst = NULL;
1554
1555 if (_sst) {
1556 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1557 free(_sst);
1558 break;
1559 }
1560 }
1561 }
1562 }
1563
1564
1565 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1566 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1567
1568 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1569 {
1570 struct dl *d;
1571
1572 for (d = super->missing; d; d = d->next)
1573 if (d->index == index)
1574 return &d->disk;
1575 return NULL;
1576 }
1577
1578 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1579 {
1580 struct intel_super *super = st->sb;
1581 struct imsm_disk *disk;
1582 int map_disks = info->array.raid_disks;
1583 int max_enough = -1;
1584 int i;
1585 struct imsm_super *mpb;
1586
1587 if (super->current_vol >= 0) {
1588 getinfo_super_imsm_volume(st, info, map);
1589 return;
1590 }
1591
1592 /* Set raid_disks to zero so that Assemble will always pull in valid
1593 * spares
1594 */
1595 info->array.raid_disks = 0;
1596 info->array.level = LEVEL_CONTAINER;
1597 info->array.layout = 0;
1598 info->array.md_minor = -1;
1599 info->array.ctime = 0; /* N/A for imsm */
1600 info->array.utime = 0;
1601 info->array.chunk_size = 0;
1602
1603 info->disk.major = 0;
1604 info->disk.minor = 0;
1605 info->disk.raid_disk = -1;
1606 info->reshape_active = 0;
1607 info->array.major_version = -1;
1608 info->array.minor_version = -2;
1609 strcpy(info->text_version, "imsm");
1610 info->safe_mode_delay = 0;
1611 info->disk.number = -1;
1612 info->disk.state = 0;
1613 info->name[0] = 0;
1614 info->recovery_start = MaxSector;
1615
1616 /* do we have the all the insync disks that we expect? */
1617 mpb = super->anchor;
1618
1619 for (i = 0; i < mpb->num_raid_devs; i++) {
1620 struct imsm_dev *dev = get_imsm_dev(super, i);
1621 int failed, enough, j, missing = 0;
1622 struct imsm_map *map;
1623 __u8 state;
1624
1625 failed = imsm_count_failed(super, dev);
1626 state = imsm_check_degraded(super, dev, failed);
1627 map = get_imsm_map(dev, dev->vol.migr_state);
1628
1629 /* any newly missing disks?
1630 * (catches single-degraded vs double-degraded)
1631 */
1632 for (j = 0; j < map->num_members; j++) {
1633 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
1634 __u32 idx = ord_to_idx(ord);
1635
1636 if (!(ord & IMSM_ORD_REBUILD) &&
1637 get_imsm_missing(super, idx)) {
1638 missing = 1;
1639 break;
1640 }
1641 }
1642
1643 if (state == IMSM_T_STATE_FAILED)
1644 enough = -1;
1645 else if (state == IMSM_T_STATE_DEGRADED &&
1646 (state != map->map_state || missing))
1647 enough = 0;
1648 else /* we're normal, or already degraded */
1649 enough = 1;
1650
1651 /* in the missing/failed disk case check to see
1652 * if at least one array is runnable
1653 */
1654 max_enough = max(max_enough, enough);
1655 }
1656 dprintf("%s: enough: %d\n", __func__, max_enough);
1657 info->container_enough = max_enough;
1658
1659 if (super->disks) {
1660 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1661
1662 disk = &super->disks->disk;
1663 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1664 info->component_size = reserved;
1665 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1666 /* we don't change info->disk.raid_disk here because
1667 * this state will be finalized in mdmon after we have
1668 * found the 'most fresh' version of the metadata
1669 */
1670 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1671 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1672 }
1673
1674 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1675 * ->compare_super may have updated the 'num_raid_devs' field for spares
1676 */
1677 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1678 uuid_from_super_imsm(st, info->uuid);
1679 else {
1680 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1681 fixup_container_spare_uuid(info);
1682 }
1683
1684 /* I don't know how to compute 'map' on imsm, so use safe default */
1685 if (map) {
1686 int i;
1687 for (i = 0; i < map_disks; i++)
1688 map[i] = 1;
1689 }
1690
1691 }
1692
1693 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1694 char *update, char *devname, int verbose,
1695 int uuid_set, char *homehost)
1696 {
1697 /* For 'assemble' and 'force' we need to return non-zero if any
1698 * change was made. For others, the return value is ignored.
1699 * Update options are:
1700 * force-one : This device looks a bit old but needs to be included,
1701 * update age info appropriately.
1702 * assemble: clear any 'faulty' flag to allow this device to
1703 * be assembled.
1704 * force-array: Array is degraded but being forced, mark it clean
1705 * if that will be needed to assemble it.
1706 *
1707 * newdev: not used ????
1708 * grow: Array has gained a new device - this is currently for
1709 * linear only
1710 * resync: mark as dirty so a resync will happen.
1711 * name: update the name - preserving the homehost
1712 * uuid: Change the uuid of the array to match watch is given
1713 *
1714 * Following are not relevant for this imsm:
1715 * sparc2.2 : update from old dodgey metadata
1716 * super-minor: change the preferred_minor number
1717 * summaries: update redundant counters.
1718 * homehost: update the recorded homehost
1719 * _reshape_progress: record new reshape_progress position.
1720 */
1721 int rv = 1;
1722 struct intel_super *super = st->sb;
1723 struct imsm_super *mpb;
1724
1725 /* we can only update container info */
1726 if (!super || super->current_vol >= 0 || !super->anchor)
1727 return 1;
1728
1729 mpb = super->anchor;
1730
1731 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1732 rv = -1;
1733 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1734 mpb->orig_family_num = *((__u32 *) info->update_private);
1735 rv = 0;
1736 } else if (strcmp(update, "uuid") == 0) {
1737 __u32 *new_family = malloc(sizeof(*new_family));
1738
1739 /* update orig_family_number with the incoming random
1740 * data, report the new effective uuid, and store the
1741 * new orig_family_num for future updates.
1742 */
1743 if (new_family) {
1744 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1745 uuid_from_super_imsm(st, info->uuid);
1746 *new_family = mpb->orig_family_num;
1747 info->update_private = new_family;
1748 rv = 0;
1749 }
1750 } else if (strcmp(update, "assemble") == 0)
1751 rv = 0;
1752 else
1753 rv = -1;
1754
1755 /* successful update? recompute checksum */
1756 if (rv == 0)
1757 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1758
1759 return rv;
1760 }
1761
1762 static size_t disks_to_mpb_size(int disks)
1763 {
1764 size_t size;
1765
1766 size = sizeof(struct imsm_super);
1767 size += (disks - 1) * sizeof(struct imsm_disk);
1768 size += 2 * sizeof(struct imsm_dev);
1769 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1770 size += (4 - 2) * sizeof(struct imsm_map);
1771 /* 4 possible disk_ord_tbl's */
1772 size += 4 * (disks - 1) * sizeof(__u32);
1773
1774 return size;
1775 }
1776
1777 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1778 {
1779 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1780 return 0;
1781
1782 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1783 }
1784
1785 static void free_devlist(struct intel_super *super)
1786 {
1787 struct intel_dev *dv;
1788
1789 while (super->devlist) {
1790 dv = super->devlist->next;
1791 free(super->devlist->dev);
1792 free(super->devlist);
1793 super->devlist = dv;
1794 }
1795 }
1796
1797 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1798 {
1799 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1800 }
1801
1802 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1803 {
1804 /*
1805 * return:
1806 * 0 same, or first was empty, and second was copied
1807 * 1 second had wrong number
1808 * 2 wrong uuid
1809 * 3 wrong other info
1810 */
1811 struct intel_super *first = st->sb;
1812 struct intel_super *sec = tst->sb;
1813
1814 if (!first) {
1815 st->sb = tst->sb;
1816 tst->sb = NULL;
1817 return 0;
1818 }
1819
1820 /* if an anchor does not have num_raid_devs set then it is a free
1821 * floating spare
1822 */
1823 if (first->anchor->num_raid_devs > 0 &&
1824 sec->anchor->num_raid_devs > 0) {
1825 /* Determine if these disks might ever have been
1826 * related. Further disambiguation can only take place
1827 * in load_super_imsm_all
1828 */
1829 __u32 first_family = first->anchor->orig_family_num;
1830 __u32 sec_family = sec->anchor->orig_family_num;
1831
1832 if (memcmp(first->anchor->sig, sec->anchor->sig,
1833 MAX_SIGNATURE_LENGTH) != 0)
1834 return 3;
1835
1836 if (first_family == 0)
1837 first_family = first->anchor->family_num;
1838 if (sec_family == 0)
1839 sec_family = sec->anchor->family_num;
1840
1841 if (first_family != sec_family)
1842 return 3;
1843
1844 }
1845
1846
1847 /* if 'first' is a spare promote it to a populated mpb with sec's
1848 * family number
1849 */
1850 if (first->anchor->num_raid_devs == 0 &&
1851 sec->anchor->num_raid_devs > 0) {
1852 int i;
1853 struct intel_dev *dv;
1854 struct imsm_dev *dev;
1855
1856 /* we need to copy raid device info from sec if an allocation
1857 * fails here we don't associate the spare
1858 */
1859 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1860 dv = malloc(sizeof(*dv));
1861 if (!dv)
1862 break;
1863 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1864 if (!dev) {
1865 free(dv);
1866 break;
1867 }
1868 dv->dev = dev;
1869 dv->index = i;
1870 dv->next = first->devlist;
1871 first->devlist = dv;
1872 }
1873 if (i < sec->anchor->num_raid_devs) {
1874 /* allocation failure */
1875 free_devlist(first);
1876 fprintf(stderr, "imsm: failed to associate spare\n");
1877 return 3;
1878 }
1879 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1880 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1881 first->anchor->family_num = sec->anchor->family_num;
1882 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
1883 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1884 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1885 }
1886
1887 return 0;
1888 }
1889
1890 static void fd2devname(int fd, char *name)
1891 {
1892 struct stat st;
1893 char path[256];
1894 char dname[PATH_MAX];
1895 char *nm;
1896 int rv;
1897
1898 name[0] = '\0';
1899 if (fstat(fd, &st) != 0)
1900 return;
1901 sprintf(path, "/sys/dev/block/%d:%d",
1902 major(st.st_rdev), minor(st.st_rdev));
1903
1904 rv = readlink(path, dname, sizeof(dname));
1905 if (rv <= 0)
1906 return;
1907
1908 dname[rv] = '\0';
1909 nm = strrchr(dname, '/');
1910 nm++;
1911 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1912 }
1913
1914 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1915
1916 static int imsm_read_serial(int fd, char *devname,
1917 __u8 serial[MAX_RAID_SERIAL_LEN])
1918 {
1919 unsigned char scsi_serial[255];
1920 int rv;
1921 int rsp_len;
1922 int len;
1923 char *dest;
1924 char *src;
1925 char *rsp_buf;
1926 int i;
1927
1928 memset(scsi_serial, 0, sizeof(scsi_serial));
1929
1930 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1931
1932 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1933 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1934 fd2devname(fd, (char *) serial);
1935 return 0;
1936 }
1937
1938 if (rv != 0) {
1939 if (devname)
1940 fprintf(stderr,
1941 Name ": Failed to retrieve serial for %s\n",
1942 devname);
1943 return rv;
1944 }
1945
1946 rsp_len = scsi_serial[3];
1947 if (!rsp_len) {
1948 if (devname)
1949 fprintf(stderr,
1950 Name ": Failed to retrieve serial for %s\n",
1951 devname);
1952 return 2;
1953 }
1954 rsp_buf = (char *) &scsi_serial[4];
1955
1956 /* trim all whitespace and non-printable characters and convert
1957 * ':' to ';'
1958 */
1959 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1960 src = &rsp_buf[i];
1961 if (*src > 0x20) {
1962 /* ':' is reserved for use in placeholder serial
1963 * numbers for missing disks
1964 */
1965 if (*src == ':')
1966 *dest++ = ';';
1967 else
1968 *dest++ = *src;
1969 }
1970 }
1971 len = dest - rsp_buf;
1972 dest = rsp_buf;
1973
1974 /* truncate leading characters */
1975 if (len > MAX_RAID_SERIAL_LEN) {
1976 dest += len - MAX_RAID_SERIAL_LEN;
1977 len = MAX_RAID_SERIAL_LEN;
1978 }
1979
1980 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1981 memcpy(serial, dest, len);
1982
1983 return 0;
1984 }
1985
1986 static int serialcmp(__u8 *s1, __u8 *s2)
1987 {
1988 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1989 }
1990
1991 static void serialcpy(__u8 *dest, __u8 *src)
1992 {
1993 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1994 }
1995
1996 #ifndef MDASSEMBLE
1997 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1998 {
1999 struct dl *dl;
2000
2001 for (dl = super->disks; dl; dl = dl->next)
2002 if (serialcmp(dl->serial, serial) == 0)
2003 break;
2004
2005 return dl;
2006 }
2007 #endif
2008
2009 static struct imsm_disk *
2010 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2011 {
2012 int i;
2013
2014 for (i = 0; i < mpb->num_disks; i++) {
2015 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2016
2017 if (serialcmp(disk->serial, serial) == 0) {
2018 if (idx)
2019 *idx = i;
2020 return disk;
2021 }
2022 }
2023
2024 return NULL;
2025 }
2026
2027 static int
2028 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2029 {
2030 struct imsm_disk *disk;
2031 struct dl *dl;
2032 struct stat stb;
2033 int rv;
2034 char name[40];
2035 __u8 serial[MAX_RAID_SERIAL_LEN];
2036
2037 rv = imsm_read_serial(fd, devname, serial);
2038
2039 if (rv != 0)
2040 return 2;
2041
2042 dl = calloc(1, sizeof(*dl));
2043 if (!dl) {
2044 if (devname)
2045 fprintf(stderr,
2046 Name ": failed to allocate disk buffer for %s\n",
2047 devname);
2048 return 2;
2049 }
2050
2051 fstat(fd, &stb);
2052 dl->major = major(stb.st_rdev);
2053 dl->minor = minor(stb.st_rdev);
2054 dl->next = super->disks;
2055 dl->fd = keep_fd ? fd : -1;
2056 assert(super->disks == NULL);
2057 super->disks = dl;
2058 serialcpy(dl->serial, serial);
2059 dl->index = -2;
2060 dl->e = NULL;
2061 fd2devname(fd, name);
2062 if (devname)
2063 dl->devname = strdup(devname);
2064 else
2065 dl->devname = strdup(name);
2066
2067 /* look up this disk's index in the current anchor */
2068 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2069 if (disk) {
2070 dl->disk = *disk;
2071 /* only set index on disks that are a member of a
2072 * populated contianer, i.e. one with raid_devs
2073 */
2074 if (is_failed(&dl->disk))
2075 dl->index = -2;
2076 else if (is_spare(&dl->disk))
2077 dl->index = -1;
2078 }
2079
2080 return 0;
2081 }
2082
2083 #ifndef MDASSEMBLE
2084 /* When migrating map0 contains the 'destination' state while map1
2085 * contains the current state. When not migrating map0 contains the
2086 * current state. This routine assumes that map[0].map_state is set to
2087 * the current array state before being called.
