]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
mdmon: discard test_pidfile()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234 };
235
236 /* internal representation of IMSM metadata */
237 struct intel_super {
238 union {
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
241 };
242 size_t len; /* size of the 'buf' allocation */
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
247 int current_vol; /* index of raid device undergoing creation */
248 __u32 create_offset; /* common start for 'current_vol' */
249 __u32 random; /* random data for seeding new family numbers */
250 struct intel_dev *devlist;
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
257 struct imsm_disk disk;
258 int fd;
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
261 int raiddisk; /* slot to fill in autolayout */
262 } *disks;
263 struct dl *add; /* list of disks to add while mdmon active */
264 struct dl *missing; /* disks removed while we weren't looking */
265 struct bbm_log *bbm_log;
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269 };
270
271 struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
276 };
277
278 struct extent {
279 unsigned long long start, size;
280 };
281
282 /* definition of messages passed to imsm_process_update */
283 enum imsm_update_type {
284 update_activate_spare,
285 update_create_array,
286 update_add_disk,
287 };
288
289 struct imsm_update_activate_spare {
290 enum imsm_update_type type;
291 struct dl *dl;
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295 };
296
297 struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299 };
300
301 struct imsm_update_create_array {
302 enum imsm_update_type type;
303 int dev_idx;
304 struct imsm_dev dev;
305 };
306
307 struct imsm_update_add_disk {
308 enum imsm_update_type type;
309 };
310
311 static struct supertype *match_metadata_desc_imsm(char *arg)
312 {
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
321 if (!st)
322 return NULL;
323 memset(st, 0, sizeof(*st));
324 st->ss = &super_imsm;
325 st->max_devs = IMSM_MAX_DEVICES;
326 st->minor_version = 0;
327 st->sb = NULL;
328 return st;
329 }
330
331 #ifndef MDASSEMBLE
332 static __u8 *get_imsm_version(struct imsm_super *mpb)
333 {
334 return &mpb->sig[MPB_SIG_LEN];
335 }
336 #endif
337
338 /* retrieve a disk directly from the anchor when the anchor is known to be
339 * up-to-date, currently only at load time
340 */
341 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
342 {
343 if (index >= mpb->num_disks)
344 return NULL;
345 return &mpb->disk[index];
346 }
347
348 #ifndef MDASSEMBLE
349 /* retrieve a disk from the parsed metadata */
350 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
351 {
352 struct dl *d;
353
354 for (d = super->disks; d; d = d->next)
355 if (d->index == index)
356 return &d->disk;
357
358 return NULL;
359 }
360 #endif
361
362 /* generate a checksum directly from the anchor when the anchor is known to be
363 * up-to-date, currently only at load or write_super after coalescing
364 */
365 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
366 {
367 __u32 end = mpb->mpb_size / sizeof(end);
368 __u32 *p = (__u32 *) mpb;
369 __u32 sum = 0;
370
371 while (end--) {
372 sum += __le32_to_cpu(*p);
373 p++;
374 }
375
376 return sum - __le32_to_cpu(mpb->check_sum);
377 }
378
379 static size_t sizeof_imsm_map(struct imsm_map *map)
380 {
381 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
382 }
383
384 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
385 {
386 struct imsm_map *map = &dev->vol.map[0];
387
388 if (second_map && !dev->vol.migr_state)
389 return NULL;
390 else if (second_map) {
391 void *ptr = map;
392
393 return ptr + sizeof_imsm_map(map);
394 } else
395 return map;
396
397 }
398
399 /* return the size of the device.
400 * migr_state increases the returned size if map[0] were to be duplicated
401 */
402 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
403 {
404 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
405 sizeof_imsm_map(get_imsm_map(dev, 0));
406
407 /* migrating means an additional map */
408 if (dev->vol.migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 1));
410 else if (migr_state)
411 size += sizeof_imsm_map(get_imsm_map(dev, 0));
412
413 return size;
414 }
415
416 #ifndef MDASSEMBLE
417 /* retrieve disk serial number list from a metadata update */
418 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
419 {
420 void *u = update;
421 struct disk_info *inf;
422
423 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
424 sizeof_imsm_dev(&update->dev, 0);
425
426 return inf;
427 }
428 #endif
429
430 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
431 {
432 int offset;
433 int i;
434 void *_mpb = mpb;
435
436 if (index >= mpb->num_raid_devs)
437 return NULL;
438
439 /* devices start after all disks */
440 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
441
442 for (i = 0; i <= index; i++)
443 if (i == index)
444 return _mpb + offset;
445 else
446 offset += sizeof_imsm_dev(_mpb + offset, 0);
447
448 return NULL;
449 }
450
451 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
452 {
453 struct intel_dev *dv;
454
455 if (index >= super->anchor->num_raid_devs)
456 return NULL;
457 for (dv = super->devlist; dv; dv = dv->next)
458 if (dv->index == index)
459 return dv->dev;
460 return NULL;
461 }
462
463 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
464 {
465 struct imsm_map *map;
466
467 if (dev->vol.migr_state)
468 map = get_imsm_map(dev, 1);
469 else
470 map = get_imsm_map(dev, 0);
471
472 /* top byte identifies disk under rebuild */
473 return __le32_to_cpu(map->disk_ord_tbl[slot]);
474 }
475
476 #define ord_to_idx(ord) (((ord) << 8) >> 8)
477 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
478 {
479 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
480
481 return ord_to_idx(ord);
482 }
483
484 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
485 {
486 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
487 }
488
489 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
490 {
491 int slot;
492 __u32 ord;
493
494 for (slot = 0; slot < map->num_members; slot++) {
495 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
496 if (ord_to_idx(ord) == idx)
497 return slot;
498 }
499
500 return -1;
501 }
502
503 static int get_imsm_raid_level(struct imsm_map *map)
504 {
505 if (map->raid_level == 1) {
506 if (map->num_members == 2)
507 return 1;
508 else
509 return 10;
510 }
511
512 return map->raid_level;
513 }
514
515 static int cmp_extent(const void *av, const void *bv)
516 {
517 const struct extent *a = av;
518 const struct extent *b = bv;
519 if (a->start < b->start)
520 return -1;
521 if (a->start > b->start)
522 return 1;
523 return 0;
524 }
525
526 static int count_memberships(struct dl *dl, struct intel_super *super)
527 {
528 int memberships = 0;
529 int i;
530
531 for (i = 0; i < super->anchor->num_raid_devs; i++) {
532 struct imsm_dev *dev = get_imsm_dev(super, i);
533 struct imsm_map *map = get_imsm_map(dev, 0);
534
535 if (get_imsm_disk_slot(map, dl->index) >= 0)
536 memberships++;
537 }
538
539 return memberships;
540 }
541
542 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
543 {
544 /* find a list of used extents on the given physical device */
545 struct extent *rv, *e;
546 int i;
547 int memberships = count_memberships(dl, super);
548 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
549
550 rv = malloc(sizeof(struct extent) * (memberships + 1));
551 if (!rv)
552 return NULL;
553 e = rv;
554
555 for (i = 0; i < super->anchor->num_raid_devs; i++) {
556 struct imsm_dev *dev = get_imsm_dev(super, i);
557 struct imsm_map *map = get_imsm_map(dev, 0);
558
559 if (get_imsm_disk_slot(map, dl->index) >= 0) {
560 e->start = __le32_to_cpu(map->pba_of_lba0);
561 e->size = __le32_to_cpu(map->blocks_per_member);
562 e++;
563 }
564 }
565 qsort(rv, memberships, sizeof(*rv), cmp_extent);
566
567 /* determine the start of the metadata
568 * when no raid devices are defined use the default
569 * ...otherwise allow the metadata to truncate the value
570 * as is the case with older versions of imsm
571 */
572 if (memberships) {
573 struct extent *last = &rv[memberships - 1];
574 __u32 remainder;
575
576 remainder = __le32_to_cpu(dl->disk.total_blocks) -
577 (last->start + last->size);
578 /* round down to 1k block to satisfy precision of the kernel
579 * 'size' interface
580 */
581 remainder &= ~1UL;
582 /* make sure remainder is still sane */
583 if (remainder < ROUND_UP(super->len, 512) >> 9)
584 remainder = ROUND_UP(super->len, 512) >> 9;
585 if (reservation > remainder)
586 reservation = remainder;
587 }
588 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
589 e->size = 0;
590 return rv;
591 }
592
593 /* try to determine how much space is reserved for metadata from
594 * the last get_extents() entry, otherwise fallback to the
595 * default
596 */
597 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
598 {
599 struct extent *e;
600 int i;
601 __u32 rv;
602
603 /* for spares just return a minimal reservation which will grow
604 * once the spare is picked up by an array
605 */
606 if (dl->index == -1)
607 return MPB_SECTOR_CNT;
608
609 e = get_extents(super, dl);
610 if (!e)
611 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
612
613 /* scroll to last entry */
614 for (i = 0; e[i].size; i++)
615 continue;
616
617 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
618
619 free(e);
620
621 return rv;
622 }
623
624 static int is_spare(struct imsm_disk *disk)
625 {
626 return (disk->status & SPARE_DISK) == SPARE_DISK;
627 }
628
629 static int is_configured(struct imsm_disk *disk)
630 {
631 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
632 }
633
634 static int is_failed(struct imsm_disk *disk)
635 {
636 return (disk->status & FAILED_DISK) == FAILED_DISK;
637 }
638
639 #ifndef MDASSEMBLE
640 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
641
642 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
643 {
644 __u64 sz;
645 int slot;
646 struct imsm_map *map = get_imsm_map(dev, 0);
647 __u32 ord;
648
649 printf("\n");
650 printf("[%.16s]:\n", dev->volume);
651 printf(" UUID : %s\n", uuid);
652 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
653 printf(" Members : %d\n", map->num_members);
654 slot = get_imsm_disk_slot(map, disk_idx);
655 if (slot >= 0) {
656 ord = get_imsm_ord_tbl_ent(dev, slot);
657 printf(" This Slot : %d%s\n", slot,
658 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
659 } else
660 printf(" This Slot : ?\n");
661 sz = __le32_to_cpu(dev->size_high);
662 sz <<= 32;
663 sz += __le32_to_cpu(dev->size_low);
664 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
665 human_size(sz * 512));
666 sz = __le32_to_cpu(map->blocks_per_member);
667 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
668 human_size(sz * 512));
669 printf(" Sector Offset : %u\n",
670 __le32_to_cpu(map->pba_of_lba0));
671 printf(" Num Stripes : %u\n",
672 __le32_to_cpu(map->num_data_stripes));
673 printf(" Chunk Size : %u KiB\n",
674 __le16_to_cpu(map->blocks_per_strip) / 2);
675 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
676 printf(" Migrate State : ");
677 if (dev->vol.migr_state) {
678 if (migr_type(dev) == MIGR_INIT)
679 printf("initialize\n");
680 else if (migr_type(dev) == MIGR_REBUILD)
681 printf("rebuild\n");
682 else if (migr_type(dev) == MIGR_VERIFY)
683 printf("check\n");
684 else if (migr_type(dev) == MIGR_GEN_MIGR)
685 printf("general migration\n");
686 else if (migr_type(dev) == MIGR_STATE_CHANGE)
687 printf("state change\n");
688 else if (migr_type(dev) == MIGR_REPAIR)
689 printf("repair\n");
690 else
691 printf("<unknown:%d>\n", migr_type(dev));
692 } else
693 printf("idle\n");
694 printf(" Map State : %s", map_state_str[map->map_state]);
695 if (dev->vol.migr_state) {
696 struct imsm_map *map = get_imsm_map(dev, 1);
697
698 printf(" <-- %s", map_state_str[map->map_state]);
699 printf("\n Checkpoint : %u (%llu)",
700 __le32_to_cpu(dev->vol.curr_migr_unit),
701 blocks_per_migr_unit(dev));
702 }
703 printf("\n");
704 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
705 }
706
707 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
708 {
709 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
710 char str[MAX_RAID_SERIAL_LEN + 1];
711 __u64 sz;
712
713 if (index < 0 || !disk)
714 return;
715
716 printf("\n");
717 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
718 printf(" Disk%02d Serial : %s\n", index, str);
719 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
720 is_configured(disk) ? " active" : "",
721 is_failed(disk) ? " failed" : "");
722 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
723 sz = __le32_to_cpu(disk->total_blocks) - reserved;
724 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
725 human_size(sz * 512));
726 }
727
728 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
729
730 static void examine_super_imsm(struct supertype *st, char *homehost)
731 {
732 struct intel_super *super = st->sb;
733 struct imsm_super *mpb = super->anchor;
734 char str[MAX_SIGNATURE_LENGTH];
735 int i;
736 struct mdinfo info;
737 char nbuf[64];
738 __u32 sum;
739 __u32 reserved = imsm_reserved_sectors(super, super->disks);
740
741
742 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
743 printf(" Magic : %s\n", str);
744 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
745 printf(" Version : %s\n", get_imsm_version(mpb));
746 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
747 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
748 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
749 getinfo_super_imsm(st, &info);
750 fname_from_uuid(st, &info, nbuf, ':');
751 printf(" UUID : %s\n", nbuf + 5);
752 sum = __le32_to_cpu(mpb->check_sum);
753 printf(" Checksum : %08x %s\n", sum,
754 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
755 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
756 printf(" Disks : %d\n", mpb->num_disks);
757 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
758 print_imsm_disk(mpb, super->disks->index, reserved);
759 if (super->bbm_log) {
760 struct bbm_log *log = super->bbm_log;
761
762 printf("\n");
763 printf("Bad Block Management Log:\n");
764 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
765 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
766 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
767 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
768 printf(" First Spare : %llx\n",
769 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
770 }
771 for (i = 0; i < mpb->num_raid_devs; i++) {
772 struct mdinfo info;
773 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
774
775 super->current_vol = i;
776 getinfo_super_imsm(st, &info);
777 fname_from_uuid(st, &info, nbuf, ':');
778 print_imsm_dev(dev, nbuf + 5, super->disks->index);
779 }
780 for (i = 0; i < mpb->num_disks; i++) {
781 if (i == super->disks->index)
782 continue;
783 print_imsm_disk(mpb, i, reserved);
784 }
785 }
786
787 static void brief_examine_super_imsm(struct supertype *st, int verbose)
788 {
789 /* We just write a generic IMSM ARRAY entry */
790 struct mdinfo info;
791 char nbuf[64];
792 struct intel_super *super = st->sb;
793
794 if (!super->anchor->num_raid_devs) {
795 printf("ARRAY metadata=imsm\n");
796 return;
797 }
798
799 getinfo_super_imsm(st, &info);
800 fname_from_uuid(st, &info, nbuf, ':');
801 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
802 }
803
804 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
805 {
806 /* We just write a generic IMSM ARRAY entry */
807 struct mdinfo info;
808 char nbuf[64];
809 char nbuf1[64];
810 struct intel_super *super = st->sb;
811 int i;
812
813 if (!super->anchor->num_raid_devs)
814 return;
815
816 getinfo_super_imsm(st, &info);
817 fname_from_uuid(st, &info, nbuf, ':');
818 for (i = 0; i < super->anchor->num_raid_devs; i++) {
819 struct imsm_dev *dev = get_imsm_dev(super, i);
820
821 super->current_vol = i;
822 getinfo_super_imsm(st, &info);
823 fname_from_uuid(st, &info, nbuf1, ':');
824 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
825 dev->volume, nbuf + 5, i, nbuf1 + 5);
826 }
827 }
828
829 static void export_examine_super_imsm(struct supertype *st)
830 {
831 struct intel_super *super = st->sb;
832 struct imsm_super *mpb = super->anchor;
833 struct mdinfo info;
834 char nbuf[64];
835
836 getinfo_super_imsm(st, &info);
837 fname_from_uuid(st, &info, nbuf, ':');
838 printf("MD_METADATA=imsm\n");
839 printf("MD_LEVEL=container\n");
840 printf("MD_UUID=%s\n", nbuf+5);
841 printf("MD_DEVICES=%u\n", mpb->num_disks);
842 }
843
844 static void detail_super_imsm(struct supertype *st, char *homehost)
845 {
846 struct mdinfo info;
847 char nbuf[64];
848
849 getinfo_super_imsm(st, &info);
850 fname_from_uuid(st, &info, nbuf, ':');
851 printf("\n UUID : %s\n", nbuf + 5);
852 }
853
854 static void brief_detail_super_imsm(struct supertype *st)
855 {
856 struct mdinfo info;
857 char nbuf[64];
858 getinfo_super_imsm(st, &info);
859 fname_from_uuid(st, &info, nbuf, ':');
860 printf(" UUID=%s", nbuf + 5);
861 }
862
863 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
864 static void fd2devname(int fd, char *name);
865
866 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
867 {
868 /* dump an unsorted list of devices attached to ahci, as well as
869 * non-connected ports
870 */
871 int hba_len = strlen(hba_path) + 1;
872 struct dirent *ent;
873 DIR *dir;
874 char *path = NULL;
875 int err = 0;
876 unsigned long port_mask = (1 << port_count) - 1;
877
878 if (port_count > sizeof(port_mask) * 8) {
879 if (verbose)
880 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
881 return 2;
882 }
883
884 /* scroll through /sys/dev/block looking for devices attached to
885 * this hba
886 */
887 dir = opendir("/sys/dev/block");
888 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
889 int fd;
890 char model[64];
891 char vendor[64];
892 char buf[1024];
893 int major, minor;
894 char *device;
895 char *c;
896 int port;
897 int type;
898
899 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
900 continue;
901 path = devt_to_devpath(makedev(major, minor));
902 if (!path)
903 continue;
904 if (!path_attached_to_hba(path, hba_path)) {
905 free(path);
906 path = NULL;
907 continue;
908 }
909
910 /* retrieve the scsi device type */
911 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
912 if (verbose)
913 fprintf(stderr, Name ": failed to allocate 'device'\n");
914 err = 2;
915 break;
916 }
917 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
918 if (load_sys(device, buf) != 0) {
919 if (verbose)
920 fprintf(stderr, Name ": failed to read device type for %s\n",
921 path);
922 err = 2;
923 free(device);
924 break;
925 }
926 type = strtoul(buf, NULL, 10);
927
928 /* if it's not a disk print the vendor and model */
929 if (!(type == 0 || type == 7 || type == 14)) {
930 vendor[0] = '\0';
931 model[0] = '\0';
932 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
933 if (load_sys(device, buf) == 0) {
934 strncpy(vendor, buf, sizeof(vendor));
935 vendor[sizeof(vendor) - 1] = '\0';
936 c = (char *) &vendor[sizeof(vendor) - 1];
937 while (isspace(*c) || *c == '\0')
938 *c-- = '\0';
939
940 }
941 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
942 if (load_sys(device, buf) == 0) {
943 strncpy(model, buf, sizeof(model));
944 model[sizeof(model) - 1] = '\0';
945 c = (char *) &model[sizeof(model) - 1];
946 while (isspace(*c) || *c == '\0')
947 *c-- = '\0';
948 }
949
950 if (vendor[0] && model[0])
951 sprintf(buf, "%.64s %.64s", vendor, model);
952 else
953 switch (type) { /* numbers from hald/linux/device.c */
954 case 1: sprintf(buf, "tape"); break;
955 case 2: sprintf(buf, "printer"); break;
956 case 3: sprintf(buf, "processor"); break;
957 case 4:
958 case 5: sprintf(buf, "cdrom"); break;
959 case 6: sprintf(buf, "scanner"); break;
960 case 8: sprintf(buf, "media_changer"); break;
961 case 9: sprintf(buf, "comm"); break;
962 case 12: sprintf(buf, "raid"); break;
963 default: sprintf(buf, "unknown");
964 }
965 } else
966 buf[0] = '\0';
967 free(device);
968
969 /* chop device path to 'host%d' and calculate the port number */
970 c = strchr(&path[hba_len], '/');
971 if (!c) {
972 if (verbose)
973 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
974 err = 2;
975 break;
976 }
977 *c = '\0';
978 if (sscanf(&path[hba_len], "host%d", &port) == 1)
979 port -= host_base;
980 else {
981 if (verbose) {
982 *c = '/'; /* repair the full string */
983 fprintf(stderr, Name ": failed to determine port number for %s\n",
984 path);
985 }
986 err = 2;
987 break;
988 }
989
990 /* mark this port as used */
991 port_mask &= ~(1 << port);
992
993 /* print out the device information */
994 if (buf[0]) {
995 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
996 continue;
997 }
998
999 fd = dev_open(ent->d_name, O_RDONLY);
1000 if (fd < 0)
1001 printf(" Port%d : - disk info unavailable -\n", port);
1002 else {
1003 fd2devname(fd, buf);
1004 printf(" Port%d : %s", port, buf);
1005 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1006 printf(" (%s)\n", buf);
1007 else
1008 printf("()\n");
1009 }
1010 close(fd);
1011 free(path);
1012 path = NULL;
1013 }
1014 if (path)
1015 free(path);
1016 if (dir)
1017 closedir(dir);
1018 if (err == 0) {
1019 int i;
1020
1021 for (i = 0; i < port_count; i++)
1022 if (port_mask & (1 << i))
1023 printf(" Port%d : - no device attached -\n", i);
1024 }
1025
1026 return err;
1027 }
1028
1029 static int detail_platform_imsm(int verbose, int enumerate_only)
1030 {
1031 /* There are two components to imsm platform support, the ahci SATA
1032 * controller and the option-rom. To find the SATA controller we
1033 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1034 * controller with the Intel vendor id is present. This approach
1035 * allows mdadm to leverage the kernel's ahci detection logic, with the
1036 * caveat that if ahci.ko is not loaded mdadm will not be able to
1037 * detect platform raid capabilities. The option-rom resides in a
1038 * platform "Adapter ROM". We scan for its signature to retrieve the
1039 * platform capabilities. If raid support is disabled in the BIOS the
1040 * option-rom capability structure will not be available.
