]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: ensure 'usable' remains clear until the disk is in_sync
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
104 __u32 attributes; /* 0x34 - 0x37 */
105 __u8 num_disks; /* 0x38 Number of configured disks */
106 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
107 __u8 error_log_pos; /* 0x3A */
108 __u8 fill[1]; /* 0x3B */
109 __u32 cache_size; /* 0x3c - 0x40 in mb */
110 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
111 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
112 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
113 #define IMSM_FILLERS 35
114 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
115 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
116 /* here comes imsm_dev[num_raid_devs] */
117 /* here comes BBM logs */
118 } __attribute__ ((packed));
119
120 #define BBM_LOG_MAX_ENTRIES 254
121
122 struct bbm_log_entry {
123 __u64 defective_block_start;
124 #define UNREADABLE 0xFFFFFFFF
125 __u32 spare_block_offset;
126 __u16 remapped_marked_count;
127 __u16 disk_ordinal;
128 } __attribute__ ((__packed__));
129
130 struct bbm_log {
131 __u32 signature; /* 0xABADB10C */
132 __u32 entry_count;
133 __u32 reserved_spare_block_count; /* 0 */
134 __u32 reserved; /* 0xFFFF */
135 __u64 first_spare_lba;
136 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
137 } __attribute__ ((__packed__));
138
139
140 #ifndef MDASSEMBLE
141 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
142 #endif
143
144 static unsigned int sector_count(__u32 bytes)
145 {
146 return ((bytes + (512-1)) & (~(512-1))) / 512;
147 }
148
149 static unsigned int mpb_sectors(struct imsm_super *mpb)
150 {
151 return sector_count(__le32_to_cpu(mpb->mpb_size));
152 }
153
154 /* internal representation of IMSM metadata */
155 struct intel_super {
156 union {
157 void *buf; /* O_DIRECT buffer for reading/writing metadata */
158 struct imsm_super *anchor; /* immovable parameters */
159 };
160 size_t len; /* size of the 'buf' allocation */
161 int updates_pending; /* count of pending updates for mdmon */
162 int creating_imsm; /* flag to indicate container creation */
163 int current_vol; /* index of raid device undergoing creation */
164 #define IMSM_MAX_RAID_DEVS 2
165 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
166 struct dl {
167 struct dl *next;
168 int index;
169 __u8 serial[MAX_RAID_SERIAL_LEN];
170 int major, minor;
171 char *devname;
172 struct imsm_disk disk;
173 int fd;
174 } *disks;
175 struct bbm_log *bbm_log;
176 };
177
178 struct extent {
179 unsigned long long start, size;
180 };
181
182 /* definition of messages passed to imsm_process_update */
183 enum imsm_update_type {
184 update_activate_spare,
185 update_create_array,
186 };
187
188 struct imsm_update_activate_spare {
189 enum imsm_update_type type;
190 struct dl *dl;
191 int slot;
192 int array;
193 struct imsm_update_activate_spare *next;
194 };
195
196 struct imsm_update_create_array {
197 enum imsm_update_type type;
198 struct imsm_dev dev;
199 int dev_idx;
200 };
201
202 static int imsm_env_devname_as_serial(void)
203 {
204 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
205
206 if (val && atoi(val) == 1)
207 return 1;
208
209 return 0;
210 }
211
212
213 static struct supertype *match_metadata_desc_imsm(char *arg)
214 {
215 struct supertype *st;
216
217 if (strcmp(arg, "imsm") != 0 &&
218 strcmp(arg, "default") != 0
219 )
220 return NULL;
221
222 st = malloc(sizeof(*st));
223 memset(st, 0, sizeof(*st));
224 st->ss = &super_imsm;
225 st->max_devs = IMSM_MAX_DEVICES;
226 st->minor_version = 0;
227 st->sb = NULL;
228 return st;
229 }
230
231 static __u8 *get_imsm_version(struct imsm_super *mpb)
232 {
233 return &mpb->sig[MPB_SIG_LEN];
234 }
235
236 /* retrieve a disk directly from the anchor when the anchor is known to be
237 * up-to-date, currently only at load time
238 */
239 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
240 {
241 if (index >= mpb->num_disks)
242 return NULL;
243 return &mpb->disk[index];
244 }
245
246 /* retrieve a disk from the parsed metadata */
247 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
248 {
249 struct dl *d;
250
251 for (d = super->disks; d; d = d->next)
252 if (d->index == index)
253 return &d->disk;
254
255 return NULL;
256 }
257
258 /* generate a checksum directly from the anchor when the anchor is known to be
259 * up-to-date, currently only at load or write_super after coalescing
260 */
261 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
262 {
263 __u32 end = mpb->mpb_size / sizeof(end);
264 __u32 *p = (__u32 *) mpb;
265 __u32 sum = 0;
266
267 while (end--)
268 sum += __le32_to_cpu(*p++);
269
270 return sum - __le32_to_cpu(mpb->check_sum);
271 }
272
273 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
274 {
275 size_t size = sizeof(*dev);
276
277 /* each map has disk_ord_tbl[num_members - 1] additional space */
278 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
279
280 /* migrating means an additional map */
281 if (dev->vol.migr_state) {
282 size += sizeof(struct imsm_map);
283 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
284 }
285
286 return size;
287 }
288
289 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
290 {
291 int offset;
292 int i;
293 void *_mpb = mpb;
294
295 if (index >= mpb->num_raid_devs)
296 return NULL;
297
298 /* devices start after all disks */
299 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
300
301 for (i = 0; i <= index; i++)
302 if (i == index)
303 return _mpb + offset;
304 else
305 offset += sizeof_imsm_dev(_mpb + offset);
306
307 return NULL;
308 }
309
310 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
311 {
312 if (index >= super->anchor->num_raid_devs)
313 return NULL;
314 return super->dev_tbl[index];
315 }
316
317 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
318 {
319 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
320
321 /* top byte is 'special' */
322 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
323 }
324
325 static int get_imsm_raid_level(struct imsm_map *map)
326 {
327 if (map->raid_level == 1) {
328 if (map->num_members == 2)
329 return 1;
330 else
331 return 10;
332 }
333
334 return map->raid_level;
335 }
336
337 static int cmp_extent(const void *av, const void *bv)
338 {
339 const struct extent *a = av;
340 const struct extent *b = bv;
341 if (a->start < b->start)
342 return -1;
343 if (a->start > b->start)
344 return 1;
345 return 0;
346 }
347
348 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
349 {
350 /* find a list of used extents on the given physical device */
351 struct extent *rv, *e;
352 int i, j;
353 int memberships = 0;
354
355 for (i = 0; i < super->anchor->num_raid_devs; i++) {
356 struct imsm_dev *dev = get_imsm_dev(super, i);
357 struct imsm_map *map = dev->vol.map;
358
359 for (j = 0; j < map->num_members; j++) {
360 __u32 index = get_imsm_disk_idx(map, j);
361
362 if (index == dl->index)
363 memberships++;
364 }
365 }
366 rv = malloc(sizeof(struct extent) * (memberships + 1));
367 if (!rv)
368 return NULL;
369 e = rv;
370
371 for (i = 0; i < super->anchor->num_raid_devs; i++) {
372 struct imsm_dev *dev = get_imsm_dev(super, i);
373 struct imsm_map *map = dev->vol.map;
374
375 for (j = 0; j < map->num_members; j++) {
376 __u32 index = get_imsm_disk_idx(map, j);
377
378 if (index == dl->index) {
379 e->start = __le32_to_cpu(map->pba_of_lba0);
380 e->size = __le32_to_cpu(map->blocks_per_member);
381 e++;
382 }
383 }
384 }
385 qsort(rv, memberships, sizeof(*rv), cmp_extent);
386
387 e->start = __le32_to_cpu(dl->disk.total_blocks) -
388 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
389 e->size = 0;
390 return rv;
391 }
392
393 #ifndef MDASSEMBLE
394 static void print_imsm_dev(struct imsm_dev *dev, int index)
395 {
396 __u64 sz;
397 int slot;
398 struct imsm_map *map = dev->vol.map;
399
400 printf("\n");
401 printf("[%s]:\n", dev->volume);
402 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
403 printf(" Members : %d\n", map->num_members);
404 for (slot = 0; slot < map->num_members; slot++)
405 if (index == get_imsm_disk_idx(map, slot))
406 break;
407 if (slot < map->num_members)
408 printf(" This Slot : %d\n", slot);
409 else
410 printf(" This Slot : ?\n");
411 sz = __le32_to_cpu(dev->size_high);
412 sz <<= 32;
413 sz += __le32_to_cpu(dev->size_low);
414 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
415 human_size(sz * 512));
416 sz = __le32_to_cpu(map->blocks_per_member);
417 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
418 human_size(sz * 512));
419 printf(" Sector Offset : %u\n",
420 __le32_to_cpu(map->pba_of_lba0));
421 printf(" Num Stripes : %u\n",
422 __le32_to_cpu(map->num_data_stripes));
423 printf(" Chunk Size : %u KiB\n",
424 __le16_to_cpu(map->blocks_per_strip) / 2);
425 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
