]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Merge branch 'master' into devel-3.2
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_MIGRATION,
298 };
299
300 /* definition of messages passed to imsm_process_update */
301 enum imsm_update_type {
302 update_activate_spare,
303 update_create_array,
304 update_kill_array,
305 update_rename_array,
306 update_add_remove_disk,
307 update_reshape_container_disks,
308 update_takeover
309 };
310
311 struct imsm_update_activate_spare {
312 enum imsm_update_type type;
313 struct dl *dl;
314 int slot;
315 int array;
316 struct imsm_update_activate_spare *next;
317 };
318
319 struct geo_params {
320 int dev_id;
321 char *dev_name;
322 long long size;
323 int level;
324 int layout;
325 int chunksize;
326 int raid_disks;
327 };
328
329 enum takeover_direction {
330 R10_TO_R0,
331 R0_TO_R10
332 };
333 struct imsm_update_takeover {
334 enum imsm_update_type type;
335 int subarray;
336 enum takeover_direction direction;
337 };
338
339 struct imsm_update_reshape {
340 enum imsm_update_type type;
341 int old_raid_disks;
342 int new_raid_disks;
343 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
344 };
345
346 struct disk_info {
347 __u8 serial[MAX_RAID_SERIAL_LEN];
348 };
349
350 struct imsm_update_create_array {
351 enum imsm_update_type type;
352 int dev_idx;
353 struct imsm_dev dev;
354 };
355
356 struct imsm_update_kill_array {
357 enum imsm_update_type type;
358 int dev_idx;
359 };
360
361 struct imsm_update_rename_array {
362 enum imsm_update_type type;
363 __u8 name[MAX_RAID_SERIAL_LEN];
364 int dev_idx;
365 };
366
367 struct imsm_update_add_remove_disk {
368 enum imsm_update_type type;
369 };
370
371
372 static const char *_sys_dev_type[] = {
373 [SYS_DEV_UNKNOWN] = "Unknown",
374 [SYS_DEV_SAS] = "SAS",
375 [SYS_DEV_SATA] = "SATA"
376 };
377
378 const char *get_sys_dev_type(enum sys_dev_type type)
379 {
380 if (type >= SYS_DEV_MAX)
381 type = SYS_DEV_UNKNOWN;
382
383 return _sys_dev_type[type];
384 }
385
386 #ifndef MDASSEMBLE
387 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
388 {
389 struct intel_hba *result = malloc(sizeof(*result));
390 if (result) {
391 result->type = device->type;
392 result->path = strdup(device->path);
393 result->next = NULL;
394 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
395 result->pci_id++;
396 }
397 return result;
398 }
399
400 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
401 {
402 struct intel_hba *result=NULL;
403 for (result = hba; result; result = result->next) {
404 if (result->type == device->type && strcmp(result->path, device->path) == 0)
405 break;
406 }
407 return result;
408 }
409
410
411 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
412 {
413 struct intel_hba *hba;
414
415 /* check if disk attached to Intel HBA */
416 hba = find_intel_hba(super->hba, device);
417 if (hba != NULL)
418 return 1;
419 /* Check if HBA is already attached to super */
420 if (super->hba == NULL) {
421 super->hba = alloc_intel_hba(device);
422 return 1;
423 }
424
425 hba = super->hba;
426 /* Intel metadata allows for all disks attached to the same type HBA.
427 * Do not sypport odf HBA types mixing
428 */
429 if (device->type != hba->type)
430 return 2;
431
432 while (hba->next)
433 hba = hba->next;
434
435 hba->next = alloc_intel_hba(device);
436 return 1;
437 }
438
439 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
440 {
441 struct sys_dev *list, *elem, *prev;
442 char *disk_path;
443
444 if ((list = find_intel_devices()) == NULL)
445 return 0;
446
447 if (fd < 0)
448 disk_path = (char *) devname;
449 else
450 disk_path = diskfd_to_devpath(fd);
451
452 if (!disk_path) {
453 free_sys_dev(&list);
454 return 0;
455 }
456
457 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
458 if (path_attached_to_hba(disk_path, elem->path)) {
459 if (prev == NULL)
460 list = list->next;
461 else
462 prev->next = elem->next;
463 elem->next = NULL;
464 if (disk_path != devname)
465 free(disk_path);
466 free_sys_dev(&list);
467 return elem;
468 }
469 }
470 if (disk_path != devname)
471 free(disk_path);
472 free_sys_dev(&list);
473
474 return NULL;
475 }
476 #endif /* MDASSEMBLE */
477
478
479 static int find_intel_hba_capability(int fd, struct intel_super *super,
480 char *devname);
481
482 static struct supertype *match_metadata_desc_imsm(char *arg)
483 {
484 struct supertype *st;
485
486 if (strcmp(arg, "imsm") != 0 &&
487 strcmp(arg, "default") != 0
488 )
489 return NULL;
490
491 st = malloc(sizeof(*st));
492 if (!st)
493 return NULL;
494 memset(st, 0, sizeof(*st));
495 st->container_dev = NoMdDev;
496 st->ss = &super_imsm;
497 st->max_devs = IMSM_MAX_DEVICES;
498 st->minor_version = 0;
499 st->sb = NULL;
500 return st;
501 }
502
503 #ifndef MDASSEMBLE
504 static __u8 *get_imsm_version(struct imsm_super *mpb)
505 {
506 return &mpb->sig[MPB_SIG_LEN];
507 }
508 #endif
509
510 /* retrieve a disk directly from the anchor when the anchor is known to be
511 * up-to-date, currently only at load time
512 */
513 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
514 {
515 if (index >= mpb->num_disks)
516 return NULL;
517 return &mpb->disk[index];
518 }
519
520 /* retrieve the disk description based on a index of the disk
521 * in the sub-array
522 */
523 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
524 {
525 struct dl *d;
526
527 for (d = super->disks; d; d = d->next)
528 if (d->index == index)
529 return d;
530
531 return NULL;
532 }
533 /* retrieve a disk from the parsed metadata */
534 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
535 {
536 struct dl *dl;
537
538 dl = get_imsm_dl_disk(super, index);
539 if (dl)
540 return &dl->disk;
541
542 return NULL;
543 }
544
545 /* generate a checksum directly from the anchor when the anchor is known to be
546 * up-to-date, currently only at load or write_super after coalescing
547 */
548 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
549 {
550 __u32 end = mpb->mpb_size / sizeof(end);
551 __u32 *p = (__u32 *) mpb;
552 __u32 sum = 0;
553
554 while (end--) {
555 sum += __le32_to_cpu(*p);
556 p++;
557 }
558
559 return sum - __le32_to_cpu(mpb->check_sum);
560 }
561
562 static size_t sizeof_imsm_map(struct imsm_map *map)
563 {
564 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
565 }
566
567 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
568 {
569 /* A device can have 2 maps if it is in the middle of a migration.
570 * If second_map is:
571 * 0 - we return the first map
572 * 1 - we return the second map if it exists, else NULL
573 * -1 - we return the second map if it exists, else the first
574 */
575 struct imsm_map *map = &dev->vol.map[0];
576
577 if (second_map == 1 && !dev->vol.migr_state)
578 return NULL;
579 else if (second_map == 1 ||
580 (second_map < 0 && dev->vol.migr_state)) {
581 void *ptr = map;
582
583 return ptr + sizeof_imsm_map(map);
584 } else
585 return map;
586
587 }
588
589 /* return the size of the device.
590 * migr_state increases the returned size if map[0] were to be duplicated
591 */
592 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
593 {
594 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
595 sizeof_imsm_map(get_imsm_map(dev, 0));
596
597 /* migrating means an additional map */
598 if (dev->vol.migr_state)
599 size += sizeof_imsm_map(get_imsm_map(dev, 1));
600 else if (migr_state)
601 size += sizeof_imsm_map(get_imsm_map(dev, 0));
602
603 return size;
604 }
605
606 #ifndef MDASSEMBLE
607 /* retrieve disk serial number list from a metadata update */
608 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
609 {
610 void *u = update;
611 struct disk_info *inf;
612
613 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
614 sizeof_imsm_dev(&update->dev, 0);
615
616 return inf;
617 }
618 #endif
619
620 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
621 {
622 int offset;
623 int i;
624 void *_mpb = mpb;
625
626 if (index >= mpb->num_raid_devs)
627 return NULL;
628
629 /* devices start after all disks */
630 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
631
632 for (i = 0; i <= index; i++)
633 if (i == index)
634 return _mpb + offset;
635 else
636 offset += sizeof_imsm_dev(_mpb + offset, 0);
637
638 return NULL;
639 }
640
641 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
642 {
643 struct intel_dev *dv;
644
645 if (index >= super->anchor->num_raid_devs)
646 return NULL;
647 for (dv = super->devlist; dv; dv = dv->next)
648 if (dv->index == index)
649 return dv->dev;
650 return NULL;
651 }
652
653 /*
654 * for second_map:
655 * == 0 get first map
656 * == 1 get second map
657 * == -1 than get map according to the current migr_state
658 */
659 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
660 int slot,
661 int second_map)
662 {
663 struct imsm_map *map;
664
665 map = get_imsm_map(dev, second_map);
666
667 /* top byte identifies disk under rebuild */
668 return __le32_to_cpu(map->disk_ord_tbl[slot]);
669 }
670
671 #define ord_to_idx(ord) (((ord) << 8) >> 8)
672 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
673 {
674 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
675
676 return ord_to_idx(ord);
677 }
678
679 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
680 {
681 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
682 }
683
684 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
685 {
686 int slot;
687 __u32 ord;
688
689 for (slot = 0; slot < map->num_members; slot++) {
690 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
691 if (ord_to_idx(ord) == idx)
692 return slot;
693 }
694
695 return -1;
696 }
697
698 static int get_imsm_raid_level(struct imsm_map *map)
699 {
700 if (map->raid_level == 1) {
701 if (map->num_members == 2)
702 return 1;
703 else
704 return 10;
705 }
706
707 return map->raid_level;
708 }
709
710 static int cmp_extent(const void *av, const void *bv)
711 {
712 const struct extent *a = av;
713 const struct extent *b = bv;
714 if (a->start < b->start)
715 return -1;
716 if (a->start > b->start)
717 return 1;
718 return 0;
719 }
720
721 static int count_memberships(struct dl *dl, struct intel_super *super)
722 {
723 int memberships = 0;
724 int i;
725
726 for (i = 0; i < super->anchor->num_raid_devs; i++) {
727 struct imsm_dev *dev = get_imsm_dev(super, i);
728 struct imsm_map *map = get_imsm_map(dev, 0);
729
730 if (get_imsm_disk_slot(map, dl->index) >= 0)
731 memberships++;
732 }
733
734 return memberships;
735 }
736
737 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
738 {
739 /* find a list of used extents on the given physical device */
740 struct extent *rv, *e;
741 int i;
742 int memberships = count_memberships(dl, super);
743 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
744
745 rv = malloc(sizeof(struct extent) * (memberships + 1));
746 if (!rv)
747 return NULL;
748 e = rv;
749
750 for (i = 0; i < super->anchor->num_raid_devs; i++) {
751 struct imsm_dev *dev = get_imsm_dev(super, i);
752 struct imsm_map *map = get_imsm_map(dev, 0);
753
754 if (get_imsm_disk_slot(map, dl->index) >= 0) {
755 e->start = __le32_to_cpu(map->pba_of_lba0);
756 e->size = __le32_to_cpu(map->blocks_per_member);
757 e++;
758 }
759 }
760 qsort(rv, memberships, sizeof(*rv), cmp_extent);
761
762 /* determine the start of the metadata
763 * when no raid devices are defined use the default
764 * ...otherwise allow the metadata to truncate the value
765 * as is the case with older versions of imsm
766 */
767 if (memberships) {
768 struct extent *last = &rv[memberships - 1];
769 __u32 remainder;
770
771 remainder = __le32_to_cpu(dl->disk.total_blocks) -
772 (last->start + last->size);
773 /* round down to 1k block to satisfy precision of the kernel
774 * 'size' interface
775 */
776 remainder &= ~1UL;
777 /* make sure remainder is still sane */
778 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
779 remainder = ROUND_UP(super->len, 512) >> 9;
780 if (reservation > remainder)
781 reservation = remainder;
782 }
783 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
784 e->size = 0;
785 return rv;
786 }
787
788 /* try to determine how much space is reserved for metadata from
789 * the last get_extents() entry, otherwise fallback to the
790 * default
791 */
792 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
793 {
794 struct extent *e;
795 int i;
796 __u32 rv;
797
798 /* for spares just return a minimal reservation which will grow
799 * once the spare is picked up by an array
800 */
801 if (dl->index == -1)
802 return MPB_SECTOR_CNT;
803
804 e = get_extents(super, dl);
805 if (!e)
806 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
807
808 /* scroll to last entry */
809 for (i = 0; e[i].size; i++)
810 continue;
811
812 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
813
814 free(e);
815
816 return rv;
817 }
818
819 static int is_spare(struct imsm_disk *disk)
820 {
821 return (disk->status & SPARE_DISK) == SPARE_DISK;
822 }
823
824 static int is_configured(struct imsm_disk *disk)
825 {
826 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
827 }
828
829 static int is_failed(struct imsm_disk *disk)
830 {
831 return (disk->status & FAILED_DISK) == FAILED_DISK;
832 }
833
834 /* Return minimum size of a spare that can be used in this array*/
835 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
836 {
837 struct intel_super *super = st->sb;
838 struct dl *dl;
839 struct extent *e;
840 int i;
841 unsigned long long rv = 0;
842
843 if (!super)
844 return rv;
845 /* find first active disk in array */
846 dl = super->disks;
847 while (dl && (is_failed(&dl->disk) || dl->index == -1))
848 dl = dl->next;
849 if (!dl)
850 return rv;
851 /* find last lba used by subarrays */
852 e = get_extents(super, dl);
853 if (!e)
854 return rv;
855 for (i = 0; e[i].size; i++)
856 continue;
857 if (i > 0)
858 rv = e[i-1].start + e[i-1].size;
859 free(e);
860 /* add the amount of space needed for metadata */
861 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
862 return rv * 512;
863 }
864
865 #ifndef MDASSEMBLE
866 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
867
868 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
869 {
870 __u64 sz;
871 int slot, i;
872 struct imsm_map *map = get_imsm_map(dev, 0);
873 struct imsm_map *map2 = get_imsm_map(dev, 1);
874 __u32 ord;
875
876 printf("\n");
877 printf("[%.16s]:\n", dev->volume);
878 printf(" UUID : %s\n", uuid);
879 printf(" RAID Level : %d", get_imsm_raid_level(map));
880 if (map2)
881 printf(" <-- %d", get_imsm_raid_level(map2));
882 printf("\n");
883 printf(" Members : %d", map->num_members);
884 if (map2)
885 printf(" <-- %d", map2->num_members);
886 printf("\n");
887 printf(" Slots : [");
888 for (i = 0; i < map->num_members; i++) {
889 ord = get_imsm_ord_tbl_ent(dev, i, 0);
890 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
891 }
892 printf("]");
893 if (map2) {
894 printf(" <-- [");
895 for (i = 0; i < map2->num_members; i++) {
896 ord = get_imsm_ord_tbl_ent(dev, i, 1);
897 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
898 }
899 printf("]");
900 }
901 printf("\n");
902 printf(" Failed disk : ");
903 if (map->failed_disk_num == 0xff)
904 printf("none");
905 else
906 printf("%i", map->failed_disk_num);
907 printf("\n");
908 slot = get_imsm_disk_slot(map, disk_idx);
909 if (slot >= 0) {
910 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
911 printf(" This Slot : %d%s\n", slot,
912 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
913 } else
914 printf(" This Slot : ?\n");
915 sz = __le32_to_cpu(dev->size_high);
916 sz <<= 32;
917 sz += __le32_to_cpu(dev->size_low);
918 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
919 human_size(sz * 512));
920 sz = __le32_to_cpu(map->blocks_per_member);
921 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
922 human_size(sz * 512));
923 printf(" Sector Offset : %u\n",
924 __le32_to_cpu(map->pba_of_lba0));
925 printf(" Num Stripes : %u\n",
926 __le32_to_cpu(map->num_data_stripes));
927 printf(" Chunk Size : %u KiB",
928 __le16_to_cpu(map->blocks_per_strip) / 2);
929 if (map2)
930 printf(" <-- %u KiB",
931 __le16_to_cpu(map2->blocks_per_strip) / 2);
932 printf("\n");
933 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
934 printf(" Migrate State : ");
935 if (dev->vol.migr_state) {
936 if (migr_type(dev) == MIGR_INIT)
937 printf("initialize\n");
938 else if (migr_type(dev) == MIGR_REBUILD)
939 printf("rebuild\n");
940 else if (migr_type(dev) == MIGR_VERIFY)
941 printf("check\n");
942 else if (migr_type(dev) == MIGR_GEN_MIGR)
943 printf("general migration\n");
944 else if (migr_type(dev) == MIGR_STATE_CHANGE)
945 printf("state change\n");
946 else if (migr_type(dev) == MIGR_REPAIR)
947 printf("repair\n");
948 else
949 printf("<unknown:%d>\n", migr_type(dev));
950 } else
951 printf("idle\n");
952 printf(" Map State : %s", map_state_str[map->map_state]);
953 if (dev->vol.migr_state) {
954 struct imsm_map *map = get_imsm_map(dev, 1);
955
956 printf(" <-- %s", map_state_str[map->map_state]);
957 printf("\n Checkpoint : %u (%llu)",
958 __le32_to_cpu(dev->vol.curr_migr_unit),
959 (unsigned long long)blocks_per_migr_unit(dev));
960 }
961 printf("\n");
962 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
963 }
964
965 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
966 {
967 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
968 char str[MAX_RAID_SERIAL_LEN + 1];
969 __u64 sz;
970
971 if (index < 0 || !disk)
972 return;
973
974 printf("\n");
975 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
976 printf(" Disk%02d Serial : %s\n", index, str);
977 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
978 is_configured(disk) ? " active" : "",
979 is_failed(disk) ? " failed" : "");
980 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
981 sz = __le32_to_cpu(disk->total_blocks) - reserved;
982 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
983 human_size(sz * 512));
984 }
985
986 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
987
988 static void examine_super_imsm(struct supertype *st, char *homehost)
989 {
990 struct intel_super *super = st->sb;
991 struct imsm_super *mpb = super->anchor;
992 char str[MAX_SIGNATURE_LENGTH];
993 int i;
994 struct mdinfo info;
995 char nbuf[64];
996 __u32 sum;
997 __u32 reserved = imsm_reserved_sectors(super, super->disks);
998 struct dl *dl;
999
1000 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1001 printf(" Magic : %s\n", str);
1002 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1003 printf(" Version : %s\n", get_imsm_version(mpb));
1004 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1005 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1006 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1007 getinfo_super_imsm(st, &info, NULL);
1008 fname_from_uuid(st, &info, nbuf, ':');
1009 printf(" UUID : %s\n", nbuf + 5);
1010 sum = __le32_to_cpu(mpb->check_sum);
1011 printf(" Checksum : %08x %s\n", sum,
1012 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1013 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1014 printf(" Disks : %d\n", mpb->num_disks);
1015 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1016 print_imsm_disk(mpb, super->disks->index, reserved);
1017 if (super->bbm_log) {
1018 struct bbm_log *log = super->bbm_log;
1019
1020 printf("\n");
1021 printf("Bad Block Management Log:\n");
1022 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1023 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1024 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1025 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1026 printf(" First Spare : %llx\n",
1027 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1028 }
1029 for (i = 0; i < mpb->num_raid_devs; i++) {
1030 struct mdinfo info;
1031 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1032
1033 super->current_vol = i;
1034 getinfo_super_imsm(st, &info, NULL);
1035 fname_from_uuid(st, &info, nbuf, ':');
1036 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1037 }
1038 for (i = 0; i < mpb->num_disks; i++) {
1039 if (i == super->disks->index)
1040 continue;
1041 print_imsm_disk(mpb, i, reserved);
1042 }
1043 for (dl = super->disks ; dl; dl = dl->next) {
1044 struct imsm_disk *disk;
1045 char str[MAX_RAID_SERIAL_LEN + 1];
1046 __u64 sz;
1047
1048 if (dl->index >= 0)
1049 continue;
1050
1051 disk = &dl->disk;
1052 printf("\n");
1053 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1054 printf(" Disk Serial : %s\n", str);
1055 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1056 is_configured(disk) ? " active" : "",
1057 is_failed(disk) ? " failed" : "");
1058 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1059 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1060 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1061 human_size(sz * 512));
1062 }
1063 }
1064
1065 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1066 {
1067 /* We just write a generic IMSM ARRAY entry */
1068 struct mdinfo info;
1069 char nbuf[64];
1070 struct intel_super *super = st->sb;
1071
1072 if (!super->anchor->num_raid_devs) {
1073 printf("ARRAY metadata=imsm\n");
1074 return;
1075 }
1076
1077 getinfo_super_imsm(st, &info, NULL);
1078 fname_from_uuid(st, &info, nbuf, ':');
1079 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1080 }
1081
1082 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1083 {
1084 /* We just write a generic IMSM ARRAY entry */
1085 struct mdinfo info;
1086 char nbuf[64];
1087 char nbuf1[64];
1088 struct intel_super *super = st->sb;
1089 int i;
1090
1091 if (!super->anchor->num_raid_devs)
1092 return;
1093
1094 getinfo_super_imsm(st, &info, NULL);
1095 fname_from_uuid(st, &info, nbuf, ':');
1096 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1097 struct imsm_dev *dev = get_imsm_dev(super, i);
1098
1099 super->current_vol = i;
1100 getinfo_super_imsm(st, &info, NULL);
1101 fname_from_uuid(st, &info, nbuf1, ':');
1102 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1103 dev->volume, nbuf + 5, i, nbuf1 + 5);
1104 }
1105 }
1106
1107 static void export_examine_super_imsm(struct supertype *st)
1108 {
1109 struct intel_super *super = st->sb;
1110 struct imsm_super *mpb = super->anchor;
1111 struct mdinfo info;
1112 char nbuf[64];
1113
1114 getinfo_super_imsm(st, &info, NULL);
1115 fname_from_uuid(st, &info, nbuf, ':');
1116 printf("MD_METADATA=imsm\n");
1117 printf("MD_LEVEL=container\n");
1118 printf("MD_UUID=%s\n", nbuf+5);
1119 printf("MD_DEVICES=%u\n", mpb->num_disks);
1120 }
1121
1122 static void detail_super_imsm(struct supertype *st, char *homehost)
1123 {
1124 struct mdinfo info;
1125 char nbuf[64];
1126
1127 getinfo_super_imsm(st, &info, NULL);
1128 fname_from_uuid(st, &info, nbuf, ':');
1129 printf("\n UUID : %s\n", nbuf + 5);
1130 }
1131
1132 static void brief_detail_super_imsm(struct supertype *st)
1133 {
1134 struct mdinfo info;
1135 char nbuf[64];
1136 getinfo_super_imsm(st, &info, NULL);
1137 fname_from_uuid(st, &info, nbuf, ':');
1138 printf(" UUID=%s", nbuf + 5);
1139 }
1140
1141 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1142 static void fd2devname(int fd, char *name);
1143
1144 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1145 {
1146 /* dump an unsorted list of devices attached to AHCI Intel storage
1147 * controller, as well as non-connected ports
1148 */
1149 int hba_len = strlen(hba_path) + 1;
1150 struct dirent *ent;
1151 DIR *dir;
1152 char *path = NULL;
1153 int err = 0;
1154 unsigned long port_mask = (1 << port_count) - 1;
1155
1156 if (port_count > (int)sizeof(port_mask) * 8) {
1157 if (verbose)
1158 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1159 return 2;
1160 }
1161
1162 /* scroll through /sys/dev/block looking for devices attached to
1163 * this hba
1164 */
1165 dir = opendir("/sys/dev/block");
1166 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1167 int fd;
1168 char model[64];
1169 char vendor[64];
1170 char buf[1024];
1171 int major, minor;
1172 char *device;
1173 char *c;
1174 int port;
1175 int type;
1176
1177 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1178 continue;
1179 path = devt_to_devpath(makedev(major, minor));
1180 if (!path)
1181 continue;
1182 if (!path_attached_to_hba(path, hba_path)) {
1183 free(path);
1184 path = NULL;
1185 continue;
1186 }
1187
1188 /* retrieve the scsi device type */
1189 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1190 if (verbose)
1191 fprintf(stderr, Name ": failed to allocate 'device'\n");
1192 err = 2;
1193 break;
1194 }
1195 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1196 if (load_sys(device, buf) != 0) {
1197 if (verbose)
1198 fprintf(stderr, Name ": failed to read device type for %s\n",
1199 path);
1200 err = 2;
1201 free(device);
1202 break;
1203 }
1204 type = strtoul(buf, NULL, 10);
1205
1206 /* if it's not a disk print the vendor and model */
1207 if (!(type == 0 || type == 7 || type == 14)) {
1208 vendor[0] = '\0';
1209 model[0] = '\0';
1210 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1211 if (load_sys(device, buf) == 0) {
1212 strncpy(vendor, buf, sizeof(vendor));
1213 vendor[sizeof(vendor) - 1] = '\0';
1214 c = (char *) &vendor[sizeof(vendor) - 1];
1215 while (isspace(*c) || *c == '\0')
1216 *c-- = '\0';
1217
1218 }
1219 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1220 if (load_sys(device, buf) == 0) {
1221 strncpy(model, buf, sizeof(model));
1222 model[sizeof(model) - 1] = '\0';
1223 c = (char *) &model[sizeof(model) - 1];
1224 while (isspace(*c) || *c == '\0')
1225 *c-- = '\0';
1226 }
1227
1228 if (vendor[0] && model[0])
1229 sprintf(buf, "%.64s %.64s", vendor, model);
1230 else
1231 switch (type) { /* numbers from hald/linux/device.c */
1232 case 1: sprintf(buf, "tape"); break;
1233 case 2: sprintf(buf, "printer"); break;
1234 case 3: sprintf(buf, "processor"); break;
1235 case 4:
1236 case 5: sprintf(buf, "cdrom"); break;
1237 case 6: sprintf(buf, "scanner"); break;
1238 case 8: sprintf(buf, "media_changer"); break;
1239 case 9: sprintf(buf, "comm"); break;
1240 case 12: sprintf(buf, "raid"); break;
1241 default: sprintf(buf, "unknown");
1242 }
1243 } else
1244 buf[0] = '\0';
1245 free(device);
1246
1247 /* chop device path to 'host%d' and calculate the port number */
1248 c = strchr(&path[hba_len], '/');
1249 if (!c) {
1250 if (verbose)
1251 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1252 err = 2;
1253 break;
1254 }
1255 *c = '\0';
1256 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1257 port -= host_base;
1258 else {
1259 if (verbose) {
1260 *c = '/'; /* repair the full string */
1261 fprintf(stderr, Name ": failed to determine port number for %s\n",
1262 path);
1263 }
1264 err = 2;
1265 break;
1266 }
1267
1268 /* mark this port as used */
1269 port_mask &= ~(1 << port);
1270
1271 /* print out the device information */
1272 if (buf[0]) {
1273 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1274 continue;
1275 }
1276
1277 fd = dev_open(ent->d_name, O_RDONLY);
1278 if (fd < 0)
1279 printf(" Port%d : - disk info unavailable -\n", port);
1280 else {
1281 fd2devname(fd, buf);
1282 printf(" Port%d : %s", port, buf);
1283 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1284 printf(" (%s)\n", buf);
1285 else
1286 printf("()\n");
1287 }
1288 close(fd);
1289 free(path);
1290 path = NULL;
1291 }
1292 if (path)
1293 free(path);
1294 if (dir)
1295 closedir(dir);
1296 if (err == 0) {
1297 int i;
1298
1299 for (i = 0; i < port_count; i++)
1300 if (port_mask & (1 << i))
1301 printf(" Port%d : - no device attached -\n", i);
1302 }
1303
1304 return err;
1305 }
1306
1307
1308
1309 static void print_found_intel_controllers(struct sys_dev *elem)
1310 {
1311 for (; elem; elem = elem->next) {
1312 fprintf(stderr, Name ": found Intel(R) ");
1313 if (elem->type == SYS_DEV_SATA)
1314 fprintf(stderr, "SATA ");
1315 else if (elem->type == SYS_DEV_SAS)
1316 fprintf(stderr, "SAS ");
1317 fprintf(stderr, "RAID controller");
1318 if (elem->pci_id)
1319 fprintf(stderr, " at %s", elem->pci_id);
1320 fprintf(stderr, ".\n");
1321 }
1322 fflush(stderr);
1323 }
1324
1325 static int ahci_get_port_count(const char *hba_path, int *port_count)
1326 {
1327 struct dirent *ent;
1328 DIR *dir;
1329 int host_base = -1;
1330
1331 *port_count = 0;
1332 if ((dir = opendir(hba_path)) == NULL)
1333 return -1;
1334
1335 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1336 int host;
1337
1338 if (sscanf(ent->d_name, "host%d", &host) != 1)
1339 continue;
1340 if (*port_count == 0)
1341 host_base = host;
1342 else if (host < host_base)
1343 host_base = host;
1344
1345 if (host + 1 > *port_count + host_base)
1346 *port_count = host + 1 - host_base;
1347 }
1348 closedir(dir);
1349 return host_base;
1350 }
1351
1352 static void print_imsm_capability(const struct imsm_orom *orom)
1353 {
1354 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1355 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1356 orom->hotfix_ver, orom->build);
1357 printf(" RAID Levels :%s%s%s%s%s\n",
1358 imsm_orom_has_raid0(orom) ? " raid0" : "",
1359 imsm_orom_has_raid1(orom) ? " raid1" : "",
1360 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1361 imsm_orom_has_raid10(orom) ? " raid10" : "",
1362 imsm_orom_has_raid5(orom) ? " raid5" : "");
1363 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1364 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1365 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1366 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1367 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1368 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1369 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1370 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1371 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1372 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1373 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1374 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1375 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1376 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1377 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1378 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1379 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1380 printf(" Max Disks : %d\n", orom->tds);
1381 printf(" Max Volumes : %d\n", orom->vpa);
1382 return;
1383 }
1384
1385 static int detail_platform_imsm(int verbose, int enumerate_only)
1386 {
1387 /* There are two components to imsm platform support, the ahci SATA
1388 * controller and the option-rom. To find the SATA controller we
1389 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1390 * controller with the Intel vendor id is present. This approach
1391 * allows mdadm to leverage the kernel's ahci detection logic, with the
1392 * caveat that if ahci.ko is not loaded mdadm will not be able to
1393 * detect platform raid capabilities. The option-rom resides in a
1394 * platform "Adapter ROM". We scan for its signature to retrieve the
1395 * platform capabilities. If raid support is disabled in the BIOS the
1396 * option-rom capability structure will not be available.