1041 */
1042 const struct imsm_orom *orom;
1043 struct sys_dev *list, *hba;
1044 DIR *dir;
1045 struct dirent *ent;
1046 const char *hba_path;
1047 int host_base = 0;
1048 int port_count = 0;
1049
1050 if (enumerate_only) {
1051 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1052 return 0;
1053 return 2;
1054 }
1055
1056 list = find_driver_devices("pci", "ahci");
1057 for (hba = list; hba; hba = hba->next)
1058 if (devpath_to_vendor(hba->path) == 0x8086)
1059 break;
1060
1061 if (!hba) {
1062 if (verbose)
1063 fprintf(stderr, Name ": unable to find active ahci controller\n");
1064 free_sys_dev(&list);
1065 return 2;
1066 } else if (verbose)
1067 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1068 hba_path = hba->path;
1069 hba->path = NULL;
1070 free_sys_dev(&list);
1071
1072 orom = find_imsm_orom();
1073 if (!orom) {
1074 if (verbose)
1075 fprintf(stderr, Name ": imsm option-rom not found\n");
1076 return 2;
1077 }
1078
1079 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1080 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1081 orom->hotfix_ver, orom->build);
1082 printf(" RAID Levels :%s%s%s%s%s\n",
1083 imsm_orom_has_raid0(orom) ? " raid0" : "",
1084 imsm_orom_has_raid1(orom) ? " raid1" : "",
1085 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1086 imsm_orom_has_raid10(orom) ? " raid10" : "",
1087 imsm_orom_has_raid5(orom) ? " raid5" : "");
1088 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1089 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1090 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1091 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1092 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1093 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1094 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1095 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1096 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1097 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1098 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1099 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1100 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1101 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1102 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1103 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1104 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1105 printf(" Max Disks : %d\n", orom->tds);
1106 printf(" Max Volumes : %d\n", orom->vpa);
1107 printf(" I/O Controller : %s\n", hba_path);
1108
1109 /* find the smallest scsi host number to determine a port number base */
1110 dir = opendir(hba_path);
1111 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1112 int host;
1113
1114 if (sscanf(ent->d_name, "host%d", &host) != 1)
1115 continue;
1116 if (port_count == 0)
1117 host_base = host;
1118 else if (host < host_base)
1119 host_base = host;
1120
1121 if (host + 1 > port_count + host_base)
1122 port_count = host + 1 - host_base;
1123
1124 }
1125 if (dir)
1126 closedir(dir);
1127
1128 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1129 host_base, verbose) != 0) {
1130 if (verbose)
1131 fprintf(stderr, Name ": failed to enumerate ports\n");
1132 return 2;
1133 }
1134
1135 return 0;
1136 }
1137 #endif
1138
1139 static int match_home_imsm(struct supertype *st, char *homehost)
1140 {
1141 /* the imsm metadata format does not specify any host
1142 * identification information. We return -1 since we can never
1143 * confirm nor deny whether a given array is "meant" for this
1144 * host. We rely on compare_super and the 'family_num' fields to
1145 * exclude member disks that do not belong, and we rely on
1146 * mdadm.conf to specify the arrays that should be assembled.
1147 * Auto-assembly may still pick up "foreign" arrays.
1148 */
1149
1150 return -1;
1151 }
1152
1153 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1154 {
1155 /* The uuid returned here is used for:
1156 * uuid to put into bitmap file (Create, Grow)
1157 * uuid for backup header when saving critical section (Grow)
1158 * comparing uuids when re-adding a device into an array
1159 * In these cases the uuid required is that of the data-array,
1160 * not the device-set.
1161 * uuid to recognise same set when adding a missing device back
1162 * to an array. This is a uuid for the device-set.
1163 *
1164 * For each of these we can make do with a truncated
1165 * or hashed uuid rather than the original, as long as
1166 * everyone agrees.
1167 * In each case the uuid required is that of the data-array,
1168 * not the device-set.
1169 */
1170 /* imsm does not track uuid's so we synthesis one using sha1 on
1171 * - The signature (Which is constant for all imsm array, but no matter)
1172 * - the orig_family_num of the container
1173 * - the index number of the volume
1174 * - the 'serial' number of the volume.
1175 * Hopefully these are all constant.
1176 */
1177 struct intel_super *super = st->sb;
1178
1179 char buf[20];
1180 struct sha1_ctx ctx;
1181 struct imsm_dev *dev = NULL;
1182 __u32 family_num;
1183
1184 /* some mdadm versions failed to set ->orig_family_num, in which
1185 * case fall back to ->family_num. orig_family_num will be
1186 * fixed up with the first metadata update.
1187 */
1188 family_num = super->anchor->orig_family_num;
1189 if (family_num == 0)
1190 family_num = super->anchor->family_num;
1191 sha1_init_ctx(&ctx);
1192 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1193 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1194 if (super->current_vol >= 0)
1195 dev = get_imsm_dev(super, super->current_vol);
1196 if (dev) {
1197 __u32 vol = super->current_vol;
1198 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1199 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1200 }
1201 sha1_finish_ctx(&ctx, buf);
1202 memcpy(uuid, buf, 4*4);
1203 }
1204
1205 #if 0
1206 static void
1207 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1208 {
1209 __u8 *v = get_imsm_version(mpb);
1210 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1211 char major[] = { 0, 0, 0 };
1212 char minor[] = { 0 ,0, 0 };
1213 char patch[] = { 0, 0, 0 };
1214 char *ver_parse[] = { major, minor, patch };
1215 int i, j;
1216
1217 i = j = 0;
1218 while (*v != '\0' && v < end) {
1219 if (*v != '.' && j < 2)
1220 ver_parse[i][j++] = *v;
1221 else {
1222 i++;
1223 j = 0;
1224 }
1225 v++;
1226 }
1227
1228 *m = strtol(minor, NULL, 0);
1229 *p = strtol(patch, NULL, 0);
1230 }
1231 #endif
1232
1233 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1234 {
1235 /* migr_strip_size when repairing or initializing parity */
1236 struct imsm_map *map = get_imsm_map(dev, 0);
1237 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1238
1239 switch (get_imsm_raid_level(map)) {
1240 case 5:
1241 case 10:
1242 return chunk;
1243 default:
1244 return 128*1024 >> 9;
1245 }
1246 }
1247
1248 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1249 {
1250 /* migr_strip_size when rebuilding a degraded disk, no idea why
1251 * this is different than migr_strip_size_resync(), but it's good
1252 * to be compatible
1253 */
1254 struct imsm_map *map = get_imsm_map(dev, 1);
1255 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1256
1257 switch (get_imsm_raid_level(map)) {
1258 case 1:
1259 case 10:
1260 if (map->num_members % map->num_domains == 0)
1261 return 128*1024 >> 9;
1262 else
1263 return chunk;
1264 case 5:
1265 return max((__u32) 64*1024 >> 9, chunk);
1266 default:
1267 return 128*1024 >> 9;
1268 }
1269 }
1270
1271 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1272 {
1273 struct imsm_map *lo = get_imsm_map(dev, 0);
1274 struct imsm_map *hi = get_imsm_map(dev, 1);
1275 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1276 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1277
1278 return max((__u32) 1, hi_chunk / lo_chunk);
1279 }
1280
1281 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1282 {
1283 struct imsm_map *lo = get_imsm_map(dev, 0);
1284 int level = get_imsm_raid_level(lo);
1285
1286 if (level == 1 || level == 10) {
1287 struct imsm_map *hi = get_imsm_map(dev, 1);
1288
1289 return hi->num_domains;
1290 } else
1291 return num_stripes_per_unit_resync(dev);
1292 }
1293
1294 static __u8 imsm_num_data_members(struct imsm_dev *dev)
1295 {
1296 /* named 'imsm_' because raid0, raid1 and raid10
1297 * counter-intuitively have the same number of data disks
1298 */
1299 struct imsm_map *map = get_imsm_map(dev, 0);
1300
1301 switch (get_imsm_raid_level(map)) {
1302 case 0:
1303 case 1:
1304 case 10:
1305 return map->num_members;
1306 case 5:
1307 return map->num_members - 1;
1308 default:
1309 dprintf("%s: unsupported raid level\n", __func__);
1310 return 0;
1311 }
1312 }
1313
1314 static __u32 parity_segment_depth(struct imsm_dev *dev)
1315 {
1316 struct imsm_map *map = get_imsm_map(dev, 0);
1317 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1318
1319 switch(get_imsm_raid_level(map)) {
1320 case 1:
1321 case 10:
1322 return chunk * map->num_domains;
1323 case 5:
1324 return chunk * map->num_members;
1325 default:
1326 return chunk;
1327 }
1328 }
1329
1330 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1331 {
1332 struct imsm_map *map = get_imsm_map(dev, 1);
1333 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1334 __u32 strip = block / chunk;
1335
1336 switch (get_imsm_raid_level(map)) {
1337 case 1:
1338 case 10: {
1339 __u32 vol_strip = (strip * map->num_domains) + 1;
1340 __u32 vol_stripe = vol_strip / map->num_members;
1341
1342 return vol_stripe * chunk + block % chunk;
1343 } case 5: {
1344 __u32 stripe = strip / (map->num_members - 1);
1345
1346 return stripe * chunk + block % chunk;
1347 }
1348 default:
1349 return 0;
1350 }
1351 }
1352
1353 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1354 {
1355 /* calculate the conversion factor between per member 'blocks'
1356 * (md/{resync,rebuild}_start) and imsm migration units, return
1357 * 0 for the 'not migrating' and 'unsupported migration' cases
1358 */
1359 if (!dev->vol.migr_state)
1360 return 0;
1361
1362 switch (migr_type(dev)) {
1363 case MIGR_VERIFY:
1364 case MIGR_REPAIR:
1365 case MIGR_INIT: {
1366 struct imsm_map *map = get_imsm_map(dev, 0);
1367 __u32 stripes_per_unit;
1368 __u32 blocks_per_unit;
1369 __u32 parity_depth;
1370 __u32 migr_chunk;
1371 __u32 block_map;
1372 __u32 block_rel;
1373 __u32 segment;
1374 __u32 stripe;
1375 __u8 disks;
1376
1377 /* yes, this is really the translation of migr_units to
1378 * per-member blocks in the 'resync' case
1379 */
1380 stripes_per_unit = num_stripes_per_unit_resync(dev);
1381 migr_chunk = migr_strip_blocks_resync(dev);
1382 disks = imsm_num_data_members(dev);
1383 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1384 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1385 segment = blocks_per_unit / stripe;
1386 block_rel = blocks_per_unit - segment * stripe;
1387 parity_depth = parity_segment_depth(dev);
1388 block_map = map_migr_block(dev, block_rel);
1389 return block_map + parity_depth * segment;
1390 }
1391 case MIGR_REBUILD: {
1392 __u32 stripes_per_unit;
1393 __u32 migr_chunk;
1394
1395 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1396 migr_chunk = migr_strip_blocks_rebuild(dev);
1397 return migr_chunk * stripes_per_unit;
1398 }
1399 case MIGR_GEN_MIGR:
1400 case MIGR_STATE_CHANGE:
1401 default:
1402 return 0;
1403 }
1404 }
1405
1406 static int imsm_level_to_layout(int level)
1407 {
1408 switch (level) {
1409 case 0:
1410 case 1:
1411 return 0;
1412 case 5:
1413 case 6:
1414 return ALGORITHM_LEFT_ASYMMETRIC;
1415 case 10:
1416 return 0x102;
1417 }
1418 return UnSet;
1419 }
1420
1421 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1422 {
1423 struct intel_super *super = st->sb;
1424 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1425 struct imsm_map *map = get_imsm_map(dev, 0);
1426 struct dl *dl;
1427 char *devname;
1428
1429 for (dl = super->disks; dl; dl = dl->next)
1430 if (dl->raiddisk == info->disk.raid_disk)
1431 break;
1432 info->container_member = super->current_vol;
1433 info->array.raid_disks = map->num_members;
1434 info->array.level = get_imsm_raid_level(map);
1435 info->array.layout = imsm_level_to_layout(info->array.level);
1436 info->array.md_minor = -1;
1437 info->array.ctime = 0;
1438 info->array.utime = 0;
1439 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1440 info->array.state = !dev->vol.dirty;
1441 info->custom_array_size = __le32_to_cpu(dev->size_high);
1442 info->custom_array_size <<= 32;
1443 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1444
1445 info->disk.major = 0;
1446 info->disk.minor = 0;
1447 if (dl) {
1448 info->disk.major = dl->major;
1449 info->disk.minor = dl->minor;
1450 }
1451
1452 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1453 info->component_size = __le32_to_cpu(map->blocks_per_member);
1454 memset(info->uuid, 0, sizeof(info->uuid));
1455 info->recovery_start = MaxSector;
1456
1457 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
1458 info->resync_start = 0;
1459 } else if (dev->vol.migr_state) {
1460 switch (migr_type(dev)) {
1461 case MIGR_REPAIR:
1462 case MIGR_INIT: {
1463 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1464 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1465
1466 info->resync_start = blocks_per_unit * units;
1467 break;
1468 }
1469 case MIGR_VERIFY:
1470 /* we could emulate the checkpointing of
1471 * 'sync_action=check' migrations, but for now
1472 * we just immediately complete them
1473 */
1474 case MIGR_REBUILD:
1475 /* this is handled by container_content_imsm() */
1476 case MIGR_GEN_MIGR:
1477 case MIGR_STATE_CHANGE:
1478 /* FIXME handle other migrations */
1479 default:
1480 /* we are not dirty, so... */
1481 info->resync_start = MaxSector;
1482 }
1483 } else
1484 info->resync_start = MaxSector;
1485
1486 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1487 info->name[MAX_RAID_SERIAL_LEN] = 0;
1488
1489 info->array.major_version = -1;
1490 info->array.minor_version = -2;
1491 devname = devnum2devname(st->container_dev);
1492 *info->text_version = '\0';
1493 if (devname)
1494 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1495 free(devname);
1496 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1497 uuid_from_super_imsm(st, info->uuid);
1498 }
1499
1500 /* check the config file to see if we can return a real uuid for this spare */
1501 static void fixup_container_spare_uuid(struct mdinfo *inf)
1502 {
1503 struct mddev_ident_s *array_list;
1504
1505 if (inf->array.level != LEVEL_CONTAINER ||
1506 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1507 return;
1508
1509 array_list = conf_get_ident(NULL);
1510
1511 for (; array_list; array_list = array_list->next) {
1512 if (array_list->uuid_set) {
1513 struct supertype *_sst; /* spare supertype */
1514 struct supertype *_cst; /* container supertype */
1515
1516 _cst = array_list->st;
1517 if (_cst)
1518 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1519 else
1520 _sst = NULL;
1521
1522 if (_sst) {
1523 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1524 free(_sst);
1525 break;
1526 }
1527 }
1528 }
1529 }
1530
1531 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1532 {
1533 struct intel_super *super = st->sb;
1534 struct imsm_disk *disk;
1535
1536 if (super->current_vol >= 0) {
1537 getinfo_super_imsm_volume(st, info);
1538 return;
1539 }
1540
1541 /* Set raid_disks to zero so that Assemble will always pull in valid
1542 * spares
1543 */
1544 info->array.raid_disks = 0;
1545 info->array.level = LEVEL_CONTAINER;
1546 info->array.layout = 0;
1547 info->array.md_minor = -1;
1548 info->array.ctime = 0; /* N/A for imsm */
1549 info->array.utime = 0;
1550 info->array.chunk_size = 0;
1551
1552 info->disk.major = 0;
1553 info->disk.minor = 0;
1554 info->disk.raid_disk = -1;
1555 info->reshape_active = 0;
1556 info->array.major_version = -1;
1557 info->array.minor_version = -2;
1558 strcpy(info->text_version, "imsm");
1559 info->safe_mode_delay = 0;
1560 info->disk.number = -1;
1561 info->disk.state = 0;
1562 info->name[0] = 0;
1563 info->recovery_start = MaxSector;
1564
1565 if (super->disks) {
1566 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1567
1568 disk = &super->disks->disk;
1569 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1570 info->component_size = reserved;
1571 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1572 /* we don't change info->disk.raid_disk here because
1573 * this state will be finalized in mdmon after we have
1574 * found the 'most fresh' version of the metadata
1575 */
1576 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1577 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1578 }
1579
1580 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1581 * ->compare_super may have updated the 'num_raid_devs' field for spares
1582 */
1583 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1584 uuid_from_super_imsm(st, info->uuid);
1585 else {
1586 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1587 fixup_container_spare_uuid(info);
1588 }
1589 }
1590
1591 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1592 char *update, char *devname, int verbose,
1593 int uuid_set, char *homehost)
1594 {
1595 /* For 'assemble' and 'force' we need to return non-zero if any
1596 * change was made. For others, the return value is ignored.
