]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Document PPL in man md
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
86
87 /* Define attributes that are unused but not harmful */
88 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
89
90 #define MPB_SECTOR_CNT 2210
91 #define IMSM_RESERVED_SECTORS 8192
92 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
93 #define SECT_PER_MB_SHIFT 11
94 #define MAX_SECTOR_SIZE 4096
95 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
96 * mutliple PPL area
97 */
98
99 /*
100 * This macro let's us ensure that no-one accidentally
101 * changes the size of a struct
102 */
103 #define ASSERT_SIZE(_struct, size) \
104 static inline void __assert_size_##_struct(void) \
105 { \
106 switch (0) { \
107 case 0: break; \
108 case (sizeof(struct _struct) == size): break; \
109 } \
110 }
111
112 /* Disk configuration info. */
113 #define IMSM_MAX_DEVICES 255
114 struct imsm_disk {
115 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
116 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
117 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
118 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
119 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
120 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
121 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
122 __u32 status; /* 0xF0 - 0xF3 */
123 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
124 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
125 #define IMSM_DISK_FILLERS 3
126 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
127 };
128 ASSERT_SIZE(imsm_disk, 48)
129
130 /* map selector for map managment
131 */
132 #define MAP_0 0
133 #define MAP_1 1
134 #define MAP_X -1
135
136 /* RAID map configuration infos. */
137 struct imsm_map {
138 __u32 pba_of_lba0_lo; /* start address of partition */
139 __u32 blocks_per_member_lo;/* blocks per member */
140 __u32 num_data_stripes_lo; /* number of data stripes */
141 __u16 blocks_per_strip;
142 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
143 #define IMSM_T_STATE_NORMAL 0
144 #define IMSM_T_STATE_UNINITIALIZED 1
145 #define IMSM_T_STATE_DEGRADED 2
146 #define IMSM_T_STATE_FAILED 3
147 __u8 raid_level;
148 #define IMSM_T_RAID0 0
149 #define IMSM_T_RAID1 1
150 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
151 __u8 num_members; /* number of member disks */
152 __u8 num_domains; /* number of parity domains */
153 __u8 failed_disk_num; /* valid only when state is degraded */
154 __u8 ddf;
155 __u32 pba_of_lba0_hi;
156 __u32 blocks_per_member_hi;
157 __u32 num_data_stripes_hi;
158 __u32 filler[4]; /* expansion area */
159 #define IMSM_ORD_REBUILD (1 << 24)
160 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
161 * top byte contains some flags
162 */
163 };
164 ASSERT_SIZE(imsm_map, 52)
165
166 struct imsm_vol {
167 __u32 curr_migr_unit;
168 __u32 checkpoint_id; /* id to access curr_migr_unit */
169 __u8 migr_state; /* Normal or Migrating */
170 #define MIGR_INIT 0
171 #define MIGR_REBUILD 1
172 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
173 #define MIGR_GEN_MIGR 3
174 #define MIGR_STATE_CHANGE 4
175 #define MIGR_REPAIR 5
176 __u8 migr_type; /* Initializing, Rebuilding, ... */
177 #define RAIDVOL_CLEAN 0
178 #define RAIDVOL_DIRTY 1
179 #define RAIDVOL_DSRECORD_VALID 2
180 __u8 dirty;
181 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
182 __u16 verify_errors; /* number of mismatches */
183 __u16 bad_blocks; /* number of bad blocks during verify */
184 __u32 filler[4];
185 struct imsm_map map[1];
186 /* here comes another one if migr_state */
187 };
188 ASSERT_SIZE(imsm_vol, 84)
189
190 struct imsm_dev {
191 __u8 volume[MAX_RAID_SERIAL_LEN];
192 __u32 size_low;
193 __u32 size_high;
194 #define DEV_BOOTABLE __cpu_to_le32(0x01)
195 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
196 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
197 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
198 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
199 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
200 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
201 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
202 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
203 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
204 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
205 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
206 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
207 __u32 status; /* Persistent RaidDev status */
208 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
209 __u8 migr_priority;
210 __u8 num_sub_vols;
211 __u8 tid;
212 __u8 cng_master_disk;
213 __u16 cache_policy;
214 __u8 cng_state;
215 __u8 cng_sub_state;
216 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
217
218 /* NVM_EN */
219 __u8 nv_cache_mode;
220 __u8 nv_cache_flags;
221
222 /* Unique Volume Id of the NvCache Volume associated with this volume */
223 __u32 nvc_vol_orig_family_num;
224 __u16 nvc_vol_raid_dev_num;
225
226 #define RWH_OFF 0
227 #define RWH_DISTRIBUTED 1
228 #define RWH_JOURNALING_DRIVE 2
229 #define RWH_MULTIPLE_DISTRIBUTED 3
230 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
231 #define RWH_MULTIPLE_OFF 5
232 __u8 rwh_policy; /* Raid Write Hole Policy */
233 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
234 __u8 filler1;
235
236 #define IMSM_DEV_FILLERS 3
237 __u32 filler[IMSM_DEV_FILLERS];
238 struct imsm_vol vol;
239 };
240 ASSERT_SIZE(imsm_dev, 164)
241
242 struct imsm_super {
243 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
244 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
245 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
246 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