1397 */
1398 const struct imsm_orom *orom;
1399 struct sys_dev *list, *hba;
1400 int host_base = 0;
1401 int port_count = 0;
1402 int result=0;
1403
1404 if (enumerate_only) {
1405 if (check_env("IMSM_NO_PLATFORM"))
1406 return 0;
1407 list = find_intel_devices();
1408 if (!list)
1409 return 2;
1410 for (hba = list; hba; hba = hba->next) {
1411 orom = find_imsm_capability(hba->type);
1412 if (!orom) {
1413 result = 2;
1414 break;
1415 }
1416 }
1417 free_sys_dev(&list);
1418 return result;
1419 }
1420
1421 list = find_intel_devices();
1422 if (!list) {
1423 if (verbose)
1424 fprintf(stderr, Name ": no active Intel(R) RAID "
1425 "controller found.\n");
1426 free_sys_dev(&list);
1427 return 2;
1428 } else if (verbose)
1429 print_found_intel_controllers(list);
1430
1431 for (hba = list; hba; hba = hba->next) {
1432 orom = find_imsm_capability(hba->type);
1433 if (!orom)
1434 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1435 hba->path, get_sys_dev_type(hba->type));
1436 else
1437 print_imsm_capability(orom);
1438 }
1439
1440 for (hba = list; hba; hba = hba->next) {
1441 printf(" I/O Controller : %s (%s)\n",
1442 hba->path, get_sys_dev_type(hba->type));
1443
1444 if (hba->type == SYS_DEV_SATA) {
1445 host_base = ahci_get_port_count(hba->path, &port_count);
1446 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1447 if (verbose)
1448 fprintf(stderr, Name ": failed to enumerate "
1449 "ports on SATA controller at %s.", hba->pci_id);
1450 result |= 2;
1451 }
1452 }
1453 }
1454
1455 free_sys_dev(&list);
1456 return result;
1457 }
1458 #endif
1459
1460 static int match_home_imsm(struct supertype *st, char *homehost)
1461 {
1462 /* the imsm metadata format does not specify any host
1463 * identification information. We return -1 since we can never
1464 * confirm nor deny whether a given array is "meant" for this
1465 * host. We rely on compare_super and the 'family_num' fields to
1466 * exclude member disks that do not belong, and we rely on
1467 * mdadm.conf to specify the arrays that should be assembled.
1468 * Auto-assembly may still pick up "foreign" arrays.
1469 */
1470
1471 return -1;
1472 }
1473
1474 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1475 {
1476 /* The uuid returned here is used for:
1477 * uuid to put into bitmap file (Create, Grow)
1478 * uuid for backup header when saving critical section (Grow)
1479 * comparing uuids when re-adding a device into an array
1480 * In these cases the uuid required is that of the data-array,
1481 * not the device-set.
1482 * uuid to recognise same set when adding a missing device back
1483 * to an array. This is a uuid for the device-set.
1484 *
1485 * For each of these we can make do with a truncated
1486 * or hashed uuid rather than the original, as long as
1487 * everyone agrees.
1488 * In each case the uuid required is that of the data-array,
1489 * not the device-set.
1490 */
1491 /* imsm does not track uuid's so we synthesis one using sha1 on
1492 * - The signature (Which is constant for all imsm array, but no matter)
1493 * - the orig_family_num of the container
1494 * - the index number of the volume
1495 * - the 'serial' number of the volume.
1496 * Hopefully these are all constant.
1497 */
1498 struct intel_super *super = st->sb;
1499
1500 char buf[20];
1501 struct sha1_ctx ctx;
1502 struct imsm_dev *dev = NULL;
1503 __u32 family_num;
1504
1505 /* some mdadm versions failed to set ->orig_family_num, in which
1506 * case fall back to ->family_num. orig_family_num will be
1507 * fixed up with the first metadata update.
1508 */
1509 family_num = super->anchor->orig_family_num;
1510 if (family_num == 0)
1511 family_num = super->anchor->family_num;
1512 sha1_init_ctx(&ctx);
1513 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1514 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1515 if (super->current_vol >= 0)
1516 dev = get_imsm_dev(super, super->current_vol);
1517 if (dev) {
1518 __u32 vol = super->current_vol;
1519 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1520 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1521 }
1522 sha1_finish_ctx(&ctx, buf);
1523 memcpy(uuid, buf, 4*4);
1524 }
1525
1526 #if 0
1527 static void
1528 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1529 {
1530 __u8 *v = get_imsm_version(mpb);
1531 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1532 char major[] = { 0, 0, 0 };
1533 char minor[] = { 0 ,0, 0 };
1534 char patch[] = { 0, 0, 0 };
1535 char *ver_parse[] = { major, minor, patch };
1536 int i, j;
1537
1538 i = j = 0;
1539 while (*v != '\0' && v < end) {
1540 if (*v != '.' && j < 2)
1541 ver_parse[i][j++] = *v;
1542 else {
1543 i++;
1544 j = 0;
1545 }
1546 v++;
1547 }
1548
1549 *m = strtol(minor, NULL, 0);
1550 *p = strtol(patch, NULL, 0);
1551 }
1552 #endif
1553
1554 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1555 {
1556 /* migr_strip_size when repairing or initializing parity */
1557 struct imsm_map *map = get_imsm_map(dev, 0);
1558 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1559
1560 switch (get_imsm_raid_level(map)) {
1561 case 5:
1562 case 10:
1563 return chunk;
1564 default:
1565 return 128*1024 >> 9;
1566 }
1567 }
1568
1569 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1570 {
1571 /* migr_strip_size when rebuilding a degraded disk, no idea why
1572 * this is different than migr_strip_size_resync(), but it's good
1573 * to be compatible
1574 */
1575 struct imsm_map *map = get_imsm_map(dev, 1);
1576 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1577
1578 switch (get_imsm_raid_level(map)) {
1579 case 1:
1580 case 10:
1581 if (map->num_members % map->num_domains == 0)
1582 return 128*1024 >> 9;
1583 else
1584 return chunk;
1585 case 5:
1586 return max((__u32) 64*1024 >> 9, chunk);
1587 default:
1588 return 128*1024 >> 9;
1589 }
1590 }
1591
1592 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1593 {
1594 struct imsm_map *lo = get_imsm_map(dev, 0);
1595 struct imsm_map *hi = get_imsm_map(dev, 1);
1596 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1597 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1598
1599 return max((__u32) 1, hi_chunk / lo_chunk);
1600 }
1601
1602 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1603 {
1604 struct imsm_map *lo = get_imsm_map(dev, 0);
1605 int level = get_imsm_raid_level(lo);
1606
1607 if (level == 1 || level == 10) {
1608 struct imsm_map *hi = get_imsm_map(dev, 1);
1609
1610 return hi->num_domains;
1611 } else
1612 return num_stripes_per_unit_resync(dev);
1613 }
1614
1615 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1616 {
1617 /* named 'imsm_' because raid0, raid1 and raid10
1618 * counter-intuitively have the same number of data disks
1619 */
1620 struct imsm_map *map = get_imsm_map(dev, second_map);
1621
1622 switch (get_imsm_raid_level(map)) {
1623 case 0:
1624 case 1:
1625 case 10:
1626 return map->num_members;
1627 case 5:
1628 return map->num_members - 1;
1629 default:
1630 dprintf("%s: unsupported raid level\n", __func__);
1631 return 0;
1632 }
1633 }
1634
1635 static __u32 parity_segment_depth(struct imsm_dev *dev)
1636 {
1637 struct imsm_map *map = get_imsm_map(dev, 0);
1638 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1639
1640 switch(get_imsm_raid_level(map)) {
1641 case 1:
1642 case 10:
1643 return chunk * map->num_domains;
1644 case 5:
1645 return chunk * map->num_members;
1646 default:
1647 return chunk;
1648 }
1649 }
1650
1651 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1652 {
1653 struct imsm_map *map = get_imsm_map(dev, 1);
1654 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1655 __u32 strip = block / chunk;
1656
1657 switch (get_imsm_raid_level(map)) {
1658 case 1:
1659 case 10: {
1660 __u32 vol_strip = (strip * map->num_domains) + 1;
1661 __u32 vol_stripe = vol_strip / map->num_members;
1662
1663 return vol_stripe * chunk + block % chunk;
1664 } case 5: {
1665 __u32 stripe = strip / (map->num_members - 1);
1666
1667 return stripe * chunk + block % chunk;
1668 }
1669 default:
1670 return 0;
1671 }
1672 }
1673
1674 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1675 {
1676 /* calculate the conversion factor between per member 'blocks'
1677 * (md/{resync,rebuild}_start) and imsm migration units, return
1678 * 0 for the 'not migrating' and 'unsupported migration' cases
1679 */
1680 if (!dev->vol.migr_state)
1681 return 0;
1682
1683 switch (migr_type(dev)) {
1684 case MIGR_GEN_MIGR:
1685 case MIGR_VERIFY:
1686 case MIGR_REPAIR:
1687 case MIGR_INIT: {
1688 struct imsm_map *map = get_imsm_map(dev, 0);
1689 __u32 stripes_per_unit;
1690 __u32 blocks_per_unit;
1691 __u32 parity_depth;
1692 __u32 migr_chunk;
1693 __u32 block_map;
1694 __u32 block_rel;
1695 __u32 segment;
1696 __u32 stripe;
1697 __u8 disks;
1698
1699 /* yes, this is really the translation of migr_units to
1700 * per-member blocks in the 'resync' case
1701 */
1702 stripes_per_unit = num_stripes_per_unit_resync(dev);
1703 migr_chunk = migr_strip_blocks_resync(dev);
1704 disks = imsm_num_data_members(dev, 0);
1705 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1706 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1707 segment = blocks_per_unit / stripe;
1708 block_rel = blocks_per_unit - segment * stripe;
1709 parity_depth = parity_segment_depth(dev);
1710 block_map = map_migr_block(dev, block_rel);
1711 return block_map + parity_depth * segment;
1712 }
1713 case MIGR_REBUILD: {
1714 __u32 stripes_per_unit;
1715 __u32 migr_chunk;
1716
1717 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1718 migr_chunk = migr_strip_blocks_rebuild(dev);
1719 return migr_chunk * stripes_per_unit;
1720 }
1721 case MIGR_STATE_CHANGE:
1722 default:
1723 return 0;
1724 }
1725 }
1726
1727 static int imsm_level_to_layout(int level)
1728 {
1729 switch (level) {
1730 case 0:
1731 case 1:
1732 return 0;
1733 case 5:
1734 case 6:
1735 return ALGORITHM_LEFT_ASYMMETRIC;
1736 case 10:
1737 return 0x102;
1738 }
1739 return UnSet;
1740 }
1741
1742 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1743 {
1744 struct intel_super *super = st->sb;
1745 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1746 struct imsm_map *map = get_imsm_map(dev, 0);
1747 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1748 struct imsm_map *map_to_analyse = map;
1749 struct dl *dl;
1750 char *devname;
1751 int map_disks = info->array.raid_disks;
1752
1753 if (prev_map)
1754 map_to_analyse = prev_map;
1755
1756 for (dl = super->disks; dl; dl = dl->next)
1757 if (dl->raiddisk == info->disk.raid_disk)
1758 break;
1759 info->container_member = super->current_vol;
1760 info->array.raid_disks = map_to_analyse->num_members;
1761 info->array.level = get_imsm_raid_level(map_to_analyse);
1762 info->array.layout = imsm_level_to_layout(info->array.level);
1763 info->array.md_minor = -1;
1764 info->array.ctime = 0;
1765 info->array.utime = 0;
1766 info->array.chunk_size =
1767 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1768 info->array.state = !dev->vol.dirty;
1769 info->custom_array_size = __le32_to_cpu(dev->size_high);
1770 info->custom_array_size <<= 32;
1771 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1772 if (prev_map && map->map_state == prev_map->map_state) {
1773 info->reshape_active = 1;
1774 info->new_level = get_imsm_raid_level(map);
1775 info->new_layout = imsm_level_to_layout(info->new_level);
1776 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1777 info->delta_disks = map->num_members - prev_map->num_members;
1778 if (info->delta_disks) {
1779 /* this needs to be applied to every array
1780 * in the container.
1781 */
1782 info->reshape_active = 2;
1783 }
1784 /* We shape information that we give to md might have to be
1785 * modify to cope with md's requirement for reshaping arrays.
1786 * For example, when reshaping a RAID0, md requires it to be
1787 * presented as a degraded RAID4.
1788 * Also if a RAID0 is migrating to a RAID5 we need to specify
1789 * the array as already being RAID5, but the 'before' layout
1790 * is a RAID4-like layout.
1791 */
1792 switch (info->array.level) {
1793 case 0:
1794 switch(info->new_level) {
1795 case 0:
1796 /* conversion is happening as RAID4 */
1797 info->array.level = 4;
1798 info->array.raid_disks += 1;
1799 break;
1800 case 5:
1801 /* conversion is happening as RAID5 */
1802 info->array.level = 5;
1803 info->array.layout = ALGORITHM_PARITY_N;
1804 info->array.raid_disks += 1;
1805 info->delta_disks -= 1;
1806 break;
1807 default:
1808 /* FIXME error message */
1809 info->array.level = UnSet;
1810 break;
1811 }
1812 break;
1813 }
1814 } else {
1815 info->new_level = UnSet;
1816 info->new_layout = UnSet;
1817 info->new_chunk = info->array.chunk_size;
1818 info->delta_disks = 0;
1819 }
1820 info->disk.major = 0;
1821 info->disk.minor = 0;
1822 if (dl) {
1823 info->disk.major = dl->major;
1824 info->disk.minor = dl->minor;
1825 }
1826
1827 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1828 info->component_size =
1829 __le32_to_cpu(map_to_analyse->blocks_per_member);
1830 memset(info->uuid, 0, sizeof(info->uuid));
1831 info->recovery_start = MaxSector;
1832
1833 info->reshape_progress = 0;
1834 info->resync_start = MaxSector;
1835 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1836 dev->vol.dirty) {
1837 info->resync_start = 0;
1838 }
1839 if (dev->vol.migr_state) {
1840 switch (migr_type(dev)) {
1841 case MIGR_REPAIR:
1842 case MIGR_INIT: {
1843 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1844 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1845
1846 info->resync_start = blocks_per_unit * units;
1847 break;
1848 }
1849 case MIGR_GEN_MIGR: {
1850 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1851 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1852 unsigned long long array_blocks;
1853 int used_disks;
1854
1855 info->reshape_progress = blocks_per_unit * units;
1856
1857 /* checkpoint is written per disks unit
1858 * recalculate it to reshape position
1859 */
1860 used_disks = imsm_num_data_members(dev, 0);
1861 info->reshape_progress *= used_disks;
1862 dprintf("IMSM: General Migration checkpoint : %llu "
1863 "(%llu) -> read reshape progress : %llu\n",
1864 units, blocks_per_unit, info->reshape_progress);
1865
1866 used_disks = imsm_num_data_members(dev, 1);
1867 if (used_disks > 0) {
1868 array_blocks = map->blocks_per_member *
1869 used_disks;
1870 /* round array size down to closest MB
1871 */
1872 info->custom_array_size = (array_blocks
1873 >> SECT_PER_MB_SHIFT)
1874 << SECT_PER_MB_SHIFT;
1875 }
1876 }
1877 case MIGR_VERIFY:
1878 /* we could emulate the checkpointing of
1879 * 'sync_action=check' migrations, but for now
1880 * we just immediately complete them
1881 */
1882 case MIGR_REBUILD:
1883 /* this is handled by container_content_imsm() */
1884 case MIGR_STATE_CHANGE:
1885 /* FIXME handle other migrations */
1886 default:
1887 /* we are not dirty, so... */
1888 info->resync_start = MaxSector;
1889 }
1890 }
1891
1892 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1893 info->name[MAX_RAID_SERIAL_LEN] = 0;
1894
1895 info->array.major_version = -1;
1896 info->array.minor_version = -2;
1897 devname = devnum2devname(st->container_dev);
1898 *info->text_version = '\0';
1899 if (devname)
1900 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1901 free(devname);
1902 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1903 uuid_from_super_imsm(st, info->uuid);
1904
1905 if (dmap) {
1906 int i, j;
1907 for (i=0; i<map_disks; i++) {
1908 dmap[i] = 0;
1909 if (i < info->array.raid_disks) {
1910 struct imsm_disk *dsk;
1911 j = get_imsm_disk_idx(dev, i, -1);
1912 dsk = get_imsm_disk(super, j);
1913 if (dsk && (dsk->status & CONFIGURED_DISK))
1914 dmap[i] = 1;
1915 }
1916 }
1917 }
1918 }
1919
1920 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1921 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1922
1923 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1924 {
1925 struct dl *d;
1926
1927 for (d = super->missing; d; d = d->next)
1928 if (d->index == index)
1929 return &d->disk;
1930 return NULL;
1931 }
1932
1933 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1934 {
1935 struct intel_super *super = st->sb;
1936 struct imsm_disk *disk;
1937 int map_disks = info->array.raid_disks;
1938 int max_enough = -1;
1939 int i;
1940 struct imsm_super *mpb;
1941
1942 if (super->current_vol >= 0) {
1943 getinfo_super_imsm_volume(st, info, map);
1944 return;
1945 }
1946
1947 /* Set raid_disks to zero so that Assemble will always pull in valid
1948 * spares
1949 */
1950 info->array.raid_disks = 0;
1951 info->array.level = LEVEL_CONTAINER;
1952 info->array.layout = 0;
1953 info->array.md_minor = -1;
1954 info->array.ctime = 0; /* N/A for imsm */
1955 info->array.utime = 0;
1956 info->array.chunk_size = 0;
1957
1958 info->disk.major = 0;
1959 info->disk.minor = 0;
1960 info->disk.raid_disk = -1;
1961 info->reshape_active = 0;
1962 info->array.major_version = -1;
1963 info->array.minor_version = -2;
1964 strcpy(info->text_version, "imsm");
1965 info->safe_mode_delay = 0;
1966 info->disk.number = -1;
1967 info->disk.state = 0;
1968 info->name[0] = 0;
1969 info->recovery_start = MaxSector;
1970
1971 /* do we have the all the insync disks that we expect? */
1972 mpb = super->anchor;
1973
1974 for (i = 0; i < mpb->num_raid_devs; i++) {
1975 struct imsm_dev *dev = get_imsm_dev(super, i);
1976 int failed, enough, j, missing = 0;
1977 struct imsm_map *map;
1978 __u8 state;
1979
1980 failed = imsm_count_failed(super, dev);
1981 state = imsm_check_degraded(super, dev, failed);
1982 map = get_imsm_map(dev, dev->vol.migr_state);
1983
1984 /* any newly missing disks?
1985 * (catches single-degraded vs double-degraded)
1986 */
1987 for (j = 0; j < map->num_members; j++) {
1988 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
1989 __u32 idx = ord_to_idx(ord);
1990
1991 if (!(ord & IMSM_ORD_REBUILD) &&
1992 get_imsm_missing(super, idx)) {
1993 missing = 1;
1994 break;
1995 }
1996 }
1997
1998 if (state == IMSM_T_STATE_FAILED)
1999 enough = -1;
2000 else if (state == IMSM_T_STATE_DEGRADED &&
2001 (state != map->map_state || missing))
2002 enough = 0;
2003 else /* we're normal, or already degraded */
2004 enough = 1;
2005
2006 /* in the missing/failed disk case check to see
2007 * if at least one array is runnable
2008 */
2009 max_enough = max(max_enough, enough);
2010 }
2011 dprintf("%s: enough: %d\n", __func__, max_enough);
2012 info->container_enough = max_enough;
2013
2014 if (super->disks) {
2015 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2016
2017 disk = &super->disks->disk;
2018 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2019 info->component_size = reserved;
2020 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2021 /* we don't change info->disk.raid_disk here because
2022 * this state will be finalized in mdmon after we have
2023 * found the 'most fresh' version of the metadata
2024 */
2025 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2026 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2027 }
2028
2029 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2030 * ->compare_super may have updated the 'num_raid_devs' field for spares
2031 */
2032 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2033 uuid_from_super_imsm(st, info->uuid);
2034 else
2035 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2036
2037 /* I don't know how to compute 'map' on imsm, so use safe default */
2038 if (map) {
2039 int i;
2040 for (i = 0; i < map_disks; i++)
2041 map[i] = 1;
2042 }
2043
2044 }
2045
2046 /* allocates memory and fills disk in mdinfo structure
2047 * for each disk in array */
2048 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2049 {
2050 struct mdinfo *mddev = NULL;
2051 struct intel_super *super = st->sb;
2052 struct imsm_disk *disk;
2053 int count = 0;
2054 struct dl *dl;
2055 if (!super || !super->disks)
2056 return NULL;
2057 dl = super->disks;
2058 mddev = malloc(sizeof(*mddev));
2059 if (!mddev) {
2060 fprintf(stderr, Name ": Failed to allocate memory.\n");
2061 return NULL;
2062 }
2063 memset(mddev, 0, sizeof(*mddev));
2064 while (dl) {
2065 struct mdinfo *tmp;
2066 disk = &dl->disk;
2067 tmp = malloc(sizeof(*tmp));
2068 if (!tmp) {
2069 fprintf(stderr, Name ": Failed to allocate memory.\n");
2070 if (mddev)
2071 sysfs_free(mddev);
2072 return NULL;
2073 }
2074 memset(tmp, 0, sizeof(*tmp));
2075 if (mddev->devs)
2076 tmp->next = mddev->devs;
2077 mddev->devs = tmp;
2078 tmp->disk.number = count++;
2079 tmp->disk.major = dl->major;
2080 tmp->disk.minor = dl->minor;
2081 tmp->disk.state = is_configured(disk) ?
2082 (1 << MD_DISK_ACTIVE) : 0;
2083 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2084 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2085 tmp->disk.raid_disk = -1;
2086 dl = dl->next;
2087 }
2088 return mddev;
2089 }
2090
2091 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2092 char *update, char *devname, int verbose,
2093 int uuid_set, char *homehost)
2094 {
2095 /* For 'assemble' and 'force' we need to return non-zero if any
2096 * change was made. For others, the return value is ignored.