2088 *
2089 * Migration is indicated by one of the following states
2090 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2091 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2092 * map1state=unitialized)
2093 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2094 * map1state=normal)
2095 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2096 * map1state=degraded)
2097 */
2098 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2099 {
2100 struct imsm_map *dest;
2101 struct imsm_map *src = get_imsm_map(dev, 0);
2102
2103 dev->vol.migr_state = 1;
2104 set_migr_type(dev, migr_type);
2105 dev->vol.curr_migr_unit = 0;
2106 dest = get_imsm_map(dev, 1);
2107
2108 /* duplicate and then set the target end state in map[0] */
2109 memcpy(dest, src, sizeof_imsm_map(src));
2110 if (migr_type == MIGR_REBUILD) {
2111 __u32 ord;
2112 int i;
2113
2114 for (i = 0; i < src->num_members; i++) {
2115 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2116 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2117 }
2118 }
2119
2120 src->map_state = to_state;
2121 }
2122
2123 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2124 {
2125 struct imsm_map *map = get_imsm_map(dev, 0);
2126 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2127 int i;
2128
2129 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2130 * completed in the last migration.
2131 *
2132 * FIXME add support for online capacity expansion and
2133 * raid-level-migration
2134 */
2135 for (i = 0; i < prev->num_members; i++)
2136 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
2137
2138 dev->vol.migr_state = 0;
2139 dev->vol.curr_migr_unit = 0;
2140 map->map_state = map_state;
2141 }
2142 #endif
2143
2144 static int parse_raid_devices(struct intel_super *super)
2145 {
2146 int i;
2147 struct imsm_dev *dev_new;
2148 size_t len, len_migr;
2149 size_t space_needed = 0;
2150 struct imsm_super *mpb = super->anchor;
2151
2152 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2153 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2154 struct intel_dev *dv;
2155
2156 len = sizeof_imsm_dev(dev_iter, 0);
2157 len_migr = sizeof_imsm_dev(dev_iter, 1);
2158 if (len_migr > len)
2159 space_needed += len_migr - len;
2160
2161 dv = malloc(sizeof(*dv));
2162 if (!dv)
2163 return 1;
2164 dev_new = malloc(len_migr);
2165 if (!dev_new) {
2166 free(dv);
2167 return 1;
2168 }
2169 imsm_copy_dev(dev_new, dev_iter);
2170 dv->dev = dev_new;
2171 dv->index = i;
2172 dv->next = super->devlist;
2173 super->devlist = dv;
2174 }
2175
2176 /* ensure that super->buf is large enough when all raid devices
2177 * are migrating
2178 */
2179 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2180 void *buf;
2181
2182 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2183 if (posix_memalign(&buf, 512, len) != 0)
2184 return 1;
2185
2186 memcpy(buf, super->buf, super->len);
2187 memset(buf + super->len, 0, len - super->len);
2188 free(super->buf);
2189 super->buf = buf;
2190 super->len = len;
2191 }
2192
2193 return 0;
2194 }
2195
2196 /* retrieve a pointer to the bbm log which starts after all raid devices */
2197 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2198 {
2199 void *ptr = NULL;
2200
2201 if (__le32_to_cpu(mpb->bbm_log_size)) {
2202 ptr = mpb;
2203 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2204 }
2205
2206 return ptr;
2207 }
2208
2209 static void __free_imsm(struct intel_super *super, int free_disks);
2210
2211 /* load_imsm_mpb - read matrix metadata
2212 * allocates super->mpb to be freed by free_super
2213 */
2214 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2215 {
2216 unsigned long long dsize;
2217 unsigned long long sectors;
2218 struct stat;
2219 struct imsm_super *anchor;
2220 __u32 check_sum;
2221
2222 get_dev_size(fd, NULL, &dsize);
2223 if (dsize < 1024) {
2224 if (devname)
2225 fprintf(stderr,
2226 Name ": %s: device to small for imsm\n",
2227 devname);
2228 return 1;
2229 }
2230
2231 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2232 if (devname)
2233 fprintf(stderr,
2234 Name ": Cannot seek to anchor block on %s: %s\n",
2235 devname, strerror(errno));
2236 return 1;
2237 }
2238
2239 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2240 if (devname)
2241 fprintf(stderr,
2242 Name ": Failed to allocate imsm anchor buffer"
2243 " on %s\n", devname);
2244 return 1;
2245 }
2246 if (read(fd, anchor, 512) != 512) {
2247 if (devname)
2248 fprintf(stderr,
2249 Name ": Cannot read anchor block on %s: %s\n",
2250 devname, strerror(errno));
2251 free(anchor);
2252 return 1;
2253 }
2254
2255 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2256 if (devname)
2257 fprintf(stderr,
2258 Name ": no IMSM anchor on %s\n", devname);
2259 free(anchor);
2260 return 2;
2261 }
2262
2263 __free_imsm(super, 0);
2264 super->len = ROUND_UP(anchor->mpb_size, 512);
2265 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2266 if (devname)
2267 fprintf(stderr,
2268 Name ": unable to allocate %zu byte mpb buffer\n",
2269 super->len);
2270 free(anchor);
2271 return 2;
2272 }
2273 memcpy(super->buf, anchor, 512);
2274
2275 sectors = mpb_sectors(anchor) - 1;
2276 free(anchor);
2277 if (!sectors) {
2278 check_sum = __gen_imsm_checksum(super->anchor);
2279 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2280 if (devname)
2281 fprintf(stderr,
2282 Name ": IMSM checksum %x != %x on %s\n",
2283 check_sum,
2284 __le32_to_cpu(super->anchor->check_sum),
2285 devname);
2286 return 2;
2287 }
2288
2289 return 0;
2290 }
2291
2292 /* read the extended mpb */
2293 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2294 if (devname)
2295 fprintf(stderr,
2296 Name ": Cannot seek to extended mpb on %s: %s\n",
2297 devname, strerror(errno));
2298 return 1;
2299 }
2300
2301 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2302 if (devname)
2303 fprintf(stderr,
2304 Name ": Cannot read extended mpb on %s: %s\n",
2305 devname, strerror(errno));
2306 return 2;
2307 }
2308
2309 check_sum = __gen_imsm_checksum(super->anchor);
2310 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2311 if (devname)
2312 fprintf(stderr,
2313 Name ": IMSM checksum %x != %x on %s\n",
2314 check_sum, __le32_to_cpu(super->anchor->check_sum),
2315 devname);
2316 return 3;
2317 }
2318
2319 /* FIXME the BBM log is disk specific so we cannot use this global
2320 * buffer for all disks. Ok for now since we only look at the global
2321 * bbm_log_size parameter to gate assembly
2322 */
2323 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2324
2325 return 0;
2326 }
2327
2328 static int
2329 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2330 {
2331 int err;
2332
2333 err = load_imsm_mpb(fd, super, devname);
2334 if (err)
2335 return err;
2336 err = load_imsm_disk(fd, super, devname, keep_fd);
2337 if (err)
2338 return err;
2339 err = parse_raid_devices(super);
2340
2341 return err;
2342 }
2343
2344 static void __free_imsm_disk(struct dl *d)
2345 {
2346 if (d->fd >= 0)
2347 close(d->fd);
2348 if (d->devname)
2349 free(d->devname);
2350 if (d->e)
2351 free(d->e);
2352 free(d);
2353
2354 }
2355 static void free_imsm_disks(struct intel_super *super)
2356 {
2357 struct dl *d;
2358
2359 while (super->disks) {
2360 d = super->disks;
2361 super->disks = d->next;
2362 __free_imsm_disk(d);
2363 }
2364 while (super->missing) {
2365 d = super->missing;
2366 super->missing = d->next;
2367 __free_imsm_disk(d);
2368 }
2369
2370 }
2371
2372 /* free all the pieces hanging off of a super pointer */
2373 static void __free_imsm(struct intel_super *super, int free_disks)
2374 {
2375 if (super->buf) {
2376 free(super->buf);
2377 super->buf = NULL;
2378 }
2379 if (free_disks)
2380 free_imsm_disks(super);
2381 free_devlist(super);
2382 if (super->hba) {
2383 free((void *) super->hba);
2384 super->hba = NULL;
2385 }
2386 }
2387
2388 static void free_imsm(struct intel_super *super)
2389 {
2390 __free_imsm(super, 1);
2391 free(super);
2392 }
2393
2394 static void free_super_imsm(struct supertype *st)
2395 {
2396 struct intel_super *super = st->sb;
2397
2398 if (!super)
2399 return;
2400
2401 free_imsm(super);
2402 st->sb = NULL;
2403 }
2404
2405 static struct intel_super *alloc_super(void)
2406 {
2407 struct intel_super *super = malloc(sizeof(*super));
2408
2409 if (super) {
2410 memset(super, 0, sizeof(*super));
2411 super->current_vol = -1;
2412 super->create_offset = ~((__u32 ) 0);
2413 if (!check_env("IMSM_NO_PLATFORM"))
2414 super->orom = find_imsm_orom();
2415 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2416 struct sys_dev *list, *ent;
2417
2418 /* find the first intel ahci controller */
2419 list = find_driver_devices("pci", "ahci");
2420 for (ent = list; ent; ent = ent->next)
2421 if (devpath_to_vendor(ent->path) == 0x8086)
2422 break;
2423 if (ent) {
2424 super->hba = ent->path;
2425 ent->path = NULL;
2426 }
2427 free_sys_dev(&list);
2428 }
2429 }
2430
2431 return super;
2432 }
2433
2434 #ifndef MDASSEMBLE
2435 /* find_missing - helper routine for load_super_imsm_all that identifies
2436 * disks that have disappeared from the system. This routine relies on
2437 * the mpb being uptodate, which it is at load time.
2438 */
2439 static int find_missing(struct intel_super *super)
2440 {
2441 int i;
2442 struct imsm_super *mpb = super->anchor;
2443 struct dl *dl;
2444 struct imsm_disk *disk;
2445
2446 for (i = 0; i < mpb->num_disks; i++) {
2447 disk = __get_imsm_disk(mpb, i);
2448 dl = serial_to_dl(disk->serial, super);
2449 if (dl)
2450 continue;
2451
2452 dl = malloc(sizeof(*dl));
2453 if (!dl)
2454 return 1;
2455 dl->major = 0;
2456 dl->minor = 0;
2457 dl->fd = -1;
2458 dl->devname = strdup("missing");
2459 dl->index = i;
2460 serialcpy(dl->serial, disk->serial);
2461 dl->disk = *disk;
2462 dl->e = NULL;
2463 dl->next = super->missing;
2464 super->missing = dl;
2465 }
2466
2467 return 0;
2468 }
2469
2470 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2471 {
2472 struct intel_disk *idisk = disk_list;
2473
2474 while (idisk) {
2475 if (serialcmp(idisk->disk.serial, serial) == 0)
2476 break;
2477 idisk = idisk->next;
2478 }
2479
2480 return idisk;
2481 }
2482
2483 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2484 struct intel_super *super,
2485 struct intel_disk **disk_list)
2486 {
2487 struct imsm_disk *d = &super->disks->disk;
2488 struct imsm_super *mpb = super->anchor;
2489 int i, j;
2490
2491 for (i = 0; i < tbl_size; i++) {
2492 struct imsm_super *tbl_mpb = table[i]->anchor;
2493 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2494
2495 if (tbl_mpb->family_num == mpb->family_num) {
2496 if (tbl_mpb->check_sum == mpb->check_sum) {
2497 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2498 __func__, super->disks->major,
2499 super->disks->minor,
2500 table[i]->disks->major,
2501 table[i]->disks->minor);
2502 break;
2503 }
2504
2505 if (((is_configured(d) && !is_configured(tbl_d)) ||
2506 is_configured(d) == is_configured(tbl_d)) &&
2507 tbl_mpb->generation_num < mpb->generation_num) {
2508 /* current version of the mpb is a
2509 * better candidate than the one in
2510 * super_table, but copy over "cross
2511 * generational" status
2512 */
2513 struct intel_disk *idisk;
2514
2515 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2516 __func__, super->disks->major,
2517 super->disks->minor,
2518 table[i]->disks->major,
2519 table[i]->disks->minor);
2520
2521 idisk = disk_list_get(tbl_d->serial, *disk_list);
2522 if (idisk && is_failed(&idisk->disk))
2523 tbl_d->status |= FAILED_DISK;
2524 break;
2525 } else {
2526 struct intel_disk *idisk;
2527 struct imsm_disk *disk;
2528
2529 /* tbl_mpb is more up to date, but copy
2530 * over cross generational status before
2531 * returning
2532 */
2533 disk = __serial_to_disk(d->serial, mpb, NULL);
2534 if (disk && is_failed(disk))
2535 d->status |= FAILED_DISK;
2536
2537 idisk = disk_list_get(d->serial, *disk_list);
2538 if (idisk) {
2539 idisk->owner = i;
2540 if (disk && is_configured(disk))
2541 idisk->disk.status |= CONFIGURED_DISK;
2542 }
2543
2544 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2545 __func__, super->disks->major,
2546 super->disks->minor,
2547 table[i]->disks->major,
2548 table[i]->disks->minor);
2549
2550 return tbl_size;
2551 }
2552 }
2553 }
2554
2555 if (i >= tbl_size)
2556 table[tbl_size++] = super;
2557 else
2558 table[i] = super;
2559
2560 /* update/extend the merged list of imsm_disk records */
2561 for (j = 0; j < mpb->num_disks; j++) {
2562 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2563 struct intel_disk *idisk;
2564
2565 idisk = disk_list_get(disk->serial, *disk_list);
2566 if (idisk) {
2567 idisk->disk.status |= disk->status;
2568 if (is_configured(&idisk->disk) ||
2569 is_failed(&idisk->disk))
2570 idisk->disk.status &= ~(SPARE_DISK);
2571 } else {
2572 idisk = calloc(1, sizeof(*idisk));
2573 if (!idisk)
2574 return -1;
2575 idisk->owner = IMSM_UNKNOWN_OWNER;
2576 idisk->disk = *disk;
2577 idisk->next = *disk_list;
2578 *disk_list = idisk;
2579 }
2580
2581 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2582 idisk->owner = i;
2583 }
2584
2585 return tbl_size;
2586 }
2587
2588 static struct intel_super *
2589 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2590 const int owner)
2591 {
2592 struct imsm_super *mpb = super->anchor;
2593 int ok_count = 0;
2594 int i;
2595
2596 for (i = 0; i < mpb->num_disks; i++) {
2597 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2598 struct intel_disk *idisk;
2599
2600 idisk = disk_list_get(disk->serial, disk_list);
2601 if (idisk) {
2602 if (idisk->owner == owner ||
2603 idisk->owner == IMSM_UNKNOWN_OWNER)
2604 ok_count++;
2605 else
2606 dprintf("%s: '%.16s' owner %d != %d\n",
2607 __func__, disk->serial, idisk->owner,
2608 owner);
2609 } else {
2610 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2611 __func__, __le32_to_cpu(mpb->family_num), i,
2612 disk->serial);
2613 break;
2614 }
2615 }
2616
2617 if (ok_count == mpb->num_disks)
2618 return super;
2619 return NULL;
2620 }
2621
2622 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2623 {
2624 struct intel_super *s;
2625
2626 for (s = super_list; s; s = s->next) {
2627 if (family_num != s->anchor->family_num)
2628 continue;
2629 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2630 __le32_to_cpu(family_num), s->disks->devname);
2631 }
2632 }
2633
2634 static struct intel_super *
2635 imsm_thunderdome(struct intel_super **super_list, int len)
2636 {
2637 struct intel_super *super_table[len];
2638 struct intel_disk *disk_list = NULL;
2639 struct intel_super *champion, *spare;
2640 struct intel_super *s, **del;
2641 int tbl_size = 0;
2642 int conflict;
2643 int i;
2644
2645 memset(super_table, 0, sizeof(super_table));
2646 for (s = *super_list; s; s = s->next)
2647 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2648
2649 for (i = 0; i < tbl_size; i++) {
2650 struct imsm_disk *d;
2651 struct intel_disk *idisk;
2652 struct imsm_super *mpb = super_table[i]->anchor;
2653
2654 s = super_table[i];
2655 d = &s->disks->disk;
2656
2657 /* 'd' must appear in merged disk list for its
2658 * configuration to be valid
2659 */
2660 idisk = disk_list_get(d->serial, disk_list);
2661 if (idisk && idisk->owner == i)
2662 s = validate_members(s, disk_list, i);
2663 else
2664 s = NULL;
2665
2666 if (!s)
2667 dprintf("%s: marking family: %#x from %d:%d offline\n",
2668 __func__, mpb->family_num,
2669 super_table[i]->disks->major,
2670 super_table[i]->disks->minor);
2671 super_table[i] = s;
2672 }
2673
2674 /* This is where the mdadm implementation differs from the Windows
2675 * driver which has no strict concept of a container. We can only
2676 * assemble one family from a container, so when returning a prodigal
2677 * array member to this system the code will not be able to disambiguate
2678 * the container contents that should be assembled ("foreign" versus
2679 * "local"). It requires user intervention to set the orig_family_num
2680 * to a new value to establish a new container. The Windows driver in
2681 * this situation fixes up the volume name in place and manages the
2682 * foreign array as an independent entity.
