]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix default chunk in the !orom case
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE
85
86 #define MPB_SECTOR_CNT 2210
87 #define IMSM_RESERVED_SECTORS 4096
88 #define SECT_PER_MB_SHIFT 11
89
90 /* Disk configuration info. */
91 #define IMSM_MAX_DEVICES 255
92 struct imsm_disk {
93 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
94 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
95 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
96 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
97 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
98 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
99 __u32 status; /* 0xF0 - 0xF3 */
100 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
101 #define IMSM_DISK_FILLERS 4
102 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
103 };
104
105 /* RAID map configuration infos. */
106 struct imsm_map {
107 __u32 pba_of_lba0; /* start address of partition */
108 __u32 blocks_per_member;/* blocks per member */
109 __u32 num_data_stripes; /* number of data stripes */
110 __u16 blocks_per_strip;
111 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
112 #define IMSM_T_STATE_NORMAL 0
113 #define IMSM_T_STATE_UNINITIALIZED 1
114 #define IMSM_T_STATE_DEGRADED 2
115 #define IMSM_T_STATE_FAILED 3
116 __u8 raid_level;
117 #define IMSM_T_RAID0 0
118 #define IMSM_T_RAID1 1
119 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
120 __u8 num_members; /* number of member disks */
121 __u8 num_domains; /* number of parity domains */
122 __u8 failed_disk_num; /* valid only when state is degraded */
123 __u8 ddf;
124 __u32 filler[7]; /* expansion area */
125 #define IMSM_ORD_REBUILD (1 << 24)
126 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
127 * top byte contains some flags
128 */
129 } __attribute__ ((packed));
130
131 struct imsm_vol {
132 __u32 curr_migr_unit;
133 __u32 checkpoint_id; /* id to access curr_migr_unit */
134 __u8 migr_state; /* Normal or Migrating */
135 #define MIGR_INIT 0
136 #define MIGR_REBUILD 1
137 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
138 #define MIGR_GEN_MIGR 3
139 #define MIGR_STATE_CHANGE 4
140 #define MIGR_REPAIR 5
141 __u8 migr_type; /* Initializing, Rebuilding, ... */
142 __u8 dirty;
143 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
144 __u16 verify_errors; /* number of mismatches */
145 __u16 bad_blocks; /* number of bad blocks during verify */
146 __u32 filler[4];
147 struct imsm_map map[1];
148 /* here comes another one if migr_state */
149 } __attribute__ ((packed));
150
151 struct imsm_dev {
152 __u8 volume[MAX_RAID_SERIAL_LEN];
153 __u32 size_low;
154 __u32 size_high;
155 #define DEV_BOOTABLE __cpu_to_le32(0x01)
156 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
157 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
158 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
159 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
160 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
161 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
162 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
163 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
164 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
165 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
166 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
167 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
168 __u32 status; /* Persistent RaidDev status */
169 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
170 __u8 migr_priority;
171 __u8 num_sub_vols;
172 __u8 tid;
173 __u8 cng_master_disk;
174 __u16 cache_policy;
175 __u8 cng_state;
176 __u8 cng_sub_state;
177 #define IMSM_DEV_FILLERS 10
178 __u32 filler[IMSM_DEV_FILLERS];
179 struct imsm_vol vol;
180 } __attribute__ ((packed));
181
182 struct imsm_super {
183 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
184 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
185 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
186 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
187 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
188 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
189 __u32 attributes; /* 0x34 - 0x37 */
190 __u8 num_disks; /* 0x38 Number of configured disks */
191 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
192 __u8 error_log_pos; /* 0x3A */
193 __u8 fill[1]; /* 0x3B */
194 __u32 cache_size; /* 0x3c - 0x40 in mb */
195 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
196 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
197 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
198 #define IMSM_FILLERS 35
199 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
200 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
201 /* here comes imsm_dev[num_raid_devs] */
202 /* here comes BBM logs */
203 } __attribute__ ((packed));
204
205 #define BBM_LOG_MAX_ENTRIES 254
206
207 struct bbm_log_entry {
208 __u64 defective_block_start;
209 #define UNREADABLE 0xFFFFFFFF
210 __u32 spare_block_offset;
211 __u16 remapped_marked_count;
212 __u16 disk_ordinal;
213 } __attribute__ ((__packed__));
214
215 struct bbm_log {
216 __u32 signature; /* 0xABADB10C */
217 __u32 entry_count;
218 __u32 reserved_spare_block_count; /* 0 */
219 __u32 reserved; /* 0xFFFF */
220 __u64 first_spare_lba;
221 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
222 } __attribute__ ((__packed__));
223
224
225 #ifndef MDASSEMBLE
226 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
227 #endif
228
229 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
230
231 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
232
233 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
234 * be recovered using srcMap */
235 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
236 * already been migrated and must
237 * be recovered from checkpoint area */
238 struct migr_record {
239 __u32 rec_status; /* Status used to determine how to restart
240 * migration in case it aborts
241 * in some fashion */
242 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
243 __u32 family_num; /* Family number of MPB
244 * containing the RaidDev
245 * that is migrating */
246 __u32 ascending_migr; /* True if migrating in increasing
247 * order of lbas */
248 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
249 __u32 dest_depth_per_unit; /* Num member blocks each destMap
250 * member disk
251 * advances per unit-of-operation */
252 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
253 __u32 dest_1st_member_lba; /* First member lba on first
254 * stripe of destination */
255 __u32 num_migr_units; /* Total num migration units-of-op */
256 __u32 post_migr_vol_cap; /* Size of volume after
257 * migration completes */
258 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
259 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
260 * migration ckpt record was read from
261 * (for recovered migrations) */
262 } __attribute__ ((__packed__));
263
264 static __u8 migr_type(struct imsm_dev *dev)
265 {
266 if (dev->vol.migr_type == MIGR_VERIFY &&
267 dev->status & DEV_VERIFY_AND_FIX)
268 return MIGR_REPAIR;
269 else
270 return dev->vol.migr_type;
271 }
272
273 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
274 {
275 /* for compatibility with older oroms convert MIGR_REPAIR, into
276 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
277 */
278 if (migr_type == MIGR_REPAIR) {
279 dev->vol.migr_type = MIGR_VERIFY;
280 dev->status |= DEV_VERIFY_AND_FIX;
281 } else {
282 dev->vol.migr_type = migr_type;
283 dev->status &= ~DEV_VERIFY_AND_FIX;
284 }
285 }
286
287 static unsigned int sector_count(__u32 bytes)
288 {
289 return ((bytes + (512-1)) & (~(512-1))) / 512;
290 }
291
292 static unsigned int mpb_sectors(struct imsm_super *mpb)
293 {
294 return sector_count(__le32_to_cpu(mpb->mpb_size));
295 }
296
297 struct intel_dev {
298 struct imsm_dev *dev;
299 struct intel_dev *next;
300 unsigned index;
301 };
302
303 struct intel_hba {
304 enum sys_dev_type type;
305 char *path;
306 char *pci_id;
307 struct intel_hba *next;
308 };
309
310 enum action {
311 DISK_REMOVE = 1,
312 DISK_ADD
313 };
314 /* internal representation of IMSM metadata */
315 struct intel_super {
316 union {
317 void *buf; /* O_DIRECT buffer for reading/writing metadata */
318 struct imsm_super *anchor; /* immovable parameters */
319 };
320 union {
321 void *migr_rec_buf; /* buffer for I/O operations */
322 struct migr_record *migr_rec; /* migration record */
323 };
324 size_t len; /* size of the 'buf' allocation */
325 void *next_buf; /* for realloc'ing buf from the manager */
326 size_t next_len;
327 int updates_pending; /* count of pending updates for mdmon */
328 int current_vol; /* index of raid device undergoing creation */
329 __u32 create_offset; /* common start for 'current_vol' */
330 __u32 random; /* random data for seeding new family numbers */
331 struct intel_dev *devlist;
332 struct dl {
333 struct dl *next;
334 int index;
335 __u8 serial[MAX_RAID_SERIAL_LEN];
336 int major, minor;
337 char *devname;
338 struct imsm_disk disk;
339 int fd;
340 int extent_cnt;
341 struct extent *e; /* for determining freespace @ create */
342 int raiddisk; /* slot to fill in autolayout */
343 enum action action;
344 } *disks, *current_disk;
345 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
346 active */
347 struct dl *missing; /* disks removed while we weren't looking */
348 struct bbm_log *bbm_log;
349 struct intel_hba *hba; /* device path of the raid controller for this metadata */
350 const struct imsm_orom *orom; /* platform firmware support */
351 struct intel_super *next; /* (temp) list for disambiguating family_num */
352 };
353
354 struct intel_disk {
355 struct imsm_disk disk;
356 #define IMSM_UNKNOWN_OWNER (-1)
357 int owner;
358 struct intel_disk *next;
359 };
360
361 struct extent {
362 unsigned long long start, size;
363 };
364
365 /* definitions of reshape process types */
366 enum imsm_reshape_type {
367 CH_TAKEOVER,
368 CH_MIGRATION,
369 };
370
371 /* definition of messages passed to imsm_process_update */
372 enum imsm_update_type {
373 update_activate_spare,
374 update_create_array,
375 update_kill_array,
376 update_rename_array,
377 update_add_remove_disk,
378 update_reshape_container_disks,
379 update_reshape_migration,
380 update_takeover,
381 update_general_migration_checkpoint,
382 };
383
384 struct imsm_update_activate_spare {
385 enum imsm_update_type type;
386 struct dl *dl;
387 int slot;
388 int array;
389 struct imsm_update_activate_spare *next;
390 };
391
392 struct geo_params {
393 int dev_id;
394 char *dev_name;
395 long long size;
396 int level;
397 int layout;
398 int chunksize;
399 int raid_disks;
400 };
401
402 enum takeover_direction {
403 R10_TO_R0,
404 R0_TO_R10
405 };
406 struct imsm_update_takeover {
407 enum imsm_update_type type;
408 int subarray;
409 enum takeover_direction direction;
410 };
411
412 struct imsm_update_reshape {
413 enum imsm_update_type type;
414 int old_raid_disks;
415 int new_raid_disks;
416
417 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
418 };
419
420 struct imsm_update_reshape_migration {
421 enum imsm_update_type type;
422 int old_raid_disks;
423 int new_raid_disks;
424 /* fields for array migration changes
425 */
426 int subdev;
427 int new_level;
428 int new_layout;
429 int new_chunksize;
430
431 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
432 };
433
434 struct imsm_update_general_migration_checkpoint {
435 enum imsm_update_type type;
436 __u32 curr_migr_unit;
437 };
438
439 struct disk_info {
440 __u8 serial[MAX_RAID_SERIAL_LEN];
441 };
442
443 struct imsm_update_create_array {
444 enum imsm_update_type type;
445 int dev_idx;
446 struct imsm_dev dev;
447 };
448
449 struct imsm_update_kill_array {
450 enum imsm_update_type type;
451 int dev_idx;
452 };
453
454 struct imsm_update_rename_array {
455 enum imsm_update_type type;
456 __u8 name[MAX_RAID_SERIAL_LEN];
457 int dev_idx;
458 };
459
460 struct imsm_update_add_remove_disk {
461 enum imsm_update_type type;
462 };
463
464
465 static const char *_sys_dev_type[] = {
466 [SYS_DEV_UNKNOWN] = "Unknown",
467 [SYS_DEV_SAS] = "SAS",
468 [SYS_DEV_SATA] = "SATA"
469 };
470
471 const char *get_sys_dev_type(enum sys_dev_type type)
472 {
473 if (type >= SYS_DEV_MAX)
474 type = SYS_DEV_UNKNOWN;
475
476 return _sys_dev_type[type];
477 }
478
479 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
480 {
481 struct intel_hba *result = malloc(sizeof(*result));
482 if (result) {
483 result->type = device->type;
484 result->path = strdup(device->path);
485 result->next = NULL;
486 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
487 result->pci_id++;
488 }
489 return result;
490 }
491
492 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
493 {
494 struct intel_hba *result=NULL;
495 for (result = hba; result; result = result->next) {
496 if (result->type == device->type && strcmp(result->path, device->path) == 0)
497 break;
498 }
499 return result;
500 }
501
502 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
503 {
504 struct intel_hba *hba;
505
506 /* check if disk attached to Intel HBA */
507 hba = find_intel_hba(super->hba, device);
508 if (hba != NULL)
509 return 1;
510 /* Check if HBA is already attached to super */
511 if (super->hba == NULL) {
512 super->hba = alloc_intel_hba(device);
513 return 1;
514 }
515
516 hba = super->hba;
517 /* Intel metadata allows for all disks attached to the same type HBA.
518 * Do not sypport odf HBA types mixing
519 */
520 if (device->type != hba->type)
521 return 2;
522
523 while (hba->next)
524 hba = hba->next;
525
526 hba->next = alloc_intel_hba(device);
527 return 1;
528 }
529
530 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
531 {
532 struct sys_dev *list, *elem, *prev;
533 char *disk_path;
534
535 if ((list = find_intel_devices()) == NULL)
536 return 0;
537
538 if (fd < 0)
539 disk_path = (char *) devname;
540 else
541 disk_path = diskfd_to_devpath(fd);
542
543 if (!disk_path) {
544 free_sys_dev(&list);
545 return 0;
546 }
547
548 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
549 if (path_attached_to_hba(disk_path, elem->path)) {
550 if (prev == NULL)
551 list = list->next;
552 else
553 prev->next = elem->next;
554 elem->next = NULL;
555 if (disk_path != devname)
556 free(disk_path);
557 free_sys_dev(&list);
558 return elem;
559 }
560 }
561 if (disk_path != devname)
562 free(disk_path);
563 free_sys_dev(&list);
564
565 return NULL;
566 }
567
568
569 static int find_intel_hba_capability(int fd, struct intel_super *super,
570 char *devname);
571
572 static struct supertype *match_metadata_desc_imsm(char *arg)
573 {
574 struct supertype *st;
575
576 if (strcmp(arg, "imsm") != 0 &&
577 strcmp(arg, "default") != 0
578 )
579 return NULL;
580
581 st = malloc(sizeof(*st));
582 if (!st)
583 return NULL;
584 memset(st, 0, sizeof(*st));
585 st->container_dev = NoMdDev;
586 st->ss = &super_imsm;
587 st->max_devs = IMSM_MAX_DEVICES;
588 st->minor_version = 0;
589 st->sb = NULL;
590 return st;
591 }
592
593 #ifndef MDASSEMBLE
594 static __u8 *get_imsm_version(struct imsm_super *mpb)
595 {
596 return &mpb->sig[MPB_SIG_LEN];
597 }
598 #endif
599
600 /* retrieve a disk directly from the anchor when the anchor is known to be
601 * up-to-date, currently only at load time
602 */
603 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
604 {
605 if (index >= mpb->num_disks)
606 return NULL;
607 return &mpb->disk[index];
608 }
609
610 /* retrieve the disk description based on a index of the disk
611 * in the sub-array
612 */
613 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
614 {
615 struct dl *d;
616
617 for (d = super->disks; d; d = d->next)
618 if (d->index == index)
619 return d;
620
621 return NULL;
622 }
623 /* retrieve a disk from the parsed metadata */
624 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
625 {
626 struct dl *dl;
627
628 dl = get_imsm_dl_disk(super, index);
629 if (dl)
630 return &dl->disk;
631
632 return NULL;
633 }
634
635 /* generate a checksum directly from the anchor when the anchor is known to be
636 * up-to-date, currently only at load or write_super after coalescing
637 */
638 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
639 {
640 __u32 end = mpb->mpb_size / sizeof(end);
641 __u32 *p = (__u32 *) mpb;
642 __u32 sum = 0;
643
644 while (end--) {
645 sum += __le32_to_cpu(*p);
646 p++;
647 }
648
649 return sum - __le32_to_cpu(mpb->check_sum);
650 }
651
652 static size_t sizeof_imsm_map(struct imsm_map *map)
653 {
654 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
655 }
656
657 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
658 {
659 /* A device can have 2 maps if it is in the middle of a migration.
660 * If second_map is:
661 * 0 - we return the first map
662 * 1 - we return the second map if it exists, else NULL
663 * -1 - we return the second map if it exists, else the first
664 */
665 struct imsm_map *map = &dev->vol.map[0];
666
667 if (second_map == 1 && !dev->vol.migr_state)
668 return NULL;
669 else if (second_map == 1 ||
670 (second_map < 0 && dev->vol.migr_state)) {
671 void *ptr = map;
672
673 return ptr + sizeof_imsm_map(map);
674 } else
675 return map;
676
677 }
678
679 /* return the size of the device.
680 * migr_state increases the returned size if map[0] were to be duplicated
681 */
682 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
683 {
684 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
685 sizeof_imsm_map(get_imsm_map(dev, 0));
686
687 /* migrating means an additional map */
688 if (dev->vol.migr_state)
689 size += sizeof_imsm_map(get_imsm_map(dev, 1));
690 else if (migr_state)
691 size += sizeof_imsm_map(get_imsm_map(dev, 0));
692
693 return size;
694 }
695
696 #ifndef MDASSEMBLE
697 /* retrieve disk serial number list from a metadata update */
698 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
699 {
700 void *u = update;
701 struct disk_info *inf;
702
703 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
704 sizeof_imsm_dev(&update->dev, 0);
705
706 return inf;
707 }
708 #endif
709
710 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
711 {
712 int offset;
713 int i;
714 void *_mpb = mpb;
715
716 if (index >= mpb->num_raid_devs)
717 return NULL;
718
719 /* devices start after all disks */
720 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
721
722 for (i = 0; i <= index; i++)
723 if (i == index)
724 return _mpb + offset;
725 else
726 offset += sizeof_imsm_dev(_mpb + offset, 0);
727
728 return NULL;
729 }
730
731 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
732 {
733 struct intel_dev *dv;
734
735 if (index >= super->anchor->num_raid_devs)
736 return NULL;
737 for (dv = super->devlist; dv; dv = dv->next)
738 if (dv->index == index)
739 return dv->dev;
740 return NULL;
741 }
742
743 /*
744 * for second_map:
745 * == 0 get first map
746 * == 1 get second map
747 * == -1 than get map according to the current migr_state
748 */
749 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
750 int slot,
751 int second_map)
752 {
753 struct imsm_map *map;
754
755 map = get_imsm_map(dev, second_map);
756
757 /* top byte identifies disk under rebuild */
758 return __le32_to_cpu(map->disk_ord_tbl[slot]);
759 }
760
761 #define ord_to_idx(ord) (((ord) << 8) >> 8)
762 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
763 {
764 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
765
766 return ord_to_idx(ord);
767 }
768
769 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
770 {
771 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
772 }
773
774 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
775 {
776 int slot;
777 __u32 ord;
778
779 for (slot = 0; slot < map->num_members; slot++) {
780 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
781 if (ord_to_idx(ord) == idx)
782 return slot;
783 }
784
785 return -1;
786 }
787
788 static int get_imsm_raid_level(struct imsm_map *map)
789 {
790 if (map->raid_level == 1) {
791 if (map->num_members == 2)
792 return 1;
793 else
794 return 10;
795 }
796
797 return map->raid_level;
798 }
799
800 static int cmp_extent(const void *av, const void *bv)
801 {
802 const struct extent *a = av;
803 const struct extent *b = bv;
804 if (a->start < b->start)
805 return -1;
806 if (a->start > b->start)
807 return 1;
808 return 0;
809 }
810
811 static int count_memberships(struct dl *dl, struct intel_super *super)
812 {
813 int memberships = 0;
814 int i;
815
816 for (i = 0; i < super->anchor->num_raid_devs; i++) {
817 struct imsm_dev *dev = get_imsm_dev(super, i);
818 struct imsm_map *map = get_imsm_map(dev, 0);
819
820 if (get_imsm_disk_slot(map, dl->index) >= 0)
821 memberships++;
822 }
823
824 return memberships;
825 }
826
827 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
828 {
829 /* find a list of used extents on the given physical device */
830 struct extent *rv, *e;
831 int i;
832 int memberships = count_memberships(dl, super);
833 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
834
835 rv = malloc(sizeof(struct extent) * (memberships + 1));
836 if (!rv)
837 return NULL;
838 e = rv;
839
840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
841 struct imsm_dev *dev = get_imsm_dev(super, i);
842 struct imsm_map *map = get_imsm_map(dev, 0);
843
844 if (get_imsm_disk_slot(map, dl->index) >= 0) {
845 e->start = __le32_to_cpu(map->pba_of_lba0);
846 e->size = __le32_to_cpu(map->blocks_per_member);
847 e++;
848 }
849 }
850 qsort(rv, memberships, sizeof(*rv), cmp_extent);
851
852 /* determine the start of the metadata
853 * when no raid devices are defined use the default
854 * ...otherwise allow the metadata to truncate the value
855 * as is the case with older versions of imsm
856 */
857 if (memberships) {
858 struct extent *last = &rv[memberships - 1];
859 __u32 remainder;
860
861 remainder = __le32_to_cpu(dl->disk.total_blocks) -
862 (last->start + last->size);
863 /* round down to 1k block to satisfy precision of the kernel
864 * 'size' interface
865 */
866 remainder &= ~1UL;
867 /* make sure remainder is still sane */
868 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
869 remainder = ROUND_UP(super->len, 512) >> 9;
870 if (reservation > remainder)
871 reservation = remainder;
872 }
873 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
874 e->size = 0;
875 return rv;
876 }
877
878 /* try to determine how much space is reserved for metadata from
879 * the last get_extents() entry, otherwise fallback to the
880 * default
881 */
882 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
883 {
884 struct extent *e;
885 int i;
886 __u32 rv;
887
888 /* for spares just return a minimal reservation which will grow
889 * once the spare is picked up by an array
890 */
891 if (dl->index == -1)
892 return MPB_SECTOR_CNT;
893
894 e = get_extents(super, dl);
895 if (!e)
896 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
897
898 /* scroll to last entry */
899 for (i = 0; e[i].size; i++)
900 continue;
901
902 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
903
904 free(e);
905
906 return rv;
907 }
908
909 static int is_spare(struct imsm_disk *disk)
910 {
911 return (disk->status & SPARE_DISK) == SPARE_DISK;
912 }
913
914 static int is_configured(struct imsm_disk *disk)
915 {
916 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
917 }
918
919 static int is_failed(struct imsm_disk *disk)
920 {
921 return (disk->status & FAILED_DISK) == FAILED_DISK;
922 }
923
924 /* Return minimum size of a spare that can be used in this array*/
925 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
926 {
927 struct intel_super *super = st->sb;
928 struct dl *dl;
929 struct extent *e;
930 int i;
931 unsigned long long rv = 0;
932
933 if (!super)
934 return rv;
935 /* find first active disk in array */
936 dl = super->disks;
937 while (dl && (is_failed(&dl->disk) || dl->index == -1))
938 dl = dl->next;
939 if (!dl)
940 return rv;
941 /* find last lba used by subarrays */
942 e = get_extents(super, dl);
943 if (!e)
944 return rv;
945 for (i = 0; e[i].size; i++)
946 continue;
947 if (i > 0)
948 rv = e[i-1].start + e[i-1].size;
949 free(e);
950 /* add the amount of space needed for metadata */
951 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
952 return rv * 512;
953 }
954
955 #ifndef MDASSEMBLE
956 static __u64 blocks_per_migr_unit(struct intel_super *super,
957 struct imsm_dev *dev);
958
959 static void print_imsm_dev(struct intel_super *super,
960 struct imsm_dev *dev,
961 char *uuid,
962 int disk_idx)
963 {
964 __u64 sz;
965 int slot, i;
966 struct imsm_map *map = get_imsm_map(dev, 0);
967 struct imsm_map *map2 = get_imsm_map(dev, 1);
968 __u32 ord;
969
970 printf("\n");
971 printf("[%.16s]:\n", dev->volume);
972 printf(" UUID : %s\n", uuid);
973 printf(" RAID Level : %d", get_imsm_raid_level(map));
974 if (map2)
975 printf(" <-- %d", get_imsm_raid_level(map2));
976 printf("\n");
977 printf(" Members : %d", map->num_members);
978 if (map2)
979 printf(" <-- %d", map2->num_members);
980 printf("\n");
981 printf(" Slots : [");
982 for (i = 0; i < map->num_members; i++) {
983 ord = get_imsm_ord_tbl_ent(dev, i, 0);
984 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
985 }
986 printf("]");
987 if (map2) {
988 printf(" <-- [");
989 for (i = 0; i < map2->num_members; i++) {
990 ord = get_imsm_ord_tbl_ent(dev, i, 1);
991 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
992 }
993 printf("]");
994 }
995 printf("\n");
996 printf(" Failed disk : ");
997 if (map->failed_disk_num == 0xff)
998 printf("none");
999 else
1000 printf("%i", map->failed_disk_num);
1001 printf("\n");
1002 slot = get_imsm_disk_slot(map, disk_idx);
1003 if (slot >= 0) {
1004 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1005 printf(" This Slot : %d%s\n", slot,
1006 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1007 } else
1008 printf(" This Slot : ?\n");
1009 sz = __le32_to_cpu(dev->size_high);
1010 sz <<= 32;
1011 sz += __le32_to_cpu(dev->size_low);
1012 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1013 human_size(sz * 512));
1014 sz = __le32_to_cpu(map->blocks_per_member);
1015 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1016 human_size(sz * 512));
1017 printf(" Sector Offset : %u\n",
1018 __le32_to_cpu(map->pba_of_lba0));
1019 printf(" Num Stripes : %u\n",
1020 __le32_to_cpu(map->num_data_stripes));
1021 printf(" Chunk Size : %u KiB",
1022 __le16_to_cpu(map->blocks_per_strip) / 2);
1023 if (map2)
1024 printf(" <-- %u KiB",
1025 __le16_to_cpu(map2->blocks_per_strip) / 2);
1026 printf("\n");
1027 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1028 printf(" Migrate State : ");
1029 if (dev->vol.migr_state) {
1030 if (migr_type(dev) == MIGR_INIT)
1031 printf("initialize\n");
1032 else if (migr_type(dev) == MIGR_REBUILD)
1033 printf("rebuild\n");
1034 else if (migr_type(dev) == MIGR_VERIFY)
1035 printf("check\n");
1036 else if (migr_type(dev) == MIGR_GEN_MIGR)
1037 printf("general migration\n");
1038 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1039 printf("state change\n");
1040 else if (migr_type(dev) == MIGR_REPAIR)
1041 printf("repair\n");
1042 else
1043 printf("<unknown:%d>\n", migr_type(dev));
1044 } else
1045 printf("idle\n");
1046 printf(" Map State : %s", map_state_str[map->map_state]);
1047 if (dev->vol.migr_state) {
1048 struct imsm_map *map = get_imsm_map(dev, 1);
1049
1050 printf(" <-- %s", map_state_str[map->map_state]);
1051 printf("\n Checkpoint : %u (%llu)",
1052 __le32_to_cpu(dev->vol.curr_migr_unit),
1053 (unsigned long long)blocks_per_migr_unit(super, dev));
1054 }
1055 printf("\n");
1056 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1057 }
1058
1059 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
1060 {
1061 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1062 char str[MAX_RAID_SERIAL_LEN + 1];
1063 __u64 sz;
1064
1065 if (index < 0 || !disk)
1066 return;
1067
1068 printf("\n");
1069 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1070 printf(" Disk%02d Serial : %s\n", index, str);
1071 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1072 is_configured(disk) ? " active" : "",
1073 is_failed(disk) ? " failed" : "");
1074 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1075 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1076 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1077 human_size(sz * 512));
1078 }
1079
1080 static int is_gen_migration(struct imsm_dev *dev);
1081
1082 void examine_migr_rec_imsm(struct intel_super *super)
1083 {
1084 struct migr_record *migr_rec = super->migr_rec;
1085 struct imsm_super *mpb = super->anchor;
1086 int i;
1087
1088 for (i = 0; i < mpb->num_raid_devs; i++) {
1089 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1090 if (is_gen_migration(dev) == 0)
1091 continue;
1092
1093 printf("\nMigration Record Information:");
1094 if (super->disks->index > 1) {
1095 printf(" Empty\n ");
1096 printf("Examine one of first two disks in array\n");
1097 break;
1098 }
1099 printf("\n Status : ");
1100 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1101 printf("Normal\n");
1102 else
1103 printf("Contains Data\n");
1104 printf(" Current Unit : %u\n",
1105 __le32_to_cpu(migr_rec->curr_migr_unit));
1106 printf(" Family : %u\n",
1107 __le32_to_cpu(migr_rec->family_num));
1108 printf(" Ascending : %u\n",
1109 __le32_to_cpu(migr_rec->ascending_migr));
1110 printf(" Blocks Per Unit : %u\n",
1111 __le32_to_cpu(migr_rec->blocks_per_unit));
1112 printf(" Dest. Depth Per Unit : %u\n",
1113 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1114 printf(" Checkpoint Area pba : %u\n",
1115 __le32_to_cpu(migr_rec->ckpt_area_pba));
1116 printf(" First member lba : %u\n",
1117 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1118 printf(" Total Number of Units : %u\n",
1119 __le32_to_cpu(migr_rec->num_migr_units));
1120 printf(" Size of volume : %u\n",
1121 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1122 printf(" Expansion space for LBA64 : %u\n",
1123 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1124 printf(" Record was read from : %u\n",
1125 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1126
1127 break;
1128 }
1129 }
1130 #endif /* MDASSEMBLE */
1131 /*******************************************************************************
1132 * function: imsm_check_attributes
1133 * Description: Function checks if features represented by attributes flags
1134 * are supported by mdadm.