2097 * Update options are:
2098 * force-one : This device looks a bit old but needs to be included,
2099 * update age info appropriately.
2100 * assemble: clear any 'faulty' flag to allow this device to
2101 * be assembled.
2102 * force-array: Array is degraded but being forced, mark it clean
2103 * if that will be needed to assemble it.
2104 *
2105 * newdev: not used ????
2106 * grow: Array has gained a new device - this is currently for
2107 * linear only
2108 * resync: mark as dirty so a resync will happen.
2109 * name: update the name - preserving the homehost
2110 * uuid: Change the uuid of the array to match watch is given
2111 *
2112 * Following are not relevant for this imsm:
2113 * sparc2.2 : update from old dodgey metadata
2114 * super-minor: change the preferred_minor number
2115 * summaries: update redundant counters.
2116 * homehost: update the recorded homehost
2117 * _reshape_progress: record new reshape_progress position.
2118 */
2119 int rv = 1;
2120 struct intel_super *super = st->sb;
2121 struct imsm_super *mpb;
2122
2123 /* we can only update container info */
2124 if (!super || super->current_vol >= 0 || !super->anchor)
2125 return 1;
2126
2127 mpb = super->anchor;
2128
2129 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2130 rv = -1;
2131 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2132 mpb->orig_family_num = *((__u32 *) info->update_private);
2133 rv = 0;
2134 } else if (strcmp(update, "uuid") == 0) {
2135 __u32 *new_family = malloc(sizeof(*new_family));
2136
2137 /* update orig_family_number with the incoming random
2138 * data, report the new effective uuid, and store the
2139 * new orig_family_num for future updates.
2140 */
2141 if (new_family) {
2142 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2143 uuid_from_super_imsm(st, info->uuid);
2144 *new_family = mpb->orig_family_num;
2145 info->update_private = new_family;
2146 rv = 0;
2147 }
2148 } else if (strcmp(update, "assemble") == 0)
2149 rv = 0;
2150 else
2151 rv = -1;
2152
2153 /* successful update? recompute checksum */
2154 if (rv == 0)
2155 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2156
2157 return rv;
2158 }
2159
2160 static size_t disks_to_mpb_size(int disks)
2161 {
2162 size_t size;
2163
2164 size = sizeof(struct imsm_super);
2165 size += (disks - 1) * sizeof(struct imsm_disk);
2166 size += 2 * sizeof(struct imsm_dev);
2167 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2168 size += (4 - 2) * sizeof(struct imsm_map);
2169 /* 4 possible disk_ord_tbl's */
2170 size += 4 * (disks - 1) * sizeof(__u32);
2171
2172 return size;
2173 }
2174
2175 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2176 {
2177 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2178 return 0;
2179
2180 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2181 }
2182
2183 static void free_devlist(struct intel_super *super)
2184 {
2185 struct intel_dev *dv;
2186
2187 while (super->devlist) {
2188 dv = super->devlist->next;
2189 free(super->devlist->dev);
2190 free(super->devlist);
2191 super->devlist = dv;
2192 }
2193 }
2194
2195 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2196 {
2197 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2198 }
2199
2200 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2201 {
2202 /*
2203 * return:
2204 * 0 same, or first was empty, and second was copied
2205 * 1 second had wrong number
2206 * 2 wrong uuid
2207 * 3 wrong other info
2208 */
2209 struct intel_super *first = st->sb;
2210 struct intel_super *sec = tst->sb;
2211
2212 if (!first) {
2213 st->sb = tst->sb;
2214 tst->sb = NULL;
2215 return 0;
2216 }
2217 /* in platform dependent environment test if the disks
2218 * use the same Intel hba
2219 */
2220 if (!check_env("IMSM_NO_PLATFORM")) {
2221 if (!first->hba || !sec->hba ||
2222 (first->hba->type != sec->hba->type)) {
2223 fprintf(stderr,
2224 "HBAs of devices does not match %s != %s\n",
2225 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2226 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2227 return 3;
2228 }
2229 }
2230
2231 /* if an anchor does not have num_raid_devs set then it is a free
2232 * floating spare
2233 */
2234 if (first->anchor->num_raid_devs > 0 &&
2235 sec->anchor->num_raid_devs > 0) {
2236 /* Determine if these disks might ever have been
2237 * related. Further disambiguation can only take place
2238 * in load_super_imsm_all
2239 */
2240 __u32 first_family = first->anchor->orig_family_num;
2241 __u32 sec_family = sec->anchor->orig_family_num;
2242
2243 if (memcmp(first->anchor->sig, sec->anchor->sig,
2244 MAX_SIGNATURE_LENGTH) != 0)
2245 return 3;
2246
2247 if (first_family == 0)
2248 first_family = first->anchor->family_num;
2249 if (sec_family == 0)
2250 sec_family = sec->anchor->family_num;
2251
2252 if (first_family != sec_family)
2253 return 3;
2254
2255 }
2256
2257
2258 /* if 'first' is a spare promote it to a populated mpb with sec's
2259 * family number
2260 */
2261 if (first->anchor->num_raid_devs == 0 &&
2262 sec->anchor->num_raid_devs > 0) {
2263 int i;
2264 struct intel_dev *dv;
2265 struct imsm_dev *dev;
2266
2267 /* we need to copy raid device info from sec if an allocation
2268 * fails here we don't associate the spare
2269 */
2270 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2271 dv = malloc(sizeof(*dv));
2272 if (!dv)
2273 break;
2274 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2275 if (!dev) {
2276 free(dv);
2277 break;
2278 }
2279 dv->dev = dev;
2280 dv->index = i;
2281 dv->next = first->devlist;
2282 first->devlist = dv;
2283 }
2284 if (i < sec->anchor->num_raid_devs) {
2285 /* allocation failure */
2286 free_devlist(first);
2287 fprintf(stderr, "imsm: failed to associate spare\n");
2288 return 3;
2289 }
2290 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2291 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2292 first->anchor->family_num = sec->anchor->family_num;
2293 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2294 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2295 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2296 }
2297
2298 return 0;
2299 }
2300
2301 static void fd2devname(int fd, char *name)
2302 {
2303 struct stat st;
2304 char path[256];
2305 char dname[PATH_MAX];
2306 char *nm;
2307 int rv;
2308
2309 name[0] = '\0';
2310 if (fstat(fd, &st) != 0)
2311 return;
2312 sprintf(path, "/sys/dev/block/%d:%d",
2313 major(st.st_rdev), minor(st.st_rdev));
2314
2315 rv = readlink(path, dname, sizeof(dname));
2316 if (rv <= 0)
2317 return;
2318
2319 dname[rv] = '\0';
2320 nm = strrchr(dname, '/');
2321 nm++;
2322 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2323 }
2324
2325 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2326
2327 static int imsm_read_serial(int fd, char *devname,
2328 __u8 serial[MAX_RAID_SERIAL_LEN])
2329 {
2330 unsigned char scsi_serial[255];
2331 int rv;
2332 int rsp_len;
2333 int len;
2334 char *dest;
2335 char *src;
2336 char *rsp_buf;
2337 int i;
2338
2339 memset(scsi_serial, 0, sizeof(scsi_serial));
2340
2341 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2342
2343 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2344 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2345 fd2devname(fd, (char *) serial);
2346 return 0;
2347 }
2348
2349 if (rv != 0) {
2350 if (devname)
2351 fprintf(stderr,
2352 Name ": Failed to retrieve serial for %s\n",
2353 devname);
2354 return rv;
2355 }
2356
2357 rsp_len = scsi_serial[3];
2358 if (!rsp_len) {
2359 if (devname)
2360 fprintf(stderr,
2361 Name ": Failed to retrieve serial for %s\n",
2362 devname);
2363 return 2;
2364 }
2365 rsp_buf = (char *) &scsi_serial[4];
2366
2367 /* trim all whitespace and non-printable characters and convert
2368 * ':' to ';'
2369 */
2370 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2371 src = &rsp_buf[i];
2372 if (*src > 0x20) {
2373 /* ':' is reserved for use in placeholder serial
2374 * numbers for missing disks
2375 */
2376 if (*src == ':')
2377 *dest++ = ';';
2378 else
2379 *dest++ = *src;
2380 }
2381 }
2382 len = dest - rsp_buf;
2383 dest = rsp_buf;
2384
2385 /* truncate leading characters */
2386 if (len > MAX_RAID_SERIAL_LEN) {
2387 dest += len - MAX_RAID_SERIAL_LEN;
2388 len = MAX_RAID_SERIAL_LEN;
2389 }
2390
2391 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2392 memcpy(serial, dest, len);
2393
2394 return 0;
2395 }
2396
2397 static int serialcmp(__u8 *s1, __u8 *s2)
2398 {
2399 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2400 }
2401
2402 static void serialcpy(__u8 *dest, __u8 *src)
2403 {
2404 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2405 }
2406
2407 #ifndef MDASSEMBLE
2408 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2409 {
2410 struct dl *dl;
2411
2412 for (dl = super->disks; dl; dl = dl->next)
2413 if (serialcmp(dl->serial, serial) == 0)
2414 break;
2415
2416 return dl;
2417 }
2418 #endif
2419
2420 static struct imsm_disk *
2421 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2422 {
2423 int i;
2424
2425 for (i = 0; i < mpb->num_disks; i++) {
2426 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2427
2428 if (serialcmp(disk->serial, serial) == 0) {
2429 if (idx)
2430 *idx = i;
2431 return disk;
2432 }
2433 }
2434
2435 return NULL;
2436 }
2437
2438 static int
2439 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2440 {
2441 struct imsm_disk *disk;
2442 struct dl *dl;
2443 struct stat stb;
2444 int rv;
2445 char name[40];
2446 __u8 serial[MAX_RAID_SERIAL_LEN];
2447
2448 rv = imsm_read_serial(fd, devname, serial);
2449
2450 if (rv != 0)
2451 return 2;
2452
2453 dl = calloc(1, sizeof(*dl));
2454 if (!dl) {
2455 if (devname)
2456 fprintf(stderr,
2457 Name ": failed to allocate disk buffer for %s\n",
2458 devname);
2459 return 2;
2460 }
2461
2462 fstat(fd, &stb);
2463 dl->major = major(stb.st_rdev);
2464 dl->minor = minor(stb.st_rdev);
2465 dl->next = super->disks;
2466 dl->fd = keep_fd ? fd : -1;
2467 assert(super->disks == NULL);
2468 super->disks = dl;
2469 serialcpy(dl->serial, serial);
2470 dl->index = -2;
2471 dl->e = NULL;
2472 fd2devname(fd, name);
2473 if (devname)
2474 dl->devname = strdup(devname);
2475 else
2476 dl->devname = strdup(name);
2477
2478 /* look up this disk's index in the current anchor */
2479 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2480 if (disk) {
2481 dl->disk = *disk;
2482 /* only set index on disks that are a member of a
2483 * populated contianer, i.e. one with raid_devs
2484 */
2485 if (is_failed(&dl->disk))
2486 dl->index = -2;
2487 else if (is_spare(&dl->disk))
2488 dl->index = -1;
2489 }
2490
2491 return 0;
2492 }
2493
2494 #ifndef MDASSEMBLE
2495 /* When migrating map0 contains the 'destination' state while map1
2496 * contains the current state. When not migrating map0 contains the
2497 * current state. This routine assumes that map[0].map_state is set to
2498 * the current array state before being called.
2499 *
2500 * Migration is indicated by one of the following states
2501 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2502 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2503 * map1state=unitialized)
2504 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2505 * map1state=normal)
2506 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2507 * map1state=degraded)
2508 */
2509 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2510 {
2511 struct imsm_map *dest;
2512 struct imsm_map *src = get_imsm_map(dev, 0);
2513
2514 dev->vol.migr_state = 1;
2515 set_migr_type(dev, migr_type);
2516 dev->vol.curr_migr_unit = 0;
2517 dest = get_imsm_map(dev, 1);
2518
2519 /* duplicate and then set the target end state in map[0] */
2520 memcpy(dest, src, sizeof_imsm_map(src));
2521 if ((migr_type == MIGR_REBUILD) ||
2522 (migr_type == MIGR_GEN_MIGR)) {
2523 __u32 ord;
2524 int i;
2525
2526 for (i = 0; i < src->num_members; i++) {
2527 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2528 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2529 }
2530 }
2531
2532 src->map_state = to_state;
2533 }
2534
2535 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2536 {
2537 struct imsm_map *map = get_imsm_map(dev, 0);
2538 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2539 int i, j;
2540
2541 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2542 * completed in the last migration.
2543 *
2544 * FIXME add support for raid-level-migration
2545 */
2546 for (i = 0; i < prev->num_members; i++)
2547 for (j = 0; j < map->num_members; j++)
2548 /* during online capacity expansion
2549 * disks position can be changed if takeover is used
2550 */
2551 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2552 ord_to_idx(prev->disk_ord_tbl[i])) {
2553 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2554 break;
2555 }
2556
2557 dev->vol.migr_state = 0;
2558 dev->vol.migr_type = 0;
2559 dev->vol.curr_migr_unit = 0;
2560 map->map_state = map_state;
2561 }
2562 #endif
2563
2564 static int parse_raid_devices(struct intel_super *super)
2565 {
2566 int i;
2567 struct imsm_dev *dev_new;
2568 size_t len, len_migr;
2569 size_t max_len = 0;
2570 size_t space_needed = 0;
2571 struct imsm_super *mpb = super->anchor;
2572
2573 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2574 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2575 struct intel_dev *dv;
2576
2577 len = sizeof_imsm_dev(dev_iter, 0);
2578 len_migr = sizeof_imsm_dev(dev_iter, 1);
2579 if (len_migr > len)
2580 space_needed += len_migr - len;
2581
2582 dv = malloc(sizeof(*dv));
2583 if (!dv)
2584 return 1;
2585 if (max_len < len_migr)
2586 max_len = len_migr;
2587 if (max_len > len_migr)
2588 space_needed += max_len - len_migr;
2589 dev_new = malloc(max_len);
2590 if (!dev_new) {
2591 free(dv);
2592 return 1;
2593 }
2594 imsm_copy_dev(dev_new, dev_iter);
2595 dv->dev = dev_new;
2596 dv->index = i;
2597 dv->next = super->devlist;
2598 super->devlist = dv;
2599 }
2600
2601 /* ensure that super->buf is large enough when all raid devices
2602 * are migrating
2603 */
2604 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2605 void *buf;
2606
2607 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2608 if (posix_memalign(&buf, 512, len) != 0)
2609 return 1;
2610
2611 memcpy(buf, super->buf, super->len);
2612 memset(buf + super->len, 0, len - super->len);
2613 free(super->buf);
2614 super->buf = buf;
2615 super->len = len;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /* retrieve a pointer to the bbm log which starts after all raid devices */
2622 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2623 {
2624 void *ptr = NULL;
2625
2626 if (__le32_to_cpu(mpb->bbm_log_size)) {
2627 ptr = mpb;
2628 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2629 }
2630
2631 return ptr;
2632 }
2633
2634 static void __free_imsm(struct intel_super *super, int free_disks);
2635
2636 /* load_imsm_mpb - read matrix metadata
2637 * allocates super->mpb to be freed by free_imsm
2638 */
2639 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2640 {
2641 unsigned long long dsize;
2642 unsigned long long sectors;
2643 struct stat;
2644 struct imsm_super *anchor;
2645 __u32 check_sum;
2646
2647 get_dev_size(fd, NULL, &dsize);
2648 if (dsize < 1024) {
2649 if (devname)
2650 fprintf(stderr,
2651 Name ": %s: device to small for imsm\n",
2652 devname);
2653 return 1;
2654 }
2655
2656 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2657 if (devname)
2658 fprintf(stderr,
2659 Name ": Cannot seek to anchor block on %s: %s\n",
2660 devname, strerror(errno));
2661 return 1;
2662 }
2663
2664 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2665 if (devname)
2666 fprintf(stderr,
2667 Name ": Failed to allocate imsm anchor buffer"
2668 " on %s\n", devname);
2669 return 1;
2670 }
2671 if (read(fd, anchor, 512) != 512) {
2672 if (devname)
2673 fprintf(stderr,
2674 Name ": Cannot read anchor block on %s: %s\n",
2675 devname, strerror(errno));
2676 free(anchor);
2677 return 1;
2678 }
2679
2680 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2681 if (devname)
2682 fprintf(stderr,
2683 Name ": no IMSM anchor on %s\n", devname);
2684 free(anchor);
2685 return 2;
2686 }
2687
2688 __free_imsm(super, 0);
2689 /* reload capability and hba */
2690
2691 /* capability and hba must be updated with new super allocation */
2692 find_intel_hba_capability(fd, super, devname);
2693 super->len = ROUND_UP(anchor->mpb_size, 512);
2694 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2695 if (devname)
2696 fprintf(stderr,
2697 Name ": unable to allocate %zu byte mpb buffer\n",
2698 super->len);
2699 free(anchor);
2700 return 2;
2701 }
2702 memcpy(super->buf, anchor, 512);
2703
2704 sectors = mpb_sectors(anchor) - 1;
2705 free(anchor);
2706 if (!sectors) {
2707 check_sum = __gen_imsm_checksum(super->anchor);
2708 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2709 if (devname)
2710 fprintf(stderr,
2711 Name ": IMSM checksum %x != %x on %s\n",
2712 check_sum,
2713 __le32_to_cpu(super->anchor->check_sum),
2714 devname);
2715 return 2;
2716 }
2717
2718 return 0;
2719 }
2720
2721 /* read the extended mpb */
2722 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2723 if (devname)
2724 fprintf(stderr,
2725 Name ": Cannot seek to extended mpb on %s: %s\n",
2726 devname, strerror(errno));
2727 return 1;
2728 }
2729
2730 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2731 if (devname)
2732 fprintf(stderr,
2733 Name ": Cannot read extended mpb on %s: %s\n",
2734 devname, strerror(errno));
2735 return 2;
2736 }
2737
2738 check_sum = __gen_imsm_checksum(super->anchor);
2739 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2740 if (devname)
2741 fprintf(stderr,
2742 Name ": IMSM checksum %x != %x on %s\n",
2743 check_sum, __le32_to_cpu(super->anchor->check_sum),
2744 devname);
2745 return 3;
2746 }
2747
2748 /* FIXME the BBM log is disk specific so we cannot use this global
2749 * buffer for all disks. Ok for now since we only look at the global
2750 * bbm_log_size parameter to gate assembly
2751 */
2752 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2753
2754 return 0;
2755 }
2756
2757 static int
2758 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2759 {
2760 int err;
2761
2762 err = load_imsm_mpb(fd, super, devname);
2763 if (err)
2764 return err;
2765 err = load_imsm_disk(fd, super, devname, keep_fd);
2766 if (err)
2767 return err;
2768 err = parse_raid_devices(super);
2769
2770 return err;
2771 }
2772
2773 static void __free_imsm_disk(struct dl *d)
2774 {
2775 if (d->fd >= 0)
2776 close(d->fd);
2777 if (d->devname)
2778 free(d->devname);
2779 if (d->e)
2780 free(d->e);
2781 free(d);
2782
2783 }
2784
2785 static void free_imsm_disks(struct intel_super *super)
2786 {
2787 struct dl *d;
2788
2789 while (super->disks) {
2790 d = super->disks;
2791 super->disks = d->next;
2792 __free_imsm_disk(d);
2793 }
2794 while (super->disk_mgmt_list) {
2795 d = super->disk_mgmt_list;
2796 super->disk_mgmt_list = d->next;
2797 __free_imsm_disk(d);
2798 }
2799 while (super->missing) {
2800 d = super->missing;
2801 super->missing = d->next;
2802 __free_imsm_disk(d);
2803 }
2804
2805 }
2806
2807 /* free all the pieces hanging off of a super pointer */
2808 static void __free_imsm(struct intel_super *super, int free_disks)
2809 {
2810 struct intel_hba *elem, *next;
2811
2812 if (super->buf) {
2813 free(super->buf);
2814 super->buf = NULL;
2815 }
2816 /* unlink capability description */
2817 super->orom = NULL;
2818 if (free_disks)
2819 free_imsm_disks(super);
2820 free_devlist(super);
2821 elem = super->hba;
2822 while (elem) {
2823 if (elem->path)
2824 free((void *)elem->path);
2825 next = elem->next;
2826 free(elem);
2827 elem = next;
2828 }
2829 super->hba = NULL;
2830 }
2831
2832 static void free_imsm(struct intel_super *super)
2833 {
2834 __free_imsm(super, 1);
2835 free(super);
2836 }
2837
2838 static void free_super_imsm(struct supertype *st)
2839 {
2840 struct intel_super *super = st->sb;
2841
2842 if (!super)
2843 return;
2844
2845 free_imsm(super);
2846 st->sb = NULL;
2847 }
2848
2849 static struct intel_super *alloc_super(void)
2850 {
2851 struct intel_super *super = malloc(sizeof(*super));
2852
2853 if (super) {
2854 memset(super, 0, sizeof(*super));
2855 super->current_vol = -1;
2856 super->create_offset = ~((__u32 ) 0);
2857 }
2858 return super;
2859 }
2860
2861 /*
2862 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
2863 */
2864 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
2865 {
2866 struct sys_dev *hba_name;
2867 int rv = 0;
2868
2869 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
2870 super->orom = NULL;
2871 super->hba = NULL;
2872 return 0;
2873 }
2874 hba_name = find_disk_attached_hba(fd, NULL);
2875 if (!hba_name) {
2876 if (devname)
2877 fprintf(stderr,
2878 Name ": %s is not attached to Intel(R) RAID controller.\n",
2879 devname);
2880 return 1;
2881 }
2882 rv = attach_hba_to_super(super, hba_name);
2883 if (rv == 2) {
2884 if (devname) {
2885 struct intel_hba *hba = super->hba;
2886
2887 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
2888 "controller (%s),\n"
2889 " but the container is assigned to Intel(R) "
2890 "%s RAID controller (",
2891 devname,
2892 hba_name->path,
2893 hba_name->pci_id ? : "Err!",
2894 get_sys_dev_type(hba_name->type));
2895
2896 while (hba) {
2897 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
2898 if (hba->next)
2899 fprintf(stderr, ", ");
2900 hba = hba->next;
2901 }
2902
2903 fprintf(stderr, ").\n"
2904 " Mixing devices attached to different controllers "
2905 "is not allowed.\n");
2906 }
2907 free_sys_dev(&hba_name);
2908 return 2;
2909 }
2910 super->orom = find_imsm_capability(hba_name->type);
2911 free_sys_dev(&hba_name);
2912 if (!super->orom)
2913 return 3;
2914 return 0;
2915 }
2916
2917 #ifndef MDASSEMBLE
2918 /* find_missing - helper routine for load_super_imsm_all that identifies
2919 * disks that have disappeared from the system. This routine relies on
2920 * the mpb being uptodate, which it is at load time.