2683 */
2684 s = NULL;
2685 spare = NULL;
2686 conflict = 0;
2687 for (i = 0; i < tbl_size; i++) {
2688 struct intel_super *tbl_ent = super_table[i];
2689 int is_spare = 0;
2690
2691 if (!tbl_ent)
2692 continue;
2693
2694 if (tbl_ent->anchor->num_raid_devs == 0) {
2695 spare = tbl_ent;
2696 is_spare = 1;
2697 }
2698
2699 if (s && !is_spare) {
2700 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2701 conflict++;
2702 } else if (!s && !is_spare)
2703 s = tbl_ent;
2704 }
2705
2706 if (!s)
2707 s = spare;
2708 if (!s) {
2709 champion = NULL;
2710 goto out;
2711 }
2712 champion = s;
2713
2714 if (conflict)
2715 fprintf(stderr, "Chose family %#x on '%s', "
2716 "assemble conflicts to new container with '--update=uuid'\n",
2717 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2718
2719 /* collect all dl's onto 'champion', and update them to
2720 * champion's version of the status
2721 */
2722 for (s = *super_list; s; s = s->next) {
2723 struct imsm_super *mpb = champion->anchor;
2724 struct dl *dl = s->disks;
2725
2726 if (s == champion)
2727 continue;
2728
2729 for (i = 0; i < mpb->num_disks; i++) {
2730 struct imsm_disk *disk;
2731
2732 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2733 if (disk) {
2734 dl->disk = *disk;
2735 /* only set index on disks that are a member of
2736 * a populated contianer, i.e. one with
2737 * raid_devs
2738 */
2739 if (is_failed(&dl->disk))
2740 dl->index = -2;
2741 else if (is_spare(&dl->disk))
2742 dl->index = -1;
2743 break;
2744 }
2745 }
2746
2747 if (i >= mpb->num_disks) {
2748 struct intel_disk *idisk;
2749
2750 idisk = disk_list_get(dl->serial, disk_list);
2751 if (idisk && is_spare(&idisk->disk) &&
2752 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2753 dl->index = -1;
2754 else {
2755 dl->index = -2;
2756 continue;
2757 }
2758 }
2759
2760 dl->next = champion->disks;
2761 champion->disks = dl;
2762 s->disks = NULL;
2763 }
2764
2765 /* delete 'champion' from super_list */
2766 for (del = super_list; *del; ) {
2767 if (*del == champion) {
2768 *del = (*del)->next;
2769 break;
2770 } else
2771 del = &(*del)->next;
2772 }
2773 champion->next = NULL;
2774
2775 out:
2776 while (disk_list) {
2777 struct intel_disk *idisk = disk_list;
2778
2779 disk_list = disk_list->next;
2780 free(idisk);
2781 }
2782
2783 return champion;
2784 }
2785
2786 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2787 char *devname)
2788 {
2789 struct mdinfo *sra;
2790 struct intel_super *super_list = NULL;
2791 struct intel_super *super = NULL;
2792 int devnum = fd2devnum(fd);
2793 struct mdinfo *sd;
2794 int retry;
2795 int err = 0;
2796 int i;
2797
2798 /* check if 'fd' an opened container */
2799 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2800 if (!sra)
2801 return 1;
2802
2803 if (sra->array.major_version != -1 ||
2804 sra->array.minor_version != -2 ||
2805 strcmp(sra->text_version, "imsm") != 0) {
2806 err = 1;
2807 goto error;
2808 }
2809 /* load all mpbs */
2810 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2811 struct intel_super *s = alloc_super();
2812 char nm[32];
2813 int dfd;
2814
2815 err = 1;
2816 if (!s)
2817 goto error;
2818 s->next = super_list;
2819 super_list = s;
2820
2821 err = 2;
2822 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2823 dfd = dev_open(nm, O_RDWR);
2824 if (dfd < 0)
2825 goto error;
2826
2827 err = load_and_parse_mpb(dfd, s, NULL, 1);
2828
2829 /* retry the load if we might have raced against mdmon */
2830 if (err == 3 && mdmon_running(devnum))
2831 for (retry = 0; retry < 3; retry++) {
2832 usleep(3000);
2833 err = load_and_parse_mpb(dfd, s, NULL, 1);
2834 if (err != 3)
2835 break;
2836 }
2837 if (err)
2838 goto error;
2839 }
2840
2841 /* all mpbs enter, maybe one leaves */
2842 super = imsm_thunderdome(&super_list, i);
2843 if (!super) {
2844 err = 1;
2845 goto error;
2846 }
2847
2848 if (find_missing(super) != 0) {
2849 free_imsm(super);
2850 err = 2;
2851 goto error;
2852 }
2853 err = 0;
2854
2855 error:
2856 while (super_list) {
2857 struct intel_super *s = super_list;
2858
2859 super_list = super_list->next;
2860 free_imsm(s);
2861 }
2862 sysfs_free(sra);
2863
2864 if (err)
2865 return err;
2866
2867 *sbp = super;
2868 st->container_dev = devnum;
2869 if (err == 0 && st->ss == NULL) {
2870 st->ss = &super_imsm;
2871 st->minor_version = 0;
2872 st->max_devs = IMSM_MAX_DEVICES;
2873 }
2874 return 0;
2875 }
2876
2877 static int load_container_imsm(struct supertype *st, int fd, char *devname)
2878 {
2879 return load_super_imsm_all(st, fd, &st->sb, devname);
2880 }
2881 #endif
2882
2883 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2884 {
2885 struct intel_super *super;
2886 int rv;
2887
2888 #ifndef MDASSEMBLE
2889 if (load_super_imsm_all(st, fd, &st->sb, devname) == 0)
2890 return 0;
2891 #endif
2892
2893 if (test_partition(fd))
2894 /* IMSM not allowed on partitions */
2895 return 1;
2896
2897 free_super_imsm(st);
2898
2899 super = alloc_super();
2900 if (!super) {
2901 fprintf(stderr,
2902 Name ": malloc of %zu failed.\n",
2903 sizeof(*super));
2904 return 1;
2905 }
2906
2907 rv = load_and_parse_mpb(fd, super, devname, 0);
2908
2909 if (rv) {
2910 if (devname)
2911 fprintf(stderr,
2912 Name ": Failed to load all information "
2913 "sections on %s\n", devname);
2914 free_imsm(super);
2915 return rv;
2916 }
2917
2918 st->sb = super;
2919 if (st->ss == NULL) {
2920 st->ss = &super_imsm;
2921 st->minor_version = 0;
2922 st->max_devs = IMSM_MAX_DEVICES;
2923 }
2924 return 0;
2925 }
2926
2927 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2928 {
2929 if (info->level == 1)
2930 return 128;
2931 return info->chunk_size >> 9;
2932 }
2933
2934 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2935 {
2936 __u32 num_stripes;
2937
2938 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2939 num_stripes /= num_domains;
2940
2941 return num_stripes;
2942 }
2943
2944 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2945 {
2946 if (info->level == 1)
2947 return info->size * 2;
2948 else
2949 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2950 }
2951
2952 static void imsm_update_version_info(struct intel_super *super)
2953 {
2954 /* update the version and attributes */
2955 struct imsm_super *mpb = super->anchor;
2956 char *version;
2957 struct imsm_dev *dev;
2958 struct imsm_map *map;
2959 int i;
2960
2961 for (i = 0; i < mpb->num_raid_devs; i++) {
2962 dev = get_imsm_dev(super, i);
2963 map = get_imsm_map(dev, 0);
2964 if (__le32_to_cpu(dev->size_high) > 0)
2965 mpb->attributes |= MPB_ATTRIB_2TB;
2966
2967 /* FIXME detect when an array spans a port multiplier */
2968 #if 0
2969 mpb->attributes |= MPB_ATTRIB_PM;
2970 #endif
2971
2972 if (mpb->num_raid_devs > 1 ||
2973 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2974 version = MPB_VERSION_ATTRIBS;
2975 switch (get_imsm_raid_level(map)) {
2976 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2977 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2978 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2979 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2980 }
2981 } else {
2982 if (map->num_members >= 5)
2983 version = MPB_VERSION_5OR6_DISK_ARRAY;
2984 else if (dev->status == DEV_CLONE_N_GO)
2985 version = MPB_VERSION_CNG;
2986 else if (get_imsm_raid_level(map) == 5)
2987 version = MPB_VERSION_RAID5;
2988 else if (map->num_members >= 3)
2989 version = MPB_VERSION_3OR4_DISK_ARRAY;
2990 else if (get_imsm_raid_level(map) == 1)
2991 version = MPB_VERSION_RAID1;
2992 else
2993 version = MPB_VERSION_RAID0;
2994 }
2995 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2996 }
2997 }
2998
2999 static int check_name(struct intel_super *super, char *name, int quiet)
3000 {
3001 struct imsm_super *mpb = super->anchor;
3002 char *reason = NULL;
3003 int i;
3004
3005 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3006 reason = "must be 16 characters or less";
3007
3008 for (i = 0; i < mpb->num_raid_devs; i++) {
3009 struct imsm_dev *dev = get_imsm_dev(super, i);
3010
3011 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3012 reason = "already exists";
3013 break;
3014 }
3015 }
3016
3017 if (reason && !quiet)
3018 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3019
3020 return !reason;
3021 }
3022
3023 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3024 unsigned long long size, char *name,
3025 char *homehost, int *uuid)
3026 {
3027 /* We are creating a volume inside a pre-existing container.
3028 * so st->sb is already set.
3029 */
3030 struct intel_super *super = st->sb;
3031 struct imsm_super *mpb = super->anchor;
3032 struct intel_dev *dv;
3033 struct imsm_dev *dev;
3034 struct imsm_vol *vol;
3035 struct imsm_map *map;
3036 int idx = mpb->num_raid_devs;
3037 int i;
3038 unsigned long long array_blocks;
3039 size_t size_old, size_new;
3040 __u32 num_data_stripes;
3041
3042 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3043 fprintf(stderr, Name": This imsm-container already has the "
3044 "maximum of %d volumes\n", super->orom->vpa);
3045 return 0;
3046 }
3047
3048 /* ensure the mpb is large enough for the new data */
3049 size_old = __le32_to_cpu(mpb->mpb_size);
3050 size_new = disks_to_mpb_size(info->nr_disks);
3051 if (size_new > size_old) {
3052 void *mpb_new;
3053 size_t size_round = ROUND_UP(size_new, 512);
3054
3055 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3056 fprintf(stderr, Name": could not allocate new mpb\n");
3057 return 0;
3058 }
3059 memcpy(mpb_new, mpb, size_old);
3060 free(mpb);
3061 mpb = mpb_new;
3062 super->anchor = mpb_new;
3063 mpb->mpb_size = __cpu_to_le32(size_new);
3064 memset(mpb_new + size_old, 0, size_round - size_old);
3065 }
3066 super->current_vol = idx;
3067 /* when creating the first raid device in this container set num_disks
3068 * to zero, i.e. delete this spare and add raid member devices in
3069 * add_to_super_imsm_volume()
3070 */
3071 if (super->current_vol == 0)
3072 mpb->num_disks = 0;
3073
3074 if (!check_name(super, name, 0))
3075 return 0;
3076 dv = malloc(sizeof(*dv));
3077 if (!dv) {
3078 fprintf(stderr, Name ": failed to allocate device list entry\n");
3079 return 0;
3080 }
3081 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3082 if (!dev) {
3083 free(dv);
3084 fprintf(stderr, Name": could not allocate raid device\n");
3085 return 0;
3086 }
3087 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3088 if (info->level == 1)
3089 array_blocks = info_to_blocks_per_member(info);
3090 else
3091 array_blocks = calc_array_size(info->level, info->raid_disks,
3092 info->layout, info->chunk_size,
3093 info->size*2);
3094 /* round array size down to closest MB */
3095 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3096
3097 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3098 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3099 dev->status = __cpu_to_le32(0);
3100 dev->reserved_blocks = __cpu_to_le32(0);
3101 vol = &dev->vol;
3102 vol->migr_state = 0;
3103 set_migr_type(dev, MIGR_INIT);
3104 vol->dirty = 0;
3105 vol->curr_migr_unit = 0;
3106 map = get_imsm_map(dev, 0);
3107 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3108 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3109 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3110 map->failed_disk_num = ~0;
3111 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3112 IMSM_T_STATE_NORMAL;
3113 map->ddf = 1;
3114
3115 if (info->level == 1 && info->raid_disks > 2) {
3116 free(dev);
3117 free(dv);
3118 fprintf(stderr, Name": imsm does not support more than 2 disks"
3119 "in a raid1 volume\n");
3120 return 0;
3121 }
3122
3123 map->raid_level = info->level;
3124 if (info->level == 10) {
3125 map->raid_level = 1;
3126 map->num_domains = info->raid_disks / 2;
3127 } else if (info->level == 1)
3128 map->num_domains = info->raid_disks;
3129 else
3130 map->num_domains = 1;
3131
3132 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3133 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3134
3135 map->num_members = info->raid_disks;
3136 for (i = 0; i < map->num_members; i++) {
3137 /* initialized in add_to_super */
3138 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3139 }
3140 mpb->num_raid_devs++;
3141
3142 dv->dev = dev;
3143 dv->index = super->current_vol;
3144 dv->next = super->devlist;
3145 super->devlist = dv;
3146
3147 imsm_update_version_info(super);
3148
3149 return 1;
3150 }
3151
3152 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3153 unsigned long long size, char *name,
3154 char *homehost, int *uuid)
3155 {
3156 /* This is primarily called by Create when creating a new array.