426 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
427 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
428 printf(" Map State : %s\n", map_state_str[map->map_state]);
429 }
430
431 static void print_imsm_disk(struct imsm_super *mpb, int index)
432 {
433 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
434 char str[MAX_RAID_SERIAL_LEN];
435 __u32 s;
436 __u64 sz;
437
438 if (index < 0)
439 return;
440
441 printf("\n");
442 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
443 printf(" Disk%02d Serial : %s\n", index, str);
444 s = __le32_to_cpu(disk->status);
445 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
446 s&CONFIGURED_DISK ? " active" : "",
447 s&FAILED_DISK ? " failed" : "",
448 s&USABLE_DISK ? " usable" : "");
449 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
450 sz = __le32_to_cpu(disk->total_blocks) -
451 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
452 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
453 human_size(sz * 512));
454 }
455
456 static void examine_super_imsm(struct supertype *st, char *homehost)
457 {
458 struct intel_super *super = st->sb;
459 struct imsm_super *mpb = super->anchor;
460 char str[MAX_SIGNATURE_LENGTH];
461 int i;
462 __u32 sum;
463
464 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
465 printf(" Magic : %s\n", str);
466 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
467 printf(" Version : %s\n", get_imsm_version(mpb));
468 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
469 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
470 sum = __le32_to_cpu(mpb->check_sum);
471 printf(" Checksum : %08x %s\n", sum,
472 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
473 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
474 printf(" Disks : %d\n", mpb->num_disks);
475 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
476 print_imsm_disk(mpb, super->disks->index);
477 if (super->bbm_log) {
478 struct bbm_log *log = super->bbm_log;
479
480 printf("\n");
481 printf("Bad Block Management Log:\n");
482 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
483 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
484 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
485 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
486 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
487 }
488 for (i = 0; i < mpb->num_raid_devs; i++)
489 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
490 for (i = 0; i < mpb->num_disks; i++) {
491 if (i == super->disks->index)
492 continue;
493 print_imsm_disk(mpb, i);
494 }
495 }
496
497 static void brief_examine_super_imsm(struct supertype *st)
498 {
499 struct intel_super *super = st->sb;
500
501 printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
502 __le32_to_cpu(super->anchor->family_num));
503 }
504
505 static void detail_super_imsm(struct supertype *st, char *homehost)
506 {
507 printf("%s\n", __FUNCTION__);
508 }
509
510 static void brief_detail_super_imsm(struct supertype *st)
511 {
512 printf("%s\n", __FUNCTION__);
513 }
514 #endif
515
516 static int match_home_imsm(struct supertype *st, char *homehost)
517 {
518 printf("%s\n", __FUNCTION__);
519
520 return 0;
521 }
522
523 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
524 {
525 printf("%s\n", __FUNCTION__);
526 }
527
528 #if 0
529 static void
530 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
531 {
532 __u8 *v = get_imsm_version(mpb);
533 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
534 char major[] = { 0, 0, 0 };
535 char minor[] = { 0 ,0, 0 };
536 char patch[] = { 0, 0, 0 };
537 char *ver_parse[] = { major, minor, patch };
538 int i, j;
539
540 i = j = 0;
541 while (*v != '\0' && v < end) {
542 if (*v != '.' && j < 2)
543 ver_parse[i][j++] = *v;
544 else {
545 i++;
546 j = 0;
547 }
548 v++;
549 }
550
551 *m = strtol(minor, NULL, 0);
552 *p = strtol(patch, NULL, 0);
553 }
554 #endif
555
556 static int imsm_level_to_layout(int level)
557 {
558 switch (level) {
559 case 0:
560 case 1:
561 return 0;
562 case 5:
563 case 6:
564 return ALGORITHM_LEFT_ASYMMETRIC;
565 case 10:
566 return 0x102; //FIXME is this correct?
567 }
568 return -1;
569 }
570
571 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
572 {
573 struct intel_super *super = st->sb;
574 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
575 struct imsm_map *map = &dev->vol.map[0];
576
577 info->container_member = super->current_vol;
578 info->array.raid_disks = map->num_members;
579 info->array.level = get_imsm_raid_level(map);
580 info->array.layout = imsm_level_to_layout(info->array.level);
581 info->array.md_minor = -1;
582 info->array.ctime = 0;
583 info->array.utime = 0;
584 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
585
586 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
587 info->component_size = __le32_to_cpu(map->blocks_per_member);
588
589 info->disk.major = 0;
590 info->disk.minor = 0;
591
592 sprintf(info->text_version, "/%s/%d",
593 devnum2devname(st->container_dev),
594 info->container_member);
595 }
596
597
598 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
599 {
600 struct intel_super *super = st->sb;
601 struct imsm_disk *disk;
602 __u32 s;
603
604 if (super->current_vol >= 0) {
605 getinfo_super_imsm_volume(st, info);
606 return;
607 }
608
609 /* Set raid_disks to zero so that Assemble will always pull in valid
610 * spares
611 */
612 info->array.raid_disks = 0;
613 info->array.level = LEVEL_CONTAINER;
614 info->array.layout = 0;
615 info->array.md_minor = -1;
616 info->array.ctime = 0; /* N/A for imsm */
617 info->array.utime = 0;
618 info->array.chunk_size = 0;
619
620 info->disk.major = 0;
621 info->disk.minor = 0;
622 info->disk.raid_disk = -1;
623 info->reshape_active = 0;
624 strcpy(info->text_version, "imsm");
625 info->disk.number = -1;
626 info->disk.state = 0;
627
628 if (super->disks) {
629 disk = &super->disks->disk;
630 info->disk.number = super->disks->index;
631 info->disk.raid_disk = super->disks->index;
632 info->data_offset = __le32_to_cpu(disk->total_blocks) -
633 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
634 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
635 s = __le32_to_cpu(disk->status);
636 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
637 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
638 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
639 }
640 }
641
642 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
643 char *update, char *devname, int verbose,
644 int uuid_set, char *homehost)
645 {
646 /* FIXME */
647
648 /* For 'assemble' and 'force' we need to return non-zero if any
649 * change was made. For others, the return value is ignored.
650 * Update options are:
651 * force-one : This device looks a bit old but needs to be included,
652 * update age info appropriately.
653 * assemble: clear any 'faulty' flag to allow this device to
654 * be assembled.
655 * force-array: Array is degraded but being forced, mark it clean
656 * if that will be needed to assemble it.
657 *
658 * newdev: not used ????
659 * grow: Array has gained a new device - this is currently for
660 * linear only
661 * resync: mark as dirty so a resync will happen.
662 * name: update the name - preserving the homehost
663 *
664 * Following are not relevant for this imsm:
665 * sparc2.2 : update from old dodgey metadata
666 * super-minor: change the preferred_minor number
667 * summaries: update redundant counters.
668 * uuid: Change the uuid of the array to match watch is given
669 * homehost: update the recorded homehost
670 * _reshape_progress: record new reshape_progress position.
671 */
672 int rv = 0;
673 //struct intel_super *super = st->sb;
674 //struct imsm_super *mpb = super->mpb;
675
676 if (strcmp(update, "grow") == 0) {
677 }
678 if (strcmp(update, "resync") == 0) {
679 /* dev->vol.dirty = 1; */
680 }
681
682 /* IMSM has no concept of UUID or homehost */
683
684 return rv;
685 }
686
687 static size_t disks_to_mpb_size(int disks)
688 {
689 size_t size;
690
691 size = sizeof(struct imsm_super);
692 size += (disks - 1) * sizeof(struct imsm_disk);
693 size += 2 * sizeof(struct imsm_dev);
694 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
695 size += (4 - 2) * sizeof(struct imsm_map);
696 /* 4 possible disk_ord_tbl's */
697 size += 4 * (disks - 1) * sizeof(__u32);
698
699 return size;
700 }
701
702 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
703 {
704 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
705 return 0;
706
707 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
708 }
709
710 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
711 {
712 /*
713 * return:
714 * 0 same, or first was empty, and second was copied
715 * 1 second had wrong number
716 * 2 wrong uuid
717 * 3 wrong other info
718 */
719 struct intel_super *first = st->sb;
720 struct intel_super *sec = tst->sb;
721
722 if (!first) {
723 st->sb = tst->sb;