1597 * Update options are:
1598 * force-one : This device looks a bit old but needs to be included,
1599 * update age info appropriately.
1600 * assemble: clear any 'faulty' flag to allow this device to
1601 * be assembled.
1602 * force-array: Array is degraded but being forced, mark it clean
1603 * if that will be needed to assemble it.
1604 *
1605 * newdev: not used ????
1606 * grow: Array has gained a new device - this is currently for
1607 * linear only
1608 * resync: mark as dirty so a resync will happen.
1609 * name: update the name - preserving the homehost
1610 * uuid: Change the uuid of the array to match watch is given
1611 *
1612 * Following are not relevant for this imsm:
1613 * sparc2.2 : update from old dodgey metadata
1614 * super-minor: change the preferred_minor number
1615 * summaries: update redundant counters.
1616 * homehost: update the recorded homehost
1617 * _reshape_progress: record new reshape_progress position.
1618 */
1619 int rv = 1;
1620 struct intel_super *super = st->sb;
1621 struct imsm_super *mpb;
1622
1623 /* we can only update container info */
1624 if (!super || super->current_vol >= 0 || !super->anchor)
1625 return 1;
1626
1627 mpb = super->anchor;
1628
1629 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1630 fprintf(stderr,
1631 Name ": '--uuid' not supported for imsm metadata\n");
1632 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1633 mpb->orig_family_num = *((__u32 *) info->update_private);
1634 rv = 0;
1635 } else if (strcmp(update, "uuid") == 0) {
1636 __u32 *new_family = malloc(sizeof(*new_family));
1637
1638 /* update orig_family_number with the incoming random
1639 * data, report the new effective uuid, and store the
1640 * new orig_family_num for future updates.
1641 */
1642 if (new_family) {
1643 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1644 uuid_from_super_imsm(st, info->uuid);
1645 *new_family = mpb->orig_family_num;
1646 info->update_private = new_family;
1647 rv = 0;
1648 }
1649 } else if (strcmp(update, "assemble") == 0)
1650 rv = 0;
1651 else
1652 fprintf(stderr,
1653 Name ": '--update=%s' not supported for imsm metadata\n",
1654 update);
1655
1656 /* successful update? recompute checksum */
1657 if (rv == 0)
1658 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1659
1660 return rv;
1661 }
1662
1663 static size_t disks_to_mpb_size(int disks)
1664 {
1665 size_t size;
1666
1667 size = sizeof(struct imsm_super);
1668 size += (disks - 1) * sizeof(struct imsm_disk);
1669 size += 2 * sizeof(struct imsm_dev);
1670 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1671 size += (4 - 2) * sizeof(struct imsm_map);
1672 /* 4 possible disk_ord_tbl's */
1673 size += 4 * (disks - 1) * sizeof(__u32);
1674
1675 return size;
1676 }
1677
1678 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1679 {
1680 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1681 return 0;
1682
1683 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1684 }
1685
1686 static void free_devlist(struct intel_super *super)
1687 {
1688 struct intel_dev *dv;
1689
1690 while (super->devlist) {
1691 dv = super->devlist->next;
1692 free(super->devlist->dev);
1693 free(super->devlist);
1694 super->devlist = dv;
1695 }
1696 }
1697
1698 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1699 {
1700 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1701 }
1702
1703 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1704 {
1705 /*
1706 * return:
1707 * 0 same, or first was empty, and second was copied
1708 * 1 second had wrong number
1709 * 2 wrong uuid
1710 * 3 wrong other info
1711 */
1712 struct intel_super *first = st->sb;
1713 struct intel_super *sec = tst->sb;
1714
1715 if (!first) {
1716 st->sb = tst->sb;
1717 tst->sb = NULL;
1718 return 0;
1719 }
1720
1721 /* if an anchor does not have num_raid_devs set then it is a free
1722 * floating spare
1723 */
1724 if (first->anchor->num_raid_devs > 0 &&
1725 sec->anchor->num_raid_devs > 0) {
1726 /* Determine if these disks might ever have been
1727 * related. Further disambiguation can only take place
1728 * in load_super_imsm_all
1729 */
1730 __u32 first_family = first->anchor->orig_family_num;
1731 __u32 sec_family = sec->anchor->orig_family_num;
1732
1733 if (memcmp(first->anchor->sig, sec->anchor->sig,
1734 MAX_SIGNATURE_LENGTH) != 0)
1735 return 3;
1736
1737 if (first_family == 0)
1738 first_family = first->anchor->family_num;
1739 if (sec_family == 0)
1740 sec_family = sec->anchor->family_num;
1741
1742 if (first_family != sec_family)
1743 return 3;
1744
1745 }
1746
1747
1748 /* if 'first' is a spare promote it to a populated mpb with sec's
1749 * family number
1750 */
1751 if (first->anchor->num_raid_devs == 0 &&
1752 sec->anchor->num_raid_devs > 0) {
1753 int i;
1754 struct intel_dev *dv;
1755 struct imsm_dev *dev;
1756
1757 /* we need to copy raid device info from sec if an allocation
1758 * fails here we don't associate the spare
1759 */
1760 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1761 dv = malloc(sizeof(*dv));
1762 if (!dv)
1763 break;
1764 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1765 if (!dev) {
1766 free(dv);
1767 break;
1768 }
1769 dv->dev = dev;
1770 dv->index = i;
1771 dv->next = first->devlist;
1772 first->devlist = dv;
1773 }
1774 if (i < sec->anchor->num_raid_devs) {
1775 /* allocation failure */
1776 free_devlist(first);
1777 fprintf(stderr, "imsm: failed to associate spare\n");
1778 return 3;
1779 }
1780 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1781 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1782 first->anchor->family_num = sec->anchor->family_num;
1783 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
1784 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1785 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1786 }
1787
1788 return 0;
1789 }
1790
1791 static void fd2devname(int fd, char *name)
1792 {
1793 struct stat st;
1794 char path[256];
1795 char dname[PATH_MAX];
1796 char *nm;
1797 int rv;
1798
1799 name[0] = '\0';
1800 if (fstat(fd, &st) != 0)
1801 return;
1802 sprintf(path, "/sys/dev/block/%d:%d",
1803 major(st.st_rdev), minor(st.st_rdev));
1804
1805 rv = readlink(path, dname, sizeof(dname));
1806 if (rv <= 0)
1807 return;
1808
1809 dname[rv] = '\0';
1810 nm = strrchr(dname, '/');
1811 nm++;
1812 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1813 }
1814
1815 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1816
1817 static int imsm_read_serial(int fd, char *devname,
1818 __u8 serial[MAX_RAID_SERIAL_LEN])
1819 {
1820 unsigned char scsi_serial[255];
1821 int rv;
1822 int rsp_len;
1823 int len;
1824 char *dest;
1825 char *src;
1826 char *rsp_buf;
1827 int i;
1828
1829 memset(scsi_serial, 0, sizeof(scsi_serial));
1830
1831 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1832
1833 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1834 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1835 fd2devname(fd, (char *) serial);
1836 return 0;
1837 }
1838
1839 if (rv != 0) {
1840 if (devname)
1841 fprintf(stderr,
1842 Name ": Failed to retrieve serial for %s\n",
1843 devname);
1844 return rv;
1845 }
1846
1847 rsp_len = scsi_serial[3];
1848 if (!rsp_len) {
1849 if (devname)
1850 fprintf(stderr,
1851 Name ": Failed to retrieve serial for %s\n",
1852 devname);
1853 return 2;
1854 }
1855 rsp_buf = (char *) &scsi_serial[4];
1856
1857 /* trim all whitespace and non-printable characters and convert
1858 * ':' to ';'
1859 */
1860 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1861 src = &rsp_buf[i];
1862 if (*src > 0x20) {
1863 /* ':' is reserved for use in placeholder serial
1864 * numbers for missing disks
1865 */
1866 if (*src == ':')
1867 *dest++ = ';';
1868 else
1869 *dest++ = *src;
1870 }
1871 }
1872 len = dest - rsp_buf;
1873 dest = rsp_buf;
1874
1875 /* truncate leading characters */
1876 if (len > MAX_RAID_SERIAL_LEN) {
1877 dest += len - MAX_RAID_SERIAL_LEN;
1878 len = MAX_RAID_SERIAL_LEN;
1879 }
1880
1881 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1882 memcpy(serial, dest, len);
1883
1884 return 0;
1885 }
1886
1887 static int serialcmp(__u8 *s1, __u8 *s2)
1888 {
1889 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1890 }
1891
1892 static void serialcpy(__u8 *dest, __u8 *src)
1893 {
1894 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1895 }
1896
1897 #ifndef MDASSEMBLE
1898 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1899 {
1900 struct dl *dl;
1901
1902 for (dl = super->disks; dl; dl = dl->next)
1903 if (serialcmp(dl->serial, serial) == 0)
1904 break;
1905
1906 return dl;
1907 }
1908 #endif
1909
1910 static struct imsm_disk *
1911 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1912 {
1913 int i;
1914
1915 for (i = 0; i < mpb->num_disks; i++) {
1916 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1917
1918 if (serialcmp(disk->serial, serial) == 0) {
1919 if (idx)
1920 *idx = i;
1921 return disk;
1922 }
1923 }
1924
1925 return NULL;
1926 }
1927
1928 static int
1929 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1930 {
1931 struct imsm_disk *disk;
1932 struct dl *dl;
1933 struct stat stb;
1934 int rv;
1935 char name[40];
1936 __u8 serial[MAX_RAID_SERIAL_LEN];
1937
1938 rv = imsm_read_serial(fd, devname, serial);
1939
1940 if (rv != 0)
1941 return 2;
1942
1943 dl = calloc(1, sizeof(*dl));
1944 if (!dl) {
1945 if (devname)
1946 fprintf(stderr,
1947 Name ": failed to allocate disk buffer for %s\n",
1948 devname);
1949 return 2;
1950 }
1951
1952 fstat(fd, &stb);
1953 dl->major = major(stb.st_rdev);
1954 dl->minor = minor(stb.st_rdev);
1955 dl->next = super->disks;
1956 dl->fd = keep_fd ? fd : -1;
1957 assert(super->disks == NULL);
1958 super->disks = dl;
1959 serialcpy(dl->serial, serial);
1960 dl->index = -2;
1961 dl->e = NULL;
1962 fd2devname(fd, name);
1963 if (devname)
1964 dl->devname = strdup(devname);
1965 else
1966 dl->devname = strdup(name);
1967
1968 /* look up this disk's index in the current anchor */
1969 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1970 if (disk) {
1971 dl->disk = *disk;
1972 /* only set index on disks that are a member of a
1973 * populated contianer, i.e. one with raid_devs
1974 */
1975 if (is_failed(&dl->disk))
1976 dl->index = -2;
1977 else if (is_spare(&dl->disk))
1978 dl->index = -1;
1979 }
1980
1981 return 0;
1982 }
1983
1984 #ifndef MDASSEMBLE
1985 /* When migrating map0 contains the 'destination' state while map1
1986 * contains the current state. When not migrating map0 contains the
1987 * current state. This routine assumes that map[0].map_state is set to
1988 * the current array state before being called.
1989 *
1990 * Migration is indicated by one of the following states
1991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1993 * map1state=unitialized)
1994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1995 * map1state=normal)
1996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1997 * map1state=degraded)
1998 */
1999 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2000 {
2001 struct imsm_map *dest;
2002 struct imsm_map *src = get_imsm_map(dev, 0);
2003
2004 dev->vol.migr_state = 1;
2005 set_migr_type(dev, migr_type);
2006 dev->vol.curr_migr_unit = 0;
2007 dest = get_imsm_map(dev, 1);
2008
2009 /* duplicate and then set the target end state in map[0] */
2010 memcpy(dest, src, sizeof_imsm_map(src));
2011 if (migr_type == MIGR_REBUILD) {
2012 __u32 ord;
2013 int i;
2014
2015 for (i = 0; i < src->num_members; i++) {
2016 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2017 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2018 }
2019 }
2020
2021 src->map_state = to_state;
2022 }
2023
2024 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2025 {
2026 struct imsm_map *map = get_imsm_map(dev, 0);
2027 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2028 int i;
2029
2030 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2031 * completed in the last migration.