3157 * We will then get add_to_super called for each component, and then
3158 * write_init_super called to write it out to each device.
3159 * For IMSM, Create can create on fresh devices or on a pre-existing
3160 * array.
3161 * To create on a pre-existing array a different method will be called.
3162 * This one is just for fresh drives.
3163 */
3164 struct intel_super *super;
3165 struct imsm_super *mpb;
3166 size_t mpb_size;
3167 char *version;
3168
3169 if (st->sb)
3170 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3171
3172 if (info)
3173 mpb_size = disks_to_mpb_size(info->nr_disks);
3174 else
3175 mpb_size = 512;
3176
3177 super = alloc_super();
3178 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3179 free(super);
3180 super = NULL;
3181 }
3182 if (!super) {
3183 fprintf(stderr, Name
3184 ": %s could not allocate superblock\n", __func__);
3185 return 0;
3186 }
3187 memset(super->buf, 0, mpb_size);
3188 mpb = super->buf;
3189 mpb->mpb_size = __cpu_to_le32(mpb_size);
3190 st->sb = super;
3191
3192 if (info == NULL) {
3193 /* zeroing superblock */
3194 return 0;
3195 }
3196
3197 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3198
3199 version = (char *) mpb->sig;
3200 strcpy(version, MPB_SIGNATURE);
3201 version += strlen(MPB_SIGNATURE);
3202 strcpy(version, MPB_VERSION_RAID0);
3203
3204 return 1;
3205 }
3206
3207 #ifndef MDASSEMBLE
3208 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3209 int fd, char *devname)
3210 {
3211 struct intel_super *super = st->sb;
3212 struct imsm_super *mpb = super->anchor;
3213 struct dl *dl;
3214 struct imsm_dev *dev;
3215 struct imsm_map *map;
3216 int slot;
3217
3218 dev = get_imsm_dev(super, super->current_vol);
3219 map = get_imsm_map(dev, 0);
3220
3221 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3222 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3223 devname);
3224 return 1;
3225 }
3226
3227 if (fd == -1) {
3228 /* we're doing autolayout so grab the pre-marked (in
3229 * validate_geometry) raid_disk
3230 */
3231 for (dl = super->disks; dl; dl = dl->next)
3232 if (dl->raiddisk == dk->raid_disk)
3233 break;
3234 } else {
3235 for (dl = super->disks; dl ; dl = dl->next)
3236 if (dl->major == dk->major &&
3237 dl->minor == dk->minor)
3238 break;
3239 }
3240
3241 if (!dl) {
3242 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3243 return 1;
3244 }
3245
3246 /* add a pristine spare to the metadata */
3247 if (dl->index < 0) {
3248 dl->index = super->anchor->num_disks;
3249 super->anchor->num_disks++;
3250 }
3251 /* Check the device has not already been added */
3252 slot = get_imsm_disk_slot(map, dl->index);
3253 if (slot >= 0 &&
3254 (get_imsm_ord_tbl_ent(dev, slot) & IMSM_ORD_REBUILD) == 0) {
3255 fprintf(stderr, Name ": %s has been included in this array twice\n",
3256 devname);
3257 return 1;
3258 }
3259 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3260 dl->disk.status = CONFIGURED_DISK;
3261
3262 /* if we are creating the first raid device update the family number */
3263 if (super->current_vol == 0) {
3264 __u32 sum;
3265 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3266 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3267
3268 if (!_dev || !_disk) {
3269 fprintf(stderr, Name ": BUG mpb setup error\n");
3270 return 1;
3271 }
3272 *_dev = *dev;
3273 *_disk = dl->disk;
3274 sum = random32();
3275 sum += __gen_imsm_checksum(mpb);
3276 mpb->family_num = __cpu_to_le32(sum);
3277 mpb->orig_family_num = mpb->family_num;
3278 }
3279
3280 return 0;
3281 }
3282
3283 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3284 int fd, char *devname)
3285 {
3286 struct intel_super *super = st->sb;
3287 struct dl *dd;
3288 unsigned long long size;
3289 __u32 id;
3290 int rv;
3291 struct stat stb;
3292
3293 /* if we are on an RAID enabled platform check that the disk is
3294 * attached to the raid controller
3295 */
3296 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3297 fprintf(stderr,
3298 Name ": %s is not attached to the raid controller: %s\n",
3299 devname ? : "disk", super->hba);
3300 return 1;
3301 }
3302
3303 if (super->current_vol >= 0)
3304 return add_to_super_imsm_volume(st, dk, fd, devname);
3305
3306 fstat(fd, &stb);
3307 dd = malloc(sizeof(*dd));
3308 if (!dd) {
3309 fprintf(stderr,
3310 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3311 return 1;
3312 }
3313 memset(dd, 0, sizeof(*dd));
3314 dd->major = major(stb.st_rdev);
3315 dd->minor = minor(stb.st_rdev);
3316 dd->index = -1;
3317 dd->devname = devname ? strdup(devname) : NULL;
3318 dd->fd = fd;
3319 dd->e = NULL;
3320 rv = imsm_read_serial(fd, devname, dd->serial);
3321 if (rv) {
3322 fprintf(stderr,
3323 Name ": failed to retrieve scsi serial, aborting\n");
3324 free(dd);
3325 abort();
3326 }
3327
3328 get_dev_size(fd, NULL, &size);
3329 size /= 512;
3330 serialcpy(dd->disk.serial, dd->serial);
3331 dd->disk.total_blocks = __cpu_to_le32(size);
3332 dd->disk.status = SPARE_DISK;
3333 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3334 dd->disk.scsi_id = __cpu_to_le32(id);
3335 else
3336 dd->disk.scsi_id = __cpu_to_le32(0);
3337
3338 if (st->update_tail) {
3339 dd->next = super->add;
3340 super->add = dd;
3341 } else {
3342 dd->next = super->disks;
3343 super->disks = dd;
3344 }
3345
3346 return 0;
3347 }
3348
3349 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3350
3351 static union {
3352 char buf[512];
3353 struct imsm_super anchor;
3354 } spare_record __attribute__ ((aligned(512)));
3355
3356 /* spare records have their own family number and do not have any defined raid
3357 * devices
3358 */
3359 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3360 {
3361 struct imsm_super *mpb = super->anchor;
3362 struct imsm_super *spare = &spare_record.anchor;
3363 __u32 sum;
3364 struct dl *d;
3365
3366 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3367 spare->generation_num = __cpu_to_le32(1UL),
3368 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3369 spare->num_disks = 1,
3370 spare->num_raid_devs = 0,
3371 spare->cache_size = mpb->cache_size,
3372 spare->pwr_cycle_count = __cpu_to_le32(1),
3373
3374 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3375 MPB_SIGNATURE MPB_VERSION_RAID0);
3376
3377 for (d = super->disks; d; d = d->next) {
3378 if (d->index != -1)
3379 continue;
3380
3381 spare->disk[0] = d->disk;
3382 sum = __gen_imsm_checksum(spare);
3383 spare->family_num = __cpu_to_le32(sum);
3384 spare->orig_family_num = 0;
3385 sum = __gen_imsm_checksum(spare);
3386 spare->check_sum = __cpu_to_le32(sum);
3387
3388 if (store_imsm_mpb(d->fd, spare)) {
3389 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3390 __func__, d->major, d->minor, strerror(errno));
3391 return 1;
3392 }
3393 if (doclose) {
3394 close(d->fd);
3395 d->fd = -1;
3396 }
3397 }
3398
3399 return 0;
3400 }
3401
3402 static int write_super_imsm(struct intel_super *super, int doclose)
3403 {
3404 struct imsm_super *mpb = super->anchor;
3405 struct dl *d;
3406 __u32 generation;
3407 __u32 sum;
3408 int spares = 0;
3409 int i;
3410 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3411
3412 /* 'generation' is incremented everytime the metadata is written */
3413 generation = __le32_to_cpu(mpb->generation_num);
3414 generation++;
3415 mpb->generation_num = __cpu_to_le32(generation);
3416
3417 /* fix up cases where previous mdadm releases failed to set
3418 * orig_family_num
3419 */
3420 if (mpb->orig_family_num == 0)
3421 mpb->orig_family_num = mpb->family_num;
3422
3423 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3424 for (d = super->disks; d; d = d->next) {
3425 if (d->index == -1)
3426 spares++;
3427 else
3428 mpb->disk[d->index] = d->disk;
3429 }
3430 for (d = super->missing; d; d = d->next)
3431 mpb->disk[d->index] = d->disk;
3432
3433 for (i = 0; i < mpb->num_raid_devs; i++) {
3434 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3435
3436 imsm_copy_dev(dev, get_imsm_dev(super, i));
3437 mpb_size += sizeof_imsm_dev(dev, 0);
3438 }
3439 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3440 mpb->mpb_size = __cpu_to_le32(mpb_size);
3441
3442 /* recalculate checksum */
3443 sum = __gen_imsm_checksum(mpb);
3444 mpb->check_sum = __cpu_to_le32(sum);
3445
3446 /* write the mpb for disks that compose raid devices */
3447 for (d = super->disks; d ; d = d->next) {
3448 if (d->index < 0)
3449 continue;
3450 if (store_imsm_mpb(d->fd, mpb))
3451 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3452 __func__, d->major, d->minor, strerror(errno));
3453 if (doclose) {
3454 close(d->fd);
3455 d->fd = -1;
3456 }
3457 }
3458
3459 if (spares)
3460 return write_super_imsm_spares(super, doclose);
3461
3462 return 0;
3463 }
3464
3465
3466 static int create_array(struct supertype *st, int dev_idx)
3467 {
3468 size_t len;
3469 struct imsm_update_create_array *u;
3470 struct intel_super *super = st->sb;
3471 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3472 struct imsm_map *map = get_imsm_map(dev, 0);
3473 struct disk_info *inf;
3474 struct imsm_disk *disk;
3475 int i;
3476
3477 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3478 sizeof(*inf) * map->num_members;
3479 u = malloc(len);
3480 if (!u) {
3481 fprintf(stderr, "%s: failed to allocate update buffer\n",
3482 __func__);
3483 return 1;
3484 }
3485
3486 u->type = update_create_array;
3487 u->dev_idx = dev_idx;
3488 imsm_copy_dev(&u->dev, dev);
3489 inf = get_disk_info(u);
3490 for (i = 0; i < map->num_members; i++) {
3491 int idx = get_imsm_disk_idx(dev, i);
3492
3493 disk = get_imsm_disk(super, idx);
3494 serialcpy(inf[i].serial, disk->serial);
3495 }
3496 append_metadata_update(st, u, len);
3497
3498 return 0;
3499 }
3500
3501 static int _add_disk(struct supertype *st)
3502 {
3503 struct intel_super *super = st->sb;
3504 size_t len;
3505 struct imsm_update_add_disk *u;
3506
3507 if (!super->add)
3508 return 0;
3509
3510 len = sizeof(*u);
3511 u = malloc(len);
3512 if (!u) {
3513 fprintf(stderr, "%s: failed to allocate update buffer\n",
3514 __func__);
3515 return 1;
3516 }
3517
3518 u->type = update_add_disk;
3519 append_metadata_update(st, u, len);
3520
3521 return 0;
3522 }
3523
3524 static int write_init_super_imsm(struct supertype *st)
3525 {
3526 struct intel_super *super = st->sb;
3527 int current_vol = super->current_vol;
3528
3529 /* we are done with current_vol reset it to point st at the container */
3530 super->current_vol = -1;
3531
3532 if (st->update_tail) {
3533 /* queue the recently created array / added disk
3534 * as a metadata update */
3535 struct dl *d;
3536 int rv;
3537
3538 /* determine if we are creating a volume or adding a disk */
3539 if (current_vol < 0) {
3540 /* in the add disk case we are running in mdmon
3541 * context, so don't close fd's
3542 */
3543 return _add_disk(st);
3544 } else
3545 rv = create_array(st, current_vol);
3546
3547 for (d = super->disks; d ; d = d->next) {
3548 close(d->fd);
3549 d->fd = -1;
3550 }
3551
3552 return rv;
3553 } else {
3554 struct dl *d;
3555 for (d = super->disks; d; d = d->next)
3556 Kill(d->devname, NULL, 0, 1, 1);
3557 return write_super_imsm(st->sb, 1);
3558 }
3559 }
3560 #endif
3561
3562 static int store_super_imsm(struct supertype *st, int fd)
3563 {
3564 struct intel_super *super = st->sb;
3565 struct imsm_super *mpb = super ? super->anchor : NULL;
3566
3567 if (!mpb)
3568 return 1;
3569
3570 #ifndef MDASSEMBLE
3571 return store_imsm_mpb(fd, mpb);
3572 #else
3573 return 1;
3574 #endif
3575 }
3576
3577 static int imsm_bbm_log_size(struct imsm_super *mpb)
3578 {
3579 return __le32_to_cpu(mpb->bbm_log_size);
3580 }
3581
3582 #ifndef MDASSEMBLE
3583 static int validate_geometry_imsm_container(struct supertype *st, int level,
3584 int layout, int raiddisks, int chunk,
3585 unsigned long long size, char *dev,