247 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
248 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
249 __u32 attributes; /* 0x34 - 0x37 */
250 __u8 num_disks; /* 0x38 Number of configured disks */
251 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
252 __u8 error_log_pos; /* 0x3A */
253 __u8 fill[1]; /* 0x3B */
254 __u32 cache_size; /* 0x3c - 0x40 in mb */
255 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
256 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
257 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
258 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
259 * volume IDs for raid_dev created in this array
260 * (starts at 1)
261 */
262 __u16 filler1; /* 0x4E - 0x4F */
263 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
264 #define IMSM_FILLERS 32
265 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
266 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
267 /* here comes imsm_dev[num_raid_devs] */
268 /* here comes BBM logs */
269 };
270 ASSERT_SIZE(imsm_super, 264)
271
272 #define BBM_LOG_MAX_ENTRIES 254
273 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
274 #define BBM_LOG_SIGNATURE 0xabadb10c
275
276 struct bbm_log_block_addr {
277 __u16 w1;
278 __u32 dw1;
279 } __attribute__ ((__packed__));
280
281 struct bbm_log_entry {
282 __u8 marked_count; /* Number of blocks marked - 1 */
283 __u8 disk_ordinal; /* Disk entry within the imsm_super */
284 struct bbm_log_block_addr defective_block_start;
285 } __attribute__ ((__packed__));
286
287 struct bbm_log {
288 __u32 signature; /* 0xABADB10C */
289 __u32 entry_count;
290 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
291 };
292 ASSERT_SIZE(bbm_log, 2040)
293
294 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
295
296 #define BLOCKS_PER_KB (1024/512)
297
298 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
299
300 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
301
302 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
303 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
304 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
305 */
306
307 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
308 * be recovered using srcMap */
309 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
310 * already been migrated and must
311 * be recovered from checkpoint area */
312
313 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
314
315 struct migr_record {
316 __u32 rec_status; /* Status used to determine how to restart
317 * migration in case it aborts
318 * in some fashion */
319 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
320 __u32 family_num; /* Family number of MPB
321 * containing the RaidDev
322 * that is migrating */
323 __u32 ascending_migr; /* True if migrating in increasing
324 * order of lbas */
325 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
326 __u32 dest_depth_per_unit; /* Num member blocks each destMap
327 * member disk
328 * advances per unit-of-operation */
329 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
330 __u32 dest_1st_member_lba_lo; /* First member lba on first
331 * stripe of destination */
332 __u32 num_migr_units_lo; /* Total num migration units-of-op */
333 __u32 post_migr_vol_cap; /* Size of volume after
334 * migration completes */
335 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
336 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
337 * migration ckpt record was read from
338 * (for recovered migrations) */
339 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
340 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
341 * high order 32 bits */
342 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
343 * destination - high order 32 bits */
344 __u32 num_migr_units_hi; /* Total num migration units-of-op
345 * high order 32 bits */
346 };
347 ASSERT_SIZE(migr_record, 64)
348
349 struct md_list {
350 /* usage marker:
351 * 1: load metadata
352 * 2: metadata does not match
353 * 4: already checked
354 */
355 int used;
356 char *devname;
357 int found;
358 int container;
359 dev_t st_rdev;
360 struct md_list *next;
361 };
362
363 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
364
365 static __u8 migr_type(struct imsm_dev *dev)
366 {
367 if (dev->vol.migr_type == MIGR_VERIFY &&
368 dev->status & DEV_VERIFY_AND_FIX)
369 return MIGR_REPAIR;
370 else
371 return dev->vol.migr_type;
372 }
373
374 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
375 {
376 /* for compatibility with older oroms convert MIGR_REPAIR, into
377 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
378 */
379 if (migr_type == MIGR_REPAIR) {
380 dev->vol.migr_type = MIGR_VERIFY;
381 dev->status |= DEV_VERIFY_AND_FIX;
382 } else {
383 dev->vol.migr_type = migr_type;
384 dev->status &= ~DEV_VERIFY_AND_FIX;
385 }
386 }
387
388 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
389 {
390 return ROUND_UP(bytes, sector_size) / sector_size;
391 }
392
393 static unsigned int mpb_sectors(struct imsm_super *mpb,
394 unsigned int sector_size)
395 {
396 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
397 }
398
399 struct intel_dev {
400 struct imsm_dev *dev;
401 struct intel_dev *next;
402 unsigned index;
403 };
404
405 struct intel_hba {
406 enum sys_dev_type type;
407 char *path;
408 char *pci_id;
409 struct intel_hba *next;
410 };
411
412 enum action {
413 DISK_REMOVE = 1,
414 DISK_ADD
415 };
416 /* internal representation of IMSM metadata */
417 struct intel_super {
418 union {
419 void *buf; /* O_DIRECT buffer for reading/writing metadata */
420 struct imsm_super *anchor; /* immovable parameters */
421 };
422 union {
423 void *migr_rec_buf; /* buffer for I/O operations */
424 struct migr_record *migr_rec; /* migration record */
425 };