724 tst->sb = NULL;
725 return 0;
726 }
727
728 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
729 return 3;
730
731 /* if an anchor does not have num_raid_devs set then it is a free
732 * floating spare
733 */
734 if (first->anchor->num_raid_devs > 0 &&
735 sec->anchor->num_raid_devs > 0) {
736 if (first->anchor->family_num != sec->anchor->family_num)
737 return 3;
738 if (first->anchor->mpb_size != sec->anchor->mpb_size)
739 return 3;
740 if (first->anchor->check_sum != sec->anchor->check_sum)
741 return 3;
742 }
743
744 return 0;
745 }
746
747 static void fd2devname(int fd, char *name)
748 {
749 struct stat st;
750 char path[256];
751 char dname[100];
752 char *nm;
753 int rv;
754
755 name[0] = '\0';
756 if (fstat(fd, &st) != 0)
757 return;
758 sprintf(path, "/sys/dev/block/%d:%d",
759 major(st.st_rdev), minor(st.st_rdev));
760
761 rv = readlink(path, dname, sizeof(dname));
762 if (rv <= 0)
763 return;
764
765 dname[rv] = '\0';
766 nm = strrchr(dname, '/');
767 nm++;
768 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
769 }
770
771
772 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
773
774 static int imsm_read_serial(int fd, char *devname,
775 __u8 serial[MAX_RAID_SERIAL_LEN])
776 {
777 unsigned char scsi_serial[255];
778 int rv;
779 int rsp_len;
780 int i, cnt;
781
782 memset(scsi_serial, 0, sizeof(scsi_serial));
783
784 if (imsm_env_devname_as_serial()) {
785 char name[MAX_RAID_SERIAL_LEN];
786
787 fd2devname(fd, name);
788 strcpy((char *) serial, name);
789 return 0;
790 }
791
792 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
793
794 if (rv != 0) {
795 if (devname)
796 fprintf(stderr,
797 Name ": Failed to retrieve serial for %s\n",
798 devname);
799 return rv;
800 }
801
802 rsp_len = scsi_serial[3];
803 for (i = 0, cnt = 0; i < rsp_len; i++) {
804 if (!isspace(scsi_serial[4 + i]))
805 serial[cnt++] = scsi_serial[4 + i];
806 if (cnt == MAX_RAID_SERIAL_LEN)
807 break;
808 }
809
810 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
811
812 return 0;
813 }
814
815 static int
816 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
817 {
818 struct dl *dl;
819 struct stat stb;
820 int rv;
821 int i;
822 int alloc = 1;
823 __u8 serial[MAX_RAID_SERIAL_LEN];
824
825 rv = imsm_read_serial(fd, devname, serial);
826
827 if (rv != 0)
828 return 2;
829
830 /* check if this is a disk we have seen before. it may be a spare in
831 * super->disks while the current anchor believes it is a raid member,
832 * check if we need to update dl->index
833 */
834 for (dl = super->disks; dl; dl = dl->next)
835 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
836 break;
837
838 if (!dl)
839 dl = malloc(sizeof(*dl));
840 else
841 alloc = 0;
842
843 if (!dl) {
844 if (devname)
845 fprintf(stderr,
846 Name ": failed to allocate disk buffer for %s\n",
847 devname);
848 return 2;
849 }
850
851 if (alloc) {
852 fstat(fd, &stb);
853 dl->major = major(stb.st_rdev);
854 dl->minor = minor(stb.st_rdev);
855 dl->next = super->disks;
856 dl->fd = keep_fd ? fd : -1;
857 dl->devname = devname ? strdup(devname) : NULL;
858 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
859 } else if (keep_fd) {
860 close(dl->fd);
861 dl->fd = fd;
862 }
863
864 /* look up this disk's index in the current anchor */
865 for (i = 0; i < super->anchor->num_disks; i++) {
866 struct imsm_disk *disk_iter;
867
868 disk_iter = __get_imsm_disk(super->anchor, i);
869
870 if (memcmp(disk_iter->serial, dl->serial,
871 MAX_RAID_SERIAL_LEN) == 0) {
872 __u32 status;
873
874 dl->disk = *disk_iter;
875 status = __le32_to_cpu(dl->disk.status);
876 /* only set index on disks that are a member of a
877 * populated contianer, i.e. one with raid_devs
878 */
879 if (status & SPARE_DISK)
880 dl->index = -1;
881 else
882 dl->index = i;
883 break;
884 }
885 }
886
887 if (i == super->anchor->num_disks && alloc) {
888 if (devname)
889 fprintf(stderr,
890 Name ": failed to load disk with serial \'%s\' for %s\n",
891 dl->serial, devname);
892 free(dl);
893 return 1;
894 }
895 if (i == super->anchor->num_disks && dl->index >= 0) {
896 if (devname)
897 fprintf(stderr,
898 Name ": confused... disk %d with serial \'%s\' "
899 "is not listed in the current anchor\n",
900 dl->index, dl->serial);
901 return 1;
902 }
903
904 if (alloc)
905 super->disks = dl;
906
907 return 0;
908 }
909
910 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
911 {
912 int i;
913
914 *dest = *src;
915
916 for (i = 0; i < src->vol.map[0].num_members; i++)
917 dest->vol.map[0].disk_ord_tbl[i] = src->vol.map[0].disk_ord_tbl[i];
918
919 if (!src->vol.migr_state)
920 return;
921
922 dest->vol.map[1] = src->vol.map[1];
923 for (i = 0; i < src->vol.map[1].num_members; i++)
924 dest->vol.map[1].disk_ord_tbl[i] = src->vol.map[1].disk_ord_tbl[i];
925 }
926
927 static int parse_raid_devices(struct intel_super *super)
928 {
929 int i;
930 struct imsm_dev *dev_new;
931 size_t len;
932
933 for (i = 0; i < super->anchor->num_raid_devs; i++) {
934 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
935
936 len = sizeof_imsm_dev(dev_iter);
937 dev_new = malloc(len);
938 if (!dev_new)
939 return 1;
940 imsm_copy_dev(dev_new, dev_iter);
941 super->dev_tbl[i] = dev_new;
942 }
943
944 return 0;
945 }
946
947 /* retrieve a pointer to the bbm log which starts after all raid devices */
948 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
949 {
950 void *ptr = NULL;
951
952 if (__le32_to_cpu(mpb->bbm_log_size)) {
953 ptr = mpb;
954 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
955 }
956
957 return ptr;
958 }
959
960 static void __free_imsm(struct intel_super *super, int free_disks);
961
962 /* load_imsm_mpb - read matrix metadata
963 * allocates super->mpb to be freed by free_super
964 */
965 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
966 {
967 unsigned long long dsize;
968 unsigned long long sectors;
969 struct stat;
970 struct imsm_super *anchor;
971 __u32 check_sum;
972 int rc;
973
974 get_dev_size(fd, NULL, &dsize);
975
976 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
977 if (devname)
978 fprintf(stderr,
979 Name ": Cannot seek to anchor block on %s: %s\n",
980 devname, strerror(errno));
981 return 1;
982 }
983
984 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
985 if (devname)
986 fprintf(stderr,
987 Name ": Failed to allocate imsm anchor buffer"
988 " on %s\n", devname);
989 return 1;
990 }
991 if (read(fd, anchor, 512) != 512) {
992 if (devname)
993 fprintf(stderr,
994 Name ": Cannot read anchor block on %s: %s\n",
995 devname, strerror(errno));
996 free(anchor);
997 return 1;
998 }
999
1000 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1001 if (devname)
1002 fprintf(stderr,
1003 Name ": no IMSM anchor on %s\n", devname);
1004 free(anchor);
1005 return 2;
1006 }
1007
1008 __free_imsm(super, 0);
1009 super->len = __le32_to_cpu(anchor->mpb_size);
1010 super->len = ROUND_UP(anchor->mpb_size, 512);
1011 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1012 if (devname)
1013 fprintf(stderr,
1014 Name ": unable to allocate %zu byte mpb buffer\n",
1015 super->len);
1016 free(anchor);
1017 return 2;
1018 }
1019 memcpy(super->buf, anchor, 512);
1020
1021 sectors = mpb_sectors(anchor) - 1;
1022 free(anchor);
1023 if (!sectors) {
1024 rc = load_imsm_disk(fd, super, devname, 0);
1025 if (rc == 0)
1026 rc = parse_raid_devices(super);
1027 return rc;
1028 }
1029
1030 /* read the extended mpb */
1031 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1032 if (devname)
1033 fprintf(stderr,
1034 Name ": Cannot seek to extended mpb on %s: %s\n",
1035 devname, strerror(errno));
1036 return 1;
1037 }
1038
1039 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1040 if (devname)
1041 fprintf(stderr,
1042 Name ": Cannot read extended mpb on %s: %s\n",
1043 devname, strerror(errno));
1044 return 2;
1045 }
1046
1047 check_sum = __gen_imsm_checksum(super->anchor);
1048 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1049 if (devname)
1050 fprintf(stderr,
1051 Name ": IMSM checksum %x != %x on %s\n",
1052 check_sum, __le32_to_cpu(super->anchor->check_sum),
1053 devname);
1054 return 2;
1055 }
1056
1057 /* FIXME the BBM log is disk specific so we cannot use this global
1058 * buffer for all disks. Ok for now since we only look at the global
1059 * bbm_log_size parameter to gate assembly
1060 */
1061 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1062
1063 rc = load_imsm_disk(fd, super, devname, 0);
1064 if (rc == 0)
1065 rc = parse_raid_devices(super);
1066 return rc;
1067 }
1068
1069 static void free_imsm_disks(struct intel_super *super)
1070 {
1071 while (super->disks) {
1072 struct dl *d = super->disks;
1073
1074 super->disks = d->next;
1075 if (d->fd >= 0)
1076 close(d->fd);
1077 if (d->devname)
1078 free(d->devname);
1079 free(d);
1080 }
1081 }
1082
1083 /* free all the pieces hanging off of a super pointer */