3586 unsigned long long *freesize,
3587 int verbose)
3588 {
3589 int fd;
3590 unsigned long long ldsize;
3591 const struct imsm_orom *orom;
3592
3593 if (level != LEVEL_CONTAINER)
3594 return 0;
3595 if (!dev)
3596 return 1;
3597
3598 if (check_env("IMSM_NO_PLATFORM"))
3599 orom = NULL;
3600 else
3601 orom = find_imsm_orom();
3602 if (orom && raiddisks > orom->tds) {
3603 if (verbose)
3604 fprintf(stderr, Name ": %d exceeds maximum number of"
3605 " platform supported disks: %d\n",
3606 raiddisks, orom->tds);
3607 return 0;
3608 }
3609
3610 fd = open(dev, O_RDONLY|O_EXCL, 0);
3611 if (fd < 0) {
3612 if (verbose)
3613 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3614 dev, strerror(errno));
3615 return 0;
3616 }
3617 if (!get_dev_size(fd, dev, &ldsize)) {
3618 close(fd);
3619 return 0;
3620 }
3621 close(fd);
3622
3623 *freesize = avail_size_imsm(st, ldsize >> 9);
3624
3625 return 1;
3626 }
3627
3628 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3629 {
3630 const unsigned long long base_start = e[*idx].start;
3631 unsigned long long end = base_start + e[*idx].size;
3632 int i;
3633
3634 if (base_start == end)
3635 return 0;
3636
3637 *idx = *idx + 1;
3638 for (i = *idx; i < num_extents; i++) {
3639 /* extend overlapping extents */
3640 if (e[i].start >= base_start &&
3641 e[i].start <= end) {
3642 if (e[i].size == 0)
3643 return 0;
3644 if (e[i].start + e[i].size > end)
3645 end = e[i].start + e[i].size;
3646 } else if (e[i].start > end) {
3647 *idx = i;
3648 break;
3649 }
3650 }
3651
3652 return end - base_start;
3653 }
3654
3655 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3656 {
3657 /* build a composite disk with all known extents and generate a new
3658 * 'maxsize' given the "all disks in an array must share a common start
3659 * offset" constraint
3660 */
3661 struct extent *e = calloc(sum_extents, sizeof(*e));
3662 struct dl *dl;
3663 int i, j;
3664 int start_extent;
3665 unsigned long long pos;
3666 unsigned long long start = 0;
3667 unsigned long long maxsize;
3668 unsigned long reserve;
3669
3670 if (!e)
3671 return 0;
3672
3673 /* coalesce and sort all extents. also, check to see if we need to
3674 * reserve space between member arrays
3675 */
3676 j = 0;
3677 for (dl = super->disks; dl; dl = dl->next) {
3678 if (!dl->e)
3679 continue;
3680 for (i = 0; i < dl->extent_cnt; i++)
3681 e[j++] = dl->e[i];
3682 }
3683 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3684
3685 /* merge extents */
3686 i = 0;
3687 j = 0;
3688 while (i < sum_extents) {
3689 e[j].start = e[i].start;
3690 e[j].size = find_size(e, &i, sum_extents);
3691 j++;
3692 if (e[j-1].size == 0)
3693 break;
3694 }
3695
3696 pos = 0;
3697 maxsize = 0;
3698 start_extent = 0;
3699 i = 0;
3700 do {
3701 unsigned long long esize;
3702
3703 esize = e[i].start - pos;
3704 if (esize >= maxsize) {
3705 maxsize = esize;
3706 start = pos;
3707 start_extent = i;
3708 }
3709 pos = e[i].start + e[i].size;
3710 i++;
3711 } while (e[i-1].size);
3712 free(e);
3713
3714 if (maxsize == 0)
3715 return 0;
3716
3717 /* FIXME assumes volume at offset 0 is the first volume in a
3718 * container
3719 */
3720 if (start_extent > 0)
3721 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3722 else
3723 reserve = 0;
3724
3725 if (maxsize < reserve)
3726 return 0;
3727
3728 super->create_offset = ~((__u32) 0);
3729 if (start + reserve > super->create_offset)
3730 return 0; /* start overflows create_offset */
3731 super->create_offset = start + reserve;
3732
3733 return maxsize - reserve;
3734 }
3735
3736 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3737 {
3738 if (level < 0 || level == 6 || level == 4)
3739 return 0;
3740
3741 /* if we have an orom prevent invalid raid levels */
3742 if (orom)
3743 switch (level) {
3744 case 0: return imsm_orom_has_raid0(orom);
3745 case 1:
3746 if (raiddisks > 2)
3747 return imsm_orom_has_raid1e(orom);
3748 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3749 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3750 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3751 }
3752 else
3753 return 1; /* not on an Intel RAID platform so anything goes */
3754
3755 return 0;
3756 }
3757
3758 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3759 static int
3760 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3761 int raiddisks, int chunk, int verbose)
3762 {
3763 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3764 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3765 level, raiddisks, raiddisks > 1 ? "s" : "");
3766 return 0;
3767 }
3768 if (super->orom && level != 1 &&
3769 !imsm_orom_has_chunk(super->orom, chunk)) {
3770 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3771 return 0;
3772 }
3773 if (layout != imsm_level_to_layout(level)) {
3774 if (level == 5)
3775 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3776 else if (level == 10)
3777 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3778 else
3779 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3780 layout, level);
3781 return 0;
3782 }
3783
3784 return 1;
3785 }
3786
3787 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3788 * FIX ME add ahci details
3789 */
3790 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3791 int layout, int raiddisks, int chunk,
3792 unsigned long long size, char *dev,
3793 unsigned long long *freesize,
3794 int verbose)
3795 {
3796 struct stat stb;
3797 struct intel_super *super = st->sb;
3798 struct imsm_super *mpb = super->anchor;
3799 struct dl *dl;
3800 unsigned long long pos = 0;
3801 unsigned long long maxsize;
3802 struct extent *e;
3803 int i;
3804
3805 /* We must have the container info already read in. */
3806 if (!super)
3807 return 0;
3808
3809 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
3810 return 0;
3811
3812 if (!dev) {
3813 /* General test: make sure there is space for
3814 * 'raiddisks' device extents of size 'size' at a given
3815 * offset
3816 */
3817 unsigned long long minsize = size;
3818 unsigned long long start_offset = MaxSector;
3819 int dcnt = 0;
3820 if (minsize == 0)
3821 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3822 for (dl = super->disks; dl ; dl = dl->next) {
3823 int found = 0;
3824
3825 pos = 0;
3826 i = 0;
3827 e = get_extents(super, dl);
3828 if (!e) continue;
3829 do {
3830 unsigned long long esize;
3831 esize = e[i].start - pos;
3832 if (esize >= minsize)
3833 found = 1;
3834 if (found && start_offset == MaxSector) {
3835 start_offset = pos;
3836 break;
3837 } else if (found && pos != start_offset) {
3838 found = 0;
3839 break;
3840 }
3841 pos = e[i].start + e[i].size;
3842 i++;
3843 } while (e[i-1].size);
3844 if (found)
3845 dcnt++;
3846 free(e);
3847 }
3848 if (dcnt < raiddisks) {
3849 if (verbose)
3850 fprintf(stderr, Name ": imsm: Not enough "
3851 "devices with space for this array "
3852 "(%d < %d)\n",
3853 dcnt, raiddisks);
3854 return 0;
3855 }
3856 return 1;
3857 }
3858
3859 /* This device must be a member of the set */
3860 if (stat(dev, &stb) < 0)
3861 return 0;
3862 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3863 return 0;
3864 for (dl = super->disks ; dl ; dl = dl->next) {
3865 if (dl->major == (int)major(stb.st_rdev) &&
3866 dl->minor == (int)minor(stb.st_rdev))
3867 break;
3868 }
3869 if (!dl) {
3870 if (verbose)
3871 fprintf(stderr, Name ": %s is not in the "
3872 "same imsm set\n", dev);
3873 return 0;
3874 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3875 /* If a volume is present then the current creation attempt
3876 * cannot incorporate new spares because the orom may not
3877 * understand this configuration (all member disks must be
3878 * members of each array in the container).
3879 */
3880 fprintf(stderr, Name ": %s is a spare and a volume"
3881 " is already defined for this container\n", dev);
3882 fprintf(stderr, Name ": The option-rom requires all member"
3883 " disks to be a member of all volumes\n");
3884 return 0;
3885 }
3886
3887 /* retrieve the largest free space block */
3888 e = get_extents(super, dl);
3889 maxsize = 0;
3890 i = 0;
3891 if (e) {
3892 do {
3893 unsigned long long esize;
3894
3895 esize = e[i].start - pos;
3896 if (esize >= maxsize)
3897 maxsize = esize;
3898 pos = e[i].start + e[i].size;
3899 i++;
3900 } while (e[i-1].size);
3901 dl->e = e;
3902 dl->extent_cnt = i;
3903 } else {
3904 if (verbose)
3905 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3906 dev);
3907 return 0;
3908 }
3909 if (maxsize < size) {
3910 if (verbose)
3911 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3912 dev, maxsize, size);
3913 return 0;
3914 }
3915
3916 /* count total number of extents for merge */
3917 i = 0;
3918 for (dl = super->disks; dl; dl = dl->next)
3919 if (dl->e)
3920 i += dl->extent_cnt;
3921
3922 maxsize = merge_extents(super, i);
3923 if (maxsize < size || maxsize == 0) {
3924 if (verbose)
3925 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3926 maxsize, size);
3927 return 0;
3928 }
3929
3930 *freesize = maxsize;
3931
3932 return 1;
3933 }
3934
3935 static int reserve_space(struct supertype *st, int raiddisks,
3936 unsigned long long size, int chunk,
3937 unsigned long long *freesize)
3938 {
3939 struct intel_super *super = st->sb;
3940 struct imsm_super *mpb = super->anchor;
3941 struct dl *dl;
3942 int i;
3943 int extent_cnt;
3944 struct extent *e;
3945 unsigned long long maxsize;
3946 unsigned long long minsize;
3947 int cnt;
3948 int used;
3949
3950 /* find the largest common start free region of the possible disks */
3951 used = 0;
3952 extent_cnt = 0;
3953 cnt = 0;
3954 for (dl = super->disks; dl; dl = dl->next) {
3955 dl->raiddisk = -1;
3956
3957 if (dl->index >= 0)
3958 used++;
3959
3960 /* don't activate new spares if we are orom constrained
3961 * and there is already a volume active in the container
3962 */
3963 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3964 continue;
3965
3966 e = get_extents(super, dl);
3967 if (!e)
3968 continue;
3969 for (i = 1; e[i-1].size; i++)
3970 ;
3971 dl->e = e;
3972 dl->extent_cnt = i;
3973 extent_cnt += i;
3974 cnt++;
3975 }
3976
3977 maxsize = merge_extents(super, extent_cnt);
3978 minsize = size;
3979 if (size == 0)
3980 minsize = chunk;
3981
3982 if (cnt < raiddisks ||
3983 (super->orom && used && used != raiddisks) ||
3984 maxsize < minsize ||
3985 maxsize == 0) {
3986 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3987 return 0; /* No enough free spaces large enough */
3988 }
3989
3990 if (size == 0) {
3991 size = maxsize;
3992 if (chunk) {
3993 size /= chunk;
3994 size *= chunk;
3995 }
3996 }
3997
3998 cnt = 0;
3999 for (dl = super->disks; dl; dl = dl->next)
4000 if (dl->e)
4001 dl->raiddisk = cnt++;
4002
4003 *freesize = size;
4004
4005 return 1;
4006 }
4007
4008 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4009 int raiddisks, int chunk, unsigned long long size,
4010 char *dev, unsigned long long *freesize,
4011 int verbose)
4012 {
4013 int fd, cfd;
4014 struct mdinfo *sra;
4015 int is_member = 0;
4016
4017 /* if given unused devices create a container
4018 * if given given devices in a container create a member volume
4019 */
4020 if (level == LEVEL_CONTAINER) {
4021 /* Must be a fresh device to add to a container */
4022 return validate_geometry_imsm_container(st, level, layout,
4023 raiddisks, chunk, size,
4024 dev, freesize,
4025 verbose);
4026 }
4027
4028 if (!dev) {
4029 if (st->sb && freesize) {
4030 /* we are being asked to automatically layout a
4031 * new volume based on the current contents of
4032 * the container. If the the parameters can be
4033 * satisfied reserve_space will record the disks,
4034 * start offset, and size of the volume to be
4035 * created. add_to_super and getinfo_super
4036 * detect when autolayout is in progress.