2921 */
2922 static int find_missing(struct intel_super *super)
2923 {
2924 int i;
2925 struct imsm_super *mpb = super->anchor;
2926 struct dl *dl;
2927 struct imsm_disk *disk;
2928
2929 for (i = 0; i < mpb->num_disks; i++) {
2930 disk = __get_imsm_disk(mpb, i);
2931 dl = serial_to_dl(disk->serial, super);
2932 if (dl)
2933 continue;
2934
2935 dl = malloc(sizeof(*dl));
2936 if (!dl)
2937 return 1;
2938 dl->major = 0;
2939 dl->minor = 0;
2940 dl->fd = -1;
2941 dl->devname = strdup("missing");
2942 dl->index = i;
2943 serialcpy(dl->serial, disk->serial);
2944 dl->disk = *disk;
2945 dl->e = NULL;
2946 dl->next = super->missing;
2947 super->missing = dl;
2948 }
2949
2950 return 0;
2951 }
2952
2953 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2954 {
2955 struct intel_disk *idisk = disk_list;
2956
2957 while (idisk) {
2958 if (serialcmp(idisk->disk.serial, serial) == 0)
2959 break;
2960 idisk = idisk->next;
2961 }
2962
2963 return idisk;
2964 }
2965
2966 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2967 struct intel_super *super,
2968 struct intel_disk **disk_list)
2969 {
2970 struct imsm_disk *d = &super->disks->disk;
2971 struct imsm_super *mpb = super->anchor;
2972 int i, j;
2973
2974 for (i = 0; i < tbl_size; i++) {
2975 struct imsm_super *tbl_mpb = table[i]->anchor;
2976 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2977
2978 if (tbl_mpb->family_num == mpb->family_num) {
2979 if (tbl_mpb->check_sum == mpb->check_sum) {
2980 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2981 __func__, super->disks->major,
2982 super->disks->minor,
2983 table[i]->disks->major,
2984 table[i]->disks->minor);
2985 break;
2986 }
2987
2988 if (((is_configured(d) && !is_configured(tbl_d)) ||
2989 is_configured(d) == is_configured(tbl_d)) &&
2990 tbl_mpb->generation_num < mpb->generation_num) {
2991 /* current version of the mpb is a
2992 * better candidate than the one in
2993 * super_table, but copy over "cross
2994 * generational" status
2995 */
2996 struct intel_disk *idisk;
2997
2998 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2999 __func__, super->disks->major,
3000 super->disks->minor,
3001 table[i]->disks->major,
3002 table[i]->disks->minor);
3003
3004 idisk = disk_list_get(tbl_d->serial, *disk_list);
3005 if (idisk && is_failed(&idisk->disk))
3006 tbl_d->status |= FAILED_DISK;
3007 break;
3008 } else {
3009 struct intel_disk *idisk;
3010 struct imsm_disk *disk;
3011
3012 /* tbl_mpb is more up to date, but copy
3013 * over cross generational status before
3014 * returning
3015 */
3016 disk = __serial_to_disk(d->serial, mpb, NULL);
3017 if (disk && is_failed(disk))
3018 d->status |= FAILED_DISK;
3019
3020 idisk = disk_list_get(d->serial, *disk_list);
3021 if (idisk) {
3022 idisk->owner = i;
3023 if (disk && is_configured(disk))
3024 idisk->disk.status |= CONFIGURED_DISK;
3025 }
3026
3027 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3028 __func__, super->disks->major,
3029 super->disks->minor,
3030 table[i]->disks->major,
3031 table[i]->disks->minor);
3032
3033 return tbl_size;
3034 }
3035 }
3036 }
3037
3038 if (i >= tbl_size)
3039 table[tbl_size++] = super;
3040 else
3041 table[i] = super;
3042
3043 /* update/extend the merged list of imsm_disk records */
3044 for (j = 0; j < mpb->num_disks; j++) {
3045 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3046 struct intel_disk *idisk;
3047
3048 idisk = disk_list_get(disk->serial, *disk_list);
3049 if (idisk) {
3050 idisk->disk.status |= disk->status;
3051 if (is_configured(&idisk->disk) ||
3052 is_failed(&idisk->disk))
3053 idisk->disk.status &= ~(SPARE_DISK);
3054 } else {
3055 idisk = calloc(1, sizeof(*idisk));
3056 if (!idisk)
3057 return -1;
3058 idisk->owner = IMSM_UNKNOWN_OWNER;
3059 idisk->disk = *disk;
3060 idisk->next = *disk_list;
3061 *disk_list = idisk;
3062 }
3063
3064 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3065 idisk->owner = i;
3066 }
3067
3068 return tbl_size;
3069 }
3070
3071 static struct intel_super *
3072 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3073 const int owner)
3074 {
3075 struct imsm_super *mpb = super->anchor;
3076 int ok_count = 0;
3077 int i;
3078
3079 for (i = 0; i < mpb->num_disks; i++) {
3080 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3081 struct intel_disk *idisk;
3082
3083 idisk = disk_list_get(disk->serial, disk_list);
3084 if (idisk) {
3085 if (idisk->owner == owner ||
3086 idisk->owner == IMSM_UNKNOWN_OWNER)
3087 ok_count++;
3088 else
3089 dprintf("%s: '%.16s' owner %d != %d\n",
3090 __func__, disk->serial, idisk->owner,
3091 owner);
3092 } else {
3093 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3094 __func__, __le32_to_cpu(mpb->family_num), i,
3095 disk->serial);
3096 break;
3097 }
3098 }
3099
3100 if (ok_count == mpb->num_disks)
3101 return super;
3102 return NULL;
3103 }
3104
3105 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3106 {
3107 struct intel_super *s;
3108
3109 for (s = super_list; s; s = s->next) {
3110 if (family_num != s->anchor->family_num)
3111 continue;
3112 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3113 __le32_to_cpu(family_num), s->disks->devname);
3114 }
3115 }
3116
3117 static struct intel_super *
3118 imsm_thunderdome(struct intel_super **super_list, int len)
3119 {
3120 struct intel_super *super_table[len];
3121 struct intel_disk *disk_list = NULL;
3122 struct intel_super *champion, *spare;
3123 struct intel_super *s, **del;
3124 int tbl_size = 0;
3125 int conflict;
3126 int i;
3127
3128 memset(super_table, 0, sizeof(super_table));
3129 for (s = *super_list; s; s = s->next)
3130 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3131
3132 for (i = 0; i < tbl_size; i++) {
3133 struct imsm_disk *d;
3134 struct intel_disk *idisk;
3135 struct imsm_super *mpb = super_table[i]->anchor;
3136
3137 s = super_table[i];
3138 d = &s->disks->disk;
3139
3140 /* 'd' must appear in merged disk list for its
3141 * configuration to be valid
3142 */
3143 idisk = disk_list_get(d->serial, disk_list);
3144 if (idisk && idisk->owner == i)
3145 s = validate_members(s, disk_list, i);
3146 else
3147 s = NULL;
3148
3149 if (!s)
3150 dprintf("%s: marking family: %#x from %d:%d offline\n",
3151 __func__, mpb->family_num,
3152 super_table[i]->disks->major,
3153 super_table[i]->disks->minor);
3154 super_table[i] = s;
3155 }
3156
3157 /* This is where the mdadm implementation differs from the Windows
3158 * driver which has no strict concept of a container. We can only
3159 * assemble one family from a container, so when returning a prodigal
3160 * array member to this system the code will not be able to disambiguate
3161 * the container contents that should be assembled ("foreign" versus
3162 * "local"). It requires user intervention to set the orig_family_num
3163 * to a new value to establish a new container. The Windows driver in
3164 * this situation fixes up the volume name in place and manages the
3165 * foreign array as an independent entity.
3166 */
3167 s = NULL;
3168 spare = NULL;
3169 conflict = 0;
3170 for (i = 0; i < tbl_size; i++) {
3171 struct intel_super *tbl_ent = super_table[i];
3172 int is_spare = 0;
3173
3174 if (!tbl_ent)
3175 continue;
3176
3177 if (tbl_ent->anchor->num_raid_devs == 0) {
3178 spare = tbl_ent;
3179 is_spare = 1;
3180 }
3181
3182 if (s && !is_spare) {
3183 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3184 conflict++;
3185 } else if (!s && !is_spare)
3186 s = tbl_ent;
3187 }
3188
3189 if (!s)
3190 s = spare;
3191 if (!s) {
3192 champion = NULL;
3193 goto out;
3194 }
3195 champion = s;
3196
3197 if (conflict)
3198 fprintf(stderr, "Chose family %#x on '%s', "
3199 "assemble conflicts to new container with '--update=uuid'\n",
3200 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3201
3202 /* collect all dl's onto 'champion', and update them to
3203 * champion's version of the status
3204 */
3205 for (s = *super_list; s; s = s->next) {
3206 struct imsm_super *mpb = champion->anchor;
3207 struct dl *dl = s->disks;
3208
3209 if (s == champion)
3210 continue;
3211
3212 for (i = 0; i < mpb->num_disks; i++) {
3213 struct imsm_disk *disk;
3214
3215 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3216 if (disk) {
3217 dl->disk = *disk;
3218 /* only set index on disks that are a member of
3219 * a populated contianer, i.e. one with
3220 * raid_devs
3221 */
3222 if (is_failed(&dl->disk))
3223 dl->index = -2;
3224 else if (is_spare(&dl->disk))
3225 dl->index = -1;
3226 break;
3227 }
3228 }
3229
3230 if (i >= mpb->num_disks) {
3231 struct intel_disk *idisk;
3232
3233 idisk = disk_list_get(dl->serial, disk_list);
3234 if (idisk && is_spare(&idisk->disk) &&
3235 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3236 dl->index = -1;
3237 else {
3238 dl->index = -2;
3239 continue;
3240 }
3241 }
3242
3243 dl->next = champion->disks;
3244 champion->disks = dl;
3245 s->disks = NULL;
3246 }
3247
3248 /* delete 'champion' from super_list */
3249 for (del = super_list; *del; ) {
3250 if (*del == champion) {
3251 *del = (*del)->next;
3252 break;
3253 } else
3254 del = &(*del)->next;
3255 }
3256 champion->next = NULL;
3257
3258 out:
3259 while (disk_list) {
3260 struct intel_disk *idisk = disk_list;
3261
3262 disk_list = disk_list->next;
3263 free(idisk);
3264 }
3265
3266 return champion;
3267 }
3268
3269 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3270 char *devname)
3271 {
3272 struct mdinfo *sra;
3273 struct intel_super *super_list = NULL;
3274 struct intel_super *super = NULL;
3275 int devnum = fd2devnum(fd);
3276 struct mdinfo *sd;
3277 int retry;
3278 int err = 0;
3279 int i;
3280
3281 /* check if 'fd' an opened container */
3282 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3283 if (!sra)
3284 return 1;
3285
3286 if (sra->array.major_version != -1 ||
3287 sra->array.minor_version != -2 ||
3288 strcmp(sra->text_version, "imsm") != 0) {
3289 err = 1;
3290 goto error;
3291 }
3292 /* load all mpbs */
3293 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3294 struct intel_super *s = alloc_super();
3295 char nm[32];
3296 int dfd;
3297 int rv;
3298
3299 err = 1;
3300 if (!s)
3301 goto error;
3302 s->next = super_list;
3303 super_list = s;
3304
3305 err = 2;
3306 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3307 dfd = dev_open(nm, O_RDWR);
3308 if (dfd < 0)
3309 goto error;
3310
3311 rv = find_intel_hba_capability(dfd, s, devname);
3312 /* no orom/efi or non-intel hba of the disk */
3313 if (rv != 0)
3314 goto error;
3315
3316 err = load_and_parse_mpb(dfd, s, NULL, 1);
3317
3318 /* retry the load if we might have raced against mdmon */
3319 if (err == 3 && mdmon_running(devnum))
3320 for (retry = 0; retry < 3; retry++) {
3321 usleep(3000);
3322 err = load_and_parse_mpb(dfd, s, NULL, 1);
3323 if (err != 3)
3324 break;
3325 }
3326 if (err)
3327 goto error;
3328 }
3329
3330 /* all mpbs enter, maybe one leaves */
3331 super = imsm_thunderdome(&super_list, i);
3332 if (!super) {
3333 err = 1;
3334 goto error;
3335 }
3336
3337 if (find_missing(super) != 0) {
3338 free_imsm(super);
3339 err = 2;
3340 goto error;
3341 }
3342 err = 0;
3343
3344 error:
3345 while (super_list) {
3346 struct intel_super *s = super_list;
3347
3348 super_list = super_list->next;
3349 free_imsm(s);
3350 }
3351 sysfs_free(sra);
3352
3353 if (err)
3354 return err;
3355
3356 *sbp = super;
3357 st->container_dev = devnum;
3358 if (err == 0 && st->ss == NULL) {
3359 st->ss = &super_imsm;
3360 st->minor_version = 0;
3361 st->max_devs = IMSM_MAX_DEVICES;
3362 }
3363 return 0;
3364 }
3365
3366 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3367 {
3368 return load_super_imsm_all(st, fd, &st->sb, devname);
3369 }
3370 #endif
3371
3372 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3373 {
3374 struct intel_super *super;
3375 int rv;
3376
3377 if (test_partition(fd))
3378 /* IMSM not allowed on partitions */
3379 return 1;
3380
3381 free_super_imsm(st);
3382
3383 super = alloc_super();
3384 if (!super) {
3385 fprintf(stderr,
3386 Name ": malloc of %zu failed.\n",
3387 sizeof(*super));
3388 return 1;
3389 }
3390 /* Load hba and capabilities if they exist.
3391 * But do not preclude loading metadata in case capabilities or hba are
3392 * non-compliant and ignore_hw_compat is set.
3393 */
3394 rv = find_intel_hba_capability(fd, super, devname);
3395 /* no orom/efi or non-intel hba of the disk */
3396 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3397 if (devname)
3398 fprintf(stderr,
3399 Name ": No OROM/EFI properties for %s\n", devname);
3400 free_imsm(super);
3401 return 2;
3402 }
3403 rv = load_and_parse_mpb(fd, super, devname, 0);
3404
3405 if (rv) {
3406 if (devname)
3407 fprintf(stderr,
3408 Name ": Failed to load all information "
3409 "sections on %s\n", devname);
3410 free_imsm(super);
3411 return rv;
3412 }
3413
3414 st->sb = super;
3415 if (st->ss == NULL) {
3416 st->ss = &super_imsm;
3417 st->minor_version = 0;
3418 st->max_devs = IMSM_MAX_DEVICES;
3419 }
3420 return 0;
3421 }
3422
3423 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3424 {
3425 if (info->level == 1)
3426 return 128;
3427 return info->chunk_size >> 9;
3428 }
3429
3430 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3431 {
3432 __u32 num_stripes;
3433
3434 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3435 num_stripes /= num_domains;
3436
3437 return num_stripes;
3438 }
3439
3440 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3441 {
3442 if (info->level == 1)
3443 return info->size * 2;
3444 else
3445 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3446 }
3447
3448 static void imsm_update_version_info(struct intel_super *super)
3449 {
3450 /* update the version and attributes */
3451 struct imsm_super *mpb = super->anchor;
3452 char *version;
3453 struct imsm_dev *dev;
3454 struct imsm_map *map;
3455 int i;
3456
3457 for (i = 0; i < mpb->num_raid_devs; i++) {
3458 dev = get_imsm_dev(super, i);
3459 map = get_imsm_map(dev, 0);
3460 if (__le32_to_cpu(dev->size_high) > 0)
3461 mpb->attributes |= MPB_ATTRIB_2TB;
3462
3463 /* FIXME detect when an array spans a port multiplier */
3464 #if 0
3465 mpb->attributes |= MPB_ATTRIB_PM;
3466 #endif
3467
3468 if (mpb->num_raid_devs > 1 ||
3469 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3470 version = MPB_VERSION_ATTRIBS;
3471 switch (get_imsm_raid_level(map)) {
3472 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3473 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3474 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3475 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3476 }
3477 } else {
3478 if (map->num_members >= 5)
3479 version = MPB_VERSION_5OR6_DISK_ARRAY;
3480 else if (dev->status == DEV_CLONE_N_GO)
3481 version = MPB_VERSION_CNG;
3482 else if (get_imsm_raid_level(map) == 5)
3483 version = MPB_VERSION_RAID5;
3484 else if (map->num_members >= 3)
3485 version = MPB_VERSION_3OR4_DISK_ARRAY;
3486 else if (get_imsm_raid_level(map) == 1)
3487 version = MPB_VERSION_RAID1;
3488 else
3489 version = MPB_VERSION_RAID0;
3490 }
3491 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3492 }
3493 }
3494
3495 static int check_name(struct intel_super *super, char *name, int quiet)
3496 {
3497 struct imsm_super *mpb = super->anchor;
3498 char *reason = NULL;
3499 int i;
3500
3501 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3502 reason = "must be 16 characters or less";
3503
3504 for (i = 0; i < mpb->num_raid_devs; i++) {
3505 struct imsm_dev *dev = get_imsm_dev(super, i);
3506
3507 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3508 reason = "already exists";
3509 break;
3510 }
3511 }
3512
3513 if (reason && !quiet)
3514 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3515
3516 return !reason;
3517 }
3518
3519 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3520 unsigned long long size, char *name,
3521 char *homehost, int *uuid)
3522 {
3523 /* We are creating a volume inside a pre-existing container.
3524 * so st->sb is already set.
3525 */
3526 struct intel_super *super = st->sb;
3527 struct imsm_super *mpb = super->anchor;
3528 struct intel_dev *dv;
3529 struct imsm_dev *dev;
3530 struct imsm_vol *vol;
3531 struct imsm_map *map;
3532 int idx = mpb->num_raid_devs;
3533 int i;
3534 unsigned long long array_blocks;
3535 size_t size_old, size_new;
3536 __u32 num_data_stripes;
3537
3538 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3539 fprintf(stderr, Name": This imsm-container already has the "
3540 "maximum of %d volumes\n", super->orom->vpa);
3541 return 0;
3542 }
3543
3544 /* ensure the mpb is large enough for the new data */
3545 size_old = __le32_to_cpu(mpb->mpb_size);
3546 size_new = disks_to_mpb_size(info->nr_disks);
3547 if (size_new > size_old) {
3548 void *mpb_new;
3549 size_t size_round = ROUND_UP(size_new, 512);
3550
3551 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3552 fprintf(stderr, Name": could not allocate new mpb\n");
3553 return 0;
3554 }
3555 memcpy(mpb_new, mpb, size_old);
3556 free(mpb);
3557 mpb = mpb_new;
3558 super->anchor = mpb_new;
3559 mpb->mpb_size = __cpu_to_le32(size_new);
3560 memset(mpb_new + size_old, 0, size_round - size_old);
3561 }
3562 super->current_vol = idx;
3563 /* when creating the first raid device in this container set num_disks
3564 * to zero, i.e. delete this spare and add raid member devices in
3565 * add_to_super_imsm_volume()
3566 */
3567 if (super->current_vol == 0)
3568 mpb->num_disks = 0;
3569
3570 if (!check_name(super, name, 0))
3571 return 0;
3572 dv = malloc(sizeof(*dv));
3573 if (!dv) {
3574 fprintf(stderr, Name ": failed to allocate device list entry\n");
3575 return 0;
3576 }
3577 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3578 if (!dev) {
3579 free(dv);
3580 fprintf(stderr, Name": could not allocate raid device\n");
3581 return 0;
3582 }
3583
3584 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3585 if (info->level == 1)
3586 array_blocks = info_to_blocks_per_member(info);
3587 else
3588 array_blocks = calc_array_size(info->level, info->raid_disks,
3589 info->layout, info->chunk_size,
3590 info->size*2);
3591 /* round array size down to closest MB */
3592 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3593
3594 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3595 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3596 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
3597 vol = &dev->vol;
3598 vol->migr_state = 0;
3599 set_migr_type(dev, MIGR_INIT);
3600 vol->dirty = 0;
3601 vol->curr_migr_unit = 0;
3602 map = get_imsm_map(dev, 0);
3603 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3604 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3605 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3606 map->failed_disk_num = ~0;
3607 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3608 IMSM_T_STATE_NORMAL;
3609 map->ddf = 1;
3610
3611 if (info->level == 1 && info->raid_disks > 2) {
3612 free(dev);
3613 free(dv);
3614 fprintf(stderr, Name": imsm does not support more than 2 disks"
3615 "in a raid1 volume\n");
3616 return 0;
3617 }
3618
3619 map->raid_level = info->level;
3620 if (info->level == 10) {
3621 map->raid_level = 1;
3622 map->num_domains = info->raid_disks / 2;
3623 } else if (info->level == 1)
3624 map->num_domains = info->raid_disks;
3625 else
3626 map->num_domains = 1;
3627
3628 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3629 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3630
3631 map->num_members = info->raid_disks;
3632 for (i = 0; i < map->num_members; i++) {
3633 /* initialized in add_to_super */
3634 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3635 }
3636 mpb->num_raid_devs++;
3637
3638 dv->dev = dev;
3639 dv->index = super->current_vol;
3640 dv->next = super->devlist;
3641 super->devlist = dv;
3642
3643 imsm_update_version_info(super);
3644
3645 return 1;
3646 }
3647
3648 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3649 unsigned long long size, char *name,
3650 char *homehost, int *uuid)
3651 {
3652 /* This is primarily called by Create when creating a new array.
3653 * We will then get add_to_super called for each component, and then
3654 * write_init_super called to write it out to each device.
3655 * For IMSM, Create can create on fresh devices or on a pre-existing
3656 * array.
3657 * To create on a pre-existing array a different method will be called.
3658 * This one is just for fresh drives.
3659 */
3660 struct intel_super *super;
3661 struct imsm_super *mpb;
3662 size_t mpb_size;
3663 char *version;
3664
3665 if (st->sb)
3666 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3667
3668 if (info)
3669 mpb_size = disks_to_mpb_size(info->nr_disks);
3670 else
3671 mpb_size = 512;
3672
3673 super = alloc_super();
3674 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3675 free(super);
3676 super = NULL;
3677 }
3678 if (!super) {
3679 fprintf(stderr, Name
3680 ": %s could not allocate superblock\n", __func__);
3681 return 0;
3682 }
3683 memset(super->buf, 0, mpb_size);
3684 mpb = super->buf;
3685 mpb->mpb_size = __cpu_to_le32(mpb_size);
3686 st->sb = super;
3687
3688 if (info == NULL) {
3689 /* zeroing superblock */
3690 return 0;
3691 }
3692
3693 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3694
3695 version = (char *) mpb->sig;
3696 strcpy(version, MPB_SIGNATURE);
3697 version += strlen(MPB_SIGNATURE);
3698 strcpy(version, MPB_VERSION_RAID0);
3699
3700 return 1;
3701 }
3702
3703 #ifndef MDASSEMBLE
3704 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3705 int fd, char *devname)
3706 {
3707 struct intel_super *super = st->sb;
3708 struct imsm_super *mpb = super->anchor;
3709 struct dl *dl;
3710 struct imsm_dev *dev;
3711 struct imsm_map *map;
3712 int slot;
3713
3714 dev = get_imsm_dev(super, super->current_vol);
3715 map = get_imsm_map(dev, 0);
3716
3717 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3718 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3719 devname);
3720 return 1;
3721 }
3722
3723 if (fd == -1) {
3724 /* we're doing autolayout so grab the pre-marked (in
3725 * validate_geometry) raid_disk
3726 */
3727 for (dl = super->disks; dl; dl = dl->next)
3728 if (dl->raiddisk == dk->raid_disk)
3729 break;
3730 } else {
3731 for (dl = super->disks; dl ; dl = dl->next)
3732 if (dl->major == dk->major &&
3733 dl->minor == dk->minor)
3734 break;
3735 }
3736
3737 if (!dl) {
3738 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3739 return 1;
3740 }
3741
3742 /* add a pristine spare to the metadata */
3743 if (dl->index < 0) {
3744 dl->index = super->anchor->num_disks;
3745 super->anchor->num_disks++;
3746 }
3747 /* Check the device has not already been added */
3748 slot = get_imsm_disk_slot(map, dl->index);
3749 if (slot >= 0 &&
3750 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3751 fprintf(stderr, Name ": %s has been included in this array twice\n",
3752 devname);
3753 return 1;
3754 }
3755 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3756 dl->disk.status = CONFIGURED_DISK;
3757
3758 /* if we are creating the first raid device update the family number */
3759 if (super->current_vol == 0) {
3760 __u32 sum;
3761 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3762 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3763
3764 if (!_dev || !_disk) {
3765 fprintf(stderr, Name ": BUG mpb setup error\n");
3766 return 1;
3767 }
3768 *_dev = *dev;
3769 *_disk = dl->disk;
3770 sum = random32();
3771 sum += __gen_imsm_checksum(mpb);
3772 mpb->family_num = __cpu_to_le32(sum);
3773 mpb->orig_family_num = mpb->family_num;
3774 }
3775
3776 return 0;
3777 }
3778
3779
3780 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3781 int fd, char *devname)
3782 {
3783 struct intel_super *super = st->sb;
3784 struct dl *dd;
3785 unsigned long long size;
3786 __u32 id;
3787 int rv;
3788 struct stat stb;
3789
3790 /* If we are on an RAID enabled platform check that the disk is
3791 * attached to the raid controller.
3792 * We do not need to test disks attachment for container based additions,
3793 * they shall be already tested when container was created/assembled.
3794 */
3795 rv = find_intel_hba_capability(fd, super, devname);
3796 /* no orom/efi or non-intel hba of the disk */
3797 if (rv != 0) {
3798 dprintf("capability: %p fd: %d ret: %d\n",
3799 super->orom, fd, rv);
3800 return 1;
3801 }
3802
3803 if (super->current_vol >= 0)
3804 return add_to_super_imsm_volume(st, dk, fd, devname);
3805
3806 fstat(fd, &stb);
3807 dd = malloc(sizeof(*dd));
3808 if (!dd) {
3809 fprintf(stderr,
3810 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3811 return 1;
3812 }
3813 memset(dd, 0, sizeof(*dd));
3814 dd->major = major(stb.st_rdev);
3815 dd->minor = minor(stb.st_rdev);
3816 dd->index = -1;
3817 dd->devname = devname ? strdup(devname) : NULL;
3818 dd->fd = fd;
3819 dd->e = NULL;
3820 dd->action = DISK_ADD;
3821 rv = imsm_read_serial(fd, devname, dd->serial);
3822 if (rv) {
3823 fprintf(stderr,
3824 Name ": failed to retrieve scsi serial, aborting\n");
3825 free(dd);
3826 abort();
3827 }
3828
3829 get_dev_size(fd, NULL, &size);
3830 size /= 512;
3831 serialcpy(dd->disk.serial, dd->serial);
3832 dd->disk.total_blocks = __cpu_to_le32(size);
3833 dd->disk.status = SPARE_DISK;
3834 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3835 dd->disk.scsi_id = __cpu_to_le32(id);
3836 else
3837 dd->disk.scsi_id = __cpu_to_le32(0);
3838
3839 if (st->update_tail) {
3840 dd->next = super->disk_mgmt_list;
3841 super->disk_mgmt_list = dd;
3842 } else {
3843 dd->next = super->disks;
3844 super->disks = dd;
3845 super->updates_pending++;
3846 }
3847
3848 return 0;
3849 }
3850
3851
3852 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3853 {
3854 struct intel_super *super = st->sb;
3855 struct dl *dd;
3856
3857 /* remove from super works only in mdmon - for communication
3858 * manager - monitor. Check if communication memory buffer
3859 * is prepared.