1084 static void __free_imsm(struct intel_super *super, int free_disks)
1085 {
1086 int i;
1087
1088 if (super->buf) {
1089 free(super->buf);
1090 super->buf = NULL;
1091 }
1092 if (free_disks)
1093 free_imsm_disks(super);
1094 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1095 if (super->dev_tbl[i]) {
1096 free(super->dev_tbl[i]);
1097 super->dev_tbl[i] = NULL;
1098 }
1099 }
1100
1101 static void free_imsm(struct intel_super *super)
1102 {
1103 __free_imsm(super, 1);
1104 free(super);
1105 }
1106
1107 static void free_super_imsm(struct supertype *st)
1108 {
1109 struct intel_super *super = st->sb;
1110
1111 if (!super)
1112 return;
1113
1114 free_imsm(super);
1115 st->sb = NULL;
1116 }
1117
1118 static struct intel_super *alloc_super(int creating_imsm)
1119 {
1120 struct intel_super *super = malloc(sizeof(*super));
1121
1122 if (super) {
1123 memset(super, 0, sizeof(*super));
1124 super->creating_imsm = creating_imsm;
1125 super->current_vol = -1;
1126 }
1127
1128 return super;
1129 }
1130
1131 #ifndef MDASSEMBLE
1132 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1133 char *devname, int keep_fd)
1134 {
1135 struct mdinfo *sra;
1136 struct intel_super *super;
1137 struct mdinfo *sd, *best = NULL;
1138 __u32 bestgen = 0;
1139 __u32 gen;
1140 char nm[20];
1141 int dfd;
1142 int rv;
1143
1144 /* check if this disk is a member of an active array */
1145 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1146 if (!sra)
1147 return 1;
1148
1149 if (sra->array.major_version != -1 ||
1150 sra->array.minor_version != -2 ||
1151 strcmp(sra->text_version, "imsm") != 0)
1152 return 1;
1153
1154 super = alloc_super(0);
1155 if (!super)
1156 return 1;
1157
1158 /* find the most up to date disk in this array, skipping spares */
1159 for (sd = sra->devs; sd; sd = sd->next) {
1160 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1161 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1162 if (!dfd) {
1163 free_imsm(super);
1164 return 2;
1165 }
1166 rv = load_imsm_mpb(dfd, super, NULL);
1167 if (!keep_fd)
1168 close(dfd);
1169 if (rv == 0) {
1170 if (super->anchor->num_raid_devs == 0)
1171 gen = 0;
1172 else
1173 gen = __le32_to_cpu(super->anchor->generation_num);
1174 if (!best || gen > bestgen) {
1175 bestgen = gen;
1176 best = sd;
1177 }
1178 } else {
1179 free_imsm(super);
1180 return 2;
1181 }
1182 }
1183
1184 if (!best) {
1185 free_imsm(super);
1186 return 1;
1187 }
1188
1189 /* load the most up to date anchor */
1190 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1191 dfd = dev_open(nm, O_RDONLY);
1192 if (!dfd) {
1193 free_imsm(super);
1194 return 1;
1195 }
1196 rv = load_imsm_mpb(dfd, super, NULL);
1197 close(dfd);
1198 if (rv != 0) {
1199 free_imsm(super);
1200 return 2;
1201 }
1202
1203 /* re-parse the disk list with the current anchor */
1204 for (sd = sra->devs ; sd ; sd = sd->next) {
1205 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1206 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1207 if (!dfd) {
1208 free_imsm(super);
1209 return 2;
1210 }
1211 load_imsm_disk(dfd, super, NULL, keep_fd);
1212 if (!keep_fd)
1213 close(dfd);
1214 }
1215
1216 if (st->subarray[0]) {
1217 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1218 super->current_vol = atoi(st->subarray);
1219 else
1220 return 1;
1221 }
1222
1223 *sbp = super;
1224 if (st->ss == NULL) {
1225 st->ss = &super_imsm;
1226 st->minor_version = 0;
1227 st->max_devs = IMSM_MAX_DEVICES;
1228 st->container_dev = fd2devnum(fd);
1229 }
1230
1231 return 0;
1232 }
1233 #endif
1234
1235 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1236 {
1237 struct intel_super *super;
1238 int rv;
1239
1240 #ifndef MDASSEMBLE
1241 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1242 return 0;
1243 #endif
1244 if (st->subarray[0])
1245 return 1; /* FIXME */
1246
1247 super = alloc_super(0);
1248 if (!super) {
1249 fprintf(stderr,
1250 Name ": malloc of %zu failed.\n",
1251 sizeof(*super));
1252 return 1;
1253 }
1254
1255 rv = load_imsm_mpb(fd, super, devname);
1256
1257 if (rv) {
1258 if (devname)
1259 fprintf(stderr,
1260 Name ": Failed to load all information "
1261 "sections on %s\n", devname);
1262 free_imsm(super);
1263 return rv;
1264 }
1265
1266 st->sb = super;
1267 if (st->ss == NULL) {
1268 st->ss = &super_imsm;
1269 st->minor_version = 0;
1270 st->max_devs = IMSM_MAX_DEVICES;
1271 }
1272
1273 return 0;
1274 }
1275
1276 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1277 {
1278 if (info->level == 1)
1279 return 128;
1280 return info->chunk_size >> 9;
1281 }
1282
1283 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1284 {
1285 __u32 num_stripes;
1286
1287 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1288 if (info->level == 1)
1289 num_stripes /= 2;
1290
1291 return num_stripes;
1292 }
1293
1294 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1295 {
1296 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1297 }
1298
1299 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1300 unsigned long long size, char *name,
1301 char *homehost, int *uuid)
1302 {
1303 /* We are creating a volume inside a pre-existing container.
1304 * so st->sb is already set.
1305 */
1306 struct intel_super *super = st->sb;
1307 struct imsm_super *mpb = super->anchor;
1308 struct imsm_dev *dev;
1309 struct imsm_vol *vol;
1310 struct imsm_map *map;
1311 int idx = mpb->num_raid_devs;
1312 int i;
1313 unsigned long long array_blocks;
1314 __u32 offset = 0;
1315 size_t size_old, size_new;
1316
1317 if (mpb->num_raid_devs >= 2) {
1318 fprintf(stderr, Name": This imsm-container already has the "
1319 "maximum of 2 volumes\n");
1320 return 0;
1321 }
1322
1323 /* ensure the mpb is large enough for the new data */
1324 size_old = __le32_to_cpu(mpb->mpb_size);
1325 size_new = disks_to_mpb_size(info->nr_disks);
1326 if (size_new > size_old) {
1327 void *mpb_new;
1328 size_t size_round = ROUND_UP(size_new, 512);
1329
1330 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1331 fprintf(stderr, Name": could not allocate new mpb\n");
1332 return 0;
1333 }
1334 memcpy(mpb_new, mpb, size_old);
1335 free(mpb);
1336 mpb = mpb_new;
1337 super->anchor = mpb_new;
1338 mpb->mpb_size = __cpu_to_le32(size_new);
1339 memset(mpb_new + size_old, 0, size_round - size_old);
1340 }
1341 super->current_vol = idx;
1342 /* when creating the first raid device in this container set num_disks
1343 * to zero, i.e. delete this spare and add raid member devices in
1344 * add_to_super_imsm_volume()
1345 */
1346 if (super->current_vol == 0)
1347 mpb->num_disks = 0;
1348 sprintf(st->subarray, "%d", idx);
1349 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1350 if (!dev) {
1351 fprintf(stderr, Name": could not allocate raid device\n");
1352 return 0;
1353 }
1354 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1355 array_blocks = calc_array_size(info->level, info->raid_disks,
1356 info->layout, info->chunk_size,
1357 info->size*2);
1358 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1359 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1360 dev->status = __cpu_to_le32(0);
1361 dev->reserved_blocks = __cpu_to_le32(0);
1362 vol = &dev->vol;
1363 vol->migr_state = 0;
1364 vol->migr_type = 0;
1365 vol->dirty = 0;
1366 for (i = 0; i < idx; i++) {
1367 struct imsm_dev *prev = get_imsm_dev(super, i);
1368 struct imsm_map *pmap = &prev->vol.map[0];
1369
1370 offset += __le32_to_cpu(pmap->blocks_per_member);
1371 offset += IMSM_RESERVED_SECTORS;
1372 }
1373 map = &vol->map[0];
1374 map->pba_of_lba0 = __cpu_to_le32(offset);
1375 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1376 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1377 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1378 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1379 IMSM_T_STATE_NORMAL;
1380
1381 if (info->level == 1 && info->raid_disks > 2) {
1382 fprintf(stderr, Name": imsm does not support more than 2 disks"
1383 "in a raid1 volume\n");
1384 return 0;
1385 }
1386 if (info->level == 10)
1387 map->raid_level = 1;
1388 else
1389 map->raid_level = info->level;
1390
1391 map->num_members = info->raid_disks;
1392 for (i = 0; i < map->num_members; i++) {
1393 /* initialized in add_to_super */
1394 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1395 }
1396 mpb->num_raid_devs++;
1397 super->dev_tbl[super->current_vol] = dev;
1398
1399 return 1;
1400 }
1401
1402 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1403 unsigned long long size, char *name,
1404 char *homehost, int *uuid)
1405 {
1406 /* This is primarily called by Create when creating a new array.
1407 * We will then get add_to_super called for each component, and then
1408 * write_init_super called to write it out to each device.
1409 * For IMSM, Create can create on fresh devices or on a pre-existing
1410 * array.
1411 * To create on a pre-existing array a different method will be called.
1412 * This one is just for fresh drives.