426 int clean_migration_record_by_mdmon; /* when reshape is switched to next
427 array, it indicates that mdmon is allowed to clean migration
428 record */
429 size_t len; /* size of the 'buf' allocation */
430 size_t extra_space; /* extra space in 'buf' that is not used yet */
431 void *next_buf; /* for realloc'ing buf from the manager */
432 size_t next_len;
433 int updates_pending; /* count of pending updates for mdmon */
434 int current_vol; /* index of raid device undergoing creation */
435 unsigned long long create_offset; /* common start for 'current_vol' */
436 __u32 random; /* random data for seeding new family numbers */
437 struct intel_dev *devlist;
438 unsigned int sector_size; /* sector size of used member drives */
439 struct dl {
440 struct dl *next;
441 int index;
442 __u8 serial[MAX_RAID_SERIAL_LEN];
443 int major, minor;
444 char *devname;
445 struct imsm_disk disk;
446 int fd;
447 int extent_cnt;
448 struct extent *e; /* for determining freespace @ create */
449 int raiddisk; /* slot to fill in autolayout */
450 enum action action;
451 } *disks, *current_disk;
452 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
453 active */
454 struct dl *missing; /* disks removed while we weren't looking */
455 struct bbm_log *bbm_log;
456 struct intel_hba *hba; /* device path of the raid controller for this metadata */
457 const struct imsm_orom *orom; /* platform firmware support */
458 struct intel_super *next; /* (temp) list for disambiguating family_num */
459 struct md_bb bb; /* memory for get_bad_blocks call */
460 };
461
462 struct intel_disk {
463 struct imsm_disk disk;
464 #define IMSM_UNKNOWN_OWNER (-1)
465 int owner;
466 struct intel_disk *next;
467 };
468
469 struct extent {
470 unsigned long long start, size;
471 };
472
473 /* definitions of reshape process types */
474 enum imsm_reshape_type {
475 CH_TAKEOVER,
476 CH_MIGRATION,
477 CH_ARRAY_SIZE,
478 };
479
480 /* definition of messages passed to imsm_process_update */
481 enum imsm_update_type {
482 update_activate_spare,
483 update_create_array,
484 update_kill_array,
485 update_rename_array,
486 update_add_remove_disk,
487 update_reshape_container_disks,
488 update_reshape_migration,
489 update_takeover,
490 update_general_migration_checkpoint,
491 update_size_change,
492 update_prealloc_badblocks_mem,
493 update_rwh_policy,
494 };
495
496 struct imsm_update_activate_spare {
497 enum imsm_update_type type;
498 struct dl *dl;
499 int slot;
500 int array;
501 struct imsm_update_activate_spare *next;
502 };
503
504 struct geo_params {
505 char devnm[32];
506 char *dev_name;
507 unsigned long long size;
508 int level;
509 int layout;
510 int chunksize;
511 int raid_disks;
512 };
513
514 enum takeover_direction {
515 R10_TO_R0,
516 R0_TO_R10
517 };
518 struct imsm_update_takeover {
519 enum imsm_update_type type;
520 int subarray;
521 enum takeover_direction direction;
522 };
523
524 struct imsm_update_reshape {
525 enum imsm_update_type type;
526 int old_raid_disks;
527 int new_raid_disks;
528
529 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
530 };
531
532 struct imsm_update_reshape_migration {
533 enum imsm_update_type type;
534 int old_raid_disks;
535 int new_raid_disks;
536 /* fields for array migration changes
537 */
538 int subdev;
539 int new_level;
540 int new_layout;
541 int new_chunksize;
542
543 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
544 };
545
546 struct imsm_update_size_change {
547 enum imsm_update_type type;
548 int subdev;
549 long long new_size;
550 };
551
552 struct imsm_update_general_migration_checkpoint {
553 enum imsm_update_type type;
554 __u32 curr_migr_unit;
555 };
556
557 struct disk_info {
558 __u8 serial[MAX_RAID_SERIAL_LEN];
559 };
560
561 struct imsm_update_create_array {
562 enum imsm_update_type type;
563 int dev_idx;
564 struct imsm_dev dev;
565 };
566
567 struct imsm_update_kill_array {
568 enum imsm_update_type type;
569 int dev_idx;
570 };
571
572 struct imsm_update_rename_array {
573 enum imsm_update_type type;
574 __u8 name[MAX_RAID_SERIAL_LEN];
575 int dev_idx;
576 };
577
578 struct imsm_update_add_remove_disk {
579 enum imsm_update_type type;
580 };
581
582 struct imsm_update_prealloc_bb_mem {
583 enum imsm_update_type type;
584 };
585
586 struct imsm_update_rwh_policy {
587 enum imsm_update_type type;
588 int new_policy;
589 int dev_idx;
590 };
591
592 static const char *_sys_dev_type[] = {
593 [SYS_DEV_UNKNOWN] = "Unknown",
594 [SYS_DEV_SAS] = "SAS",
595 [SYS_DEV_SATA] = "SATA",
596 [SYS_DEV_NVME] = "NVMe",
597 [SYS_DEV_VMD] = "VMD"
598 };
599
600 const char *get_sys_dev_type(enum sys_dev_type type)
601 {
602 if (type >= SYS_DEV_MAX)
603 type = SYS_DEV_UNKNOWN;
604
605 return _sys_dev_type[type];
606 }
607
608 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
609 {
610 struct intel_hba *result = xmalloc(sizeof(*result));
611
612 result->type = device->type;
613 result->path = xstrdup(device->path);
614 result->next = NULL;
615 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
616 result->pci_id++;
617
618 return result;
619 }
620
621 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
622 {
623 struct intel_hba *result;
624
625 for (result = hba; result; result = result->next) {
626 if (result->type == device->type && strcmp(result->path, device->path) == 0)
627 break;
628 }
629 return result;
630 }
631
632 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
633 {
634 struct intel_hba *hba;
635
636 /* check if disk attached to Intel HBA */
637 hba = find_intel_hba(super->hba, device);
638 if (hba != NULL)
639 return 1;
640 /* Check if HBA is already attached to super */
641 if (super->hba == NULL) {
642 super->hba = alloc_intel_hba(device);
643 return 1;
644 }
645
646 hba = super->hba;
647 /* Intel metadata allows for all disks attached to the same type HBA.