2032 *
2033 * FIXME add support for online capacity expansion and
2034 * raid-level-migration
2035 */
2036 for (i = 0; i < prev->num_members; i++)
2037 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
2038
2039 dev->vol.migr_state = 0;
2040 dev->vol.curr_migr_unit = 0;
2041 map->map_state = map_state;
2042 }
2043 #endif
2044
2045 static int parse_raid_devices(struct intel_super *super)
2046 {
2047 int i;
2048 struct imsm_dev *dev_new;
2049 size_t len, len_migr;
2050 size_t space_needed = 0;
2051 struct imsm_super *mpb = super->anchor;
2052
2053 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2054 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2055 struct intel_dev *dv;
2056
2057 len = sizeof_imsm_dev(dev_iter, 0);
2058 len_migr = sizeof_imsm_dev(dev_iter, 1);
2059 if (len_migr > len)
2060 space_needed += len_migr - len;
2061
2062 dv = malloc(sizeof(*dv));
2063 if (!dv)
2064 return 1;
2065 dev_new = malloc(len_migr);
2066 if (!dev_new) {
2067 free(dv);
2068 return 1;
2069 }
2070 imsm_copy_dev(dev_new, dev_iter);
2071 dv->dev = dev_new;
2072 dv->index = i;
2073 dv->next = super->devlist;
2074 super->devlist = dv;
2075 }
2076
2077 /* ensure that super->buf is large enough when all raid devices
2078 * are migrating
2079 */
2080 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2081 void *buf;
2082
2083 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2084 if (posix_memalign(&buf, 512, len) != 0)
2085 return 1;
2086
2087 memcpy(buf, super->buf, super->len);
2088 memset(buf + super->len, 0, len - super->len);
2089 free(super->buf);
2090 super->buf = buf;
2091 super->len = len;
2092 }
2093
2094 return 0;
2095 }
2096
2097 /* retrieve a pointer to the bbm log which starts after all raid devices */
2098 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2099 {
2100 void *ptr = NULL;
2101
2102 if (__le32_to_cpu(mpb->bbm_log_size)) {
2103 ptr = mpb;
2104 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2105 }
2106
2107 return ptr;
2108 }
2109
2110 static void __free_imsm(struct intel_super *super, int free_disks);
2111
2112 /* load_imsm_mpb - read matrix metadata
2113 * allocates super->mpb to be freed by free_super
2114 */
2115 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2116 {
2117 unsigned long long dsize;
2118 unsigned long long sectors;
2119 struct stat;
2120 struct imsm_super *anchor;
2121 __u32 check_sum;
2122
2123 get_dev_size(fd, NULL, &dsize);
2124
2125 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2126 if (devname)
2127 fprintf(stderr,
2128 Name ": Cannot seek to anchor block on %s: %s\n",
2129 devname, strerror(errno));
2130 return 1;
2131 }
2132
2133 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2134 if (devname)
2135 fprintf(stderr,
2136 Name ": Failed to allocate imsm anchor buffer"
2137 " on %s\n", devname);
2138 return 1;
2139 }
2140 if (read(fd, anchor, 512) != 512) {
2141 if (devname)
2142 fprintf(stderr,
2143 Name ": Cannot read anchor block on %s: %s\n",
2144 devname, strerror(errno));
2145 free(anchor);
2146 return 1;
2147 }
2148
2149 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2150 if (devname)
2151 fprintf(stderr,
2152 Name ": no IMSM anchor on %s\n", devname);
2153 free(anchor);
2154 return 2;
2155 }
2156
2157 __free_imsm(super, 0);
2158 super->len = ROUND_UP(anchor->mpb_size, 512);
2159 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2160 if (devname)
2161 fprintf(stderr,
2162 Name ": unable to allocate %zu byte mpb buffer\n",
2163 super->len);
2164 free(anchor);
2165 return 2;
2166 }
2167 memcpy(super->buf, anchor, 512);
2168
2169 sectors = mpb_sectors(anchor) - 1;
2170 free(anchor);
2171 if (!sectors) {
2172 check_sum = __gen_imsm_checksum(super->anchor);
2173 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2174 if (devname)
2175 fprintf(stderr,
2176 Name ": IMSM checksum %x != %x on %s\n",
2177 check_sum,
2178 __le32_to_cpu(super->anchor->check_sum),
2179 devname);
2180 return 2;
2181 }
2182
2183 return 0;
2184 }
2185
2186 /* read the extended mpb */
2187 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2188 if (devname)
2189 fprintf(stderr,
2190 Name ": Cannot seek to extended mpb on %s: %s\n",
2191 devname, strerror(errno));
2192 return 1;
2193 }
2194
2195 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2196 if (devname)
2197 fprintf(stderr,
2198 Name ": Cannot read extended mpb on %s: %s\n",
2199 devname, strerror(errno));
2200 return 2;
2201 }
2202
2203 check_sum = __gen_imsm_checksum(super->anchor);
2204 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2205 if (devname)
2206 fprintf(stderr,
2207 Name ": IMSM checksum %x != %x on %s\n",
2208 check_sum, __le32_to_cpu(super->anchor->check_sum),
2209 devname);
2210 return 3;
2211 }
2212
2213 /* FIXME the BBM log is disk specific so we cannot use this global
2214 * buffer for all disks. Ok for now since we only look at the global
2215 * bbm_log_size parameter to gate assembly
2216 */
2217 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2218
2219 return 0;
2220 }
2221
2222 static int
2223 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2224 {
2225 int err;
2226
2227 err = load_imsm_mpb(fd, super, devname);
2228 if (err)
2229 return err;
2230 err = load_imsm_disk(fd, super, devname, keep_fd);
2231 if (err)
2232 return err;
2233 err = parse_raid_devices(super);
2234
2235 return err;
2236 }
2237
2238 static void __free_imsm_disk(struct dl *d)
2239 {
2240 if (d->fd >= 0)
2241 close(d->fd);
2242 if (d->devname)
2243 free(d->devname);
2244 if (d->e)
2245 free(d->e);
2246 free(d);
2247
2248 }
2249 static void free_imsm_disks(struct intel_super *super)
2250 {
2251 struct dl *d;
2252
2253 while (super->disks) {
2254 d = super->disks;
2255 super->disks = d->next;
2256 __free_imsm_disk(d);
2257 }
2258 while (super->missing) {
2259 d = super->missing;
2260 super->missing = d->next;
2261 __free_imsm_disk(d);
2262 }
2263
2264 }
2265
2266 /* free all the pieces hanging off of a super pointer */
2267 static void __free_imsm(struct intel_super *super, int free_disks)
2268 {
2269 if (super->buf) {
2270 free(super->buf);
2271 super->buf = NULL;
2272 }
2273 if (free_disks)
2274 free_imsm_disks(super);
2275 free_devlist(super);
2276 if (super->hba) {
2277 free((void *) super->hba);
2278 super->hba = NULL;
2279 }
2280 }
2281
2282 static void free_imsm(struct intel_super *super)
2283 {
2284 __free_imsm(super, 1);
2285 free(super);
2286 }
2287
2288 static void free_super_imsm(struct supertype *st)
2289 {
2290 struct intel_super *super = st->sb;
2291
2292 if (!super)
2293 return;
2294
2295 free_imsm(super);
2296 st->sb = NULL;
2297 }
2298
2299 static struct intel_super *alloc_super(int creating_imsm)
2300 {
2301 struct intel_super *super = malloc(sizeof(*super));
2302
2303 if (super) {
2304 memset(super, 0, sizeof(*super));
2305 super->creating_imsm = creating_imsm;
2306 super->current_vol = -1;
2307 super->create_offset = ~((__u32 ) 0);
2308 if (!check_env("IMSM_NO_PLATFORM"))
2309 super->orom = find_imsm_orom();
2310 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2311 struct sys_dev *list, *ent;
2312
2313 /* find the first intel ahci controller */
2314 list = find_driver_devices("pci", "ahci");
2315 for (ent = list; ent; ent = ent->next)
2316 if (devpath_to_vendor(ent->path) == 0x8086)
2317 break;
2318 if (ent) {
2319 super->hba = ent->path;
2320 ent->path = NULL;
2321 }
2322 free_sys_dev(&list);
2323 }
2324 }
2325
2326 return super;
2327 }
2328
2329 #ifndef MDASSEMBLE
2330 /* find_missing - helper routine for load_super_imsm_all that identifies
2331 * disks that have disappeared from the system. This routine relies on
2332 * the mpb being uptodate, which it is at load time.
2333 */
2334 static int find_missing(struct intel_super *super)
2335 {
2336 int i;
2337 struct imsm_super *mpb = super->anchor;
2338 struct dl *dl;
2339 struct imsm_disk *disk;
2340
2341 for (i = 0; i < mpb->num_disks; i++) {
2342 disk = __get_imsm_disk(mpb, i);
2343 dl = serial_to_dl(disk->serial, super);
2344 if (dl)
2345 continue;
2346
2347 dl = malloc(sizeof(*dl));
2348 if (!dl)
2349 return 1;
2350 dl->major = 0;
2351 dl->minor = 0;
2352 dl->fd = -1;
2353 dl->devname = strdup("missing");
2354 dl->index = i;
2355 serialcpy(dl->serial, disk->serial);
2356 dl->disk = *disk;
2357 dl->e = NULL;
2358 dl->next = super->missing;
2359 super->missing = dl;
2360 }
2361
2362 return 0;
2363 }
2364
2365 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2366 {
2367 struct intel_disk *idisk = disk_list;
2368
2369 while (idisk) {
2370 if (serialcmp(idisk->disk.serial, serial) == 0)
2371 break;
2372 idisk = idisk->next;
2373 }
2374
2375 return idisk;
2376 }
2377
2378 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2379 struct intel_super *super,
2380 struct intel_disk **disk_list)
2381 {
2382 struct imsm_disk *d = &super->disks->disk;
2383 struct imsm_super *mpb = super->anchor;
2384 int i, j;
2385
2386 for (i = 0; i < tbl_size; i++) {
2387 struct imsm_super *tbl_mpb = table[i]->anchor;
2388 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2389
2390 if (tbl_mpb->family_num == mpb->family_num) {
2391 if (tbl_mpb->check_sum == mpb->check_sum) {
2392 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2393 __func__, super->disks->major,
2394 super->disks->minor,
2395 table[i]->disks->major,
2396 table[i]->disks->minor);
2397 break;
2398 }
2399
2400 if (((is_configured(d) && !is_configured(tbl_d)) ||
2401 is_configured(d) == is_configured(tbl_d)) &&
2402 tbl_mpb->generation_num < mpb->generation_num) {
2403 /* current version of the mpb is a
2404 * better candidate than the one in
2405 * super_table, but copy over "cross
2406 * generational" status
2407 */
2408 struct intel_disk *idisk;
2409
2410 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2411 __func__, super->disks->major,
2412 super->disks->minor,
2413 table[i]->disks->major,
2414 table[i]->disks->minor);
2415
2416 idisk = disk_list_get(tbl_d->serial, *disk_list);
2417 if (idisk && is_failed(&idisk->disk))
2418 tbl_d->status |= FAILED_DISK;
2419 break;
2420 } else {
2421 struct intel_disk *idisk;
2422 struct imsm_disk *disk;
2423
2424 /* tbl_mpb is more up to date, but copy
2425 * over cross generational status before
2426 * returning
2427 */
2428 disk = __serial_to_disk(d->serial, mpb, NULL);
2429 if (disk && is_failed(disk))
2430 d->status |= FAILED_DISK;
2431
2432 idisk = disk_list_get(d->serial, *disk_list);
2433 if (idisk) {
2434 idisk->owner = i;
2435 if (disk && is_configured(disk))
2436 idisk->disk.status |= CONFIGURED_DISK;
2437 }
2438
2439 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2440 __func__, super->disks->major,
2441 super->disks->minor,
2442 table[i]->disks->major,
2443 table[i]->disks->minor);
2444
2445 return tbl_size;
2446 }
2447 }
2448 }
2449
2450 if (i >= tbl_size)
2451 table[tbl_size++] = super;
2452 else
2453 table[i] = super;
2454
2455 /* update/extend the merged list of imsm_disk records */
2456 for (j = 0; j < mpb->num_disks; j++) {
2457 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2458 struct intel_disk *idisk;
2459
2460 idisk = disk_list_get(disk->serial, *disk_list);
2461 if (idisk) {
2462 idisk->disk.status |= disk->status;
2463 if (is_configured(&idisk->disk) ||
2464 is_failed(&idisk->disk))
2465 idisk->disk.status &= ~(SPARE_DISK);
2466 } else {
2467 idisk = calloc(1, sizeof(*idisk));
2468 if (!idisk)
2469 return -1;
2470 idisk->owner = IMSM_UNKNOWN_OWNER;
2471 idisk->disk = *disk;
2472 idisk->next = *disk_list;
2473 *disk_list = idisk;
2474 }
2475
2476 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2477 idisk->owner = i;
2478 }
2479
2480 return tbl_size;
2481 }
2482
2483 static struct intel_super *
2484 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2485 const int owner)
2486 {
2487 struct imsm_super *mpb = super->anchor;
2488 int ok_count = 0;
2489 int i;
2490
2491 for (i = 0; i < mpb->num_disks; i++) {
2492 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2493 struct intel_disk *idisk;
2494
2495 idisk = disk_list_get(disk->serial, disk_list);
2496 if (idisk) {
2497 if (idisk->owner == owner ||
2498 idisk->owner == IMSM_UNKNOWN_OWNER)
2499 ok_count++;
2500 else
2501 dprintf("%s: '%.16s' owner %d != %d\n",
2502 __func__, disk->serial, idisk->owner,
2503 owner);
2504 } else {
2505 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2506 __func__, __le32_to_cpu(mpb->family_num), i,
2507 disk->serial);
2508 break;
2509 }
2510 }
2511
2512 if (ok_count == mpb->num_disks)
2513 return super;
2514 return NULL;
2515 }
2516
2517 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2518 {
2519 struct intel_super *s;
2520
2521 for (s = super_list; s; s = s->next) {
2522 if (family_num != s->anchor->family_num)
2523 continue;
2524 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2525 __le32_to_cpu(family_num), s->disks->devname);
2526 }
2527 }
2528
2529 static struct intel_super *
2530 imsm_thunderdome(struct intel_super **super_list, int len)
2531 {
2532 struct intel_super *super_table[len];
2533 struct intel_disk *disk_list = NULL;
2534 struct intel_super *champion, *spare;
2535 struct intel_super *s, **del;
2536 int tbl_size = 0;
2537 int conflict;
2538 int i;
2539
2540 memset(super_table, 0, sizeof(super_table));
2541 for (s = *super_list; s; s = s->next)
2542 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2543
2544 for (i = 0; i < tbl_size; i++) {
2545 struct imsm_disk *d;
2546 struct intel_disk *idisk;
2547 struct imsm_super *mpb = super_table[i]->anchor;
2548
2549 s = super_table[i];
2550 d = &s->disks->disk;
2551
2552 /* 'd' must appear in merged disk list for its
2553 * configuration to be valid
2554 */
2555 idisk = disk_list_get(d->serial, disk_list);
2556 if (idisk && idisk->owner == i)
2557 s = validate_members(s, disk_list, i);
2558 else
2559 s = NULL;
2560
2561 if (!s)
2562 dprintf("%s: marking family: %#x from %d:%d offline\n",
2563 __func__, mpb->family_num,
2564 super_table[i]->disks->major,
2565 super_table[i]->disks->minor);
2566 super_table[i] = s;
2567 }
2568
2569 /* This is where the mdadm implementation differs from the Windows
2570 * driver which has no strict concept of a container. We can only
2571 * assemble one family from a container, so when returning a prodigal
2572 * array member to this system the code will not be able to disambiguate
2573 * the container contents that should be assembled ("foreign" versus
2574 * "local"). It requires user intervention to set the orig_family_num
2575 * to a new value to establish a new container. The Windows driver in
2576 * this situation fixes up the volume name in place and manages the
2577 * foreign array as an independent entity.
2578 */
2579 s = NULL;
2580 spare = NULL;
2581 conflict = 0;
2582 for (i = 0; i < tbl_size; i++) {
2583 struct intel_super *tbl_ent = super_table[i];
2584 int is_spare = 0;
2585
2586 if (!tbl_ent)
2587 continue;
2588
2589 if (tbl_ent->anchor->num_raid_devs == 0) {
2590 spare = tbl_ent;
2591 is_spare = 1;
2592 }
2593
2594 if (s && !is_spare) {
2595 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2596 conflict++;
2597 } else if (!s && !is_spare)
2598 s = tbl_ent;
2599 }
2600
2601 if (!s)
2602 s = spare;
2603 if (!s) {
2604 champion = NULL;
2605 goto out;
2606 }
2607 champion = s;
2608
2609 if (conflict)
2610 fprintf(stderr, "Chose family %#x on '%s', "
2611 "assemble conflicts to new container with '--update=uuid'\n",
2612 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2613
2614 /* collect all dl's onto 'champion', and update them to
2615 * champion's version of the status
2616 */
2617 for (s = *super_list; s; s = s->next) {
2618 struct imsm_super *mpb = champion->anchor;
2619 struct dl *dl = s->disks;
2620
2621 if (s == champion)
2622 continue;
2623
2624 for (i = 0; i < mpb->num_disks; i++) {
2625 struct imsm_disk *disk;
2626
2627 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2628 if (disk) {
2629 dl->disk = *disk;
2630 /* only set index on disks that are a member of
2631 * a populated contianer, i.e. one with
2632 * raid_devs
2633 */
2634 if (is_failed(&dl->disk))
2635 dl->index = -2;
2636 else if (is_spare(&dl->disk))
2637 dl->index = -1;
2638 break;
2639 }
2640 }
2641
2642 if (i >= mpb->num_disks) {
2643 struct intel_disk *idisk;
2644
2645 idisk = disk_list_get(dl->serial, disk_list);
2646 if (idisk && is_spare(&idisk->disk) &&
2647 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2648 dl->index = -1;
2649 else {
2650 dl->index = -2;
2651 continue;
2652 }
2653 }
2654
2655 dl->next = champion->disks;
2656 champion->disks = dl;
2657 s->disks = NULL;
2658 }
2659
2660 /* delete 'champion' from super_list */
2661 for (del = super_list; *del; ) {
2662 if (*del == champion) {
2663 *del = (*del)->next;
2664 break;
2665 } else
2666 del = &(*del)->next;
2667 }
2668 champion->next = NULL;
2669
2670 out:
2671 while (disk_list) {
2672 struct intel_disk *idisk = disk_list;
2673
2674 disk_list = disk_list->next;
2675 free(idisk);
2676 }
2677
2678 return champion;
2679 }
2680
2681 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2682 char *devname, int keep_fd)
2683 {
2684 struct mdinfo *sra;
2685 struct intel_super *super_list = NULL;
2686 struct intel_super *super = NULL;
2687 int devnum = fd2devnum(fd);
2688 struct mdinfo *sd;
2689 int retry;
2690 int err = 0;
2691 int i;
2692 enum sysfs_read_flags flags;
2693
2694 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2695 if (mdmon_running(devnum))
2696 flags |= SKIP_GONE_DEVS;
2697
2698 /* check if 'fd' an opened container */
2699 sra = sysfs_read(fd, 0, flags);
2700 if (!sra)
2701 return 1;
2702
2703 if (sra->array.major_version != -1 ||
2704 sra->array.minor_version != -2 ||
2705 strcmp(sra->text_version, "imsm") != 0) {
2706 err = 1;
2707 goto error;
2708 }
2709 /* load all mpbs */
2710 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2711 struct intel_super *s = alloc_super(0);
2712 char nm[32];
2713 int dfd;
2714
2715 err = 1;
2716 if (!s)
2717 goto error;
2718 s->next = super_list;
2719 super_list = s;
2720
2721 err = 2;
2722 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2723 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2724 if (dfd < 0)
2725 goto error;
2726
2727 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2728
2729 /* retry the load if we might have raced against mdmon */
2730 if (err == 3 && mdmon_running(devnum))
2731 for (retry = 0; retry < 3; retry++) {
2732 usleep(3000);
2733 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2734 if (err != 3)
2735 break;
2736 }
2737 if (!keep_fd)
2738 close(dfd);
2739 if (err)
2740 goto error;
2741 }
2742
2743 /* all mpbs enter, maybe one leaves */
2744 super = imsm_thunderdome(&super_list, i);
2745 if (!super) {
2746 err = 1;
2747 goto error;
2748 }
2749
2750 if (find_missing(super) != 0) {
2751 free_imsm(super);
2752 err = 2;
2753 goto error;
2754 }
2755
2756 if (st->subarray[0]) {
2757 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2758 super->current_vol = atoi(st->subarray);
2759 else {
2760 free_imsm(super);
2761 err = 1;
2762 goto error;
2763 }
2764 }
2765 err = 0;
2766
2767 error:
2768 while (super_list) {
2769 struct intel_super *s = super_list;
2770
2771 super_list = super_list->next;
2772 free_imsm(s);
2773 }
2774 sysfs_free(sra);
2775
2776 if (err)
2777 return err;
2778
2779 *sbp = super;
2780 st->container_dev = devnum;
2781 if (err == 0 && st->ss == NULL) {
2782 st->ss = &super_imsm;
2783 st->minor_version = 0;
2784 st->max_devs = IMSM_MAX_DEVICES;
2785 }
2786 st->loaded_container = 1;
2787
2788 return 0;
2789 }
2790 #endif
2791
2792 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2793 {
2794 struct intel_super *super;
2795 int rv;
2796
2797 #ifndef MDASSEMBLE
2798 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2799 return 0;
2800 #endif
2801
2802 free_super_imsm(st);
2803
2804 super = alloc_super(0);
2805 if (!super) {
2806 fprintf(stderr,
2807 Name ": malloc of %zu failed.\n",
2808 sizeof(*super));
2809 return 1;
2810 }
2811
2812 rv = load_and_parse_mpb(fd, super, devname, 0);
2813
2814 if (rv) {
2815 if (devname)
2816 fprintf(stderr,
2817 Name ": Failed to load all information "
2818 "sections on %s\n", devname);
2819 free_imsm(super);
2820 return rv;
2821 }
2822
2823 if (st->subarray[0]) {
2824 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2825 super->current_vol = atoi(st->subarray);
2826 else {
2827 free_imsm(super);
2828 return 1;
2829 }
2830 }
2831
2832 st->sb = super;
2833 if (st->ss == NULL) {
2834 st->ss = &super_imsm;
2835 st->minor_version = 0;
2836 st->max_devs = IMSM_MAX_DEVICES;
2837 }
2838 st->loaded_container = 0;
2839
2840 return 0;
2841 }
2842
2843 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2844 {
2845 if (info->level == 1)
2846 return 128;
2847 return info->chunk_size >> 9;
2848 }
2849
2850 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2851 {
2852 __u32 num_stripes;
2853
2854 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2855 num_stripes /= num_domains;
2856
2857 return num_stripes;
2858 }
2859
2860 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2861 {
2862 if (info->level == 1)
2863 return info->size * 2;
2864 else
2865 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2866 }
2867
2868 static void imsm_update_version_info(struct intel_super *super)
2869 {
2870 /* update the version and attributes */
2871 struct imsm_super *mpb = super->anchor;
2872 char *version;
2873 struct imsm_dev *dev;
2874 struct imsm_map *map;
2875 int i;
2876
2877 for (i = 0; i < mpb->num_raid_devs; i++) {
2878 dev = get_imsm_dev(super, i);
2879 map = get_imsm_map(dev, 0);
2880 if (__le32_to_cpu(dev->size_high) > 0)
2881 mpb->attributes |= MPB_ATTRIB_2TB;
2882
2883 /* FIXME detect when an array spans a port multiplier */
2884 #if 0
2885 mpb->attributes |= MPB_ATTRIB_PM;
2886 #endif
2887
2888 if (mpb->num_raid_devs > 1 ||
2889 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2890 version = MPB_VERSION_ATTRIBS;
2891 switch (get_imsm_raid_level(map)) {
2892 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2893 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2894 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2895 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2896 }
2897 } else {
2898 if (map->num_members >= 5)
2899 version = MPB_VERSION_5OR6_DISK_ARRAY;
2900 else if (dev->status == DEV_CLONE_N_GO)
2901 version = MPB_VERSION_CNG;
2902 else if (get_imsm_raid_level(map) == 5)
2903 version = MPB_VERSION_RAID5;
2904 else if (map->num_members >= 3)
2905 version = MPB_VERSION_3OR4_DISK_ARRAY;
2906 else if (get_imsm_raid_level(map) == 1)
2907 version = MPB_VERSION_RAID1;
2908 else
2909 version = MPB_VERSION_RAID0;
2910 }
2911 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2912 }
2913 }
2914
2915 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2916 unsigned long long size, char *name,
2917 char *homehost, int *uuid)
2918 {
2919 /* We are creating a volume inside a pre-existing container.