1413 */
1414 struct intel_super *super;
1415 struct imsm_super *mpb;
1416 size_t mpb_size;
1417
1418 if (!info) {
1419 st->sb = NULL;
1420 return 0;
1421 }
1422 if (st->sb)
1423 return init_super_imsm_volume(st, info, size, name, homehost,
1424 uuid);
1425
1426 super = alloc_super(1);
1427 if (!super)
1428 return 0;
1429 mpb_size = disks_to_mpb_size(info->nr_disks);
1430 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1431 free(super);
1432 return 0;
1433 }
1434 mpb = super->buf;
1435 memset(mpb, 0, mpb_size);
1436
1437 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1438 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1439 strlen(MPB_VERSION_RAID5));
1440 mpb->mpb_size = mpb_size;
1441
1442 st->sb = super;
1443 return 1;
1444 }
1445
1446 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1447 int fd, char *devname)
1448 {
1449 struct intel_super *super = st->sb;
1450 struct imsm_super *mpb = super->anchor;
1451 struct dl *dl;
1452 struct imsm_dev *dev;
1453 struct imsm_map *map;
1454 __u32 status;
1455
1456 dev = get_imsm_dev(super, super->current_vol);
1457 map = &dev->vol.map[0];
1458
1459 for (dl = super->disks; dl ; dl = dl->next)
1460 if (dl->major == dk->major &&
1461 dl->minor == dk->minor)
1462 break;
1463
1464 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1465 return;
1466
1467 /* add a pristine spare to the metadata */
1468 if (dl->index < 0) {
1469 dl->index = super->anchor->num_disks;
1470 super->anchor->num_disks++;
1471 }
1472 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1473 status = CONFIGURED_DISK | USABLE_DISK;
1474 dl->disk.status = __cpu_to_le32(status);
1475
1476 /* if we are creating the first raid device update the family number */
1477 if (super->current_vol == 0) {
1478 __u32 sum;
1479 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1480 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1481
1482 *_dev = *dev;
1483 *_disk = dl->disk;
1484 sum = __gen_imsm_checksum(mpb);
1485 mpb->family_num = __cpu_to_le32(sum);
1486 }
1487 }
1488
1489 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1490 int fd, char *devname)
1491 {
1492 struct intel_super *super = st->sb;
1493 struct dl *dd;
1494 unsigned long long size;
1495 __u32 status, id;
1496 int rv;
1497 struct stat stb;
1498
1499 if (super->current_vol >= 0) {
1500 add_to_super_imsm_volume(st, dk, fd, devname);
1501 return;
1502 }
1503
1504 fstat(fd, &stb);
1505 dd = malloc(sizeof(*dd));
1506 if (!dd) {
1507 fprintf(stderr,
1508 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1509 abort();
1510 }
1511 memset(dd, 0, sizeof(*dd));
1512 dd->major = major(stb.st_rdev);
1513 dd->minor = minor(stb.st_rdev);
1514 dd->index = -1;
1515 dd->devname = devname ? strdup(devname) : NULL;
1516 dd->next = super->disks;
1517 dd->fd = fd;
1518 rv = imsm_read_serial(fd, devname, dd->serial);
1519 if (rv) {
1520 fprintf(stderr,
1521 Name ": failed to retrieve scsi serial, aborting\n");
1522 free(dd);
1523 abort();
1524 }
1525
1526 get_dev_size(fd, NULL, &size);
1527 size /= 512;
1528 status = USABLE_DISK | SPARE_DISK;
1529 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1530 dd->disk.total_blocks = __cpu_to_le32(size);
1531 dd->disk.status = __cpu_to_le32(status);
1532 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1533 dd->disk.scsi_id = __cpu_to_le32(id);
1534 else
1535 dd->disk.scsi_id = __cpu_to_le32(0);
1536 super->disks = dd;
1537 }
1538
1539 static int store_imsm_mpb(int fd, struct intel_super *super);
1540
1541 /* spare records have their own family number and do not have any defined raid
1542 * devices
1543 */
1544 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1545 {
1546 struct imsm_super mpb_save;
1547 struct imsm_super *mpb = super->anchor;
1548 __u32 sum;
1549 struct dl *d;
1550
1551 mpb_save = *mpb;
1552 mpb->num_raid_devs = 0;
1553 mpb->num_disks = 1;
1554 mpb->mpb_size = sizeof(struct imsm_super);
1555 mpb->generation_num = __cpu_to_le32(1UL);
1556
1557 for (d = super->disks; d; d = d->next) {
1558 if (d->index >= 0)
1559 continue;
1560
1561 mpb->disk[0] = d->disk;
1562 sum = __gen_imsm_checksum(mpb);
1563 mpb->family_num = __cpu_to_le32(sum);
1564 sum = __gen_imsm_checksum(mpb);
1565 mpb->check_sum = __cpu_to_le32(sum);
1566
1567 if (store_imsm_mpb(d->fd, super)) {
1568 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1569 __func__, d->major, d->minor, strerror(errno));
1570 *mpb = mpb_save;
1571 return 0;
1572 }
1573 if (doclose) {
1574 close(d->fd);
1575 d->fd = -1;
1576 }
1577 }
1578
1579 *mpb = mpb_save;
1580 return 1;
1581 }
1582
1583 static int write_super_imsm(struct intel_super *super, int doclose)
1584 {
1585 struct imsm_super *mpb = super->anchor;
1586 struct dl *d;
1587 __u32 generation;
1588 __u32 sum;
1589 int spares = 0;
1590 int raid_disks = 0;
1591 int i;
1592
1593 /* 'generation' is incremented everytime the metadata is written */
1594 generation = __le32_to_cpu(mpb->generation_num);
1595 generation++;
1596 mpb->generation_num = __cpu_to_le32(generation);
1597
1598 for (d = super->disks; d; d = d->next) {
1599 if (d->index < 0)
1600 spares++;
1601 else {
1602 raid_disks++;
1603 mpb->disk[d->index] = d->disk;
1604 }
1605 }
1606 if (raid_disks != mpb->num_disks) {
1607 fprintf(stderr, "%s: expected %d disks only found %d\n",
1608 __func__, mpb->num_disks, raid_disks);
1609 return 0;
1610 }
1611
1612 for (i = 0; i < mpb->num_raid_devs; i++) {
1613 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1614
1615 imsm_copy_dev(dev, super->dev_tbl[i]);
1616 }
1617
1618 /* recalculate checksum */
1619 sum = __gen_imsm_checksum(mpb);
1620 mpb->check_sum = __cpu_to_le32(sum);
1621
1622 /* write the mpb for disks that compose raid devices */
1623 for (d = super->disks; d ; d = d->next) {
1624 if (d->index < 0)
1625 continue;
1626 if (store_imsm_mpb(d->fd, super)) {
1627 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1628 __func__, d->major, d->minor, strerror(errno));
1629 return 0;
1630 }
1631 if (doclose) {
1632 close(d->fd);
1633 d->fd = -1;
1634 }
1635 }
1636
1637 if (spares)
1638 return write_super_imsm_spares(super, doclose);
1639
1640 return 1;
1641 }
1642
1643 static int write_init_super_imsm(struct supertype *st)
1644 {
1645 if (st->update_tail) {
1646 /* queue the recently created array as a metadata update */
1647 size_t len;
1648 struct imsm_update_create_array *u;
1649 struct intel_super *super = st->sb;
1650 struct imsm_dev *dev;
1651 struct dl *d;
1652
1653 if (super->current_vol < 0 ||
1654 !(dev = get_imsm_dev(super, super->current_vol))) {
1655 fprintf(stderr, "%s: could not determine sub-array\n",
1656 __func__);
1657 return 1;
1658 }
1659
1660
1661 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev);
1662 u = malloc(len);
1663 if (!u) {
1664 fprintf(stderr, "%s: failed to allocate update buffer\n",
1665 __func__);
1666 return 1;
1667 }
1668
1669 u->type = update_create_array;
1670 u->dev_idx = super->current_vol;
1671 imsm_copy_dev(&u->dev, dev);
1672 append_metadata_update(st, u, len);
1673
1674 for (d = super->disks; d ; d = d->next) {
1675 close(d->fd);
1676 d->fd = -1;
1677 }
1678
1679 return 0;
1680 } else
1681 return write_super_imsm(st->sb, 1);
1682 }
1683
1684 static int store_zero_imsm(struct supertype *st, int fd)
1685 {
1686 unsigned long long dsize;
1687 void *buf;
1688
1689 get_dev_size(fd, NULL, &dsize);
1690
1691 /* first block is stored on second to last sector of the disk */
1692 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1693 return 1;
1694
1695 if (posix_memalign(&buf, 512, 512) != 0)
1696 return 1;
1697
1698 memset(buf, 0, 512);
1699 if (write(fd, buf, 512) != 512)
1700 return 1;
1701 return 0;
1702 }
1703
1704 static int validate_geometry_imsm_container(struct supertype *st, int level,
1705 int layout, int raiddisks, int chunk,
1706 unsigned long long size, char *dev,
1707 unsigned long long *freesize,
1708 int verbose)
1709 {
1710 int fd;
1711 unsigned long long ldsize;
1712
1713 if (level != LEVEL_CONTAINER)
1714 return 0;
1715 if (!dev)
1716 return 1;
1717
1718 fd = open(dev, O_RDONLY|O_EXCL, 0);
1719 if (fd < 0) {
1720 if (verbose)
1721 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1722 dev, strerror(errno));
1723 return 0;
1724 }
1725 if (!get_dev_size(fd, dev, &ldsize)) {
1726 close(fd);
1727 return 0;
1728 }
1729 close(fd);
1730
1731 *freesize = avail_size_imsm(st, ldsize >> 9);
1732
1733 return 1;
1734 }
1735
1736 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1737 * FIX ME add ahci details
1738 */
1739 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1740 int layout, int raiddisks, int chunk,
1741 unsigned long long size, char *dev,
1742 unsigned long long *freesize,
1743 int verbose)
1744 {
1745 struct stat stb;
1746 struct intel_super *super = st->sb;
1747 struct dl *dl;
1748 unsigned long long pos = 0;
1749 unsigned long long maxsize;
1750 struct extent *e;
1751 int i;
1752
1753 if (level == LEVEL_CONTAINER)
1754 return 0;
1755
1756 if (level == 1 && raiddisks > 2) {