4037 */
4038 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4039 raiddisks, chunk,
4040 verbose))
4041 return 0;
4042 return reserve_space(st, raiddisks, size, chunk, freesize);
4043 }
4044 return 1;
4045 }
4046 if (st->sb) {
4047 /* creating in a given container */
4048 return validate_geometry_imsm_volume(st, level, layout,
4049 raiddisks, chunk, size,
4050 dev, freesize, verbose);
4051 }
4052
4053 /* This device needs to be a device in an 'imsm' container */
4054 fd = open(dev, O_RDONLY|O_EXCL, 0);
4055 if (fd >= 0) {
4056 if (verbose)
4057 fprintf(stderr,
4058 Name ": Cannot create this array on device %s\n",
4059 dev);
4060 close(fd);
4061 return 0;
4062 }
4063 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4064 if (verbose)
4065 fprintf(stderr, Name ": Cannot open %s: %s\n",
4066 dev, strerror(errno));
4067 return 0;
4068 }
4069 /* Well, it is in use by someone, maybe an 'imsm' container. */
4070 cfd = open_container(fd);
4071 close(fd);
4072 if (cfd < 0) {
4073 if (verbose)
4074 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4075 dev);
4076 return 0;
4077 }
4078 sra = sysfs_read(cfd, 0, GET_VERSION);
4079 if (sra && sra->array.major_version == -1 &&
4080 strcmp(sra->text_version, "imsm") == 0)
4081 is_member = 1;
4082 sysfs_free(sra);
4083 if (is_member) {
4084 /* This is a member of a imsm container. Load the container
4085 * and try to create a volume
4086 */
4087 struct intel_super *super;
4088
4089 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4090 st->sb = super;
4091 st->container_dev = fd2devnum(cfd);
4092 close(cfd);
4093 return validate_geometry_imsm_volume(st, level, layout,
4094 raiddisks, chunk,
4095 size, dev,
4096 freesize, verbose);
4097 }
4098 }
4099
4100 if (verbose)
4101 fprintf(stderr, Name ": failed container membership check\n");
4102
4103 close(cfd);
4104 return 0;
4105 }
4106
4107 static int default_chunk_imsm(struct supertype *st)
4108 {
4109 struct intel_super *super = st->sb;
4110
4111 if (!super->orom)
4112 return 0;
4113
4114 return imsm_orom_default_chunk(super->orom);
4115 }
4116
4117 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4118
4119 static int kill_subarray_imsm(struct supertype *st)
4120 {
4121 /* remove the subarray currently referenced by ->current_vol */
4122 __u8 i;
4123 struct intel_dev **dp;
4124 struct intel_super *super = st->sb;
4125 __u8 current_vol = super->current_vol;
4126 struct imsm_super *mpb = super->anchor;
4127
4128 if (super->current_vol < 0)
4129 return 2;
4130 super->current_vol = -1; /* invalidate subarray cursor */
4131
4132 /* block deletions that would change the uuid of active subarrays
4133 *
4134 * FIXME when immutable ids are available, but note that we'll
4135 * also need to fixup the invalidated/active subarray indexes in
4136 * mdstat
4137 */
4138 for (i = 0; i < mpb->num_raid_devs; i++) {
4139 char subarray[4];
4140
4141 if (i < current_vol)
4142 continue;
4143 sprintf(subarray, "%u", i);
4144 if (is_subarray_active(subarray, st->devname)) {
4145 fprintf(stderr,
4146 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4147 current_vol, i);
4148
4149 return 2;
4150 }
4151 }
4152
4153 if (st->update_tail) {
4154 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4155
4156 if (!u)
4157 return 2;
4158 u->type = update_kill_array;
4159 u->dev_idx = current_vol;
4160 append_metadata_update(st, u, sizeof(*u));
4161
4162 return 0;
4163 }
4164
4165 for (dp = &super->devlist; *dp;)
4166 if ((*dp)->index == current_vol) {
4167 *dp = (*dp)->next;
4168 } else {
4169 handle_missing(super, (*dp)->dev);
4170 if ((*dp)->index > current_vol)
4171 (*dp)->index--;
4172 dp = &(*dp)->next;
4173 }
4174
4175 /* no more raid devices, all active components are now spares,
4176 * but of course failed are still failed
4177 */
4178 if (--mpb->num_raid_devs == 0) {
4179 struct dl *d;
4180
4181 for (d = super->disks; d; d = d->next)
4182 if (d->index > -2) {
4183 d->index = -1;
4184 d->disk.status = SPARE_DISK;
4185 }
4186 }
4187
4188 super->updates_pending++;
4189
4190 return 0;
4191 }
4192
4193 static int update_subarray_imsm(struct supertype *st, char *subarray,
4194 char *update, struct mddev_ident *ident)
4195 {
4196 /* update the subarray currently referenced by ->current_vol */
4197 struct intel_super *super = st->sb;
4198 struct imsm_super *mpb = super->anchor;
4199
4200 if (strcmp(update, "name") == 0) {
4201 char *name = ident->name;
4202 char *ep;
4203 int vol;
4204
4205 if (is_subarray_active(subarray, st->devname)) {
4206 fprintf(stderr,
4207 Name ": Unable to update name of active subarray\n");
4208 return 2;
4209 }
4210
4211 if (!check_name(super, name, 0))
4212 return 2;
4213
4214 vol = strtoul(subarray, &ep, 10);
4215 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4216 return 2;
4217
4218 if (st->update_tail) {
4219 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4220
4221 if (!u)
4222 return 2;
4223 u->type = update_rename_array;
4224 u->dev_idx = vol;
4225 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4226 append_metadata_update(st, u, sizeof(*u));
4227 } else {
4228 struct imsm_dev *dev;
4229 int i;
4230
4231 dev = get_imsm_dev(super, vol);
4232 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4233 for (i = 0; i < mpb->num_raid_devs; i++) {
4234 dev = get_imsm_dev(super, i);
4235 handle_missing(super, dev);
4236 }
4237 super->updates_pending++;
4238 }
4239 } else
4240 return 2;
4241
4242 return 0;
4243 }
4244 #endif /* MDASSEMBLE */
4245
4246 static int is_rebuilding(struct imsm_dev *dev)
4247 {
4248 struct imsm_map *migr_map;
4249
4250 if (!dev->vol.migr_state)
4251 return 0;
4252
4253 if (migr_type(dev) != MIGR_REBUILD)
4254 return 0;
4255
4256 migr_map = get_imsm_map(dev, 1);
4257
4258 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4259 return 1;
4260 else
4261 return 0;
4262 }
4263
4264 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4265 {
4266 struct mdinfo *rebuild = NULL;
4267 struct mdinfo *d;
4268 __u32 units;
4269
4270 if (!is_rebuilding(dev))
4271 return;
4272
4273 /* Find the rebuild target, but punt on the dual rebuild case */
4274 for (d = array->devs; d; d = d->next)
4275 if (d->recovery_start == 0) {
4276 if (rebuild)
4277 return;
4278 rebuild = d;
4279 }
4280
4281 if (!rebuild) {
4282 /* (?) none of the disks are marked with
4283 * IMSM_ORD_REBUILD, so assume they are missing and the
4284 * disk_ord_tbl was not correctly updated
4285 */
4286 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4287 return;
4288 }
4289
4290 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4291 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4292 }
4293
4294
4295 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4296 {
4297 /* Given a container loaded by load_super_imsm_all,
4298 * extract information about all the arrays into
4299 * an mdinfo tree.
4300 * If 'subarray' is given, just extract info about that array.
4301 *
4302 * For each imsm_dev create an mdinfo, fill it in,
4303 * then look for matching devices in super->disks
4304 * and create appropriate device mdinfo.
4305 */
4306 struct intel_super *super = st->sb;
4307 struct imsm_super *mpb = super->anchor;
4308 struct mdinfo *rest = NULL;
4309 unsigned int i;
4310
4311 /* do not assemble arrays that might have bad blocks */
4312 if (imsm_bbm_log_size(super->anchor)) {
4313 fprintf(stderr, Name ": BBM log found in metadata. "
4314 "Cannot activate array(s).\n");
4315 return NULL;
4316 }
4317
4318 for (i = 0; i < mpb->num_raid_devs; i++) {
4319 struct imsm_dev *dev;
4320 struct imsm_map *map;
4321 struct mdinfo *this;
4322 int slot;
4323 char *ep;
4324
4325 if (subarray &&
4326 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4327 continue;
4328
4329 dev = get_imsm_dev(super, i);
4330 map = get_imsm_map(dev, 0);
4331
4332 /* do not publish arrays that are in the middle of an
4333 * unsupported migration
4334 */
4335 if (dev->vol.migr_state &&
4336 (migr_type(dev) == MIGR_GEN_MIGR ||
4337 migr_type(dev) == MIGR_STATE_CHANGE)) {
4338 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4339 " unsupported migration in progress\n",
4340 dev->volume);
4341 continue;
4342 }
4343
4344 this = malloc(sizeof(*this));
4345 if (!this) {
4346 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4347 sizeof(*this));
4348 break;
4349 }
4350 memset(this, 0, sizeof(*this));
4351 this->next = rest;
4352
4353 super->current_vol = i;
4354 getinfo_super_imsm_volume(st, this, NULL);
4355 for (slot = 0 ; slot < map->num_members; slot++) {
4356 unsigned long long recovery_start;
4357 struct mdinfo *info_d;
4358 struct dl *d;
4359 int idx;
4360 int skip;
4361 __u32 ord;
4362
4363 skip = 0;
4364 idx = get_imsm_disk_idx(dev, slot);
4365 ord = get_imsm_ord_tbl_ent(dev, slot);
4366 for (d = super->disks; d ; d = d->next)
4367 if (d->index == idx)
4368 break;
4369
4370 recovery_start = MaxSector;
4371 if (d == NULL)
4372 skip = 1;
4373 if (d && is_failed(&d->disk))
4374 skip = 1;
4375 if (ord & IMSM_ORD_REBUILD)
4376 recovery_start = 0;
4377
4378 /*
4379 * if we skip some disks the array will be assmebled degraded;
4380 * reset resync start to avoid a dirty-degraded
4381 * situation when performing the intial sync
4382 *
4383 * FIXME handle dirty degraded
4384 */
4385 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4386 this->resync_start = MaxSector;
4387 if (skip)
4388 continue;
4389
4390 info_d = calloc(1, sizeof(*info_d));
4391 if (!info_d) {
4392 fprintf(stderr, Name ": failed to allocate disk"
4393 " for volume %.16s\n", dev->volume);
4394 info_d = this->devs;
4395 while (info_d) {
4396 struct mdinfo *d = info_d->next;
4397
4398 free(info_d);
4399 info_d = d;
4400 }
4401 free(this);
4402 this = rest;
4403 break;
4404 }
4405 info_d->next = this->devs;
4406 this->devs = info_d;
4407
4408 info_d->disk.number = d->index;
4409 info_d->disk.major = d->major;
4410 info_d->disk.minor = d->minor;
4411 info_d->disk.raid_disk = slot;
4412 info_d->recovery_start = recovery_start;
4413
4414 if (info_d->recovery_start == MaxSector)
4415 this->array.working_disks++;
4416
4417 info_d->events = __le32_to_cpu(mpb->generation_num);
4418 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4419 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4420 }
4421 /* now that the disk list is up-to-date fixup recovery_start */
4422 update_recovery_start(dev, this);
4423 rest = this;
4424 }
4425
4426 return rest;
4427 }
4428
4429
4430 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4431 {
4432 struct imsm_map *map = get_imsm_map(dev, 0);
4433
4434 if (!failed)
4435 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4436 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4437
4438 switch (get_imsm_raid_level(map)) {
4439 case 0:
4440 return IMSM_T_STATE_FAILED;
4441 break;
4442 case 1:
4443 if (failed < map->num_members)
4444 return IMSM_T_STATE_DEGRADED;
4445 else
4446 return IMSM_T_STATE_FAILED;
4447 break;
4448 case 10:
4449 {
4450 /**
4451 * check to see if any mirrors have failed, otherwise we
4452 * are degraded. Even numbered slots are mirrored on
4453 * slot+1
4454 */
4455 int i;
4456 /* gcc -Os complains that this is unused */
4457 int insync = insync;
4458
4459 for (i = 0; i < map->num_members; i++) {
4460 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4461 int idx = ord_to_idx(ord);
4462 struct imsm_disk *disk;
4463
4464 /* reset the potential in-sync count on even-numbered
4465 * slots. num_copies is always 2 for imsm raid10
4466 */
4467 if ((i & 1) == 0)
4468 insync = 2;
4469
4470 disk = get_imsm_disk(super, idx);
4471 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4472 insync--;
4473
4474 /* no in-sync disks left in this mirror the
4475 * array has failed
4476 */
4477 if (insync == 0)
4478 return IMSM_T_STATE_FAILED;
4479 }
4480
4481 return IMSM_T_STATE_DEGRADED;
4482 }
4483 case 5:
4484 if (failed < 2)
4485 return IMSM_T_STATE_DEGRADED;
4486 else
4487 return IMSM_T_STATE_FAILED;
4488 break;
4489 default:
4490 break;
4491 }
4492
4493 return map->map_state;
4494 }
4495
4496 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4497 {
4498 int i;
4499 int failed = 0;
4500 struct imsm_disk *disk;
4501 struct imsm_map *map = get_imsm_map(dev, 0);
4502 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4503 __u32 ord;
4504 int idx;
4505
4506 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4507 * disks that are being rebuilt. New failures are recorded to
4508 * map[0]. So we look through all the disks we started with and
4509 * see if any failures are still present, or if any new ones
4510 * have arrived
4511 *
4512 * FIXME add support for online capacity expansion and
4513 * raid-level-migration
4514 */
4515 for (i = 0; i < prev->num_members; i++) {
4516 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4517 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4518 idx = ord_to_idx(ord);
4519
4520 disk = get_imsm_disk(super, idx);
4521 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4522 failed++;
4523 }
4524
4525 return failed;
4526 }
4527
4528 #ifndef MDASSEMBLE
4529 static int imsm_open_new(struct supertype *c, struct active_array *a,
4530 char *inst)
4531 {
4532 struct intel_super *super = c->sb;
4533 struct imsm_super *mpb = super->anchor;
4534
4535 if (atoi(inst) >= mpb->num_raid_devs) {
4536 fprintf(stderr, "%s: subarry index %d, out of range\n",
4537 __func__, atoi(inst));
4538 return -ENODEV;
4539 }
4540
4541 dprintf("imsm: open_new %s\n", inst);
4542 a->info.container_member = atoi(inst);
4543 return 0;
4544 }
4545
4546 static int is_resyncing(struct imsm_dev *dev)
4547 {
4548 struct imsm_map *migr_map;
4549
4550 if (!dev->vol.migr_state)
4551 return 0;
4552
4553 if (migr_type(dev) == MIGR_INIT ||
4554 migr_type(dev) == MIGR_REPAIR)
4555 return 1;
4556
4557 migr_map = get_imsm_map(dev, 1);
4558
4559 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4560 return 1;
4561 else
4562 return 0;
4563 }
4564
4565 /* return true if we recorded new information */
4566 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4567 {
4568 __u32 ord;
4569 int slot;
4570 struct imsm_map *map;
4571
4572 /* new failures are always set in map[0] */
4573 map = get_imsm_map(dev, 0);
4574
4575 slot = get_imsm_disk_slot(map, idx);
4576 if (slot < 0)
4577 return 0;
4578
4579 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4580 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4581 return 0;
4582
4583 disk->status |= FAILED_DISK;
4584 disk->status &= ~CONFIGURED_DISK;
4585 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4586 if (map->failed_disk_num == 0xff)
4587 map->failed_disk_num = slot;
4588 return 1;
4589 }
4590
4591 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4592 {
4593 mark_failure(dev, disk, idx);
4594
4595 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4596 return;
4597
4598 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4599 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4600 }
4601
4602 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
4603 {
4604 __u8 map_state;
4605 struct dl *dl;
4606 int failed;
4607
4608 if (!super->missing)
4609 return;
4610 failed = imsm_count_failed(super, dev);
4611 map_state = imsm_check_degraded(super, dev, failed);
4612
4613 dprintf("imsm: mark missing\n");
4614 end_migration(dev, map_state);
4615 for (dl = super->missing; dl; dl = dl->next)
4616 mark_missing(dev, &dl->disk, dl->index);
4617 super->updates_pending++;
4618 }
4619
4620 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4621 * states are handled in imsm_set_disk() with one exception, when a
4622 * resync is stopped due to a new failure this routine will set the
4623 * 'degraded' state for the array.