3860 */
3861 if (!st->update_tail) {
3862 fprintf(stderr,
3863 Name ": %s shall be used in mdmon context only"
3864 "(line %d).\n", __func__, __LINE__);
3865 return 1;
3866 }
3867 dd = malloc(sizeof(*dd));
3868 if (!dd) {
3869 fprintf(stderr,
3870 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3871 return 1;
3872 }
3873 memset(dd, 0, sizeof(*dd));
3874 dd->major = dk->major;
3875 dd->minor = dk->minor;
3876 dd->index = -1;
3877 dd->fd = -1;
3878 dd->disk.status = SPARE_DISK;
3879 dd->action = DISK_REMOVE;
3880
3881 dd->next = super->disk_mgmt_list;
3882 super->disk_mgmt_list = dd;
3883
3884
3885 return 0;
3886 }
3887
3888 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3889
3890 static union {
3891 char buf[512];
3892 struct imsm_super anchor;
3893 } spare_record __attribute__ ((aligned(512)));
3894
3895 /* spare records have their own family number and do not have any defined raid
3896 * devices
3897 */
3898 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3899 {
3900 struct imsm_super *mpb = super->anchor;
3901 struct imsm_super *spare = &spare_record.anchor;
3902 __u32 sum;
3903 struct dl *d;
3904
3905 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3906 spare->generation_num = __cpu_to_le32(1UL),
3907 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3908 spare->num_disks = 1,
3909 spare->num_raid_devs = 0,
3910 spare->cache_size = mpb->cache_size,
3911 spare->pwr_cycle_count = __cpu_to_le32(1),
3912
3913 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3914 MPB_SIGNATURE MPB_VERSION_RAID0);
3915
3916 for (d = super->disks; d; d = d->next) {
3917 if (d->index != -1)
3918 continue;
3919
3920 spare->disk[0] = d->disk;
3921 sum = __gen_imsm_checksum(spare);
3922 spare->family_num = __cpu_to_le32(sum);
3923 spare->orig_family_num = 0;
3924 sum = __gen_imsm_checksum(spare);
3925 spare->check_sum = __cpu_to_le32(sum);
3926
3927 if (store_imsm_mpb(d->fd, spare)) {
3928 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3929 __func__, d->major, d->minor, strerror(errno));
3930 return 1;
3931 }
3932 if (doclose) {
3933 close(d->fd);
3934 d->fd = -1;
3935 }
3936 }
3937
3938 return 0;
3939 }
3940
3941 static int write_super_imsm(struct supertype *st, int doclose)
3942 {
3943 struct intel_super *super = st->sb;
3944 struct imsm_super *mpb = super->anchor;
3945 struct dl *d;
3946 __u32 generation;
3947 __u32 sum;
3948 int spares = 0;
3949 int i;
3950 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3951 int num_disks = 0;
3952
3953 /* 'generation' is incremented everytime the metadata is written */
3954 generation = __le32_to_cpu(mpb->generation_num);
3955 generation++;
3956 mpb->generation_num = __cpu_to_le32(generation);
3957
3958 /* fix up cases where previous mdadm releases failed to set
3959 * orig_family_num
3960 */
3961 if (mpb->orig_family_num == 0)
3962 mpb->orig_family_num = mpb->family_num;
3963
3964 for (d = super->disks; d; d = d->next) {
3965 if (d->index == -1)
3966 spares++;
3967 else {
3968 mpb->disk[d->index] = d->disk;
3969 num_disks++;
3970 }
3971 }
3972 for (d = super->missing; d; d = d->next) {
3973 mpb->disk[d->index] = d->disk;
3974 num_disks++;
3975 }
3976 mpb->num_disks = num_disks;
3977 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3978
3979 for (i = 0; i < mpb->num_raid_devs; i++) {
3980 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3981 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3982 if (dev && dev2) {
3983 imsm_copy_dev(dev, dev2);
3984 mpb_size += sizeof_imsm_dev(dev, 0);
3985 }
3986 }
3987 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3988 mpb->mpb_size = __cpu_to_le32(mpb_size);
3989
3990 /* recalculate checksum */
3991 sum = __gen_imsm_checksum(mpb);
3992 mpb->check_sum = __cpu_to_le32(sum);
3993
3994 /* write the mpb for disks that compose raid devices */
3995 for (d = super->disks; d ; d = d->next) {
3996 if (d->index < 0)
3997 continue;
3998 if (store_imsm_mpb(d->fd, mpb))
3999 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4000 __func__, d->major, d->minor, strerror(errno));
4001 if (doclose) {
4002 close(d->fd);
4003 d->fd = -1;
4004 }
4005 }
4006
4007 if (spares)
4008 return write_super_imsm_spares(super, doclose);
4009
4010 return 0;
4011 }
4012
4013
4014 static int create_array(struct supertype *st, int dev_idx)
4015 {
4016 size_t len;
4017 struct imsm_update_create_array *u;
4018 struct intel_super *super = st->sb;
4019 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4020 struct imsm_map *map = get_imsm_map(dev, 0);
4021 struct disk_info *inf;
4022 struct imsm_disk *disk;
4023 int i;
4024
4025 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4026 sizeof(*inf) * map->num_members;
4027 u = malloc(len);
4028 if (!u) {
4029 fprintf(stderr, "%s: failed to allocate update buffer\n",
4030 __func__);
4031 return 1;
4032 }
4033
4034 u->type = update_create_array;
4035 u->dev_idx = dev_idx;
4036 imsm_copy_dev(&u->dev, dev);
4037 inf = get_disk_info(u);
4038 for (i = 0; i < map->num_members; i++) {
4039 int idx = get_imsm_disk_idx(dev, i, -1);
4040
4041 disk = get_imsm_disk(super, idx);
4042 serialcpy(inf[i].serial, disk->serial);
4043 }
4044 append_metadata_update(st, u, len);
4045
4046 return 0;
4047 }
4048
4049 static int mgmt_disk(struct supertype *st)
4050 {
4051 struct intel_super *super = st->sb;
4052 size_t len;
4053 struct imsm_update_add_remove_disk *u;
4054
4055 if (!super->disk_mgmt_list)
4056 return 0;
4057
4058 len = sizeof(*u);
4059 u = malloc(len);
4060 if (!u) {
4061 fprintf(stderr, "%s: failed to allocate update buffer\n",
4062 __func__);
4063 return 1;
4064 }
4065
4066 u->type = update_add_remove_disk;
4067 append_metadata_update(st, u, len);
4068
4069 return 0;
4070 }
4071
4072 static int write_init_super_imsm(struct supertype *st)
4073 {
4074 struct intel_super *super = st->sb;
4075 int current_vol = super->current_vol;
4076
4077 /* we are done with current_vol reset it to point st at the container */
4078 super->current_vol = -1;
4079
4080 if (st->update_tail) {
4081 /* queue the recently created array / added disk
4082 * as a metadata update */
4083 int rv;
4084
4085 /* determine if we are creating a volume or adding a disk */
4086 if (current_vol < 0) {
4087 /* in the mgmt (add/remove) disk case we are running
4088 * in mdmon context, so don't close fd's
4089 */
4090 return mgmt_disk(st);
4091 } else
4092 rv = create_array(st, current_vol);
4093
4094 return rv;
4095 } else {
4096 struct dl *d;
4097 for (d = super->disks; d; d = d->next)
4098 Kill(d->devname, NULL, 0, 1, 1);
4099 return write_super_imsm(st, 1);
4100 }
4101 }
4102 #endif
4103
4104 static int store_super_imsm(struct supertype *st, int fd)
4105 {
4106 struct intel_super *super = st->sb;
4107 struct imsm_super *mpb = super ? super->anchor : NULL;
4108
4109 if (!mpb)
4110 return 1;
4111
4112 #ifndef MDASSEMBLE
4113 return store_imsm_mpb(fd, mpb);
4114 #else
4115 return 1;
4116 #endif
4117 }
4118
4119 static int imsm_bbm_log_size(struct imsm_super *mpb)
4120 {
4121 return __le32_to_cpu(mpb->bbm_log_size);
4122 }
4123
4124 #ifndef MDASSEMBLE
4125 static int validate_geometry_imsm_container(struct supertype *st, int level,
4126 int layout, int raiddisks, int chunk,
4127 unsigned long long size, char *dev,
4128 unsigned long long *freesize,
4129 int verbose)
4130 {
4131 int fd;
4132 unsigned long long ldsize;
4133 struct intel_super *super=NULL;
4134 int rv = 0;
4135
4136 if (level != LEVEL_CONTAINER)
4137 return 0;
4138 if (!dev)
4139 return 1;
4140
4141 fd = open(dev, O_RDONLY|O_EXCL, 0);
4142 if (fd < 0) {
4143 if (verbose)
4144 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4145 dev, strerror(errno));
4146 return 0;
4147 }
4148 if (!get_dev_size(fd, dev, &ldsize)) {
4149 close(fd);
4150 return 0;
4151 }
4152
4153 /* capabilities retrieve could be possible
4154 * note that there is no fd for the disks in array.
4155 */
4156 super = alloc_super();
4157 if (!super) {
4158 fprintf(stderr,
4159 Name ": malloc of %zu failed.\n",
4160 sizeof(*super));
4161 close(fd);
4162 return 0;
4163 }
4164
4165 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4166 if (rv != 0) {
4167 #if DEBUG
4168 char str[256];
4169 fd2devname(fd, str);
4170 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4171 fd, str, super->orom, rv, raiddisks);
4172 #endif
4173 /* no orom/efi or non-intel hba of the disk */
4174 close(fd);
4175 free_imsm(super);
4176 return 0;
4177 }
4178 close(fd);
4179 if (super->orom && raiddisks > super->orom->tds) {
4180 if (verbose)
4181 fprintf(stderr, Name ": %d exceeds maximum number of"
4182 " platform supported disks: %d\n",
4183 raiddisks, super->orom->tds);
4184
4185 free_imsm(super);
4186 return 0;
4187 }
4188
4189 *freesize = avail_size_imsm(st, ldsize >> 9);
4190 free_imsm(super);
4191
4192 return 1;
4193 }
4194
4195 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4196 {
4197 const unsigned long long base_start = e[*idx].start;
4198 unsigned long long end = base_start + e[*idx].size;
4199 int i;
4200
4201 if (base_start == end)
4202 return 0;
4203
4204 *idx = *idx + 1;
4205 for (i = *idx; i < num_extents; i++) {
4206 /* extend overlapping extents */
4207 if (e[i].start >= base_start &&
4208 e[i].start <= end) {
4209 if (e[i].size == 0)
4210 return 0;
4211 if (e[i].start + e[i].size > end)
4212 end = e[i].start + e[i].size;
4213 } else if (e[i].start > end) {
4214 *idx = i;
4215 break;
4216 }
4217 }
4218
4219 return end - base_start;
4220 }
4221
4222 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4223 {
4224 /* build a composite disk with all known extents and generate a new
4225 * 'maxsize' given the "all disks in an array must share a common start
4226 * offset" constraint
4227 */
4228 struct extent *e = calloc(sum_extents, sizeof(*e));
4229 struct dl *dl;
4230 int i, j;
4231 int start_extent;
4232 unsigned long long pos;
4233 unsigned long long start = 0;
4234 unsigned long long maxsize;
4235 unsigned long reserve;
4236
4237 if (!e)
4238 return 0;
4239
4240 /* coalesce and sort all extents. also, check to see if we need to
4241 * reserve space between member arrays
4242 */
4243 j = 0;
4244 for (dl = super->disks; dl; dl = dl->next) {
4245 if (!dl->e)
4246 continue;
4247 for (i = 0; i < dl->extent_cnt; i++)
4248 e[j++] = dl->e[i];
4249 }
4250 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4251
4252 /* merge extents */
4253 i = 0;
4254 j = 0;
4255 while (i < sum_extents) {
4256 e[j].start = e[i].start;
4257 e[j].size = find_size(e, &i, sum_extents);
4258 j++;
4259 if (e[j-1].size == 0)
4260 break;
4261 }
4262
4263 pos = 0;
4264 maxsize = 0;
4265 start_extent = 0;
4266 i = 0;
4267 do {
4268 unsigned long long esize;
4269
4270 esize = e[i].start - pos;
4271 if (esize >= maxsize) {
4272 maxsize = esize;
4273 start = pos;
4274 start_extent = i;
4275 }
4276 pos = e[i].start + e[i].size;
4277 i++;
4278 } while (e[i-1].size);
4279 free(e);
4280
4281 if (maxsize == 0)
4282 return 0;
4283
4284 /* FIXME assumes volume at offset 0 is the first volume in a
4285 * container
4286 */
4287 if (start_extent > 0)
4288 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4289 else
4290 reserve = 0;
4291
4292 if (maxsize < reserve)
4293 return 0;
4294
4295 super->create_offset = ~((__u32) 0);
4296 if (start + reserve > super->create_offset)
4297 return 0; /* start overflows create_offset */
4298 super->create_offset = start + reserve;
4299
4300 return maxsize - reserve;
4301 }
4302
4303 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4304 {
4305 if (level < 0 || level == 6 || level == 4)
4306 return 0;
4307
4308 /* if we have an orom prevent invalid raid levels */
4309 if (orom)
4310 switch (level) {
4311 case 0: return imsm_orom_has_raid0(orom);
4312 case 1:
4313 if (raiddisks > 2)
4314 return imsm_orom_has_raid1e(orom);
4315 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4316 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4317 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4318 }
4319 else
4320 return 1; /* not on an Intel RAID platform so anything goes */
4321
4322 return 0;
4323 }
4324
4325
4326 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4327 /*
4328 * validate volume parameters with OROM/EFI capabilities
4329 */
4330 static int
4331 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4332 int raiddisks, int *chunk, int verbose)
4333 {
4334 #if DEBUG
4335 verbose = 1;
4336 #endif
4337 /* validate container capabilities */
4338 if (super->orom && raiddisks > super->orom->tds) {
4339 if (verbose)
4340 fprintf(stderr, Name ": %d exceeds maximum number of"
4341 " platform supported disks: %d\n",
4342 raiddisks, super->orom->tds);
4343 return 0;
4344 }
4345
4346 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4347 if (super->orom && (!is_raid_level_supported(super->orom, level,
4348 raiddisks))) {
4349 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4350 level, raiddisks, raiddisks > 1 ? "s" : "");
4351 return 0;
4352 }
4353 if (super->orom && level != 1) {
4354 if (chunk && (*chunk == 0 || *chunk == UnSet))
4355 *chunk = imsm_orom_default_chunk(super->orom);
4356 else if (chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4357 pr_vrb(": platform does not support a chunk size of: "
4358 "%d\n", *chunk);
4359 return 0;
4360 }
4361 }
4362 if (layout != imsm_level_to_layout(level)) {
4363 if (level == 5)
4364 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4365 else if (level == 10)
4366 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4367 else
4368 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4369 layout, level);
4370 return 0;
4371 }
4372 return 1;
4373 }
4374
4375 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4376 * FIX ME add ahci details
4377 */
4378 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4379 int layout, int raiddisks, int *chunk,
4380 unsigned long long size, char *dev,
4381 unsigned long long *freesize,
4382 int verbose)
4383 {
4384 struct stat stb;
4385 struct intel_super *super = st->sb;
4386 struct imsm_super *mpb = super->anchor;
4387 struct dl *dl;
4388 unsigned long long pos = 0;
4389 unsigned long long maxsize;
4390 struct extent *e;
4391 int i;
4392
4393 /* We must have the container info already read in. */
4394 if (!super)
4395 return 0;
4396
4397 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
4398 fprintf(stderr, Name ": RAID gemetry validation failed. "
4399 "Cannot proceed with the action(s).\n");
4400 return 0;
4401 }
4402 if (!dev) {
4403 /* General test: make sure there is space for
4404 * 'raiddisks' device extents of size 'size' at a given
4405 * offset
4406 */
4407 unsigned long long minsize = size;
4408 unsigned long long start_offset = MaxSector;
4409 int dcnt = 0;
4410 if (minsize == 0)
4411 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4412 for (dl = super->disks; dl ; dl = dl->next) {
4413 int found = 0;
4414
4415 pos = 0;
4416 i = 0;
4417 e = get_extents(super, dl);
4418 if (!e) continue;
4419 do {
4420 unsigned long long esize;
4421 esize = e[i].start - pos;
4422 if (esize >= minsize)
4423 found = 1;
4424 if (found && start_offset == MaxSector) {
4425 start_offset = pos;
4426 break;
4427 } else if (found && pos != start_offset) {
4428 found = 0;
4429 break;
4430 }
4431 pos = e[i].start + e[i].size;
4432 i++;
4433 } while (e[i-1].size);
4434 if (found)
4435 dcnt++;
4436 free(e);
4437 }
4438 if (dcnt < raiddisks) {
4439 if (verbose)
4440 fprintf(stderr, Name ": imsm: Not enough "
4441 "devices with space for this array "
4442 "(%d < %d)\n",
4443 dcnt, raiddisks);
4444 return 0;
4445 }
4446 return 1;
4447 }
4448
4449 /* This device must be a member of the set */
4450 if (stat(dev, &stb) < 0)
4451 return 0;
4452 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4453 return 0;
4454 for (dl = super->disks ; dl ; dl = dl->next) {
4455 if (dl->major == (int)major(stb.st_rdev) &&
4456 dl->minor == (int)minor(stb.st_rdev))
4457 break;
4458 }
4459 if (!dl) {
4460 if (verbose)
4461 fprintf(stderr, Name ": %s is not in the "
4462 "same imsm set\n", dev);
4463 return 0;
4464 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4465 /* If a volume is present then the current creation attempt
4466 * cannot incorporate new spares because the orom may not
4467 * understand this configuration (all member disks must be
4468 * members of each array in the container).
4469 */
4470 fprintf(stderr, Name ": %s is a spare and a volume"
4471 " is already defined for this container\n", dev);
4472 fprintf(stderr, Name ": The option-rom requires all member"
4473 " disks to be a member of all volumes\n");
4474 return 0;
4475 }
4476
4477 /* retrieve the largest free space block */
4478 e = get_extents(super, dl);
4479 maxsize = 0;
4480 i = 0;
4481 if (e) {
4482 do {
4483 unsigned long long esize;
4484
4485 esize = e[i].start - pos;
4486 if (esize >= maxsize)
4487 maxsize = esize;
4488 pos = e[i].start + e[i].size;
4489 i++;
4490 } while (e[i-1].size);
4491 dl->e = e;
4492 dl->extent_cnt = i;
4493 } else {
4494 if (verbose)
4495 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4496 dev);
4497 return 0;
4498 }
4499 if (maxsize < size) {
4500 if (verbose)
4501 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4502 dev, maxsize, size);
4503 return 0;
4504 }
4505
4506 /* count total number of extents for merge */
4507 i = 0;
4508 for (dl = super->disks; dl; dl = dl->next)
4509 if (dl->e)
4510 i += dl->extent_cnt;
4511
4512 maxsize = merge_extents(super, i);
4513 if (maxsize < size || maxsize == 0) {
4514 if (verbose)
4515 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4516 maxsize, size);
4517 return 0;
4518 }
4519
4520 *freesize = maxsize;
4521
4522 return 1;
4523 }
4524
4525 static int reserve_space(struct supertype *st, int raiddisks,
4526 unsigned long long size, int chunk,
4527 unsigned long long *freesize)
4528 {
4529 struct intel_super *super = st->sb;
4530 struct imsm_super *mpb = super->anchor;
4531 struct dl *dl;
4532 int i;
4533 int extent_cnt;
4534 struct extent *e;
4535 unsigned long long maxsize;
4536 unsigned long long minsize;
4537 int cnt;
4538 int used;
4539
4540 /* find the largest common start free region of the possible disks */
4541 used = 0;
4542 extent_cnt = 0;
4543 cnt = 0;
4544 for (dl = super->disks; dl; dl = dl->next) {
4545 dl->raiddisk = -1;
4546
4547 if (dl->index >= 0)
4548 used++;
4549
4550 /* don't activate new spares if we are orom constrained
4551 * and there is already a volume active in the container
4552 */
4553 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4554 continue;
4555
4556 e = get_extents(super, dl);
4557 if (!e)
4558 continue;
4559 for (i = 1; e[i-1].size; i++)
4560 ;
4561 dl->e = e;
4562 dl->extent_cnt = i;
4563 extent_cnt += i;
4564 cnt++;
4565 }
4566
4567 maxsize = merge_extents(super, extent_cnt);
4568 minsize = size;
4569 if (size == 0)
4570 /* chunk is in K */
4571 minsize = chunk * 2;
4572
4573 if (cnt < raiddisks ||
4574 (super->orom && used && used != raiddisks) ||
4575 maxsize < minsize ||
4576 maxsize == 0) {
4577 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4578 return 0; /* No enough free spaces large enough */
4579 }
4580
4581 if (size == 0) {
4582 size = maxsize;
4583 if (chunk) {
4584 size /= 2 * chunk;
4585 size *= 2 * chunk;
4586 }
4587 }
4588
4589 cnt = 0;
4590 for (dl = super->disks; dl; dl = dl->next)
4591 if (dl->e)
4592 dl->raiddisk = cnt++;
4593
4594 *freesize = size;
4595
4596 return 1;
4597 }
4598
4599 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4600 int raiddisks, int *chunk, unsigned long long size,
4601 char *dev, unsigned long long *freesize,
4602 int verbose)
4603 {
4604 int fd, cfd;
4605 struct mdinfo *sra;
4606 int is_member = 0;
4607
4608 /* load capability
4609 * if given unused devices create a container
4610 * if given given devices in a container create a member volume
4611 */
4612 if (level == LEVEL_CONTAINER) {
4613 /* Must be a fresh device to add to a container */
4614 return validate_geometry_imsm_container(st, level, layout,
4615 raiddisks,
4616 chunk?*chunk:0, size,
4617 dev, freesize,
4618 verbose);
4619 }
4620
4621 if (!dev) {
4622 if (st->sb && freesize) {
4623 /* we are being asked to automatically layout a
4624 * new volume based on the current contents of
4625 * the container. If the the parameters can be
4626 * satisfied reserve_space will record the disks,
4627 * start offset, and size of the volume to be
4628 * created. add_to_super and getinfo_super
4629 * detect when autolayout is in progress.
4630 */
4631 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4632 raiddisks, chunk,
4633 verbose))
4634 return 0;
4635 return reserve_space(st, raiddisks, size,
4636 chunk?*chunk:0, freesize);
4637 }
4638 return 1;
4639 }
4640 if (st->sb) {
4641 /* creating in a given container */
4642 return validate_geometry_imsm_volume(st, level, layout,
4643 raiddisks, chunk, size,
4644 dev, freesize, verbose);
4645 }
4646
4647 /* This device needs to be a device in an 'imsm' container */
4648 fd = open(dev, O_RDONLY|O_EXCL, 0);
4649 if (fd >= 0) {
4650 if (verbose)
4651 fprintf(stderr,
4652 Name ": Cannot create this array on device %s\n",
4653 dev);
4654 close(fd);
4655 return 0;
4656 }
4657 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4658 if (verbose)
4659 fprintf(stderr, Name ": Cannot open %s: %s\n",
4660 dev, strerror(errno));
4661 return 0;
4662 }
4663 /* Well, it is in use by someone, maybe an 'imsm' container. */
4664 cfd = open_container(fd);
4665 close(fd);
4666 if (cfd < 0) {
4667 if (verbose)
4668 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4669 dev);
4670 return 0;
4671 }
4672 sra = sysfs_read(cfd, 0, GET_VERSION);
4673 if (sra && sra->array.major_version == -1 &&
4674 strcmp(sra->text_version, "imsm") == 0)
4675 is_member = 1;
4676 sysfs_free(sra);
4677 if (is_member) {
4678 /* This is a member of a imsm container. Load the container
4679 * and try to create a volume
4680 */
4681 struct intel_super *super;
4682
4683 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4684 st->sb = super;
4685 st->container_dev = fd2devnum(cfd);
4686 close(cfd);
4687 return validate_geometry_imsm_volume(st, level, layout,
4688 raiddisks, chunk,
4689 size, dev,
4690 freesize, verbose);
4691 }
4692 }
4693
4694 if (verbose)
4695 fprintf(stderr, Name ": failed container membership check\n");
4696
4697 close(cfd);
4698 return 0;
4699 }
4700
4701 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4702 {
4703 struct intel_super *super = st->sb;
4704
4705 if (level && *level == UnSet)
4706 *level = LEVEL_CONTAINER;
4707
4708 if (level && layout && *layout == UnSet)
4709 *layout = imsm_level_to_layout(*level);
4710
4711 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4712 super && super->orom)
4713 *chunk = imsm_orom_default_chunk(super->orom);
4714 }
4715
4716 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4717
4718 static int kill_subarray_imsm(struct supertype *st)
4719 {
4720 /* remove the subarray currently referenced by ->current_vol */
4721 __u8 i;
4722 struct intel_dev **dp;
4723 struct intel_super *super = st->sb;
4724 __u8 current_vol = super->current_vol;
4725 struct imsm_super *mpb = super->anchor;
4726
4727 if (super->current_vol < 0)
4728 return 2;
4729 super->current_vol = -1; /* invalidate subarray cursor */
4730
4731 /* block deletions that would change the uuid of active subarrays
4732 *
4733 * FIXME when immutable ids are available, but note that we'll
4734 * also need to fixup the invalidated/active subarray indexes in
4735 * mdstat
4736 */
4737 for (i = 0; i < mpb->num_raid_devs; i++) {
4738 char subarray[4];
4739
4740 if (i < current_vol)
4741 continue;
4742 sprintf(subarray, "%u", i);
4743 if (is_subarray_active(subarray, st->devname)) {
4744 fprintf(stderr,
4745 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4746 current_vol, i);
4747
4748 return 2;
4749 }
4750 }
4751
4752 if (st->update_tail) {
4753 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4754
4755 if (!u)
4756 return 2;
4757 u->type = update_kill_array;
4758 u->dev_idx = current_vol;
4759 append_metadata_update(st, u, sizeof(*u));
4760
4761 return 0;
4762 }
4763
4764 for (dp = &super->devlist; *dp;)
4765 if ((*dp)->index == current_vol) {
4766 *dp = (*dp)->next;
4767 } else {
4768 handle_missing(super, (*dp)->dev);
4769 if ((*dp)->index > current_vol)
4770 (*dp)->index--;
4771 dp = &(*dp)->next;
4772 }
4773
4774 /* no more raid devices, all active components are now spares,
4775 * but of course failed are still failed
4776 */
4777 if (--mpb->num_raid_devs == 0) {
4778 struct dl *d;
4779
4780 for (d = super->disks; d; d = d->next)
4781 if (d->index > -2) {
4782 d->index = -1;
4783 d->disk.status = SPARE_DISK;
4784 }
4785 }
4786
4787 super->updates_pending++;
4788
4789 return 0;
4790 }
4791
4792 static int update_subarray_imsm(struct supertype *st, char *subarray,
4793 char *update, struct mddev_ident *ident)
4794 {
4795 /* update the subarray currently referenced by ->current_vol */
4796 struct intel_super *super = st->sb;
4797 struct imsm_super *mpb = super->anchor;
4798
4799 if (strcmp(update, "name") == 0) {
4800 char *name = ident->name;
4801 char *ep;
4802 int vol;
4803
4804 if (is_subarray_active(subarray, st->devname)) {
4805 fprintf(stderr,
4806 Name ": Unable to update name of active subarray\n");
4807 return 2;
4808 }
4809
4810 if (!check_name(super, name, 0))
4811 return 2;
4812
4813 vol = strtoul(subarray, &ep, 10);
4814 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4815 return 2;
4816
4817 if (st->update_tail) {
4818 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4819
4820 if (!u)
4821 return 2;
4822 u->type = update_rename_array;
4823 u->dev_idx = vol;
4824 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4825 append_metadata_update(st, u, sizeof(*u));
4826 } else {
4827 struct imsm_dev *dev;
4828 int i;
4829
4830 dev = get_imsm_dev(super, vol);
4831 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4832 for (i = 0; i < mpb->num_raid_devs; i++) {
4833 dev = get_imsm_dev(super, i);
4834 handle_missing(super, dev);
4835 }
4836 super->updates_pending++;
4837 }
4838 } else
4839 return 2;
4840
4841 return 0;
4842 }
4843
4844 static int is_gen_migration(struct imsm_dev *dev)
4845 {
4846 if (!dev->vol.migr_state)
4847 return 0;
4848
4849 if (migr_type(dev) == MIGR_GEN_MIGR)
4850 return 1;
4851
4852 return 0;
4853 }
4854 #endif /* MDASSEMBLE */
4855
4856 static int is_rebuilding(struct imsm_dev *dev)
4857 {
4858 struct imsm_map *migr_map;
4859
4860 if (!dev->vol.migr_state)
4861 return 0;
4862
4863 if (migr_type(dev) != MIGR_REBUILD)
4864 return 0;
4865
4866 migr_map = get_imsm_map(dev, 1);
4867
4868 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4869 return 1;
4870 else
4871 return 0;
4872 }
4873
4874 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4875 {
4876 struct mdinfo *rebuild = NULL;
4877 struct mdinfo *d;
4878 __u32 units;
4879
4880 if (!is_rebuilding(dev))
4881 return;
4882
4883 /* Find the rebuild target, but punt on the dual rebuild case */
4884 for (d = array->devs; d; d = d->next)
4885 if (d->recovery_start == 0) {
4886 if (rebuild)
4887 return;
4888 rebuild = d;
4889 }
4890
4891 if (!rebuild) {
4892 /* (?) none of the disks are marked with
4893 * IMSM_ORD_REBUILD, so assume they are missing and the
4894 * disk_ord_tbl was not correctly updated
4895 */
4896 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4897 return;
4898 }
4899
4900 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4901 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4902 }
4903
4904
4905 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4906 {
4907 /* Given a container loaded by load_super_imsm_all,
4908 * extract information about all the arrays into
4909 * an mdinfo tree.