1135 * Parameters:
1136 * attributes - Attributes read from metadata
1137 * Returns:
1138 * 0 - passed attributes contains unsupported features flags
1139 * 1 - all features are supported
1140 ******************************************************************************/
1141 static int imsm_check_attributes(__u32 attributes)
1142 {
1143 int ret_val = 1;
1144 __u32 not_supported = (MPB_ATTRIB_SUPPORTED)^0xffffffff;
1145
1146 not_supported &= attributes;
1147 if (not_supported) {
1148 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n", not_supported);
1149 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1150 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1151 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1152 }
1153 if (not_supported & MPB_ATTRIB_2TB) {
1154 dprintf("\t\tMPB_ATTRIB_2TB\n");
1155 not_supported ^= MPB_ATTRIB_2TB;
1156 }
1157 if (not_supported & MPB_ATTRIB_RAID0) {
1158 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1159 not_supported ^= MPB_ATTRIB_RAID0;
1160 }
1161 if (not_supported & MPB_ATTRIB_RAID1) {
1162 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1163 not_supported ^= MPB_ATTRIB_RAID1;
1164 }
1165 if (not_supported & MPB_ATTRIB_RAID10) {
1166 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1167 not_supported ^= MPB_ATTRIB_RAID10;
1168 }
1169 if (not_supported & MPB_ATTRIB_RAID1E) {
1170 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1171 not_supported ^= MPB_ATTRIB_RAID1E;
1172 }
1173 if (not_supported & MPB_ATTRIB_RAID5) {
1174 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1175 not_supported ^= MPB_ATTRIB_RAID5;
1176 }
1177 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1178 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1179 not_supported ^= MPB_ATTRIB_RAIDCNG;
1180 }
1181 if (not_supported & MPB_ATTRIB_BBM) {
1182 dprintf("\t\tMPB_ATTRIB_BBM\n");
1183 not_supported ^= MPB_ATTRIB_BBM;
1184 }
1185 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1186 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1187 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1188 }
1189 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1190 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1191 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1192 }
1193 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1194 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1195 not_supported ^= MPB_ATTRIB_2TB_DISK;
1196 }
1197 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1198 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1199 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1200 }
1201 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1202 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1203 not_supported ^= MPB_ATTRIB_NEVER_USE;
1204 }
1205
1206 if (not_supported)
1207 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1208
1209 ret_val = 0;
1210 }
1211
1212 return ret_val;
1213 }
1214
1215 #ifndef MDASSEMBLE
1216 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1217
1218 static void examine_super_imsm(struct supertype *st, char *homehost)
1219 {
1220 struct intel_super *super = st->sb;
1221 struct imsm_super *mpb = super->anchor;
1222 char str[MAX_SIGNATURE_LENGTH];
1223 int i;
1224 struct mdinfo info;
1225 char nbuf[64];
1226 __u32 sum;
1227 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1228 struct dl *dl;
1229
1230 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1231 printf(" Magic : %s\n", str);
1232 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1233 printf(" Version : %s\n", get_imsm_version(mpb));
1234 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1235 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1236 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1237 printf(" Attributes : ");
1238 if (imsm_check_attributes(mpb->attributes))
1239 printf("All supported\n");
1240 else
1241 printf("not supported\n");
1242 getinfo_super_imsm(st, &info, NULL);
1243 fname_from_uuid(st, &info, nbuf, ':');
1244 printf(" UUID : %s\n", nbuf + 5);
1245 sum = __le32_to_cpu(mpb->check_sum);
1246 printf(" Checksum : %08x %s\n", sum,
1247 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1248 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1249 printf(" Disks : %d\n", mpb->num_disks);
1250 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1251 print_imsm_disk(mpb, super->disks->index, reserved);
1252 if (super->bbm_log) {
1253 struct bbm_log *log = super->bbm_log;
1254
1255 printf("\n");
1256 printf("Bad Block Management Log:\n");
1257 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1258 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1259 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1260 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1261 printf(" First Spare : %llx\n",
1262 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1263 }
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct mdinfo info;
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267
1268 super->current_vol = i;
1269 getinfo_super_imsm(st, &info, NULL);
1270 fname_from_uuid(st, &info, nbuf, ':');
1271 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1272 }
1273 for (i = 0; i < mpb->num_disks; i++) {
1274 if (i == super->disks->index)
1275 continue;
1276 print_imsm_disk(mpb, i, reserved);
1277 }
1278 for (dl = super->disks ; dl; dl = dl->next) {
1279 struct imsm_disk *disk;
1280 char str[MAX_RAID_SERIAL_LEN + 1];
1281 __u64 sz;
1282
1283 if (dl->index >= 0)
1284 continue;
1285
1286 disk = &dl->disk;
1287 printf("\n");
1288 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1289 printf(" Disk Serial : %s\n", str);
1290 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1291 is_configured(disk) ? " active" : "",
1292 is_failed(disk) ? " failed" : "");
1293 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1294 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1295 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1296 human_size(sz * 512));
1297 }
1298
1299 examine_migr_rec_imsm(super);
1300 }
1301
1302 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1303 {
1304 /* We just write a generic IMSM ARRAY entry */
1305 struct mdinfo info;
1306 char nbuf[64];
1307 struct intel_super *super = st->sb;
1308
1309 if (!super->anchor->num_raid_devs) {
1310 printf("ARRAY metadata=imsm\n");
1311 return;
1312 }
1313
1314 getinfo_super_imsm(st, &info, NULL);
1315 fname_from_uuid(st, &info, nbuf, ':');
1316 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1317 }
1318
1319 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1320 {
1321 /* We just write a generic IMSM ARRAY entry */
1322 struct mdinfo info;
1323 char nbuf[64];
1324 char nbuf1[64];
1325 struct intel_super *super = st->sb;
1326 int i;
1327
1328 if (!super->anchor->num_raid_devs)
1329 return;
1330
1331 getinfo_super_imsm(st, &info, NULL);
1332 fname_from_uuid(st, &info, nbuf, ':');
1333 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1334 struct imsm_dev *dev = get_imsm_dev(super, i);
1335
1336 super->current_vol = i;
1337 getinfo_super_imsm(st, &info, NULL);
1338 fname_from_uuid(st, &info, nbuf1, ':');
1339 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1340 dev->volume, nbuf + 5, i, nbuf1 + 5);
1341 }
1342 }
1343
1344 static void export_examine_super_imsm(struct supertype *st)
1345 {
1346 struct intel_super *super = st->sb;
1347 struct imsm_super *mpb = super->anchor;
1348 struct mdinfo info;
1349 char nbuf[64];
1350
1351 getinfo_super_imsm(st, &info, NULL);
1352 fname_from_uuid(st, &info, nbuf, ':');
1353 printf("MD_METADATA=imsm\n");
1354 printf("MD_LEVEL=container\n");
1355 printf("MD_UUID=%s\n", nbuf+5);
1356 printf("MD_DEVICES=%u\n", mpb->num_disks);
1357 }
1358
1359 static void detail_super_imsm(struct supertype *st, char *homehost)
1360 {
1361 struct mdinfo info;
1362 char nbuf[64];
1363
1364 getinfo_super_imsm(st, &info, NULL);
1365 fname_from_uuid(st, &info, nbuf, ':');
1366 printf("\n UUID : %s\n", nbuf + 5);
1367 }
1368
1369 static void brief_detail_super_imsm(struct supertype *st)
1370 {
1371 struct mdinfo info;
1372 char nbuf[64];
1373 getinfo_super_imsm(st, &info, NULL);
1374 fname_from_uuid(st, &info, nbuf, ':');
1375 printf(" UUID=%s", nbuf + 5);
1376 }
1377
1378 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1379 static void fd2devname(int fd, char *name);
1380
1381 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1382 {
1383 /* dump an unsorted list of devices attached to AHCI Intel storage
1384 * controller, as well as non-connected ports
1385 */
1386 int hba_len = strlen(hba_path) + 1;
1387 struct dirent *ent;
1388 DIR *dir;
1389 char *path = NULL;
1390 int err = 0;
1391 unsigned long port_mask = (1 << port_count) - 1;
1392
1393 if (port_count > (int)sizeof(port_mask) * 8) {
1394 if (verbose)
1395 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1396 return 2;
1397 }
1398
1399 /* scroll through /sys/dev/block looking for devices attached to
1400 * this hba
1401 */
1402 dir = opendir("/sys/dev/block");
1403 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1404 int fd;
1405 char model[64];
1406 char vendor[64];
1407 char buf[1024];
1408 int major, minor;
1409 char *device;
1410 char *c;
1411 int port;
1412 int type;
1413
1414 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1415 continue;
1416 path = devt_to_devpath(makedev(major, minor));
1417 if (!path)
1418 continue;
1419 if (!path_attached_to_hba(path, hba_path)) {
1420 free(path);
1421 path = NULL;
1422 continue;
1423 }
1424
1425 /* retrieve the scsi device type */
1426 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1427 if (verbose)
1428 fprintf(stderr, Name ": failed to allocate 'device'\n");
1429 err = 2;
1430 break;
1431 }
1432 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1433 if (load_sys(device, buf) != 0) {
1434 if (verbose)
1435 fprintf(stderr, Name ": failed to read device type for %s\n",
1436 path);
1437 err = 2;
1438 free(device);
1439 break;
1440 }
1441 type = strtoul(buf, NULL, 10);
1442
1443 /* if it's not a disk print the vendor and model */
1444 if (!(type == 0 || type == 7 || type == 14)) {
1445 vendor[0] = '\0';
1446 model[0] = '\0';
1447 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1448 if (load_sys(device, buf) == 0) {
1449 strncpy(vendor, buf, sizeof(vendor));
1450 vendor[sizeof(vendor) - 1] = '\0';
1451 c = (char *) &vendor[sizeof(vendor) - 1];
1452 while (isspace(*c) || *c == '\0')
1453 *c-- = '\0';
1454
1455 }
1456 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1457 if (load_sys(device, buf) == 0) {
1458 strncpy(model, buf, sizeof(model));
1459 model[sizeof(model) - 1] = '\0';
1460 c = (char *) &model[sizeof(model) - 1];
1461 while (isspace(*c) || *c == '\0')
1462 *c-- = '\0';
1463 }
1464
1465 if (vendor[0] && model[0])
1466 sprintf(buf, "%.64s %.64s", vendor, model);
1467 else
1468 switch (type) { /* numbers from hald/linux/device.c */
1469 case 1: sprintf(buf, "tape"); break;
1470 case 2: sprintf(buf, "printer"); break;
1471 case 3: sprintf(buf, "processor"); break;
1472 case 4:
1473 case 5: sprintf(buf, "cdrom"); break;
1474 case 6: sprintf(buf, "scanner"); break;
1475 case 8: sprintf(buf, "media_changer"); break;
1476 case 9: sprintf(buf, "comm"); break;
1477 case 12: sprintf(buf, "raid"); break;
1478 default: sprintf(buf, "unknown");
1479 }
1480 } else
1481 buf[0] = '\0';
1482 free(device);
1483
1484 /* chop device path to 'host%d' and calculate the port number */
1485 c = strchr(&path[hba_len], '/');
1486 if (!c) {
1487 if (verbose)
1488 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1489 err = 2;
1490 break;
1491 }
1492 *c = '\0';
1493 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1494 port -= host_base;
1495 else {
1496 if (verbose) {
1497 *c = '/'; /* repair the full string */
1498 fprintf(stderr, Name ": failed to determine port number for %s\n",
1499 path);
1500 }
1501 err = 2;
1502 break;
1503 }
1504
1505 /* mark this port as used */
1506 port_mask &= ~(1 << port);
1507
1508 /* print out the device information */
1509 if (buf[0]) {
1510 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1511 continue;
1512 }
1513
1514 fd = dev_open(ent->d_name, O_RDONLY);
1515 if (fd < 0)
1516 printf(" Port%d : - disk info unavailable -\n", port);
1517 else {
1518 fd2devname(fd, buf);
1519 printf(" Port%d : %s", port, buf);
1520 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1521 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1522 else
1523 printf(" ()\n");
1524 }
1525 close(fd);
1526 free(path);
1527 path = NULL;
1528 }
1529 if (path)
1530 free(path);
1531 if (dir)
1532 closedir(dir);
1533 if (err == 0) {
1534 int i;
1535
1536 for (i = 0; i < port_count; i++)
1537 if (port_mask & (1 << i))
1538 printf(" Port%d : - no device attached -\n", i);
1539 }
1540
1541 return err;
1542 }
1543
1544 static void print_found_intel_controllers(struct sys_dev *elem)
1545 {
1546 for (; elem; elem = elem->next) {
1547 fprintf(stderr, Name ": found Intel(R) ");
1548 if (elem->type == SYS_DEV_SATA)
1549 fprintf(stderr, "SATA ");
1550 else if (elem->type == SYS_DEV_SAS)
1551 fprintf(stderr, "SAS ");
1552 fprintf(stderr, "RAID controller");
1553 if (elem->pci_id)
1554 fprintf(stderr, " at %s", elem->pci_id);
1555 fprintf(stderr, ".\n");
1556 }
1557 fflush(stderr);
1558 }
1559
1560 static int ahci_get_port_count(const char *hba_path, int *port_count)
1561 {
1562 struct dirent *ent;
1563 DIR *dir;
1564 int host_base = -1;
1565
1566 *port_count = 0;
1567 if ((dir = opendir(hba_path)) == NULL)
1568 return -1;
1569
1570 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1571 int host;
1572
1573 if (sscanf(ent->d_name, "host%d", &host) != 1)
1574 continue;
1575 if (*port_count == 0)
1576 host_base = host;
1577 else if (host < host_base)
1578 host_base = host;
1579
1580 if (host + 1 > *port_count + host_base)
1581 *port_count = host + 1 - host_base;
1582 }
1583 closedir(dir);
1584 return host_base;
1585 }
1586
1587 static void print_imsm_capability(const struct imsm_orom *orom)
1588 {
1589 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1590 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1591 orom->hotfix_ver, orom->build);
1592 printf(" RAID Levels :%s%s%s%s%s\n",
1593 imsm_orom_has_raid0(orom) ? " raid0" : "",
1594 imsm_orom_has_raid1(orom) ? " raid1" : "",
1595 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1596 imsm_orom_has_raid10(orom) ? " raid10" : "",
1597 imsm_orom_has_raid5(orom) ? " raid5" : "");
1598 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1599 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1600 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1601 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1602 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1603 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1604 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1605 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1606 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1607 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1608 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1609 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1610 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1611 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1612 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1613 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1614 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1615 printf(" Max Disks : %d\n", orom->tds);
1616 printf(" Max Volumes : %d\n", orom->vpa);
1617 return;
1618 }
1619
1620 static int detail_platform_imsm(int verbose, int enumerate_only)
1621 {
1622 /* There are two components to imsm platform support, the ahci SATA
1623 * controller and the option-rom. To find the SATA controller we
1624 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1625 * controller with the Intel vendor id is present. This approach
1626 * allows mdadm to leverage the kernel's ahci detection logic, with the
1627 * caveat that if ahci.ko is not loaded mdadm will not be able to
1628 * detect platform raid capabilities. The option-rom resides in a
1629 * platform "Adapter ROM". We scan for its signature to retrieve the
1630 * platform capabilities. If raid support is disabled in the BIOS the
1631 * option-rom capability structure will not be available.
1632 */
1633 const struct imsm_orom *orom;
1634 struct sys_dev *list, *hba;
1635 int host_base = 0;
1636 int port_count = 0;
1637 int result=0;
1638
1639 if (enumerate_only) {
1640 if (check_env("IMSM_NO_PLATFORM"))
1641 return 0;
1642 list = find_intel_devices();
1643 if (!list)
1644 return 2;
1645 for (hba = list; hba; hba = hba->next) {
1646 orom = find_imsm_capability(hba->type);
1647 if (!orom) {
1648 result = 2;
1649 break;
1650 }
1651 }
1652 free_sys_dev(&list);
1653 return result;
1654 }
1655
1656 list = find_intel_devices();
1657 if (!list) {
1658 if (verbose)
1659 fprintf(stderr, Name ": no active Intel(R) RAID "
1660 "controller found.\n");
1661 free_sys_dev(&list);
1662 return 2;
1663 } else if (verbose)
1664 print_found_intel_controllers(list);
1665
1666 for (hba = list; hba; hba = hba->next) {
1667 orom = find_imsm_capability(hba->type);
1668 if (!orom)
1669 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1670 hba->path, get_sys_dev_type(hba->type));
1671 else
1672 print_imsm_capability(orom);
1673 }
1674
1675 for (hba = list; hba; hba = hba->next) {
1676 printf(" I/O Controller : %s (%s)\n",
1677 hba->path, get_sys_dev_type(hba->type));
1678
1679 if (hba->type == SYS_DEV_SATA) {
1680 host_base = ahci_get_port_count(hba->path, &port_count);
1681 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1682 if (verbose)
1683 fprintf(stderr, Name ": failed to enumerate "
1684 "ports on SATA controller at %s.", hba->pci_id);
1685 result |= 2;
1686 }
1687 }
1688 }
1689
1690 free_sys_dev(&list);
1691 return result;
1692 }
1693 #endif
1694
1695 static int match_home_imsm(struct supertype *st, char *homehost)
1696 {
1697 /* the imsm metadata format does not specify any host
1698 * identification information. We return -1 since we can never
1699 * confirm nor deny whether a given array is "meant" for this
1700 * host. We rely on compare_super and the 'family_num' fields to
1701 * exclude member disks that do not belong, and we rely on
1702 * mdadm.conf to specify the arrays that should be assembled.
1703 * Auto-assembly may still pick up "foreign" arrays.
1704 */
1705
1706 return -1;
1707 }
1708
1709 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1710 {
1711 /* The uuid returned here is used for:
1712 * uuid to put into bitmap file (Create, Grow)
1713 * uuid for backup header when saving critical section (Grow)
1714 * comparing uuids when re-adding a device into an array
1715 * In these cases the uuid required is that of the data-array,
1716 * not the device-set.
1717 * uuid to recognise same set when adding a missing device back
1718 * to an array. This is a uuid for the device-set.
1719 *
1720 * For each of these we can make do with a truncated
1721 * or hashed uuid rather than the original, as long as
1722 * everyone agrees.
1723 * In each case the uuid required is that of the data-array,
1724 * not the device-set.
1725 */
1726 /* imsm does not track uuid's so we synthesis one using sha1 on
1727 * - The signature (Which is constant for all imsm array, but no matter)
1728 * - the orig_family_num of the container
1729 * - the index number of the volume
1730 * - the 'serial' number of the volume.
1731 * Hopefully these are all constant.
1732 */
1733 struct intel_super *super = st->sb;
1734
1735 char buf[20];
1736 struct sha1_ctx ctx;
1737 struct imsm_dev *dev = NULL;
1738 __u32 family_num;
1739
1740 /* some mdadm versions failed to set ->orig_family_num, in which
1741 * case fall back to ->family_num. orig_family_num will be
1742 * fixed up with the first metadata update.
1743 */
1744 family_num = super->anchor->orig_family_num;
1745 if (family_num == 0)
1746 family_num = super->anchor->family_num;
1747 sha1_init_ctx(&ctx);
1748 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1749 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1750 if (super->current_vol >= 0)
1751 dev = get_imsm_dev(super, super->current_vol);
1752 if (dev) {
1753 __u32 vol = super->current_vol;
1754 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1755 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1756 }
1757 sha1_finish_ctx(&ctx, buf);
1758 memcpy(uuid, buf, 4*4);
1759 }
1760
1761 #if 0
1762 static void
1763 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1764 {
1765 __u8 *v = get_imsm_version(mpb);
1766 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1767 char major[] = { 0, 0, 0 };
1768 char minor[] = { 0 ,0, 0 };
1769 char patch[] = { 0, 0, 0 };
1770 char *ver_parse[] = { major, minor, patch };
1771 int i, j;
1772
1773 i = j = 0;
1774 while (*v != '\0' && v < end) {
1775 if (*v != '.' && j < 2)
1776 ver_parse[i][j++] = *v;
1777 else {
1778 i++;
1779 j = 0;
1780 }
1781 v++;
1782 }
1783
1784 *m = strtol(minor, NULL, 0);
1785 *p = strtol(patch, NULL, 0);
1786 }
1787 #endif
1788
1789 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1790 {
1791 /* migr_strip_size when repairing or initializing parity */
1792 struct imsm_map *map = get_imsm_map(dev, 0);
1793 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1794
1795 switch (get_imsm_raid_level(map)) {
1796 case 5:
1797 case 10:
1798 return chunk;
1799 default:
1800 return 128*1024 >> 9;
1801 }
1802 }
1803
1804 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1805 {
1806 /* migr_strip_size when rebuilding a degraded disk, no idea why
1807 * this is different than migr_strip_size_resync(), but it's good
1808 * to be compatible
1809 */
1810 struct imsm_map *map = get_imsm_map(dev, 1);
1811 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1812
1813 switch (get_imsm_raid_level(map)) {
1814 case 1:
1815 case 10:
1816 if (map->num_members % map->num_domains == 0)
1817 return 128*1024 >> 9;
1818 else
1819 return chunk;
1820 case 5:
1821 return max((__u32) 64*1024 >> 9, chunk);
1822 default:
1823 return 128*1024 >> 9;
1824 }
1825 }
1826
1827 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1828 {
1829 struct imsm_map *lo = get_imsm_map(dev, 0);
1830 struct imsm_map *hi = get_imsm_map(dev, 1);
1831 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1832 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1833
1834 return max((__u32) 1, hi_chunk / lo_chunk);
1835 }
1836
1837 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1838 {
1839 struct imsm_map *lo = get_imsm_map(dev, 0);
1840 int level = get_imsm_raid_level(lo);
1841
1842 if (level == 1 || level == 10) {
1843 struct imsm_map *hi = get_imsm_map(dev, 1);
1844
1845 return hi->num_domains;
1846 } else
1847 return num_stripes_per_unit_resync(dev);
1848 }
1849
1850 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1851 {
1852 /* named 'imsm_' because raid0, raid1 and raid10
1853 * counter-intuitively have the same number of data disks
1854 */
1855 struct imsm_map *map = get_imsm_map(dev, second_map);
1856
1857 switch (get_imsm_raid_level(map)) {
1858 case 0:
1859 case 1:
1860 case 10:
1861 return map->num_members;
1862 case 5:
1863 return map->num_members - 1;
1864 default:
1865 dprintf("%s: unsupported raid level\n", __func__);
1866 return 0;
1867 }
1868 }
1869
1870 static __u32 parity_segment_depth(struct imsm_dev *dev)
1871 {
1872 struct imsm_map *map = get_imsm_map(dev, 0);
1873 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1874
1875 switch(get_imsm_raid_level(map)) {
1876 case 1:
1877 case 10:
1878 return chunk * map->num_domains;
1879 case 5:
1880 return chunk * map->num_members;
1881 default:
1882 return chunk;
1883 }
1884 }
1885
1886 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1887 {
1888 struct imsm_map *map = get_imsm_map(dev, 1);
1889 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1890 __u32 strip = block / chunk;
1891
1892 switch (get_imsm_raid_level(map)) {
1893 case 1:
1894 case 10: {
1895 __u32 vol_strip = (strip * map->num_domains) + 1;
1896 __u32 vol_stripe = vol_strip / map->num_members;
1897
1898 return vol_stripe * chunk + block % chunk;
1899 } case 5: {
1900 __u32 stripe = strip / (map->num_members - 1);
1901
1902 return stripe * chunk + block % chunk;
1903 }
1904 default:
1905 return 0;
1906 }
1907 }
1908
1909 static __u64 blocks_per_migr_unit(struct intel_super *super,
1910 struct imsm_dev *dev)
1911 {
1912 /* calculate the conversion factor between per member 'blocks'
1913 * (md/{resync,rebuild}_start) and imsm migration units, return
1914 * 0 for the 'not migrating' and 'unsupported migration' cases
1915 */
1916 if (!dev->vol.migr_state)
1917 return 0;
1918
1919 switch (migr_type(dev)) {
1920 case MIGR_GEN_MIGR: {
1921 struct migr_record *migr_rec = super->migr_rec;
1922 return __le32_to_cpu(migr_rec->blocks_per_unit);
1923 }
1924 case MIGR_VERIFY:
1925 case MIGR_REPAIR:
1926 case MIGR_INIT: {
1927 struct imsm_map *map = get_imsm_map(dev, 0);
1928 __u32 stripes_per_unit;
1929 __u32 blocks_per_unit;
1930 __u32 parity_depth;
1931 __u32 migr_chunk;
1932 __u32 block_map;
1933 __u32 block_rel;
1934 __u32 segment;
1935 __u32 stripe;
1936 __u8 disks;
1937
1938 /* yes, this is really the translation of migr_units to
1939 * per-member blocks in the 'resync' case
1940 */
1941 stripes_per_unit = num_stripes_per_unit_resync(dev);
1942 migr_chunk = migr_strip_blocks_resync(dev);
1943 disks = imsm_num_data_members(dev, 0);
1944 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1945 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
1946 segment = blocks_per_unit / stripe;
1947 block_rel = blocks_per_unit - segment * stripe;
1948 parity_depth = parity_segment_depth(dev);
1949 block_map = map_migr_block(dev, block_rel);
1950 return block_map + parity_depth * segment;
1951 }
1952 case MIGR_REBUILD: {
1953 __u32 stripes_per_unit;
1954 __u32 migr_chunk;
1955
1956 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1957 migr_chunk = migr_strip_blocks_rebuild(dev);
1958 return migr_chunk * stripes_per_unit;
1959 }
1960 case MIGR_STATE_CHANGE:
1961 default:
1962 return 0;
1963 }
1964 }
1965
1966 static int imsm_level_to_layout(int level)
1967 {
1968 switch (level) {
1969 case 0:
1970 case 1:
1971 return 0;
1972 case 5:
1973 case 6:
1974 return ALGORITHM_LEFT_ASYMMETRIC;
1975 case 10:
1976 return 0x102;
1977 }
1978 return UnSet;
1979 }
1980
1981 /*******************************************************************************
1982 * Function: read_imsm_migr_rec
1983 * Description: Function reads imsm migration record from last sector of disk
1984 * Parameters:
1985 * fd : disk descriptor
1986 * super : metadata info
1987 * Returns:
1988 * 0 : success,
1989 * -1 : fail
1990 ******************************************************************************/
1991 static int read_imsm_migr_rec(int fd, struct intel_super *super)
1992 {
1993 int ret_val = -1;
1994 unsigned long long dsize;
1995
1996 get_dev_size(fd, NULL, &dsize);
1997 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
1998 fprintf(stderr,
1999 Name ": Cannot seek to anchor block: %s\n",
2000 strerror(errno));
2001 goto out;
2002 }
2003 if (read(fd, super->migr_rec_buf, 512) != 512) {
2004 fprintf(stderr,
2005 Name ": Cannot read migr record block: %s\n",
2006 strerror(errno));
2007 goto out;
2008 }
2009 ret_val = 0;
2010
2011 out:
2012 return ret_val;
2013 }
2014
2015 /*******************************************************************************
2016 * Function: load_imsm_migr_rec
2017 * Description: Function reads imsm migration record (it is stored at the last
2018 * sector of disk)
2019 * Parameters:
2020 * super : imsm internal array info
2021 * info : general array info
2022 * Returns:
2023 * 0 : success
2024 * -1 : fail
2025 ******************************************************************************/
2026 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2027 {
2028 struct mdinfo *sd;
2029 struct dl *dl = NULL;
2030 char nm[30];
2031 int retval = -1;
2032 int fd = -1;
2033
2034 if (info) {
2035 for (sd = info->devs ; sd ; sd = sd->next) {
2036 /* read only from one of the first two slots */
2037 if ((sd->disk.raid_disk > 1) ||
2038 (sd->disk.raid_disk < 0))
2039 continue;
2040 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2041 fd = dev_open(nm, O_RDONLY);
2042 if (fd >= 0)
2043 break;
2044 }
2045 }
2046 if (fd < 0) {
2047 for (dl = super->disks; dl; dl = dl->next) {
2048 /* read only from one of the first two slots */
2049 if (dl->index > 1)
2050 continue;
2051 sprintf(nm, "%d:%d", dl->major, dl->minor);
2052 fd = dev_open(nm, O_RDONLY);
2053 if (fd >= 0)
2054 break;
2055 }
2056 }
2057 if (fd < 0)
2058 goto out;
2059 retval = read_imsm_migr_rec(fd, super);
2060
2061 out:
2062 if (fd >= 0)
2063 close(fd);
2064 return retval;
2065 }
2066
2067 #ifndef MDASSEMBLE
2068 /*******************************************************************************
2069 * function: imsm_create_metadata_checkpoint_update
2070 * Description: It creates update for checkpoint change.
2071 * Parameters:
2072 * super : imsm internal array info
2073 * u : pointer to prepared update
2074 * Returns:
2075 * Uptate length.
2076 * If length is equal to 0, input pointer u contains no update
2077 ******************************************************************************/
2078 static int imsm_create_metadata_checkpoint_update(
2079 struct intel_super *super,
2080 struct imsm_update_general_migration_checkpoint **u)
2081 {
2082
2083 int update_memory_size = 0;
2084
2085 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2086
2087 if (u == NULL)
2088 return 0;
2089 *u = NULL;
2090
2091 /* size of all update data without anchor */
2092 update_memory_size =
2093 sizeof(struct imsm_update_general_migration_checkpoint);
2094
2095 *u = calloc(1, update_memory_size);
2096 if (*u == NULL) {
2097 dprintf("error: cannot get memory for "
2098 "imsm_create_metadata_checkpoint_update update\n");
2099 return 0;
2100 }
2101 (*u)->type = update_general_migration_checkpoint;
2102 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2103 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2104 (*u)->curr_migr_unit);
2105
2106 return update_memory_size;
2107 }
2108
2109
2110 static void imsm_update_metadata_locally(struct supertype *st,
2111 void *buf, int len);
2112
2113 /*******************************************************************************
2114 * Function: write_imsm_migr_rec
2115 * Description: Function writes imsm migration record
2116 * (at the last sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * Returns:
2120 * 0 : success
2121 * -1 : if fail
2122 ******************************************************************************/
2123 static int write_imsm_migr_rec(struct supertype *st)
2124 {
2125 struct intel_super *super = st->sb;
2126 unsigned long long dsize;
2127 char nm[30];
2128 int fd = -1;
2129 int retval = -1;
2130 struct dl *sd;
2131 int len;
2132 struct imsm_update_general_migration_checkpoint *u;
2133
2134 for (sd = super->disks ; sd ; sd = sd->next) {
2135 /* write to 2 first slots only */
2136 if ((sd->index < 0) || (sd->index > 1))
2137 continue;
2138 sprintf(nm, "%d:%d", sd->major, sd->minor);
2139 fd = dev_open(nm, O_RDWR);
2140 if (fd < 0)
2141 continue;
2142 get_dev_size(fd, NULL, &dsize);
2143 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2144 fprintf(stderr,
2145 Name ": Cannot seek to anchor block: %s\n",
2146 strerror(errno));
2147 goto out;
2148 }
2149 if (write(fd, super->migr_rec_buf, 512) != 512) {
2150 fprintf(stderr,
2151 Name ": Cannot write migr record block: %s\n",
2152 strerror(errno));
2153 goto out;
2154 }
2155 close(fd);
2156 fd = -1;
2157 }
2158 /* update checkpoint information in metadata */
2159 len = imsm_create_metadata_checkpoint_update(super, &u);
2160
2161 if (len <= 0) {
2162 dprintf("imsm: Cannot prepare update\n");
2163 goto out;
2164 }
2165 /* update metadata locally */
2166 imsm_update_metadata_locally(st, u, len);
2167 /* and possibly remotely */
2168 if (st->update_tail) {
2169 append_metadata_update(st, u, len);
2170 /* during reshape we do all work inside metadata handler
2171 * manage_reshape(), so metadata update has to be triggered
2172 * insida it
2173 */
2174 flush_metadata_updates(st);
2175 st->update_tail = &st->updates;
2176 } else
2177 free(u);
2178
2179 retval = 0;
2180 out:
2181 if (fd >= 0)
2182 close(fd);
2183 return retval;
2184 }
2185 #endif /* MDASSEMBLE */
2186
2187 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2188 {
2189 struct intel_super *super = st->sb;
2190 struct migr_record *migr_rec = super->migr_rec;
2191 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2192 struct imsm_map *map = get_imsm_map(dev, 0);
2193 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2194 struct imsm_map *map_to_analyse = map;
2195 struct dl *dl;
2196 char *devname;
2197 unsigned int component_size_alligment;
2198 int map_disks = info->array.raid_disks;
2199
2200 memset(info, 0, sizeof(*info));
2201 if (prev_map)
2202 map_to_analyse = prev_map;
2203
2204 dl = super->current_disk;
2205
2206 info->container_member = super->current_vol;
2207 info->array.raid_disks = map->num_members;
2208 info->array.level = get_imsm_raid_level(map_to_analyse);
2209 info->array.layout = imsm_level_to_layout(info->array.level);
2210 info->array.md_minor = -1;
2211 info->array.ctime = 0;
2212 info->array.utime = 0;
2213 info->array.chunk_size =
2214 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2215 info->array.state = !dev->vol.dirty;
2216 info->custom_array_size = __le32_to_cpu(dev->size_high);
2217 info->custom_array_size <<= 32;
2218 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2219 if (prev_map && map->map_state == prev_map->map_state) {
2220 info->reshape_active = 1;
2221 info->new_level = get_imsm_raid_level(map);
2222 info->new_layout = imsm_level_to_layout(info->new_level);
2223 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2224 info->delta_disks = map->num_members - prev_map->num_members;
2225 if (info->delta_disks) {
2226 /* this needs to be applied to every array
2227 * in the container.
2228 */
2229 info->reshape_active = 2;
2230 }
2231 /* We shape information that we give to md might have to be
2232 * modify to cope with md's requirement for reshaping arrays.
2233 * For example, when reshaping a RAID0, md requires it to be
2234 * presented as a degraded RAID4.
2235 * Also if a RAID0 is migrating to a RAID5 we need to specify
2236 * the array as already being RAID5, but the 'before' layout
2237 * is a RAID4-like layout.
2238 */
2239 switch (info->array.level) {
2240 case 0:
2241 switch(info->new_level) {
2242 case 0:
2243 /* conversion is happening as RAID4 */
2244 info->array.level = 4;
2245 info->array.raid_disks += 1;
2246 break;
2247 case 5:
2248 /* conversion is happening as RAID5 */
2249 info->array.level = 5;
2250 info->array.layout = ALGORITHM_PARITY_N;
2251 info->delta_disks -= 1;
2252 break;
2253 default:
2254 /* FIXME error message */
2255 info->array.level = UnSet;
2256 break;
2257 }
2258 break;
2259 }
2260 } else {
2261 info->new_level = UnSet;
2262 info->new_layout = UnSet;
2263 info->new_chunk = info->array.chunk_size;
2264 info->delta_disks = 0;
2265 }
2266
2267 if (dl) {
2268 info->disk.major = dl->major;
2269 info->disk.minor = dl->minor;
2270 info->disk.number = dl->index;
2271 info->disk.raid_disk = dl->index;
2272 }
2273
2274 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2275 info->component_size =
2276 __le32_to_cpu(map_to_analyse->blocks_per_member);
2277
2278 /* check component size aligment
2279 */
2280 component_size_alligment =
2281 info->component_size % (info->array.chunk_size/512);
2282
2283 if (component_size_alligment &&
2284 (info->array.level != 1) && (info->array.level != UnSet)) {
2285 dprintf("imsm: reported component size alligned from %llu ",
2286 info->component_size);
2287 info->component_size -= component_size_alligment;
2288 dprintf("to %llu (%i).\n",
2289 info->component_size, component_size_alligment);
2290 }
2291
2292 memset(info->uuid, 0, sizeof(info->uuid));
2293 info->recovery_start = MaxSector;
2294
2295 info->reshape_progress = 0;
2296 info->resync_start = MaxSector;
2297 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2298 dev->vol.dirty) {
2299 info->resync_start = 0;
2300 }
2301 if (dev->vol.migr_state) {
2302 switch (migr_type(dev)) {
2303 case MIGR_REPAIR:
2304 case MIGR_INIT: {
2305 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2306 dev);
2307 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2308
2309 info->resync_start = blocks_per_unit * units;
2310 break;
2311 }
2312 case MIGR_GEN_MIGR: {
2313 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2314 dev);
2315 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2316 unsigned long long array_blocks;
2317 int used_disks;
2318
2319 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2320 (units <
2321 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2322 (super->migr_rec->rec_status ==
2323 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2324 units++;
2325
2326 info->reshape_progress = blocks_per_unit * units;
2327
2328 dprintf("IMSM: General Migration checkpoint : %llu "
2329 "(%llu) -> read reshape progress : %llu\n",
2330 (unsigned long long)units,
2331 (unsigned long long)blocks_per_unit,
2332 info->reshape_progress);
2333
2334 used_disks = imsm_num_data_members(dev, 1);
2335 if (used_disks > 0) {
2336 array_blocks = map->blocks_per_member *
2337 used_disks;
2338 /* round array size down to closest MB
2339 */
2340 info->custom_array_size = (array_blocks
2341 >> SECT_PER_MB_SHIFT)
2342 << SECT_PER_MB_SHIFT;
2343 }
2344 }
2345 case MIGR_VERIFY:
2346 /* we could emulate the checkpointing of
2347 * 'sync_action=check' migrations, but for now
2348 * we just immediately complete them
2349 */
2350 case MIGR_REBUILD:
2351 /* this is handled by container_content_imsm() */
2352 case MIGR_STATE_CHANGE:
2353 /* FIXME handle other migrations */
2354 default:
2355 /* we are not dirty, so... */
2356 info->resync_start = MaxSector;
2357 }
2358 }
2359
2360 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2361 info->name[MAX_RAID_SERIAL_LEN] = 0;
2362
2363 info->array.major_version = -1;
2364 info->array.minor_version = -2;
2365 devname = devnum2devname(st->container_dev);
2366 *info->text_version = '\0';
2367 if (devname)
2368 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2369 free(devname);
2370 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2371 uuid_from_super_imsm(st, info->uuid);
2372
2373 if (dmap) {
2374 int i, j;
2375 for (i=0; i<map_disks; i++) {
2376 dmap[i] = 0;
2377 if (i < info->array.raid_disks) {
2378 struct imsm_disk *dsk;
2379 j = get_imsm_disk_idx(dev, i, -1);
2380 dsk = get_imsm_disk(super, j);
2381 if (dsk && (dsk->status & CONFIGURED_DISK))
2382 dmap[i] = 1;
2383 }
2384 }
2385 }
2386 }
2387
2388 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
2389 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
2390
2391 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2392 {
2393 struct dl *d;
2394
2395 for (d = super->missing; d; d = d->next)
2396 if (d->index == index)
2397 return &d->disk;
2398 return NULL;
2399 }
2400
2401 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2402 {
2403 struct intel_super *super = st->sb;
2404 struct imsm_disk *disk;
2405 int map_disks = info->array.raid_disks;
2406 int max_enough = -1;
2407 int i;
2408 struct imsm_super *mpb;
2409
2410 if (super->current_vol >= 0) {
2411 getinfo_super_imsm_volume(st, info, map);
2412 return;
2413 }
2414 memset(info, 0, sizeof(*info));
2415
2416 /* Set raid_disks to zero so that Assemble will always pull in valid
2417 * spares
2418 */
2419 info->array.raid_disks = 0;
2420 info->array.level = LEVEL_CONTAINER;
2421 info->array.layout = 0;
2422 info->array.md_minor = -1;
2423 info->array.ctime = 0; /* N/A for imsm */
2424 info->array.utime = 0;
2425 info->array.chunk_size = 0;
2426
2427 info->disk.major = 0;
2428 info->disk.minor = 0;
2429 info->disk.raid_disk = -1;
2430 info->reshape_active = 0;
2431 info->array.major_version = -1;
2432 info->array.minor_version = -2;
2433 strcpy(info->text_version, "imsm");
2434 info->safe_mode_delay = 0;
2435 info->disk.number = -1;
2436 info->disk.state = 0;
2437 info->name[0] = 0;
2438 info->recovery_start = MaxSector;
2439
2440 /* do we have the all the insync disks that we expect? */
2441 mpb = super->anchor;
2442
2443 for (i = 0; i < mpb->num_raid_devs; i++) {
2444 struct imsm_dev *dev = get_imsm_dev(super, i);
2445 int failed, enough, j, missing = 0;
2446 struct imsm_map *map;
2447 __u8 state;
2448
2449 failed = imsm_count_failed(super, dev);
2450 state = imsm_check_degraded(super, dev, failed);
2451 map = get_imsm_map(dev, dev->vol.migr_state);
2452
2453 /* any newly missing disks?