4624 */
4625 static int imsm_set_array_state(struct active_array *a, int consistent)
4626 {
4627 int inst = a->info.container_member;
4628 struct intel_super *super = a->container->sb;
4629 struct imsm_dev *dev = get_imsm_dev(super, inst);
4630 struct imsm_map *map = get_imsm_map(dev, 0);
4631 int failed = imsm_count_failed(super, dev);
4632 __u8 map_state = imsm_check_degraded(super, dev, failed);
4633 __u32 blocks_per_unit;
4634
4635 /* before we activate this array handle any missing disks */
4636 if (consistent == 2)
4637 handle_missing(super, dev);
4638
4639 if (consistent == 2 &&
4640 (!is_resync_complete(&a->info) ||
4641 map_state != IMSM_T_STATE_NORMAL ||
4642 dev->vol.migr_state))
4643 consistent = 0;
4644
4645 if (is_resync_complete(&a->info)) {
4646 /* complete intialization / resync,
4647 * recovery and interrupted recovery is completed in
4648 * ->set_disk
4649 */
4650 if (is_resyncing(dev)) {
4651 dprintf("imsm: mark resync done\n");
4652 end_migration(dev, map_state);
4653 super->updates_pending++;
4654 a->last_checkpoint = 0;
4655 }
4656 } else if (!is_resyncing(dev) && !failed) {
4657 /* mark the start of the init process if nothing is failed */
4658 dprintf("imsm: mark resync start\n");
4659 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4660 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4661 else
4662 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4663 super->updates_pending++;
4664 }
4665
4666 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4667 blocks_per_unit = blocks_per_migr_unit(dev);
4668 if (blocks_per_unit) {
4669 __u32 units32;
4670 __u64 units;
4671
4672 units = a->last_checkpoint / blocks_per_unit;
4673 units32 = units;
4674
4675 /* check that we did not overflow 32-bits, and that
4676 * curr_migr_unit needs updating
4677 */
4678 if (units32 == units &&
4679 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4680 dprintf("imsm: mark checkpoint (%u)\n", units32);
4681 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4682 super->updates_pending++;
4683 }
4684 }
4685
4686 /* mark dirty / clean */
4687 if (dev->vol.dirty != !consistent) {
4688 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4689 if (consistent)
4690 dev->vol.dirty = 0;
4691 else
4692 dev->vol.dirty = 1;
4693 super->updates_pending++;
4694 }
4695 return consistent;
4696 }
4697
4698 static void imsm_set_disk(struct active_array *a, int n, int state)
4699 {
4700 int inst = a->info.container_member;
4701 struct intel_super *super = a->container->sb;
4702 struct imsm_dev *dev = get_imsm_dev(super, inst);
4703 struct imsm_map *map = get_imsm_map(dev, 0);
4704 struct imsm_disk *disk;
4705 int failed;
4706 __u32 ord;
4707 __u8 map_state;
4708
4709 if (n > map->num_members)
4710 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4711 n, map->num_members - 1);
4712
4713 if (n < 0)
4714 return;
4715
4716 dprintf("imsm: set_disk %d:%x\n", n, state);
4717
4718 ord = get_imsm_ord_tbl_ent(dev, n);
4719 disk = get_imsm_disk(super, ord_to_idx(ord));
4720
4721 /* check for new failures */
4722 if (state & DS_FAULTY) {
4723 if (mark_failure(dev, disk, ord_to_idx(ord)))
4724 super->updates_pending++;
4725 }
4726
4727 /* check if in_sync */
4728 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4729 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4730
4731 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4732 super->updates_pending++;
4733 }
4734
4735 failed = imsm_count_failed(super, dev);
4736 map_state = imsm_check_degraded(super, dev, failed);
4737
4738 /* check if recovery complete, newly degraded, or failed */
4739 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4740 end_migration(dev, map_state);
4741 map = get_imsm_map(dev, 0);
4742 map->failed_disk_num = ~0;
4743 super->updates_pending++;
4744 a->last_checkpoint = 0;
4745 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4746 map->map_state != map_state &&
4747 !dev->vol.migr_state) {
4748 dprintf("imsm: mark degraded\n");
4749 map->map_state = map_state;
4750 super->updates_pending++;
4751 a->last_checkpoint = 0;
4752 } else if (map_state == IMSM_T_STATE_FAILED &&
4753 map->map_state != map_state) {
4754 dprintf("imsm: mark failed\n");
4755 end_migration(dev, map_state);
4756 super->updates_pending++;
4757 a->last_checkpoint = 0;
4758 }
4759 }
4760
4761 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4762 {
4763 void *buf = mpb;
4764 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4765 unsigned long long dsize;
4766 unsigned long long sectors;
4767
4768 get_dev_size(fd, NULL, &dsize);
4769
4770 if (mpb_size > 512) {
4771 /* -1 to account for anchor */
4772 sectors = mpb_sectors(mpb) - 1;
4773
4774 /* write the extended mpb to the sectors preceeding the anchor */
4775 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4776 return 1;
4777
4778 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
4779 != 512 * sectors)
4780 return 1;
4781 }
4782
4783 /* first block is stored on second to last sector of the disk */
4784 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
4785 return 1;
4786
4787 if (write(fd, buf, 512) != 512)
4788 return 1;
4789
4790 return 0;
4791 }
4792
4793 static void imsm_sync_metadata(struct supertype *container)
4794 {
4795 struct intel_super *super = container->sb;
4796
4797 if (!super->updates_pending)
4798 return;
4799
4800 write_super_imsm(super, 0);
4801
4802 super->updates_pending = 0;
4803 }
4804
4805 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4806 {
4807 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4808 int i = get_imsm_disk_idx(dev, idx);
4809 struct dl *dl;
4810
4811 for (dl = super->disks; dl; dl = dl->next)
4812 if (dl->index == i)
4813 break;
4814
4815 if (dl && is_failed(&dl->disk))
4816 dl = NULL;
4817
4818 if (dl)
4819 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4820
4821 return dl;
4822 }
4823
4824 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4825 struct active_array *a, int activate_new)
4826 {
4827 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4828 int idx = get_imsm_disk_idx(dev, slot);
4829 struct imsm_super *mpb = super->anchor;
4830 struct imsm_map *map;
4831 unsigned long long pos;
4832 struct mdinfo *d;
4833 struct extent *ex;
4834 int i, j;
4835 int found;
4836 __u32 array_start = 0;
4837 __u32 array_end = 0;
4838 struct dl *dl;
4839
4840 for (dl = super->disks; dl; dl = dl->next) {
4841 /* If in this array, skip */
4842 for (d = a->info.devs ; d ; d = d->next)
4843 if (d->state_fd >= 0 &&
4844 d->disk.major == dl->major &&
4845 d->disk.minor == dl->minor) {
4846 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4847 break;
4848 }
4849 if (d)
4850 continue;
4851
4852 /* skip in use or failed drives */
4853 if (is_failed(&dl->disk) || idx == dl->index ||
4854 dl->index == -2) {
4855 dprintf("%x:%x status (failed: %d index: %d)\n",
4856 dl->major, dl->minor, is_failed(&dl->disk), idx);
4857 continue;
4858 }
4859
4860 /* skip pure spares when we are looking for partially
4861 * assimilated drives
4862 */
4863 if (dl->index == -1 && !activate_new)
4864 continue;
4865
4866 /* Does this unused device have the requisite free space?
4867 * It needs to be able to cover all member volumes
4868 */
4869 ex = get_extents(super, dl);
4870 if (!ex) {
4871 dprintf("cannot get extents\n");
4872 continue;
4873 }
4874 for (i = 0; i < mpb->num_raid_devs; i++) {
4875 dev = get_imsm_dev(super, i);
4876 map = get_imsm_map(dev, 0);
4877
4878 /* check if this disk is already a member of
4879 * this array
4880 */
4881 if (get_imsm_disk_slot(map, dl->index) >= 0)
4882 continue;
4883
4884 found = 0;
4885 j = 0;
4886 pos = 0;
4887 array_start = __le32_to_cpu(map->pba_of_lba0);
4888 array_end = array_start +
4889 __le32_to_cpu(map->blocks_per_member) - 1;
4890
4891 do {
4892 /* check that we can start at pba_of_lba0 with
4893 * blocks_per_member of space
4894 */
4895 if (array_start >= pos && array_end < ex[j].start) {
4896 found = 1;
4897 break;
4898 }
4899 pos = ex[j].start + ex[j].size;
4900 j++;
4901 } while (ex[j-1].size);
4902
4903 if (!found)
4904 break;
4905 }
4906
4907 free(ex);
4908 if (i < mpb->num_raid_devs) {
4909 dprintf("%x:%x does not have %u to %u available\n",
4910 dl->major, dl->minor, array_start, array_end);
4911 /* No room */
4912 continue;
4913 }
4914 return dl;
4915 }
4916
4917 return dl;
4918 }
4919
4920 static struct mdinfo *imsm_activate_spare(struct active_array *a,
4921 struct metadata_update **updates)
4922 {
4923 /**
4924 * Find a device with unused free space and use it to replace a
4925 * failed/vacant region in an array. We replace failed regions one a
4926 * array at a time. The result is that a new spare disk will be added
4927 * to the first failed array and after the monitor has finished
4928 * propagating failures the remainder will be consumed.
4929 *
4930 * FIXME add a capability for mdmon to request spares from another
4931 * container.
4932 */
4933
4934 struct intel_super *super = a->container->sb;
4935 int inst = a->info.container_member;
4936 struct imsm_dev *dev = get_imsm_dev(super, inst);
4937 struct imsm_map *map = get_imsm_map(dev, 0);
4938 int failed = a->info.array.raid_disks;
4939 struct mdinfo *rv = NULL;
4940 struct mdinfo *d;
4941 struct mdinfo *di;
4942 struct metadata_update *mu;
4943 struct dl *dl;
4944 struct imsm_update_activate_spare *u;
4945 int num_spares = 0;
4946 int i;
4947
4948 for (d = a->info.devs ; d ; d = d->next) {
4949 if ((d->curr_state & DS_FAULTY) &&
4950 d->state_fd >= 0)
4951 /* wait for Removal to happen */
4952 return NULL;
4953 if (d->state_fd >= 0)
4954 failed--;
4955 }
4956
4957 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4958 inst, failed, a->info.array.raid_disks, a->info.array.level);
4959 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4960 return NULL;
4961
4962 /* For each slot, if it is not working, find a spare */
4963 for (i = 0; i < a->info.array.raid_disks; i++) {
4964 for (d = a->info.devs ; d ; d = d->next)
4965 if (d->disk.raid_disk == i)
4966 break;
4967 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4968 if (d && (d->state_fd >= 0))
4969 continue;
4970
4971 /*
4972 * OK, this device needs recovery. Try to re-add the
4973 * previous occupant of this slot, if this fails see if
4974 * we can continue the assimilation of a spare that was
4975 * partially assimilated, finally try to activate a new
4976 * spare.
4977 */
4978 dl = imsm_readd(super, i, a);
4979 if (!dl)
4980 dl = imsm_add_spare(super, i, a, 0);
4981 if (!dl)
4982 dl = imsm_add_spare(super, i, a, 1);
4983 if (!dl)
4984 continue;
4985
4986 /* found a usable disk with enough space */
4987 di = malloc(sizeof(*di));
4988 if (!di)
4989 continue;
4990 memset(di, 0, sizeof(*di));
4991
4992 /* dl->index will be -1 in the case we are activating a
4993 * pristine spare. imsm_process_update() will create a
4994 * new index in this case. Once a disk is found to be
4995 * failed in all member arrays it is kicked from the
4996 * metadata
4997 */
4998 di->disk.number = dl->index;
4999
5000 /* (ab)use di->devs to store a pointer to the device
5001 * we chose
5002 */
5003 di->devs = (struct mdinfo *) dl;
5004
5005 di->disk.raid_disk = i;
5006 di->disk.major = dl->major;
5007 di->disk.minor = dl->minor;
5008 di->disk.state = 0;
5009 di->recovery_start = 0;
5010 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5011 di->component_size = a->info.component_size;
5012 di->container_member = inst;
5013 super->random = random32();
5014 di->next = rv;
5015 rv = di;
5016 num_spares++;
5017 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5018 i, di->data_offset);
5019
5020 break;
5021 }
5022
5023 if (!rv)
5024 /* No spares found */
5025 return rv;
5026 /* Now 'rv' has a list of devices to return.
5027 * Create a metadata_update record to update the
5028 * disk_ord_tbl for the array
5029 */
5030 mu = malloc(sizeof(*mu));
5031 if (mu) {
5032 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5033 if (mu->buf == NULL) {
5034 free(mu);
5035 mu = NULL;
5036 }
5037 }
5038 if (!mu) {
5039 while (rv) {
5040 struct mdinfo *n = rv->next;
5041
5042 free(rv);
5043 rv = n;
5044 }
5045 return NULL;
5046 }
5047
5048 mu->space = NULL;
5049 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5050 mu->next = *updates;
5051 u = (struct imsm_update_activate_spare *) mu->buf;
5052
5053 for (di = rv ; di ; di = di->next) {
5054 u->type = update_activate_spare;
5055 u->dl = (struct dl *) di->devs;
5056 di->devs = NULL;
5057 u->slot = di->disk.raid_disk;
5058 u->array = inst;
5059 u->next = u + 1;
5060 u++;
5061 }
5062 (u-1)->next = NULL;
5063 *updates = mu;
5064
5065 return rv;
5066 }
5067
5068 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5069 {
5070 struct imsm_dev *dev = get_imsm_dev(super, idx);
5071 struct imsm_map *map = get_imsm_map(dev, 0);
5072 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5073 struct disk_info *inf = get_disk_info(u);
5074 struct imsm_disk *disk;
5075 int i;
5076 int j;
5077
5078 for (i = 0; i < map->num_members; i++) {
5079 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
5080 for (j = 0; j < new_map->num_members; j++)
5081 if (serialcmp(disk->serial, inf[j].serial) == 0)
5082 return 1;
5083 }
5084
5085 return 0;
5086 }
5087
5088 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
5089
5090 static void imsm_process_update(struct supertype *st,
5091 struct metadata_update *update)
5092 {
5093 /**
5094 * crack open the metadata_update envelope to find the update record
5095 * update can be one of:
5096 * update_activate_spare - a spare device has replaced a failed
5097 * device in an array, update the disk_ord_tbl. If this disk is
5098 * present in all member arrays then also clear the SPARE_DISK
5099 * flag
5100 */
5101 struct intel_super *super = st->sb;
5102 struct imsm_super *mpb;
5103 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5104
5105 /* update requires a larger buf but the allocation failed */
5106 if (super->next_len && !super->next_buf) {
5107 super->next_len = 0;
5108 return;
5109 }
5110
5111 if (super->next_buf) {
5112 memcpy(super->next_buf, super->buf, super->len);
5113 free(super->buf);
5114 super->len = super->next_len;
5115 super->buf = super->next_buf;
5116
5117 super->next_len = 0;
5118 super->next_buf = NULL;
5119 }
5120
5121 mpb = super->anchor;
5122
5123 switch (type) {
5124 case update_activate_spare: {
5125 struct imsm_update_activate_spare *u = (void *) update->buf;
5126 struct imsm_dev *dev = get_imsm_dev(super, u->array);
5127 struct imsm_map *map = get_imsm_map(dev, 0);
5128 struct imsm_map *migr_map;
5129 struct active_array *a;
5130 struct imsm_disk *disk;
5131 __u8 to_state;
5132 struct dl *dl;
5133 unsigned int found;
5134 int failed;
5135 int victim = get_imsm_disk_idx(dev, u->slot);
5136 int i;
5137
5138 for (dl = super->disks; dl; dl = dl->next)
5139 if (dl == u->dl)
5140 break;
5141
5142 if (!dl) {
5143 fprintf(stderr, "error: imsm_activate_spare passed "
5144 "an unknown disk (index: %d)\n",
5145 u->dl->index);
5146 return;
5147 }
5148
5149 super->updates_pending++;
5150
5151 /* count failures (excluding rebuilds and the victim)
5152 * to determine map[0] state
5153 */
5154 failed = 0;
5155 for (i = 0; i < map->num_members; i++) {
5156 if (i == u->slot)
5157 continue;
5158 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
5159 if (!disk || is_failed(disk))
5160 failed++;
5161 }
5162
5163 /* adding a pristine spare, assign a new index */
5164 if (dl->index < 0) {
5165 dl->index = super->anchor->num_disks;
5166 super->anchor->num_disks++;
5167 }
5168 disk = &dl->disk;
5169 disk->status |= CONFIGURED_DISK;
5170 disk->status &= ~SPARE_DISK;
5171
5172 /* mark rebuild */
5173 to_state = imsm_check_degraded(super, dev, failed);
5174 map->map_state = IMSM_T_STATE_DEGRADED;
5175 migrate(dev, to_state, MIGR_REBUILD);
5176 migr_map = get_imsm_map(dev, 1);
5177 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
5178 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
5179
5180 /* update the family_num to mark a new container
5181 * generation, being careful to record the existing
5182 * family_num in orig_family_num to clean up after
5183 * earlier mdadm versions that neglected to set it.