4910 * If 'subarray' is given, just extract info about that array.
4911 *
4912 * For each imsm_dev create an mdinfo, fill it in,
4913 * then look for matching devices in super->disks
4914 * and create appropriate device mdinfo.
4915 */
4916 struct intel_super *super = st->sb;
4917 struct imsm_super *mpb = super->anchor;
4918 struct mdinfo *rest = NULL;
4919 unsigned int i;
4920 int bbm_errors = 0;
4921 struct dl *d;
4922 int spare_disks = 0;
4923
4924 /* check for bad blocks */
4925 if (imsm_bbm_log_size(super->anchor))
4926 bbm_errors = 1;
4927
4928 /* count spare devices, not used in maps
4929 */
4930 for (d = super->disks; d; d = d->next)
4931 if (d->index == -1)
4932 spare_disks++;
4933
4934 for (i = 0; i < mpb->num_raid_devs; i++) {
4935 struct imsm_dev *dev;
4936 struct imsm_map *map;
4937 struct imsm_map *map2;
4938 struct mdinfo *this;
4939 int slot, chunk;
4940 char *ep;
4941
4942 if (subarray &&
4943 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4944 continue;
4945
4946 dev = get_imsm_dev(super, i);
4947 map = get_imsm_map(dev, 0);
4948 map2 = get_imsm_map(dev, 1);
4949
4950 /* do not publish arrays that are in the middle of an
4951 * unsupported migration
4952 */
4953 if (dev->vol.migr_state &&
4954 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4955 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4956 " unsupported migration in progress\n",
4957 dev->volume);
4958 continue;
4959 }
4960 /* do not publish arrays that are not support by controller's
4961 * OROM/EFI
4962 */
4963
4964 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
4965 if (!validate_geometry_imsm_orom(super,
4966 get_imsm_raid_level(map), /* RAID level */
4967 imsm_level_to_layout(get_imsm_raid_level(map)),
4968 map->num_members, /* raid disks */
4969 &chunk,
4970 1 /* verbose */)) {
4971 fprintf(stderr, Name ": RAID gemetry validation failed. "
4972 "Cannot proceed with the action(s).\n");
4973 continue;
4974 }
4975 this = malloc(sizeof(*this));
4976 if (!this) {
4977 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4978 sizeof(*this));
4979 break;
4980 }
4981 memset(this, 0, sizeof(*this));
4982 this->next = rest;
4983
4984 super->current_vol = i;
4985 getinfo_super_imsm_volume(st, this, NULL);
4986 for (slot = 0 ; slot < map->num_members; slot++) {
4987 unsigned long long recovery_start;
4988 struct mdinfo *info_d;
4989 struct dl *d;
4990 int idx;
4991 int skip;
4992 __u32 ord;
4993
4994 skip = 0;
4995 idx = get_imsm_disk_idx(dev, slot, 0);
4996 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4997 for (d = super->disks; d ; d = d->next)
4998 if (d->index == idx)
4999 break;
5000
5001 recovery_start = MaxSector;
5002 if (d == NULL)
5003 skip = 1;
5004 if (d && is_failed(&d->disk))
5005 skip = 1;
5006 if (ord & IMSM_ORD_REBUILD)
5007 recovery_start = 0;
5008
5009 /*
5010 * if we skip some disks the array will be assmebled degraded;
5011 * reset resync start to avoid a dirty-degraded
5012 * situation when performing the intial sync
5013 *
5014 * FIXME handle dirty degraded
5015 */
5016 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5017 this->resync_start = MaxSector;
5018 if (skip)
5019 continue;
5020
5021 info_d = calloc(1, sizeof(*info_d));
5022 if (!info_d) {
5023 fprintf(stderr, Name ": failed to allocate disk"
5024 " for volume %.16s\n", dev->volume);
5025 info_d = this->devs;
5026 while (info_d) {
5027 struct mdinfo *d = info_d->next;
5028
5029 free(info_d);
5030 info_d = d;
5031 }
5032 free(this);
5033 this = rest;
5034 break;
5035 }
5036 info_d->next = this->devs;
5037 this->devs = info_d;
5038
5039 info_d->disk.number = d->index;
5040 info_d->disk.major = d->major;
5041 info_d->disk.minor = d->minor;
5042 info_d->disk.raid_disk = slot;
5043 info_d->recovery_start = recovery_start;
5044 if (map2) {
5045 if (slot < map2->num_members)
5046 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5047 else
5048 this->array.spare_disks++;
5049 } else {
5050 if (slot < map->num_members)
5051 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5052 else
5053 this->array.spare_disks++;
5054 }
5055 if (info_d->recovery_start == MaxSector)
5056 this->array.working_disks++;
5057
5058 info_d->events = __le32_to_cpu(mpb->generation_num);
5059 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5060 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5061 }
5062 /* now that the disk list is up-to-date fixup recovery_start */
5063 update_recovery_start(dev, this);
5064 this->array.spare_disks += spare_disks;
5065 rest = this;
5066 }
5067
5068 /* if array has bad blocks, set suitable bit in array status */
5069 if (bbm_errors)
5070 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5071
5072 return rest;
5073 }
5074
5075
5076 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5077 {
5078 struct imsm_map *map = get_imsm_map(dev, 0);
5079
5080 if (!failed)
5081 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5082 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5083
5084 switch (get_imsm_raid_level(map)) {
5085 case 0:
5086 return IMSM_T_STATE_FAILED;
5087 break;
5088 case 1:
5089 if (failed < map->num_members)
5090 return IMSM_T_STATE_DEGRADED;
5091 else
5092 return IMSM_T_STATE_FAILED;
5093 break;
5094 case 10:
5095 {
5096 /**
5097 * check to see if any mirrors have failed, otherwise we
5098 * are degraded. Even numbered slots are mirrored on
5099 * slot+1
5100 */
5101 int i;
5102 /* gcc -Os complains that this is unused */
5103 int insync = insync;
5104
5105 for (i = 0; i < map->num_members; i++) {
5106 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5107 int idx = ord_to_idx(ord);
5108 struct imsm_disk *disk;
5109
5110 /* reset the potential in-sync count on even-numbered
5111 * slots. num_copies is always 2 for imsm raid10
5112 */
5113 if ((i & 1) == 0)
5114 insync = 2;
5115
5116 disk = get_imsm_disk(super, idx);
5117 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5118 insync--;
5119
5120 /* no in-sync disks left in this mirror the
5121 * array has failed
5122 */
5123 if (insync == 0)
5124 return IMSM_T_STATE_FAILED;
5125 }
5126
5127 return IMSM_T_STATE_DEGRADED;
5128 }
5129 case 5:
5130 if (failed < 2)
5131 return IMSM_T_STATE_DEGRADED;
5132 else
5133 return IMSM_T_STATE_FAILED;
5134 break;
5135 default:
5136 break;
5137 }
5138
5139 return map->map_state;
5140 }
5141
5142 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5143 {
5144 int i;
5145 int failed = 0;
5146 struct imsm_disk *disk;
5147 struct imsm_map *map = get_imsm_map(dev, 0);
5148 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5149 __u32 ord;
5150 int idx;
5151
5152 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5153 * disks that are being rebuilt. New failures are recorded to
5154 * map[0]. So we look through all the disks we started with and
5155 * see if any failures are still present, or if any new ones
5156 * have arrived
5157 *
5158 * FIXME add support for online capacity expansion and
5159 * raid-level-migration
5160 */
5161 for (i = 0; i < prev->num_members; i++) {
5162 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5163 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5164 idx = ord_to_idx(ord);
5165
5166 disk = get_imsm_disk(super, idx);
5167 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5168 failed++;
5169 }
5170
5171 return failed;
5172 }
5173
5174 #ifndef MDASSEMBLE
5175 static int imsm_open_new(struct supertype *c, struct active_array *a,
5176 char *inst)
5177 {
5178 struct intel_super *super = c->sb;
5179 struct imsm_super *mpb = super->anchor;
5180
5181 if (atoi(inst) >= mpb->num_raid_devs) {
5182 fprintf(stderr, "%s: subarry index %d, out of range\n",
5183 __func__, atoi(inst));
5184 return -ENODEV;
5185 }
5186
5187 dprintf("imsm: open_new %s\n", inst);
5188 a->info.container_member = atoi(inst);
5189 return 0;
5190 }
5191
5192 static int is_resyncing(struct imsm_dev *dev)
5193 {
5194 struct imsm_map *migr_map;
5195
5196 if (!dev->vol.migr_state)
5197 return 0;
5198
5199 if (migr_type(dev) == MIGR_INIT ||
5200 migr_type(dev) == MIGR_REPAIR)
5201 return 1;
5202
5203 if (migr_type(dev) == MIGR_GEN_MIGR)
5204 return 0;
5205
5206 migr_map = get_imsm_map(dev, 1);
5207
5208 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5209 (dev->vol.migr_type != MIGR_GEN_MIGR))
5210 return 1;
5211 else
5212 return 0;
5213 }
5214
5215 /* return true if we recorded new information */
5216 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5217 {
5218 __u32 ord;
5219 int slot;
5220 struct imsm_map *map;
5221
5222 /* new failures are always set in map[0] */
5223 map = get_imsm_map(dev, 0);
5224
5225 slot = get_imsm_disk_slot(map, idx);
5226 if (slot < 0)
5227 return 0;
5228
5229 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5230 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5231 return 0;
5232
5233 disk->status |= FAILED_DISK;
5234 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5235 if (map->failed_disk_num == 0xff)
5236 map->failed_disk_num = slot;
5237 return 1;
5238 }
5239
5240 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5241 {
5242 mark_failure(dev, disk, idx);
5243
5244 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5245 return;
5246
5247 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5248 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5249 }
5250
5251 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5252 {
5253 __u8 map_state;
5254 struct dl *dl;
5255 int failed;
5256
5257 if (!super->missing)
5258 return;
5259 failed = imsm_count_failed(super, dev);
5260 map_state = imsm_check_degraded(super, dev, failed);
5261
5262 dprintf("imsm: mark missing\n");
5263 end_migration(dev, map_state);
5264 for (dl = super->missing; dl; dl = dl->next)
5265 mark_missing(dev, &dl->disk, dl->index);
5266 super->updates_pending++;
5267 }
5268
5269 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5270 {
5271 int used_disks = imsm_num_data_members(dev, 0);
5272 unsigned long long array_blocks;
5273 struct imsm_map *map;
5274
5275 if (used_disks == 0) {
5276 /* when problems occures
5277 * return current array_blocks value
5278 */
5279 array_blocks = __le32_to_cpu(dev->size_high);
5280 array_blocks = array_blocks << 32;
5281 array_blocks += __le32_to_cpu(dev->size_low);
5282
5283 return array_blocks;
5284 }
5285
5286 /* set array size in metadata
5287 */
5288 map = get_imsm_map(dev, 0);
5289 array_blocks = map->blocks_per_member * used_disks;
5290
5291 /* round array size down to closest MB
5292 */
5293 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5294 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5295 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5296
5297 return array_blocks;
5298 }
5299
5300 static void imsm_set_disk(struct active_array *a, int n, int state);
5301
5302 static void imsm_progress_container_reshape(struct intel_super *super)
5303 {
5304 /* if no device has a migr_state, but some device has a
5305 * different number of members than the previous device, start
5306 * changing the number of devices in this device to match
5307 * previous.
5308 */
5309 struct imsm_super *mpb = super->anchor;
5310 int prev_disks = -1;
5311 int i;
5312 int copy_map_size;
5313
5314 for (i = 0; i < mpb->num_raid_devs; i++) {
5315 struct imsm_dev *dev = get_imsm_dev(super, i);
5316 struct imsm_map *map = get_imsm_map(dev, 0);
5317 struct imsm_map *map2;
5318 int prev_num_members;
5319
5320 if (dev->vol.migr_state)
5321 return;
5322
5323 if (prev_disks == -1)
5324 prev_disks = map->num_members;
5325 if (prev_disks == map->num_members)
5326 continue;
5327
5328 /* OK, this array needs to enter reshape mode.
5329 * i.e it needs a migr_state
5330 */
5331
5332 copy_map_size = sizeof_imsm_map(map);
5333 prev_num_members = map->num_members;
5334 map->num_members = prev_disks;
5335 dev->vol.migr_state = 1;
5336 dev->vol.curr_migr_unit = 0;
5337 dev->vol.migr_type = MIGR_GEN_MIGR;
5338 for (i = prev_num_members;
5339 i < map->num_members; i++)
5340 set_imsm_ord_tbl_ent(map, i, i);
5341 map2 = get_imsm_map(dev, 1);
5342 /* Copy the current map */
5343 memcpy(map2, map, copy_map_size);
5344 map2->num_members = prev_num_members;
5345
5346 imsm_set_array_size(dev);
5347 super->updates_pending++;
5348 }
5349 }
5350
5351 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5352 * states are handled in imsm_set_disk() with one exception, when a
5353 * resync is stopped due to a new failure this routine will set the
5354 * 'degraded' state for the array.
5355 */
5356 static int imsm_set_array_state(struct active_array *a, int consistent)
5357 {
5358 int inst = a->info.container_member;
5359 struct intel_super *super = a->container->sb;
5360 struct imsm_dev *dev = get_imsm_dev(super, inst);
5361 struct imsm_map *map = get_imsm_map(dev, 0);
5362 int failed = imsm_count_failed(super, dev);
5363 __u8 map_state = imsm_check_degraded(super, dev, failed);
5364 __u32 blocks_per_unit;
5365
5366 if (dev->vol.migr_state &&
5367 dev->vol.migr_type == MIGR_GEN_MIGR) {
5368 /* array state change is blocked due to reshape action
5369 * We might need to
5370 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5371 * - finish the reshape (if last_checkpoint is big and action != reshape)
5372 * - update curr_migr_unit
5373 */
5374 if (a->curr_action == reshape) {
5375 /* still reshaping, maybe update curr_migr_unit */
5376 goto mark_checkpoint;
5377 } else {
5378 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5379 /* for some reason we aborted the reshape.
5380 * Better clean up
5381 */
5382 struct imsm_map *map2 = get_imsm_map(dev, 1);
5383 dev->vol.migr_state = 0;
5384 dev->vol.migr_type = 0;
5385 dev->vol.curr_migr_unit = 0;
5386 memcpy(map, map2, sizeof_imsm_map(map2));
5387 super->updates_pending++;
5388 }
5389 if (a->last_checkpoint >= a->info.component_size) {
5390 unsigned long long array_blocks;
5391 int used_disks;
5392 struct mdinfo *mdi;
5393
5394 used_disks = imsm_num_data_members(dev, 0);
5395 if (used_disks > 0) {
5396 array_blocks =
5397 map->blocks_per_member *
5398 used_disks;
5399 /* round array size down to closest MB
5400 */
5401 array_blocks = (array_blocks
5402 >> SECT_PER_MB_SHIFT)
5403 << SECT_PER_MB_SHIFT;
5404 a->info.custom_array_size = array_blocks;
5405 /* encourage manager to update array
5406 * size
5407 */
5408
5409 a->check_reshape = 1;
5410 }
5411 /* finalize online capacity expansion/reshape */
5412 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5413 imsm_set_disk(a,
5414 mdi->disk.raid_disk,
5415 mdi->curr_state);
5416
5417 imsm_progress_container_reshape(super);
5418 }
5419 }
5420 }
5421
5422 /* before we activate this array handle any missing disks */
5423 if (consistent == 2)
5424 handle_missing(super, dev);
5425
5426 if (consistent == 2 &&
5427 (!is_resync_complete(&a->info) ||
5428 map_state != IMSM_T_STATE_NORMAL ||
5429 dev->vol.migr_state))
5430 consistent = 0;
5431
5432 if (is_resync_complete(&a->info)) {
5433 /* complete intialization / resync,
5434 * recovery and interrupted recovery is completed in
5435 * ->set_disk
5436 */
5437 if (is_resyncing(dev)) {
5438 dprintf("imsm: mark resync done\n");
5439 end_migration(dev, map_state);
5440 super->updates_pending++;
5441 a->last_checkpoint = 0;
5442 }
5443 } else if (!is_resyncing(dev) && !failed) {
5444 /* mark the start of the init process if nothing is failed */
5445 dprintf("imsm: mark resync start\n");
5446 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5447 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5448 else
5449 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5450 super->updates_pending++;
5451 }
5452
5453 mark_checkpoint:
5454 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5455 blocks_per_unit = blocks_per_migr_unit(dev);
5456 if (blocks_per_unit) {
5457 __u32 units32;
5458 __u64 units;
5459
5460 units = a->last_checkpoint / blocks_per_unit;
5461 units32 = units;
5462
5463 /* check that we did not overflow 32-bits, and that
5464 * curr_migr_unit needs updating
5465 */
5466 if (units32 == units &&
5467 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5468 dprintf("imsm: mark checkpoint (%u)\n", units32);
5469 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5470 super->updates_pending++;
5471 }
5472 }
5473
5474 /* mark dirty / clean */
5475 if (dev->vol.dirty != !consistent) {
5476 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5477 if (consistent)
5478 dev->vol.dirty = 0;
5479 else
5480 dev->vol.dirty = 1;
5481 super->updates_pending++;
5482 }
5483
5484 return consistent;
5485 }
5486
5487 static void imsm_set_disk(struct active_array *a, int n, int state)
5488 {
5489 int inst = a->info.container_member;
5490 struct intel_super *super = a->container->sb;
5491 struct imsm_dev *dev = get_imsm_dev(super, inst);
5492 struct imsm_map *map = get_imsm_map(dev, 0);
5493 struct imsm_disk *disk;
5494 int failed;
5495 __u32 ord;
5496 __u8 map_state;
5497
5498 if (n > map->num_members)
5499 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5500 n, map->num_members - 1);
5501
5502 if (n < 0)
5503 return;
5504
5505 dprintf("imsm: set_disk %d:%x\n", n, state);
5506
5507 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5508 disk = get_imsm_disk(super, ord_to_idx(ord));
5509
5510 /* check for new failures */
5511 if (state & DS_FAULTY) {
5512 if (mark_failure(dev, disk, ord_to_idx(ord)))
5513 super->updates_pending++;
5514 }
5515
5516 /* check if in_sync */
5517 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5518 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5519
5520 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5521 super->updates_pending++;
5522 }
5523
5524 failed = imsm_count_failed(super, dev);
5525 map_state = imsm_check_degraded(super, dev, failed);
5526
5527 /* check if recovery complete, newly degraded, or failed */
5528 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5529 end_migration(dev, map_state);
5530 map = get_imsm_map(dev, 0);
5531 map->failed_disk_num = ~0;
5532 super->updates_pending++;
5533 a->last_checkpoint = 0;
5534 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5535 map->map_state != map_state &&
5536 !dev->vol.migr_state) {
5537 dprintf("imsm: mark degraded\n");
5538 map->map_state = map_state;
5539 super->updates_pending++;
5540 a->last_checkpoint = 0;
5541 } else if (map_state == IMSM_T_STATE_FAILED &&
5542 map->map_state != map_state) {
5543 dprintf("imsm: mark failed\n");
5544 end_migration(dev, map_state);
5545 super->updates_pending++;
5546 a->last_checkpoint = 0;
5547 } else if (is_gen_migration(dev)) {
5548 dprintf("imsm: Detected General Migration in state: ");
5549 if (map_state == IMSM_T_STATE_NORMAL) {
5550 end_migration(dev, map_state);
5551 map = get_imsm_map(dev, 0);
5552 map->failed_disk_num = ~0;
5553 dprintf("normal\n");
5554 } else {
5555 if (map_state == IMSM_T_STATE_DEGRADED) {
5556 printf("degraded\n");
5557 end_migration(dev, map_state);
5558 } else {
5559 dprintf("failed\n");
5560 }
5561 map->map_state = map_state;
5562 }
5563 super->updates_pending++;
5564 }
5565 }
5566
5567 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5568 {
5569 void *buf = mpb;
5570 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5571 unsigned long long dsize;
5572 unsigned long long sectors;
5573
5574 get_dev_size(fd, NULL, &dsize);
5575
5576 if (mpb_size > 512) {
5577 /* -1 to account for anchor */
5578 sectors = mpb_sectors(mpb) - 1;
5579
5580 /* write the extended mpb to the sectors preceeding the anchor */
5581 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5582 return 1;
5583
5584 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5585 != 512 * sectors)
5586 return 1;
5587 }
5588
5589 /* first block is stored on second to last sector of the disk */
5590 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5591 return 1;
5592
5593 if (write(fd, buf, 512) != 512)
5594 return 1;
5595
5596 return 0;
5597 }
5598
5599 static void imsm_sync_metadata(struct supertype *container)
5600 {
5601 struct intel_super *super = container->sb;
5602
5603 dprintf("sync metadata: %d\n", super->updates_pending);
5604 if (!super->updates_pending)
5605 return;
5606
5607 write_super_imsm(container, 0);
5608
5609 super->updates_pending = 0;
5610 }
5611
5612 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5613 {
5614 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5615 int i = get_imsm_disk_idx(dev, idx, -1);
5616 struct dl *dl;
5617
5618 for (dl = super->disks; dl; dl = dl->next)
5619 if (dl->index == i)
5620 break;
5621
5622 if (dl && is_failed(&dl->disk))
5623 dl = NULL;
5624
5625 if (dl)
5626 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5627
5628 return dl;
5629 }
5630
5631 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5632 struct active_array *a, int activate_new,
5633 struct mdinfo *additional_test_list)
5634 {
5635 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5636 int idx = get_imsm_disk_idx(dev, slot, -1);
5637 struct imsm_super *mpb = super->anchor;
5638 struct imsm_map *map;
5639 unsigned long long pos;
5640 struct mdinfo *d;
5641 struct extent *ex;
5642 int i, j;
5643 int found;
5644 __u32 array_start = 0;
5645 __u32 array_end = 0;
5646 struct dl *dl;
5647 struct mdinfo *test_list;
5648
5649 for (dl = super->disks; dl; dl = dl->next) {
5650 /* If in this array, skip */
5651 for (d = a->info.devs ; d ; d = d->next)
5652 if (d->state_fd >= 0 &&
5653 d->disk.major == dl->major &&
5654 d->disk.minor == dl->minor) {
5655 dprintf("%x:%x already in array\n",
5656 dl->major, dl->minor);
5657 break;
5658 }
5659 if (d)
5660 continue;
5661 test_list = additional_test_list;
5662 while (test_list) {
5663 if (test_list->disk.major == dl->major &&
5664 test_list->disk.minor == dl->minor) {
5665 dprintf("%x:%x already in additional test list\n",
5666 dl->major, dl->minor);
5667 break;
5668 }
5669 test_list = test_list->next;
5670 }
5671 if (test_list)
5672 continue;
5673
5674 /* skip in use or failed drives */
5675 if (is_failed(&dl->disk) || idx == dl->index ||
5676 dl->index == -2) {
5677 dprintf("%x:%x status (failed: %d index: %d)\n",
5678 dl->major, dl->minor, is_failed(&dl->disk), idx);
5679 continue;
5680 }
5681
5682 /* skip pure spares when we are looking for partially
5683 * assimilated drives
5684 */
5685 if (dl->index == -1 && !activate_new)
5686 continue;
5687
5688 /* Does this unused device have the requisite free space?
5689 * It needs to be able to cover all member volumes
5690 */
5691 ex = get_extents(super, dl);
5692 if (!ex) {
5693 dprintf("cannot get extents\n");
5694 continue;
5695 }
5696 for (i = 0; i < mpb->num_raid_devs; i++) {
5697 dev = get_imsm_dev(super, i);
5698 map = get_imsm_map(dev, 0);
5699
5700 /* check if this disk is already a member of
5701 * this array
5702 */
5703 if (get_imsm_disk_slot(map, dl->index) >= 0)
5704 continue;
5705
5706 found = 0;
5707 j = 0;
5708 pos = 0;
5709 array_start = __le32_to_cpu(map->pba_of_lba0);
5710 array_end = array_start +
5711 __le32_to_cpu(map->blocks_per_member) - 1;
5712
5713 do {
5714 /* check that we can start at pba_of_lba0 with
5715 * blocks_per_member of space
5716 */
5717 if (array_start >= pos && array_end < ex[j].start) {
5718 found = 1;
5719 break;
5720 }
5721 pos = ex[j].start + ex[j].size;
5722 j++;
5723 } while (ex[j-1].size);
5724
5725 if (!found)
5726 break;
5727 }
5728
5729 free(ex);
5730 if (i < mpb->num_raid_devs) {
5731 dprintf("%x:%x does not have %u to %u available\n",
5732 dl->major, dl->minor, array_start, array_end);
5733 /* No room */
5734 continue;
5735 }
5736 return dl;
5737 }
5738
5739 return dl;
5740 }
5741
5742
5743 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5744 {
5745 struct imsm_dev *dev2;
5746 struct imsm_map *map;
5747 struct dl *idisk;
5748 int slot;
5749 int idx;
5750 __u8 state;
5751
5752 dev2 = get_imsm_dev(cont->sb, dev_idx);
5753 if (dev2) {
5754 state = imsm_check_degraded(cont->sb, dev2, failed);
5755 if (state == IMSM_T_STATE_FAILED) {
5756 map = get_imsm_map(dev2, 0);
5757 if (!map)
5758 return 1;
5759 for (slot = 0; slot < map->num_members; slot++) {
5760 /*
5761 * Check if failed disks are deleted from intel
5762 * disk list or are marked to be deleted
5763 */
5764 idx = get_imsm_disk_idx(dev2, slot, -1);
5765 idisk = get_imsm_dl_disk(cont->sb, idx);
5766 /*
5767 * Do not rebuild the array if failed disks
5768 * from failed sub-array are not removed from
5769 * container.