2454 * (catches single-degraded vs double-degraded)
2455 */
2456 for (j = 0; j < map->num_members; j++) {
2457 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
2458 __u32 idx = ord_to_idx(ord);
2459
2460 if (!(ord & IMSM_ORD_REBUILD) &&
2461 get_imsm_missing(super, idx)) {
2462 missing = 1;
2463 break;
2464 }
2465 }
2466
2467 if (state == IMSM_T_STATE_FAILED)
2468 enough = -1;
2469 else if (state == IMSM_T_STATE_DEGRADED &&
2470 (state != map->map_state || missing))
2471 enough = 0;
2472 else /* we're normal, or already degraded */
2473 enough = 1;
2474
2475 /* in the missing/failed disk case check to see
2476 * if at least one array is runnable
2477 */
2478 max_enough = max(max_enough, enough);
2479 }
2480 dprintf("%s: enough: %d\n", __func__, max_enough);
2481 info->container_enough = max_enough;
2482
2483 if (super->disks) {
2484 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2485
2486 disk = &super->disks->disk;
2487 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2488 info->component_size = reserved;
2489 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2490 /* we don't change info->disk.raid_disk here because
2491 * this state will be finalized in mdmon after we have
2492 * found the 'most fresh' version of the metadata
2493 */
2494 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2495 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2496 }
2497
2498 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2499 * ->compare_super may have updated the 'num_raid_devs' field for spares
2500 */
2501 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2502 uuid_from_super_imsm(st, info->uuid);
2503 else
2504 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2505
2506 /* I don't know how to compute 'map' on imsm, so use safe default */
2507 if (map) {
2508 int i;
2509 for (i = 0; i < map_disks; i++)
2510 map[i] = 1;
2511 }
2512
2513 }
2514
2515 /* allocates memory and fills disk in mdinfo structure
2516 * for each disk in array */
2517 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2518 {
2519 struct mdinfo *mddev = NULL;
2520 struct intel_super *super = st->sb;
2521 struct imsm_disk *disk;
2522 int count = 0;
2523 struct dl *dl;
2524 if (!super || !super->disks)
2525 return NULL;
2526 dl = super->disks;
2527 mddev = malloc(sizeof(*mddev));
2528 if (!mddev) {
2529 fprintf(stderr, Name ": Failed to allocate memory.\n");
2530 return NULL;
2531 }
2532 memset(mddev, 0, sizeof(*mddev));
2533 while (dl) {
2534 struct mdinfo *tmp;
2535 disk = &dl->disk;
2536 tmp = malloc(sizeof(*tmp));
2537 if (!tmp) {
2538 fprintf(stderr, Name ": Failed to allocate memory.\n");
2539 if (mddev)
2540 sysfs_free(mddev);
2541 return NULL;
2542 }
2543 memset(tmp, 0, sizeof(*tmp));
2544 if (mddev->devs)
2545 tmp->next = mddev->devs;
2546 mddev->devs = tmp;
2547 tmp->disk.number = count++;
2548 tmp->disk.major = dl->major;
2549 tmp->disk.minor = dl->minor;
2550 tmp->disk.state = is_configured(disk) ?
2551 (1 << MD_DISK_ACTIVE) : 0;
2552 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2553 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2554 tmp->disk.raid_disk = -1;
2555 dl = dl->next;
2556 }
2557 return mddev;
2558 }
2559
2560 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2561 char *update, char *devname, int verbose,
2562 int uuid_set, char *homehost)
2563 {
2564 /* For 'assemble' and 'force' we need to return non-zero if any
2565 * change was made. For others, the return value is ignored.
2566 * Update options are:
2567 * force-one : This device looks a bit old but needs to be included,
2568 * update age info appropriately.
2569 * assemble: clear any 'faulty' flag to allow this device to
2570 * be assembled.
2571 * force-array: Array is degraded but being forced, mark it clean
2572 * if that will be needed to assemble it.
2573 *
2574 * newdev: not used ????
2575 * grow: Array has gained a new device - this is currently for
2576 * linear only
2577 * resync: mark as dirty so a resync will happen.
2578 * name: update the name - preserving the homehost
2579 * uuid: Change the uuid of the array to match watch is given
2580 *
2581 * Following are not relevant for this imsm:
2582 * sparc2.2 : update from old dodgey metadata
2583 * super-minor: change the preferred_minor number
2584 * summaries: update redundant counters.
2585 * homehost: update the recorded homehost
2586 * _reshape_progress: record new reshape_progress position.
2587 */
2588 int rv = 1;
2589 struct intel_super *super = st->sb;
2590 struct imsm_super *mpb;
2591
2592 /* we can only update container info */
2593 if (!super || super->current_vol >= 0 || !super->anchor)
2594 return 1;
2595
2596 mpb = super->anchor;
2597
2598 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2599 rv = -1;
2600 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2601 mpb->orig_family_num = *((__u32 *) info->update_private);
2602 rv = 0;
2603 } else if (strcmp(update, "uuid") == 0) {
2604 __u32 *new_family = malloc(sizeof(*new_family));
2605
2606 /* update orig_family_number with the incoming random
2607 * data, report the new effective uuid, and store the
2608 * new orig_family_num for future updates.
2609 */
2610 if (new_family) {
2611 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2612 uuid_from_super_imsm(st, info->uuid);
2613 *new_family = mpb->orig_family_num;
2614 info->update_private = new_family;
2615 rv = 0;
2616 }
2617 } else if (strcmp(update, "assemble") == 0)
2618 rv = 0;
2619 else
2620 rv = -1;
2621
2622 /* successful update? recompute checksum */
2623 if (rv == 0)
2624 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2625
2626 return rv;
2627 }
2628
2629 static size_t disks_to_mpb_size(int disks)
2630 {
2631 size_t size;
2632
2633 size = sizeof(struct imsm_super);
2634 size += (disks - 1) * sizeof(struct imsm_disk);
2635 size += 2 * sizeof(struct imsm_dev);
2636 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2637 size += (4 - 2) * sizeof(struct imsm_map);
2638 /* 4 possible disk_ord_tbl's */
2639 size += 4 * (disks - 1) * sizeof(__u32);
2640
2641 return size;
2642 }
2643
2644 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2645 {
2646 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2647 return 0;
2648
2649 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2650 }
2651
2652 static void free_devlist(struct intel_super *super)
2653 {
2654 struct intel_dev *dv;
2655
2656 while (super->devlist) {
2657 dv = super->devlist->next;
2658 free(super->devlist->dev);
2659 free(super->devlist);
2660 super->devlist = dv;
2661 }
2662 }
2663
2664 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2665 {
2666 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2667 }
2668
2669 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2670 {
2671 /*
2672 * return:
2673 * 0 same, or first was empty, and second was copied
2674 * 1 second had wrong number
2675 * 2 wrong uuid
2676 * 3 wrong other info
2677 */
2678 struct intel_super *first = st->sb;
2679 struct intel_super *sec = tst->sb;
2680
2681 if (!first) {
2682 st->sb = tst->sb;
2683 tst->sb = NULL;
2684 return 0;
2685 }
2686 /* in platform dependent environment test if the disks
2687 * use the same Intel hba
2688 */
2689 if (!check_env("IMSM_NO_PLATFORM")) {
2690 if (!first->hba || !sec->hba ||
2691 (first->hba->type != sec->hba->type)) {
2692 fprintf(stderr,
2693 "HBAs of devices does not match %s != %s\n",
2694 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2695 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2696 return 3;
2697 }
2698 }
2699
2700 /* if an anchor does not have num_raid_devs set then it is a free
2701 * floating spare
2702 */
2703 if (first->anchor->num_raid_devs > 0 &&
2704 sec->anchor->num_raid_devs > 0) {
2705 /* Determine if these disks might ever have been
2706 * related. Further disambiguation can only take place
2707 * in load_super_imsm_all
2708 */
2709 __u32 first_family = first->anchor->orig_family_num;
2710 __u32 sec_family = sec->anchor->orig_family_num;
2711
2712 if (memcmp(first->anchor->sig, sec->anchor->sig,
2713 MAX_SIGNATURE_LENGTH) != 0)
2714 return 3;
2715
2716 if (first_family == 0)
2717 first_family = first->anchor->family_num;
2718 if (sec_family == 0)
2719 sec_family = sec->anchor->family_num;
2720
2721 if (first_family != sec_family)
2722 return 3;
2723
2724 }
2725
2726
2727 /* if 'first' is a spare promote it to a populated mpb with sec's
2728 * family number
2729 */
2730 if (first->anchor->num_raid_devs == 0 &&
2731 sec->anchor->num_raid_devs > 0) {
2732 int i;
2733 struct intel_dev *dv;
2734 struct imsm_dev *dev;
2735
2736 /* we need to copy raid device info from sec if an allocation
2737 * fails here we don't associate the spare
2738 */
2739 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2740 dv = malloc(sizeof(*dv));
2741 if (!dv)
2742 break;
2743 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2744 if (!dev) {
2745 free(dv);
2746 break;
2747 }
2748 dv->dev = dev;
2749 dv->index = i;
2750 dv->next = first->devlist;
2751 first->devlist = dv;
2752 }
2753 if (i < sec->anchor->num_raid_devs) {
2754 /* allocation failure */
2755 free_devlist(first);
2756 fprintf(stderr, "imsm: failed to associate spare\n");
2757 return 3;
2758 }
2759 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2760 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2761 first->anchor->family_num = sec->anchor->family_num;
2762 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2763 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2764 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2765 }
2766
2767 return 0;
2768 }
2769
2770 static void fd2devname(int fd, char *name)
2771 {
2772 struct stat st;
2773 char path[256];
2774 char dname[PATH_MAX];
2775 char *nm;
2776 int rv;
2777
2778 name[0] = '\0';
2779 if (fstat(fd, &st) != 0)
2780 return;
2781 sprintf(path, "/sys/dev/block/%d:%d",
2782 major(st.st_rdev), minor(st.st_rdev));
2783
2784 rv = readlink(path, dname, sizeof(dname));
2785 if (rv <= 0)
2786 return;
2787
2788 dname[rv] = '\0';
2789 nm = strrchr(dname, '/');
2790 nm++;
2791 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2792 }
2793
2794 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2795
2796 static int imsm_read_serial(int fd, char *devname,
2797 __u8 serial[MAX_RAID_SERIAL_LEN])
2798 {
2799 unsigned char scsi_serial[255];
2800 int rv;
2801 int rsp_len;
2802 int len;
2803 char *dest;
2804 char *src;
2805 char *rsp_buf;
2806 int i;
2807
2808 memset(scsi_serial, 0, sizeof(scsi_serial));
2809
2810 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2811
2812 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2813 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2814 fd2devname(fd, (char *) serial);
2815 return 0;
2816 }
2817
2818 if (rv != 0) {
2819 if (devname)
2820 fprintf(stderr,
2821 Name ": Failed to retrieve serial for %s\n",
2822 devname);
2823 return rv;
2824 }
2825
2826 rsp_len = scsi_serial[3];
2827 if (!rsp_len) {
2828 if (devname)
2829 fprintf(stderr,
2830 Name ": Failed to retrieve serial for %s\n",
2831 devname);
2832 return 2;
2833 }
2834 rsp_buf = (char *) &scsi_serial[4];
2835
2836 /* trim all whitespace and non-printable characters and convert
2837 * ':' to ';'
2838 */
2839 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2840 src = &rsp_buf[i];
2841 if (*src > 0x20) {
2842 /* ':' is reserved for use in placeholder serial
2843 * numbers for missing disks
2844 */
2845 if (*src == ':')
2846 *dest++ = ';';
2847 else
2848 *dest++ = *src;
2849 }
2850 }
2851 len = dest - rsp_buf;
2852 dest = rsp_buf;
2853
2854 /* truncate leading characters */
2855 if (len > MAX_RAID_SERIAL_LEN) {
2856 dest += len - MAX_RAID_SERIAL_LEN;
2857 len = MAX_RAID_SERIAL_LEN;
2858 }
2859
2860 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2861 memcpy(serial, dest, len);
2862
2863 return 0;
2864 }
2865
2866 static int serialcmp(__u8 *s1, __u8 *s2)
2867 {
2868 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2869 }
2870
2871 static void serialcpy(__u8 *dest, __u8 *src)
2872 {
2873 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2874 }
2875
2876 #ifndef MDASSEMBLE
2877 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2878 {
2879 struct dl *dl;
2880
2881 for (dl = super->disks; dl; dl = dl->next)
2882 if (serialcmp(dl->serial, serial) == 0)
2883 break;
2884
2885 return dl;
2886 }
2887 #endif
2888
2889 static struct imsm_disk *
2890 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2891 {
2892 int i;
2893
2894 for (i = 0; i < mpb->num_disks; i++) {
2895 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2896
2897 if (serialcmp(disk->serial, serial) == 0) {
2898 if (idx)
2899 *idx = i;
2900 return disk;
2901 }
2902 }
2903
2904 return NULL;
2905 }
2906
2907 static int
2908 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2909 {
2910 struct imsm_disk *disk;
2911 struct dl *dl;
2912 struct stat stb;
2913 int rv;
2914 char name[40];
2915 __u8 serial[MAX_RAID_SERIAL_LEN];
2916
2917 rv = imsm_read_serial(fd, devname, serial);
2918
2919 if (rv != 0)
2920 return 2;
2921
2922 dl = calloc(1, sizeof(*dl));
2923 if (!dl) {
2924 if (devname)
2925 fprintf(stderr,
2926 Name ": failed to allocate disk buffer for %s\n",
2927 devname);
2928 return 2;
2929 }
2930
2931 fstat(fd, &stb);
2932 dl->major = major(stb.st_rdev);
2933 dl->minor = minor(stb.st_rdev);
2934 dl->next = super->disks;
2935 dl->fd = keep_fd ? fd : -1;
2936 assert(super->disks == NULL);
2937 super->disks = dl;
2938 serialcpy(dl->serial, serial);
2939 dl->index = -2;
2940 dl->e = NULL;
2941 fd2devname(fd, name);
2942 if (devname)
2943 dl->devname = strdup(devname);
2944 else
2945 dl->devname = strdup(name);
2946
2947 /* look up this disk's index in the current anchor */
2948 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2949 if (disk) {
2950 dl->disk = *disk;
2951 /* only set index on disks that are a member of a
2952 * populated contianer, i.e. one with raid_devs
2953 */
2954 if (is_failed(&dl->disk))
2955 dl->index = -2;
2956 else if (is_spare(&dl->disk))
2957 dl->index = -1;
2958 }
2959
2960 return 0;
2961 }
2962
2963 #ifndef MDASSEMBLE
2964 /* When migrating map0 contains the 'destination' state while map1
2965 * contains the current state. When not migrating map0 contains the
2966 * current state. This routine assumes that map[0].map_state is set to
2967 * the current array state before being called.
2968 *
2969 * Migration is indicated by one of the following states
2970 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2971 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2972 * map1state=unitialized)
2973 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2974 * map1state=normal)
2975 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2976 * map1state=degraded)
2977 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
2978 * map1state=normal)
2979 */
2980 static void migrate(struct imsm_dev *dev, struct intel_super *super,
2981 __u8 to_state, int migr_type)
2982 {
2983 struct imsm_map *dest;
2984 struct imsm_map *src = get_imsm_map(dev, 0);
2985
2986 dev->vol.migr_state = 1;
2987 set_migr_type(dev, migr_type);
2988 dev->vol.curr_migr_unit = 0;
2989 dest = get_imsm_map(dev, 1);
2990
2991 /* duplicate and then set the target end state in map[0] */
2992 memcpy(dest, src, sizeof_imsm_map(src));
2993 if ((migr_type == MIGR_REBUILD) ||
2994 (migr_type == MIGR_GEN_MIGR)) {
2995 __u32 ord;
2996 int i;
2997
2998 for (i = 0; i < src->num_members; i++) {
2999 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3000 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3001 }
3002 }
3003
3004 if (migr_type == MIGR_GEN_MIGR)
3005 /* Clear migration record */
3006 memset(super->migr_rec, 0, sizeof(struct migr_record));
3007
3008 src->map_state = to_state;
3009 }
3010
3011 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3012 {
3013 struct imsm_map *map = get_imsm_map(dev, 0);
3014 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3015 int i, j;
3016
3017 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3018 * completed in the last migration.
3019 *
3020 * FIXME add support for raid-level-migration
3021 */
3022 for (i = 0; i < prev->num_members; i++)
3023 for (j = 0; j < map->num_members; j++)
3024 /* during online capacity expansion
3025 * disks position can be changed if takeover is used
3026 */
3027 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3028 ord_to_idx(prev->disk_ord_tbl[i])) {
3029 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3030 break;
3031 }
3032
3033 dev->vol.migr_state = 0;
3034 dev->vol.migr_type = 0;
3035 dev->vol.curr_migr_unit = 0;
3036 map->map_state = map_state;
3037 }
3038 #endif
3039
3040 static int parse_raid_devices(struct intel_super *super)
3041 {
3042 int i;
3043 struct imsm_dev *dev_new;
3044 size_t len, len_migr;
3045 size_t max_len = 0;
3046 size_t space_needed = 0;
3047 struct imsm_super *mpb = super->anchor;
3048
3049 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3050 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3051 struct intel_dev *dv;
3052
3053 len = sizeof_imsm_dev(dev_iter, 0);
3054 len_migr = sizeof_imsm_dev(dev_iter, 1);
3055 if (len_migr > len)
3056 space_needed += len_migr - len;
3057
3058 dv = malloc(sizeof(*dv));
3059 if (!dv)
3060 return 1;
3061 if (max_len < len_migr)
3062 max_len = len_migr;
3063 if (max_len > len_migr)
3064 space_needed += max_len - len_migr;
3065 dev_new = malloc(max_len);
3066 if (!dev_new) {
3067 free(dv);
3068 return 1;
3069 }
3070 imsm_copy_dev(dev_new, dev_iter);
3071 dv->dev = dev_new;
3072 dv->index = i;
3073 dv->next = super->devlist;
3074 super->devlist = dv;
3075 }
3076
3077 /* ensure that super->buf is large enough when all raid devices
3078 * are migrating
3079 */
3080 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3081 void *buf;
3082
3083 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3084 if (posix_memalign(&buf, 512, len) != 0)
3085 return 1;
3086
3087 memcpy(buf, super->buf, super->len);
3088 memset(buf + super->len, 0, len - super->len);
3089 free(super->buf);
3090 super->buf = buf;
3091 super->len = len;
3092 }
3093
3094 return 0;
3095 }
3096
3097 /* retrieve a pointer to the bbm log which starts after all raid devices */
3098 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3099 {
3100 void *ptr = NULL;
3101
3102 if (__le32_to_cpu(mpb->bbm_log_size)) {
3103 ptr = mpb;
3104 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3105 }
3106
3107 return ptr;
3108 }
3109
3110 /*******************************************************************************
3111 * Function: check_mpb_migr_compatibility
3112 * Description: Function checks for unsupported migration features:
3113 * - migration optimization area (pba_of_lba0)
3114 * - descending reshape (ascending_migr)
3115 * Parameters:
3116 * super : imsm metadata information
3117 * Returns:
3118 * 0 : migration is compatible
3119 * -1 : migration is not compatible
3120 ******************************************************************************/
3121 int check_mpb_migr_compatibility(struct intel_super *super)
3122 {
3123 struct imsm_map *map0, *map1;
3124 struct migr_record *migr_rec = super->migr_rec;
3125 int i;
3126
3127 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3128 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3129
3130 if (dev_iter &&
3131 dev_iter->vol.migr_state == 1 &&
3132 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3133 /* This device is migrating */
3134 map0 = get_imsm_map(dev_iter, 0);
3135 map1 = get_imsm_map(dev_iter, 1);
3136 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3137 /* migration optimization area was used */
3138 return -1;
3139 if (migr_rec->ascending_migr == 0
3140 && migr_rec->dest_depth_per_unit > 0)
3141 /* descending reshape not supported yet */
3142 return -1;
3143 }
3144 }
3145 return 0;
3146 }
3147
3148 static void __free_imsm(struct intel_super *super, int free_disks);
3149
3150 /* load_imsm_mpb - read matrix metadata
3151 * allocates super->mpb to be freed by free_imsm
3152 */
3153 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3154 {
3155 unsigned long long dsize;
3156 unsigned long long sectors;
3157 struct stat;
3158 struct imsm_super *anchor;
3159 __u32 check_sum;
3160
3161 get_dev_size(fd, NULL, &dsize);
3162 if (dsize < 1024) {
3163 if (devname)
3164 fprintf(stderr,
3165 Name ": %s: device to small for imsm\n",
3166 devname);
3167 return 1;
3168 }
3169
3170 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3171 if (devname)
3172 fprintf(stderr, Name
3173 ": Cannot seek to anchor block on %s: %s\n",
3174 devname, strerror(errno));
3175 return 1;
3176 }
3177
3178 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3179 if (devname)
3180 fprintf(stderr,
3181 Name ": Failed to allocate imsm anchor buffer"
3182 " on %s\n", devname);
3183 return 1;
3184 }
3185 if (read(fd, anchor, 512) != 512) {
3186 if (devname)
3187 fprintf(stderr,
3188 Name ": Cannot read anchor block on %s: %s\n",
3189 devname, strerror(errno));
3190 free(anchor);
3191 return 1;
3192 }
3193
3194 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3195 if (devname)
3196 fprintf(stderr,
3197 Name ": no IMSM anchor on %s\n", devname);
3198 free(anchor);
3199 return 2;
3200 }
3201
3202 __free_imsm(super, 0);
3203 /* reload capability and hba */
3204
3205 /* capability and hba must be updated with new super allocation */
3206 find_intel_hba_capability(fd, super, devname);
3207 super->len = ROUND_UP(anchor->mpb_size, 512);
3208 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3209 if (devname)
3210 fprintf(stderr,
3211 Name ": unable to allocate %zu byte mpb buffer\n",
3212 super->len);
3213 free(anchor);
3214 return 2;
3215 }
3216 memcpy(super->buf, anchor, 512);
3217
3218 sectors = mpb_sectors(anchor) - 1;
3219 free(anchor);
3220
3221 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3222 fprintf(stderr, Name
3223 ": %s could not allocate migr_rec buffer\n", __func__);
3224 free(super->buf);
3225 return 2;
3226 }
3227
3228 if (!sectors) {
3229 check_sum = __gen_imsm_checksum(super->anchor);
3230 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3231 if (devname)
3232 fprintf(stderr,
3233 Name ": IMSM checksum %x != %x on %s\n",
3234 check_sum,
3235 __le32_to_cpu(super->anchor->check_sum),
3236 devname);
3237 return 2;
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* read the extended mpb */
3244 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3245 if (devname)
3246 fprintf(stderr,
3247 Name ": Cannot seek to extended mpb on %s: %s\n",
3248 devname, strerror(errno));
3249 return 1;
3250 }
3251
3252 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3253 if (devname)
3254 fprintf(stderr,
3255 Name ": Cannot read extended mpb on %s: %s\n",
3256 devname, strerror(errno));
3257 return 2;
3258 }
3259
3260 check_sum = __gen_imsm_checksum(super->anchor);
3261 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3262 if (devname)
3263 fprintf(stderr,
3264 Name ": IMSM checksum %x != %x on %s\n",
3265 check_sum, __le32_to_cpu(super->anchor->check_sum),
3266 devname);
3267 return 3;
3268 }
3269
3270 /* FIXME the BBM log is disk specific so we cannot use this global
3271 * buffer for all disks. Ok for now since we only look at the global
3272 * bbm_log_size parameter to gate assembly
3273 */
3274 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3275
3276 return 0;
3277 }
3278
3279 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3280
3281 static int
3282 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3283 {
3284 int err;
3285
3286 err = load_imsm_mpb(fd, super, devname);
3287 if (err)
3288 return err;
3289 err = load_imsm_disk(fd, super, devname, keep_fd);
3290 if (err)
3291 return err;
3292 err = parse_raid_devices(super);
3293
3294 return err;
3295 }
3296
3297 static void __free_imsm_disk(struct dl *d)
3298 {
3299 if (d->fd >= 0)
3300 close(d->fd);
3301 if (d->devname)
3302 free(d->devname);
3303 if (d->e)
3304 free(d->e);
3305 free(d);
3306
3307 }
3308
3309 static void free_imsm_disks(struct intel_super *super)
3310 {
3311 struct dl *d;
3312
3313 while (super->disks) {
3314 d = super->disks;
3315 super->disks = d->next;
3316 __free_imsm_disk(d);
3317 }
3318 while (super->disk_mgmt_list) {
3319 d = super->disk_mgmt_list;
3320 super->disk_mgmt_list = d->next;
3321 __free_imsm_disk(d);
3322 }
3323 while (super->missing) {
3324 d = super->missing;
3325 super->missing = d->next;
3326 __free_imsm_disk(d);
3327 }
3328
3329 }
3330
3331 /* free all the pieces hanging off of a super pointer */
3332 static void __free_imsm(struct intel_super *super, int free_disks)
3333 {
3334 struct intel_hba *elem, *next;
3335
3336 if (super->buf) {
3337 free(super->buf);
3338 super->buf = NULL;
3339 }
3340 /* unlink capability description */
3341 super->orom = NULL;
3342 if (super->migr_rec_buf) {
3343 free(super->migr_rec_buf);
3344 super->migr_rec_buf = NULL;
3345 }
3346 if (free_disks)
3347 free_imsm_disks(super);
3348 free_devlist(super);
3349 elem = super->hba;
3350 while (elem) {
3351 if (elem->path)
3352 free((void *)elem->path);
3353 next = elem->next;
3354 free(elem);
3355 elem = next;
3356 }
3357 super->hba = NULL;
3358 }
3359
3360 static void free_imsm(struct intel_super *super)
3361 {
3362 __free_imsm(super, 1);
3363 free(super);
3364 }
3365
3366 static void free_super_imsm(struct supertype *st)
3367 {
3368 struct intel_super *super = st->sb;
3369
3370 if (!super)
3371 return;
3372
3373 free_imsm(super);
3374 st->sb = NULL;
3375 }
3376
3377 static struct intel_super *alloc_super(void)
3378 {
3379 struct intel_super *super = malloc(sizeof(*super));
3380
3381 if (super) {
3382 memset(super, 0, sizeof(*super));
3383 super->current_vol = -1;
3384 super->create_offset = ~((__u32 ) 0);
3385 }
3386 return super;
3387 }
3388
3389 /*
3390 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3391 */
3392 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3393 {
3394 struct sys_dev *hba_name;
3395 int rv = 0;
3396
3397 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3398 super->orom = NULL;
3399 super->hba = NULL;
3400 return 0;
3401 }
3402 hba_name = find_disk_attached_hba(fd, NULL);
3403 if (!hba_name) {
3404 if (devname)
3405 fprintf(stderr,
3406 Name ": %s is not attached to Intel(R) RAID controller.\n",
3407 devname);
3408 return 1;
3409 }
3410 rv = attach_hba_to_super(super, hba_name);
3411 if (rv == 2) {
3412 if (devname) {
3413 struct intel_hba *hba = super->hba;
3414
3415 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3416 "controller (%s),\n"
3417 " but the container is assigned to Intel(R) "
3418 "%s RAID controller (",
3419 devname,
3420 hba_name->path,
3421 hba_name->pci_id ? : "Err!",
3422 get_sys_dev_type(hba_name->type));
3423
3424 while (hba) {
3425 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3426 if (hba->next)
3427 fprintf(stderr, ", ");
3428 hba = hba->next;
3429 }
3430
3431 fprintf(stderr, ").\n"
3432 " Mixing devices attached to different controllers "
3433 "is not allowed.\n");
3434 }
3435 free_sys_dev(&hba_name);
3436 return 2;
3437 }
3438 super->orom = find_imsm_capability(hba_name->type);
3439 free_sys_dev(&hba_name);
3440 if (!super->orom)
3441 return 3;
3442 return 0;
3443 }
3444
3445 #ifndef MDASSEMBLE
3446 /* find_missing - helper routine for load_super_imsm_all that identifies
3447 * disks that have disappeared from the system. This routine relies on
3448 * the mpb being uptodate, which it is at load time.