2920 * so st->sb is already set.
2921 */
2922 struct intel_super *super = st->sb;
2923 struct imsm_super *mpb = super->anchor;
2924 struct intel_dev *dv;
2925 struct imsm_dev *dev;
2926 struct imsm_vol *vol;
2927 struct imsm_map *map;
2928 int idx = mpb->num_raid_devs;
2929 int i;
2930 unsigned long long array_blocks;
2931 size_t size_old, size_new;
2932 __u32 num_data_stripes;
2933
2934 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2935 fprintf(stderr, Name": This imsm-container already has the "
2936 "maximum of %d volumes\n", super->orom->vpa);
2937 return 0;
2938 }
2939
2940 /* ensure the mpb is large enough for the new data */
2941 size_old = __le32_to_cpu(mpb->mpb_size);
2942 size_new = disks_to_mpb_size(info->nr_disks);
2943 if (size_new > size_old) {
2944 void *mpb_new;
2945 size_t size_round = ROUND_UP(size_new, 512);
2946
2947 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2948 fprintf(stderr, Name": could not allocate new mpb\n");
2949 return 0;
2950 }
2951 memcpy(mpb_new, mpb, size_old);
2952 free(mpb);
2953 mpb = mpb_new;
2954 super->anchor = mpb_new;
2955 mpb->mpb_size = __cpu_to_le32(size_new);
2956 memset(mpb_new + size_old, 0, size_round - size_old);
2957 }
2958 super->current_vol = idx;
2959 /* when creating the first raid device in this container set num_disks
2960 * to zero, i.e. delete this spare and add raid member devices in
2961 * add_to_super_imsm_volume()
2962 */
2963 if (super->current_vol == 0)
2964 mpb->num_disks = 0;
2965
2966 for (i = 0; i < super->current_vol; i++) {
2967 dev = get_imsm_dev(super, i);
2968 if (strncmp((char *) dev->volume, name,
2969 MAX_RAID_SERIAL_LEN) == 0) {
2970 fprintf(stderr, Name": '%s' is already defined for this container\n",
2971 name);
2972 return 0;
2973 }
2974 }
2975
2976 sprintf(st->subarray, "%d", idx);
2977 dv = malloc(sizeof(*dv));
2978 if (!dv) {
2979 fprintf(stderr, Name ": failed to allocate device list entry\n");
2980 return 0;
2981 }
2982 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2983 if (!dev) {
2984 free(dv);
2985 fprintf(stderr, Name": could not allocate raid device\n");
2986 return 0;
2987 }
2988 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2989 if (info->level == 1)
2990 array_blocks = info_to_blocks_per_member(info);
2991 else
2992 array_blocks = calc_array_size(info->level, info->raid_disks,
2993 info->layout, info->chunk_size,
2994 info->size*2);
2995 /* round array size down to closest MB */
2996 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2997
2998 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2999 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3000 dev->status = __cpu_to_le32(0);
3001 dev->reserved_blocks = __cpu_to_le32(0);
3002 vol = &dev->vol;
3003 vol->migr_state = 0;
3004 set_migr_type(dev, MIGR_INIT);
3005 vol->dirty = 0;
3006 vol->curr_migr_unit = 0;
3007 map = get_imsm_map(dev, 0);
3008 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3009 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3010 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3011 map->failed_disk_num = ~0;
3012 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3013 IMSM_T_STATE_NORMAL;
3014 map->ddf = 1;
3015
3016 if (info->level == 1 && info->raid_disks > 2) {
3017 free(dev);
3018 free(dv);
3019 fprintf(stderr, Name": imsm does not support more than 2 disks"
3020 "in a raid1 volume\n");
3021 return 0;
3022 }
3023
3024 map->raid_level = info->level;
3025 if (info->level == 10) {
3026 map->raid_level = 1;
3027 map->num_domains = info->raid_disks / 2;
3028 } else if (info->level == 1)
3029 map->num_domains = info->raid_disks;
3030 else
3031 map->num_domains = 1;
3032
3033 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3034 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3035
3036 map->num_members = info->raid_disks;
3037 for (i = 0; i < map->num_members; i++) {
3038 /* initialized in add_to_super */
3039 set_imsm_ord_tbl_ent(map, i, 0);
3040 }
3041 mpb->num_raid_devs++;
3042
3043 dv->dev = dev;
3044 dv->index = super->current_vol;
3045 dv->next = super->devlist;
3046 super->devlist = dv;
3047
3048 imsm_update_version_info(super);
3049
3050 return 1;
3051 }
3052
3053 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3054 unsigned long long size, char *name,
3055 char *homehost, int *uuid)
3056 {
3057 /* This is primarily called by Create when creating a new array.
3058 * We will then get add_to_super called for each component, and then
3059 * write_init_super called to write it out to each device.
3060 * For IMSM, Create can create on fresh devices or on a pre-existing
3061 * array.
3062 * To create on a pre-existing array a different method will be called.
3063 * This one is just for fresh drives.
3064 */
3065 struct intel_super *super;
3066 struct imsm_super *mpb;
3067 size_t mpb_size;
3068 char *version;
3069
3070 if (st->sb)
3071 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3072
3073 if (info)
3074 mpb_size = disks_to_mpb_size(info->nr_disks);
3075 else
3076 mpb_size = 512;
3077
3078 super = alloc_super(1);
3079 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3080 free(super);
3081 super = NULL;
3082 }
3083 if (!super) {
3084 fprintf(stderr, Name
3085 ": %s could not allocate superblock\n", __func__);
3086 return 0;
3087 }
3088 memset(super->buf, 0, mpb_size);
3089 mpb = super->buf;
3090 mpb->mpb_size = __cpu_to_le32(mpb_size);
3091 st->sb = super;
3092
3093 if (info == NULL) {
3094 /* zeroing superblock */
3095 return 0;
3096 }
3097
3098 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3099
3100 version = (char *) mpb->sig;
3101 strcpy(version, MPB_SIGNATURE);
3102 version += strlen(MPB_SIGNATURE);
3103 strcpy(version, MPB_VERSION_RAID0);
3104
3105 return 1;
3106 }
3107
3108 #ifndef MDASSEMBLE
3109 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3110 int fd, char *devname)
3111 {
3112 struct intel_super *super = st->sb;
3113 struct imsm_super *mpb = super->anchor;
3114 struct dl *dl;
3115 struct imsm_dev *dev;
3116 struct imsm_map *map;
3117
3118 dev = get_imsm_dev(super, super->current_vol);
3119 map = get_imsm_map(dev, 0);
3120
3121 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3122 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3123 devname);
3124 return 1;
3125 }
3126
3127 if (fd == -1) {
3128 /* we're doing autolayout so grab the pre-marked (in
3129 * validate_geometry) raid_disk
3130 */
3131 for (dl = super->disks; dl; dl = dl->next)
3132 if (dl->raiddisk == dk->raid_disk)
3133 break;
3134 } else {
3135 for (dl = super->disks; dl ; dl = dl->next)
3136 if (dl->major == dk->major &&
3137 dl->minor == dk->minor)
3138 break;
3139 }
3140
3141 if (!dl) {
3142 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3143 return 1;
3144 }
3145
3146 /* add a pristine spare to the metadata */
3147 if (dl->index < 0) {
3148 dl->index = super->anchor->num_disks;
3149 super->anchor->num_disks++;
3150 }
3151 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3152 dl->disk.status = CONFIGURED_DISK;
3153
3154 /* if we are creating the first raid device update the family number */
3155 if (super->current_vol == 0) {
3156 __u32 sum;
3157 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3158 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3159
3160 if (!_dev || !_disk) {
3161 fprintf(stderr, Name ": BUG mpb setup error\n");
3162 return 1;
3163 }
3164 *_dev = *dev;
3165 *_disk = dl->disk;
3166 sum = random32();
3167 sum += __gen_imsm_checksum(mpb);
3168 mpb->family_num = __cpu_to_le32(sum);
3169 mpb->orig_family_num = mpb->family_num;
3170 }
3171
3172 return 0;
3173 }
3174
3175 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3176 int fd, char *devname)
3177 {
3178 struct intel_super *super = st->sb;
3179 struct dl *dd;
3180 unsigned long long size;
3181 __u32 id;
3182 int rv;
3183 struct stat stb;
3184
3185 /* if we are on an RAID enabled platform check that the disk is
3186 * attached to the raid controller
3187 */
3188 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3189 fprintf(stderr,
3190 Name ": %s is not attached to the raid controller: %s\n",
3191 devname ? : "disk", super->hba);
3192 return 1;
3193 }
3194
3195 if (super->current_vol >= 0)
3196 return add_to_super_imsm_volume(st, dk, fd, devname);
3197
3198 fstat(fd, &stb);
3199 dd = malloc(sizeof(*dd));
3200 if (!dd) {
3201 fprintf(stderr,
3202 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3203 return 1;
3204 }
3205 memset(dd, 0, sizeof(*dd));
3206 dd->major = major(stb.st_rdev);
3207 dd->minor = minor(stb.st_rdev);
3208 dd->index = -1;
3209 dd->devname = devname ? strdup(devname) : NULL;
3210 dd->fd = fd;
3211 dd->e = NULL;
3212 rv = imsm_read_serial(fd, devname, dd->serial);
3213 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3214 memset(dd->serial, 0, MAX_RAID_SERIAL_LEN);
3215 fd2devname(fd, (char *) dd->serial);
3216 } else if (rv) {
3217 fprintf(stderr,
3218 Name ": failed to retrieve scsi serial, aborting\n");
3219 free(dd);
3220 abort();
3221 }
3222
3223 get_dev_size(fd, NULL, &size);
3224 size /= 512;
3225 serialcpy(dd->disk.serial, dd->serial);
3226 dd->disk.total_blocks = __cpu_to_le32(size);
3227 dd->disk.status = SPARE_DISK;
3228 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3229 dd->disk.scsi_id = __cpu_to_le32(id);
3230 else
3231 dd->disk.scsi_id = __cpu_to_le32(0);
3232
3233 if (st->update_tail) {
3234 dd->next = super->add;
3235 super->add = dd;
3236 } else {
3237 dd->next = super->disks;
3238 super->disks = dd;
3239 }
3240
3241 return 0;
3242 }
3243
3244 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3245
3246 static union {
3247 char buf[512];
3248 struct imsm_super anchor;
3249 } spare_record __attribute__ ((aligned(512)));
3250
3251 /* spare records have their own family number and do not have any defined raid
3252 * devices
3253 */
3254 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3255 {
3256 struct imsm_super *mpb = super->anchor;
3257 struct imsm_super *spare = &spare_record.anchor;
3258 __u32 sum;
3259 struct dl *d;
3260
3261 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3262 spare->generation_num = __cpu_to_le32(1UL),
3263 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3264 spare->num_disks = 1,
3265 spare->num_raid_devs = 0,
3266 spare->cache_size = mpb->cache_size,
3267 spare->pwr_cycle_count = __cpu_to_le32(1),
3268
3269 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3270 MPB_SIGNATURE MPB_VERSION_RAID0);
3271
3272 for (d = super->disks; d; d = d->next) {
3273 if (d->index != -1)
3274 continue;
3275
3276 spare->disk[0] = d->disk;
3277 sum = __gen_imsm_checksum(spare);
3278 spare->family_num = __cpu_to_le32(sum);
3279 spare->orig_family_num = 0;
3280 sum = __gen_imsm_checksum(spare);
3281 spare->check_sum = __cpu_to_le32(sum);
3282
3283 if (store_imsm_mpb(d->fd, spare)) {
3284 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3285 __func__, d->major, d->minor, strerror(errno));
3286 return 1;
3287 }
3288 if (doclose) {
3289 close(d->fd);
3290 d->fd = -1;
3291 }
3292 }
3293
3294 return 0;
3295 }
3296
3297 static int write_super_imsm(struct intel_super *super, int doclose)
3298 {
3299 struct imsm_super *mpb = super->anchor;
3300 struct dl *d;
3301 __u32 generation;
3302 __u32 sum;
3303 int spares = 0;
3304 int i;
3305 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3306
3307 /* 'generation' is incremented everytime the metadata is written */
3308 generation = __le32_to_cpu(mpb->generation_num);
3309 generation++;
3310 mpb->generation_num = __cpu_to_le32(generation);
3311
3312 /* fix up cases where previous mdadm releases failed to set
3313 * orig_family_num
3314 */
3315 if (mpb->orig_family_num == 0)
3316 mpb->orig_family_num = mpb->family_num;
3317
3318 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3319 for (d = super->disks; d; d = d->next) {
3320 if (d->index == -1)
3321 spares++;
3322 else
3323 mpb->disk[d->index] = d->disk;
3324 }
3325 for (d = super->missing; d; d = d->next)
3326 mpb->disk[d->index] = d->disk;
3327
3328 for (i = 0; i < mpb->num_raid_devs; i++) {
3329 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3330
3331 imsm_copy_dev(dev, get_imsm_dev(super, i));
3332 mpb_size += sizeof_imsm_dev(dev, 0);
3333 }
3334 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3335 mpb->mpb_size = __cpu_to_le32(mpb_size);
3336
3337 /* recalculate checksum */
3338 sum = __gen_imsm_checksum(mpb);
3339 mpb->check_sum = __cpu_to_le32(sum);
3340
3341 /* write the mpb for disks that compose raid devices */
3342 for (d = super->disks; d ; d = d->next) {
3343 if (d->index < 0)
3344 continue;
3345 if (store_imsm_mpb(d->fd, mpb))
3346 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3347 __func__, d->major, d->minor, strerror(errno));
3348 if (doclose) {
3349 close(d->fd);
3350 d->fd = -1;
3351 }
3352 }
3353
3354 if (spares)
3355 return write_super_imsm_spares(super, doclose);
3356
3357 return 0;
3358 }
3359
3360
3361 static int create_array(struct supertype *st, int dev_idx)
3362 {
3363 size_t len;
3364 struct imsm_update_create_array *u;
3365 struct intel_super *super = st->sb;
3366 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3367 struct imsm_map *map = get_imsm_map(dev, 0);
3368 struct disk_info *inf;
3369 struct imsm_disk *disk;
3370 int i;
3371
3372 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3373 sizeof(*inf) * map->num_members;
3374 u = malloc(len);
3375 if (!u) {
3376 fprintf(stderr, "%s: failed to allocate update buffer\n",
3377 __func__);
3378 return 1;
3379 }
3380
3381 u->type = update_create_array;
3382 u->dev_idx = dev_idx;
3383 imsm_copy_dev(&u->dev, dev);
3384 inf = get_disk_info(u);
3385 for (i = 0; i < map->num_members; i++) {
3386 int idx = get_imsm_disk_idx(dev, i);
3387
3388 disk = get_imsm_disk(super, idx);
3389 serialcpy(inf[i].serial, disk->serial);
3390 }
3391 append_metadata_update(st, u, len);
3392
3393 return 0;
3394 }
3395
3396 static int _add_disk(struct supertype *st)
3397 {
3398 struct intel_super *super = st->sb;
3399 size_t len;
3400 struct imsm_update_add_disk *u;
3401
3402 if (!super->add)
3403 return 0;
3404
3405 len = sizeof(*u);
3406 u = malloc(len);
3407 if (!u) {
3408 fprintf(stderr, "%s: failed to allocate update buffer\n",
3409 __func__);
3410 return 1;
3411 }
3412
3413 u->type = update_add_disk;
3414 append_metadata_update(st, u, len);
3415
3416 return 0;
3417 }
3418
3419 static int write_init_super_imsm(struct supertype *st)
3420 {
3421 struct intel_super *super = st->sb;
3422 int current_vol = super->current_vol;
3423
3424 /* we are done with current_vol reset it to point st at the container */
3425 super->current_vol = -1;
3426
3427 if (st->update_tail) {
3428 /* queue the recently created array / added disk
3429 * as a metadata update */
3430 struct dl *d;
3431 int rv;
3432
3433 /* determine if we are creating a volume or adding a disk */
3434 if (current_vol < 0) {
3435 /* in the add disk case we are running in mdmon
3436 * context, so don't close fd's
3437 */
3438 return _add_disk(st);
3439 } else
3440 rv = create_array(st, current_vol);
3441
3442 for (d = super->disks; d ; d = d->next) {
3443 close(d->fd);
3444 d->fd = -1;
3445 }
3446
3447 return rv;
3448 } else
3449 return write_super_imsm(st->sb, 1);
3450 }
3451 #endif
3452
3453 static int store_super_imsm(struct supertype *st, int fd)
3454 {
3455 struct intel_super *super = st->sb;
3456 struct imsm_super *mpb = super ? super->anchor : NULL;