5770 */
5771 if (idisk &&
5772 is_failed(&idisk->disk) &&
5773 (idisk->action != DISK_REMOVE))
5774 return 0;
5775 }
5776 }
5777 }
5778 return 1;
5779 }
5780
5781 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5782 struct metadata_update **updates)
5783 {
5784 /**
5785 * Find a device with unused free space and use it to replace a
5786 * failed/vacant region in an array. We replace failed regions one a
5787 * array at a time. The result is that a new spare disk will be added
5788 * to the first failed array and after the monitor has finished
5789 * propagating failures the remainder will be consumed.
5790 *
5791 * FIXME add a capability for mdmon to request spares from another
5792 * container.
5793 */
5794
5795 struct intel_super *super = a->container->sb;
5796 int inst = a->info.container_member;
5797 struct imsm_dev *dev = get_imsm_dev(super, inst);
5798 struct imsm_map *map = get_imsm_map(dev, 0);
5799 int failed = a->info.array.raid_disks;
5800 struct mdinfo *rv = NULL;
5801 struct mdinfo *d;
5802 struct mdinfo *di;
5803 struct metadata_update *mu;
5804 struct dl *dl;
5805 struct imsm_update_activate_spare *u;
5806 int num_spares = 0;
5807 int i;
5808 int allowed;
5809
5810 for (d = a->info.devs ; d ; d = d->next) {
5811 if ((d->curr_state & DS_FAULTY) &&
5812 d->state_fd >= 0)
5813 /* wait for Removal to happen */
5814 return NULL;
5815 if (d->state_fd >= 0)
5816 failed--;
5817 }
5818
5819 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5820 inst, failed, a->info.array.raid_disks, a->info.array.level);
5821
5822 if (dev->vol.migr_state &&
5823 dev->vol.migr_type == MIGR_GEN_MIGR)
5824 /* No repair during migration */
5825 return NULL;
5826
5827 if (a->info.array.level == 4)
5828 /* No repair for takeovered array
5829 * imsm doesn't support raid4
5830 */
5831 return NULL;
5832
5833 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5834 return NULL;
5835
5836 /*
5837 * If there are any failed disks check state of the other volume.
5838 * Block rebuild if the another one is failed until failed disks
5839 * are removed from container.
5840 */
5841 if (failed) {
5842 dprintf("found failed disks in %s, check if there another"
5843 "failed sub-array.\n",
5844 dev->volume);
5845 /* check if states of the other volumes allow for rebuild */
5846 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5847 if (i != inst) {
5848 allowed = imsm_rebuild_allowed(a->container,
5849 i, failed);
5850 if (!allowed)
5851 return NULL;
5852 }
5853 }
5854 }
5855
5856 /* For each slot, if it is not working, find a spare */
5857 for (i = 0; i < a->info.array.raid_disks; i++) {
5858 for (d = a->info.devs ; d ; d = d->next)
5859 if (d->disk.raid_disk == i)
5860 break;
5861 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5862 if (d && (d->state_fd >= 0))
5863 continue;
5864
5865 /*
5866 * OK, this device needs recovery. Try to re-add the
5867 * previous occupant of this slot, if this fails see if
5868 * we can continue the assimilation of a spare that was
5869 * partially assimilated, finally try to activate a new
5870 * spare.
5871 */
5872 dl = imsm_readd(super, i, a);
5873 if (!dl)
5874 dl = imsm_add_spare(super, i, a, 0, NULL);
5875 if (!dl)
5876 dl = imsm_add_spare(super, i, a, 1, NULL);
5877 if (!dl)
5878 continue;
5879
5880 /* found a usable disk with enough space */
5881 di = malloc(sizeof(*di));
5882 if (!di)
5883 continue;
5884 memset(di, 0, sizeof(*di));
5885
5886 /* dl->index will be -1 in the case we are activating a
5887 * pristine spare. imsm_process_update() will create a
5888 * new index in this case. Once a disk is found to be
5889 * failed in all member arrays it is kicked from the
5890 * metadata
5891 */
5892 di->disk.number = dl->index;
5893
5894 /* (ab)use di->devs to store a pointer to the device
5895 * we chose
5896 */
5897 di->devs = (struct mdinfo *) dl;
5898
5899 di->disk.raid_disk = i;
5900 di->disk.major = dl->major;
5901 di->disk.minor = dl->minor;
5902 di->disk.state = 0;
5903 di->recovery_start = 0;
5904 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5905 di->component_size = a->info.component_size;
5906 di->container_member = inst;
5907 super->random = random32();
5908 di->next = rv;
5909 rv = di;
5910 num_spares++;
5911 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5912 i, di->data_offset);
5913
5914 break;
5915 }
5916
5917 if (!rv)
5918 /* No spares found */
5919 return rv;
5920 /* Now 'rv' has a list of devices to return.
5921 * Create a metadata_update record to update the
5922 * disk_ord_tbl for the array
5923 */
5924 mu = malloc(sizeof(*mu));
5925 if (mu) {
5926 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5927 if (mu->buf == NULL) {
5928 free(mu);
5929 mu = NULL;
5930 }
5931 }
5932 if (!mu) {
5933 while (rv) {
5934 struct mdinfo *n = rv->next;
5935
5936 free(rv);
5937 rv = n;
5938 }
5939 return NULL;
5940 }
5941
5942 mu->space = NULL;
5943 mu->space_list = NULL;
5944 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5945 mu->next = *updates;
5946 u = (struct imsm_update_activate_spare *) mu->buf;
5947
5948 for (di = rv ; di ; di = di->next) {
5949 u->type = update_activate_spare;
5950 u->dl = (struct dl *) di->devs;
5951 di->devs = NULL;
5952 u->slot = di->disk.raid_disk;
5953 u->array = inst;
5954 u->next = u + 1;
5955 u++;
5956 }
5957 (u-1)->next = NULL;
5958 *updates = mu;
5959
5960 return rv;
5961 }
5962
5963 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5964 {
5965 struct imsm_dev *dev = get_imsm_dev(super, idx);
5966 struct imsm_map *map = get_imsm_map(dev, 0);
5967 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5968 struct disk_info *inf = get_disk_info(u);
5969 struct imsm_disk *disk;
5970 int i;
5971 int j;
5972
5973 for (i = 0; i < map->num_members; i++) {
5974 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5975 for (j = 0; j < new_map->num_members; j++)
5976 if (serialcmp(disk->serial, inf[j].serial) == 0)
5977 return 1;
5978 }
5979
5980 return 0;
5981 }
5982
5983
5984 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5985 {
5986 struct dl *dl = NULL;
5987 for (dl = super->disks; dl; dl = dl->next)
5988 if ((dl->major == major) && (dl->minor == minor))
5989 return dl;
5990 return NULL;
5991 }
5992
5993 static int remove_disk_super(struct intel_super *super, int major, int minor)
5994 {
5995 struct dl *prev = NULL;
5996 struct dl *dl;
5997
5998 prev = NULL;
5999 for (dl = super->disks; dl; dl = dl->next) {
6000 if ((dl->major == major) && (dl->minor == minor)) {
6001 /* remove */
6002 if (prev)
6003 prev->next = dl->next;
6004 else
6005 super->disks = dl->next;
6006 dl->next = NULL;
6007 __free_imsm_disk(dl);
6008 dprintf("%s: removed %x:%x\n",
6009 __func__, major, minor);
6010 break;
6011 }
6012 prev = dl;
6013 }
6014 return 0;
6015 }
6016
6017 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6018
6019 static int add_remove_disk_update(struct intel_super *super)
6020 {
6021 int check_degraded = 0;
6022 struct dl *disk = NULL;
6023 /* add/remove some spares to/from the metadata/contrainer */
6024 while (super->disk_mgmt_list) {
6025 struct dl *disk_cfg;
6026
6027 disk_cfg = super->disk_mgmt_list;
6028 super->disk_mgmt_list = disk_cfg->next;
6029 disk_cfg->next = NULL;
6030
6031 if (disk_cfg->action == DISK_ADD) {
6032 disk_cfg->next = super->disks;
6033 super->disks = disk_cfg;
6034 check_degraded = 1;
6035 dprintf("%s: added %x:%x\n",
6036 __func__, disk_cfg->major,
6037 disk_cfg->minor);
6038 } else if (disk_cfg->action == DISK_REMOVE) {
6039 dprintf("Disk remove action processed: %x.%x\n",
6040 disk_cfg->major, disk_cfg->minor);
6041 disk = get_disk_super(super,
6042 disk_cfg->major,
6043 disk_cfg->minor);
6044 if (disk) {
6045 /* store action status */
6046 disk->action = DISK_REMOVE;
6047 /* remove spare disks only */
6048 if (disk->index == -1) {
6049 remove_disk_super(super,
6050 disk_cfg->major,
6051 disk_cfg->minor);
6052 }
6053 }
6054 /* release allocate disk structure */
6055 __free_imsm_disk(disk_cfg);
6056 }
6057 }
6058 return check_degraded;
6059 }
6060
6061 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6062 struct intel_super *super,
6063 void ***space_list)
6064 {
6065 struct dl *new_disk;
6066 struct intel_dev *id;
6067 int i;
6068 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6069 int disk_count = u->old_raid_disks;
6070 void **tofree = NULL;
6071 int devices_to_reshape = 1;
6072 struct imsm_super *mpb = super->anchor;
6073 int ret_val = 0;
6074 unsigned int dev_id;
6075
6076 dprintf("imsm: apply_reshape_container_disks_update()\n");
6077
6078 /* enable spares to use in array */
6079 for (i = 0; i < delta_disks; i++) {
6080 new_disk = get_disk_super(super,
6081 major(u->new_disks[i]),
6082 minor(u->new_disks[i]));
6083 dprintf("imsm: new disk for reshape is: %i:%i "
6084 "(%p, index = %i)\n",
6085 major(u->new_disks[i]), minor(u->new_disks[i]),
6086 new_disk, new_disk->index);
6087 if ((new_disk == NULL) ||
6088 ((new_disk->index >= 0) &&
6089 (new_disk->index < u->old_raid_disks)))
6090 goto update_reshape_exit;
6091 new_disk->index = disk_count++;
6092 /* slot to fill in autolayout
6093 */
6094 new_disk->raiddisk = new_disk->index;
6095 new_disk->disk.status |=
6096 CONFIGURED_DISK;
6097 new_disk->disk.status &= ~SPARE_DISK;
6098 }
6099
6100 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6101 mpb->num_raid_devs);
6102 /* manage changes in volume
6103 */
6104 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6105 void **sp = *space_list;
6106 struct imsm_dev *newdev;
6107 struct imsm_map *newmap, *oldmap;
6108
6109 for (id = super->devlist ; id; id = id->next) {
6110 if (id->index == dev_id)
6111 break;
6112 }
6113 if (id == NULL)
6114 break;
6115 if (!sp)
6116 continue;
6117 *space_list = *sp;
6118 newdev = (void*)sp;
6119 /* Copy the dev, but not (all of) the map */
6120 memcpy(newdev, id->dev, sizeof(*newdev));
6121 oldmap = get_imsm_map(id->dev, 0);
6122 newmap = get_imsm_map(newdev, 0);
6123 /* Copy the current map */
6124 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6125 /* update one device only
6126 */
6127 if (devices_to_reshape) {
6128 dprintf("imsm: modifying subdev: %i\n",
6129 id->index);
6130 devices_to_reshape--;
6131 newdev->vol.migr_state = 1;
6132 newdev->vol.curr_migr_unit = 0;
6133 newdev->vol.migr_type = MIGR_GEN_MIGR;
6134 newmap->num_members = u->new_raid_disks;
6135 for (i = 0; i < delta_disks; i++) {
6136 set_imsm_ord_tbl_ent(newmap,
6137 u->old_raid_disks + i,
6138 u->old_raid_disks + i);
6139 }
6140 /* New map is correct, now need to save old map
6141 */
6142 newmap = get_imsm_map(newdev, 1);
6143 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6144
6145 imsm_set_array_size(newdev);
6146 }
6147
6148 sp = (void **)id->dev;
6149 id->dev = newdev;
6150 *sp = tofree;
6151 tofree = sp;
6152 }
6153 if (tofree)
6154 *space_list = tofree;
6155 ret_val = 1;
6156
6157 update_reshape_exit:
6158
6159 return ret_val;
6160 }
6161
6162 static int apply_takeover_update(struct imsm_update_takeover *u,
6163 struct intel_super *super,
6164 void ***space_list)
6165 {
6166 struct imsm_dev *dev = NULL;
6167 struct intel_dev *dv;
6168 struct imsm_dev *dev_new;
6169 struct imsm_map *map;
6170 struct dl *dm, *du;
6171 int i;
6172
6173 for (dv = super->devlist; dv; dv = dv->next)
6174 if (dv->index == (unsigned int)u->subarray) {
6175 dev = dv->dev;
6176 break;
6177 }
6178
6179 if (dev == NULL)
6180 return 0;
6181
6182 map = get_imsm_map(dev, 0);
6183
6184 if (u->direction == R10_TO_R0) {
6185 /* Number of failed disks must be half of initial disk number */
6186 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6187 return 0;
6188
6189 /* iterate through devices to mark removed disks as spare */
6190 for (dm = super->disks; dm; dm = dm->next) {
6191 if (dm->disk.status & FAILED_DISK) {
6192 int idx = dm->index;
6193 /* update indexes on the disk list */
6194 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6195 the index values will end up being correct.... NB */
6196 for (du = super->disks; du; du = du->next)
6197 if (du->index > idx)
6198 du->index--;
6199 /* mark as spare disk */
6200 dm->disk.status = SPARE_DISK;
6201 dm->index = -1;
6202 }
6203 }
6204 /* update map */
6205 map->num_members = map->num_members / 2;
6206 map->map_state = IMSM_T_STATE_NORMAL;
6207 map->num_domains = 1;
6208 map->raid_level = 0;
6209 map->failed_disk_num = -1;
6210 }
6211
6212 if (u->direction == R0_TO_R10) {
6213 void **space;
6214 /* update slots in current disk list */
6215 for (dm = super->disks; dm; dm = dm->next) {
6216 if (dm->index >= 0)
6217 dm->index *= 2;
6218 }
6219 /* create new *missing* disks */
6220 for (i = 0; i < map->num_members; i++) {
6221 space = *space_list;
6222 if (!space)
6223 continue;
6224 *space_list = *space;
6225 du = (void *)space;
6226 memcpy(du, super->disks, sizeof(*du));
6227 du->fd = -1;
6228 du->minor = 0;
6229 du->major = 0;
6230 du->index = (i * 2) + 1;
6231 sprintf((char *)du->disk.serial,
6232 " MISSING_%d", du->index);
6233 sprintf((char *)du->serial,
6234 "MISSING_%d", du->index);
6235 du->next = super->missing;
6236 super->missing = du;
6237 }
6238 /* create new dev and map */
6239 space = *space_list;
6240 if (!space)
6241 return 0;
6242 *space_list = *space;
6243 dev_new = (void *)space;
6244 memcpy(dev_new, dev, sizeof(*dev));
6245 /* update new map */
6246 map = get_imsm_map(dev_new, 0);
6247 map->num_members = map->num_members * 2;
6248 map->map_state = IMSM_T_STATE_DEGRADED;
6249 map->num_domains = 2;
6250 map->raid_level = 1;
6251 /* replace dev<->dev_new */
6252 dv->dev = dev_new;
6253 }
6254 /* update disk order table */
6255 for (du = super->disks; du; du = du->next)
6256 if (du->index >= 0)
6257 set_imsm_ord_tbl_ent(map, du->index, du->index);
6258 for (du = super->missing; du; du = du->next)
6259 if (du->index >= 0) {
6260 set_imsm_ord_tbl_ent(map, du->index, du->index);
6261 mark_missing(dev_new, &du->disk, du->index);
6262 }
6263
6264 return 1;
6265 }
6266
6267 static void imsm_process_update(struct supertype *st,
6268 struct metadata_update *update)
6269 {
6270 /**
6271 * crack open the metadata_update envelope to find the update record
6272 * update can be one of:
6273 * update_reshape_container_disks - all the arrays in the container
6274 * are being reshaped to have more devices. We need to mark
6275 * the arrays for general migration and convert selected spares
6276 * into active devices.
6277 * update_activate_spare - a spare device has replaced a failed
6278 * device in an array, update the disk_ord_tbl. If this disk is
6279 * present in all member arrays then also clear the SPARE_DISK
6280 * flag
6281 * update_create_array
6282 * update_kill_array
6283 * update_rename_array
6284 * update_add_remove_disk
6285 */
6286 struct intel_super *super = st->sb;
6287 struct imsm_super *mpb;
6288 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6289
6290 /* update requires a larger buf but the allocation failed */
6291 if (super->next_len && !super->next_buf) {
6292 super->next_len = 0;
6293 return;
6294 }
6295
6296 if (super->next_buf) {
6297 memcpy(super->next_buf, super->buf, super->len);
6298 free(super->buf);
6299 super->len = super->next_len;
6300 super->buf = super->next_buf;
6301
6302 super->next_len = 0;
6303 super->next_buf = NULL;
6304 }
6305
6306 mpb = super->anchor;
6307
6308 switch (type) {
6309 case update_takeover: {
6310 struct imsm_update_takeover *u = (void *)update->buf;
6311 if (apply_takeover_update(u, super, &update->space_list)) {
6312 imsm_update_version_info(super);
6313 super->updates_pending++;
6314 }
6315 break;
6316 }
6317
6318 case update_reshape_container_disks: {
6319 struct imsm_update_reshape *u = (void *)update->buf;
6320 if (apply_reshape_container_disks_update(
6321 u, super, &update->space_list))
6322 super->updates_pending++;
6323 break;
6324 }
6325 case update_activate_spare: {
6326 struct imsm_update_activate_spare *u = (void *) update->buf;
6327 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6328 struct imsm_map *map = get_imsm_map(dev, 0);
6329 struct imsm_map *migr_map;
6330 struct active_array *a;
6331 struct imsm_disk *disk;
6332 __u8 to_state;
6333 struct dl *dl;
6334 unsigned int found;
6335 int failed;
6336 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6337 int i;
6338
6339 for (dl = super->disks; dl; dl = dl->next)
6340 if (dl == u->dl)
6341 break;
6342
6343 if (!dl) {
6344 fprintf(stderr, "error: imsm_activate_spare passed "
6345 "an unknown disk (index: %d)\n",
6346 u->dl->index);
6347 return;
6348 }
6349
6350 super->updates_pending++;
6351
6352 /* count failures (excluding rebuilds and the victim)
6353 * to determine map[0] state
6354 */
6355 failed = 0;
6356 for (i = 0; i < map->num_members; i++) {
6357 if (i == u->slot)
6358 continue;
6359 disk = get_imsm_disk(super,
6360 get_imsm_disk_idx(dev, i, -1));
6361 if (!disk || is_failed(disk))
6362 failed++;
6363 }
6364
6365 /* adding a pristine spare, assign a new index */
6366 if (dl->index < 0) {
6367 dl->index = super->anchor->num_disks;
6368 super->anchor->num_disks++;
6369 }
6370 disk = &dl->disk;
6371 disk->status |= CONFIGURED_DISK;
6372 disk->status &= ~SPARE_DISK;
6373
6374 /* mark rebuild */
6375 to_state = imsm_check_degraded(super, dev, failed);
6376 map->map_state = IMSM_T_STATE_DEGRADED;
6377 migrate(dev, to_state, MIGR_REBUILD);
6378 migr_map = get_imsm_map(dev, 1);
6379 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6380 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6381
6382 /* update the family_num to mark a new container
6383 * generation, being careful to record the existing
6384 * family_num in orig_family_num to clean up after
6385 * earlier mdadm versions that neglected to set it.
6386 */
6387 if (mpb->orig_family_num == 0)
6388 mpb->orig_family_num = mpb->family_num;
6389 mpb->family_num += super->random;
6390
6391 /* count arrays using the victim in the metadata */
6392 found = 0;
6393 for (a = st->arrays; a ; a = a->next) {
6394 dev = get_imsm_dev(super, a->info.container_member);
6395 map = get_imsm_map(dev, 0);
6396
6397 if (get_imsm_disk_slot(map, victim) >= 0)
6398 found++;
6399 }
6400
6401 /* delete the victim if it is no longer being
6402 * utilized anywhere
6403 */
6404 if (!found) {
6405 struct dl **dlp;
6406
6407 /* We know that 'manager' isn't touching anything,
6408 * so it is safe to delete
6409 */
6410 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6411 if ((*dlp)->index == victim)
6412 break;
6413
6414 /* victim may be on the missing list */
6415 if (!*dlp)
6416 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6417 if ((*dlp)->index == victim)
6418 break;
6419 imsm_delete(super, dlp, victim);
6420 }
6421 break;
6422 }
6423 case update_create_array: {
6424 /* someone wants to create a new array, we need to be aware of
6425 * a few races/collisions:
6426 * 1/ 'Create' called by two separate instances of mdadm
6427 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6428 * devices that have since been assimilated via
6429 * activate_spare.
6430 * In the event this update can not be carried out mdadm will
6431 * (FIX ME) notice that its update did not take hold.
6432 */
6433 struct imsm_update_create_array *u = (void *) update->buf;
6434 struct intel_dev *dv;
6435 struct imsm_dev *dev;
6436 struct imsm_map *map, *new_map;
6437 unsigned long long start, end;
6438 unsigned long long new_start, new_end;
6439 int i;
6440 struct disk_info *inf;
6441 struct dl *dl;
6442
6443 /* handle racing creates: first come first serve */
6444 if (u->dev_idx < mpb->num_raid_devs) {
6445 dprintf("%s: subarray %d already defined\n",
6446 __func__, u->dev_idx);
6447 goto create_error;
6448 }
6449
6450 /* check update is next in sequence */
6451 if (u->dev_idx != mpb->num_raid_devs) {
6452 dprintf("%s: can not create array %d expected index %d\n",
6453 __func__, u->dev_idx, mpb->num_raid_devs);
6454 goto create_error;
6455 }
6456
6457 new_map = get_imsm_map(&u->dev, 0);
6458 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6459 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6460 inf = get_disk_info(u);
6461
6462 /* handle activate_spare versus create race:
6463 * check to make sure that overlapping arrays do not include
6464 * overalpping disks
6465 */
6466 for (i = 0; i < mpb->num_raid_devs; i++) {
6467 dev = get_imsm_dev(super, i);
6468 map = get_imsm_map(dev, 0);
6469 start = __le32_to_cpu(map->pba_of_lba0);
6470 end = start + __le32_to_cpu(map->blocks_per_member);
6471 if ((new_start >= start && new_start <= end) ||
6472 (start >= new_start && start <= new_end))
6473 /* overlap */;
6474 else
6475 continue;
6476
6477 if (disks_overlap(super, i, u)) {
6478 dprintf("%s: arrays overlap\n", __func__);
6479 goto create_error;
6480 }
6481 }
6482
6483 /* check that prepare update was successful */
6484 if (!update->space) {
6485 dprintf("%s: prepare update failed\n", __func__);
6486 goto create_error;
6487 }
6488
6489 /* check that all disks are still active before committing
6490 * changes. FIXME: could we instead handle this by creating a
6491 * degraded array? That's probably not what the user expects,
6492 * so better to drop this update on the floor.
6493 */
6494 for (i = 0; i < new_map->num_members; i++) {
6495 dl = serial_to_dl(inf[i].serial, super);
6496 if (!dl) {
6497 dprintf("%s: disk disappeared\n", __func__);
6498 goto create_error;
6499 }
6500 }
6501
6502 super->updates_pending++;
6503
6504 /* convert spares to members and fixup ord_tbl */
6505 for (i = 0; i < new_map->num_members; i++) {
6506 dl = serial_to_dl(inf[i].serial, super);
6507 if (dl->index == -1) {
6508 dl->index = mpb->num_disks;
6509 mpb->num_disks++;
6510 dl->disk.status |= CONFIGURED_DISK;
6511 dl->disk.status &= ~SPARE_DISK;
6512 }
6513 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6514 }
6515
6516 dv = update->space;
6517 dev = dv->dev;
6518 update->space = NULL;
6519 imsm_copy_dev(dev, &u->dev);
6520 dv->index = u->dev_idx;
6521 dv->next = super->devlist;
6522 super->devlist = dv;
6523 mpb->num_raid_devs++;
6524
6525 imsm_update_version_info(super);
6526 break;
6527 create_error:
6528 /* mdmon knows how to release update->space, but not
6529 * ((struct intel_dev *) update->space)->dev
6530 */
6531 if (update->space) {
6532 dv = update->space;
6533 free(dv->dev);
6534 }
6535 break;
6536 }
6537 case update_kill_array: {
6538 struct imsm_update_kill_array *u = (void *) update->buf;
6539 int victim = u->dev_idx;
6540 struct active_array *a;
6541 struct intel_dev **dp;
6542 struct imsm_dev *dev;
6543
6544 /* sanity check that we are not affecting the uuid of
6545 * active arrays, or deleting an active array
6546 *
6547 * FIXME when immutable ids are available, but note that
6548 * we'll also need to fixup the invalidated/active
6549 * subarray indexes in mdstat
6550 */
6551 for (a = st->arrays; a; a = a->next)
6552 if (a->info.container_member >= victim)
6553 break;
6554 /* by definition if mdmon is running at least one array
6555 * is active in the container, so checking
6556 * mpb->num_raid_devs is just extra paranoia
6557 */
6558 dev = get_imsm_dev(super, victim);
6559 if (a || !dev || mpb->num_raid_devs == 1) {
6560 dprintf("failed to delete subarray-%d\n", victim);
6561 break;
6562 }
6563
6564 for (dp = &super->devlist; *dp;)
6565 if ((*dp)->index == (unsigned)super->current_vol) {
6566 *dp = (*dp)->next;
6567 } else {
6568 if ((*dp)->index > (unsigned)victim)
6569 (*dp)->index--;
6570 dp = &(*dp)->next;
6571 }
6572 mpb->num_raid_devs--;
6573 super->updates_pending++;
6574 break;
6575 }
6576 case update_rename_array: {
6577 struct imsm_update_rename_array *u = (void *) update->buf;
6578 char name[MAX_RAID_SERIAL_LEN+1];
6579 int target = u->dev_idx;
6580 struct active_array *a;
6581 struct imsm_dev *dev;
6582
6583 /* sanity check that we are not affecting the uuid of
6584 * an active array
6585 */
6586 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6587 name[MAX_RAID_SERIAL_LEN] = '\0';
6588 for (a = st->arrays; a; a = a->next)
6589 if (a->info.container_member == target)
6590 break;
6591 dev = get_imsm_dev(super, u->dev_idx);
6592 if (a || !dev || !check_name(super, name, 1)) {
6593 dprintf("failed to rename subarray-%d\n", target);
6594 break;
6595 }
6596
6597 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6598 super->updates_pending++;
6599 break;
6600 }
6601 case update_add_remove_disk: {
6602 /* we may be able to repair some arrays if disks are
6603 * being added, check teh status of add_remove_disk
6604 * if discs has been added.