3449 */
3450 static int find_missing(struct intel_super *super)
3451 {
3452 int i;
3453 struct imsm_super *mpb = super->anchor;
3454 struct dl *dl;
3455 struct imsm_disk *disk;
3456
3457 for (i = 0; i < mpb->num_disks; i++) {
3458 disk = __get_imsm_disk(mpb, i);
3459 dl = serial_to_dl(disk->serial, super);
3460 if (dl)
3461 continue;
3462
3463 dl = malloc(sizeof(*dl));
3464 if (!dl)
3465 return 1;
3466 dl->major = 0;
3467 dl->minor = 0;
3468 dl->fd = -1;
3469 dl->devname = strdup("missing");
3470 dl->index = i;
3471 serialcpy(dl->serial, disk->serial);
3472 dl->disk = *disk;
3473 dl->e = NULL;
3474 dl->next = super->missing;
3475 super->missing = dl;
3476 }
3477
3478 return 0;
3479 }
3480
3481 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3482 {
3483 struct intel_disk *idisk = disk_list;
3484
3485 while (idisk) {
3486 if (serialcmp(idisk->disk.serial, serial) == 0)
3487 break;
3488 idisk = idisk->next;
3489 }
3490
3491 return idisk;
3492 }
3493
3494 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3495 struct intel_super *super,
3496 struct intel_disk **disk_list)
3497 {
3498 struct imsm_disk *d = &super->disks->disk;
3499 struct imsm_super *mpb = super->anchor;
3500 int i, j;
3501
3502 for (i = 0; i < tbl_size; i++) {
3503 struct imsm_super *tbl_mpb = table[i]->anchor;
3504 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3505
3506 if (tbl_mpb->family_num == mpb->family_num) {
3507 if (tbl_mpb->check_sum == mpb->check_sum) {
3508 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3509 __func__, super->disks->major,
3510 super->disks->minor,
3511 table[i]->disks->major,
3512 table[i]->disks->minor);
3513 break;
3514 }
3515
3516 if (((is_configured(d) && !is_configured(tbl_d)) ||
3517 is_configured(d) == is_configured(tbl_d)) &&
3518 tbl_mpb->generation_num < mpb->generation_num) {
3519 /* current version of the mpb is a
3520 * better candidate than the one in
3521 * super_table, but copy over "cross
3522 * generational" status
3523 */
3524 struct intel_disk *idisk;
3525
3526 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3527 __func__, super->disks->major,
3528 super->disks->minor,
3529 table[i]->disks->major,
3530 table[i]->disks->minor);
3531
3532 idisk = disk_list_get(tbl_d->serial, *disk_list);
3533 if (idisk && is_failed(&idisk->disk))
3534 tbl_d->status |= FAILED_DISK;
3535 break;
3536 } else {
3537 struct intel_disk *idisk;
3538 struct imsm_disk *disk;
3539
3540 /* tbl_mpb is more up to date, but copy
3541 * over cross generational status before
3542 * returning
3543 */
3544 disk = __serial_to_disk(d->serial, mpb, NULL);
3545 if (disk && is_failed(disk))
3546 d->status |= FAILED_DISK;
3547
3548 idisk = disk_list_get(d->serial, *disk_list);
3549 if (idisk) {
3550 idisk->owner = i;
3551 if (disk && is_configured(disk))
3552 idisk->disk.status |= CONFIGURED_DISK;
3553 }
3554
3555 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3556 __func__, super->disks->major,
3557 super->disks->minor,
3558 table[i]->disks->major,
3559 table[i]->disks->minor);
3560
3561 return tbl_size;
3562 }
3563 }
3564 }
3565
3566 if (i >= tbl_size)
3567 table[tbl_size++] = super;
3568 else
3569 table[i] = super;
3570
3571 /* update/extend the merged list of imsm_disk records */
3572 for (j = 0; j < mpb->num_disks; j++) {
3573 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3574 struct intel_disk *idisk;
3575
3576 idisk = disk_list_get(disk->serial, *disk_list);
3577 if (idisk) {
3578 idisk->disk.status |= disk->status;
3579 if (is_configured(&idisk->disk) ||
3580 is_failed(&idisk->disk))
3581 idisk->disk.status &= ~(SPARE_DISK);
3582 } else {
3583 idisk = calloc(1, sizeof(*idisk));
3584 if (!idisk)
3585 return -1;
3586 idisk->owner = IMSM_UNKNOWN_OWNER;
3587 idisk->disk = *disk;
3588 idisk->next = *disk_list;
3589 *disk_list = idisk;
3590 }
3591
3592 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3593 idisk->owner = i;
3594 }
3595
3596 return tbl_size;
3597 }
3598
3599 static struct intel_super *
3600 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3601 const int owner)
3602 {
3603 struct imsm_super *mpb = super->anchor;
3604 int ok_count = 0;
3605 int i;
3606
3607 for (i = 0; i < mpb->num_disks; i++) {
3608 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3609 struct intel_disk *idisk;
3610
3611 idisk = disk_list_get(disk->serial, disk_list);
3612 if (idisk) {
3613 if (idisk->owner == owner ||
3614 idisk->owner == IMSM_UNKNOWN_OWNER)
3615 ok_count++;
3616 else
3617 dprintf("%s: '%.16s' owner %d != %d\n",
3618 __func__, disk->serial, idisk->owner,
3619 owner);
3620 } else {
3621 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3622 __func__, __le32_to_cpu(mpb->family_num), i,
3623 disk->serial);
3624 break;
3625 }
3626 }
3627
3628 if (ok_count == mpb->num_disks)
3629 return super;
3630 return NULL;
3631 }
3632
3633 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3634 {
3635 struct intel_super *s;
3636
3637 for (s = super_list; s; s = s->next) {
3638 if (family_num != s->anchor->family_num)
3639 continue;
3640 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3641 __le32_to_cpu(family_num), s->disks->devname);
3642 }
3643 }
3644
3645 static struct intel_super *
3646 imsm_thunderdome(struct intel_super **super_list, int len)
3647 {
3648 struct intel_super *super_table[len];
3649 struct intel_disk *disk_list = NULL;
3650 struct intel_super *champion, *spare;
3651 struct intel_super *s, **del;
3652 int tbl_size = 0;
3653 int conflict;
3654 int i;
3655
3656 memset(super_table, 0, sizeof(super_table));
3657 for (s = *super_list; s; s = s->next)
3658 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3659
3660 for (i = 0; i < tbl_size; i++) {
3661 struct imsm_disk *d;
3662 struct intel_disk *idisk;
3663 struct imsm_super *mpb = super_table[i]->anchor;
3664
3665 s = super_table[i];
3666 d = &s->disks->disk;
3667
3668 /* 'd' must appear in merged disk list for its
3669 * configuration to be valid
3670 */
3671 idisk = disk_list_get(d->serial, disk_list);
3672 if (idisk && idisk->owner == i)
3673 s = validate_members(s, disk_list, i);
3674 else
3675 s = NULL;
3676
3677 if (!s)
3678 dprintf("%s: marking family: %#x from %d:%d offline\n",
3679 __func__, mpb->family_num,
3680 super_table[i]->disks->major,
3681 super_table[i]->disks->minor);
3682 super_table[i] = s;
3683 }
3684
3685 /* This is where the mdadm implementation differs from the Windows
3686 * driver which has no strict concept of a container. We can only
3687 * assemble one family from a container, so when returning a prodigal
3688 * array member to this system the code will not be able to disambiguate
3689 * the container contents that should be assembled ("foreign" versus
3690 * "local"). It requires user intervention to set the orig_family_num
3691 * to a new value to establish a new container. The Windows driver in
3692 * this situation fixes up the volume name in place and manages the
3693 * foreign array as an independent entity.
3694 */
3695 s = NULL;
3696 spare = NULL;
3697 conflict = 0;
3698 for (i = 0; i < tbl_size; i++) {
3699 struct intel_super *tbl_ent = super_table[i];
3700 int is_spare = 0;
3701
3702 if (!tbl_ent)
3703 continue;
3704
3705 if (tbl_ent->anchor->num_raid_devs == 0) {
3706 spare = tbl_ent;
3707 is_spare = 1;
3708 }
3709
3710 if (s && !is_spare) {
3711 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3712 conflict++;
3713 } else if (!s && !is_spare)
3714 s = tbl_ent;
3715 }
3716
3717 if (!s)
3718 s = spare;
3719 if (!s) {
3720 champion = NULL;
3721 goto out;
3722 }
3723 champion = s;
3724
3725 if (conflict)
3726 fprintf(stderr, "Chose family %#x on '%s', "
3727 "assemble conflicts to new container with '--update=uuid'\n",
3728 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3729
3730 /* collect all dl's onto 'champion', and update them to
3731 * champion's version of the status
3732 */
3733 for (s = *super_list; s; s = s->next) {
3734 struct imsm_super *mpb = champion->anchor;
3735 struct dl *dl = s->disks;
3736
3737 if (s == champion)
3738 continue;
3739
3740 for (i = 0; i < mpb->num_disks; i++) {
3741 struct imsm_disk *disk;
3742
3743 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3744 if (disk) {
3745 dl->disk = *disk;
3746 /* only set index on disks that are a member of
3747 * a populated contianer, i.e. one with
3748 * raid_devs
3749 */
3750 if (is_failed(&dl->disk))
3751 dl->index = -2;
3752 else if (is_spare(&dl->disk))
3753 dl->index = -1;
3754 break;
3755 }
3756 }
3757
3758 if (i >= mpb->num_disks) {
3759 struct intel_disk *idisk;
3760
3761 idisk = disk_list_get(dl->serial, disk_list);
3762 if (idisk && is_spare(&idisk->disk) &&
3763 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3764 dl->index = -1;
3765 else {
3766 dl->index = -2;
3767 continue;
3768 }
3769 }
3770
3771 dl->next = champion->disks;
3772 champion->disks = dl;
3773 s->disks = NULL;
3774 }
3775
3776 /* delete 'champion' from super_list */
3777 for (del = super_list; *del; ) {
3778 if (*del == champion) {
3779 *del = (*del)->next;
3780 break;
3781 } else
3782 del = &(*del)->next;
3783 }
3784 champion->next = NULL;
3785
3786 out:
3787 while (disk_list) {
3788 struct intel_disk *idisk = disk_list;
3789
3790 disk_list = disk_list->next;
3791 free(idisk);
3792 }
3793
3794 return champion;
3795 }
3796
3797 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3798 char *devname)
3799 {
3800 struct mdinfo *sra;
3801 struct intel_super *super_list = NULL;
3802 struct intel_super *super = NULL;
3803 int devnum = fd2devnum(fd);
3804 struct mdinfo *sd;
3805 int retry;
3806 int err = 0;
3807 int i;
3808
3809 /* check if 'fd' an opened container */
3810 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3811 if (!sra)
3812 return 1;
3813
3814 if (sra->array.major_version != -1 ||
3815 sra->array.minor_version != -2 ||
3816 strcmp(sra->text_version, "imsm") != 0) {
3817 err = 1;
3818 goto error;
3819 }
3820 /* load all mpbs */
3821 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3822 struct intel_super *s = alloc_super();
3823 char nm[32];
3824 int dfd;
3825 int rv;
3826
3827 err = 1;
3828 if (!s)
3829 goto error;
3830 s->next = super_list;
3831 super_list = s;
3832
3833 err = 2;
3834 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3835 dfd = dev_open(nm, O_RDWR);
3836 if (dfd < 0)
3837 goto error;
3838
3839 rv = find_intel_hba_capability(dfd, s, devname);
3840 /* no orom/efi or non-intel hba of the disk */
3841 if (rv != 0)
3842 goto error;
3843
3844 err = load_and_parse_mpb(dfd, s, NULL, 1);
3845
3846 /* retry the load if we might have raced against mdmon */
3847 if (err == 3 && mdmon_running(devnum))
3848 for (retry = 0; retry < 3; retry++) {
3849 usleep(3000);
3850 err = load_and_parse_mpb(dfd, s, NULL, 1);
3851 if (err != 3)
3852 break;
3853 }
3854 if (err)
3855 goto error;
3856 }
3857
3858 /* all mpbs enter, maybe one leaves */
3859 super = imsm_thunderdome(&super_list, i);
3860 if (!super) {
3861 err = 1;
3862 goto error;
3863 }
3864
3865 if (find_missing(super) != 0) {
3866 free_imsm(super);
3867 err = 2;
3868 goto error;
3869 }
3870
3871 /* load migration record */
3872 err = load_imsm_migr_rec(super, NULL);
3873 if (err) {
3874 err = 4;
3875 goto error;
3876 }
3877
3878 /* Check migration compatibility */
3879 if (check_mpb_migr_compatibility(super) != 0) {
3880 fprintf(stderr, Name ": Unsupported migration detected");
3881 if (devname)
3882 fprintf(stderr, " on %s\n", devname);
3883 else
3884 fprintf(stderr, " (IMSM).\n");
3885
3886 err = 5;
3887 goto error;
3888 }
3889
3890 err = 0;
3891
3892 error:
3893 while (super_list) {
3894 struct intel_super *s = super_list;
3895
3896 super_list = super_list->next;
3897 free_imsm(s);
3898 }
3899 sysfs_free(sra);
3900
3901 if (err)
3902 return err;
3903
3904 *sbp = super;
3905 st->container_dev = devnum;
3906 if (err == 0 && st->ss == NULL) {
3907 st->ss = &super_imsm;
3908 st->minor_version = 0;
3909 st->max_devs = IMSM_MAX_DEVICES;
3910 }
3911 return 0;
3912 }
3913
3914 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3915 {
3916 return load_super_imsm_all(st, fd, &st->sb, devname);
3917 }
3918 #endif
3919
3920 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3921 {
3922 struct intel_super *super;
3923 int rv;
3924
3925 if (test_partition(fd))
3926 /* IMSM not allowed on partitions */
3927 return 1;
3928
3929 free_super_imsm(st);
3930
3931 super = alloc_super();
3932 if (!super) {
3933 fprintf(stderr,
3934 Name ": malloc of %zu failed.\n",
3935 sizeof(*super));
3936 return 1;
3937 }
3938 /* Load hba and capabilities if they exist.
3939 * But do not preclude loading metadata in case capabilities or hba are
3940 * non-compliant and ignore_hw_compat is set.
3941 */
3942 rv = find_intel_hba_capability(fd, super, devname);
3943 /* no orom/efi or non-intel hba of the disk */
3944 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
3945 if (devname)
3946 fprintf(stderr,
3947 Name ": No OROM/EFI properties for %s\n", devname);
3948 free_imsm(super);
3949 return 2;
3950 }
3951 rv = load_and_parse_mpb(fd, super, devname, 0);
3952
3953 if (rv) {
3954 if (devname)
3955 fprintf(stderr,
3956 Name ": Failed to load all information "
3957 "sections on %s\n", devname);
3958 free_imsm(super);
3959 return rv;
3960 }
3961
3962 st->sb = super;
3963 if (st->ss == NULL) {
3964 st->ss = &super_imsm;
3965 st->minor_version = 0;
3966 st->max_devs = IMSM_MAX_DEVICES;
3967 }
3968
3969 /* load migration record */
3970 if (load_imsm_migr_rec(super, NULL) == 0) {
3971 /* Check for unsupported migration features */
3972 if (check_mpb_migr_compatibility(super) != 0) {
3973 fprintf(stderr,
3974 Name ": Unsupported migration detected");
3975 if (devname)
3976 fprintf(stderr, " on %s\n", devname);
3977 else
3978 fprintf(stderr, " (IMSM).\n");
3979 return 3;
3980 }
3981 }
3982
3983 return 0;
3984 }
3985
3986 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3987 {
3988 if (info->level == 1)
3989 return 128;
3990 return info->chunk_size >> 9;
3991 }
3992
3993 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3994 {
3995 __u32 num_stripes;
3996
3997 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3998 num_stripes /= num_domains;
3999
4000 return num_stripes;
4001 }
4002
4003 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4004 {
4005 if (info->level == 1)
4006 return info->size * 2;
4007 else
4008 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4009 }
4010
4011 static void imsm_update_version_info(struct intel_super *super)
4012 {
4013 /* update the version and attributes */
4014 struct imsm_super *mpb = super->anchor;
4015 char *version;
4016 struct imsm_dev *dev;
4017 struct imsm_map *map;
4018 int i;
4019
4020 for (i = 0; i < mpb->num_raid_devs; i++) {
4021 dev = get_imsm_dev(super, i);
4022 map = get_imsm_map(dev, 0);
4023 if (__le32_to_cpu(dev->size_high) > 0)
4024 mpb->attributes |= MPB_ATTRIB_2TB;
4025
4026 /* FIXME detect when an array spans a port multiplier */
4027 #if 0
4028 mpb->attributes |= MPB_ATTRIB_PM;
4029 #endif
4030
4031 if (mpb->num_raid_devs > 1 ||
4032 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4033 version = MPB_VERSION_ATTRIBS;
4034 switch (get_imsm_raid_level(map)) {
4035 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4036 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4037 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4038 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4039 }
4040 } else {
4041 if (map->num_members >= 5)
4042 version = MPB_VERSION_5OR6_DISK_ARRAY;
4043 else if (dev->status == DEV_CLONE_N_GO)
4044 version = MPB_VERSION_CNG;
4045 else if (get_imsm_raid_level(map) == 5)
4046 version = MPB_VERSION_RAID5;
4047 else if (map->num_members >= 3)
4048 version = MPB_VERSION_3OR4_DISK_ARRAY;
4049 else if (get_imsm_raid_level(map) == 1)
4050 version = MPB_VERSION_RAID1;
4051 else
4052 version = MPB_VERSION_RAID0;
4053 }
4054 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4055 }
4056 }
4057
4058 static int check_name(struct intel_super *super, char *name, int quiet)
4059 {
4060 struct imsm_super *mpb = super->anchor;
4061 char *reason = NULL;
4062 int i;
4063
4064 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4065 reason = "must be 16 characters or less";
4066
4067 for (i = 0; i < mpb->num_raid_devs; i++) {
4068 struct imsm_dev *dev = get_imsm_dev(super, i);
4069
4070 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4071 reason = "already exists";
4072 break;
4073 }
4074 }
4075
4076 if (reason && !quiet)
4077 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4078
4079 return !reason;
4080 }
4081
4082 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4083 unsigned long long size, char *name,
4084 char *homehost, int *uuid)
4085 {
4086 /* We are creating a volume inside a pre-existing container.
4087 * so st->sb is already set.
4088 */
4089 struct intel_super *super = st->sb;
4090 struct imsm_super *mpb = super->anchor;
4091 struct intel_dev *dv;
4092 struct imsm_dev *dev;
4093 struct imsm_vol *vol;
4094 struct imsm_map *map;
4095 int idx = mpb->num_raid_devs;
4096 int i;
4097 unsigned long long array_blocks;
4098 size_t size_old, size_new;
4099 __u32 num_data_stripes;
4100
4101 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4102 fprintf(stderr, Name": This imsm-container already has the "
4103 "maximum of %d volumes\n", super->orom->vpa);
4104 return 0;
4105 }
4106
4107 /* ensure the mpb is large enough for the new data */
4108 size_old = __le32_to_cpu(mpb->mpb_size);
4109 size_new = disks_to_mpb_size(info->nr_disks);
4110 if (size_new > size_old) {
4111 void *mpb_new;
4112 size_t size_round = ROUND_UP(size_new, 512);
4113
4114 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4115 fprintf(stderr, Name": could not allocate new mpb\n");
4116 return 0;
4117 }
4118 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4119 fprintf(stderr, Name
4120 ": %s could not allocate migr_rec buffer\n",
4121 __func__);
4122 free(super->buf);
4123 free(super);
4124 return 0;
4125 }
4126 memcpy(mpb_new, mpb, size_old);
4127 free(mpb);
4128 mpb = mpb_new;
4129 super->anchor = mpb_new;
4130 mpb->mpb_size = __cpu_to_le32(size_new);
4131 memset(mpb_new + size_old, 0, size_round - size_old);
4132 }
4133 super->current_vol = idx;
4134 /* when creating the first raid device in this container set num_disks
4135 * to zero, i.e. delete this spare and add raid member devices in
4136 * add_to_super_imsm_volume()
4137 */
4138 if (super->current_vol == 0)
4139 mpb->num_disks = 0;
4140
4141 if (!check_name(super, name, 0))
4142 return 0;
4143 dv = malloc(sizeof(*dv));
4144 if (!dv) {
4145 fprintf(stderr, Name ": failed to allocate device list entry\n");
4146 return 0;
4147 }
4148 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4149 if (!dev) {
4150 free(dv);
4151 fprintf(stderr, Name": could not allocate raid device\n");
4152 return 0;
4153 }
4154
4155 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4156 if (info->level == 1)
4157 array_blocks = info_to_blocks_per_member(info);
4158 else
4159 array_blocks = calc_array_size(info->level, info->raid_disks,
4160 info->layout, info->chunk_size,
4161 info->size*2);
4162 /* round array size down to closest MB */
4163 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4164
4165 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4166 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4167 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4168 vol = &dev->vol;
4169 vol->migr_state = 0;
4170 set_migr_type(dev, MIGR_INIT);
4171 vol->dirty = 0;
4172 vol->curr_migr_unit = 0;
4173 map = get_imsm_map(dev, 0);
4174 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4175 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4176 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4177 map->failed_disk_num = ~0;
4178 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
4179 IMSM_T_STATE_NORMAL;
4180 map->ddf = 1;
4181
4182 if (info->level == 1 && info->raid_disks > 2) {
4183 free(dev);
4184 free(dv);
4185 fprintf(stderr, Name": imsm does not support more than 2 disks"
4186 "in a raid1 volume\n");
4187 return 0;
4188 }
4189
4190 map->raid_level = info->level;
4191 if (info->level == 10) {
4192 map->raid_level = 1;
4193 map->num_domains = info->raid_disks / 2;
4194 } else if (info->level == 1)
4195 map->num_domains = info->raid_disks;
4196 else
4197 map->num_domains = 1;
4198
4199 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4200 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4201
4202 map->num_members = info->raid_disks;
4203 for (i = 0; i < map->num_members; i++) {
4204 /* initialized in add_to_super */
4205 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4206 }
4207 mpb->num_raid_devs++;
4208
4209 dv->dev = dev;
4210 dv->index = super->current_vol;
4211 dv->next = super->devlist;
4212 super->devlist = dv;
4213
4214 imsm_update_version_info(super);
4215
4216 return 1;
4217 }
4218
4219 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4220 unsigned long long size, char *name,
4221 char *homehost, int *uuid)
4222 {
4223 /* This is primarily called by Create when creating a new array.
4224 * We will then get add_to_super called for each component, and then
4225 * write_init_super called to write it out to each device.
4226 * For IMSM, Create can create on fresh devices or on a pre-existing
4227 * array.
4228 * To create on a pre-existing array a different method will be called.
4229 * This one is just for fresh drives.
4230 */
4231 struct intel_super *super;
4232 struct imsm_super *mpb;
4233 size_t mpb_size;
4234 char *version;
4235
4236 if (st->sb)
4237 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4238
4239 if (info)
4240 mpb_size = disks_to_mpb_size(info->nr_disks);
4241 else
4242 mpb_size = 512;
4243
4244 super = alloc_super();
4245 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4246 free(super);
4247 super = NULL;
4248 }
4249 if (!super) {
4250 fprintf(stderr, Name
4251 ": %s could not allocate superblock\n", __func__);
4252 return 0;
4253 }
4254 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4255 fprintf(stderr, Name
4256 ": %s could not allocate migr_rec buffer\n", __func__);
4257 free(super->buf);
4258 free(super);
4259 return 0;
4260 }
4261 memset(super->buf, 0, mpb_size);
4262 mpb = super->buf;
4263 mpb->mpb_size = __cpu_to_le32(mpb_size);
4264 st->sb = super;
4265
4266 if (info == NULL) {
4267 /* zeroing superblock */
4268 return 0;
4269 }
4270
4271 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4272
4273 version = (char *) mpb->sig;
4274 strcpy(version, MPB_SIGNATURE);
4275 version += strlen(MPB_SIGNATURE);
4276 strcpy(version, MPB_VERSION_RAID0);
4277
4278 return 1;
4279 }
4280
4281 #ifndef MDASSEMBLE
4282 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4283 int fd, char *devname)
4284 {
4285 struct intel_super *super = st->sb;
4286 struct imsm_super *mpb = super->anchor;
4287 struct dl *dl;
4288 struct imsm_dev *dev;
4289 struct imsm_map *map;
4290 int slot;
4291
4292 dev = get_imsm_dev(super, super->current_vol);
4293 map = get_imsm_map(dev, 0);
4294
4295 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4296 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4297 devname);
4298 return 1;
4299 }
4300
4301 if (fd == -1) {
4302 /* we're doing autolayout so grab the pre-marked (in
4303 * validate_geometry) raid_disk
4304 */
4305 for (dl = super->disks; dl; dl = dl->next)
4306 if (dl->raiddisk == dk->raid_disk)
4307 break;
4308 } else {
4309 for (dl = super->disks; dl ; dl = dl->next)
4310 if (dl->major == dk->major &&
4311 dl->minor == dk->minor)
4312 break;
4313 }
4314
4315 if (!dl) {
4316 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4317 return 1;
4318 }
4319
4320 /* add a pristine spare to the metadata */
4321 if (dl->index < 0) {
4322 dl->index = super->anchor->num_disks;
4323 super->anchor->num_disks++;
4324 }
4325 /* Check the device has not already been added */
4326 slot = get_imsm_disk_slot(map, dl->index);
4327 if (slot >= 0 &&
4328 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4329 fprintf(stderr, Name ": %s has been included in this array twice\n",
4330 devname);
4331 return 1;
4332 }
4333 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
4334 dl->disk.status = CONFIGURED_DISK;
4335
4336 /* if we are creating the first raid device update the family number */
4337 if (super->current_vol == 0) {
4338 __u32 sum;
4339 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4340 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
4341
4342 if (!_dev || !_disk) {
4343 fprintf(stderr, Name ": BUG mpb setup error\n");
4344 return 1;
4345 }
4346 *_dev = *dev;
4347 *_disk = dl->disk;
4348 sum = random32();
4349 sum += __gen_imsm_checksum(mpb);
4350 mpb->family_num = __cpu_to_le32(sum);
4351 mpb->orig_family_num = mpb->family_num;
4352 }
4353 super->current_disk = dl;
4354 return 0;
4355 }
4356
4357
4358 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4359 int fd, char *devname)
4360 {
4361 struct intel_super *super = st->sb;
4362 struct dl *dd;
4363 unsigned long long size;
4364 __u32 id;
4365 int rv;
4366 struct stat stb;
4367
4368 /* If we are on an RAID enabled platform check that the disk is
4369 * attached to the raid controller.
4370 * We do not need to test disks attachment for container based additions,
4371 * they shall be already tested when container was created/assembled.
4372 */
4373 rv = find_intel_hba_capability(fd, super, devname);
4374 /* no orom/efi or non-intel hba of the disk */
4375 if (rv != 0) {
4376 dprintf("capability: %p fd: %d ret: %d\n",
4377 super->orom, fd, rv);
4378 return 1;
4379 }
4380
4381 if (super->current_vol >= 0)
4382 return add_to_super_imsm_volume(st, dk, fd, devname);
4383
4384 fstat(fd, &stb);
4385 dd = malloc(sizeof(*dd));
4386 if (!dd) {
4387 fprintf(stderr,
4388 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4389 return 1;
4390 }
4391 memset(dd, 0, sizeof(*dd));
4392 dd->major = major(stb.st_rdev);
4393 dd->minor = minor(stb.st_rdev);
4394 dd->index = -1;
4395 dd->devname = devname ? strdup(devname) : NULL;
4396 dd->fd = fd;
4397 dd->e = NULL;
4398 dd->action = DISK_ADD;
4399 rv = imsm_read_serial(fd, devname, dd->serial);
4400 if (rv) {
4401 fprintf(stderr,
4402 Name ": failed to retrieve scsi serial, aborting\n");
4403 free(dd);
4404 abort();
4405 }
4406
4407 get_dev_size(fd, NULL, &size);
4408 size /= 512;
4409 serialcpy(dd->disk.serial, dd->serial);
4410 dd->disk.total_blocks = __cpu_to_le32(size);
4411 dd->disk.status = SPARE_DISK;
4412 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4413 dd->disk.scsi_id = __cpu_to_le32(id);
4414 else
4415 dd->disk.scsi_id = __cpu_to_le32(0);
4416
4417 if (st->update_tail) {
4418 dd->next = super->disk_mgmt_list;
4419 super->disk_mgmt_list = dd;
4420 } else {
4421 dd->next = super->disks;
4422 super->disks = dd;
4423 super->updates_pending++;
4424 }
4425
4426 return 0;
4427 }
4428
4429
4430 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4431 {
4432 struct intel_super *super = st->sb;
4433 struct dl *dd;
4434
4435 /* remove from super works only in mdmon - for communication
4436 * manager - monitor. Check if communication memory buffer
4437 * is prepared.
4438 */
4439 if (!st->update_tail) {
4440 fprintf(stderr,
4441 Name ": %s shall be used in mdmon context only"
4442 "(line %d).\n", __func__, __LINE__);
4443 return 1;
4444 }
4445 dd = malloc(sizeof(*dd));
4446 if (!dd) {
4447 fprintf(stderr,
4448 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4449 return 1;
4450 }
4451 memset(dd, 0, sizeof(*dd));
4452 dd->major = dk->major;
4453 dd->minor = dk->minor;
4454 dd->index = -1;
4455 dd->fd = -1;
4456 dd->disk.status = SPARE_DISK;
4457 dd->action = DISK_REMOVE;
4458
4459 dd->next = super->disk_mgmt_list;
4460 super->disk_mgmt_list = dd;
4461
4462
4463 return 0;
4464 }
4465
4466 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4467
4468 static union {
4469 char buf[512];
4470 struct imsm_super anchor;
4471 } spare_record __attribute__ ((aligned(512)));
4472
4473 /* spare records have their own family number and do not have any defined raid
4474 * devices
4475 */
4476 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4477 {
4478 struct imsm_super *mpb = super->anchor;
4479 struct imsm_super *spare = &spare_record.anchor;
4480 __u32 sum;
4481 struct dl *d;
4482
4483 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4484 spare->generation_num = __cpu_to_le32(1UL),
4485 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4486 spare->num_disks = 1,
4487 spare->num_raid_devs = 0,
4488 spare->cache_size = mpb->cache_size,
4489 spare->pwr_cycle_count = __cpu_to_le32(1),
4490
4491 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4492 MPB_SIGNATURE MPB_VERSION_RAID0);
4493
4494 for (d = super->disks; d; d = d->next) {
4495 if (d->index != -1)
4496 continue;
4497
4498 spare->disk[0] = d->disk;
4499 sum = __gen_imsm_checksum(spare);
4500 spare->family_num = __cpu_to_le32(sum);
4501 spare->orig_family_num = 0;
4502 sum = __gen_imsm_checksum(spare);
4503 spare->check_sum = __cpu_to_le32(sum);
4504
4505 if (store_imsm_mpb(d->fd, spare)) {
4506 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4507 __func__, d->major, d->minor, strerror(errno));
4508 return 1;
4509 }
4510 if (doclose) {
4511 close(d->fd);
4512 d->fd = -1;
4513 }
4514 }
4515
4516 return 0;
4517 }
4518
4519 static int write_super_imsm(struct supertype *st, int doclose)
4520 {
4521 struct intel_super *super = st->sb;
4522 struct imsm_super *mpb = super->anchor;
4523 struct dl *d;
4524 __u32 generation;
4525 __u32 sum;
4526 int spares = 0;
4527 int i;
4528 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4529 int num_disks = 0;
4530 int clear_migration_record = 1;
4531
4532 /* 'generation' is incremented everytime the metadata is written */
4533 generation = __le32_to_cpu(mpb->generation_num);
4534 generation++;
4535 mpb->generation_num = __cpu_to_le32(generation);
4536
4537 /* fix up cases where previous mdadm releases failed to set
4538 * orig_family_num
4539 */
4540 if (mpb->orig_family_num == 0)
4541 mpb->orig_family_num = mpb->family_num;
4542
4543 for (d = super->disks; d; d = d->next) {
4544 if (d->index == -1)
4545 spares++;
4546 else {
4547 mpb->disk[d->index] = d->disk;
4548 num_disks++;
4549 }
4550 }
4551 for (d = super->missing; d; d = d->next) {
4552 mpb->disk[d->index] = d->disk;
4553 num_disks++;
4554 }
4555 mpb->num_disks = num_disks;
4556 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4557
4558 for (i = 0; i < mpb->num_raid_devs; i++) {
4559 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4560 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4561 if (dev && dev2) {
4562 imsm_copy_dev(dev, dev2);
4563 mpb_size += sizeof_imsm_dev(dev, 0);
4564 }
4565 if (is_gen_migration(dev2))
4566 clear_migration_record = 0;
4567 }
4568 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4569 mpb->mpb_size = __cpu_to_le32(mpb_size);
4570
4571 /* recalculate checksum */
4572 sum = __gen_imsm_checksum(mpb);
4573 mpb->check_sum = __cpu_to_le32(sum);
4574
4575 if (clear_migration_record)
4576 memset(super->migr_rec_buf, 0, 512);
4577
4578 /* write the mpb for disks that compose raid devices */
4579 for (d = super->disks; d ; d = d->next) {
4580 if (d->index < 0)
4581 continue;
4582 if (store_imsm_mpb(d->fd, mpb))
4583 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4584 __func__, d->major, d->minor, strerror(errno));
4585 if (clear_migration_record) {
4586 unsigned long long dsize;
4587
4588 get_dev_size(d->fd, NULL, &dsize);
4589 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4590 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4591 perror("Write migr_rec failed");
4592 }
4593 }
4594 if (doclose) {
4595 close(d->fd);
4596 d->fd = -1;
4597 }
4598 }
4599
4600 if (spares)
4601 return write_super_imsm_spares(super, doclose);
4602
4603 return 0;
4604 }
4605
4606
4607 static int create_array(struct supertype *st, int dev_idx)
4608 {
4609 size_t len;
4610 struct imsm_update_create_array *u;
4611 struct intel_super *super = st->sb;
4612 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4613 struct imsm_map *map = get_imsm_map(dev, 0);
4614 struct disk_info *inf;
4615 struct imsm_disk *disk;
4616 int i;
4617
4618 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4619 sizeof(*inf) * map->num_members;
4620 u = malloc(len);
4621 if (!u) {
4622 fprintf(stderr, "%s: failed to allocate update buffer\n",
4623 __func__);
4624 return 1;
4625 }
4626
4627 u->type = update_create_array;
4628 u->dev_idx = dev_idx;
4629 imsm_copy_dev(&u->dev, dev);
4630 inf = get_disk_info(u);
4631 for (i = 0; i < map->num_members; i++) {
4632 int idx = get_imsm_disk_idx(dev, i, -1);
4633
4634 disk = get_imsm_disk(super, idx);
4635 serialcpy(inf[i].serial, disk->serial);
4636 }
4637 append_metadata_update(st, u, len);
4638
4639 return 0;
4640 }
4641
4642 static int mgmt_disk(struct supertype *st)
4643 {
4644 struct intel_super *super = st->sb;
4645 size_t len;
4646 struct imsm_update_add_remove_disk *u;
4647
4648 if (!super->disk_mgmt_list)
4649 return 0;
4650
4651 len = sizeof(*u);
4652 u = malloc(len);
4653 if (!u) {
4654 fprintf(stderr, "%s: failed to allocate update buffer\n",
4655 __func__);
4656 return 1;
4657 }
4658
4659 u->type = update_add_remove_disk;
4660 append_metadata_update(st, u, len);
4661
4662 return 0;
4663 }
4664
4665 static int write_init_super_imsm(struct supertype *st)
4666 {
4667 struct intel_super *super = st->sb;
4668 int current_vol = super->current_vol;
4669
4670 /* we are done with current_vol reset it to point st at the container */
4671 super->current_vol = -1;
4672
4673 if (st->update_tail) {
4674 /* queue the recently created array / added disk
4675 * as a metadata update */
4676 int rv;
4677
4678 /* determine if we are creating a volume or adding a disk */
4679 if (current_vol < 0) {
4680 /* in the mgmt (add/remove) disk case we are running
4681 * in mdmon context, so don't close fd's
4682 */
4683 return mgmt_disk(st);
4684 } else
4685 rv = create_array(st, current_vol);
4686
4687 return rv;
4688 } else {
4689 struct dl *d;
4690 for (d = super->disks; d; d = d->next)
4691 Kill(d->devname, NULL, 0, 1, 1);
4692 return write_super_imsm(st, 1);
4693 }
4694 }
4695 #endif
4696
4697 static int store_super_imsm(struct supertype *st, int fd)
4698 {
4699 struct intel_super *super = st->sb;
4700 struct imsm_super *mpb = super ? super->anchor : NULL;
4701
4702 if (!mpb)
4703 return 1;
4704
4705 #ifndef MDASSEMBLE
4706 return store_imsm_mpb(fd, mpb);
4707 #else
4708 return 1;
4709 #endif
4710 }
4711
4712 static int imsm_bbm_log_size(struct imsm_super *mpb)
4713 {
4714 return __le32_to_cpu(mpb->bbm_log_size);
4715 }
4716
4717 #ifndef MDASSEMBLE
4718 static int validate_geometry_imsm_container(struct supertype *st, int level,
4719 int layout, int raiddisks, int chunk,
4720 unsigned long long size, char *dev,
4721 unsigned long long *freesize,
4722 int verbose)
4723 {
4724 int fd;
4725 unsigned long long ldsize;
4726 struct intel_super *super=NULL;
4727 int rv = 0;
4728
4729 if (level != LEVEL_CONTAINER)
4730 return 0;
4731 if (!dev)
4732 return 1;
4733
4734 fd = open(dev, O_RDONLY|O_EXCL, 0);
4735 if (fd < 0) {
4736 if (verbose)
4737 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4738 dev, strerror(errno));
4739 return 0;
4740 }
4741 if (!get_dev_size(fd, dev, &ldsize)) {
4742 close(fd);
4743 return 0;
4744 }
4745
4746 /* capabilities retrieve could be possible
4747 * note that there is no fd for the disks in array.