648 * Do not support HBA types mixing
649 */
650 if (device->type != hba->type)
651 return 2;
652
653 /* Multiple same type HBAs can be used if they share the same OROM */
654 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
655
656 if (device_orom != super->orom)
657 return 2;
658
659 while (hba->next)
660 hba = hba->next;
661
662 hba->next = alloc_intel_hba(device);
663 return 1;
664 }
665
666 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
667 {
668 struct sys_dev *list, *elem;
669 char *disk_path;
670
671 if ((list = find_intel_devices()) == NULL)
672 return 0;
673
674 if (fd < 0)
675 disk_path = (char *) devname;
676 else
677 disk_path = diskfd_to_devpath(fd);
678
679 if (!disk_path)
680 return 0;
681
682 for (elem = list; elem; elem = elem->next)
683 if (path_attached_to_hba(disk_path, elem->path))
684 return elem;
685
686 if (disk_path != devname)
687 free(disk_path);
688
689 return NULL;
690 }
691
692 static int find_intel_hba_capability(int fd, struct intel_super *super,
693 char *devname);
694
695 static struct supertype *match_metadata_desc_imsm(char *arg)
696 {
697 struct supertype *st;
698
699 if (strcmp(arg, "imsm") != 0 &&
700 strcmp(arg, "default") != 0
701 )
702 return NULL;
703
704 st = xcalloc(1, sizeof(*st));
705 st->ss = &super_imsm;
706 st->max_devs = IMSM_MAX_DEVICES;
707 st->minor_version = 0;
708 st->sb = NULL;
709 return st;
710 }
711
712 static __u8 *get_imsm_version(struct imsm_super *mpb)
713 {
714 return &mpb->sig[MPB_SIG_LEN];
715 }
716
717 /* retrieve a disk directly from the anchor when the anchor is known to be
718 * up-to-date, currently only at load time
719 */
720 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
721 {
722 if (index >= mpb->num_disks)
723 return NULL;
724 return &mpb->disk[index];
725 }
726
727 /* retrieve the disk description based on a index of the disk
728 * in the sub-array
729 */
730 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
731 {
732 struct dl *d;
733
734 for (d = super->disks; d; d = d->next)
735 if (d->index == index)
736 return d;
737
738 return NULL;
739 }
740 /* retrieve a disk from the parsed metadata */
741 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
742 {
743 struct dl *dl;
744
745 dl = get_imsm_dl_disk(super, index);
746 if (dl)
747 return &dl->disk;
748
749 return NULL;
750 }
751
752 /* generate a checksum directly from the anchor when the anchor is known to be
753 * up-to-date, currently only at load or write_super after coalescing
754 */
755 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
756 {
757 __u32 end = mpb->mpb_size / sizeof(end);
758 __u32 *p = (__u32 *) mpb;
759 __u32 sum = 0;
760
761 while (end--) {
762 sum += __le32_to_cpu(*p);
763 p++;
764 }
765
766 return sum - __le32_to_cpu(mpb->check_sum);
767 }
768
769 static size_t sizeof_imsm_map(struct imsm_map *map)
770 {
771 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
772 }
773
774 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
775 {
776 /* A device can have 2 maps if it is in the middle of a migration.
777 * If second_map is:
778 * MAP_0 - we return the first map
779 * MAP_1 - we return the second map if it exists, else NULL
780 * MAP_X - we return the second map if it exists, else the first
781 */
782 struct imsm_map *map = &dev->vol.map[0];
783 struct imsm_map *map2 = NULL;
784
785 if (dev->vol.migr_state)
786 map2 = (void *)map + sizeof_imsm_map(map);
787
788 switch (second_map) {
789 case MAP_0:
790 break;
791 case MAP_1:
792 map = map2;
793 break;
794 case MAP_X:
795 if (map2)
796 map = map2;
797 break;
798 default:
799 map = NULL;
800 }
801 return map;
802
803 }
804
805 /* return the size of the device.
806 * migr_state increases the returned size if map[0] were to be duplicated
807 */
808 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
809 {
810 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
811 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
812
813 /* migrating means an additional map */
814 if (dev->vol.migr_state)
815 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
816 else if (migr_state)
817 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
818
819 return size;
820 }
821
822 /* retrieve disk serial number list from a metadata update */
823 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
824 {
825 void *u = update;
826 struct disk_info *inf;
827
828 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
829 sizeof_imsm_dev(&update->dev, 0);
830
831 return inf;
832 }
833
834 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
835 {
836 int offset;
837 int i;
838 void *_mpb = mpb;
839
840 if (index >= mpb->num_raid_devs)
841 return NULL;
842
843 /* devices start after all disks */
844 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
845
846 for (i = 0; i <= index; i++)
847 if (i == index)
848 return _mpb + offset;
849 else
850 offset += sizeof_imsm_dev(_mpb + offset, 0);
851
852 return NULL;
853 }
854
855 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
856 {
857 struct intel_dev *dv;
858
859 if (index >= super->anchor->num_raid_devs)
860 return NULL;
861 for (dv = super->devlist; dv; dv = dv->next)
862 if (dv->index == index)
863 return dv->dev;
864 return NULL;
865 }
866
867 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
868 *addr)
869 {
870 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
871 __le16_to_cpu(addr->w1));
872 }
873
874 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
875 {
876 struct bbm_log_block_addr addr;
877
878 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
879 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
880 return addr;
881 }
882
883 /* get size of the bbm log */
884 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
885 {
886 if (!log || log->entry_count == 0)
887 return 0;
888
889 return sizeof(log->signature) +
890 sizeof(log->entry_count) +