1757 if (verbose)
1758 fprintf(stderr, Name ": imsm does not support more "
1759 "than 2 in a raid1 configuration\n");
1760 return 0;
1761 }
1762
1763 /* We must have the container info already read in. */
1764 if (!super)
1765 return 0;
1766
1767 if (!dev) {
1768 /* General test: make sure there is space for
1769 * 'raiddisks' device extents of size 'size' at a given
1770 * offset
1771 */
1772 unsigned long long minsize = size*2 /* convert to blocks */;
1773 unsigned long long start_offset = ~0ULL;
1774 int dcnt = 0;
1775 if (minsize == 0)
1776 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1777 for (dl = super->disks; dl ; dl = dl->next) {
1778 int found = 0;
1779
1780 pos = 0;
1781 i = 0;
1782 e = get_extents(super, dl);
1783 if (!e) continue;
1784 do {
1785 unsigned long long esize;
1786 esize = e[i].start - pos;
1787 if (esize >= minsize)
1788 found = 1;
1789 if (found && start_offset == ~0ULL) {
1790 start_offset = pos;
1791 break;
1792 } else if (found && pos != start_offset) {
1793 found = 0;
1794 break;
1795 }
1796 pos = e[i].start + e[i].size;
1797 i++;
1798 } while (e[i-1].size);
1799 if (found)
1800 dcnt++;
1801 free(e);
1802 }
1803 if (dcnt < raiddisks) {
1804 if (verbose)
1805 fprintf(stderr, Name ": imsm: Not enough "
1806 "devices with space for this array "
1807 "(%d < %d)\n",
1808 dcnt, raiddisks);
1809 return 0;
1810 }
1811 return 1;
1812 }
1813 /* This device must be a member of the set */
1814 if (stat(dev, &stb) < 0)
1815 return 0;
1816 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1817 return 0;
1818 for (dl = super->disks ; dl ; dl = dl->next) {
1819 if (dl->major == major(stb.st_rdev) &&
1820 dl->minor == minor(stb.st_rdev))
1821 break;
1822 }
1823 if (!dl) {
1824 if (verbose)
1825 fprintf(stderr, Name ": %s is not in the "
1826 "same imsm set\n", dev);
1827 return 0;
1828 }
1829 e = get_extents(super, dl);
1830 maxsize = 0;
1831 i = 0;
1832 if (e) do {
1833 unsigned long long esize;
1834 esize = e[i].start - pos;
1835 if (esize >= maxsize)
1836 maxsize = esize;
1837 pos = e[i].start + e[i].size;
1838 i++;
1839 } while (e[i-1].size);
1840 *freesize = maxsize;
1841
1842 return 1;
1843 }
1844
1845 int imsm_bbm_log_size(struct imsm_super *mpb)
1846 {
1847 return __le32_to_cpu(mpb->bbm_log_size);
1848 }
1849
1850 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1851 int raiddisks, int chunk, unsigned long long size,
1852 char *dev, unsigned long long *freesize,
1853 int verbose)
1854 {
1855 int fd, cfd;
1856 struct mdinfo *sra;
1857
1858 /* if given unused devices create a container
1859 * if given given devices in a container create a member volume
1860 */
1861 if (level == LEVEL_CONTAINER) {
1862 /* Must be a fresh device to add to a container */
1863 return validate_geometry_imsm_container(st, level, layout,
1864 raiddisks, chunk, size,
1865 dev, freesize,
1866 verbose);
1867 }
1868
1869 if (st->sb) {
1870 /* creating in a given container */
1871 return validate_geometry_imsm_volume(st, level, layout,
1872 raiddisks, chunk, size,
1873 dev, freesize, verbose);
1874 }
1875
1876 /* limit creation to the following levels */
1877 if (!dev)
1878 switch (level) {
1879 case 0:
1880 case 1:
1881 case 10:
1882 case 5:
1883 break;
1884 default:
1885 return 1;
1886 }
1887
1888 /* This device needs to be a device in an 'imsm' container */
1889 fd = open(dev, O_RDONLY|O_EXCL, 0);
1890 if (fd >= 0) {
1891 if (verbose)
1892 fprintf(stderr,
1893 Name ": Cannot create this array on device %s\n",
1894 dev);
1895 close(fd);
1896 return 0;
1897 }
1898 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1899 if (verbose)
1900 fprintf(stderr, Name ": Cannot open %s: %s\n",
1901 dev, strerror(errno));
1902 return 0;
1903 }
1904 /* Well, it is in use by someone, maybe an 'imsm' container. */
1905 cfd = open_container(fd);
1906 if (cfd < 0) {
1907 close(fd);
1908 if (verbose)
1909 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1910 dev);
1911 return 0;
1912 }
1913 sra = sysfs_read(cfd, 0, GET_VERSION);
1914 close(fd);
1915 if (sra && sra->array.major_version == -1 &&
1916 strcmp(sra->text_version, "imsm") == 0) {
1917 /* This is a member of a imsm container. Load the container
1918 * and try to create a volume
1919 */
1920 struct intel_super *super;
1921
1922 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1923 st->sb = super;
1924 st->container_dev = fd2devnum(cfd);
1925 close(cfd);
1926 return validate_geometry_imsm_volume(st, level, layout,
1927 raiddisks, chunk,
1928 size, dev,
1929 freesize, verbose);
1930 }
1931 close(cfd);
1932 } else /* may belong to another container */
1933 return 0;
1934
1935 return 1;
1936 }
1937
1938 static struct mdinfo *container_content_imsm(struct supertype *st)
1939 {
1940 /* Given a container loaded by load_super_imsm_all,
1941 * extract information about all the arrays into
1942 * an mdinfo tree.
1943 *
1944 * For each imsm_dev create an mdinfo, fill it in,
1945 * then look for matching devices in super->disks
1946 * and create appropriate device mdinfo.
1947 */
1948 struct intel_super *super = st->sb;
1949 struct imsm_super *mpb = super->anchor;
1950 struct mdinfo *rest = NULL;
1951 int i;
1952
1953 /* do not assemble arrays that might have bad blocks */
1954 if (imsm_bbm_log_size(super->anchor)) {
1955 fprintf(stderr, Name ": BBM log found in metadata. "
1956 "Cannot activate array(s).\n");
1957 return NULL;
1958 }
1959
1960 for (i = 0; i < mpb->num_raid_devs; i++) {
1961 struct imsm_dev *dev = get_imsm_dev(super, i);
1962 struct imsm_vol *vol = &dev->vol;
1963 struct imsm_map *map = vol->map;
1964 struct mdinfo *this;
1965 int slot;
1966
1967 this = malloc(sizeof(*this));
1968 memset(this, 0, sizeof(*this));
1969 this->next = rest;
1970 rest = this;
1971
1972 this->array.level = get_imsm_raid_level(map);
1973 this->array.raid_disks = map->num_members;
1974 this->array.layout = imsm_level_to_layout(this->array.level);
1975 this->array.md_minor = -1;
1976 this->array.ctime = 0;
1977 this->array.utime = 0;
1978 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1979 this->array.state = !vol->dirty;
1980 this->container_member = i;
1981 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1982 this->resync_start = 0;
1983 else
1984 this->resync_start = ~0ULL;
1985
1986 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1987 this->name[MAX_RAID_SERIAL_LEN] = 0;
1988
1989 sprintf(this->text_version, "/%s/%d",
1990 devnum2devname(st->container_dev),
1991 this->container_member);
1992
1993 memset(this->uuid, 0, sizeof(this->uuid));
1994
1995 this->component_size = __le32_to_cpu(map->blocks_per_member);
1996
1997 for (slot = 0 ; slot < map->num_members; slot++) {
1998 struct mdinfo *info_d;
1999 struct dl *d;
2000 int idx;
2001 __u32 s;
2002
2003 idx = get_imsm_disk_idx(map, slot);
2004 for (d = super->disks; d ; d = d->next)
2005 if (d->index == idx)
2006 break;
2007
2008 if (d == NULL)
2009 break; /* shouldn't this be continue ?? */
2010
2011 info_d = malloc(sizeof(*info_d));
2012 if (!info_d)
2013 break; /* ditto ?? */
2014 memset(info_d, 0, sizeof(*info_d));
2015 info_d->next = this->devs;
2016 this->devs = info_d;
2017
2018 s = __le32_to_cpu(d->disk.status);
2019
2020 info_d->disk.number = d->index;
2021 info_d->disk.major = d->major;
2022 info_d->disk.minor = d->minor;
2023 info_d->disk.raid_disk = slot;
2024 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
2025 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
2026 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
2027
2028 this->array.working_disks++;
2029
2030 info_d->events = __le32_to_cpu(mpb->generation_num);
2031 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2032 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2033 if (d->devname)
2034 strcpy(info_d->name, d->devname);
2035 }
2036 }
2037
2038 return rest;
2039 }
2040
2041
2042 static int imsm_open_new(struct supertype *c, struct active_array *a,
2043 char *inst)
2044 {
2045 struct intel_super *super = c->sb;
2046 struct imsm_super *mpb = super->anchor;
2047
2048 if (atoi(inst) >= mpb->num_raid_devs) {
2049 fprintf(stderr, "%s: subarry index %d, out of range\n",
2050 __func__, atoi(inst));
2051 return -ENODEV;
2052 }
2053
2054 dprintf("imsm: open_new %s\n", inst);
2055 a->info.container_member = atoi(inst);
2056 return 0;
2057 }
2058
2059 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
2060 {
2061 struct imsm_dev *dev = get_imsm_dev(super, n);
2062 struct imsm_map *map = dev->vol.map;
2063
2064 if (!failed)
2065 return map->map_state;
2066
2067 switch (get_imsm_raid_level(map)) {
2068 case 0:
2069 return IMSM_T_STATE_FAILED;
2070 break;
2071 case 1:
2072 if (failed < map->num_members)
2073 return IMSM_T_STATE_DEGRADED;
2074 else
2075 return IMSM_T_STATE_FAILED;
2076 break;
2077 case 10:
2078 {
2079 /**
2080 * check to see if any mirrors have failed,
2081 * otherwise we are degraded
2082 */
2083 int device_per_mirror = 2; /* FIXME is this always the case?
2084 * and are they always adjacent?