4748 */
4749 super = alloc_super();
4750 if (!super) {
4751 fprintf(stderr,
4752 Name ": malloc of %zu failed.\n",
4753 sizeof(*super));
4754 close(fd);
4755 return 0;
4756 }
4757
4758 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4759 if (rv != 0) {
4760 #if DEBUG
4761 char str[256];
4762 fd2devname(fd, str);
4763 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4764 fd, str, super->orom, rv, raiddisks);
4765 #endif
4766 /* no orom/efi or non-intel hba of the disk */
4767 close(fd);
4768 free_imsm(super);
4769 return 0;
4770 }
4771 close(fd);
4772 if (super->orom && raiddisks > super->orom->tds) {
4773 if (verbose)
4774 fprintf(stderr, Name ": %d exceeds maximum number of"
4775 " platform supported disks: %d\n",
4776 raiddisks, super->orom->tds);
4777
4778 free_imsm(super);
4779 return 0;
4780 }
4781
4782 *freesize = avail_size_imsm(st, ldsize >> 9);
4783 free_imsm(super);
4784
4785 return 1;
4786 }
4787
4788 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4789 {
4790 const unsigned long long base_start = e[*idx].start;
4791 unsigned long long end = base_start + e[*idx].size;
4792 int i;
4793
4794 if (base_start == end)
4795 return 0;
4796
4797 *idx = *idx + 1;
4798 for (i = *idx; i < num_extents; i++) {
4799 /* extend overlapping extents */
4800 if (e[i].start >= base_start &&
4801 e[i].start <= end) {
4802 if (e[i].size == 0)
4803 return 0;
4804 if (e[i].start + e[i].size > end)
4805 end = e[i].start + e[i].size;
4806 } else if (e[i].start > end) {
4807 *idx = i;
4808 break;
4809 }
4810 }
4811
4812 return end - base_start;
4813 }
4814
4815 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4816 {
4817 /* build a composite disk with all known extents and generate a new
4818 * 'maxsize' given the "all disks in an array must share a common start
4819 * offset" constraint
4820 */
4821 struct extent *e = calloc(sum_extents, sizeof(*e));
4822 struct dl *dl;
4823 int i, j;
4824 int start_extent;
4825 unsigned long long pos;
4826 unsigned long long start = 0;
4827 unsigned long long maxsize;
4828 unsigned long reserve;
4829
4830 if (!e)
4831 return 0;
4832
4833 /* coalesce and sort all extents. also, check to see if we need to
4834 * reserve space between member arrays
4835 */
4836 j = 0;
4837 for (dl = super->disks; dl; dl = dl->next) {
4838 if (!dl->e)
4839 continue;
4840 for (i = 0; i < dl->extent_cnt; i++)
4841 e[j++] = dl->e[i];
4842 }
4843 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4844
4845 /* merge extents */
4846 i = 0;
4847 j = 0;
4848 while (i < sum_extents) {
4849 e[j].start = e[i].start;
4850 e[j].size = find_size(e, &i, sum_extents);
4851 j++;
4852 if (e[j-1].size == 0)
4853 break;
4854 }
4855
4856 pos = 0;
4857 maxsize = 0;
4858 start_extent = 0;
4859 i = 0;
4860 do {
4861 unsigned long long esize;
4862
4863 esize = e[i].start - pos;
4864 if (esize >= maxsize) {
4865 maxsize = esize;
4866 start = pos;
4867 start_extent = i;
4868 }
4869 pos = e[i].start + e[i].size;
4870 i++;
4871 } while (e[i-1].size);
4872 free(e);
4873
4874 if (maxsize == 0)
4875 return 0;
4876
4877 /* FIXME assumes volume at offset 0 is the first volume in a
4878 * container
4879 */
4880 if (start_extent > 0)
4881 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4882 else
4883 reserve = 0;
4884
4885 if (maxsize < reserve)
4886 return 0;
4887
4888 super->create_offset = ~((__u32) 0);
4889 if (start + reserve > super->create_offset)
4890 return 0; /* start overflows create_offset */
4891 super->create_offset = start + reserve;
4892
4893 return maxsize - reserve;
4894 }
4895
4896 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4897 {
4898 if (level < 0 || level == 6 || level == 4)
4899 return 0;
4900
4901 /* if we have an orom prevent invalid raid levels */
4902 if (orom)
4903 switch (level) {
4904 case 0: return imsm_orom_has_raid0(orom);
4905 case 1:
4906 if (raiddisks > 2)
4907 return imsm_orom_has_raid1e(orom);
4908 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4909 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4910 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4911 }
4912 else
4913 return 1; /* not on an Intel RAID platform so anything goes */
4914
4915 return 0;
4916 }
4917
4918 static int imsm_default_chunk(const struct imsm_orom *orom)
4919 {
4920 /* up to 512 if the plaform supports it, otherwise the platform max.
4921 * 128 if no platform detected
4922 */
4923 int fs = max(7, orom ? fls(orom->sss) : 0);
4924
4925 return min(512, (1 << fs));
4926 }
4927
4928 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4929 /*
4930 * validate volume parameters with OROM/EFI capabilities
4931 */
4932 static int
4933 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4934 int raiddisks, int *chunk, int verbose)
4935 {
4936 #if DEBUG
4937 verbose = 1;
4938 #endif
4939 /* validate container capabilities */
4940 if (super->orom && raiddisks > super->orom->tds) {
4941 if (verbose)
4942 fprintf(stderr, Name ": %d exceeds maximum number of"
4943 " platform supported disks: %d\n",
4944 raiddisks, super->orom->tds);
4945 return 0;
4946 }
4947
4948 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
4949 if (super->orom && (!is_raid_level_supported(super->orom, level,
4950 raiddisks))) {
4951 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4952 level, raiddisks, raiddisks > 1 ? "s" : "");
4953 return 0;
4954 }
4955
4956 if (chunk && (*chunk == 0 || *chunk == UnSet))
4957 *chunk = imsm_default_chunk(super->orom);
4958
4959 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
4960 pr_vrb(": platform does not support a chunk size of: "
4961 "%d\n", *chunk);
4962 return 0;
4963 }
4964
4965 if (layout != imsm_level_to_layout(level)) {
4966 if (level == 5)
4967 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4968 else if (level == 10)
4969 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4970 else
4971 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4972 layout, level);
4973 return 0;
4974 }
4975 return 1;
4976 }
4977
4978 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4979 * FIX ME add ahci details
4980 */
4981 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4982 int layout, int raiddisks, int *chunk,
4983 unsigned long long size, char *dev,
4984 unsigned long long *freesize,
4985 int verbose)
4986 {
4987 struct stat stb;
4988 struct intel_super *super = st->sb;
4989 struct imsm_super *mpb = super->anchor;
4990 struct dl *dl;
4991 unsigned long long pos = 0;
4992 unsigned long long maxsize;
4993 struct extent *e;
4994 int i;
4995
4996 /* We must have the container info already read in. */
4997 if (!super)
4998 return 0;
4999
5000 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5001 fprintf(stderr, Name ": RAID gemetry validation failed. "
5002 "Cannot proceed with the action(s).\n");
5003 return 0;
5004 }
5005 if (!dev) {
5006 /* General test: make sure there is space for
5007 * 'raiddisks' device extents of size 'size' at a given
5008 * offset
5009 */
5010 unsigned long long minsize = size;
5011 unsigned long long start_offset = MaxSector;
5012 int dcnt = 0;
5013 if (minsize == 0)
5014 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5015 for (dl = super->disks; dl ; dl = dl->next) {
5016 int found = 0;
5017
5018 pos = 0;
5019 i = 0;
5020 e = get_extents(super, dl);
5021 if (!e) continue;
5022 do {
5023 unsigned long long esize;
5024 esize = e[i].start - pos;
5025 if (esize >= minsize)
5026 found = 1;
5027 if (found && start_offset == MaxSector) {
5028 start_offset = pos;
5029 break;
5030 } else if (found && pos != start_offset) {
5031 found = 0;
5032 break;
5033 }
5034 pos = e[i].start + e[i].size;
5035 i++;
5036 } while (e[i-1].size);
5037 if (found)
5038 dcnt++;
5039 free(e);
5040 }
5041 if (dcnt < raiddisks) {
5042 if (verbose)
5043 fprintf(stderr, Name ": imsm: Not enough "
5044 "devices with space for this array "
5045 "(%d < %d)\n",
5046 dcnt, raiddisks);
5047 return 0;
5048 }
5049 return 1;
5050 }
5051
5052 /* This device must be a member of the set */
5053 if (stat(dev, &stb) < 0)
5054 return 0;
5055 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5056 return 0;
5057 for (dl = super->disks ; dl ; dl = dl->next) {
5058 if (dl->major == (int)major(stb.st_rdev) &&
5059 dl->minor == (int)minor(stb.st_rdev))
5060 break;
5061 }
5062 if (!dl) {
5063 if (verbose)
5064 fprintf(stderr, Name ": %s is not in the "
5065 "same imsm set\n", dev);
5066 return 0;
5067 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5068 /* If a volume is present then the current creation attempt
5069 * cannot incorporate new spares because the orom may not
5070 * understand this configuration (all member disks must be
5071 * members of each array in the container).
5072 */
5073 fprintf(stderr, Name ": %s is a spare and a volume"
5074 " is already defined for this container\n", dev);
5075 fprintf(stderr, Name ": The option-rom requires all member"
5076 " disks to be a member of all volumes\n");
5077 return 0;
5078 }
5079
5080 /* retrieve the largest free space block */
5081 e = get_extents(super, dl);
5082 maxsize = 0;
5083 i = 0;
5084 if (e) {
5085 do {
5086 unsigned long long esize;
5087
5088 esize = e[i].start - pos;
5089 if (esize >= maxsize)
5090 maxsize = esize;
5091 pos = e[i].start + e[i].size;
5092 i++;
5093 } while (e[i-1].size);
5094 dl->e = e;
5095 dl->extent_cnt = i;
5096 } else {
5097 if (verbose)
5098 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5099 dev);
5100 return 0;
5101 }
5102 if (maxsize < size) {
5103 if (verbose)
5104 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5105 dev, maxsize, size);
5106 return 0;
5107 }
5108
5109 /* count total number of extents for merge */
5110 i = 0;
5111 for (dl = super->disks; dl; dl = dl->next)
5112 if (dl->e)
5113 i += dl->extent_cnt;
5114
5115 maxsize = merge_extents(super, i);
5116 if (maxsize < size || maxsize == 0) {
5117 if (verbose)
5118 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5119 maxsize, size);
5120 return 0;
5121 }
5122
5123 *freesize = maxsize;
5124
5125 return 1;
5126 }
5127
5128 static int reserve_space(struct supertype *st, int raiddisks,
5129 unsigned long long size, int chunk,
5130 unsigned long long *freesize)
5131 {
5132 struct intel_super *super = st->sb;
5133 struct imsm_super *mpb = super->anchor;
5134 struct dl *dl;
5135 int i;
5136 int extent_cnt;
5137 struct extent *e;
5138 unsigned long long maxsize;
5139 unsigned long long minsize;
5140 int cnt;
5141 int used;
5142
5143 /* find the largest common start free region of the possible disks */
5144 used = 0;
5145 extent_cnt = 0;
5146 cnt = 0;
5147 for (dl = super->disks; dl; dl = dl->next) {
5148 dl->raiddisk = -1;
5149
5150 if (dl->index >= 0)
5151 used++;
5152
5153 /* don't activate new spares if we are orom constrained
5154 * and there is already a volume active in the container
5155 */
5156 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5157 continue;
5158
5159 e = get_extents(super, dl);
5160 if (!e)
5161 continue;
5162 for (i = 1; e[i-1].size; i++)
5163 ;
5164 dl->e = e;
5165 dl->extent_cnt = i;
5166 extent_cnt += i;
5167 cnt++;
5168 }
5169
5170 maxsize = merge_extents(super, extent_cnt);
5171 minsize = size;
5172 if (size == 0)
5173 /* chunk is in K */
5174 minsize = chunk * 2;
5175
5176 if (cnt < raiddisks ||
5177 (super->orom && used && used != raiddisks) ||
5178 maxsize < minsize ||
5179 maxsize == 0) {
5180 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5181 return 0; /* No enough free spaces large enough */
5182 }
5183
5184 if (size == 0) {
5185 size = maxsize;
5186 if (chunk) {
5187 size /= 2 * chunk;
5188 size *= 2 * chunk;
5189 }
5190 }
5191
5192 cnt = 0;
5193 for (dl = super->disks; dl; dl = dl->next)
5194 if (dl->e)
5195 dl->raiddisk = cnt++;
5196
5197 *freesize = size;
5198
5199 return 1;
5200 }
5201
5202 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5203 int raiddisks, int *chunk, unsigned long long size,
5204 char *dev, unsigned long long *freesize,
5205 int verbose)
5206 {
5207 int fd, cfd;
5208 struct mdinfo *sra;
5209 int is_member = 0;
5210
5211 /* load capability
5212 * if given unused devices create a container
5213 * if given given devices in a container create a member volume
5214 */
5215 if (level == LEVEL_CONTAINER) {
5216 /* Must be a fresh device to add to a container */
5217 return validate_geometry_imsm_container(st, level, layout,
5218 raiddisks,
5219 chunk?*chunk:0, size,
5220 dev, freesize,
5221 verbose);
5222 }
5223
5224 if (!dev) {
5225 if (st->sb && freesize) {
5226 /* we are being asked to automatically layout a
5227 * new volume based on the current contents of
5228 * the container. If the the parameters can be
5229 * satisfied reserve_space will record the disks,
5230 * start offset, and size of the volume to be
5231 * created. add_to_super and getinfo_super
5232 * detect when autolayout is in progress.
5233 */
5234 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5235 raiddisks, chunk,
5236 verbose))
5237 return 0;
5238 return reserve_space(st, raiddisks, size,
5239 chunk?*chunk:0, freesize);
5240 }
5241 return 1;
5242 }
5243 if (st->sb) {
5244 /* creating in a given container */
5245 return validate_geometry_imsm_volume(st, level, layout,
5246 raiddisks, chunk, size,
5247 dev, freesize, verbose);
5248 }
5249
5250 /* This device needs to be a device in an 'imsm' container */
5251 fd = open(dev, O_RDONLY|O_EXCL, 0);
5252 if (fd >= 0) {
5253 if (verbose)
5254 fprintf(stderr,
5255 Name ": Cannot create this array on device %s\n",
5256 dev);
5257 close(fd);
5258 return 0;
5259 }
5260 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5261 if (verbose)
5262 fprintf(stderr, Name ": Cannot open %s: %s\n",
5263 dev, strerror(errno));
5264 return 0;
5265 }
5266 /* Well, it is in use by someone, maybe an 'imsm' container. */
5267 cfd = open_container(fd);
5268 close(fd);
5269 if (cfd < 0) {
5270 if (verbose)
5271 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5272 dev);
5273 return 0;
5274 }
5275 sra = sysfs_read(cfd, 0, GET_VERSION);
5276 if (sra && sra->array.major_version == -1 &&
5277 strcmp(sra->text_version, "imsm") == 0)
5278 is_member = 1;
5279 sysfs_free(sra);
5280 if (is_member) {
5281 /* This is a member of a imsm container. Load the container
5282 * and try to create a volume
5283 */
5284 struct intel_super *super;
5285
5286 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5287 st->sb = super;
5288 st->container_dev = fd2devnum(cfd);
5289 close(cfd);
5290 return validate_geometry_imsm_volume(st, level, layout,
5291 raiddisks, chunk,
5292 size, dev,
5293 freesize, verbose);
5294 }
5295 }
5296
5297 if (verbose)
5298 fprintf(stderr, Name ": failed container membership check\n");
5299
5300 close(cfd);
5301 return 0;
5302 }
5303
5304 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5305 {
5306 struct intel_super *super = st->sb;
5307
5308 if (level && *level == UnSet)
5309 *level = LEVEL_CONTAINER;
5310
5311 if (level && layout && *layout == UnSet)
5312 *layout = imsm_level_to_layout(*level);
5313
5314 if (chunk && (*chunk == UnSet || *chunk == 0))
5315 *chunk = imsm_default_chunk(super->orom);
5316 }
5317
5318 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5319
5320 static int kill_subarray_imsm(struct supertype *st)
5321 {
5322 /* remove the subarray currently referenced by ->current_vol */
5323 __u8 i;
5324 struct intel_dev **dp;
5325 struct intel_super *super = st->sb;
5326 __u8 current_vol = super->current_vol;
5327 struct imsm_super *mpb = super->anchor;
5328
5329 if (super->current_vol < 0)
5330 return 2;
5331 super->current_vol = -1; /* invalidate subarray cursor */
5332
5333 /* block deletions that would change the uuid of active subarrays
5334 *
5335 * FIXME when immutable ids are available, but note that we'll
5336 * also need to fixup the invalidated/active subarray indexes in
5337 * mdstat
5338 */
5339 for (i = 0; i < mpb->num_raid_devs; i++) {
5340 char subarray[4];
5341
5342 if (i < current_vol)
5343 continue;
5344 sprintf(subarray, "%u", i);
5345 if (is_subarray_active(subarray, st->devname)) {
5346 fprintf(stderr,
5347 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5348 current_vol, i);
5349
5350 return 2;
5351 }
5352 }
5353
5354 if (st->update_tail) {
5355 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5356
5357 if (!u)
5358 return 2;
5359 u->type = update_kill_array;
5360 u->dev_idx = current_vol;
5361 append_metadata_update(st, u, sizeof(*u));
5362
5363 return 0;
5364 }
5365
5366 for (dp = &super->devlist; *dp;)
5367 if ((*dp)->index == current_vol) {
5368 *dp = (*dp)->next;
5369 } else {
5370 handle_missing(super, (*dp)->dev);
5371 if ((*dp)->index > current_vol)
5372 (*dp)->index--;
5373 dp = &(*dp)->next;
5374 }
5375
5376 /* no more raid devices, all active components are now spares,
5377 * but of course failed are still failed
5378 */
5379 if (--mpb->num_raid_devs == 0) {
5380 struct dl *d;
5381
5382 for (d = super->disks; d; d = d->next)
5383 if (d->index > -2) {
5384 d->index = -1;
5385 d->disk.status = SPARE_DISK;
5386 }
5387 }
5388
5389 super->updates_pending++;
5390
5391 return 0;
5392 }
5393
5394 static int update_subarray_imsm(struct supertype *st, char *subarray,
5395 char *update, struct mddev_ident *ident)
5396 {
5397 /* update the subarray currently referenced by ->current_vol */
5398 struct intel_super *super = st->sb;
5399 struct imsm_super *mpb = super->anchor;
5400
5401 if (strcmp(update, "name") == 0) {
5402 char *name = ident->name;
5403 char *ep;
5404 int vol;
5405
5406 if (is_subarray_active(subarray, st->devname)) {
5407 fprintf(stderr,
5408 Name ": Unable to update name of active subarray\n");
5409 return 2;
5410 }
5411
5412 if (!check_name(super, name, 0))
5413 return 2;
5414
5415 vol = strtoul(subarray, &ep, 10);
5416 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5417 return 2;
5418
5419 if (st->update_tail) {
5420 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5421
5422 if (!u)
5423 return 2;
5424 u->type = update_rename_array;
5425 u->dev_idx = vol;
5426 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5427 append_metadata_update(st, u, sizeof(*u));
5428 } else {
5429 struct imsm_dev *dev;
5430 int i;
5431
5432 dev = get_imsm_dev(super, vol);
5433 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5434 for (i = 0; i < mpb->num_raid_devs; i++) {
5435 dev = get_imsm_dev(super, i);
5436 handle_missing(super, dev);
5437 }
5438 super->updates_pending++;
5439 }
5440 } else
5441 return 2;
5442
5443 return 0;
5444 }
5445
5446 static int is_gen_migration(struct imsm_dev *dev)
5447 {
5448 if (dev == NULL)
5449 return 0;
5450
5451 if (!dev->vol.migr_state)
5452 return 0;
5453
5454 if (migr_type(dev) == MIGR_GEN_MIGR)
5455 return 1;
5456
5457 return 0;
5458 }
5459 #endif /* MDASSEMBLE */
5460
5461 static int is_rebuilding(struct imsm_dev *dev)
5462 {
5463 struct imsm_map *migr_map;
5464
5465 if (!dev->vol.migr_state)
5466 return 0;
5467
5468 if (migr_type(dev) != MIGR_REBUILD)
5469 return 0;
5470
5471 migr_map = get_imsm_map(dev, 1);
5472
5473 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5474 return 1;
5475 else
5476 return 0;
5477 }
5478
5479 static void update_recovery_start(struct intel_super *super,
5480 struct imsm_dev *dev,
5481 struct mdinfo *array)
5482 {
5483 struct mdinfo *rebuild = NULL;
5484 struct mdinfo *d;
5485 __u32 units;
5486
5487 if (!is_rebuilding(dev))
5488 return;
5489
5490 /* Find the rebuild target, but punt on the dual rebuild case */
5491 for (d = array->devs; d; d = d->next)
5492 if (d->recovery_start == 0) {
5493 if (rebuild)
5494 return;
5495 rebuild = d;
5496 }
5497
5498 if (!rebuild) {
5499 /* (?) none of the disks are marked with
5500 * IMSM_ORD_REBUILD, so assume they are missing and the
5501 * disk_ord_tbl was not correctly updated
5502 */
5503 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5504 return;
5505 }
5506
5507 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5508 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5509 }
5510
5511 #ifndef MDASSEMBLE
5512 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5513 #endif
5514
5515 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5516 {
5517 /* Given a container loaded by load_super_imsm_all,
5518 * extract information about all the arrays into
5519 * an mdinfo tree.
5520 * If 'subarray' is given, just extract info about that array.
5521 *
5522 * For each imsm_dev create an mdinfo, fill it in,
5523 * then look for matching devices in super->disks
5524 * and create appropriate device mdinfo.
5525 */
5526 struct intel_super *super = st->sb;
5527 struct imsm_super *mpb = super->anchor;
5528 struct mdinfo *rest = NULL;
5529 unsigned int i;
5530 int bbm_errors = 0;
5531 struct dl *d;
5532 int spare_disks = 0;
5533
5534 /* do not assemble arrays when not all attributes are supported */
5535 if (imsm_check_attributes(mpb->attributes) == 0) {
5536 fprintf(stderr, Name ": IMSM metadata loading not allowed "
5537 "due to attributes incompatibility.\n");
5538 return NULL;
5539 }
5540
5541 /* check for bad blocks */
5542 if (imsm_bbm_log_size(super->anchor))
5543 bbm_errors = 1;
5544
5545 /* count spare devices, not used in maps
5546 */
5547 for (d = super->disks; d; d = d->next)
5548 if (d->index == -1)
5549 spare_disks++;
5550
5551 for (i = 0; i < mpb->num_raid_devs; i++) {
5552 struct imsm_dev *dev;
5553 struct imsm_map *map;
5554 struct imsm_map *map2;
5555 struct mdinfo *this;
5556 int slot, chunk;
5557 char *ep;
5558
5559 if (subarray &&
5560 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5561 continue;
5562
5563 dev = get_imsm_dev(super, i);
5564 map = get_imsm_map(dev, 0);
5565 map2 = get_imsm_map(dev, 1);
5566
5567 /* do not publish arrays that are in the middle of an
5568 * unsupported migration
5569 */
5570 if (dev->vol.migr_state &&
5571 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5572 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5573 " unsupported migration in progress\n",
5574 dev->volume);
5575 continue;
5576 }
5577 /* do not publish arrays that are not support by controller's
5578 * OROM/EFI
5579 */
5580
5581 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5582 #ifndef MDASSEMBLE
5583 if (!validate_geometry_imsm_orom(super,
5584 get_imsm_raid_level(map), /* RAID level */
5585 imsm_level_to_layout(get_imsm_raid_level(map)),
5586 map->num_members, /* raid disks */
5587 &chunk,
5588 1 /* verbose */)) {
5589 fprintf(stderr, Name ": RAID gemetry validation failed. "
5590 "Cannot proceed with the action(s).\n");
5591 continue;
5592 }
5593 #endif /* MDASSEMBLE */
5594 this = malloc(sizeof(*this));
5595 if (!this) {
5596 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5597 sizeof(*this));
5598 break;
5599 }
5600
5601 super->current_vol = i;
5602 getinfo_super_imsm_volume(st, this, NULL);
5603 this->next = rest;
5604 for (slot = 0 ; slot < map->num_members; slot++) {
5605 unsigned long long recovery_start;
5606 struct mdinfo *info_d;
5607 struct dl *d;
5608 int idx;
5609 int skip;
5610 __u32 ord;
5611
5612 skip = 0;
5613 idx = get_imsm_disk_idx(dev, slot, 0);
5614 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5615 for (d = super->disks; d ; d = d->next)
5616 if (d->index == idx)
5617 break;
5618
5619 recovery_start = MaxSector;
5620 if (d == NULL)
5621 skip = 1;
5622 if (d && is_failed(&d->disk))
5623 skip = 1;
5624 if (ord & IMSM_ORD_REBUILD)
5625 recovery_start = 0;
5626
5627 /*
5628 * if we skip some disks the array will be assmebled degraded;
5629 * reset resync start to avoid a dirty-degraded
5630 * situation when performing the intial sync
5631 *
5632 * FIXME handle dirty degraded
5633 */
5634 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5635 this->resync_start = MaxSector;
5636 if (skip)
5637 continue;
5638
5639 info_d = calloc(1, sizeof(*info_d));
5640 if (!info_d) {
5641 fprintf(stderr, Name ": failed to allocate disk"
5642 " for volume %.16s\n", dev->volume);
5643 info_d = this->devs;
5644 while (info_d) {
5645 struct mdinfo *d = info_d->next;
5646
5647 free(info_d);
5648 info_d = d;
5649 }
5650 free(this);
5651 this = rest;
5652 break;
5653 }
5654 info_d->next = this->devs;
5655 this->devs = info_d;
5656
5657 info_d->disk.number = d->index;
5658 info_d->disk.major = d->major;
5659 info_d->disk.minor = d->minor;
5660 info_d->disk.raid_disk = slot;
5661 info_d->recovery_start = recovery_start;
5662 if (map2) {
5663 if (slot < map2->num_members)
5664 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5665 else
5666 this->array.spare_disks++;
5667 } else {
5668 if (slot < map->num_members)
5669 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5670 else
5671 this->array.spare_disks++;
5672 }
5673 if (info_d->recovery_start == MaxSector)
5674 this->array.working_disks++;
5675
5676 info_d->events = __le32_to_cpu(mpb->generation_num);
5677 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5678 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5679 }
5680 /* now that the disk list is up-to-date fixup recovery_start */
5681 update_recovery_start(super, dev, this);
5682 this->array.spare_disks += spare_disks;
5683
5684 #ifndef MDASSEMBLE
5685 /* check for reshape */
5686 if (this->reshape_active == 1)
5687 recover_backup_imsm(st, this);
5688 #endif
5689 rest = this;
5690 }
5691
5692 /* if array has bad blocks, set suitable bit in array status */
5693 if (bbm_errors)
5694 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
5695
5696 return rest;
5697 }
5698
5699
5700 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
5701 {
5702 struct imsm_map *map = get_imsm_map(dev, 0);
5703
5704 if (!failed)
5705 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5706 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5707
5708 switch (get_imsm_raid_level(map)) {
5709 case 0:
5710 return IMSM_T_STATE_FAILED;
5711 break;
5712 case 1:
5713 if (failed < map->num_members)
5714 return IMSM_T_STATE_DEGRADED;
5715 else
5716 return IMSM_T_STATE_FAILED;
5717 break;
5718 case 10:
5719 {
5720 /**
5721 * check to see if any mirrors have failed, otherwise we
5722 * are degraded. Even numbered slots are mirrored on
5723 * slot+1
5724 */
5725 int i;
5726 /* gcc -Os complains that this is unused */
5727 int insync = insync;
5728
5729 for (i = 0; i < map->num_members; i++) {
5730 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5731 int idx = ord_to_idx(ord);
5732 struct imsm_disk *disk;
5733
5734 /* reset the potential in-sync count on even-numbered
5735 * slots. num_copies is always 2 for imsm raid10
5736 */
5737 if ((i & 1) == 0)
5738 insync = 2;
5739
5740 disk = get_imsm_disk(super, idx);
5741 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5742 insync--;
5743
5744 /* no in-sync disks left in this mirror the
5745 * array has failed
5746 */
5747 if (insync == 0)
5748 return IMSM_T_STATE_FAILED;
5749 }
5750
5751 return IMSM_T_STATE_DEGRADED;
5752 }
5753 case 5:
5754 if (failed < 2)
5755 return IMSM_T_STATE_DEGRADED;
5756 else
5757 return IMSM_T_STATE_FAILED;
5758 break;
5759 default:
5760 break;
5761 }
5762
5763 return map->map_state;
5764 }
5765
5766 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
5767 {
5768 int i;
5769 int failed = 0;
5770 struct imsm_disk *disk;
5771 struct imsm_map *map = get_imsm_map(dev, 0);
5772 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
5773 __u32 ord;
5774 int idx;
5775
5776 /* at the beginning of migration we set IMSM_ORD_REBUILD on
5777 * disks that are being rebuilt. New failures are recorded to
5778 * map[0]. So we look through all the disks we started with and
5779 * see if any failures are still present, or if any new ones
5780 * have arrived
5781 *
5782 * FIXME add support for online capacity expansion and
5783 * raid-level-migration
5784 */
5785 for (i = 0; i < prev->num_members; i++) {
5786 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
5787 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
5788 idx = ord_to_idx(ord);
5789
5790 disk = get_imsm_disk(super, idx);
5791 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5792 failed++;
5793 }
5794
5795 return failed;
5796 }
5797
5798 #ifndef MDASSEMBLE
5799 static int imsm_open_new(struct supertype *c, struct active_array *a,
5800 char *inst)
5801 {
5802 struct intel_super *super = c->sb;
5803 struct imsm_super *mpb = super->anchor;
5804
5805 if (atoi(inst) >= mpb->num_raid_devs) {
5806 fprintf(stderr, "%s: subarry index %d, out of range\n",
5807 __func__, atoi(inst));
5808 return -ENODEV;
5809 }
5810
5811 dprintf("imsm: open_new %s\n", inst);
5812 a->info.container_member = atoi(inst);
5813 return 0;
5814 }
5815
5816 static int is_resyncing(struct imsm_dev *dev)
5817 {
5818 struct imsm_map *migr_map;
5819
5820 if (!dev->vol.migr_state)
5821 return 0;
5822
5823 if (migr_type(dev) == MIGR_INIT ||
5824 migr_type(dev) == MIGR_REPAIR)
5825 return 1;
5826
5827 if (migr_type(dev) == MIGR_GEN_MIGR)
5828 return 0;
5829
5830 migr_map = get_imsm_map(dev, 1);
5831
5832 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
5833 (dev->vol.migr_type != MIGR_GEN_MIGR))
5834 return 1;
5835 else
5836 return 0;
5837 }
5838
5839 /* return true if we recorded new information */
5840 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5841 {
5842 __u32 ord;
5843 int slot;
5844 struct imsm_map *map;
5845
5846 /* new failures are always set in map[0] */
5847 map = get_imsm_map(dev, 0);
5848
5849 slot = get_imsm_disk_slot(map, idx);
5850 if (slot < 0)
5851 return 0;
5852
5853 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5854 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5855 return 0;
5856
5857 disk->status |= FAILED_DISK;
5858 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5859 if (map->failed_disk_num == 0xff)
5860 map->failed_disk_num = slot;
5861 return 1;
5862 }
5863
5864 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5865 {
5866 mark_failure(dev, disk, idx);
5867
5868 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5869 return;
5870
5871 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5872 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5873 }
5874
5875 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5876 {
5877 __u8 map_state;
5878 struct dl *dl;
5879 int failed;
5880
5881 if (!super->missing)
5882 return;
5883 failed = imsm_count_failed(super, dev);
5884 map_state = imsm_check_degraded(super, dev, failed);
5885
5886 dprintf("imsm: mark missing\n");
5887 end_migration(dev, map_state);
5888 for (dl = super->missing; dl; dl = dl->next)
5889 mark_missing(dev, &dl->disk, dl->index);
5890 super->updates_pending++;
5891 }
5892
5893 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
5894 {
5895 int used_disks = imsm_num_data_members(dev, 0);
5896 unsigned long long array_blocks;
5897 struct imsm_map *map;
5898
5899 if (used_disks == 0) {
5900 /* when problems occures
5901 * return current array_blocks value
5902 */
5903 array_blocks = __le32_to_cpu(dev->size_high);
5904 array_blocks = array_blocks << 32;
5905 array_blocks += __le32_to_cpu(dev->size_low);
5906
5907 return array_blocks;
5908 }
5909
5910 /* set array size in metadata
5911 */
5912 map = get_imsm_map(dev, 0);
5913 array_blocks = map->blocks_per_member * used_disks;
5914
5915 /* round array size down to closest MB
5916 */
5917 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
5918 dev->size_low = __cpu_to_le32((__u32)array_blocks);
5919 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
5920
5921 return array_blocks;
5922 }
5923
5924 static void imsm_set_disk(struct active_array *a, int n, int state);
5925
5926 static void imsm_progress_container_reshape(struct intel_super *super)
5927 {
5928 /* if no device has a migr_state, but some device has a
5929 * different number of members than the previous device, start
5930 * changing the number of devices in this device to match
5931 * previous.