5184 */
5185 if (mpb->orig_family_num == 0)
5186 mpb->orig_family_num = mpb->family_num;
5187 mpb->family_num += super->random;
5188
5189 /* count arrays using the victim in the metadata */
5190 found = 0;
5191 for (a = st->arrays; a ; a = a->next) {
5192 dev = get_imsm_dev(super, a->info.container_member);
5193 map = get_imsm_map(dev, 0);
5194
5195 if (get_imsm_disk_slot(map, victim) >= 0)
5196 found++;
5197 }
5198
5199 /* delete the victim if it is no longer being
5200 * utilized anywhere
5201 */
5202 if (!found) {
5203 struct dl **dlp;
5204
5205 /* We know that 'manager' isn't touching anything,
5206 * so it is safe to delete
5207 */
5208 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
5209 if ((*dlp)->index == victim)
5210 break;
5211
5212 /* victim may be on the missing list */
5213 if (!*dlp)
5214 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
5215 if ((*dlp)->index == victim)
5216 break;
5217 imsm_delete(super, dlp, victim);
5218 }
5219 break;
5220 }
5221 case update_create_array: {
5222 /* someone wants to create a new array, we need to be aware of
5223 * a few races/collisions:
5224 * 1/ 'Create' called by two separate instances of mdadm
5225 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
5226 * devices that have since been assimilated via
5227 * activate_spare.
5228 * In the event this update can not be carried out mdadm will
5229 * (FIX ME) notice that its update did not take hold.
5230 */
5231 struct imsm_update_create_array *u = (void *) update->buf;
5232 struct intel_dev *dv;
5233 struct imsm_dev *dev;
5234 struct imsm_map *map, *new_map;
5235 unsigned long long start, end;
5236 unsigned long long new_start, new_end;
5237 int i;
5238 struct disk_info *inf;
5239 struct dl *dl;
5240
5241 /* handle racing creates: first come first serve */
5242 if (u->dev_idx < mpb->num_raid_devs) {
5243 dprintf("%s: subarray %d already defined\n",
5244 __func__, u->dev_idx);
5245 goto create_error;
5246 }
5247
5248 /* check update is next in sequence */
5249 if (u->dev_idx != mpb->num_raid_devs) {
5250 dprintf("%s: can not create array %d expected index %d\n",
5251 __func__, u->dev_idx, mpb->num_raid_devs);
5252 goto create_error;
5253 }
5254
5255 new_map = get_imsm_map(&u->dev, 0);
5256 new_start = __le32_to_cpu(new_map->pba_of_lba0);
5257 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
5258 inf = get_disk_info(u);
5259
5260 /* handle activate_spare versus create race:
5261 * check to make sure that overlapping arrays do not include
5262 * overalpping disks
5263 */
5264 for (i = 0; i < mpb->num_raid_devs; i++) {
5265 dev = get_imsm_dev(super, i);
5266 map = get_imsm_map(dev, 0);
5267 start = __le32_to_cpu(map->pba_of_lba0);
5268 end = start + __le32_to_cpu(map->blocks_per_member);
5269 if ((new_start >= start && new_start <= end) ||
5270 (start >= new_start && start <= new_end))
5271 /* overlap */;
5272 else
5273 continue;
5274
5275 if (disks_overlap(super, i, u)) {
5276 dprintf("%s: arrays overlap\n", __func__);
5277 goto create_error;
5278 }
5279 }
5280
5281 /* check that prepare update was successful */
5282 if (!update->space) {
5283 dprintf("%s: prepare update failed\n", __func__);
5284 goto create_error;
5285 }
5286
5287 /* check that all disks are still active before committing
5288 * changes. FIXME: could we instead handle this by creating a
5289 * degraded array? That's probably not what the user expects,
5290 * so better to drop this update on the floor.
5291 */
5292 for (i = 0; i < new_map->num_members; i++) {
5293 dl = serial_to_dl(inf[i].serial, super);
5294 if (!dl) {
5295 dprintf("%s: disk disappeared\n", __func__);
5296 goto create_error;
5297 }
5298 }
5299
5300 super->updates_pending++;
5301
5302 /* convert spares to members and fixup ord_tbl */
5303 for (i = 0; i < new_map->num_members; i++) {
5304 dl = serial_to_dl(inf[i].serial, super);
5305 if (dl->index == -1) {
5306 dl->index = mpb->num_disks;
5307 mpb->num_disks++;
5308 dl->disk.status |= CONFIGURED_DISK;
5309 dl->disk.status &= ~SPARE_DISK;
5310 }
5311 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5312 }
5313
5314 dv = update->space;
5315 dev = dv->dev;
5316 update->space = NULL;
5317 imsm_copy_dev(dev, &u->dev);
5318 dv->index = u->dev_idx;
5319 dv->next = super->devlist;
5320 super->devlist = dv;
5321 mpb->num_raid_devs++;
5322
5323 imsm_update_version_info(super);
5324 break;
5325 create_error:
5326 /* mdmon knows how to release update->space, but not
5327 * ((struct intel_dev *) update->space)->dev
5328 */
5329 if (update->space) {
5330 dv = update->space;
5331 free(dv->dev);
5332 }
5333 break;
5334 }
5335 case update_kill_array: {
5336 struct imsm_update_kill_array *u = (void *) update->buf;
5337 int victim = u->dev_idx;
5338 struct active_array *a;
5339 struct intel_dev **dp;
5340 struct imsm_dev *dev;
5341
5342 /* sanity check that we are not affecting the uuid of
5343 * active arrays, or deleting an active array
5344 *
5345 * FIXME when immutable ids are available, but note that
5346 * we'll also need to fixup the invalidated/active
5347 * subarray indexes in mdstat
5348 */
5349 for (a = st->arrays; a; a = a->next)
5350 if (a->info.container_member >= victim)
5351 break;
5352 /* by definition if mdmon is running at least one array
5353 * is active in the container, so checking
5354 * mpb->num_raid_devs is just extra paranoia
5355 */
5356 dev = get_imsm_dev(super, victim);
5357 if (a || !dev || mpb->num_raid_devs == 1) {
5358 dprintf("failed to delete subarray-%d\n", victim);
5359 break;
5360 }
5361
5362 for (dp = &super->devlist; *dp;)
5363 if ((*dp)->index == (unsigned)super->current_vol) {
5364 *dp = (*dp)->next;
5365 } else {
5366 if ((*dp)->index > (unsigned)victim)
5367 (*dp)->index--;
5368 dp = &(*dp)->next;
5369 }
5370 mpb->num_raid_devs--;
5371 super->updates_pending++;
5372 break;
5373 }
5374 case update_rename_array: {
5375 struct imsm_update_rename_array *u = (void *) update->buf;
5376 char name[MAX_RAID_SERIAL_LEN+1];
5377 int target = u->dev_idx;
5378 struct active_array *a;
5379 struct imsm_dev *dev;
5380
5381 /* sanity check that we are not affecting the uuid of
5382 * an active array
5383 */
5384 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
5385 name[MAX_RAID_SERIAL_LEN] = '\0';
5386 for (a = st->arrays; a; a = a->next)
5387 if (a->info.container_member == target)
5388 break;
5389 dev = get_imsm_dev(super, u->dev_idx);
5390 if (a || !dev || !check_name(super, name, 1)) {
5391 dprintf("failed to rename subarray-%d\n", target);
5392 break;
5393 }
5394
5395 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5396 super->updates_pending++;
5397 break;
5398 }
5399 case update_add_disk:
5400
5401 /* we may be able to repair some arrays if disks are
5402 * being added */
5403 if (super->add) {
5404 struct active_array *a;
5405
5406 super->updates_pending++;
5407 for (a = st->arrays; a; a = a->next)
5408 a->check_degraded = 1;
5409 }
5410 /* add some spares to the metadata */
5411 while (super->add) {
5412 struct dl *al;
5413
5414 al = super->add;
5415 super->add = al->next;
5416 al->next = super->disks;
5417 super->disks = al;
5418 dprintf("%s: added %x:%x\n",
5419 __func__, al->major, al->minor);
5420 }
5421
5422 break;
5423 }
5424 }
5425
5426 static void imsm_prepare_update(struct supertype *st,
5427 struct metadata_update *update)
5428 {
5429 /**
5430 * Allocate space to hold new disk entries, raid-device entries or a new
5431 * mpb if necessary. The manager synchronously waits for updates to
5432 * complete in the monitor, so new mpb buffers allocated here can be
5433 * integrated by the monitor thread without worrying about live pointers
5434 * in the manager thread.
5435 */
5436 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5437 struct intel_super *super = st->sb;
5438 struct imsm_super *mpb = super->anchor;
5439 size_t buf_len;
5440 size_t len = 0;
5441
5442 switch (type) {
5443 case update_create_array: {
5444 struct imsm_update_create_array *u = (void *) update->buf;
5445 struct intel_dev *dv;
5446 struct imsm_dev *dev = &u->dev;
5447 struct imsm_map *map = get_imsm_map(dev, 0);
5448 struct dl *dl;
5449 struct disk_info *inf;
5450 int i;
5451 int activate = 0;
5452
5453 inf = get_disk_info(u);
5454 len = sizeof_imsm_dev(dev, 1);
5455 /* allocate a new super->devlist entry */
5456 dv = malloc(sizeof(*dv));
5457 if (dv) {
5458 dv->dev = malloc(len);
5459 if (dv->dev)
5460 update->space = dv;
5461 else {
5462 free(dv);
5463 update->space = NULL;
5464 }
5465 }
5466
5467 /* count how many spares will be converted to members */
5468 for (i = 0; i < map->num_members; i++) {
5469 dl = serial_to_dl(inf[i].serial, super);
5470 if (!dl) {
5471 /* hmm maybe it failed?, nothing we can do about
5472 * it here
5473 */
5474 continue;
5475 }
5476 if (count_memberships(dl, super) == 0)
5477 activate++;
5478 }
5479 len += activate * sizeof(struct imsm_disk);
5480 break;
5481 default:
5482 break;
5483 }
5484 }
5485
5486 /* check if we need a larger metadata buffer */
5487 if (super->next_buf)
5488 buf_len = super->next_len;
5489 else
5490 buf_len = super->len;
5491
5492 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5493 /* ok we need a larger buf than what is currently allocated
5494 * if this allocation fails process_update will notice that
5495 * ->next_len is set and ->next_buf is NULL
5496 */
5497 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5498 if (super->next_buf)
5499 free(super->next_buf);
5500
5501 super->next_len = buf_len;
5502 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5503 memset(super->next_buf, 0, buf_len);
5504 else
5505 super->next_buf = NULL;
5506 }
5507 }
5508
5509 /* must be called while manager is quiesced */
5510 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
5511 {
5512 struct imsm_super *mpb = super->anchor;
5513 struct dl *iter;
5514 struct imsm_dev *dev;
5515 struct imsm_map *map;
5516 int i, j, num_members;
5517 __u32 ord;
5518
5519 dprintf("%s: deleting device[%d] from imsm_super\n",
5520 __func__, index);
5521
5522 /* shift all indexes down one */
5523 for (iter = super->disks; iter; iter = iter->next)
5524 if (iter->index > (int)index)
5525 iter->index--;
5526 for (iter = super->missing; iter; iter = iter->next)
5527 if (iter->index > (int)index)
5528 iter->index--;
5529
5530 for (i = 0; i < mpb->num_raid_devs; i++) {
5531 dev = get_imsm_dev(super, i);
5532 map = get_imsm_map(dev, 0);
5533 num_members = map->num_members;
5534 for (j = 0; j < num_members; j++) {
5535 /* update ord entries being careful not to propagate
5536 * ord-flags to the first map
5537 */
5538 ord = get_imsm_ord_tbl_ent(dev, j);
5539
5540 if (ord_to_idx(ord) <= index)
5541 continue;
5542
5543 map = get_imsm_map(dev, 0);
5544 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5545 map = get_imsm_map(dev, 1);
5546 if (map)
5547 set_imsm_ord_tbl_ent(map, j, ord - 1);
5548 }
5549 }
5550
5551 mpb->num_disks--;
5552 super->updates_pending++;
5553 if (*dlp) {
5554 struct dl *dl = *dlp;
5555
5556 *dlp = (*dlp)->next;
5557 __free_imsm_disk(dl);
5558 }
5559 }
5560 #endif /* MDASSEMBLE */
5561
5562 struct superswitch super_imsm = {
5563 #ifndef MDASSEMBLE
5564 .examine_super = examine_super_imsm,
5565 .brief_examine_super = brief_examine_super_imsm,
5566 .brief_examine_subarrays = brief_examine_subarrays_imsm,
5567 .export_examine_super = export_examine_super_imsm,
5568 .detail_super = detail_super_imsm,
5569 .brief_detail_super = brief_detail_super_imsm,
5570 .write_init_super = write_init_super_imsm,
5571 .validate_geometry = validate_geometry_imsm,
5572 .default_chunk = default_chunk_imsm,
5573 .add_to_super = add_to_super_imsm,
5574 .detail_platform = detail_platform_imsm,
5575 .kill_subarray = kill_subarray_imsm,
5576 .update_subarray = update_subarray_imsm,
5577 .load_container = load_container_imsm,
5578 #endif
5579 .match_home = match_home_imsm,
5580 .uuid_from_super= uuid_from_super_imsm,
5581 .getinfo_super = getinfo_super_imsm,
5582 .update_super = update_super_imsm,
5583
5584 .avail_size = avail_size_imsm,
5585
5586 .compare_super = compare_super_imsm,
5587
5588 .load_super = load_super_imsm,
5589 .init_super = init_super_imsm,
5590 .store_super = store_super_imsm,
5591 .free_super = free_super_imsm,
5592 .match_metadata_desc = match_metadata_desc_imsm,
5593 .container_content = container_content_imsm,
5594 .default_layout = imsm_level_to_layout,
5595
5596 .external = 1,
5597 .name = "imsm",
5598
5599 #ifndef MDASSEMBLE
5600 /* for mdmon */
5601 .open_new = imsm_open_new,
5602 .set_array_state= imsm_set_array_state,
5603 .set_disk = imsm_set_disk,
5604 .sync_metadata = imsm_sync_metadata,
5605 .activate_spare = imsm_activate_spare,
5606 .process_update = imsm_process_update,
5607 .prepare_update = imsm_prepare_update,
5608 #endif /* MDASSEMBLE */
5609 };