3457
3458 if (!mpb)
3459 return 1;
3460
3461 #ifndef MDASSEMBLE
3462 return store_imsm_mpb(fd, mpb);
3463 #else
3464 return 1;
3465 #endif
3466 }
3467
3468 static int imsm_bbm_log_size(struct imsm_super *mpb)
3469 {
3470 return __le32_to_cpu(mpb->bbm_log_size);
3471 }
3472
3473 #ifndef MDASSEMBLE
3474 static int validate_geometry_imsm_container(struct supertype *st, int level,
3475 int layout, int raiddisks, int chunk,
3476 unsigned long long size, char *dev,
3477 unsigned long long *freesize,
3478 int verbose)
3479 {
3480 int fd;
3481 unsigned long long ldsize;
3482 const struct imsm_orom *orom;
3483
3484 if (level != LEVEL_CONTAINER)
3485 return 0;
3486 if (!dev)
3487 return 1;
3488
3489 if (check_env("IMSM_NO_PLATFORM"))
3490 orom = NULL;
3491 else
3492 orom = find_imsm_orom();
3493 if (orom && raiddisks > orom->tds) {
3494 if (verbose)
3495 fprintf(stderr, Name ": %d exceeds maximum number of"
3496 " platform supported disks: %d\n",
3497 raiddisks, orom->tds);
3498 return 0;
3499 }
3500
3501 fd = open(dev, O_RDONLY|O_EXCL, 0);
3502 if (fd < 0) {
3503 if (verbose)
3504 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3505 dev, strerror(errno));
3506 return 0;
3507 }
3508 if (!get_dev_size(fd, dev, &ldsize)) {
3509 close(fd);
3510 return 0;
3511 }
3512 close(fd);
3513
3514 *freesize = avail_size_imsm(st, ldsize >> 9);
3515
3516 return 1;
3517 }
3518
3519 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3520 {
3521 const unsigned long long base_start = e[*idx].start;
3522 unsigned long long end = base_start + e[*idx].size;
3523 int i;
3524
3525 if (base_start == end)
3526 return 0;
3527
3528 *idx = *idx + 1;
3529 for (i = *idx; i < num_extents; i++) {
3530 /* extend overlapping extents */
3531 if (e[i].start >= base_start &&
3532 e[i].start <= end) {
3533 if (e[i].size == 0)
3534 return 0;
3535 if (e[i].start + e[i].size > end)
3536 end = e[i].start + e[i].size;
3537 } else if (e[i].start > end) {
3538 *idx = i;
3539 break;
3540 }
3541 }
3542
3543 return end - base_start;
3544 }
3545
3546 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3547 {
3548 /* build a composite disk with all known extents and generate a new
3549 * 'maxsize' given the "all disks in an array must share a common start
3550 * offset" constraint
3551 */
3552 struct extent *e = calloc(sum_extents, sizeof(*e));
3553 struct dl *dl;
3554 int i, j;
3555 int start_extent;
3556 unsigned long long pos;
3557 unsigned long long start = 0;
3558 unsigned long long maxsize;
3559 unsigned long reserve;
3560
3561 if (!e)
3562 return 0;
3563
3564 /* coalesce and sort all extents. also, check to see if we need to
3565 * reserve space between member arrays
3566 */
3567 j = 0;
3568 for (dl = super->disks; dl; dl = dl->next) {
3569 if (!dl->e)
3570 continue;
3571 for (i = 0; i < dl->extent_cnt; i++)
3572 e[j++] = dl->e[i];
3573 }
3574 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3575
3576 /* merge extents */
3577 i = 0;
3578 j = 0;
3579 while (i < sum_extents) {
3580 e[j].start = e[i].start;
3581 e[j].size = find_size(e, &i, sum_extents);
3582 j++;
3583 if (e[j-1].size == 0)
3584 break;
3585 }
3586
3587 pos = 0;
3588 maxsize = 0;
3589 start_extent = 0;
3590 i = 0;
3591 do {
3592 unsigned long long esize;
3593
3594 esize = e[i].start - pos;
3595 if (esize >= maxsize) {
3596 maxsize = esize;
3597 start = pos;
3598 start_extent = i;
3599 }
3600 pos = e[i].start + e[i].size;
3601 i++;
3602 } while (e[i-1].size);
3603 free(e);
3604
3605 if (maxsize == 0)
3606 return 0;
3607
3608 /* FIXME assumes volume at offset 0 is the first volume in a
3609 * container
3610 */
3611 if (start_extent > 0)
3612 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3613 else
3614 reserve = 0;
3615
3616 if (maxsize < reserve)
3617 return 0;
3618
3619 super->create_offset = ~((__u32) 0);
3620 if (start + reserve > super->create_offset)
3621 return 0; /* start overflows create_offset */
3622 super->create_offset = start + reserve;
3623
3624 return maxsize - reserve;
3625 }
3626
3627 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3628 {
3629 if (level < 0 || level == 6 || level == 4)
3630 return 0;
3631
3632 /* if we have an orom prevent invalid raid levels */
3633 if (orom)
3634 switch (level) {
3635 case 0: return imsm_orom_has_raid0(orom);
3636 case 1:
3637 if (raiddisks > 2)
3638 return imsm_orom_has_raid1e(orom);
3639 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3640 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3641 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3642 }
3643 else
3644 return 1; /* not on an Intel RAID platform so anything goes */
3645
3646 return 0;
3647 }
3648
3649 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3650 static int
3651 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3652 int raiddisks, int chunk, int verbose)
3653 {
3654 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3655 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3656 level, raiddisks, raiddisks > 1 ? "s" : "");
3657 return 0;
3658 }
3659 if (super->orom && level != 1 &&
3660 !imsm_orom_has_chunk(super->orom, chunk)) {
3661 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3662 return 0;
3663 }
3664 if (layout != imsm_level_to_layout(level)) {
3665 if (level == 5)
3666 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3667 else if (level == 10)
3668 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3669 else
3670 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3671 layout, level);
3672 return 0;
3673 }
3674
3675 return 1;
3676 }
3677
3678 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3679 * FIX ME add ahci details
3680 */
3681 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3682 int layout, int raiddisks, int chunk,
3683 unsigned long long size, char *dev,
3684 unsigned long long *freesize,
3685 int verbose)
3686 {
3687 struct stat stb;
3688 struct intel_super *super = st->sb;
3689 struct imsm_super *mpb = super->anchor;
3690 struct dl *dl;
3691 unsigned long long pos = 0;
3692 unsigned long long maxsize;
3693 struct extent *e;
3694 int i;
3695
3696 /* We must have the container info already read in. */
3697 if (!super)
3698 return 0;
3699
3700 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
3701 return 0;
3702
3703 if (!dev) {
3704 /* General test: make sure there is space for
3705 * 'raiddisks' device extents of size 'size' at a given
3706 * offset
3707 */
3708 unsigned long long minsize = size;
3709 unsigned long long start_offset = MaxSector;
3710 int dcnt = 0;
3711 if (minsize == 0)
3712 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3713 for (dl = super->disks; dl ; dl = dl->next) {
3714 int found = 0;
3715
3716 pos = 0;
3717 i = 0;
3718 e = get_extents(super, dl);
3719 if (!e) continue;
3720 do {
3721 unsigned long long esize;
3722 esize = e[i].start - pos;
3723 if (esize >= minsize)
3724 found = 1;
3725 if (found && start_offset == MaxSector) {
3726 start_offset = pos;
3727 break;
3728 } else if (found && pos != start_offset) {
3729 found = 0;
3730 break;
3731 }
3732 pos = e[i].start + e[i].size;
3733 i++;
3734 } while (e[i-1].size);
3735 if (found)
3736 dcnt++;
3737 free(e);
3738 }
3739 if (dcnt < raiddisks) {
3740 if (verbose)
3741 fprintf(stderr, Name ": imsm: Not enough "
3742 "devices with space for this array "
3743 "(%d < %d)\n",
3744 dcnt, raiddisks);
3745 return 0;
3746 }
3747 return 1;
3748 }
3749
3750 /* This device must be a member of the set */
3751 if (stat(dev, &stb) < 0)
3752 return 0;
3753 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3754 return 0;
3755 for (dl = super->disks ; dl ; dl = dl->next) {
3756 if (dl->major == major(stb.st_rdev) &&
3757 dl->minor == minor(stb.st_rdev))
3758 break;
3759 }
3760 if (!dl) {
3761 if (verbose)
3762 fprintf(stderr, Name ": %s is not in the "
3763 "same imsm set\n", dev);
3764 return 0;
3765 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3766 /* If a volume is present then the current creation attempt
3767 * cannot incorporate new spares because the orom may not
3768 * understand this configuration (all member disks must be
3769 * members of each array in the container).
3770 */
3771 fprintf(stderr, Name ": %s is a spare and a volume"
3772 " is already defined for this container\n", dev);
3773 fprintf(stderr, Name ": The option-rom requires all member"
3774 " disks to be a member of all volumes\n");
3775 return 0;
3776 }
3777
3778 /* retrieve the largest free space block */
3779 e = get_extents(super, dl);
3780 maxsize = 0;
3781 i = 0;
3782 if (e) {
3783 do {
3784 unsigned long long esize;
3785
3786 esize = e[i].start - pos;
3787 if (esize >= maxsize)
3788 maxsize = esize;
3789 pos = e[i].start + e[i].size;
3790 i++;
3791 } while (e[i-1].size);
3792 dl->e = e;
3793 dl->extent_cnt = i;
3794 } else {
3795 if (verbose)
3796 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3797 dev);
3798 return 0;
3799 }
3800 if (maxsize < size) {
3801 if (verbose)
3802 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3803 dev, maxsize, size);
3804 return 0;
3805 }
3806
3807 /* count total number of extents for merge */
3808 i = 0;
3809 for (dl = super->disks; dl; dl = dl->next)
3810 if (dl->e)
3811 i += dl->extent_cnt;
3812
3813 maxsize = merge_extents(super, i);
3814 if (maxsize < size || maxsize == 0) {
3815 if (verbose)
3816 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3817 maxsize, size);
3818 return 0;
3819 }
3820
3821 *freesize = maxsize;
3822
3823 return 1;
3824 }
3825
3826 static int reserve_space(struct supertype *st, int raiddisks,
3827 unsigned long long size, int chunk,
3828 unsigned long long *freesize)
3829 {
3830 struct intel_super *super = st->sb;
3831 struct imsm_super *mpb = super->anchor;
3832 struct dl *dl;
3833 int i;
3834 int extent_cnt;
3835 struct extent *e;
3836 unsigned long long maxsize;
3837 unsigned long long minsize;
3838 int cnt;
3839 int used;
3840
3841 /* find the largest common start free region of the possible disks */
3842 used = 0;
3843 extent_cnt = 0;
3844 cnt = 0;
3845 for (dl = super->disks; dl; dl = dl->next) {
3846 dl->raiddisk = -1;
3847
3848 if (dl->index >= 0)
3849 used++;
3850
3851 /* don't activate new spares if we are orom constrained
3852 * and there is already a volume active in the container
3853 */
3854 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3855 continue;
3856
3857 e = get_extents(super, dl);
3858 if (!e)
3859 continue;
3860 for (i = 1; e[i-1].size; i++)
3861 ;
3862 dl->e = e;
3863 dl->extent_cnt = i;
3864 extent_cnt += i;
3865 cnt++;
3866 }
3867
3868 maxsize = merge_extents(super, extent_cnt);
3869 minsize = size;
3870 if (size == 0)
3871 minsize = chunk;
3872
3873 if (cnt < raiddisks ||
3874 (super->orom && used && used != raiddisks) ||
3875 maxsize < minsize ||
3876 maxsize == 0) {
3877 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3878 return 0; /* No enough free spaces large enough */
3879 }
3880
3881 if (size == 0) {
3882 size = maxsize;
3883 if (chunk) {
3884 size /= chunk;
3885 size *= chunk;
3886 }
3887 }
3888
3889 cnt = 0;
3890 for (dl = super->disks; dl; dl = dl->next)
3891 if (dl->e)
3892 dl->raiddisk = cnt++;
3893
3894 *freesize = size;
3895
3896 return 1;
3897 }
3898
3899 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3900 int raiddisks, int chunk, unsigned long long size,
3901 char *dev, unsigned long long *freesize,
3902 int verbose)
3903 {
3904 int fd, cfd;
3905 struct mdinfo *sra;
3906 int is_member = 0;
3907
3908 /* if given unused devices create a container
3909 * if given given devices in a container create a member volume
3910 */
3911 if (level == LEVEL_CONTAINER) {
3912 /* Must be a fresh device to add to a container */
3913 return validate_geometry_imsm_container(st, level, layout,
3914 raiddisks, chunk, size,
3915 dev, freesize,
3916 verbose);
3917 }
3918
3919 if (!dev) {
3920 if (st->sb && freesize) {
3921 /* we are being asked to automatically layout a
3922 * new volume based on the current contents of
3923 * the container. If the the parameters can be
3924 * satisfied reserve_space will record the disks,
3925 * start offset, and size of the volume to be
3926 * created. add_to_super and getinfo_super
3927 * detect when autolayout is in progress.
3928 */
3929 if (!validate_geometry_imsm_orom(st->sb, level, layout,
3930 raiddisks, chunk,
3931 verbose))
3932 return 0;
3933 return reserve_space(st, raiddisks, size, chunk, freesize);
3934 }
3935 return 1;
3936 }
3937 if (st->sb) {
3938 /* creating in a given container */
3939 return validate_geometry_imsm_volume(st, level, layout,
3940 raiddisks, chunk, size,
3941 dev, freesize, verbose);
3942 }
3943
3944 /* This device needs to be a device in an 'imsm' container */
3945 fd = open(dev, O_RDONLY|O_EXCL, 0);
3946 if (fd >= 0) {
3947 if (verbose)
3948 fprintf(stderr,
3949 Name ": Cannot create this array on device %s\n",
3950 dev);
3951 close(fd);
3952 return 0;
3953 }
3954 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3955 if (verbose)
3956 fprintf(stderr, Name ": Cannot open %s: %s\n",
3957 dev, strerror(errno));
3958 return 0;
3959 }
3960 /* Well, it is in use by someone, maybe an 'imsm' container. */
3961 cfd = open_container(fd);
3962 close(fd);
3963 if (cfd < 0) {
3964 if (verbose)
3965 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3966 dev);
3967 return 0;
3968 }
3969 sra = sysfs_read(cfd, 0, GET_VERSION);
3970 if (sra && sra->array.major_version == -1 &&
3971 strcmp(sra->text_version, "imsm") == 0)
3972 is_member = 1;
3973 sysfs_free(sra);
3974 if (is_member) {
3975 /* This is a member of a imsm container. Load the container
3976 * and try to create a volume
3977 */
3978 struct intel_super *super;
3979
3980 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3981 st->sb = super;
3982 st->container_dev = fd2devnum(cfd);
3983 close(cfd);
3984 return validate_geometry_imsm_volume(st, level, layout,
3985 raiddisks, chunk,
3986 size, dev,
3987 freesize, verbose);
3988 }
3989 }
3990
3991 if (verbose)
3992 fprintf(stderr, Name ": failed container membership check\n");
3993
3994 close(cfd);
3995 return 0;
3996 }
3997 #endif /* MDASSEMBLE */
3998
3999 static int is_rebuilding(struct imsm_dev *dev)
4000 {
4001 struct imsm_map *migr_map;
4002
4003 if (!dev->vol.migr_state)
4004 return 0;
4005
4006 if (migr_type(dev) != MIGR_REBUILD)
4007 return 0;
4008
4009 migr_map = get_imsm_map(dev, 1);
4010
4011 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4012 return 1;
4013 else
4014 return 0;
4015 }
4016
4017 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4018 {
4019 struct mdinfo *rebuild = NULL;
4020 struct mdinfo *d;
4021 __u32 units;
4022
4023 if (!is_rebuilding(dev))
4024 return;
4025
4026 /* Find the rebuild target, but punt on the dual rebuild case */
4027 for (d = array->devs; d; d = d->next)
4028 if (d->recovery_start == 0) {
4029 if (rebuild)
4030 return;
4031 rebuild = d;
4032 }
4033
4034 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4035 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4036 }
4037
4038
4039 static struct mdinfo *container_content_imsm(struct supertype *st)
4040 {
4041 /* Given a container loaded by load_super_imsm_all,
4042 * extract information about all the arrays into
4043 * an mdinfo tree.
4044 *
4045 * For each imsm_dev create an mdinfo, fill it in,
4046 * then look for matching devices in super->disks
4047 * and create appropriate device mdinfo.