5932 */
5933 struct imsm_super *mpb = super->anchor;
5934 int prev_disks = -1;
5935 int i;
5936 int copy_map_size;
5937
5938 for (i = 0; i < mpb->num_raid_devs; i++) {
5939 struct imsm_dev *dev = get_imsm_dev(super, i);
5940 struct imsm_map *map = get_imsm_map(dev, 0);
5941 struct imsm_map *map2;
5942 int prev_num_members;
5943
5944 if (dev->vol.migr_state)
5945 return;
5946
5947 if (prev_disks == -1)
5948 prev_disks = map->num_members;
5949 if (prev_disks == map->num_members)
5950 continue;
5951
5952 /* OK, this array needs to enter reshape mode.
5953 * i.e it needs a migr_state
5954 */
5955
5956 copy_map_size = sizeof_imsm_map(map);
5957 prev_num_members = map->num_members;
5958 map->num_members = prev_disks;
5959 dev->vol.migr_state = 1;
5960 dev->vol.curr_migr_unit = 0;
5961 dev->vol.migr_type = MIGR_GEN_MIGR;
5962 for (i = prev_num_members;
5963 i < map->num_members; i++)
5964 set_imsm_ord_tbl_ent(map, i, i);
5965 map2 = get_imsm_map(dev, 1);
5966 /* Copy the current map */
5967 memcpy(map2, map, copy_map_size);
5968 map2->num_members = prev_num_members;
5969
5970 imsm_set_array_size(dev);
5971 super->updates_pending++;
5972 }
5973 }
5974
5975 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5976 * states are handled in imsm_set_disk() with one exception, when a
5977 * resync is stopped due to a new failure this routine will set the
5978 * 'degraded' state for the array.
5979 */
5980 static int imsm_set_array_state(struct active_array *a, int consistent)
5981 {
5982 int inst = a->info.container_member;
5983 struct intel_super *super = a->container->sb;
5984 struct imsm_dev *dev = get_imsm_dev(super, inst);
5985 struct imsm_map *map = get_imsm_map(dev, 0);
5986 int failed = imsm_count_failed(super, dev);
5987 __u8 map_state = imsm_check_degraded(super, dev, failed);
5988 __u32 blocks_per_unit;
5989
5990 if (dev->vol.migr_state &&
5991 dev->vol.migr_type == MIGR_GEN_MIGR) {
5992 /* array state change is blocked due to reshape action
5993 * We might need to
5994 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5995 * - finish the reshape (if last_checkpoint is big and action != reshape)
5996 * - update curr_migr_unit
5997 */
5998 if (a->curr_action == reshape) {
5999 /* still reshaping, maybe update curr_migr_unit */
6000 goto mark_checkpoint;
6001 } else {
6002 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6003 /* for some reason we aborted the reshape.
6004 *
6005 * disable automatic metadata rollback
6006 * user action is required to recover process
6007 */
6008 if (0) {
6009 struct imsm_map *map2 = get_imsm_map(dev, 1);
6010 dev->vol.migr_state = 0;
6011 dev->vol.migr_type = 0;
6012 dev->vol.curr_migr_unit = 0;
6013 memcpy(map, map2, sizeof_imsm_map(map2));
6014 super->updates_pending++;
6015 }
6016 }
6017 if (a->last_checkpoint >= a->info.component_size) {
6018 unsigned long long array_blocks;
6019 int used_disks;
6020 struct mdinfo *mdi;
6021
6022 used_disks = imsm_num_data_members(dev, 0);
6023 if (used_disks > 0) {
6024 array_blocks =
6025 map->blocks_per_member *
6026 used_disks;
6027 /* round array size down to closest MB
6028 */
6029 array_blocks = (array_blocks
6030 >> SECT_PER_MB_SHIFT)
6031 << SECT_PER_MB_SHIFT;
6032 a->info.custom_array_size = array_blocks;
6033 /* encourage manager to update array
6034 * size
6035 */
6036
6037 a->check_reshape = 1;
6038 }
6039 /* finalize online capacity expansion/reshape */
6040 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6041 imsm_set_disk(a,
6042 mdi->disk.raid_disk,
6043 mdi->curr_state);
6044
6045 imsm_progress_container_reshape(super);
6046 }
6047 }
6048 }
6049
6050 /* before we activate this array handle any missing disks */
6051 if (consistent == 2)
6052 handle_missing(super, dev);
6053
6054 if (consistent == 2 &&
6055 (!is_resync_complete(&a->info) ||
6056 map_state != IMSM_T_STATE_NORMAL ||
6057 dev->vol.migr_state))
6058 consistent = 0;
6059
6060 if (is_resync_complete(&a->info)) {
6061 /* complete intialization / resync,
6062 * recovery and interrupted recovery is completed in
6063 * ->set_disk
6064 */
6065 if (is_resyncing(dev)) {
6066 dprintf("imsm: mark resync done\n");
6067 end_migration(dev, map_state);
6068 super->updates_pending++;
6069 a->last_checkpoint = 0;
6070 }
6071 } else if (!is_resyncing(dev) && !failed) {
6072 /* mark the start of the init process if nothing is failed */
6073 dprintf("imsm: mark resync start\n");
6074 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6075 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6076 else
6077 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6078 super->updates_pending++;
6079 }
6080
6081 mark_checkpoint:
6082 /* skip checkpointing for general migration,
6083 * it is controlled in mdadm
6084 */
6085 if (is_gen_migration(dev))
6086 goto skip_mark_checkpoint;
6087
6088 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6089 blocks_per_unit = blocks_per_migr_unit(super, dev);
6090 if (blocks_per_unit) {
6091 __u32 units32;
6092 __u64 units;
6093
6094 units = a->last_checkpoint / blocks_per_unit;
6095 units32 = units;
6096
6097 /* check that we did not overflow 32-bits, and that
6098 * curr_migr_unit needs updating
6099 */
6100 if (units32 == units &&
6101 units32 != 0 &&
6102 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6103 dprintf("imsm: mark checkpoint (%u)\n", units32);
6104 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6105 super->updates_pending++;
6106 }
6107 }
6108
6109 skip_mark_checkpoint:
6110 /* mark dirty / clean */
6111 if (dev->vol.dirty != !consistent) {
6112 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6113 if (consistent)
6114 dev->vol.dirty = 0;
6115 else
6116 dev->vol.dirty = 1;
6117 super->updates_pending++;
6118 }
6119
6120 return consistent;
6121 }
6122
6123 static void imsm_set_disk(struct active_array *a, int n, int state)
6124 {
6125 int inst = a->info.container_member;
6126 struct intel_super *super = a->container->sb;
6127 struct imsm_dev *dev = get_imsm_dev(super, inst);
6128 struct imsm_map *map = get_imsm_map(dev, 0);
6129 struct imsm_disk *disk;
6130 int failed;
6131 __u32 ord;
6132 __u8 map_state;
6133
6134 if (n > map->num_members)
6135 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6136 n, map->num_members - 1);
6137
6138 if (n < 0)
6139 return;
6140
6141 dprintf("imsm: set_disk %d:%x\n", n, state);
6142
6143 ord = get_imsm_ord_tbl_ent(dev, n, -1);
6144 disk = get_imsm_disk(super, ord_to_idx(ord));
6145
6146 /* check for new failures */
6147 if (state & DS_FAULTY) {
6148 if (mark_failure(dev, disk, ord_to_idx(ord)))
6149 super->updates_pending++;
6150 }
6151
6152 /* check if in_sync */
6153 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6154 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6155
6156 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6157 super->updates_pending++;
6158 }
6159
6160 failed = imsm_count_failed(super, dev);
6161 map_state = imsm_check_degraded(super, dev, failed);
6162
6163 /* check if recovery complete, newly degraded, or failed */
6164 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6165 end_migration(dev, map_state);
6166 map = get_imsm_map(dev, 0);
6167 map->failed_disk_num = ~0;
6168 super->updates_pending++;
6169 a->last_checkpoint = 0;
6170 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6171 map->map_state != map_state &&
6172 !dev->vol.migr_state) {
6173 dprintf("imsm: mark degraded\n");
6174 map->map_state = map_state;
6175 super->updates_pending++;
6176 a->last_checkpoint = 0;
6177 } else if (map_state == IMSM_T_STATE_FAILED &&
6178 map->map_state != map_state) {
6179 dprintf("imsm: mark failed\n");
6180 end_migration(dev, map_state);
6181 super->updates_pending++;
6182 a->last_checkpoint = 0;
6183 } else if (is_gen_migration(dev)) {
6184 dprintf("imsm: Detected General Migration in state: ");
6185 if (map_state == IMSM_T_STATE_NORMAL) {
6186 end_migration(dev, map_state);
6187 map = get_imsm_map(dev, 0);
6188 map->failed_disk_num = ~0;
6189 dprintf("normal\n");
6190 } else {
6191 if (map_state == IMSM_T_STATE_DEGRADED) {
6192 printf("degraded\n");
6193 end_migration(dev, map_state);
6194 } else {
6195 dprintf("failed\n");
6196 }
6197 map->map_state = map_state;
6198 }
6199 super->updates_pending++;
6200 }
6201 }
6202
6203 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6204 {
6205 void *buf = mpb;
6206 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6207 unsigned long long dsize;
6208 unsigned long long sectors;
6209
6210 get_dev_size(fd, NULL, &dsize);
6211
6212 if (mpb_size > 512) {
6213 /* -1 to account for anchor */
6214 sectors = mpb_sectors(mpb) - 1;
6215
6216 /* write the extended mpb to the sectors preceeding the anchor */
6217 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6218 return 1;
6219
6220 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6221 != 512 * sectors)
6222 return 1;
6223 }
6224
6225 /* first block is stored on second to last sector of the disk */
6226 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6227 return 1;
6228
6229 if (write(fd, buf, 512) != 512)
6230 return 1;
6231
6232 return 0;
6233 }
6234
6235 static void imsm_sync_metadata(struct supertype *container)
6236 {
6237 struct intel_super *super = container->sb;
6238
6239 dprintf("sync metadata: %d\n", super->updates_pending);
6240 if (!super->updates_pending)
6241 return;
6242
6243 write_super_imsm(container, 0);
6244
6245 super->updates_pending = 0;
6246 }
6247
6248 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6249 {
6250 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6251 int i = get_imsm_disk_idx(dev, idx, -1);
6252 struct dl *dl;
6253
6254 for (dl = super->disks; dl; dl = dl->next)
6255 if (dl->index == i)
6256 break;
6257
6258 if (dl && is_failed(&dl->disk))
6259 dl = NULL;
6260
6261 if (dl)
6262 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6263
6264 return dl;
6265 }
6266
6267 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6268 struct active_array *a, int activate_new,
6269 struct mdinfo *additional_test_list)
6270 {
6271 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6272 int idx = get_imsm_disk_idx(dev, slot, -1);
6273 struct imsm_super *mpb = super->anchor;
6274 struct imsm_map *map;
6275 unsigned long long pos;
6276 struct mdinfo *d;
6277 struct extent *ex;
6278 int i, j;
6279 int found;
6280 __u32 array_start = 0;
6281 __u32 array_end = 0;
6282 struct dl *dl;
6283 struct mdinfo *test_list;
6284
6285 for (dl = super->disks; dl; dl = dl->next) {
6286 /* If in this array, skip */
6287 for (d = a->info.devs ; d ; d = d->next)
6288 if (d->state_fd >= 0 &&
6289 d->disk.major == dl->major &&
6290 d->disk.minor == dl->minor) {
6291 dprintf("%x:%x already in array\n",
6292 dl->major, dl->minor);
6293 break;
6294 }
6295 if (d)
6296 continue;
6297 test_list = additional_test_list;
6298 while (test_list) {
6299 if (test_list->disk.major == dl->major &&
6300 test_list->disk.minor == dl->minor) {
6301 dprintf("%x:%x already in additional test list\n",
6302 dl->major, dl->minor);
6303 break;
6304 }
6305 test_list = test_list->next;
6306 }
6307 if (test_list)
6308 continue;
6309
6310 /* skip in use or failed drives */
6311 if (is_failed(&dl->disk) || idx == dl->index ||
6312 dl->index == -2) {
6313 dprintf("%x:%x status (failed: %d index: %d)\n",
6314 dl->major, dl->minor, is_failed(&dl->disk), idx);
6315 continue;
6316 }
6317
6318 /* skip pure spares when we are looking for partially
6319 * assimilated drives
6320 */
6321 if (dl->index == -1 && !activate_new)
6322 continue;
6323
6324 /* Does this unused device have the requisite free space?
6325 * It needs to be able to cover all member volumes
6326 */
6327 ex = get_extents(super, dl);
6328 if (!ex) {
6329 dprintf("cannot get extents\n");
6330 continue;
6331 }
6332 for (i = 0; i < mpb->num_raid_devs; i++) {
6333 dev = get_imsm_dev(super, i);
6334 map = get_imsm_map(dev, 0);
6335
6336 /* check if this disk is already a member of
6337 * this array
6338 */
6339 if (get_imsm_disk_slot(map, dl->index) >= 0)
6340 continue;
6341
6342 found = 0;
6343 j = 0;
6344 pos = 0;
6345 array_start = __le32_to_cpu(map->pba_of_lba0);
6346 array_end = array_start +
6347 __le32_to_cpu(map->blocks_per_member) - 1;
6348
6349 do {
6350 /* check that we can start at pba_of_lba0 with
6351 * blocks_per_member of space
6352 */
6353 if (array_start >= pos && array_end < ex[j].start) {
6354 found = 1;
6355 break;
6356 }
6357 pos = ex[j].start + ex[j].size;
6358 j++;
6359 } while (ex[j-1].size);
6360
6361 if (!found)
6362 break;
6363 }
6364
6365 free(ex);
6366 if (i < mpb->num_raid_devs) {
6367 dprintf("%x:%x does not have %u to %u available\n",
6368 dl->major, dl->minor, array_start, array_end);
6369 /* No room */
6370 continue;
6371 }
6372 return dl;
6373 }
6374
6375 return dl;
6376 }
6377
6378
6379 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6380 {
6381 struct imsm_dev *dev2;
6382 struct imsm_map *map;
6383 struct dl *idisk;
6384 int slot;
6385 int idx;
6386 __u8 state;
6387
6388 dev2 = get_imsm_dev(cont->sb, dev_idx);
6389 if (dev2) {
6390 state = imsm_check_degraded(cont->sb, dev2, failed);
6391 if (state == IMSM_T_STATE_FAILED) {
6392 map = get_imsm_map(dev2, 0);
6393 if (!map)
6394 return 1;
6395 for (slot = 0; slot < map->num_members; slot++) {
6396 /*
6397 * Check if failed disks are deleted from intel
6398 * disk list or are marked to be deleted
6399 */
6400 idx = get_imsm_disk_idx(dev2, slot, -1);
6401 idisk = get_imsm_dl_disk(cont->sb, idx);
6402 /*
6403 * Do not rebuild the array if failed disks
6404 * from failed sub-array are not removed from
6405 * container.
6406 */
6407 if (idisk &&
6408 is_failed(&idisk->disk) &&
6409 (idisk->action != DISK_REMOVE))
6410 return 0;
6411 }
6412 }
6413 }
6414 return 1;
6415 }
6416
6417 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6418 struct metadata_update **updates)
6419 {
6420 /**
6421 * Find a device with unused free space and use it to replace a
6422 * failed/vacant region in an array. We replace failed regions one a
6423 * array at a time. The result is that a new spare disk will be added
6424 * to the first failed array and after the monitor has finished
6425 * propagating failures the remainder will be consumed.
6426 *
6427 * FIXME add a capability for mdmon to request spares from another
6428 * container.
6429 */
6430
6431 struct intel_super *super = a->container->sb;
6432 int inst = a->info.container_member;
6433 struct imsm_dev *dev = get_imsm_dev(super, inst);
6434 struct imsm_map *map = get_imsm_map(dev, 0);
6435 int failed = a->info.array.raid_disks;
6436 struct mdinfo *rv = NULL;
6437 struct mdinfo *d;
6438 struct mdinfo *di;
6439 struct metadata_update *mu;
6440 struct dl *dl;
6441 struct imsm_update_activate_spare *u;
6442 int num_spares = 0;
6443 int i;
6444 int allowed;
6445
6446 for (d = a->info.devs ; d ; d = d->next) {
6447 if ((d->curr_state & DS_FAULTY) &&
6448 d->state_fd >= 0)
6449 /* wait for Removal to happen */
6450 return NULL;
6451 if (d->state_fd >= 0)
6452 failed--;
6453 }
6454
6455 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6456 inst, failed, a->info.array.raid_disks, a->info.array.level);
6457
6458 if (dev->vol.migr_state &&
6459 dev->vol.migr_type == MIGR_GEN_MIGR)
6460 /* No repair during migration */
6461 return NULL;
6462
6463 if (a->info.array.level == 4)
6464 /* No repair for takeovered array
6465 * imsm doesn't support raid4
6466 */
6467 return NULL;
6468
6469 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
6470 return NULL;
6471
6472 /*
6473 * If there are any failed disks check state of the other volume.
6474 * Block rebuild if the another one is failed until failed disks
6475 * are removed from container.
6476 */
6477 if (failed) {
6478 dprintf("found failed disks in %s, check if there another"
6479 "failed sub-array.\n",
6480 dev->volume);
6481 /* check if states of the other volumes allow for rebuild */
6482 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6483 if (i != inst) {
6484 allowed = imsm_rebuild_allowed(a->container,
6485 i, failed);
6486 if (!allowed)
6487 return NULL;
6488 }
6489 }
6490 }
6491
6492 /* For each slot, if it is not working, find a spare */
6493 for (i = 0; i < a->info.array.raid_disks; i++) {
6494 for (d = a->info.devs ; d ; d = d->next)
6495 if (d->disk.raid_disk == i)
6496 break;
6497 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6498 if (d && (d->state_fd >= 0))
6499 continue;
6500
6501 /*
6502 * OK, this device needs recovery. Try to re-add the
6503 * previous occupant of this slot, if this fails see if
6504 * we can continue the assimilation of a spare that was
6505 * partially assimilated, finally try to activate a new
6506 * spare.
6507 */
6508 dl = imsm_readd(super, i, a);
6509 if (!dl)
6510 dl = imsm_add_spare(super, i, a, 0, NULL);
6511 if (!dl)
6512 dl = imsm_add_spare(super, i, a, 1, NULL);
6513 if (!dl)
6514 continue;
6515
6516 /* found a usable disk with enough space */
6517 di = malloc(sizeof(*di));
6518 if (!di)
6519 continue;
6520 memset(di, 0, sizeof(*di));
6521
6522 /* dl->index will be -1 in the case we are activating a
6523 * pristine spare. imsm_process_update() will create a
6524 * new index in this case. Once a disk is found to be
6525 * failed in all member arrays it is kicked from the
6526 * metadata
6527 */
6528 di->disk.number = dl->index;
6529
6530 /* (ab)use di->devs to store a pointer to the device
6531 * we chose
6532 */
6533 di->devs = (struct mdinfo *) dl;
6534
6535 di->disk.raid_disk = i;
6536 di->disk.major = dl->major;
6537 di->disk.minor = dl->minor;
6538 di->disk.state = 0;
6539 di->recovery_start = 0;
6540 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6541 di->component_size = a->info.component_size;
6542 di->container_member = inst;
6543 super->random = random32();
6544 di->next = rv;
6545 rv = di;
6546 num_spares++;
6547 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6548 i, di->data_offset);
6549
6550 break;
6551 }
6552
6553 if (!rv)
6554 /* No spares found */
6555 return rv;
6556 /* Now 'rv' has a list of devices to return.
6557 * Create a metadata_update record to update the
6558 * disk_ord_tbl for the array
6559 */
6560 mu = malloc(sizeof(*mu));
6561 if (mu) {
6562 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6563 if (mu->buf == NULL) {
6564 free(mu);
6565 mu = NULL;
6566 }
6567 }
6568 if (!mu) {
6569 while (rv) {
6570 struct mdinfo *n = rv->next;
6571
6572 free(rv);
6573 rv = n;
6574 }
6575 return NULL;
6576 }
6577
6578 mu->space = NULL;
6579 mu->space_list = NULL;
6580 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6581 mu->next = *updates;
6582 u = (struct imsm_update_activate_spare *) mu->buf;
6583
6584 for (di = rv ; di ; di = di->next) {
6585 u->type = update_activate_spare;
6586 u->dl = (struct dl *) di->devs;
6587 di->devs = NULL;
6588 u->slot = di->disk.raid_disk;
6589 u->array = inst;
6590 u->next = u + 1;
6591 u++;
6592 }
6593 (u-1)->next = NULL;
6594 *updates = mu;
6595
6596 return rv;
6597 }
6598
6599 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6600 {
6601 struct imsm_dev *dev = get_imsm_dev(super, idx);
6602 struct imsm_map *map = get_imsm_map(dev, 0);
6603 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6604 struct disk_info *inf = get_disk_info(u);
6605 struct imsm_disk *disk;
6606 int i;
6607 int j;
6608
6609 for (i = 0; i < map->num_members; i++) {
6610 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6611 for (j = 0; j < new_map->num_members; j++)
6612 if (serialcmp(disk->serial, inf[j].serial) == 0)
6613 return 1;
6614 }
6615
6616 return 0;
6617 }
6618
6619
6620 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6621 {
6622 struct dl *dl = NULL;
6623 for (dl = super->disks; dl; dl = dl->next)
6624 if ((dl->major == major) && (dl->minor == minor))
6625 return dl;
6626 return NULL;
6627 }
6628
6629 static int remove_disk_super(struct intel_super *super, int major, int minor)
6630 {
6631 struct dl *prev = NULL;
6632 struct dl *dl;
6633
6634 prev = NULL;
6635 for (dl = super->disks; dl; dl = dl->next) {
6636 if ((dl->major == major) && (dl->minor == minor)) {
6637 /* remove */
6638 if (prev)
6639 prev->next = dl->next;
6640 else
6641 super->disks = dl->next;
6642 dl->next = NULL;
6643 __free_imsm_disk(dl);
6644 dprintf("%s: removed %x:%x\n",
6645 __func__, major, minor);
6646 break;
6647 }
6648 prev = dl;
6649 }
6650 return 0;
6651 }
6652
6653 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6654
6655 static int add_remove_disk_update(struct intel_super *super)
6656 {
6657 int check_degraded = 0;
6658 struct dl *disk = NULL;
6659 /* add/remove some spares to/from the metadata/contrainer */
6660 while (super->disk_mgmt_list) {
6661 struct dl *disk_cfg;
6662
6663 disk_cfg = super->disk_mgmt_list;
6664 super->disk_mgmt_list = disk_cfg->next;
6665 disk_cfg->next = NULL;
6666
6667 if (disk_cfg->action == DISK_ADD) {
6668 disk_cfg->next = super->disks;
6669 super->disks = disk_cfg;
6670 check_degraded = 1;
6671 dprintf("%s: added %x:%x\n",
6672 __func__, disk_cfg->major,
6673 disk_cfg->minor);
6674 } else if (disk_cfg->action == DISK_REMOVE) {
6675 dprintf("Disk remove action processed: %x.%x\n",
6676 disk_cfg->major, disk_cfg->minor);
6677 disk = get_disk_super(super,
6678 disk_cfg->major,
6679 disk_cfg->minor);
6680 if (disk) {
6681 /* store action status */
6682 disk->action = DISK_REMOVE;
6683 /* remove spare disks only */
6684 if (disk->index == -1) {
6685 remove_disk_super(super,
6686 disk_cfg->major,
6687 disk_cfg->minor);
6688 }
6689 }
6690 /* release allocate disk structure */
6691 __free_imsm_disk(disk_cfg);
6692 }
6693 }
6694 return check_degraded;
6695 }
6696
6697
6698 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6699 struct intel_super *super,
6700 void ***space_list)
6701 {
6702 struct intel_dev *id;
6703 void **tofree = NULL;
6704 int ret_val = 0;
6705
6706 dprintf("apply_reshape_migration_update()\n");
6707 if ((u->subdev < 0) ||
6708 (u->subdev > 1)) {
6709 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6710 return ret_val;
6711 }
6712 if ((space_list == NULL) || (*space_list == NULL)) {
6713 dprintf("imsm: Error: Memory is not allocated\n");
6714 return ret_val;
6715 }
6716
6717 for (id = super->devlist ; id; id = id->next) {
6718 if (id->index == (unsigned)u->subdev) {
6719 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
6720 struct imsm_map *map;
6721 struct imsm_dev *new_dev =
6722 (struct imsm_dev *)*space_list;
6723 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6724 int to_state;
6725 struct dl *new_disk;
6726
6727 if (new_dev == NULL)
6728 return ret_val;
6729 *space_list = **space_list;
6730 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
6731 map = get_imsm_map(new_dev, 0);
6732 if (migr_map) {
6733 dprintf("imsm: Error: migration in progress");
6734 return ret_val;
6735 }
6736
6737 to_state = map->map_state;
6738 if ((u->new_level == 5) && (map->raid_level == 0)) {
6739 map->num_members++;
6740 /* this should not happen */
6741 if (u->new_disks[0] < 0) {
6742 map->failed_disk_num =
6743 map->num_members - 1;
6744 to_state = IMSM_T_STATE_DEGRADED;
6745 } else
6746 to_state = IMSM_T_STATE_NORMAL;
6747 }
6748 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
6749 if (u->new_level > -1)
6750 map->raid_level = u->new_level;
6751 migr_map = get_imsm_map(new_dev, 1);
6752 if ((u->new_level == 5) &&
6753 (migr_map->raid_level == 0)) {
6754 int ord = map->num_members - 1;
6755 migr_map->num_members--;
6756 if (u->new_disks[0] < 0)
6757 ord |= IMSM_ORD_REBUILD;
6758 set_imsm_ord_tbl_ent(map,
6759 map->num_members - 1,
6760 ord);
6761 }
6762 id->dev = new_dev;
6763 tofree = (void **)dev;
6764
6765 /* update chunk size
6766 */
6767 if (u->new_chunksize > 0)
6768 map->blocks_per_strip =
6769 __cpu_to_le16(u->new_chunksize * 2);
6770
6771 /* add disk
6772 */
6773 if ((u->new_level != 5) ||
6774 (migr_map->raid_level != 0) ||
6775 (migr_map->raid_level == map->raid_level))
6776 goto skip_disk_add;
6777
6778 if (u->new_disks[0] >= 0) {
6779 /* use passes spare
6780 */
6781 new_disk = get_disk_super(super,
6782 major(u->new_disks[0]),
6783 minor(u->new_disks[0]));
6784 dprintf("imsm: new disk for reshape is: %i:%i "
6785 "(%p, index = %i)\n",
6786 major(u->new_disks[0]),
6787 minor(u->new_disks[0]),
6788 new_disk, new_disk->index);
6789 if (new_disk == NULL)
6790 goto error_disk_add;
6791
6792 new_disk->index = map->num_members - 1;
6793 /* slot to fill in autolayout
6794 */
6795 new_disk->raiddisk = new_disk->index;
6796 new_disk->disk.status |= CONFIGURED_DISK;
6797 new_disk->disk.status &= ~SPARE_DISK;
6798 } else
6799 goto error_disk_add;
6800
6801 skip_disk_add:
6802 *tofree = *space_list;
6803 /* calculate new size
6804 */
6805 imsm_set_array_size(new_dev);
6806
6807 ret_val = 1;
6808 }
6809 }
6810
6811 if (tofree)
6812 *space_list = tofree;
6813 return ret_val;
6814
6815 error_disk_add:
6816 dprintf("Error: imsm: Cannot find disk.\n");
6817 return ret_val;
6818 }
6819
6820
6821 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
6822 struct intel_super *super,
6823 void ***space_list)
6824 {
6825 struct dl *new_disk;
6826 struct intel_dev *id;
6827 int i;
6828 int delta_disks = u->new_raid_disks - u->old_raid_disks;
6829 int disk_count = u->old_raid_disks;
6830 void **tofree = NULL;
6831 int devices_to_reshape = 1;
6832 struct imsm_super *mpb = super->anchor;
6833 int ret_val = 0;
6834 unsigned int dev_id;
6835
6836 dprintf("imsm: apply_reshape_container_disks_update()\n");
6837
6838 /* enable spares to use in array */
6839 for (i = 0; i < delta_disks; i++) {
6840 new_disk = get_disk_super(super,
6841 major(u->new_disks[i]),
6842 minor(u->new_disks[i]));
6843 dprintf("imsm: new disk for reshape is: %i:%i "
6844 "(%p, index = %i)\n",
6845 major(u->new_disks[i]), minor(u->new_disks[i]),
6846 new_disk, new_disk->index);
6847 if ((new_disk == NULL) ||
6848 ((new_disk->index >= 0) &&
6849 (new_disk->index < u->old_raid_disks)))
6850 goto update_reshape_exit;
6851 new_disk->index = disk_count++;
6852 /* slot to fill in autolayout
6853 */
6854 new_disk->raiddisk = new_disk->index;
6855 new_disk->disk.status |=
6856 CONFIGURED_DISK;
6857 new_disk->disk.status &= ~SPARE_DISK;
6858 }
6859
6860 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
6861 mpb->num_raid_devs);
6862 /* manage changes in volume
6863 */
6864 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
6865 void **sp = *space_list;
6866 struct imsm_dev *newdev;
6867 struct imsm_map *newmap, *oldmap;
6868
6869 for (id = super->devlist ; id; id = id->next) {
6870 if (id->index == dev_id)
6871 break;
6872 }
6873 if (id == NULL)
6874 break;
6875 if (!sp)
6876 continue;
6877 *space_list = *sp;
6878 newdev = (void*)sp;
6879 /* Copy the dev, but not (all of) the map */
6880 memcpy(newdev, id->dev, sizeof(*newdev));
6881 oldmap = get_imsm_map(id->dev, 0);
6882 newmap = get_imsm_map(newdev, 0);
6883 /* Copy the current map */
6884 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6885 /* update one device only
6886 */
6887 if (devices_to_reshape) {
6888 dprintf("imsm: modifying subdev: %i\n",
6889 id->index);
6890 devices_to_reshape--;
6891 newdev->vol.migr_state = 1;
6892 newdev->vol.curr_migr_unit = 0;
6893 newdev->vol.migr_type = MIGR_GEN_MIGR;
6894 newmap->num_members = u->new_raid_disks;
6895 for (i = 0; i < delta_disks; i++) {
6896 set_imsm_ord_tbl_ent(newmap,
6897 u->old_raid_disks + i,
6898 u->old_raid_disks + i);
6899 }
6900 /* New map is correct, now need to save old map
6901 */
6902 newmap = get_imsm_map(newdev, 1);
6903 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
6904
6905 imsm_set_array_size(newdev);
6906 }
6907
6908 sp = (void **)id->dev;
6909 id->dev = newdev;
6910 *sp = tofree;
6911 tofree = sp;
6912
6913 /* Clear migration record */
6914 memset(super->migr_rec, 0, sizeof(struct migr_record));
6915 }
6916 if (tofree)
6917 *space_list = tofree;
6918 ret_val = 1;
6919
6920 update_reshape_exit:
6921
6922 return ret_val;
6923 }
6924
6925 static int apply_takeover_update(struct imsm_update_takeover *u,
6926 struct intel_super *super,
6927 void ***space_list)
6928 {
6929 struct imsm_dev *dev = NULL;
6930 struct intel_dev *dv;
6931 struct imsm_dev *dev_new;
6932 struct imsm_map *map;
6933 struct dl *dm, *du;
6934 int i;
6935
6936 for (dv = super->devlist; dv; dv = dv->next)
6937 if (dv->index == (unsigned int)u->subarray) {
6938 dev = dv->dev;
6939 break;
6940 }
6941
6942 if (dev == NULL)
6943 return 0;
6944
6945 map = get_imsm_map(dev, 0);
6946
6947 if (u->direction == R10_TO_R0) {
6948 /* Number of failed disks must be half of initial disk number */
6949 if (imsm_count_failed(super, dev) != (map->num_members / 2))
6950 return 0;
6951
6952 /* iterate through devices to mark removed disks as spare */
6953 for (dm = super->disks; dm; dm = dm->next) {
6954 if (dm->disk.status & FAILED_DISK) {
6955 int idx = dm->index;
6956 /* update indexes on the disk list */
6957 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6958 the index values will end up being correct.... NB */
6959 for (du = super->disks; du; du = du->next)
6960 if (du->index > idx)
6961 du->index--;
6962 /* mark as spare disk */
6963 dm->disk.status = SPARE_DISK;
6964 dm->index = -1;
6965 }
6966 }
6967 /* update map */
6968 map->num_members = map->num_members / 2;
6969 map->map_state = IMSM_T_STATE_NORMAL;
6970 map->num_domains = 1;
6971 map->raid_level = 0;
6972 map->failed_disk_num = -1;
6973 }
6974
6975 if (u->direction == R0_TO_R10) {
6976 void **space;
6977 /* update slots in current disk list */
6978 for (dm = super->disks; dm; dm = dm->next) {
6979 if (dm->index >= 0)
6980 dm->index *= 2;
6981 }
6982 /* create new *missing* disks */
6983 for (i = 0; i < map->num_members; i++) {
6984 space = *space_list;
6985 if (!space)
6986 continue;
6987 *space_list = *space;
6988 du = (void *)space;
6989 memcpy(du, super->disks, sizeof(*du));
6990 du->fd = -1;
6991 du->minor = 0;
6992 du->major = 0;
6993 du->index = (i * 2) + 1;
6994 sprintf((char *)du->disk.serial,
6995 " MISSING_%d", du->index);
6996 sprintf((char *)du->serial,
6997 "MISSING_%d", du->index);
6998 du->next = super->missing;
6999 super->missing = du;
7000 }
7001 /* create new dev and map */
7002 space = *space_list;
7003 if (!space)
7004 return 0;
7005 *space_list = *space;
7006 dev_new = (void *)space;
7007 memcpy(dev_new, dev, sizeof(*dev));
7008 /* update new map */
7009 map = get_imsm_map(dev_new, 0);
7010 map->num_members = map->num_members * 2;
7011 map->map_state = IMSM_T_STATE_DEGRADED;
7012 map->num_domains = 2;
7013 map->raid_level = 1;
7014 /* replace dev<->dev_new */
7015 dv->dev = dev_new;
7016 }
7017 /* update disk order table */
7018 for (du = super->disks; du; du = du->next)
7019 if (du->index >= 0)
7020 set_imsm_ord_tbl_ent(map, du->index, du->index);
7021 for (du = super->missing; du; du = du->next)
7022 if (du->index >= 0) {
7023 set_imsm_ord_tbl_ent(map, du->index, du->index);
7024 mark_missing(dv->dev, &du->disk, du->index);
7025 }
7026
7027 return 1;
7028 }
7029
7030 static void imsm_process_update(struct supertype *st,
7031 struct metadata_update *update)
7032 {
7033 /**
7034 * crack open the metadata_update envelope to find the update record
7035 * update can be one of:
7036 * update_reshape_container_disks - all the arrays in the container
7037 * are being reshaped to have more devices. We need to mark
7038 * the arrays for general migration and convert selected spares
7039 * into active devices.