891 log->entry_count * sizeof(struct bbm_log_entry);
892 }
893
894 /* check if bad block is not partially stored in bbm log */
895 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
896 long long sector, const int length, __u32 *pos)
897 {
898 __u32 i;
899
900 for (i = *pos; i < log->entry_count; i++) {
901 struct bbm_log_entry *entry = &log->marked_block_entries[i];
902 unsigned long long bb_start;
903 unsigned long long bb_end;
904
905 bb_start = __le48_to_cpu(&entry->defective_block_start);
906 bb_end = bb_start + (entry->marked_count + 1);
907
908 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
909 (bb_end <= sector + length)) {
910 *pos = i;
911 return 1;
912 }
913 }
914 return 0;
915 }
916
917 /* record new bad block in bbm log */
918 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
919 long long sector, int length)
920 {
921 int new_bb = 0;
922 __u32 pos = 0;
923 struct bbm_log_entry *entry = NULL;
924
925 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
926 struct bbm_log_entry *e = &log->marked_block_entries[pos];
927
928 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
929 (__le48_to_cpu(&e->defective_block_start) == sector)) {
930 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
931 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
932 pos = pos + 1;
933 continue;
934 }
935 entry = e;
936 break;
937 }
938
939 if (entry) {
940 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
941 BBM_LOG_MAX_LBA_ENTRY_VAL;
942 entry->defective_block_start = __cpu_to_le48(sector);
943 entry->marked_count = cnt - 1;
944 if (cnt == length)
945 return 1;
946 sector += cnt;
947 length -= cnt;
948 }
949
950 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
951 BBM_LOG_MAX_LBA_ENTRY_VAL;
952 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
953 return 0;
954
955 while (length > 0) {
956 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
957 BBM_LOG_MAX_LBA_ENTRY_VAL;
958 struct bbm_log_entry *entry =
959 &log->marked_block_entries[log->entry_count];
960
961 entry->defective_block_start = __cpu_to_le48(sector);
962 entry->marked_count = cnt - 1;
963 entry->disk_ordinal = idx;
964
965 sector += cnt;
966 length -= cnt;
967
968 log->entry_count++;
969 }
970
971 return new_bb;
972 }
973
974 /* clear all bad blocks for given disk */
975 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
976 {
977 __u32 i = 0;
978
979 while (i < log->entry_count) {
980 struct bbm_log_entry *entries = log->marked_block_entries;
981
982 if (entries[i].disk_ordinal == idx) {
983 if (i < log->entry_count - 1)
984 entries[i] = entries[log->entry_count - 1];
985 log->entry_count--;
986 } else {
987 i++;
988 }
989 }
990 }
991
992 /* clear given bad block */
993 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
994 long long sector, const int length) {
995 __u32 i = 0;
996
997 while (i < log->entry_count) {
998 struct bbm_log_entry *entries = log->marked_block_entries;
999
1000 if ((entries[i].disk_ordinal == idx) &&
1001 (__le48_to_cpu(&entries[i].defective_block_start) ==
1002 sector) && (entries[i].marked_count + 1 == length)) {
1003 if (i < log->entry_count - 1)
1004 entries[i] = entries[log->entry_count - 1];
1005 log->entry_count--;
1006 break;
1007 }
1008 i++;
1009 }
1010
1011 return 1;
1012 }
1013
1014 /* allocate and load BBM log from metadata */
1015 static int load_bbm_log(struct intel_super *super)
1016 {
1017 struct imsm_super *mpb = super->anchor;
1018 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1019
1020 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1021 if (!super->bbm_log)
1022 return 1;
1023
1024 if (bbm_log_size) {
1025 struct bbm_log *log = (void *)mpb +
1026 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1027
1028 __u32 entry_count;
1029
1030 if (bbm_log_size < sizeof(log->signature) +
1031 sizeof(log->entry_count))
1032 return 2;
1033
1034 entry_count = __le32_to_cpu(log->entry_count);
1035 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1036 (entry_count > BBM_LOG_MAX_ENTRIES))
1037 return 3;
1038
1039 if (bbm_log_size !=
1040 sizeof(log->signature) + sizeof(log->entry_count) +
1041 entry_count * sizeof(struct bbm_log_entry))
1042 return 4;
1043
1044 memcpy(super->bbm_log, log, bbm_log_size);
1045 } else {
1046 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1047 super->bbm_log->entry_count = 0;
1048 }
1049
1050 return 0;
1051 }
1052
1053 /* checks if bad block is within volume boundaries */
1054 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1055 const unsigned long long start_sector,
1056 const unsigned long long size)
1057 {
1058 unsigned long long bb_start;
1059 unsigned long long bb_end;
1060
1061 bb_start = __le48_to_cpu(&entry->defective_block_start);
1062 bb_end = bb_start + (entry->marked_count + 1);
1063
1064 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1065 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1066 return 1;
1067
1068 return 0;
1069 }
1070
1071 /* get list of bad blocks on a drive for a volume */
1072 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1073 const unsigned long long start_sector,
1074 const unsigned long long size,
1075 struct md_bb *bbs)
1076 {
1077 __u32 count = 0;
1078 __u32 i;
1079
1080 for (i = 0; i < log->entry_count; i++) {
1081 const struct bbm_log_entry *ent =
1082 &log->marked_block_entries[i];
1083 struct md_bb_entry *bb;
1084
1085 if ((ent->disk_ordinal == idx) &&
1086 is_bad_block_in_volume(ent, start_sector, size)) {
1087
1088 if (!bbs->entries) {
1089 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1090 sizeof(*bb));
1091 if (!bbs->entries)
1092 break;
1093 }
1094
1095 bb = &bbs->entries[count++];
1096 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1097 bb->length = ent->marked_count + 1;
1098 }
1099 }
1100 bbs->count = count;
1101 }
1102
1103 /*
1104 * for second_map:
1105 * == MAP_0 get first map
1106 * == MAP_1 get second map
1107 * == MAP_X than get map according to the current migr_state
1108 */
1109 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1110 int slot,
1111 int second_map)
1112 {
1113 struct imsm_map *map;
1114
1115 map = get_imsm_map(dev, second_map);
1116
1117 /* top byte identifies disk under rebuild */
1118 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1119 }
1120
1121 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1122 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1123 {
1124 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1125
1126 return ord_to_idx(ord);
1127 }
1128
1129 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1130 {
1131 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1132 }
1133
1134 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
1135 {
1136 int slot;
1137 __u32 ord;
1138
1139 for (slot = 0; slot < map->num_members; slot++) {
1140 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1141 if (ord_to_idx(ord) == idx)
1142 return slot;
1143 }
1144
1145 return -1;
1146 }
1147
1148 static int get_imsm_raid_level(struct imsm_map *map)
1149 {
1150 if (map->raid_level == 1) {
1151 if (map->num_members == 2)
1152 return 1;
1153 else
1154 return 10;
1155 }
1156
1157 return map->raid_level;
1158 }
1159
1160 static int cmp_extent(const void *av, const void *bv)
1161 {
1162 const struct extent *a = av;
1163 const struct extent *b = bv;
1164 if (a->start < b->start)
1165 return -1;
1166 if (a->start > b->start)
1167 return 1;
1168 return 0;
1169 }
1170
1171 static int count_memberships(struct dl *dl, struct intel_super *super)
1172 {
1173 int memberships = 0;
1174 int i;
1175
1176 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1177 struct imsm_dev *dev = get_imsm_dev(super, i);
1178 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1179
1180 if (get_imsm_disk_slot(map, dl->index) >= 0)
1181 memberships++;
1182 }
1183
1184 return memberships;
1185 }
1186
1187 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1188
1189 static int split_ull(unsigned long long n, void *lo, void *hi)
1190 {
1191 if (lo == 0 || hi == 0)
1192 return 1;
1193 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1194 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
1195 return 0;
1196 }
1197
1198 static unsigned long long join_u32(__u32 lo, __u32 hi)
1199 {
1200 return (unsigned long long)__le32_to_cpu(lo) |
1201 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1202 }
1203
1204 static unsigned long long total_blocks(struct imsm_disk *disk)
1205 {
1206 if (disk == NULL)
1207 return 0;
1208 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1209 }
1210
1211 static unsigned long long pba_of_lba0(struct imsm_map *map)
1212 {
1213 if (map == NULL)
1214 return 0;
1215 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1216 }
1217
1218 static unsigned long long blocks_per_member(struct imsm_map *map)
1219 {
1220 if (map == NULL)
1221 return 0;
1222 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1223 }
1224
1225 static unsigned long long num_data_stripes(struct imsm_map *map)
1226 {
1227 if (map == NULL)
1228 return 0;
1229 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1230 }
1231
1232 static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1233 {
1234 if (dev == NULL)
1235 return 0;
1236 return join_u32(dev->size_low, dev->size_high);
1237 }
1238
1239 static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1240 {
1241 if (migr_rec == NULL)
1242 return 0;
1243 return join_u32(migr_rec->ckpt_area_pba_lo,
1244 migr_rec->ckpt_area_pba_hi);
1245 }
1246
1247 static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1248 {
1249 if (migr_rec == NULL)
1250 return 0;
1251 return join_u32(migr_rec->curr_migr_unit_lo,
1252 migr_rec->curr_migr_unit_hi);
1253 }
1254
1255 static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1256 {
1257 if (migr_rec == NULL)
1258 return 0;
1259 return join_u32(migr_rec->dest_1st_member_lba_lo,
1260 migr_rec->dest_1st_member_lba_hi);
1261 }
1262
1263 static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1264 {
1265 if (migr_rec == NULL)
1266 return 0;
1267 return join_u32(migr_rec->num_migr_units_lo,
1268 migr_rec->num_migr_units_hi);
1269 }
1270
1271 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1272 {
1273 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1274 }
1275
1276 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1277 {
1278 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1279 }
1280
1281 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1282 {
1283 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1284 }
1285
1286 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1287 {
1288 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1289 }
1290
1291 static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1292 {
1293 split_ull(n, &dev->size_low, &dev->size_high);
1294 }
1295
1296 static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1297 unsigned long long n)
1298 {
1299 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1300 }
1301
1302 static void set_current_migr_unit(struct migr_record *migr_rec,
1303 unsigned long long n)
1304 {
1305 split_ull(n, &migr_rec->curr_migr_unit_lo,
1306 &migr_rec->curr_migr_unit_hi);
1307 }
1308
1309 static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1310 unsigned long long n)
1311 {
1312 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1313 &migr_rec->dest_1st_member_lba_hi);
1314 }
1315
1316 static void set_num_migr_units(struct migr_record *migr_rec,
1317 unsigned long long n)
1318 {
1319 split_ull(n, &migr_rec->num_migr_units_lo,
1320 &migr_rec->num_migr_units_hi);
1321 }
1322
1323 static unsigned long long per_dev_array_size(struct imsm_map *map)
1324 {
1325 unsigned long long array_size = 0;
1326
1327 if (map == NULL)