4048 */
4049 struct intel_super *super = st->sb;
4050 struct imsm_super *mpb = super->anchor;
4051 struct mdinfo *rest = NULL;
4052 int i;
4053
4054 /* do not assemble arrays that might have bad blocks */
4055 if (imsm_bbm_log_size(super->anchor)) {
4056 fprintf(stderr, Name ": BBM log found in metadata. "
4057 "Cannot activate array(s).\n");
4058 return NULL;
4059 }
4060
4061 for (i = 0; i < mpb->num_raid_devs; i++) {
4062 struct imsm_dev *dev = get_imsm_dev(super, i);
4063 struct imsm_map *map = get_imsm_map(dev, 0);
4064 struct mdinfo *this;
4065 int slot;
4066
4067 /* do not publish arrays that are in the middle of an
4068 * unsupported migration
4069 */
4070 if (dev->vol.migr_state &&
4071 (migr_type(dev) == MIGR_GEN_MIGR ||
4072 migr_type(dev) == MIGR_STATE_CHANGE)) {
4073 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4074 " unsupported migration in progress\n",
4075 dev->volume);
4076 continue;
4077 }
4078
4079 this = malloc(sizeof(*this));
4080 if (!this) {
4081 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4082 sizeof(*this));
4083 break;
4084 }
4085 memset(this, 0, sizeof(*this));
4086 this->next = rest;
4087
4088 super->current_vol = i;
4089 getinfo_super_imsm_volume(st, this);
4090 for (slot = 0 ; slot < map->num_members; slot++) {
4091 unsigned long long recovery_start;
4092 struct mdinfo *info_d;
4093 struct dl *d;
4094 int idx;
4095 int skip;
4096 __u32 ord;
4097
4098 skip = 0;
4099 idx = get_imsm_disk_idx(dev, slot);
4100 ord = get_imsm_ord_tbl_ent(dev, slot);
4101 for (d = super->disks; d ; d = d->next)
4102 if (d->index == idx)
4103 break;
4104
4105 recovery_start = MaxSector;
4106 if (d == NULL)
4107 skip = 1;
4108 if (d && is_failed(&d->disk))
4109 skip = 1;
4110 if (ord & IMSM_ORD_REBUILD)
4111 recovery_start = 0;
4112
4113 /*
4114 * if we skip some disks the array will be assmebled degraded;
4115 * reset resync start to avoid a dirty-degraded
4116 * situation when performing the intial sync
4117 *
4118 * FIXME handle dirty degraded
4119 */
4120 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4121 this->resync_start = MaxSector;
4122 if (skip)
4123 continue;
4124
4125 info_d = calloc(1, sizeof(*info_d));
4126 if (!info_d) {
4127 fprintf(stderr, Name ": failed to allocate disk"
4128 " for volume %.16s\n", dev->volume);
4129 info_d = this->devs;
4130 while (info_d) {
4131 struct mdinfo *d = info_d->next;
4132
4133 free(info_d);
4134 info_d = d;
4135 }
4136 free(this);
4137 this = rest;
4138 break;
4139 }
4140 info_d->next = this->devs;
4141 this->devs = info_d;
4142
4143 info_d->disk.number = d->index;
4144 info_d->disk.major = d->major;
4145 info_d->disk.minor = d->minor;
4146 info_d->disk.raid_disk = slot;
4147 info_d->recovery_start = recovery_start;
4148
4149 if (info_d->recovery_start == MaxSector)
4150 this->array.working_disks++;
4151
4152 info_d->events = __le32_to_cpu(mpb->generation_num);
4153 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4154 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4155 }
4156 /* now that the disk list is up-to-date fixup recovery_start */
4157 update_recovery_start(dev, this);
4158 rest = this;
4159 }
4160
4161 return rest;
4162 }
4163
4164
4165 #ifndef MDASSEMBLE
4166 static int imsm_open_new(struct supertype *c, struct active_array *a,
4167 char *inst)
4168 {
4169 struct intel_super *super = c->sb;
4170 struct imsm_super *mpb = super->anchor;
4171
4172 if (atoi(inst) >= mpb->num_raid_devs) {
4173 fprintf(stderr, "%s: subarry index %d, out of range\n",
4174 __func__, atoi(inst));
4175 return -ENODEV;
4176 }
4177
4178 dprintf("imsm: open_new %s\n", inst);
4179 a->info.container_member = atoi(inst);
4180 return 0;
4181 }
4182
4183 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4184 {
4185 struct imsm_map *map = get_imsm_map(dev, 0);
4186
4187 if (!failed)
4188 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4189 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4190
4191 switch (get_imsm_raid_level(map)) {
4192 case 0:
4193 return IMSM_T_STATE_FAILED;
4194 break;
4195 case 1:
4196 if (failed < map->num_members)
4197 return IMSM_T_STATE_DEGRADED;
4198 else
4199 return IMSM_T_STATE_FAILED;
4200 break;
4201 case 10:
4202 {
4203 /**
4204 * check to see if any mirrors have failed, otherwise we
4205 * are degraded. Even numbered slots are mirrored on
4206 * slot+1
4207 */
4208 int i;
4209 /* gcc -Os complains that this is unused */
4210 int insync = insync;
4211
4212 for (i = 0; i < map->num_members; i++) {
4213 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4214 int idx = ord_to_idx(ord);
4215 struct imsm_disk *disk;
4216
4217 /* reset the potential in-sync count on even-numbered
4218 * slots. num_copies is always 2 for imsm raid10
4219 */
4220 if ((i & 1) == 0)
4221 insync = 2;
4222
4223 disk = get_imsm_disk(super, idx);
4224 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4225 insync--;
4226
4227 /* no in-sync disks left in this mirror the
4228 * array has failed
4229 */
4230 if (insync == 0)
4231 return IMSM_T_STATE_FAILED;
4232 }
4233
4234 return IMSM_T_STATE_DEGRADED;
4235 }
4236 case 5:
4237 if (failed < 2)
4238 return IMSM_T_STATE_DEGRADED;
4239 else
4240 return IMSM_T_STATE_FAILED;
4241 break;
4242 default:
4243 break;
4244 }
4245
4246 return map->map_state;
4247 }
4248
4249 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4250 {
4251 int i;
4252 int failed = 0;
4253 struct imsm_disk *disk;
4254 struct imsm_map *map = get_imsm_map(dev, 0);
4255 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4256 __u32 ord;
4257 int idx;
4258
4259 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4260 * disks that are being rebuilt. New failures are recorded to
4261 * map[0]. So we look through all the disks we started with and
4262 * see if any failures are still present, or if any new ones
4263 * have arrived
4264 *
4265 * FIXME add support for online capacity expansion and
4266 * raid-level-migration
4267 */
4268 for (i = 0; i < prev->num_members; i++) {
4269 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4270 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4271 idx = ord_to_idx(ord);
4272
4273 disk = get_imsm_disk(super, idx);
4274 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4275 failed++;
4276 }
4277
4278 return failed;
4279 }
4280
4281 static int is_resyncing(struct imsm_dev *dev)
4282 {
4283 struct imsm_map *migr_map;
4284
4285 if (!dev->vol.migr_state)
4286 return 0;
4287
4288 if (migr_type(dev) == MIGR_INIT ||
4289 migr_type(dev) == MIGR_REPAIR)
4290 return 1;
4291
4292 migr_map = get_imsm_map(dev, 1);
4293
4294 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4295 return 1;
4296 else
4297 return 0;
4298 }
4299
4300 /* return true if we recorded new information */
4301 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4302 {
4303 __u32 ord;
4304 int slot;
4305 struct imsm_map *map;
4306
4307 /* new failures are always set in map[0] */
4308 map = get_imsm_map(dev, 0);
4309
4310 slot = get_imsm_disk_slot(map, idx);
4311 if (slot < 0)
4312 return 0;
4313
4314 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4315 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4316 return 0;
4317
4318 disk->status |= FAILED_DISK;
4319 disk->status &= ~CONFIGURED_DISK;
4320 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4321 if (~map->failed_disk_num == 0)
4322 map->failed_disk_num = slot;
4323 return 1;
4324 }
4325
4326 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4327 {
4328 mark_failure(dev, disk, idx);
4329
4330 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4331 return;
4332
4333 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4334 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4335 }
4336
4337 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4338 * states are handled in imsm_set_disk() with one exception, when a
4339 * resync is stopped due to a new failure this routine will set the
4340 * 'degraded' state for the array.
4341 */
4342 static int imsm_set_array_state(struct active_array *a, int consistent)
4343 {
4344 int inst = a->info.container_member;
4345 struct intel_super *super = a->container->sb;
4346 struct imsm_dev *dev = get_imsm_dev(super, inst);
4347 struct imsm_map *map = get_imsm_map(dev, 0);
4348 int failed = imsm_count_failed(super, dev);
4349 __u8 map_state = imsm_check_degraded(super, dev, failed);
4350 __u32 blocks_per_unit;
4351
4352 /* before we activate this array handle any missing disks */
4353 if (consistent == 2 && super->missing) {
4354 struct dl *dl;
4355
4356 dprintf("imsm: mark missing\n");
4357 end_migration(dev, map_state);
4358 for (dl = super->missing; dl; dl = dl->next)
4359 mark_missing(dev, &dl->disk, dl->index);
4360 super->updates_pending++;
4361 }
4362
4363 if (consistent == 2 &&
4364 (!is_resync_complete(&a->info) ||
4365 map_state != IMSM_T_STATE_NORMAL ||
4366 dev->vol.migr_state))
4367 consistent = 0;
4368
4369 if (is_resync_complete(&a->info)) {
4370 /* complete intialization / resync,
4371 * recovery and interrupted recovery is completed in
4372 * ->set_disk
4373 */
4374 if (is_resyncing(dev)) {
4375 dprintf("imsm: mark resync done\n");
4376 end_migration(dev, map_state);
4377 super->updates_pending++;
4378 }
4379 } else if (!is_resyncing(dev) && !failed) {
4380 /* mark the start of the init process if nothing is failed */
4381 dprintf("imsm: mark resync start\n");
4382 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4383 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4384 else
4385 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4386 super->updates_pending++;
4387 }
4388
4389 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4390 blocks_per_unit = blocks_per_migr_unit(dev);
4391 if (blocks_per_unit && failed <= 1) {
4392 __u32 units32;
4393 __u64 units;
4394
4395 if (migr_type(dev) == MIGR_REBUILD)
4396 units = min_recovery_start(&a->info) / blocks_per_unit;
4397 else
4398 units = a->info.resync_start / blocks_per_unit;
4399 units32 = units;
4400
4401 /* check that we did not overflow 32-bits, and that
4402 * curr_migr_unit needs updating
4403 */
4404 if (units32 == units &&
4405 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4406 dprintf("imsm: mark checkpoint (%u)\n", units32);
4407 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4408 super->updates_pending++;
4409 }
4410 }
4411
4412 /* mark dirty / clean */
4413 if (dev->vol.dirty != !consistent) {
4414 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4415 if (consistent)
4416 dev->vol.dirty = 0;
4417 else
4418 dev->vol.dirty = 1;
4419 super->updates_pending++;
4420 }
4421 return consistent;
4422 }
4423
4424 static void imsm_set_disk(struct active_array *a, int n, int state)
4425 {
4426 int inst = a->info.container_member;
4427 struct intel_super *super = a->container->sb;
4428 struct imsm_dev *dev = get_imsm_dev(super, inst);
4429 struct imsm_map *map = get_imsm_map(dev, 0);
4430 struct imsm_disk *disk;
4431 int failed;
4432 __u32 ord;
4433 __u8 map_state;
4434
4435 if (n > map->num_members)
4436 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4437 n, map->num_members - 1);
4438
4439 if (n < 0)
4440 return;
4441
4442 dprintf("imsm: set_disk %d:%x\n", n, state);
4443
4444 ord = get_imsm_ord_tbl_ent(dev, n);
4445 disk = get_imsm_disk(super, ord_to_idx(ord));
4446
4447 /* check for new failures */
4448 if (state & DS_FAULTY) {
4449 if (mark_failure(dev, disk, ord_to_idx(ord)))
4450 super->updates_pending++;
4451 }
4452
4453 /* check if in_sync */
4454 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4455 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4456
4457 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4458 super->updates_pending++;
4459 }
4460
4461 failed = imsm_count_failed(super, dev);
4462 map_state = imsm_check_degraded(super, dev, failed);
4463
4464 /* check if recovery complete, newly degraded, or failed */
4465 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4466 end_migration(dev, map_state);
4467 map = get_imsm_map(dev, 0);
4468 map->failed_disk_num = ~0;
4469 super->updates_pending++;
4470 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4471 map->map_state != map_state &&
4472 !dev->vol.migr_state) {
4473 dprintf("imsm: mark degraded\n");
4474 map->map_state = map_state;
4475 super->updates_pending++;
4476 } else if (map_state == IMSM_T_STATE_FAILED &&
4477 map->map_state != map_state) {
4478 dprintf("imsm: mark failed\n");
4479 end_migration(dev, map_state);
4480 super->updates_pending++;
4481 }
4482 }
4483
4484 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4485 {
4486 void *buf = mpb;
4487 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4488 unsigned long long dsize;
4489 unsigned long long sectors;
4490
4491 get_dev_size(fd, NULL, &dsize);
4492
4493 if (mpb_size > 512) {
4494 /* -1 to account for anchor */
4495 sectors = mpb_sectors(mpb) - 1;
4496
4497 /* write the extended mpb to the sectors preceeding the anchor */
4498 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4499 return 1;
4500
4501 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
4502 return 1;
4503 }
4504
4505 /* first block is stored on second to last sector of the disk */
4506 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
4507 return 1;
4508
4509 if (write(fd, buf, 512) != 512)
4510 return 1;
4511
4512 return 0;
4513 }
4514
4515 static void imsm_sync_metadata(struct supertype *container)
4516 {
4517 struct intel_super *super = container->sb;
4518
4519 if (!super->updates_pending)
4520 return;
4521
4522 write_super_imsm(super, 0);
4523
4524 super->updates_pending = 0;
4525 }
4526
4527 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4528 {
4529 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4530 int i = get_imsm_disk_idx(dev, idx);
4531 struct dl *dl;
4532
4533 for (dl = super->disks; dl; dl = dl->next)
4534 if (dl->index == i)
4535 break;
4536
4537 if (dl && is_failed(&dl->disk))
4538 dl = NULL;
4539
4540 if (dl)
4541 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4542
4543 return dl;
4544 }
4545
4546 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4547 struct active_array *a, int activate_new)
4548 {
4549 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4550 int idx = get_imsm_disk_idx(dev, slot);
4551 struct imsm_super *mpb = super->anchor;
4552 struct imsm_map *map;
4553 unsigned long long pos;
4554 struct mdinfo *d;
4555 struct extent *ex;
4556 int i, j;
4557 int found;
4558 __u32 array_start;
4559 __u32 array_end;
4560 struct dl *dl;
4561
4562 for (dl = super->disks; dl; dl = dl->next) {
4563 /* If in this array, skip */
4564 for (d = a->info.devs ; d ; d = d->next)
4565 if (d->state_fd >= 0 &&
4566 d->disk.major == dl->major &&
4567 d->disk.minor == dl->minor) {
4568 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4569 break;
4570 }
4571 if (d)
4572 continue;
4573
4574 /* skip in use or failed drives */
4575 if (is_failed(&dl->disk) || idx == dl->index ||
4576 dl->index == -2) {
4577 dprintf("%x:%x status (failed: %d index: %d)\n",
4578 dl->major, dl->minor, is_failed(&dl->disk), idx);
4579 continue;
4580 }
4581
4582 /* skip pure spares when we are looking for partially
4583 * assimilated drives
4584 */
4585 if (dl->index == -1 && !activate_new)
4586 continue;
4587
4588 /* Does this unused device have the requisite free space?
4589 * It needs to be able to cover all member volumes
4590 */
4591 ex = get_extents(super, dl);
4592 if (!ex) {
4593 dprintf("cannot get extents\n");
4594 continue;
4595 }
4596 for (i = 0; i < mpb->num_raid_devs; i++) {
4597 dev = get_imsm_dev(super, i);
4598 map = get_imsm_map(dev, 0);
4599
4600 /* check if this disk is already a member of
4601 * this array
4602 */
4603 if (get_imsm_disk_slot(map, dl->index) >= 0)
4604 continue;
4605
4606 found = 0;
4607 j = 0;
4608 pos = 0;
4609 array_start = __le32_to_cpu(map->pba_of_lba0);
4610 array_end = array_start +
4611 __le32_to_cpu(map->blocks_per_member) - 1;
4612
4613 do {
4614 /* check that we can start at pba_of_lba0 with
4615 * blocks_per_member of space
4616 */
4617 if (array_start >= pos && array_end < ex[j].start) {
4618 found = 1;
4619 break;
4620 }
4621 pos = ex[j].start + ex[j].size;
4622 j++;
4623 } while (ex[j-1].size);
4624
4625 if (!found)
4626 break;
4627 }
4628
4629 free(ex);
4630 if (i < mpb->num_raid_devs) {
4631 dprintf("%x:%x does not have %u to %u available\n",
4632 dl->major, dl->minor, array_start, array_end);
4633 /* No room */
4634 continue;
4635 }
4636 return dl;
4637 }
4638
4639 return dl;
4640 }
4641
4642 static struct mdinfo *imsm_activate_spare(struct active_array *a,
4643 struct metadata_update **updates)
4644 {
4645 /**
4646 * Find a device with unused free space and use it to replace a
4647 * failed/vacant region in an array. We replace failed regions one a
4648 * array at a time. The result is that a new spare disk will be added
4649 * to the first failed array and after the monitor has finished
4650 * propagating failures the remainder will be consumed.
4651 *
4652 * FIXME add a capability for mdmon to request spares from another
4653 * container.
4654 */
4655
4656 struct intel_super *super = a->container->sb;
4657 int inst = a->info.container_member;
4658 struct imsm_dev *dev = get_imsm_dev(super, inst);
4659 struct imsm_map *map = get_imsm_map(dev, 0);
4660 int failed = a->info.array.raid_disks;
4661 struct mdinfo *rv = NULL;
4662 struct mdinfo *d;
4663 struct mdinfo *di;
4664 struct metadata_update *mu;
4665 struct dl *dl;
4666 struct imsm_update_activate_spare *u;
4667 int num_spares = 0;
4668 int i;
4669
4670 for (d = a->info.devs ; d ; d = d->next) {
4671 if ((d->curr_state & DS_FAULTY) &&
4672 d->state_fd >= 0)
4673 /* wait for Removal to happen */
4674 return NULL;
4675 if (d->state_fd >= 0)
4676 failed--;
4677 }
4678
4679 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4680 inst, failed, a->info.array.raid_disks, a->info.array.level);
4681 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4682 return NULL;
4683
4684 /* For each slot, if it is not working, find a spare */
4685 for (i = 0; i < a->info.array.raid_disks; i++) {
4686 for (d = a->info.devs ; d ; d = d->next)
4687 if (d->disk.raid_disk == i)
4688 break;
4689 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4690 if (d && (d->state_fd >= 0))
4691 continue;
4692
4693 /*
4694 * OK, this device needs recovery. Try to re-add the
4695 * previous occupant of this slot, if this fails see if
4696 * we can continue the assimilation of a spare that was
4697 * partially assimilated, finally try to activate a new
4698 * spare.