7040 * update_activate_spare - a spare device has replaced a failed
7041 * device in an array, update the disk_ord_tbl. If this disk is
7042 * present in all member arrays then also clear the SPARE_DISK
7043 * flag
7044 * update_create_array
7045 * update_kill_array
7046 * update_rename_array
7047 * update_add_remove_disk
7048 */
7049 struct intel_super *super = st->sb;
7050 struct imsm_super *mpb;
7051 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7052
7053 /* update requires a larger buf but the allocation failed */
7054 if (super->next_len && !super->next_buf) {
7055 super->next_len = 0;
7056 return;
7057 }
7058
7059 if (super->next_buf) {
7060 memcpy(super->next_buf, super->buf, super->len);
7061 free(super->buf);
7062 super->len = super->next_len;
7063 super->buf = super->next_buf;
7064
7065 super->next_len = 0;
7066 super->next_buf = NULL;
7067 }
7068
7069 mpb = super->anchor;
7070
7071 switch (type) {
7072 case update_general_migration_checkpoint: {
7073 struct intel_dev *id;
7074 struct imsm_update_general_migration_checkpoint *u =
7075 (void *)update->buf;
7076
7077 dprintf("imsm: process_update() "
7078 "for update_general_migration_checkpoint called\n");
7079
7080 /* find device under general migration */
7081 for (id = super->devlist ; id; id = id->next) {
7082 if (is_gen_migration(id->dev)) {
7083 id->dev->vol.curr_migr_unit =
7084 __cpu_to_le32(u->curr_migr_unit);
7085 super->updates_pending++;
7086 }
7087 }
7088 break;
7089 }
7090 case update_takeover: {
7091 struct imsm_update_takeover *u = (void *)update->buf;
7092 if (apply_takeover_update(u, super, &update->space_list)) {
7093 imsm_update_version_info(super);
7094 super->updates_pending++;
7095 }
7096 break;
7097 }
7098
7099 case update_reshape_container_disks: {
7100 struct imsm_update_reshape *u = (void *)update->buf;
7101 if (apply_reshape_container_disks_update(
7102 u, super, &update->space_list))
7103 super->updates_pending++;
7104 break;
7105 }
7106 case update_reshape_migration: {
7107 struct imsm_update_reshape_migration *u = (void *)update->buf;
7108 if (apply_reshape_migration_update(
7109 u, super, &update->space_list))
7110 super->updates_pending++;
7111 break;
7112 }
7113 case update_activate_spare: {
7114 struct imsm_update_activate_spare *u = (void *) update->buf;
7115 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7116 struct imsm_map *map = get_imsm_map(dev, 0);
7117 struct imsm_map *migr_map;
7118 struct active_array *a;
7119 struct imsm_disk *disk;
7120 __u8 to_state;
7121 struct dl *dl;
7122 unsigned int found;
7123 int failed;
7124 int victim = get_imsm_disk_idx(dev, u->slot, -1);
7125 int i;
7126
7127 for (dl = super->disks; dl; dl = dl->next)
7128 if (dl == u->dl)
7129 break;
7130
7131 if (!dl) {
7132 fprintf(stderr, "error: imsm_activate_spare passed "
7133 "an unknown disk (index: %d)\n",
7134 u->dl->index);
7135 return;
7136 }
7137
7138 super->updates_pending++;
7139 /* count failures (excluding rebuilds and the victim)
7140 * to determine map[0] state
7141 */
7142 failed = 0;
7143 for (i = 0; i < map->num_members; i++) {
7144 if (i == u->slot)
7145 continue;
7146 disk = get_imsm_disk(super,
7147 get_imsm_disk_idx(dev, i, -1));
7148 if (!disk || is_failed(disk))
7149 failed++;
7150 }
7151
7152 /* adding a pristine spare, assign a new index */
7153 if (dl->index < 0) {
7154 dl->index = super->anchor->num_disks;
7155 super->anchor->num_disks++;
7156 }
7157 disk = &dl->disk;
7158 disk->status |= CONFIGURED_DISK;
7159 disk->status &= ~SPARE_DISK;
7160
7161 /* mark rebuild */
7162 to_state = imsm_check_degraded(super, dev, failed);
7163 map->map_state = IMSM_T_STATE_DEGRADED;
7164 migrate(dev, super, to_state, MIGR_REBUILD);
7165 migr_map = get_imsm_map(dev, 1);
7166 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7167 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
7168
7169 /* update the family_num to mark a new container
7170 * generation, being careful to record the existing
7171 * family_num in orig_family_num to clean up after
7172 * earlier mdadm versions that neglected to set it.
7173 */
7174 if (mpb->orig_family_num == 0)
7175 mpb->orig_family_num = mpb->family_num;
7176 mpb->family_num += super->random;
7177
7178 /* count arrays using the victim in the metadata */
7179 found = 0;
7180 for (a = st->arrays; a ; a = a->next) {
7181 dev = get_imsm_dev(super, a->info.container_member);
7182 map = get_imsm_map(dev, 0);
7183
7184 if (get_imsm_disk_slot(map, victim) >= 0)
7185 found++;
7186 }
7187
7188 /* delete the victim if it is no longer being
7189 * utilized anywhere
7190 */
7191 if (!found) {
7192 struct dl **dlp;
7193
7194 /* We know that 'manager' isn't touching anything,
7195 * so it is safe to delete
7196 */
7197 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7198 if ((*dlp)->index == victim)
7199 break;
7200
7201 /* victim may be on the missing list */
7202 if (!*dlp)
7203 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
7204 if ((*dlp)->index == victim)
7205 break;
7206 imsm_delete(super, dlp, victim);
7207 }
7208 break;
7209 }
7210 case update_create_array: {
7211 /* someone wants to create a new array, we need to be aware of
7212 * a few races/collisions:
7213 * 1/ 'Create' called by two separate instances of mdadm
7214 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7215 * devices that have since been assimilated via
7216 * activate_spare.
7217 * In the event this update can not be carried out mdadm will
7218 * (FIX ME) notice that its update did not take hold.
7219 */
7220 struct imsm_update_create_array *u = (void *) update->buf;
7221 struct intel_dev *dv;
7222 struct imsm_dev *dev;
7223 struct imsm_map *map, *new_map;
7224 unsigned long long start, end;
7225 unsigned long long new_start, new_end;
7226 int i;
7227 struct disk_info *inf;
7228 struct dl *dl;
7229
7230 /* handle racing creates: first come first serve */
7231 if (u->dev_idx < mpb->num_raid_devs) {
7232 dprintf("%s: subarray %d already defined\n",
7233 __func__, u->dev_idx);
7234 goto create_error;
7235 }
7236
7237 /* check update is next in sequence */
7238 if (u->dev_idx != mpb->num_raid_devs) {
7239 dprintf("%s: can not create array %d expected index %d\n",
7240 __func__, u->dev_idx, mpb->num_raid_devs);
7241 goto create_error;
7242 }
7243
7244 new_map = get_imsm_map(&u->dev, 0);
7245 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7246 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7247 inf = get_disk_info(u);
7248
7249 /* handle activate_spare versus create race:
7250 * check to make sure that overlapping arrays do not include
7251 * overalpping disks
7252 */
7253 for (i = 0; i < mpb->num_raid_devs; i++) {
7254 dev = get_imsm_dev(super, i);
7255 map = get_imsm_map(dev, 0);
7256 start = __le32_to_cpu(map->pba_of_lba0);
7257 end = start + __le32_to_cpu(map->blocks_per_member);
7258 if ((new_start >= start && new_start <= end) ||
7259 (start >= new_start && start <= new_end))
7260 /* overlap */;
7261 else
7262 continue;
7263
7264 if (disks_overlap(super, i, u)) {
7265 dprintf("%s: arrays overlap\n", __func__);
7266 goto create_error;
7267 }
7268 }
7269
7270 /* check that prepare update was successful */
7271 if (!update->space) {
7272 dprintf("%s: prepare update failed\n", __func__);
7273 goto create_error;
7274 }
7275
7276 /* check that all disks are still active before committing
7277 * changes. FIXME: could we instead handle this by creating a
7278 * degraded array? That's probably not what the user expects,
7279 * so better to drop this update on the floor.
7280 */
7281 for (i = 0; i < new_map->num_members; i++) {
7282 dl = serial_to_dl(inf[i].serial, super);
7283 if (!dl) {
7284 dprintf("%s: disk disappeared\n", __func__);
7285 goto create_error;
7286 }
7287 }
7288
7289 super->updates_pending++;
7290
7291 /* convert spares to members and fixup ord_tbl */
7292 for (i = 0; i < new_map->num_members; i++) {
7293 dl = serial_to_dl(inf[i].serial, super);
7294 if (dl->index == -1) {
7295 dl->index = mpb->num_disks;
7296 mpb->num_disks++;
7297 dl->disk.status |= CONFIGURED_DISK;
7298 dl->disk.status &= ~SPARE_DISK;
7299 }
7300 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7301 }
7302
7303 dv = update->space;
7304 dev = dv->dev;
7305 update->space = NULL;
7306 imsm_copy_dev(dev, &u->dev);
7307 dv->index = u->dev_idx;
7308 dv->next = super->devlist;
7309 super->devlist = dv;
7310 mpb->num_raid_devs++;
7311
7312 imsm_update_version_info(super);
7313 break;
7314 create_error:
7315 /* mdmon knows how to release update->space, but not
7316 * ((struct intel_dev *) update->space)->dev
7317 */
7318 if (update->space) {
7319 dv = update->space;
7320 free(dv->dev);
7321 }
7322 break;
7323 }
7324 case update_kill_array: {
7325 struct imsm_update_kill_array *u = (void *) update->buf;
7326 int victim = u->dev_idx;
7327 struct active_array *a;
7328 struct intel_dev **dp;
7329 struct imsm_dev *dev;
7330
7331 /* sanity check that we are not affecting the uuid of
7332 * active arrays, or deleting an active array
7333 *
7334 * FIXME when immutable ids are available, but note that
7335 * we'll also need to fixup the invalidated/active
7336 * subarray indexes in mdstat
7337 */
7338 for (a = st->arrays; a; a = a->next)
7339 if (a->info.container_member >= victim)
7340 break;
7341 /* by definition if mdmon is running at least one array
7342 * is active in the container, so checking
7343 * mpb->num_raid_devs is just extra paranoia
7344 */
7345 dev = get_imsm_dev(super, victim);
7346 if (a || !dev || mpb->num_raid_devs == 1) {
7347 dprintf("failed to delete subarray-%d\n", victim);
7348 break;
7349 }
7350
7351 for (dp = &super->devlist; *dp;)
7352 if ((*dp)->index == (unsigned)super->current_vol) {
7353 *dp = (*dp)->next;
7354 } else {
7355 if ((*dp)->index > (unsigned)victim)
7356 (*dp)->index--;
7357 dp = &(*dp)->next;
7358 }
7359 mpb->num_raid_devs--;
7360 super->updates_pending++;
7361 break;
7362 }
7363 case update_rename_array: {
7364 struct imsm_update_rename_array *u = (void *) update->buf;
7365 char name[MAX_RAID_SERIAL_LEN+1];
7366 int target = u->dev_idx;
7367 struct active_array *a;
7368 struct imsm_dev *dev;
7369
7370 /* sanity check that we are not affecting the uuid of
7371 * an active array
7372 */
7373 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7374 name[MAX_RAID_SERIAL_LEN] = '\0';
7375 for (a = st->arrays; a; a = a->next)
7376 if (a->info.container_member == target)
7377 break;
7378 dev = get_imsm_dev(super, u->dev_idx);
7379 if (a || !dev || !check_name(super, name, 1)) {
7380 dprintf("failed to rename subarray-%d\n", target);
7381 break;
7382 }
7383
7384 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7385 super->updates_pending++;
7386 break;
7387 }
7388 case update_add_remove_disk: {
7389 /* we may be able to repair some arrays if disks are
7390 * being added, check teh status of add_remove_disk
7391 * if discs has been added.
7392 */
7393 if (add_remove_disk_update(super)) {
7394 struct active_array *a;
7395
7396 super->updates_pending++;
7397 for (a = st->arrays; a; a = a->next)
7398 a->check_degraded = 1;
7399 }
7400 break;
7401 }
7402 default:
7403 fprintf(stderr, "error: unsuported process update type:"
7404 "(type: %d)\n", type);
7405 }
7406 }
7407
7408 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7409
7410 static void imsm_prepare_update(struct supertype *st,
7411 struct metadata_update *update)
7412 {
7413 /**
7414 * Allocate space to hold new disk entries, raid-device entries or a new
7415 * mpb if necessary. The manager synchronously waits for updates to
7416 * complete in the monitor, so new mpb buffers allocated here can be
7417 * integrated by the monitor thread without worrying about live pointers
7418 * in the manager thread.
7419 */
7420 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7421 struct intel_super *super = st->sb;
7422 struct imsm_super *mpb = super->anchor;
7423 size_t buf_len;
7424 size_t len = 0;
7425
7426 switch (type) {
7427 case update_general_migration_checkpoint:
7428 dprintf("imsm: prepare_update() "
7429 "for update_general_migration_checkpoint called\n");
7430 break;
7431 case update_takeover: {
7432 struct imsm_update_takeover *u = (void *)update->buf;
7433 if (u->direction == R0_TO_R10) {
7434 void **tail = (void **)&update->space_list;
7435 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7436 struct imsm_map *map = get_imsm_map(dev, 0);
7437 int num_members = map->num_members;
7438 void *space;
7439 int size, i;
7440 int err = 0;
7441 /* allocate memory for added disks */
7442 for (i = 0; i < num_members; i++) {
7443 size = sizeof(struct dl);
7444 space = malloc(size);
7445 if (!space) {
7446 err++;
7447 break;
7448 }
7449 *tail = space;
7450 tail = space;
7451 *tail = NULL;
7452 }
7453 /* allocate memory for new device */
7454 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7455 (num_members * sizeof(__u32));
7456 space = malloc(size);
7457 if (!space)
7458 err++;
7459 else {
7460 *tail = space;
7461 tail = space;
7462 *tail = NULL;
7463 }
7464 if (!err) {
7465 len = disks_to_mpb_size(num_members * 2);
7466 } else {
7467 /* if allocation didn't success, free buffer */
7468 while (update->space_list) {
7469 void **sp = update->space_list;
7470 update->space_list = *sp;
7471 free(sp);
7472 }
7473 }
7474 }
7475
7476 break;
7477 }
7478 case update_reshape_container_disks: {
7479 /* Every raid device in the container is about to
7480 * gain some more devices, and we will enter a
7481 * reconfiguration.
7482 * So each 'imsm_map' will be bigger, and the imsm_vol
7483 * will now hold 2 of them.
7484 * Thus we need new 'struct imsm_dev' allocations sized
7485 * as sizeof_imsm_dev but with more devices in both maps.
7486 */
7487 struct imsm_update_reshape *u = (void *)update->buf;
7488 struct intel_dev *dl;
7489 void **space_tail = (void**)&update->space_list;
7490
7491 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7492
7493 for (dl = super->devlist; dl; dl = dl->next) {
7494 int size = sizeof_imsm_dev(dl->dev, 1);
7495 void *s;
7496 if (u->new_raid_disks > u->old_raid_disks)
7497 size += sizeof(__u32)*2*
7498 (u->new_raid_disks - u->old_raid_disks);
7499 s = malloc(size);
7500 if (!s)
7501 break;
7502 *space_tail = s;
7503 space_tail = s;
7504 *space_tail = NULL;
7505 }
7506
7507 len = disks_to_mpb_size(u->new_raid_disks);
7508 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7509 break;
7510 }
7511 case update_reshape_migration: {
7512 /* for migration level 0->5 we need to add disks
7513 * so the same as for container operation we will copy
7514 * device to the bigger location.
7515 * in memory prepared device and new disk area are prepared
7516 * for usage in process update
7517 */
7518 struct imsm_update_reshape_migration *u = (void *)update->buf;
7519 struct intel_dev *id;
7520 void **space_tail = (void **)&update->space_list;
7521 int size;
7522 void *s;
7523 int current_level = -1;
7524
7525 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7526
7527 /* add space for bigger array in update
7528 */
7529 for (id = super->devlist; id; id = id->next) {
7530 if (id->index == (unsigned)u->subdev) {
7531 size = sizeof_imsm_dev(id->dev, 1);
7532 if (u->new_raid_disks > u->old_raid_disks)
7533 size += sizeof(__u32)*2*
7534 (u->new_raid_disks - u->old_raid_disks);
7535 s = malloc(size);
7536 if (!s)
7537 break;
7538 *space_tail = s;
7539 space_tail = s;
7540 *space_tail = NULL;
7541 break;
7542 }
7543 }
7544 if (update->space_list == NULL)
7545 break;
7546
7547 /* add space for disk in update
7548 */
7549 size = sizeof(struct dl);
7550 s = malloc(size);
7551 if (!s) {
7552 free(update->space_list);
7553 update->space_list = NULL;
7554 break;
7555 }
7556 *space_tail = s;
7557 space_tail = s;
7558 *space_tail = NULL;
7559
7560 /* add spare device to update
7561 */
7562 for (id = super->devlist ; id; id = id->next)
7563 if (id->index == (unsigned)u->subdev) {
7564 struct imsm_dev *dev;
7565 struct imsm_map *map;
7566
7567 dev = get_imsm_dev(super, u->subdev);
7568 map = get_imsm_map(dev, 0);
7569 current_level = map->raid_level;
7570 break;
7571 }
7572 if ((u->new_level == 5) && (u->new_level != current_level)) {
7573 struct mdinfo *spares;
7574
7575 spares = get_spares_for_grow(st);
7576 if (spares) {
7577 struct dl *dl;
7578 struct mdinfo *dev;
7579
7580 dev = spares->devs;
7581 if (dev) {
7582 u->new_disks[0] =
7583 makedev(dev->disk.major,
7584 dev->disk.minor);
7585 dl = get_disk_super(super,
7586 dev->disk.major,
7587 dev->disk.minor);
7588 dl->index = u->old_raid_disks;
7589 dev = dev->next;
7590 }
7591 sysfs_free(spares);
7592 }
7593 }
7594 len = disks_to_mpb_size(u->new_raid_disks);
7595 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7596 break;
7597 }
7598 case update_create_array: {
7599 struct imsm_update_create_array *u = (void *) update->buf;
7600 struct intel_dev *dv;
7601 struct imsm_dev *dev = &u->dev;
7602 struct imsm_map *map = get_imsm_map(dev, 0);
7603 struct dl *dl;
7604 struct disk_info *inf;
7605 int i;
7606 int activate = 0;
7607
7608 inf = get_disk_info(u);
7609 len = sizeof_imsm_dev(dev, 1);
7610 /* allocate a new super->devlist entry */
7611 dv = malloc(sizeof(*dv));
7612 if (dv) {
7613 dv->dev = malloc(len);
7614 if (dv->dev)
7615 update->space = dv;
7616 else {
7617 free(dv);
7618 update->space = NULL;
7619 }
7620 }
7621
7622 /* count how many spares will be converted to members */
7623 for (i = 0; i < map->num_members; i++) {
7624 dl = serial_to_dl(inf[i].serial, super);
7625 if (!dl) {
7626 /* hmm maybe it failed?, nothing we can do about
7627 * it here
7628 */
7629 continue;
7630 }
7631 if (count_memberships(dl, super) == 0)
7632 activate++;
7633 }
7634 len += activate * sizeof(struct imsm_disk);
7635 break;
7636 default:
7637 break;
7638 }
7639 }
7640
7641 /* check if we need a larger metadata buffer */
7642 if (super->next_buf)
7643 buf_len = super->next_len;
7644 else
7645 buf_len = super->len;
7646
7647 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7648 /* ok we need a larger buf than what is currently allocated
7649 * if this allocation fails process_update will notice that
7650 * ->next_len is set and ->next_buf is NULL
7651 */
7652 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7653 if (super->next_buf)
7654 free(super->next_buf);
7655
7656 super->next_len = buf_len;
7657 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7658 memset(super->next_buf, 0, buf_len);
7659 else
7660 super->next_buf = NULL;
7661 }
7662 }
7663
7664 /* must be called while manager is quiesced */
7665 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7666 {
7667 struct imsm_super *mpb = super->anchor;
7668 struct dl *iter;
7669 struct imsm_dev *dev;
7670 struct imsm_map *map;
7671 int i, j, num_members;
7672 __u32 ord;
7673
7674 dprintf("%s: deleting device[%d] from imsm_super\n",
7675 __func__, index);
7676
7677 /* shift all indexes down one */
7678 for (iter = super->disks; iter; iter = iter->next)
7679 if (iter->index > (int)index)
7680 iter->index--;
7681 for (iter = super->missing; iter; iter = iter->next)
7682 if (iter->index > (int)index)
7683 iter->index--;
7684
7685 for (i = 0; i < mpb->num_raid_devs; i++) {
7686 dev = get_imsm_dev(super, i);
7687 map = get_imsm_map(dev, 0);
7688 num_members = map->num_members;
7689 for (j = 0; j < num_members; j++) {
7690 /* update ord entries being careful not to propagate
7691 * ord-flags to the first map
7692 */
7693 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7694
7695 if (ord_to_idx(ord) <= index)
7696 continue;
7697
7698 map = get_imsm_map(dev, 0);
7699 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
7700 map = get_imsm_map(dev, 1);
7701 if (map)
7702 set_imsm_ord_tbl_ent(map, j, ord - 1);
7703 }
7704 }
7705
7706 mpb->num_disks--;
7707 super->updates_pending++;
7708 if (*dlp) {
7709 struct dl *dl = *dlp;
7710
7711 *dlp = (*dlp)->next;
7712 __free_imsm_disk(dl);
7713 }
7714 }
7715 #endif /* MDASSEMBLE */
7716 /*******************************************************************************
7717 * Function: open_backup_targets
7718 * Description: Function opens file descriptors for all devices given in
7719 * info->devs
7720 * Parameters:
7721 * info : general array info
7722 * raid_disks : number of disks
7723 * raid_fds : table of device's file descriptors
7724 * Returns:
7725 * 0 : success
7726 * -1 : fail
7727 ******************************************************************************/
7728 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds)
7729 {
7730 struct mdinfo *sd;
7731
7732 for (sd = info->devs ; sd ; sd = sd->next) {
7733 char *dn;
7734
7735 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
7736 dprintf("disk is faulty!!\n");
7737 continue;
7738 }
7739
7740 if ((sd->disk.raid_disk >= raid_disks) ||
7741 (sd->disk.raid_disk < 0))
7742 continue;
7743
7744 dn = map_dev(sd->disk.major,
7745 sd->disk.minor, 1);
7746 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
7747 if (raid_fds[sd->disk.raid_disk] < 0) {
7748 fprintf(stderr, "cannot open component\n");
7749 return -1;
7750 }
7751 }
7752 return 0;
7753 }
7754
7755 #ifndef MDASSEMBLE
7756 /*******************************************************************************
7757 * Function: init_migr_record_imsm
7758 * Description: Function inits imsm migration record
7759 * Parameters:
7760 * super : imsm internal array info
7761 * dev : device under migration
7762 * info : general array info to find the smallest device
7763 * Returns:
7764 * none
7765 ******************************************************************************/
7766 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
7767 struct mdinfo *info)
7768 {
7769 struct intel_super *super = st->sb;
7770 struct migr_record *migr_rec = super->migr_rec;
7771 int new_data_disks;
7772 unsigned long long dsize, dev_sectors;
7773 long long unsigned min_dev_sectors = -1LLU;
7774 struct mdinfo *sd;
7775 char nm[30];
7776 int fd;
7777 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7778 struct imsm_map *map_src = get_imsm_map(dev, 1);
7779 unsigned long long num_migr_units;
7780 unsigned long long array_blocks;
7781
7782 memset(migr_rec, 0, sizeof(struct migr_record));
7783 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
7784
7785 /* only ascending reshape supported now */
7786 migr_rec->ascending_migr = __cpu_to_le32(1);
7787
7788 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
7789 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
7790 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
7791 new_data_disks = imsm_num_data_members(dev, 0);
7792 migr_rec->blocks_per_unit =
7793 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
7794 migr_rec->dest_depth_per_unit =
7795 __cpu_to_le32(migr_rec->dest_depth_per_unit);
7796 array_blocks = info->component_size * new_data_disks;
7797 num_migr_units =
7798 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
7799
7800 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
7801 num_migr_units++;
7802 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
7803
7804 migr_rec->post_migr_vol_cap = dev->size_low;
7805 migr_rec->post_migr_vol_cap_hi = dev->size_high;
7806
7807
7808 /* Find the smallest dev */
7809 for (sd = info->devs ; sd ; sd = sd->next) {
7810 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
7811 fd = dev_open(nm, O_RDONLY);
7812 if (fd < 0)
7813 continue;
7814 get_dev_size(fd, NULL, &dsize);
7815 dev_sectors = dsize / 512;
7816 if (dev_sectors < min_dev_sectors)
7817 min_dev_sectors = dev_sectors;
7818 close(fd);
7819 }
7820 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
7821 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
7822
7823 write_imsm_migr_rec(st);
7824
7825 return;
7826 }
7827
7828 /*******************************************************************************
7829 * Function: save_backup_imsm
7830 * Description: Function saves critical data stripes to Migration Copy Area
7831 * and updates the current migration unit status.
7832 * Use restore_stripes() to form a destination stripe,
7833 * and to write it to the Copy Area.
7834 * Parameters:
7835 * st : supertype information
7836 * dev : imsm device that backup is saved for
7837 * info : general array info
7838 * buf : input buffer
7839 * length : length of data to backup (blocks_per_unit)
7840 * Returns:
7841 * 0 : success
7842 *, -1 : fail
7843 ******************************************************************************/
7844 int save_backup_imsm(struct supertype *st,
7845 struct imsm_dev *dev,
7846 struct mdinfo *info,
7847 void *buf,
7848 int length)
7849 {
7850 int rv = -1;
7851 struct intel_super *super = st->sb;
7852 unsigned long long *target_offsets = NULL;
7853 int *targets = NULL;
7854 int i;
7855 struct imsm_map *map_dest = get_imsm_map(dev, 0);
7856 int new_disks = map_dest->num_members;
7857 int dest_layout = 0;
7858 int dest_chunk;
7859 unsigned long long start;
7860 int data_disks = imsm_num_data_members(dev, 0);
7861
7862 targets = malloc(new_disks * sizeof(int));
7863 if (!targets)
7864 goto abort;
7865
7866 for (i = 0; i < new_disks; i++)
7867 targets[i] = -1;
7868
7869 target_offsets = malloc(new_disks * sizeof(unsigned long long));
7870 if (!target_offsets)
7871 goto abort;
7872
7873 start = info->reshape_progress * 512;
7874 for (i = 0; i < new_disks; i++) {
7875 target_offsets[i] = (unsigned long long)
7876 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
7877 /* move back copy area adderss, it will be moved forward
7878 * in restore_stripes() using start input variable
7879 */
7880 target_offsets[i] -= start/data_disks;
7881 }
7882
7883 if (open_backup_targets(info, new_disks, targets))
7884 goto abort;
7885
7886 dest_layout = imsm_level_to_layout(map_dest->raid_level);
7887 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
7888
7889 if (restore_stripes(targets, /* list of dest devices */
7890 target_offsets, /* migration record offsets */
7891 new_disks,
7892 dest_chunk,
7893 map_dest->raid_level,
7894 dest_layout,
7895 -1, /* source backup file descriptor */
7896 0, /* input buf offset
7897 * always 0 buf is already offseted */
7898 start,
7899 length,
7900 buf) != 0) {
7901 fprintf(stderr, Name ": Error restoring stripes\n");
7902 goto abort;
7903 }
7904
7905 rv = 0;
7906
7907 abort:
7908 if (targets) {
7909 for (i = 0; i < new_disks; i++)
7910 if (targets[i] >= 0)
7911 close(targets[i]);
7912 free(targets);
7913 }
7914 free(target_offsets);
7915
7916 return rv;
7917 }
7918
7919 /*******************************************************************************
7920 * Function: save_checkpoint_imsm
7921 * Description: Function called for current unit status update
7922 * in the migration record. It writes it to disk.
7923 * Parameters:
7924 * super : imsm internal array info
7925 * info : general array info
7926 * Returns:
7927 * 0: success
7928 * 1: failure
7929 * 2: failure, means no valid migration record
7930 * / no general migration in progress /
7931 ******************************************************************************/
7932 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
7933 {
7934 struct intel_super *super = st->sb;
7935 unsigned long long blocks_per_unit;
7936 unsigned long long curr_migr_unit;
7937
7938 if (load_imsm_migr_rec(super, info) != 0) {
7939 dprintf("imsm: ERROR: Cannot read migration record "
7940 "for checkpoint save.\n");
7941 return 1;
7942 }
7943
7944 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
7945 if (blocks_per_unit == 0) {
7946 dprintf("imsm: no migration in progress.\n");
7947 return 2;
7948 }
7949 curr_migr_unit = info->reshape_progress / blocks_per_unit;
7950 /* check if array is alligned to copy area
7951 * if it is not alligned, add one to current migration unit value
7952 * this can happend on array reshape finish only
7953 */
7954 if (info->reshape_progress % blocks_per_unit)
7955 curr_migr_unit++;
7956
7957 super->migr_rec->curr_migr_unit =
7958 __cpu_to_le32(curr_migr_unit);
7959 super->migr_rec->rec_status = __cpu_to_le32(state);
7960 super->migr_rec->dest_1st_member_lba =
7961 __cpu_to_le32(curr_migr_unit *
7962 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
7963 if (write_imsm_migr_rec(st) < 0) {
7964 dprintf("imsm: Cannot write migration record "
7965 "outside backup area\n");
7966 return 1;
7967 }
7968
7969 return 0;
7970 }
7971
7972 /*******************************************************************************
7973 * Function: recover_backup_imsm
7974 * Description: Function recovers critical data from the Migration Copy Area
7975 * while assembling an array.