2085 */
2086 int failed = 0;
2087 int i;
2088
2089 for (i = 0; i < map->num_members; i++) {
2090 int idx = get_imsm_disk_idx(map, i);
2091 struct imsm_disk *disk = get_imsm_disk(super, idx);
2092
2093 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2094 failed++;
2095
2096 if (failed >= device_per_mirror)
2097 return IMSM_T_STATE_FAILED;
2098
2099 /* reset 'failed' for next mirror set */
2100 if (!((i + 1) % device_per_mirror))
2101 failed = 0;
2102 }
2103
2104 return IMSM_T_STATE_DEGRADED;
2105 }
2106 case 5:
2107 if (failed < 2)
2108 return IMSM_T_STATE_DEGRADED;
2109 else
2110 return IMSM_T_STATE_FAILED;
2111 break;
2112 default:
2113 break;
2114 }
2115
2116 return map->map_state;
2117 }
2118
2119 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2120 {
2121 int i;
2122 int failed = 0;
2123 struct imsm_disk *disk;
2124
2125 for (i = 0; i < map->num_members; i++) {
2126 int idx = get_imsm_disk_idx(map, i);
2127
2128 disk = get_imsm_disk(super, idx);
2129 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2130 failed++;
2131 }
2132
2133 return failed;
2134 }
2135
2136 static void imsm_set_array_state(struct active_array *a, int consistent)
2137 {
2138 int inst = a->info.container_member;
2139 struct intel_super *super = a->container->sb;
2140 struct imsm_dev *dev = get_imsm_dev(super, inst);
2141 struct imsm_map *map = &dev->vol.map[0];
2142 int dirty = !consistent;
2143 int failed;
2144 __u8 map_state;
2145
2146 if (a->resync_start == ~0ULL) {
2147 failed = imsm_count_failed(super, map);
2148 map_state = imsm_check_degraded(super, inst, failed);
2149 /* complete recovery or initial resync */
2150 if (!failed)
2151 map_state = IMSM_T_STATE_NORMAL;
2152 if (map->map_state != map_state) {
2153 dprintf("imsm: map_state %d: %d\n",
2154 inst, map_state);
2155 map->map_state = map_state;
2156 super->updates_pending++;
2157 }
2158
2159 /* complete resync */
2160 if (!dirty && dev->vol.dirty) {
2161 dprintf("imsm: mark 'clean'\n");
2162 dev->vol.dirty = 0;
2163 super->updates_pending++;
2164
2165 }
2166 }
2167
2168 /* mark dirty */
2169 if (dirty && !dev->vol.dirty) {
2170 dprintf("imsm: mark 'dirty' (%llu)\n", a->resync_start);
2171 dev->vol.dirty = 1;
2172 super->updates_pending++;
2173 }
2174 }
2175
2176 static void imsm_set_disk(struct active_array *a, int n, int state)
2177 {
2178 int inst = a->info.container_member;
2179 struct intel_super *super = a->container->sb;
2180 struct imsm_dev *dev = get_imsm_dev(super, inst);
2181 struct imsm_map *map = dev->vol.map;
2182 struct imsm_disk *disk;
2183 __u32 status;
2184 int failed = 0;
2185 int new_failure = 0;
2186
2187 if (n > map->num_members)
2188 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2189 n, map->num_members - 1);
2190
2191 if (n < 0)
2192 return;
2193
2194 dprintf("imsm: set_disk %d:%x\n", n, state);
2195
2196 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2197
2198 /* check for new failures */
2199 status = __le32_to_cpu(disk->status);
2200 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2201 status |= FAILED_DISK;
2202 disk->status = __cpu_to_le32(status);
2203 new_failure = 1;
2204 super->updates_pending++;
2205 }
2206 /* check if in_sync */
2207 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2208 status |= USABLE_DISK;
2209 disk->status = __cpu_to_le32(status);
2210 super->updates_pending++;
2211 }
2212
2213 /* the number of failures have changed, count up 'failed' to determine
2214 * degraded / failed status
2215 */
2216 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2217 failed = imsm_count_failed(super, map);
2218
2219 /* determine map_state based on failed or in_sync count */
2220 if (failed)
2221 map->map_state = imsm_check_degraded(super, inst, failed);
2222 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2223 struct mdinfo *d;
2224 int working = 0;
2225
2226 for (d = a->info.devs ; d ; d = d->next)
2227 if (d->curr_state & DS_INSYNC)
2228 working++;
2229
2230 if (working == a->info.array.raid_disks) {
2231 map->map_state = IMSM_T_STATE_NORMAL;
2232 super->updates_pending++;
2233 }
2234 }
2235 }
2236
2237 static int store_imsm_mpb(int fd, struct intel_super *super)
2238 {
2239 struct imsm_super *mpb = super->anchor;
2240 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2241 unsigned long long dsize;
2242 unsigned long long sectors;
2243
2244 get_dev_size(fd, NULL, &dsize);
2245
2246 if (mpb_size > 512) {
2247 /* -1 to account for anchor */
2248 sectors = mpb_sectors(mpb) - 1;
2249
2250 /* write the extended mpb to the sectors preceeding the anchor */
2251 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2252 return 1;
2253
2254 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2255 return 1;
2256 }
2257
2258 /* first block is stored on second to last sector of the disk */
2259 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2260 return 1;
2261
2262 if (write(fd, super->buf, 512) != 512)
2263 return 1;
2264
2265 return 0;
2266 }
2267
2268 static void imsm_sync_metadata(struct supertype *container)
2269 {
2270 struct intel_super *super = container->sb;
2271
2272 if (!super->updates_pending)
2273 return;
2274
2275 write_super_imsm(super, 0);
2276
2277 super->updates_pending = 0;
2278 }
2279
2280 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2281 struct metadata_update **updates)
2282 {
2283 /**
2284 * Find a device with unused free space and use it to replace a
2285 * failed/vacant region in an array. We replace failed regions one a
2286 * array at a time. The result is that a new spare disk will be added
2287 * to the first failed array and after the monitor has finished
2288 * propagating failures the remainder will be consumed.
2289 *
2290 * FIXME add a capability for mdmon to request spares from another
2291 * container.
2292 */
2293
2294 struct intel_super *super = a->container->sb;
2295 int inst = a->info.container_member;
2296 struct imsm_dev *dev = get_imsm_dev(super, inst);
2297 struct imsm_map *map = dev->vol.map;
2298 int failed = a->info.array.raid_disks;
2299 struct mdinfo *rv = NULL;
2300 struct mdinfo *d;
2301 struct mdinfo *di;
2302 struct metadata_update *mu;
2303 struct dl *dl;
2304 struct imsm_update_activate_spare *u;
2305 int num_spares = 0;
2306 int i;
2307
2308 for (d = a->info.devs ; d ; d = d->next) {
2309 if ((d->curr_state & DS_FAULTY) &&
2310 d->state_fd >= 0)
2311 /* wait for Removal to happen */
2312 return NULL;
2313 if (d->state_fd >= 0)
2314 failed--;
2315 }
2316
2317 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2318 inst, failed, a->info.array.raid_disks, a->info.array.level);
2319 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2320 return NULL;
2321
2322 /* For each slot, if it is not working, find a spare */
2323 dl = super->disks;
2324 for (i = 0; i < a->info.array.raid_disks; i++) {
2325 for (d = a->info.devs ; d ; d = d->next)
2326 if (d->disk.raid_disk == i)
2327 break;
2328 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2329 if (d && (d->state_fd >= 0))
2330 continue;
2331
2332 /* OK, this device needs recovery. Find a spare */
2333 for ( ; dl ; dl = dl->next) {
2334 unsigned long long esize;
2335 unsigned long long pos;
2336 struct mdinfo *d2;
2337 struct extent *ex;
2338 int j;
2339 int found;
2340 __u32 array_start;
2341
2342 /* If in this array, skip */
2343 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2344 if (d2->disk.major == dl->major &&
2345 d2->disk.minor == dl->minor) {
2346 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2347 break;
2348 }
2349 if (d2)
2350 continue;
2351
2352 /* Does this unused device have the requisite free space?
2353 * We need a->info.component_size sectors
2354 */
2355 ex = get_extents(super, dl);
2356 if (!ex) {
2357 dprintf("cannot get extents\n");
2358 continue;
2359 }
2360 found = 0;
2361 j = 0;
2362 pos = 0;
2363 array_start = __le32_to_cpu(map->pba_of_lba0);
2364
2365 do {
2366 /* check that we can start at pba_of_lba0 with
2367 * a->info.component_size of space
2368 */
2369 esize = ex[j].start - pos;
2370 if (array_start >= pos &&
2371 array_start + a->info.component_size < ex[j].start) {
2372 found = 1;
2373 break;
2374 }
2375 pos = ex[j].start + ex[j].size;
2376 j++;
2377
2378 } while (ex[j-1].size);
2379
2380 free(ex);
2381 if (!found) {
2382 dprintf("%x:%x does not have %llu at %d\n",
2383 dl->major, dl->minor,
2384 a->info.component_size,
2385 __le32_to_cpu(map->pba_of_lba0));
2386 /* No room */
2387 continue;
2388 }
2389
2390 /* found a usable disk with enough space */
2391 di = malloc(sizeof(*di));
2392 memset(di, 0, sizeof(*di));
2393
2394 /* dl->index will be -1 in the case we are activating a
2395 * pristine spare. imsm_process_update() will create a
2396 * new index in this case. Once a disk is found to be
2397 * failed in all member arrays it is kicked from the
2398 * metadata
2399 */
2400 di->disk.number = dl->index;
2401
2402 /* (ab)use di->devs to store a pointer to the device
2403 * we chose
2404 */
2405 di->devs = (struct mdinfo *) dl;
2406
2407 di->disk.raid_disk = i;
2408 di->disk.major = dl->major;
2409 di->disk.minor = dl->minor;
2410 di->disk.state = 0;
2411 di->data_offset = array_start;
2412 di->component_size = a->info.component_size;
2413 di->container_member = inst;
2414 di->next = rv;
2415 rv = di;
2416 num_spares++;
2417 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2418 i, pos);
2419
2420 break;
2421 }
2422 }
2423
2424 if (!rv)
2425 /* No spares found */
2426 return rv;
2427 /* Now 'rv' has a list of devices to return.