1328 return array_size;
1329
1330 array_size = num_data_stripes(map) * map->blocks_per_strip;
1331 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1332 array_size *= 2;
1333
1334 return array_size;
1335 }
1336
1337 static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1338 int get_minimal_reservation)
1339 {
1340 /* find a list of used extents on the given physical device */
1341 struct extent *rv, *e;
1342 int i;
1343 int memberships = count_memberships(dl, super);
1344 __u32 reservation;
1345
1346 /* trim the reserved area for spares, so they can join any array
1347 * regardless of whether the OROM has assigned sectors from the
1348 * IMSM_RESERVED_SECTORS region
1349 */
1350 if (dl->index == -1 || get_minimal_reservation)
1351 reservation = imsm_min_reserved_sectors(super);
1352 else
1353 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1354
1355 rv = xcalloc(sizeof(struct extent), (memberships + 1));
1356 e = rv;
1357
1358 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1359 struct imsm_dev *dev = get_imsm_dev(super, i);
1360 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1361
1362 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1363 e->start = pba_of_lba0(map);
1364 e->size = per_dev_array_size(map);
1365 e++;
1366 }
1367 }
1368 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1369
1370 /* determine the start of the metadata
1371 * when no raid devices are defined use the default
1372 * ...otherwise allow the metadata to truncate the value
1373 * as is the case with older versions of imsm
1374 */
1375 if (memberships) {
1376 struct extent *last = &rv[memberships - 1];
1377 unsigned long long remainder;
1378
1379 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1380 /* round down to 1k block to satisfy precision of the kernel
1381 * 'size' interface
1382 */
1383 remainder &= ~1UL;
1384 /* make sure remainder is still sane */
1385 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1386 remainder = ROUND_UP(super->len, 512) >> 9;
1387 if (reservation > remainder)
1388 reservation = remainder;
1389 }
1390 e->start = total_blocks(&dl->disk) - reservation;
1391 e->size = 0;
1392 return rv;
1393 }
1394
1395 /* try to determine how much space is reserved for metadata from
1396 * the last get_extents() entry, otherwise fallback to the
1397 * default
1398 */
1399 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1400 {
1401 struct extent *e;
1402 int i;
1403 __u32 rv;
1404
1405 /* for spares just return a minimal reservation which will grow
1406 * once the spare is picked up by an array
1407 */
1408 if (dl->index == -1)
1409 return MPB_SECTOR_CNT;
1410
1411 e = get_extents(super, dl, 0);
1412 if (!e)
1413 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1414
1415 /* scroll to last entry */
1416 for (i = 0; e[i].size; i++)
1417 continue;
1418
1419 rv = total_blocks(&dl->disk) - e[i].start;
1420
1421 free(e);
1422
1423 return rv;
1424 }
1425
1426 static int is_spare(struct imsm_disk *disk)
1427 {
1428 return (disk->status & SPARE_DISK) == SPARE_DISK;
1429 }
1430
1431 static int is_configured(struct imsm_disk *disk)
1432 {
1433 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1434 }
1435
1436 static int is_failed(struct imsm_disk *disk)
1437 {
1438 return (disk->status & FAILED_DISK) == FAILED_DISK;
1439 }
1440
1441 static int is_journal(struct imsm_disk *disk)
1442 {
1443 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1444 }
1445
1446 /* round array size down to closest MB and ensure it splits evenly
1447 * between members
1448 */
1449 static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1450 disk_count)
1451 {
1452 size /= disk_count;
1453 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1454 size *= disk_count;
1455
1456 return size;
1457 }
1458
1459 static int able_to_resync(int raid_level, int missing_disks)
1460 {
1461 int max_missing_disks = 0;
1462
1463 switch (raid_level) {
1464 case 10:
1465 max_missing_disks = 1;
1466 break;
1467 default:
1468 max_missing_disks = 0;
1469 }
1470 return missing_disks <= max_missing_disks;
1471 }
1472
1473 /* try to determine how much space is reserved for metadata from
1474 * the last get_extents() entry on the smallest active disk,
1475 * otherwise fallback to the default
1476 */
1477 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1478 {
1479 struct extent *e;
1480 int i;
1481 unsigned long long min_active;
1482 __u32 remainder;
1483 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1484 struct dl *dl, *dl_min = NULL;
1485
1486 if (!super)
1487 return rv;
1488
1489 min_active = 0;
1490 for (dl = super->disks; dl; dl = dl->next) {
1491 if (dl->index < 0)
1492 continue;
1493 unsigned long long blocks = total_blocks(&dl->disk);
1494 if (blocks < min_active || min_active == 0) {
1495 dl_min = dl;
1496 min_active = blocks;
1497 }
1498 }
1499 if (!dl_min)
1500 return rv;
1501
1502 /* find last lba used by subarrays on the smallest active disk */
1503 e = get_extents(super, dl_min, 0);
1504 if (!e)
1505 return rv;
1506 for (i = 0; e[i].size; i++)
1507 continue;
1508
1509 remainder = min_active - e[i].start;
1510 free(e);
1511
1512 /* to give priority to recovery we should not require full
1513 IMSM_RESERVED_SECTORS from the spare */
1514 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1515
1516 /* if real reservation is smaller use that value */
1517 return (remainder < rv) ? remainder : rv;
1518 }
1519
1520 /*
1521 * Return minimum size of a spare and sector size
1522 * that can be used in this array
1523 */
1524 int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
1525 {
1526 struct intel_super *super = st->sb;
1527 struct dl *dl;
1528 struct extent *e;
1529 int i;
1530 unsigned long long size = 0;
1531
1532 c->min_size = 0;
1533 c->sector_size = 0;
1534
1535 if (!super)
1536 return -EINVAL;