6605 */
6606 if (add_remove_disk_update(super)) {
6607 struct active_array *a;
6608
6609 super->updates_pending++;
6610 for (a = st->arrays; a; a = a->next)
6611 a->check_degraded = 1;
6612 }
6613 break;
6614 }
6615 default:
6616 fprintf(stderr, "error: unsuported process update type:"
6617 "(type: %d)\n", type);
6618 }
6619 }
6620
6621 static void imsm_prepare_update(struct supertype *st,
6622 struct metadata_update *update)
6623 {
6624 /**
6625 * Allocate space to hold new disk entries, raid-device entries or a new
6626 * mpb if necessary. The manager synchronously waits for updates to
6627 * complete in the monitor, so new mpb buffers allocated here can be
6628 * integrated by the monitor thread without worrying about live pointers
6629 * in the manager thread.
6630 */
6631 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6632 struct intel_super *super = st->sb;
6633 struct imsm_super *mpb = super->anchor;
6634 size_t buf_len;
6635 size_t len = 0;
6636
6637 switch (type) {
6638 case update_takeover: {
6639 struct imsm_update_takeover *u = (void *)update->buf;
6640 if (u->direction == R0_TO_R10) {
6641 void **tail = (void **)&update->space_list;
6642 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6643 struct imsm_map *map = get_imsm_map(dev, 0);
6644 int num_members = map->num_members;
6645 void *space;
6646 int size, i;
6647 int err = 0;
6648 /* allocate memory for added disks */
6649 for (i = 0; i < num_members; i++) {
6650 size = sizeof(struct dl);
6651 space = malloc(size);
6652 if (!space) {
6653 err++;
6654 break;
6655 }
6656 *tail = space;
6657 tail = space;
6658 *tail = NULL;
6659 }
6660 /* allocate memory for new device */
6661 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6662 (num_members * sizeof(__u32));
6663 space = malloc(size);
6664 if (!space)
6665 err++;
6666 else {
6667 *tail = space;
6668 tail = space;
6669 *tail = NULL;
6670 }
6671 if (!err) {
6672 len = disks_to_mpb_size(num_members * 2);
6673 } else {
6674 /* if allocation didn't success, free buffer */
6675 while (update->space_list) {
6676 void **sp = update->space_list;
6677 update->space_list = *sp;
6678 free(sp);
6679 }
6680 }
6681 }
6682
6683 break;
6684 }
6685 case update_reshape_container_disks: {
6686 /* Every raid device in the container is about to
6687 * gain some more devices, and we will enter a
6688 * reconfiguration.
6689 * So each 'imsm_map' will be bigger, and the imsm_vol
6690 * will now hold 2 of them.
6691 * Thus we need new 'struct imsm_dev' allocations sized
6692 * as sizeof_imsm_dev but with more devices in both maps.
6693 */
6694 struct imsm_update_reshape *u = (void *)update->buf;
6695 struct intel_dev *dl;
6696 void **space_tail = (void**)&update->space_list;
6697
6698 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6699
6700 for (dl = super->devlist; dl; dl = dl->next) {
6701 int size = sizeof_imsm_dev(dl->dev, 1);
6702 void *s;
6703 if (u->new_raid_disks > u->old_raid_disks)
6704 size += sizeof(__u32)*2*
6705 (u->new_raid_disks - u->old_raid_disks);
6706 s = malloc(size);
6707 if (!s)
6708 break;
6709 *space_tail = s;
6710 space_tail = s;
6711 *space_tail = NULL;
6712 }
6713
6714 len = disks_to_mpb_size(u->new_raid_disks);
6715 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6716 break;
6717 }
6718 case update_create_array: {
6719 struct imsm_update_create_array *u = (void *) update->buf;
6720 struct intel_dev *dv;
6721 struct imsm_dev *dev = &u->dev;
6722 struct imsm_map *map = get_imsm_map(dev, 0);
6723 struct dl *dl;
6724 struct disk_info *inf;
6725 int i;
6726 int activate = 0;
6727
6728 inf = get_disk_info(u);
6729 len = sizeof_imsm_dev(dev, 1);
6730 /* allocate a new super->devlist entry */
6731 dv = malloc(sizeof(*dv));
6732 if (dv) {
6733 dv->dev = malloc(len);
6734 if (dv->dev)
6735 update->space = dv;
6736 else {
6737 free(dv);
6738 update->space = NULL;
6739 }
6740 }
6741
6742 /* count how many spares will be converted to members */
6743 for (i = 0; i < map->num_members; i++) {
6744 dl = serial_to_dl(inf[i].serial, super);
6745 if (!dl) {
6746 /* hmm maybe it failed?, nothing we can do about
6747 * it here
6748 */
6749 continue;
6750 }
6751 if (count_memberships(dl, super) == 0)
6752 activate++;
6753 }
6754 len += activate * sizeof(struct imsm_disk);
6755 break;
6756 default:
6757 break;
6758 }
6759 }
6760
6761 /* check if we need a larger metadata buffer */
6762 if (super->next_buf)
6763 buf_len = super->next_len;
6764 else
6765 buf_len = super->len;
6766
6767 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6768 /* ok we need a larger buf than what is currently allocated
6769 * if this allocation fails process_update will notice that
6770 * ->next_len is set and ->next_buf is NULL
6771 */
6772 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6773 if (super->next_buf)
6774 free(super->next_buf);
6775
6776 super->next_len = buf_len;
6777 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6778 memset(super->next_buf, 0, buf_len);
6779 else
6780 super->next_buf = NULL;
6781 }
6782 }
6783
6784 /* must be called while manager is quiesced */
6785 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6786 {
6787 struct imsm_super *mpb = super->anchor;
6788 struct dl *iter;
6789 struct imsm_dev *dev;
6790 struct imsm_map *map;
6791 int i, j, num_members;
6792 __u32 ord;
6793
6794 dprintf("%s: deleting device[%d] from imsm_super\n",
6795 __func__, index);
6796
6797 /* shift all indexes down one */
6798 for (iter = super->disks; iter; iter = iter->next)
6799 if (iter->index > (int)index)
6800 iter->index--;
6801 for (iter = super->missing; iter; iter = iter->next)
6802 if (iter->index > (int)index)
6803 iter->index--;
6804
6805 for (i = 0; i < mpb->num_raid_devs; i++) {
6806 dev = get_imsm_dev(super, i);
6807 map = get_imsm_map(dev, 0);
6808 num_members = map->num_members;
6809 for (j = 0; j < num_members; j++) {
6810 /* update ord entries being careful not to propagate
6811 * ord-flags to the first map
6812 */
6813 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6814
6815 if (ord_to_idx(ord) <= index)
6816 continue;
6817
6818 map = get_imsm_map(dev, 0);
6819 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6820 map = get_imsm_map(dev, 1);
6821 if (map)
6822 set_imsm_ord_tbl_ent(map, j, ord - 1);
6823 }
6824 }
6825
6826 mpb->num_disks--;
6827 super->updates_pending++;
6828 if (*dlp) {
6829 struct dl *dl = *dlp;
6830
6831 *dlp = (*dlp)->next;
6832 __free_imsm_disk(dl);
6833 }
6834 }
6835
6836 static char disk_by_path[] = "/dev/disk/by-path/";
6837
6838 static const char *imsm_get_disk_controller_domain(const char *path)
6839 {
6840 char disk_path[PATH_MAX];
6841 char *drv=NULL;
6842 struct stat st;
6843
6844 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6845 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6846 if (stat(disk_path, &st) == 0) {
6847 struct sys_dev* hba;
6848 char *path=NULL;
6849
6850 path = devt_to_devpath(st.st_rdev);
6851 if (path == NULL)
6852 return "unknown";
6853 hba = find_disk_attached_hba(-1, path);
6854 if (hba && hba->type == SYS_DEV_SAS)
6855 drv = "isci";
6856 else if (hba && hba->type == SYS_DEV_SATA)
6857 drv = "ahci";
6858 else
6859 drv = "unknown";
6860 dprintf("path: %s hba: %s attached: %s\n",
6861 path, (hba) ? hba->path : "NULL", drv);
6862 free(path);
6863 if (hba)
6864 free_sys_dev(&hba);
6865 }
6866 return drv;
6867 }
6868
6869 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6870 {
6871 char subdev_name[20];
6872 struct mdstat_ent *mdstat;
6873
6874 sprintf(subdev_name, "%d", subdev);
6875 mdstat = mdstat_by_subdev(subdev_name, container);
6876 if (!mdstat)
6877 return -1;
6878
6879 *minor = mdstat->devnum;
6880 free_mdstat(mdstat);
6881 return 0;
6882 }
6883
6884 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6885 struct geo_params *geo,
6886 int *old_raid_disks)
6887 {
6888 /* currently we only support increasing the number of devices
6889 * for a container. This increases the number of device for each
6890 * member array. They must all be RAID0 or RAID5.
6891 */
6892 int ret_val = 0;
6893 struct mdinfo *info, *member;
6894 int devices_that_can_grow = 0;
6895
6896 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6897 "st->devnum = (%i)\n",
6898 st->devnum);
6899
6900 if (geo->size != -1 ||
6901 geo->level != UnSet ||
6902 geo->layout != UnSet ||
6903 geo->chunksize != 0 ||
6904 geo->raid_disks == UnSet) {
6905 dprintf("imsm: Container operation is allowed for "
6906 "raid disks number change only.\n");
6907 return ret_val;
6908 }
6909
6910 info = container_content_imsm(st, NULL);
6911 for (member = info; member; member = member->next) {
6912 int result;
6913 int minor;
6914
6915 dprintf("imsm: checking device_num: %i\n",
6916 member->container_member);
6917
6918 if (geo->raid_disks <= member->array.raid_disks) {
6919 /* we work on container for Online Capacity Expansion
6920 * only so raid_disks has to grow
6921 */
6922 dprintf("imsm: for container operation raid disks "
6923 "increase is required\n");
6924 break;
6925 }
6926
6927 if ((info->array.level != 0) &&
6928 (info->array.level != 5)) {
6929 /* we cannot use this container with other raid level
6930 */
6931 dprintf("imsm: for container operation wrong"
6932 " raid level (%i) detected\n",
6933 info->array.level);
6934 break;
6935 } else {
6936 /* check for platform support
6937 * for this raid level configuration
6938 */
6939 struct intel_super *super = st->sb;
6940 if (!is_raid_level_supported(super->orom,
6941 member->array.level,
6942 geo->raid_disks)) {
6943 dprintf("platform does not support raid%d with"
6944 " %d disk%s\n",
6945 info->array.level,
6946 geo->raid_disks,
6947 geo->raid_disks > 1 ? "s" : "");
6948 break;
6949 }
6950 }
6951
6952 if (*old_raid_disks &&
6953 info->array.raid_disks != *old_raid_disks)
6954 break;
6955 *old_raid_disks = info->array.raid_disks;
6956
6957 /* All raid5 and raid0 volumes in container
6958 * have to be ready for Online Capacity Expansion
6959 * so they need to be assembled. We have already
6960 * checked that no recovery etc is happening.
6961 */
6962 result = imsm_find_array_minor_by_subdev(member->container_member,
6963 st->container_dev,
6964 &minor);
6965 if (result < 0) {
6966 dprintf("imsm: cannot find array\n");
6967 break;
6968 }
6969 devices_that_can_grow++;
6970 }
6971 sysfs_free(info);
6972 if (!member && devices_that_can_grow)
6973 ret_val = 1;
6974
6975 if (ret_val)
6976 dprintf("\tContainer operation allowed\n");
6977 else
6978 dprintf("\tError: %i\n", ret_val);
6979
6980 return ret_val;
6981 }
6982
6983 /* Function: get_spares_for_grow
6984 * Description: Allocates memory and creates list of spare devices
6985 * avaliable in container. Checks if spare drive size is acceptable.
6986 * Parameters: Pointer to the supertype structure
6987 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6988 * NULL if fail
6989 */
6990 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6991 {
6992 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
6993 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
6994 }
6995
6996 /******************************************************************************
6997 * function: imsm_create_metadata_update_for_reshape
6998 * Function creates update for whole IMSM container.
6999 *
7000 ******************************************************************************/
7001 static int imsm_create_metadata_update_for_reshape(
7002 struct supertype *st,
7003 struct geo_params *geo,
7004 int old_raid_disks,
7005 struct imsm_update_reshape **updatep)
7006 {
7007 struct intel_super *super = st->sb;
7008 struct imsm_super *mpb = super->anchor;
7009 int update_memory_size = 0;
7010 struct imsm_update_reshape *u = NULL;
7011 struct mdinfo *spares = NULL;
7012 int i;
7013 int delta_disks = 0;
7014 struct mdinfo *dev;
7015
7016 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
7017 geo->raid_disks);
7018
7019 delta_disks = geo->raid_disks - old_raid_disks;
7020
7021 /* size of all update data without anchor */
7022 update_memory_size = sizeof(struct imsm_update_reshape);
7023
7024 /* now add space for spare disks that we need to add. */
7025 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
7026
7027 u = calloc(1, update_memory_size);
7028 if (u == NULL) {
7029 dprintf("error: "
7030 "cannot get memory for imsm_update_reshape update\n");
7031 return 0;
7032 }
7033 u->type = update_reshape_container_disks;
7034 u->old_raid_disks = old_raid_disks;
7035 u->new_raid_disks = geo->raid_disks;
7036
7037 /* now get spare disks list
7038 */
7039 spares = get_spares_for_grow(st);
7040
7041 if (spares == NULL
7042 || delta_disks > spares->array.spare_disks) {
7043 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
7044 "for %s.\n", geo->dev_name);
7045 goto abort;
7046 }
7047
7048 /* we have got spares
7049 * update disk list in imsm_disk list table in anchor
7050 */
7051 dprintf("imsm: %i spares are available.\n\n",
7052 spares->array.spare_disks);
7053
7054 dev = spares->devs;
7055 for (i = 0; i < delta_disks; i++) {
7056 struct dl *dl;
7057
7058 if (dev == NULL)
7059 break;
7060 u->new_disks[i] = makedev(dev->disk.major,
7061 dev->disk.minor);
7062 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
7063 dl->index = mpb->num_disks;
7064 mpb->num_disks++;
7065 dev = dev->next;
7066 }
7067
7068 abort:
7069 /* free spares
7070 */
7071 sysfs_free(spares);
7072
7073 dprintf("imsm: reshape update preparation :");
7074 if (i == delta_disks) {
7075 dprintf(" OK\n");
7076 *updatep = u;
7077 return update_memory_size;
7078 }
7079 free(u);
7080 dprintf(" Error\n");
7081
7082 return 0;
7083 }
7084
7085 static void imsm_update_metadata_locally(struct supertype *st,
7086 void *buf, int len)
7087 {
7088 struct metadata_update mu;
7089
7090 mu.buf = buf;
7091 mu.len = len;
7092 mu.space = NULL;
7093 mu.space_list = NULL;
7094 mu.next = NULL;
7095 imsm_prepare_update(st, &mu);
7096 imsm_process_update(st, &mu);
7097
7098 while (mu.space_list) {
7099 void **space = mu.space_list;
7100 mu.space_list = *space;
7101 free(space);
7102 }
7103 }
7104
7105 /***************************************************************************
7106 * Function: imsm_analyze_change
7107 * Description: Function analyze change for single volume
7108 * and validate if transition is supported
7109 * Parameters: Geometry parameters, supertype structure
7110 * Returns: Operation type code on success, -1 if fail
7111 ****************************************************************************/
7112 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
7113 struct geo_params *geo)
7114 {
7115 struct mdinfo info;
7116 int change = -1;
7117 int check_devs = 0;
7118 int chunk;
7119
7120 getinfo_super_imsm_volume(st, &info, NULL);
7121
7122 if ((geo->level != info.array.level) &&
7123 (geo->level >= 0) &&
7124 (geo->level != UnSet)) {
7125 switch (info.array.level) {
7126 case 0:
7127 if (geo->level == 5) {
7128 change = CH_MIGRATION;
7129 check_devs = 1;
7130 }
7131 if (geo->level == 10) {
7132 change = CH_TAKEOVER;
7133 check_devs = 1;
7134 }
7135 break;
7136 case 1:
7137 if (geo->level == 0) {
7138 change = CH_TAKEOVER;
7139 check_devs = 1;
7140 }
7141 break;
7142 case 5:
7143 if (geo->level == 0)
7144 change = CH_MIGRATION;
7145 break;
7146 case 10:
7147 if (geo->level == 0) {
7148 change = CH_TAKEOVER;
7149 check_devs = 1;
7150 }
7151 break;
7152 }
7153 if (change == -1) {
7154 fprintf(stderr,
7155 Name " Error. Level Migration from %d to %d "
7156 "not supported!\n",
7157 info.array.level, geo->level);
7158 goto analyse_change_exit;
7159 }
7160 } else
7161 geo->level = info.array.level;
7162
7163 if ((geo->layout != info.array.layout)
7164 && ((geo->layout != UnSet) && (geo->layout != -1))) {
7165 change = CH_MIGRATION;
7166 if ((info.array.layout == 0)
7167 && (info.array.level == 5)
7168 && (geo->layout == 5)) {
7169 /* reshape 5 -> 4 */
7170 } else if ((info.array.layout == 5)
7171 && (info.array.level == 5)
7172 && (geo->layout == 0)) {
7173 /* reshape 4 -> 5 */
7174 geo->layout = 0;
7175 geo->level = 5;
7176 } else {
7177 fprintf(stderr,
7178 Name " Error. Layout Migration from %d to %d "
7179 "not supported!\n",
7180 info.array.layout, geo->layout);
7181 change = -1;
7182 goto analyse_change_exit;
7183 }
7184 } else
7185 geo->layout = info.array.layout;
7186
7187 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
7188 && (geo->chunksize != info.array.chunk_size))
7189 change = CH_MIGRATION;
7190 else
7191 geo->chunksize = info.array.chunk_size;
7192
7193 chunk = geo->chunksize / 1024;
7194 if (!validate_geometry_imsm(st,
7195 geo->level,
7196 geo->layout,
7197 geo->raid_disks,
7198 &chunk,
7199 geo->size,
7200 0, 0, 1))
7201 change = -1;
7202
7203 if (check_devs) {
7204 struct intel_super *super = st->sb;
7205 struct imsm_super *mpb = super->anchor;
7206
7207 if (mpb->num_raid_devs > 1) {
7208 fprintf(stderr,
7209 Name " Error. Cannot perform operation on %s"
7210 "- for this operation it MUST be single "
7211 "array in container\n",
7212 geo->dev_name);
7213 change = -1;
7214 }
7215 }
7216
7217 analyse_change_exit:
7218
7219 return change;
7220 }
7221
7222 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7223 {
7224 struct intel_super *super = st->sb;
7225 struct imsm_update_takeover *u;
7226
7227 u = malloc(sizeof(struct imsm_update_takeover));
7228 if (u == NULL)
7229 return 1;
7230
7231 u->type = update_takeover;
7232 u->subarray = super->current_vol;
7233
7234 /* 10->0 transition */
7235 if (geo->level == 0)
7236 u->direction = R10_TO_R0;
7237
7238 /* 0->10 transition */
7239 if (geo->level == 10)
7240 u->direction = R0_TO_R10;
7241
7242 /* update metadata locally */
7243 imsm_update_metadata_locally(st, u,
7244 sizeof(struct imsm_update_takeover));
7245 /* and possibly remotely */
7246 if (st->update_tail)
7247 append_metadata_update(st, u,
7248 sizeof(struct imsm_update_takeover));
7249 else
7250 free(u);
7251
7252 return 0;
7253 }
7254
7255 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7256 int layout, int chunksize, int raid_disks,
7257 int delta_disks, char *backup, char *dev,
7258 int verbose)
7259 {
7260 int ret_val = 1;
7261 struct geo_params geo;
7262
7263 dprintf("imsm: reshape_super called.\n");
7264
7265 memset(&geo, 0, sizeof(struct geo_params));
7266
7267 geo.dev_name = dev;
7268 geo.dev_id = st->devnum;
7269 geo.size = size;
7270 geo.level = level;
7271 geo.layout = layout;
7272 geo.chunksize = chunksize;
7273 geo.raid_disks = raid_disks;
7274 if (delta_disks != UnSet)
7275 geo.raid_disks += delta_disks;
7276
7277 dprintf("\tfor level : %i\n", geo.level);
7278 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7279
7280 if (experimental() == 0)
7281 return ret_val;
7282
7283 if (st->container_dev == st->devnum) {
7284 /* On container level we can only increase number of devices. */
7285 dprintf("imsm: info: Container operation\n");
7286 int old_raid_disks = 0;
7287 if (imsm_reshape_is_allowed_on_container(
7288 st, &geo, &old_raid_disks)) {
7289 struct imsm_update_reshape *u = NULL;
7290 int len;
7291
7292 len = imsm_create_metadata_update_for_reshape(
7293 st, &geo, old_raid_disks, &u);
7294
7295 if (len <= 0) {
7296 dprintf("imsm: Cannot prepare update\n");
7297 goto exit_imsm_reshape_super;
7298 }
7299
7300 ret_val = 0;
7301 /* update metadata locally */
7302 imsm_update_metadata_locally(st, u, len);
7303 /* and possibly remotely */
7304 if (st->update_tail)
7305 append_metadata_update(st, u, len);
7306 else
7307 free(u);
7308
7309 } else {
7310 fprintf(stderr, Name ": (imsm) Operation "
7311 "is not allowed on this container\n");
7312 }
7313 } else {
7314 /* On volume level we support following operations
7315 * - takeover: raid10 -> raid0; raid0 -> raid10
7316 * - chunk size migration
7317 * - migration: raid5 -> raid0; raid0 -> raid5
7318 */
7319 struct intel_super *super = st->sb;
7320 struct intel_dev *dev = super->devlist;
7321 int change, devnum;
7322 dprintf("imsm: info: Volume operation\n");
7323 /* find requested device */
7324 while (dev) {
7325 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7326 if (devnum == geo.dev_id)
7327 break;
7328 dev = dev->next;
7329 }
7330 if (dev == NULL) {
7331 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7332 geo.dev_name, geo.dev_id);
7333 goto exit_imsm_reshape_super;
7334 }
7335 super->current_vol = dev->index;
7336 change = imsm_analyze_change(st, &geo);
7337 switch (change) {
7338 case CH_TAKEOVER:
7339 ret_val = imsm_takeover(st, &geo);
7340 break;
7341 case CH_MIGRATION:
7342 ret_val = 0;
7343 break;
7344 default:
7345 ret_val = 1;
7346 }
7347 }
7348
7349 exit_imsm_reshape_super:
7350 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7351 return ret_val;
7352 }
7353
7354 static int imsm_manage_reshape(
7355 int afd, struct mdinfo *sra, struct reshape *reshape,
7356 struct supertype *st, unsigned long stripes,
7357 int *fds, unsigned long long *offsets,
7358 int dests, int *destfd, unsigned long long *destoffsets)
7359 {
7360 /* Just use child_monitor for now */
7361 return child_monitor(
7362 afd, sra, reshape, st, stripes,
7363 fds, offsets, dests, destfd, destoffsets);
7364 }
7365 #endif /* MDASSEMBLE */
7366
7367 struct superswitch super_imsm = {
7368 #ifndef MDASSEMBLE
7369 .examine_super = examine_super_imsm,
7370 .brief_examine_super = brief_examine_super_imsm,
7371 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7372 .export_examine_super = export_examine_super_imsm,
7373 .detail_super = detail_super_imsm,
7374 .brief_detail_super = brief_detail_super_imsm,
7375 .write_init_super = write_init_super_imsm,
7376 .validate_geometry = validate_geometry_imsm,
7377 .add_to_super = add_to_super_imsm,
7378 .remove_from_super = remove_from_super_imsm,
7379 .detail_platform = detail_platform_imsm,
7380 .kill_subarray = kill_subarray_imsm,
7381 .update_subarray = update_subarray_imsm,
7382 .load_container = load_container_imsm,
7383 .default_geometry = default_geometry_imsm,
7384 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7385 .reshape_super = imsm_reshape_super,
7386 .manage_reshape = imsm_manage_reshape,
7387 #endif
7388 .match_home = match_home_imsm,
7389 .uuid_from_super= uuid_from_super_imsm,
7390 .getinfo_super = getinfo_super_imsm,
7391 .getinfo_super_disks = getinfo_super_disks_imsm,
7392 .update_super = update_super_imsm,
7393
7394 .avail_size = avail_size_imsm,
7395 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7396
7397 .compare_super = compare_super_imsm,
7398
7399 .load_super = load_super_imsm,
7400 .init_super = init_super_imsm,
7401 .store_super = store_super_imsm,
7402 .free_super = free_super_imsm,
7403 .match_metadata_desc = match_metadata_desc_imsm,
7404 .container_content = container_content_imsm,
7405
7406 .external = 1,
7407 .name = "imsm",
7408
7409 #ifndef MDASSEMBLE
7410 /* for mdmon */
7411 .open_new = imsm_open_new,
7412 .set_array_state= imsm_set_array_state,
7413 .set_disk = imsm_set_disk,
7414 .sync_metadata = imsm_sync_metadata,
7415 .activate_spare = imsm_activate_spare,
7416 .process_update = imsm_process_update,
7417 .prepare_update = imsm_prepare_update,
7418 #endif /* MDASSEMBLE */
7419 };