2428 * Create a metadata_update record to update the
2429 * disk_ord_tbl for the array
2430 */
2431 mu = malloc(sizeof(*mu));
2432 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2433 mu->space = NULL;
2434 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2435 mu->next = *updates;
2436 u = (struct imsm_update_activate_spare *) mu->buf;
2437
2438 for (di = rv ; di ; di = di->next) {
2439 u->type = update_activate_spare;
2440 u->dl = (struct dl *) di->devs;
2441 di->devs = NULL;
2442 u->slot = di->disk.raid_disk;
2443 u->array = inst;
2444 u->next = u + 1;
2445 u++;
2446 }
2447 (u-1)->next = NULL;
2448 *updates = mu;
2449
2450 return rv;
2451 }
2452
2453 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2454 {
2455 int i;
2456 int j;
2457 int idx;
2458
2459 for (i = 0; i < m1->num_members; i++) {
2460 idx = get_imsm_disk_idx(m1, i);
2461 for (j = 0; j < m2->num_members; j++)
2462 if (idx == get_imsm_disk_idx(m2, j))
2463 return 1;
2464 }
2465
2466 return 0;
2467 }
2468
2469 static void imsm_process_update(struct supertype *st,
2470 struct metadata_update *update)
2471 {
2472 /**
2473 * crack open the metadata_update envelope to find the update record
2474 * update can be one of:
2475 * update_activate_spare - a spare device has replaced a failed
2476 * device in an array, update the disk_ord_tbl. If this disk is
2477 * present in all member arrays then also clear the SPARE_DISK
2478 * flag
2479 */
2480 struct intel_super *super = st->sb;
2481 struct imsm_super *mpb = super->anchor;
2482 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2483
2484 switch (type) {
2485 case update_activate_spare: {
2486 struct imsm_update_activate_spare *u = (void *) update->buf;
2487 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2488 struct imsm_map *map = &dev->vol.map[0];
2489 struct active_array *a;
2490 struct imsm_disk *disk;
2491 __u32 status;
2492 struct dl *dl;
2493 unsigned int found;
2494 int victim;
2495 int i;
2496
2497 for (dl = super->disks; dl; dl = dl->next)
2498 if (dl == u->dl)
2499 break;
2500
2501 if (!dl) {
2502 fprintf(stderr, "error: imsm_activate_spare passed "
2503 "an unknown disk (index: %d serial: %s)\n",
2504 u->dl->index, u->dl->serial);
2505 return;
2506 }
2507
2508 super->updates_pending++;
2509
2510 /* adding a pristine spare, assign a new index */
2511 if (dl->index < 0) {
2512 dl->index = super->anchor->num_disks;
2513 super->anchor->num_disks++;
2514 }
2515 victim = get_imsm_disk_idx(map, u->slot);
2516 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2517 disk = &dl->disk;
2518 status = __le32_to_cpu(disk->status);
2519 status |= CONFIGURED_DISK;
2520 status &= ~(SPARE_DISK | USABLE_DISK);
2521 disk->status = __cpu_to_le32(status);
2522
2523 /* count arrays using the victim in the metadata */
2524 found = 0;
2525 for (a = st->arrays; a ; a = a->next) {
2526 dev = get_imsm_dev(super, a->info.container_member);
2527 map = &dev->vol.map[0];
2528 for (i = 0; i < map->num_members; i++)
2529 if (victim == get_imsm_disk_idx(map, i))
2530 found++;
2531 }
2532
2533 /* clear some flags if the victim is no longer being
2534 * utilized anywhere
2535 */
2536 if (!found) {
2537 disk = get_imsm_disk(super, victim);
2538 status = __le32_to_cpu(disk->status);
2539 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2540 disk->status = __cpu_to_le32(status);
2541 /* at this point the disk can be removed from the
2542 * metadata, however we need to guarantee that we do
2543 * not race with any manager thread routine that relies
2544 * on dl->index or map->disk_ord_tbl
2545 */
2546 }
2547 break;
2548 }
2549 case update_create_array: {
2550 /* someone wants to create a new array, we need to be aware of
2551 * a few races/collisions:
2552 * 1/ 'Create' called by two separate instances of mdadm
2553 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2554 * devices that have since been assimilated via
2555 * activate_spare.
2556 * In the event this update can not be carried out mdadm will
2557 * (FIX ME) notice that its update did not take hold.
2558 */
2559 struct imsm_update_create_array *u = (void *) update->buf;
2560 struct imsm_dev *dev;
2561 struct imsm_map *map, *new_map;
2562 unsigned long long start, end;
2563 unsigned long long new_start, new_end;
2564 int i;
2565 int overlap = 0;
2566
2567 /* handle racing creates: first come first serve */
2568 if (u->dev_idx < mpb->num_raid_devs) {
2569 dprintf("%s: subarray %d already defined\n",
2570 __func__, u->dev_idx);
2571 return;
2572 }
2573
2574 /* check update is next in sequence */
2575 if (u->dev_idx != mpb->num_raid_devs) {
2576 dprintf("%s: can not create arrays out of sequence\n",
2577 __func__);
2578 return;
2579 }
2580
2581 new_map = &u->dev.vol.map[0];
2582 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2583 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2584
2585 /* handle activate_spare versus create race:
2586 * check to make sure that overlapping arrays do not include
2587 * overalpping disks
2588 */
2589 for (i = 0; i < mpb->num_raid_devs; i++) {
2590 dev = get_imsm_dev(super, i);
2591 map = &dev->vol.map[0];
2592 start = __le32_to_cpu(map->pba_of_lba0);
2593 end = start + __le32_to_cpu(map->blocks_per_member);
2594 if ((new_start >= start && new_start <= end) ||
2595 (start >= new_start && start <= new_end))
2596 overlap = 1;
2597 if (overlap && disks_overlap(map, new_map)) {
2598 dprintf("%s: arrays overlap\n", __func__);
2599 return;
2600 }
2601 }
2602 /* check num_members sanity */
2603 if (new_map->num_members > mpb->num_disks) {
2604 dprintf("%s: num_disks out of range\n", __func__);
2605 return;
2606 }
2607
2608 /* check that prepare update was successful */
2609 if (!update->space) {
2610 dprintf("%s: prepare update failed\n", __func__);
2611 return;
2612 }
2613
2614 super->updates_pending++;
2615 dev = update->space;
2616 update->space = NULL;
2617 imsm_copy_dev(dev, &u->dev);
2618 super->dev_tbl[u->dev_idx] = dev;
2619 mpb->num_raid_devs++;
2620
2621 /* fix up flags, if arrays overlap then the drives can not be
2622 * spares
2623 */
2624 for (i = 0; i < map->num_members; i++) {
2625 struct imsm_disk *disk;
2626 __u32 status;
2627
2628 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2629 status = __le32_to_cpu(disk->status);
2630 status |= CONFIGURED_DISK;
2631 if (overlap)
2632 status &= ~SPARE_DISK;
2633 disk->status = __cpu_to_le32(status);
2634 }
2635 break;
2636 }
2637 }
2638 }
2639
2640 static void imsm_prepare_update(struct supertype *st,
2641 struct metadata_update *update)
2642 {
2643 /**
2644 * Allocate space to hold new disk entries, raid-device entries or a
2645 * new mpb if necessary. We currently maintain an mpb large enough to
2646 * hold 2 subarrays for the given number of disks. This may not be
2647 * sufficient when reshaping.
2648 *
2649 * FIX ME handle the reshape case.
2650 *
2651 * The monitor will be able to safely change super->mpb by arranging
2652 * for it to be freed in check_update_queue(). I.e. the monitor thread
2653 * will start using the new pointer and the manager can continue to use
2654 * the old value until check_update_queue() runs.
2655 */
2656 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2657
2658 switch (type) {
2659 case update_create_array: {
2660 struct imsm_update_create_array *u = (void *) update->buf;
2661 size_t len = sizeof_imsm_dev(&u->dev);
2662
2663 update->space = malloc(len);
2664 break;
2665 default:
2666 break;
2667 }
2668 }
2669
2670 return;
2671 }
2672
2673 struct superswitch super_imsm = {
2674 #ifndef MDASSEMBLE
2675 .examine_super = examine_super_imsm,
2676 .brief_examine_super = brief_examine_super_imsm,
2677 .detail_super = detail_super_imsm,
2678 .brief_detail_super = brief_detail_super_imsm,
2679 .write_init_super = write_init_super_imsm,
2680 #endif
2681 .match_home = match_home_imsm,
2682 .uuid_from_super= uuid_from_super_imsm,
2683 .getinfo_super = getinfo_super_imsm,
2684 .update_super = update_super_imsm,
2685
2686 .avail_size = avail_size_imsm,
2687
2688 .compare_super = compare_super_imsm,
2689
2690 .load_super = load_super_imsm,
2691 .init_super = init_super_imsm,
2692 .add_to_super = add_to_super_imsm,
2693 .store_super = store_zero_imsm,
2694 .free_super = free_super_imsm,
2695 .match_metadata_desc = match_metadata_desc_imsm,
2696 .container_content = container_content_imsm,
2697
2698 .validate_geometry = validate_geometry_imsm,
2699 .external = 1,
2700
2701 /* for mdmon */
2702 .open_new = imsm_open_new,
2703 .load_super = load_super_imsm,
2704 .set_array_state= imsm_set_array_state,
2705 .set_disk = imsm_set_disk,
2706 .sync_metadata = imsm_sync_metadata,
2707 .activate_spare = imsm_activate_spare,
2708 .process_update = imsm_process_update,
2709 .prepare_update = imsm_prepare_update,
2710 };