4699 */
4700 dl = imsm_readd(super, i, a);
4701 if (!dl)
4702 dl = imsm_add_spare(super, i, a, 0);
4703 if (!dl)
4704 dl = imsm_add_spare(super, i, a, 1);
4705 if (!dl)
4706 continue;
4707
4708 /* found a usable disk with enough space */
4709 di = malloc(sizeof(*di));
4710 if (!di)
4711 continue;
4712 memset(di, 0, sizeof(*di));
4713
4714 /* dl->index will be -1 in the case we are activating a
4715 * pristine spare. imsm_process_update() will create a
4716 * new index in this case. Once a disk is found to be
4717 * failed in all member arrays it is kicked from the
4718 * metadata
4719 */
4720 di->disk.number = dl->index;
4721
4722 /* (ab)use di->devs to store a pointer to the device
4723 * we chose
4724 */
4725 di->devs = (struct mdinfo *) dl;
4726
4727 di->disk.raid_disk = i;
4728 di->disk.major = dl->major;
4729 di->disk.minor = dl->minor;
4730 di->disk.state = 0;
4731 di->recovery_start = 0;
4732 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4733 di->component_size = a->info.component_size;
4734 di->container_member = inst;
4735 super->random = random32();
4736 di->next = rv;
4737 rv = di;
4738 num_spares++;
4739 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4740 i, di->data_offset);
4741
4742 break;
4743 }
4744
4745 if (!rv)
4746 /* No spares found */
4747 return rv;
4748 /* Now 'rv' has a list of devices to return.
4749 * Create a metadata_update record to update the
4750 * disk_ord_tbl for the array
4751 */
4752 mu = malloc(sizeof(*mu));
4753 if (mu) {
4754 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4755 if (mu->buf == NULL) {
4756 free(mu);
4757 mu = NULL;
4758 }
4759 }
4760 if (!mu) {
4761 while (rv) {
4762 struct mdinfo *n = rv->next;
4763
4764 free(rv);
4765 rv = n;
4766 }
4767 return NULL;
4768 }
4769
4770 mu->space = NULL;
4771 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4772 mu->next = *updates;
4773 u = (struct imsm_update_activate_spare *) mu->buf;
4774
4775 for (di = rv ; di ; di = di->next) {
4776 u->type = update_activate_spare;
4777 u->dl = (struct dl *) di->devs;
4778 di->devs = NULL;
4779 u->slot = di->disk.raid_disk;
4780 u->array = inst;
4781 u->next = u + 1;
4782 u++;
4783 }
4784 (u-1)->next = NULL;
4785 *updates = mu;
4786
4787 return rv;
4788 }
4789
4790 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4791 {
4792 struct imsm_dev *dev = get_imsm_dev(super, idx);
4793 struct imsm_map *map = get_imsm_map(dev, 0);
4794 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4795 struct disk_info *inf = get_disk_info(u);
4796 struct imsm_disk *disk;
4797 int i;
4798 int j;
4799
4800 for (i = 0; i < map->num_members; i++) {
4801 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4802 for (j = 0; j < new_map->num_members; j++)
4803 if (serialcmp(disk->serial, inf[j].serial) == 0)
4804 return 1;
4805 }
4806
4807 return 0;
4808 }
4809
4810 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4811
4812 static void imsm_process_update(struct supertype *st,
4813 struct metadata_update *update)
4814 {
4815 /**
4816 * crack open the metadata_update envelope to find the update record
4817 * update can be one of:
4818 * update_activate_spare - a spare device has replaced a failed
4819 * device in an array, update the disk_ord_tbl. If this disk is
4820 * present in all member arrays then also clear the SPARE_DISK
4821 * flag
4822 */
4823 struct intel_super *super = st->sb;
4824 struct imsm_super *mpb;
4825 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4826
4827 /* update requires a larger buf but the allocation failed */
4828 if (super->next_len && !super->next_buf) {
4829 super->next_len = 0;
4830 return;
4831 }
4832
4833 if (super->next_buf) {
4834 memcpy(super->next_buf, super->buf, super->len);
4835 free(super->buf);
4836 super->len = super->next_len;
4837 super->buf = super->next_buf;
4838
4839 super->next_len = 0;
4840 super->next_buf = NULL;
4841 }
4842
4843 mpb = super->anchor;
4844
4845 switch (type) {
4846 case update_activate_spare: {
4847 struct imsm_update_activate_spare *u = (void *) update->buf;
4848 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4849 struct imsm_map *map = get_imsm_map(dev, 0);
4850 struct imsm_map *migr_map;
4851 struct active_array *a;
4852 struct imsm_disk *disk;
4853 __u8 to_state;
4854 struct dl *dl;
4855 unsigned int found;
4856 int failed;
4857 int victim = get_imsm_disk_idx(dev, u->slot);
4858 int i;
4859
4860 for (dl = super->disks; dl; dl = dl->next)
4861 if (dl == u->dl)
4862 break;
4863
4864 if (!dl) {
4865 fprintf(stderr, "error: imsm_activate_spare passed "
4866 "an unknown disk (index: %d)\n",
4867 u->dl->index);
4868 return;
4869 }
4870
4871 super->updates_pending++;
4872
4873 /* count failures (excluding rebuilds and the victim)
4874 * to determine map[0] state
4875 */
4876 failed = 0;
4877 for (i = 0; i < map->num_members; i++) {
4878 if (i == u->slot)
4879 continue;
4880 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4881 if (!disk || is_failed(disk))
4882 failed++;
4883 }
4884
4885 /* adding a pristine spare, assign a new index */
4886 if (dl->index < 0) {
4887 dl->index = super->anchor->num_disks;
4888 super->anchor->num_disks++;
4889 }
4890 disk = &dl->disk;
4891 disk->status |= CONFIGURED_DISK;
4892 disk->status &= ~SPARE_DISK;
4893
4894 /* mark rebuild */
4895 to_state = imsm_check_degraded(super, dev, failed);
4896 map->map_state = IMSM_T_STATE_DEGRADED;
4897 migrate(dev, to_state, MIGR_REBUILD);
4898 migr_map = get_imsm_map(dev, 1);
4899 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4900 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4901
4902 /* update the family_num to mark a new container
4903 * generation, being careful to record the existing
4904 * family_num in orig_family_num to clean up after
4905 * earlier mdadm versions that neglected to set it.
4906 */
4907 if (mpb->orig_family_num == 0)
4908 mpb->orig_family_num = mpb->family_num;
4909 mpb->family_num += super->random;
4910
4911 /* count arrays using the victim in the metadata */
4912 found = 0;
4913 for (a = st->arrays; a ; a = a->next) {
4914 dev = get_imsm_dev(super, a->info.container_member);
4915 map = get_imsm_map(dev, 0);
4916
4917 if (get_imsm_disk_slot(map, victim) >= 0)
4918 found++;
4919 }
4920
4921 /* delete the victim if it is no longer being
4922 * utilized anywhere
4923 */
4924 if (!found) {
4925 struct dl **dlp;
4926
4927 /* We know that 'manager' isn't touching anything,
4928 * so it is safe to delete
4929 */
4930 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4931 if ((*dlp)->index == victim)
4932 break;
4933
4934 /* victim may be on the missing list */
4935 if (!*dlp)
4936 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4937 if ((*dlp)->index == victim)
4938 break;
4939 imsm_delete(super, dlp, victim);
4940 }
4941 break;
4942 }
4943 case update_create_array: {
4944 /* someone wants to create a new array, we need to be aware of
4945 * a few races/collisions:
4946 * 1/ 'Create' called by two separate instances of mdadm
4947 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4948 * devices that have since been assimilated via
4949 * activate_spare.
4950 * In the event this update can not be carried out mdadm will
4951 * (FIX ME) notice that its update did not take hold.
4952 */
4953 struct imsm_update_create_array *u = (void *) update->buf;
4954 struct intel_dev *dv;
4955 struct imsm_dev *dev;
4956 struct imsm_map *map, *new_map;
4957 unsigned long long start, end;
4958 unsigned long long new_start, new_end;
4959 int i;
4960 struct disk_info *inf;
4961 struct dl *dl;
4962
4963 /* handle racing creates: first come first serve */
4964 if (u->dev_idx < mpb->num_raid_devs) {
4965 dprintf("%s: subarray %d already defined\n",
4966 __func__, u->dev_idx);
4967 goto create_error;
4968 }
4969
4970 /* check update is next in sequence */
4971 if (u->dev_idx != mpb->num_raid_devs) {
4972 dprintf("%s: can not create array %d expected index %d\n",
4973 __func__, u->dev_idx, mpb->num_raid_devs);
4974 goto create_error;
4975 }
4976
4977 new_map = get_imsm_map(&u->dev, 0);
4978 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4979 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4980 inf = get_disk_info(u);
4981
4982 /* handle activate_spare versus create race:
4983 * check to make sure that overlapping arrays do not include
4984 * overalpping disks
4985 */
4986 for (i = 0; i < mpb->num_raid_devs; i++) {
4987 dev = get_imsm_dev(super, i);
4988 map = get_imsm_map(dev, 0);
4989 start = __le32_to_cpu(map->pba_of_lba0);
4990 end = start + __le32_to_cpu(map->blocks_per_member);
4991 if ((new_start >= start && new_start <= end) ||
4992 (start >= new_start && start <= new_end))
4993 /* overlap */;
4994 else
4995 continue;
4996
4997 if (disks_overlap(super, i, u)) {
4998 dprintf("%s: arrays overlap\n", __func__);
4999 goto create_error;
5000 }
5001 }
5002
5003 /* check that prepare update was successful */
5004 if (!update->space) {
5005 dprintf("%s: prepare update failed\n", __func__);
5006 goto create_error;
5007 }
5008
5009 /* check that all disks are still active before committing
5010 * changes. FIXME: could we instead handle this by creating a
5011 * degraded array? That's probably not what the user expects,
5012 * so better to drop this update on the floor.
5013 */
5014 for (i = 0; i < new_map->num_members; i++) {
5015 dl = serial_to_dl(inf[i].serial, super);
5016 if (!dl) {
5017 dprintf("%s: disk disappeared\n", __func__);
5018 goto create_error;
5019 }
5020 }
5021
5022 super->updates_pending++;
5023
5024 /* convert spares to members and fixup ord_tbl */
5025 for (i = 0; i < new_map->num_members; i++) {
5026 dl = serial_to_dl(inf[i].serial, super);
5027 if (dl->index == -1) {
5028 dl->index = mpb->num_disks;
5029 mpb->num_disks++;
5030 dl->disk.status |= CONFIGURED_DISK;
5031 dl->disk.status &= ~SPARE_DISK;
5032 }
5033 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5034 }
5035
5036 dv = update->space;
5037 dev = dv->dev;
5038 update->space = NULL;
5039 imsm_copy_dev(dev, &u->dev);
5040 dv->index = u->dev_idx;
5041 dv->next = super->devlist;
5042 super->devlist = dv;
5043 mpb->num_raid_devs++;
5044
5045 imsm_update_version_info(super);
5046 break;
5047 create_error:
5048 /* mdmon knows how to release update->space, but not
5049 * ((struct intel_dev *) update->space)->dev
5050 */
5051 if (update->space) {
5052 dv = update->space;
5053 free(dv->dev);
5054 }
5055 break;
5056 }
5057 case update_add_disk:
5058
5059 /* we may be able to repair some arrays if disks are
5060 * being added */
5061 if (super->add) {
5062 struct active_array *a;
5063
5064 super->updates_pending++;
5065 for (a = st->arrays; a; a = a->next)
5066 a->check_degraded = 1;
5067 }
5068 /* add some spares to the metadata */
5069 while (super->add) {
5070 struct dl *al;
5071
5072 al = super->add;
5073 super->add = al->next;
5074 al->next = super->disks;
5075 super->disks = al;
5076 dprintf("%s: added %x:%x\n",
5077 __func__, al->major, al->minor);
5078 }
5079
5080 break;
5081 }
5082 }
5083
5084 static void imsm_prepare_update(struct supertype *st,
5085 struct metadata_update *update)
5086 {
5087 /**
5088 * Allocate space to hold new disk entries, raid-device entries or a new
5089 * mpb if necessary. The manager synchronously waits for updates to
5090 * complete in the monitor, so new mpb buffers allocated here can be
5091 * integrated by the monitor thread without worrying about live pointers
5092 * in the manager thread.
5093 */
5094 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5095 struct intel_super *super = st->sb;
5096 struct imsm_super *mpb = super->anchor;
5097 size_t buf_len;
5098 size_t len = 0;
5099
5100 switch (type) {
5101 case update_create_array: {
5102 struct imsm_update_create_array *u = (void *) update->buf;
5103 struct intel_dev *dv;
5104 struct imsm_dev *dev = &u->dev;
5105 struct imsm_map *map = get_imsm_map(dev, 0);
5106 struct dl *dl;
5107 struct disk_info *inf;
5108 int i;
5109 int activate = 0;
5110
5111 inf = get_disk_info(u);
5112 len = sizeof_imsm_dev(dev, 1);
5113 /* allocate a new super->devlist entry */
5114 dv = malloc(sizeof(*dv));
5115 if (dv) {
5116 dv->dev = malloc(len);
5117 if (dv->dev)
5118 update->space = dv;
5119 else {
5120 free(dv);
5121 update->space = NULL;
5122 }
5123 }
5124
5125 /* count how many spares will be converted to members */
5126 for (i = 0; i < map->num_members; i++) {
5127 dl = serial_to_dl(inf[i].serial, super);
5128 if (!dl) {
5129 /* hmm maybe it failed?, nothing we can do about
5130 * it here
5131 */
5132 continue;
5133 }
5134 if (count_memberships(dl, super) == 0)
5135 activate++;
5136 }
5137 len += activate * sizeof(struct imsm_disk);
5138 break;
5139 default:
5140 break;
5141 }
5142 }
5143
5144 /* check if we need a larger metadata buffer */
5145 if (super->next_buf)
5146 buf_len = super->next_len;
5147 else
5148 buf_len = super->len;
5149
5150 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5151 /* ok we need a larger buf than what is currently allocated
5152 * if this allocation fails process_update will notice that
5153 * ->next_len is set and ->next_buf is NULL
5154 */
5155 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5156 if (super->next_buf)
5157 free(super->next_buf);
5158
5159 super->next_len = buf_len;
5160 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5161 memset(super->next_buf, 0, buf_len);
5162 else
5163 super->next_buf = NULL;
5164 }
5165 }
5166
5167 /* must be called while manager is quiesced */
5168 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
5169 {
5170 struct imsm_super *mpb = super->anchor;
5171 struct dl *iter;
5172 struct imsm_dev *dev;
5173 struct imsm_map *map;
5174 int i, j, num_members;
5175 __u32 ord;
5176
5177 dprintf("%s: deleting device[%d] from imsm_super\n",
5178 __func__, index);
5179
5180 /* shift all indexes down one */
5181 for (iter = super->disks; iter; iter = iter->next)
5182 if (iter->index > index)
5183 iter->index--;
5184 for (iter = super->missing; iter; iter = iter->next)
5185 if (iter->index > index)
5186 iter->index--;
5187
5188 for (i = 0; i < mpb->num_raid_devs; i++) {
5189 dev = get_imsm_dev(super, i);
5190 map = get_imsm_map(dev, 0);
5191 num_members = map->num_members;
5192 for (j = 0; j < num_members; j++) {
5193 /* update ord entries being careful not to propagate
5194 * ord-flags to the first map
5195 */
5196 ord = get_imsm_ord_tbl_ent(dev, j);
5197
5198 if (ord_to_idx(ord) <= index)
5199 continue;
5200
5201 map = get_imsm_map(dev, 0);
5202 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5203 map = get_imsm_map(dev, 1);
5204 if (map)
5205 set_imsm_ord_tbl_ent(map, j, ord - 1);
5206 }
5207 }
5208
5209 mpb->num_disks--;
5210 super->updates_pending++;
5211 if (*dlp) {
5212 struct dl *dl = *dlp;
5213
5214 *dlp = (*dlp)->next;
5215 __free_imsm_disk(dl);
5216 }
5217 }
5218 #endif /* MDASSEMBLE */
5219
5220 struct superswitch super_imsm = {
5221 #ifndef MDASSEMBLE
5222 .examine_super = examine_super_imsm,
5223 .brief_examine_super = brief_examine_super_imsm,
5224 .brief_examine_subarrays = brief_examine_subarrays_imsm,
5225 .export_examine_super = export_examine_super_imsm,
5226 .detail_super = detail_super_imsm,
5227 .brief_detail_super = brief_detail_super_imsm,
5228 .write_init_super = write_init_super_imsm,
5229 .validate_geometry = validate_geometry_imsm,
5230 .add_to_super = add_to_super_imsm,
5231 .detail_platform = detail_platform_imsm,
5232 #endif
5233 .match_home = match_home_imsm,
5234 .uuid_from_super= uuid_from_super_imsm,
5235 .getinfo_super = getinfo_super_imsm,
5236 .update_super = update_super_imsm,
5237
5238 .avail_size = avail_size_imsm,
5239
5240 .compare_super = compare_super_imsm,
5241
5242 .load_super = load_super_imsm,
5243 .init_super = init_super_imsm,
5244 .store_super = store_super_imsm,
5245 .free_super = free_super_imsm,
5246 .match_metadata_desc = match_metadata_desc_imsm,
5247 .container_content = container_content_imsm,
5248 .default_layout = imsm_level_to_layout,
5249
5250 .external = 1,
5251 .name = "imsm",
5252
5253 #ifndef MDASSEMBLE
5254 /* for mdmon */
5255 .open_new = imsm_open_new,
5256 .load_super = load_super_imsm,
5257 .set_array_state= imsm_set_array_state,
5258 .set_disk = imsm_set_disk,
5259 .sync_metadata = imsm_sync_metadata,
5260 .activate_spare = imsm_activate_spare,
5261 .process_update = imsm_process_update,
5262 .prepare_update = imsm_prepare_update,
5263 #endif /* MDASSEMBLE */
5264 };