7976 * Parameters:
7977 * super : imsm internal array info
7978 * info : general array info
7979 * Returns:
7980 * 0 : success (or there is no data to recover)
7981 * 1 : fail
7982 ******************************************************************************/
7983 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
7984 {
7985 struct intel_super *super = st->sb;
7986 struct migr_record *migr_rec = super->migr_rec;
7987 struct imsm_map *map_dest = NULL;
7988 struct intel_dev *id = NULL;
7989 unsigned long long read_offset;
7990 unsigned long long write_offset;
7991 unsigned unit_len;
7992 int *targets = NULL;
7993 int new_disks, i, err;
7994 char *buf = NULL;
7995 int retval = 1;
7996 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
7997 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
7998 char buffer[20];
7999 int skipped_disks = 0;
8000 int max_degradation;
8001
8002 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8003 if (err < 1)
8004 return 1;
8005
8006 /* recover data only during assemblation */
8007 if (strncmp(buffer, "inactive", 8) != 0)
8008 return 0;
8009 /* no data to recover */
8010 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8011 return 0;
8012 if (curr_migr_unit >= num_migr_units)
8013 return 1;
8014
8015 /* find device during reshape */
8016 for (id = super->devlist; id; id = id->next)
8017 if (is_gen_migration(id->dev))
8018 break;
8019 if (id == NULL)
8020 return 1;
8021
8022 map_dest = get_imsm_map(id->dev, 0);
8023 new_disks = map_dest->num_members;
8024 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8025
8026 read_offset = (unsigned long long)
8027 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8028
8029 write_offset = ((unsigned long long)
8030 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8031 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8032
8033 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8034 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8035 goto abort;
8036 targets = malloc(new_disks * sizeof(int));
8037 if (!targets)
8038 goto abort;
8039
8040 open_backup_targets(info, new_disks, targets);
8041
8042 for (i = 0; i < new_disks; i++) {
8043 if (targets[i] < 0) {
8044 skipped_disks++;
8045 continue;
8046 }
8047 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8048 fprintf(stderr,
8049 Name ": Cannot seek to block: %s\n",
8050 strerror(errno));
8051 goto abort;
8052 }
8053 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8054 fprintf(stderr,
8055 Name ": Cannot read copy area block: %s\n",
8056 strerror(errno));
8057 goto abort;
8058 }
8059 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8060 fprintf(stderr,
8061 Name ": Cannot seek to block: %s\n",
8062 strerror(errno));
8063 goto abort;
8064 }
8065 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8066 fprintf(stderr,
8067 Name ": Cannot restore block: %s\n",
8068 strerror(errno));
8069 goto abort;
8070 }
8071 }
8072
8073 if (skipped_disks > max_degradation) {
8074 fprintf(stderr,
8075 Name ": Cannot restore data from backup."
8076 " Too many failed disks\n");
8077 goto abort;
8078 }
8079
8080 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8081 /* ignore error == 2, this can mean end of reshape here
8082 */
8083 dprintf("imsm: Cannot write checkpoint to "
8084 "migration record (UNIT_SRC_NORMAL) during restart\n");
8085 } else
8086 retval = 0;
8087
8088 abort:
8089 if (targets) {
8090 for (i = 0; i < new_disks; i++)
8091 if (targets[i])
8092 close(targets[i]);
8093 free(targets);
8094 }
8095 free(buf);
8096 return retval;
8097 }
8098
8099 static char disk_by_path[] = "/dev/disk/by-path/";
8100
8101 static const char *imsm_get_disk_controller_domain(const char *path)
8102 {
8103 char disk_path[PATH_MAX];
8104 char *drv=NULL;
8105 struct stat st;
8106
8107 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8108 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8109 if (stat(disk_path, &st) == 0) {
8110 struct sys_dev* hba;
8111 char *path=NULL;
8112
8113 path = devt_to_devpath(st.st_rdev);
8114 if (path == NULL)
8115 return "unknown";
8116 hba = find_disk_attached_hba(-1, path);
8117 if (hba && hba->type == SYS_DEV_SAS)
8118 drv = "isci";
8119 else if (hba && hba->type == SYS_DEV_SATA)
8120 drv = "ahci";
8121 else
8122 drv = "unknown";
8123 dprintf("path: %s hba: %s attached: %s\n",
8124 path, (hba) ? hba->path : "NULL", drv);
8125 free(path);
8126 if (hba)
8127 free_sys_dev(&hba);
8128 }
8129 return drv;
8130 }
8131
8132 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8133 {
8134 char subdev_name[20];
8135 struct mdstat_ent *mdstat;
8136
8137 sprintf(subdev_name, "%d", subdev);
8138 mdstat = mdstat_by_subdev(subdev_name, container);
8139 if (!mdstat)
8140 return -1;
8141
8142 *minor = mdstat->devnum;
8143 free_mdstat(mdstat);
8144 return 0;
8145 }
8146
8147 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8148 struct geo_params *geo,
8149 int *old_raid_disks)
8150 {
8151 /* currently we only support increasing the number of devices
8152 * for a container. This increases the number of device for each
8153 * member array. They must all be RAID0 or RAID5.
8154 */
8155 int ret_val = 0;
8156 struct mdinfo *info, *member;
8157 int devices_that_can_grow = 0;
8158
8159 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8160 "st->devnum = (%i)\n",
8161 st->devnum);
8162
8163 if (geo->size != -1 ||
8164 geo->level != UnSet ||
8165 geo->layout != UnSet ||
8166 geo->chunksize != 0 ||
8167 geo->raid_disks == UnSet) {
8168 dprintf("imsm: Container operation is allowed for "
8169 "raid disks number change only.\n");
8170 return ret_val;
8171 }
8172
8173 info = container_content_imsm(st, NULL);
8174 for (member = info; member; member = member->next) {
8175 int result;
8176 int minor;
8177
8178 dprintf("imsm: checking device_num: %i\n",
8179 member->container_member);
8180
8181 if (geo->raid_disks <= member->array.raid_disks) {
8182 /* we work on container for Online Capacity Expansion
8183 * only so raid_disks has to grow
8184 */
8185 dprintf("imsm: for container operation raid disks "
8186 "increase is required\n");
8187 break;
8188 }
8189
8190 if ((info->array.level != 0) &&
8191 (info->array.level != 5)) {
8192 /* we cannot use this container with other raid level
8193 */
8194 dprintf("imsm: for container operation wrong"
8195 " raid level (%i) detected\n",
8196 info->array.level);
8197 break;
8198 } else {
8199 /* check for platform support
8200 * for this raid level configuration
8201 */
8202 struct intel_super *super = st->sb;
8203 if (!is_raid_level_supported(super->orom,
8204 member->array.level,
8205 geo->raid_disks)) {
8206 dprintf("platform does not support raid%d with"
8207 " %d disk%s\n",
8208 info->array.level,
8209 geo->raid_disks,
8210 geo->raid_disks > 1 ? "s" : "");
8211 break;
8212 }
8213 /* check if component size is aligned to chunk size
8214 */
8215 if (info->component_size %
8216 (info->array.chunk_size/512)) {
8217 dprintf("Component size is not aligned to "
8218 "chunk size\n");
8219 break;
8220 }
8221 }
8222
8223 if (*old_raid_disks &&
8224 info->array.raid_disks != *old_raid_disks)
8225 break;
8226 *old_raid_disks = info->array.raid_disks;
8227
8228 /* All raid5 and raid0 volumes in container
8229 * have to be ready for Online Capacity Expansion
8230 * so they need to be assembled. We have already
8231 * checked that no recovery etc is happening.
8232 */
8233 result = imsm_find_array_minor_by_subdev(member->container_member,
8234 st->container_dev,
8235 &minor);
8236 if (result < 0) {
8237 dprintf("imsm: cannot find array\n");
8238 break;
8239 }
8240 devices_that_can_grow++;
8241 }
8242 sysfs_free(info);
8243 if (!member && devices_that_can_grow)
8244 ret_val = 1;
8245
8246 if (ret_val)
8247 dprintf("\tContainer operation allowed\n");
8248 else
8249 dprintf("\tError: %i\n", ret_val);
8250
8251 return ret_val;
8252 }
8253
8254 /* Function: get_spares_for_grow
8255 * Description: Allocates memory and creates list of spare devices
8256 * avaliable in container. Checks if spare drive size is acceptable.
8257 * Parameters: Pointer to the supertype structure
8258 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8259 * NULL if fail
8260 */
8261 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8262 {
8263 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8264 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8265 }
8266
8267 /******************************************************************************
8268 * function: imsm_create_metadata_update_for_reshape
8269 * Function creates update for whole IMSM container.
8270 *
8271 ******************************************************************************/
8272 static int imsm_create_metadata_update_for_reshape(
8273 struct supertype *st,
8274 struct geo_params *geo,
8275 int old_raid_disks,
8276 struct imsm_update_reshape **updatep)
8277 {
8278 struct intel_super *super = st->sb;
8279 struct imsm_super *mpb = super->anchor;
8280 int update_memory_size = 0;
8281 struct imsm_update_reshape *u = NULL;
8282 struct mdinfo *spares = NULL;
8283 int i;
8284 int delta_disks = 0;
8285 struct mdinfo *dev;
8286
8287 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8288 geo->raid_disks);
8289
8290 delta_disks = geo->raid_disks - old_raid_disks;
8291
8292 /* size of all update data without anchor */
8293 update_memory_size = sizeof(struct imsm_update_reshape);
8294
8295 /* now add space for spare disks that we need to add. */
8296 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8297
8298 u = calloc(1, update_memory_size);
8299 if (u == NULL) {
8300 dprintf("error: "
8301 "cannot get memory for imsm_update_reshape update\n");
8302 return 0;
8303 }
8304 u->type = update_reshape_container_disks;
8305 u->old_raid_disks = old_raid_disks;
8306 u->new_raid_disks = geo->raid_disks;
8307
8308 /* now get spare disks list
8309 */
8310 spares = get_spares_for_grow(st);
8311
8312 if (spares == NULL
8313 || delta_disks > spares->array.spare_disks) {
8314 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8315 "for %s.\n", geo->dev_name);
8316 i = -1;
8317 goto abort;
8318 }
8319
8320 /* we have got spares
8321 * update disk list in imsm_disk list table in anchor
8322 */
8323 dprintf("imsm: %i spares are available.\n\n",
8324 spares->array.spare_disks);
8325
8326 dev = spares->devs;
8327 for (i = 0; i < delta_disks; i++) {
8328 struct dl *dl;
8329
8330 if (dev == NULL)
8331 break;
8332 u->new_disks[i] = makedev(dev->disk.major,
8333 dev->disk.minor);
8334 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8335 dl->index = mpb->num_disks;
8336 mpb->num_disks++;
8337 dev = dev->next;
8338 }
8339
8340 abort:
8341 /* free spares
8342 */
8343 sysfs_free(spares);
8344
8345 dprintf("imsm: reshape update preparation :");
8346 if (i == delta_disks) {
8347 dprintf(" OK\n");
8348 *updatep = u;
8349 return update_memory_size;
8350 }
8351 free(u);
8352 dprintf(" Error\n");
8353
8354 return 0;
8355 }
8356
8357 /******************************************************************************
8358 * function: imsm_create_metadata_update_for_migration()
8359 * Creates update for IMSM array.
8360 *
8361 ******************************************************************************/
8362 static int imsm_create_metadata_update_for_migration(
8363 struct supertype *st,
8364 struct geo_params *geo,
8365 struct imsm_update_reshape_migration **updatep)
8366 {
8367 struct intel_super *super = st->sb;
8368 int update_memory_size = 0;
8369 struct imsm_update_reshape_migration *u = NULL;
8370 struct imsm_dev *dev;
8371 int previous_level = -1;
8372
8373 dprintf("imsm_create_metadata_update_for_migration(enter)"
8374 " New Level = %i\n", geo->level);
8375
8376 /* size of all update data without anchor */
8377 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8378
8379 u = calloc(1, update_memory_size);
8380 if (u == NULL) {
8381 dprintf("error: cannot get memory for "
8382 "imsm_create_metadata_update_for_migration\n");
8383 return 0;
8384 }
8385 u->type = update_reshape_migration;
8386 u->subdev = super->current_vol;
8387 u->new_level = geo->level;
8388 u->new_layout = geo->layout;
8389 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8390 u->new_disks[0] = -1;
8391 u->new_chunksize = -1;
8392
8393 dev = get_imsm_dev(super, u->subdev);
8394 if (dev) {
8395 struct imsm_map *map;
8396
8397 map = get_imsm_map(dev, 0);
8398 if (map) {
8399 int current_chunk_size =
8400 __le16_to_cpu(map->blocks_per_strip) / 2;
8401
8402 if (geo->chunksize != current_chunk_size) {
8403 u->new_chunksize = geo->chunksize / 1024;
8404 dprintf("imsm: "
8405 "chunk size change from %i to %i\n",
8406 current_chunk_size, u->new_chunksize);
8407 }
8408 previous_level = map->raid_level;
8409 }
8410 }
8411 if ((geo->level == 5) && (previous_level == 0)) {
8412 struct mdinfo *spares = NULL;
8413
8414 u->new_raid_disks++;
8415 spares = get_spares_for_grow(st);
8416 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8417 free(u);
8418 sysfs_free(spares);
8419 update_memory_size = 0;
8420 dprintf("error: cannot get spare device "
8421 "for requested migration");
8422 return 0;
8423 }
8424 sysfs_free(spares);
8425 }
8426 dprintf("imsm: reshape update preparation : OK\n");
8427 *updatep = u;
8428
8429 return update_memory_size;
8430 }
8431
8432 static void imsm_update_metadata_locally(struct supertype *st,
8433 void *buf, int len)
8434 {
8435 struct metadata_update mu;
8436
8437 mu.buf = buf;
8438 mu.len = len;
8439 mu.space = NULL;
8440 mu.space_list = NULL;
8441 mu.next = NULL;
8442 imsm_prepare_update(st, &mu);
8443 imsm_process_update(st, &mu);
8444
8445 while (mu.space_list) {
8446 void **space = mu.space_list;
8447 mu.space_list = *space;
8448 free(space);
8449 }
8450 }
8451
8452 /***************************************************************************
8453 * Function: imsm_analyze_change
8454 * Description: Function analyze change for single volume
8455 * and validate if transition is supported
8456 * Parameters: Geometry parameters, supertype structure
8457 * Returns: Operation type code on success, -1 if fail
8458 ****************************************************************************/
8459 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8460 struct geo_params *geo)
8461 {
8462 struct mdinfo info;
8463 int change = -1;
8464 int check_devs = 0;
8465 int chunk;
8466
8467 getinfo_super_imsm_volume(st, &info, NULL);
8468 if ((geo->level != info.array.level) &&
8469 (geo->level >= 0) &&
8470 (geo->level != UnSet)) {
8471 switch (info.array.level) {
8472 case 0:
8473 if (geo->level == 5) {
8474 change = CH_MIGRATION;
8475 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8476 fprintf(stderr,
8477 Name " Error. Requested Layout "
8478 "not supported (left-asymmetric layout "
8479 "is supported only)!\n");
8480 change = -1;
8481 goto analyse_change_exit;
8482 }
8483 check_devs = 1;
8484 }
8485 if (geo->level == 10) {
8486 change = CH_TAKEOVER;
8487 check_devs = 1;
8488 }
8489 break;
8490 case 1:
8491 if (geo->level == 0) {
8492 change = CH_TAKEOVER;
8493 check_devs = 1;
8494 }
8495 break;
8496 case 10:
8497 if (geo->level == 0) {
8498 change = CH_TAKEOVER;
8499 check_devs = 1;
8500 }
8501 break;
8502 }
8503 if (change == -1) {
8504 fprintf(stderr,
8505 Name " Error. Level Migration from %d to %d "
8506 "not supported!\n",
8507 info.array.level, geo->level);
8508 goto analyse_change_exit;
8509 }
8510 } else
8511 geo->level = info.array.level;
8512
8513 if ((geo->layout != info.array.layout)
8514 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8515 change = CH_MIGRATION;
8516 if ((info.array.layout == 0)
8517 && (info.array.level == 5)
8518 && (geo->layout == 5)) {
8519 /* reshape 5 -> 4 */
8520 } else if ((info.array.layout == 5)
8521 && (info.array.level == 5)
8522 && (geo->layout == 0)) {
8523 /* reshape 4 -> 5 */
8524 geo->layout = 0;
8525 geo->level = 5;
8526 } else {
8527 fprintf(stderr,
8528 Name " Error. Layout Migration from %d to %d "
8529 "not supported!\n",
8530 info.array.layout, geo->layout);
8531 change = -1;
8532 goto analyse_change_exit;
8533 }
8534 } else
8535 geo->layout = info.array.layout;
8536
8537 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8538 && (geo->chunksize != info.array.chunk_size))
8539 change = CH_MIGRATION;
8540 else
8541 geo->chunksize = info.array.chunk_size;
8542
8543 chunk = geo->chunksize / 1024;
8544 if (!validate_geometry_imsm(st,
8545 geo->level,
8546 geo->layout,
8547 geo->raid_disks,
8548 &chunk,
8549 geo->size,
8550 0, 0, 1))
8551 change = -1;
8552
8553 if (check_devs) {
8554 struct intel_super *super = st->sb;
8555 struct imsm_super *mpb = super->anchor;
8556
8557 if (mpb->num_raid_devs > 1) {
8558 fprintf(stderr,
8559 Name " Error. Cannot perform operation on %s"
8560 "- for this operation it MUST be single "
8561 "array in container\n",
8562 geo->dev_name);
8563 change = -1;
8564 }
8565 }
8566
8567 analyse_change_exit:
8568
8569 return change;
8570 }
8571
8572 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8573 {
8574 struct intel_super *super = st->sb;
8575 struct imsm_update_takeover *u;
8576
8577 u = malloc(sizeof(struct imsm_update_takeover));
8578 if (u == NULL)
8579 return 1;
8580
8581 u->type = update_takeover;
8582 u->subarray = super->current_vol;
8583
8584 /* 10->0 transition */
8585 if (geo->level == 0)
8586 u->direction = R10_TO_R0;
8587
8588 /* 0->10 transition */
8589 if (geo->level == 10)
8590 u->direction = R0_TO_R10;
8591
8592 /* update metadata locally */
8593 imsm_update_metadata_locally(st, u,
8594 sizeof(struct imsm_update_takeover));
8595 /* and possibly remotely */
8596 if (st->update_tail)
8597 append_metadata_update(st, u,
8598 sizeof(struct imsm_update_takeover));
8599 else
8600 free(u);
8601
8602 return 0;
8603 }
8604
8605 static int imsm_reshape_super(struct supertype *st, long long size, int level,
8606 int layout, int chunksize, int raid_disks,
8607 int delta_disks, char *backup, char *dev,
8608 int verbose)
8609 {
8610 int ret_val = 1;
8611 struct geo_params geo;
8612
8613 dprintf("imsm: reshape_super called.\n");
8614
8615 memset(&geo, 0, sizeof(struct geo_params));
8616
8617 geo.dev_name = dev;
8618 geo.dev_id = st->devnum;
8619 geo.size = size;
8620 geo.level = level;
8621 geo.layout = layout;
8622 geo.chunksize = chunksize;
8623 geo.raid_disks = raid_disks;
8624 if (delta_disks != UnSet)
8625 geo.raid_disks += delta_disks;
8626
8627 dprintf("\tfor level : %i\n", geo.level);
8628 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
8629
8630 if (experimental() == 0)
8631 return ret_val;
8632
8633 if (st->container_dev == st->devnum) {
8634 /* On container level we can only increase number of devices. */
8635 dprintf("imsm: info: Container operation\n");
8636 int old_raid_disks = 0;
8637
8638 if (imsm_reshape_is_allowed_on_container(
8639 st, &geo, &old_raid_disks)) {
8640 struct imsm_update_reshape *u = NULL;
8641 int len;
8642
8643 len = imsm_create_metadata_update_for_reshape(
8644 st, &geo, old_raid_disks, &u);
8645
8646 if (len <= 0) {
8647 dprintf("imsm: Cannot prepare update\n");
8648 goto exit_imsm_reshape_super;
8649 }
8650
8651 ret_val = 0;
8652 /* update metadata locally */
8653 imsm_update_metadata_locally(st, u, len);
8654 /* and possibly remotely */
8655 if (st->update_tail)
8656 append_metadata_update(st, u, len);
8657 else
8658 free(u);
8659
8660 } else {
8661 fprintf(stderr, Name ": (imsm) Operation "
8662 "is not allowed on this container\n");
8663 }
8664 } else {
8665 /* On volume level we support following operations
8666 * - takeover: raid10 -> raid0; raid0 -> raid10
8667 * - chunk size migration
8668 * - migration: raid5 -> raid0; raid0 -> raid5
8669 */
8670 struct intel_super *super = st->sb;
8671 struct intel_dev *dev = super->devlist;
8672 int change, devnum;
8673 dprintf("imsm: info: Volume operation\n");
8674 /* find requested device */
8675 while (dev) {
8676 if (imsm_find_array_minor_by_subdev(
8677 dev->index, st->container_dev, &devnum) == 0
8678 && devnum == geo.dev_id)
8679 break;
8680 dev = dev->next;
8681 }
8682 if (dev == NULL) {
8683 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
8684 geo.dev_name, geo.dev_id);
8685 goto exit_imsm_reshape_super;
8686 }
8687 super->current_vol = dev->index;
8688 change = imsm_analyze_change(st, &geo);
8689 switch (change) {
8690 case CH_TAKEOVER:
8691 ret_val = imsm_takeover(st, &geo);
8692 break;
8693 case CH_MIGRATION: {
8694 struct imsm_update_reshape_migration *u = NULL;
8695 int len =
8696 imsm_create_metadata_update_for_migration(
8697 st, &geo, &u);
8698 if (len < 1) {
8699 dprintf("imsm: "
8700 "Cannot prepare update\n");
8701 break;
8702 }
8703 ret_val = 0;
8704 /* update metadata locally */
8705 imsm_update_metadata_locally(st, u, len);
8706 /* and possibly remotely */
8707 if (st->update_tail)
8708 append_metadata_update(st, u, len);
8709 else
8710 free(u);
8711 }
8712 break;
8713 default:
8714 ret_val = 1;
8715 }
8716 }
8717
8718 exit_imsm_reshape_super:
8719 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
8720 return ret_val;
8721 }
8722
8723 /*******************************************************************************
8724 * Function: wait_for_reshape_imsm
8725 * Description: Function writes new sync_max value and waits until
8726 * reshape process reach new position
8727 * Parameters:
8728 * sra : general array info
8729 * ndata : number of disks in new array's layout
8730 * Returns:
8731 * 0 : success,
8732 * 1 : there is no reshape in progress,
8733 * -1 : fail
8734 ******************************************************************************/
8735 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
8736 {
8737 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
8738 unsigned long long completed;
8739 /* to_complete : new sync_max position */
8740 unsigned long long to_complete = sra->reshape_progress;
8741 unsigned long long position_to_set = to_complete / ndata;
8742
8743 if (fd < 0) {
8744 dprintf("imsm: wait_for_reshape_imsm() "
8745 "cannot open reshape_position\n");
8746 return 1;
8747 }
8748
8749 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8750 dprintf("imsm: wait_for_reshape_imsm() "
8751 "cannot read reshape_position (no reshape in progres)\n");
8752 close(fd);
8753 return 0;
8754 }
8755
8756 if (completed > to_complete) {
8757 dprintf("imsm: wait_for_reshape_imsm() "
8758 "wrong next position to set %llu (%llu)\n",
8759 to_complete, completed);
8760 close(fd);
8761 return -1;
8762 }
8763 dprintf("Position set: %llu\n", position_to_set);
8764 if (sysfs_set_num(sra, NULL, "sync_max",
8765 position_to_set) != 0) {
8766 dprintf("imsm: wait_for_reshape_imsm() "
8767 "cannot set reshape position to %llu\n",
8768 position_to_set);
8769 close(fd);
8770 return -1;
8771 }
8772
8773 do {
8774 char action[20];
8775 fd_set rfds;
8776 FD_ZERO(&rfds);
8777 FD_SET(fd, &rfds);
8778 select(fd+1, &rfds, NULL, NULL, NULL);
8779 if (sysfs_get_str(sra, NULL, "sync_action",
8780 action, 20) > 0 &&
8781 strncmp(action, "reshape", 7) != 0)
8782 break;
8783 if (sysfs_fd_get_ll(fd, &completed) < 0) {
8784 dprintf("imsm: wait_for_reshape_imsm() "
8785 "cannot read reshape_position (in loop)\n");
8786 close(fd);
8787 return 1;
8788 }
8789 } while (completed < to_complete);
8790 close(fd);
8791 return 0;
8792
8793 }
8794
8795 /*******************************************************************************
8796 * Function: check_degradation_change
8797 * Description: Check that array hasn't become failed.
8798 * Parameters:
8799 * info : for sysfs access
8800 * sources : source disks descriptors
8801 * degraded: previous degradation level
8802 * Returns:
8803 * degradation level
8804 ******************************************************************************/
8805 int check_degradation_change(struct mdinfo *info,
8806 int *sources,
8807 int degraded)
8808 {
8809 unsigned long long new_degraded;
8810 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
8811 if (new_degraded != (unsigned long long)degraded) {
8812 /* check each device to ensure it is still working */
8813 struct mdinfo *sd;
8814 new_degraded = 0;
8815 for (sd = info->devs ; sd ; sd = sd->next) {
8816 if (sd->disk.state & (1<<MD_DISK_FAULTY))
8817 continue;
8818 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
8819 char sbuf[20];
8820 if (sysfs_get_str(info,
8821 sd, "state", sbuf, 20) < 0 ||
8822 strstr(sbuf, "faulty") ||
8823 strstr(sbuf, "in_sync") == NULL) {
8824 /* this device is dead */
8825 sd->disk.state = (1<<MD_DISK_FAULTY);
8826 if (sd->disk.raid_disk >= 0 &&
8827 sources[sd->disk.raid_disk] >= 0) {
8828 close(sources[
8829 sd->disk.raid_disk]);
8830 sources[sd->disk.raid_disk] =
8831 -1;
8832 }
8833 new_degraded++;
8834 }
8835 }
8836 }
8837 }
8838
8839 return new_degraded;
8840 }
8841
8842 /*******************************************************************************
8843 * Function: imsm_manage_reshape
8844 * Description: Function finds array under reshape and it manages reshape
8845 * process. It creates stripes backups (if required) and sets
8846 * checheckpoits.
8847 * Parameters:
8848 * afd : Backup handle (nattive) - not used
8849 * sra : general array info
8850 * reshape : reshape parameters - not used
8851 * st : supertype structure
8852 * blocks : size of critical section [blocks]
8853 * fds : table of source device descriptor
8854 * offsets : start of array (offest per devices)
8855 * dests : not used
8856 * destfd : table of destination device descriptor
8857 * destoffsets : table of destination offsets (per device)
8858 * Returns:
8859 * 1 : success, reshape is done
8860 * 0 : fail
8861 ******************************************************************************/
8862 static int imsm_manage_reshape(
8863 int afd, struct mdinfo *sra, struct reshape *reshape,
8864 struct supertype *st, unsigned long backup_blocks,
8865 int *fds, unsigned long long *offsets,
8866 int dests, int *destfd, unsigned long long *destoffsets)
8867 {
8868 int ret_val = 0;
8869 struct intel_super *super = st->sb;
8870 struct intel_dev *dv = NULL;
8871 struct imsm_dev *dev = NULL;
8872 struct imsm_map *map_src;
8873 int migr_vol_qan = 0;
8874 int ndata, odata; /* [bytes] */
8875 int chunk; /* [bytes] */
8876 struct migr_record *migr_rec;
8877 char *buf = NULL;
8878 unsigned int buf_size; /* [bytes] */
8879 unsigned long long max_position; /* array size [bytes] */
8880 unsigned long long next_step; /* [blocks]/[bytes] */
8881 unsigned long long old_data_stripe_length;
8882 unsigned long long start_src; /* [bytes] */
8883 unsigned long long start; /* [bytes] */
8884 unsigned long long start_buf_shift; /* [bytes] */
8885 int degraded = 0;
8886 int source_layout = 0;
8887
8888 if (!fds || !offsets || !sra)
8889 goto abort;
8890
8891 /* Find volume during the reshape */
8892 for (dv = super->devlist; dv; dv = dv->next) {
8893 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
8894 && dv->dev->vol.migr_state == 1) {
8895 dev = dv->dev;
8896 migr_vol_qan++;
8897 }
8898 }
8899 /* Only one volume can migrate at the same time */
8900 if (migr_vol_qan != 1) {
8901 fprintf(stderr, Name " : %s", migr_vol_qan ?
8902 "Number of migrating volumes greater than 1\n" :
8903 "There is no volume during migrationg\n");
8904 goto abort;
8905 }
8906
8907 map_src = get_imsm_map(dev, 1);
8908 if (map_src == NULL)
8909 goto abort;
8910
8911 ndata = imsm_num_data_members(dev, 0);
8912 odata = imsm_num_data_members(dev, 1);
8913
8914 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
8915 old_data_stripe_length = odata * chunk;
8916
8917 migr_rec = super->migr_rec;
8918
8919 /* initialize migration record for start condition */
8920 if (sra->reshape_progress == 0)
8921 init_migr_record_imsm(st, dev, sra);
8922 else {
8923 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
8924 dprintf("imsm: cannot restart migration when data "
8925 "are present in copy area.\n");
8926 goto abort;
8927 }
8928 }
8929
8930 /* size for data */
8931 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
8932 /* extend buffer size for parity disk */
8933 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8934 /* add space for stripe aligment */
8935 buf_size += old_data_stripe_length;
8936 if (posix_memalign((void **)&buf, 4096, buf_size)) {
8937 dprintf("imsm: Cannot allocate checpoint buffer\n");
8938 goto abort;
8939 }
8940
8941 max_position = sra->component_size * ndata;
8942 source_layout = imsm_level_to_layout(map_src->raid_level);
8943
8944 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
8945 __le32_to_cpu(migr_rec->num_migr_units)) {
8946 /* current reshape position [blocks] */
8947 unsigned long long current_position =
8948 __le32_to_cpu(migr_rec->blocks_per_unit)
8949 * __le32_to_cpu(migr_rec->curr_migr_unit);
8950 unsigned long long border;
8951
8952 /* Check that array hasn't become failed.
8953 */
8954 degraded = check_degradation_change(sra, fds, degraded);
8955 if (degraded > 1) {
8956 dprintf("imsm: Abort reshape due to degradation"
8957 " level (%i)\n", degraded);
8958 goto abort;
8959 }
8960
8961 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
8962
8963 if ((current_position + next_step) > max_position)
8964 next_step = max_position - current_position;
8965
8966 start = current_position * 512;
8967
8968 /* allign reading start to old geometry */
8969 start_buf_shift = start % old_data_stripe_length;
8970 start_src = start - start_buf_shift;
8971
8972 border = (start_src / odata) - (start / ndata);
8973 border /= 512;
8974 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
8975 /* save critical stripes to buf
8976 * start - start address of current unit
8977 * to backup [bytes]
8978 * start_src - start address of current unit
8979 * to backup alligned to source array
8980 * [bytes]
8981 */
8982 unsigned long long next_step_filler = 0;
8983 unsigned long long copy_length = next_step * 512;
8984
8985 /* allign copy area length to stripe in old geometry */
8986 next_step_filler = ((copy_length + start_buf_shift)
8987 % old_data_stripe_length);
8988 if (next_step_filler)
8989 next_step_filler = (old_data_stripe_length
8990 - next_step_filler);
8991 dprintf("save_stripes() parameters: start = %llu,"
8992 "\tstart_src = %llu,\tnext_step*512 = %llu,"
8993 "\tstart_in_buf_shift = %llu,"
8994 "\tnext_step_filler = %llu\n",
8995 start, start_src, copy_length,
8996 start_buf_shift, next_step_filler);
8997
8998 if (save_stripes(fds, offsets, map_src->num_members,
8999 chunk, map_src->raid_level,
9000 source_layout, 0, NULL, start_src,
9001 copy_length +
9002 next_step_filler + start_buf_shift,
9003 buf)) {
9004 dprintf("imsm: Cannot save stripes"
9005 " to buffer\n");
9006 goto abort;
9007 }
9008 /* Convert data to destination format and store it
9009 * in backup general migration area
9010 */
9011 if (save_backup_imsm(st, dev, sra,
9012 buf + start_buf_shift, copy_length)) {
9013 dprintf("imsm: Cannot save stripes to "
9014 "target devices\n");
9015 goto abort;
9016 }
9017 if (save_checkpoint_imsm(st, sra,
9018 UNIT_SRC_IN_CP_AREA)) {
9019 dprintf("imsm: Cannot write checkpoint to "
9020 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9021 goto abort;
9022 }
9023 } else {
9024 /* set next step to use whole border area */
9025 border /= next_step;
9026 if (border > 1)
9027 next_step *= border;
9028 }
9029 /* When data backed up, checkpoint stored,
9030 * kick the kernel to reshape unit of data
9031 */
9032 next_step = next_step + sra->reshape_progress;
9033 /* limit next step to array max position */
9034 if (next_step > max_position)
9035 next_step = max_position;
9036 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9037 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9038 sra->reshape_progress = next_step;
9039
9040 /* wait until reshape finish */
9041 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9042 dprintf("wait_for_reshape_imsm returned error!\n");
9043 goto abort;
9044 }
9045
9046 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9047 /* ignore error == 2, this can mean end of reshape here
9048 */
9049 dprintf("imsm: Cannot write checkpoint to "
9050 "migration record (UNIT_SRC_NORMAL)\n");
9051 goto abort;
9052 }
9053
9054 }
9055
9056 /* return '1' if done */
9057 ret_val = 1;
9058 abort:
9059 free(buf);
9060 abort_reshape(sra);
9061
9062 return ret_val;
9063 }
9064 #endif /* MDASSEMBLE */
9065
9066 struct superswitch super_imsm = {
9067 #ifndef MDASSEMBLE
9068 .examine_super = examine_super_imsm,
9069 .brief_examine_super = brief_examine_super_imsm,
9070 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9071 .export_examine_super = export_examine_super_imsm,
9072 .detail_super = detail_super_imsm,
9073 .brief_detail_super = brief_detail_super_imsm,
9074 .write_init_super = write_init_super_imsm,
9075 .validate_geometry = validate_geometry_imsm,
9076 .add_to_super = add_to_super_imsm,
9077 .remove_from_super = remove_from_super_imsm,
9078 .detail_platform = detail_platform_imsm,
9079 .kill_subarray = kill_subarray_imsm,
9080 .update_subarray = update_subarray_imsm,
9081 .load_container = load_container_imsm,
9082 .default_geometry = default_geometry_imsm,
9083 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9084 .reshape_super = imsm_reshape_super,
9085 .manage_reshape = imsm_manage_reshape,
9086 .recover_backup = recover_backup_imsm,
9087 #endif
9088 .match_home = match_home_imsm,
9089 .uuid_from_super= uuid_from_super_imsm,
9090 .getinfo_super = getinfo_super_imsm,
9091 .getinfo_super_disks = getinfo_super_disks_imsm,
9092 .update_super = update_super_imsm,
9093
9094 .avail_size = avail_size_imsm,
9095 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9096
9097 .compare_super = compare_super_imsm,
9098
9099 .load_super = load_super_imsm,
9100 .init_super = init_super_imsm,
9101 .store_super = store_super_imsm,
9102 .free_super = free_super_imsm,
9103 .match_metadata_desc = match_metadata_desc_imsm,
9104 .container_content = container_content_imsm,
9105
9106
9107 .external = 1,
9108 .name = "imsm",
9109
9110 #ifndef MDASSEMBLE
9111 /* for mdmon */
9112 .open_new = imsm_open_new,
9113 .set_array_state= imsm_set_array_state,
9114 .set_disk = imsm_set_disk,
9115 .sync_metadata = imsm_sync_metadata,
9116 .activate_spare = imsm_activate_spare,
9117 .process_update = imsm_process_update,
9118 .prepare_update = imsm_prepare_update,
9119 #endif /* MDASSEMBLE */
9120 };