1537 /* find first active disk in array */
1538 dl = super->disks;
1539 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1540 dl = dl->next;
1541 if (!dl)
1542 return -EINVAL;
1543 /* find last lba used by subarrays */
1544 e = get_extents(super, dl, 0);
1545 if (!e)
1546 return -EINVAL;
1547 for (i = 0; e[i].size; i++)
1548 continue;
1549 if (i > 0)
1550 size = e[i-1].start + e[i-1].size;
1551 free(e);
1552
1553 /* add the amount of space needed for metadata */
1554 size += imsm_min_reserved_sectors(super);
1555
1556 c->min_size = size * 512;
1557 c->sector_size = super->sector_size;
1558
1559 return 0;
1560 }
1561
1562 static int is_gen_migration(struct imsm_dev *dev);
1563
1564 #define IMSM_4K_DIV 8
1565
1566 static __u64 blocks_per_migr_unit(struct intel_super *super,
1567 struct imsm_dev *dev);
1568
1569 static void print_imsm_dev(struct intel_super *super,
1570 struct imsm_dev *dev,
1571 char *uuid,
1572 int disk_idx)
1573 {
1574 __u64 sz;
1575 int slot, i;
1576 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1577 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1578 __u32 ord;
1579
1580 printf("\n");
1581 printf("[%.16s]:\n", dev->volume);
1582 printf(" Subarray : %d\n", super->current_vol);
1583 printf(" UUID : %s\n", uuid);
1584 printf(" RAID Level : %d", get_imsm_raid_level(map));
1585 if (map2)
1586 printf(" <-- %d", get_imsm_raid_level(map2));
1587 printf("\n");
1588 printf(" Members : %d", map->num_members);
1589 if (map2)
1590 printf(" <-- %d", map2->num_members);
1591 printf("\n");
1592 printf(" Slots : [");
1593 for (i = 0; i < map->num_members; i++) {
1594 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1595 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1596 }
1597 printf("]");
1598 if (map2) {
1599 printf(" <-- [");
1600 for (i = 0; i < map2->num_members; i++) {
1601 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1602 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1603 }
1604 printf("]");
1605 }
1606 printf("\n");
1607 printf(" Failed disk : ");
1608 if (map->failed_disk_num == 0xff)
1609 printf("none");
1610 else
1611 printf("%i", map->failed_disk_num);
1612 printf("\n");
1613 slot = get_imsm_disk_slot(map, disk_idx);
1614 if (slot >= 0) {
1615 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1616 printf(" This Slot : %d%s\n", slot,
1617 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1618 } else
1619 printf(" This Slot : ?\n");
1620 printf(" Sector Size : %u\n", super->sector_size);
1621 sz = imsm_dev_size(dev);
1622 printf(" Array Size : %llu%s\n",
1623 (unsigned long long)sz * 512 / super->sector_size,
1624 human_size(sz * 512));
1625 sz = blocks_per_member(map);
1626 printf(" Per Dev Size : %llu%s\n",
1627 (unsigned long long)sz * 512 / super->sector_size,
1628 human_size(sz * 512));
1629 printf(" Sector Offset : %llu\n",
1630 pba_of_lba0(map));
1631 printf(" Num Stripes : %llu\n",
1632 num_data_stripes(map));
1633 printf(" Chunk Size : %u KiB",
1634 __le16_to_cpu(map->blocks_per_strip) / 2);
1635 if (map2)
1636 printf(" <-- %u KiB",
1637 __le16_to_cpu(map2->blocks_per_strip) / 2);
1638 printf("\n");
1639 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1640 printf(" Migrate State : ");
1641 if (dev->vol.migr_state) {
1642 if (migr_type(dev) == MIGR_INIT)
1643 printf("initialize\n");
1644 else if (migr_type(dev) == MIGR_REBUILD)
1645 printf("rebuild\n");
1646 else if (migr_type(dev) == MIGR_VERIFY)
1647 printf("check\n");
1648 else if (migr_type(dev) == MIGR_GEN_MIGR)
1649 printf("general migration\n");
1650 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1651 printf("state change\n");
1652 else if (migr_type(dev) == MIGR_REPAIR)
1653 printf("repair\n");
1654 else
1655 printf("<unknown:%d>\n", migr_type(dev));
1656 } else
1657 printf("idle\n");
1658 printf(" Map State : %s", map_state_str[map->map_state]);
1659 if (dev->vol.migr_state) {
1660 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1661
1662 printf(" <-- %s", map_state_str[map->map_state]);
1663 printf("\n Checkpoint : %u ",
1664 __le32_to_cpu(dev->vol.curr_migr_unit));
1665 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1666 printf("(N/A)");
1667 else
1668 printf("(%llu)", (unsigned long long)
1669 blocks_per_migr_unit(super, dev));
1670 }
1671 printf("\n");
1672 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1673 "dirty" : "clean");
1674 printf(" RWH Policy : ");
1675 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
1676 printf("off\n");
1677 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1678 printf("PPL distributed\n");
1679 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1680 printf("PPL journaling drive\n");
1681 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1682 printf("Multiple distributed PPLs\n");
1683 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1684 printf("Multiple PPLs on journaling drive\n");
1685 else
1686 printf("<unknown:%d>\n", dev->rwh_policy);
1687
1688 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
1689 }
1690
1691 static void print_imsm_disk(struct imsm_disk *disk,
1692 int index,
1693 __u32 reserved,
1694 unsigned int sector_size) {
1695 char str[MAX_RAID_SERIAL_LEN + 1];
1696 __u64 sz;
1697
1698 if (index < -1 || !disk)
1699 return;
1700
1701 printf("\n");
1702 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1703 if (index >= 0)
1704 printf(" Disk%02d Serial : %s\n", index, str);
1705 else
1706 printf(" Disk Serial : %s\n", str);
1707 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1708 is_configured(disk) ? " active" : "",
1709 is_failed(disk) ? " failed" : "",
1710 is_journal(disk) ? " journal" : "");
1711 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1712 sz = total_blocks(disk) - reserved;
1713 printf(" Usable Size : %llu%s\n",
1714 (unsigned long long)sz * 512 / sector_size,
1715 human_size(sz * 512));
1716 }
1717
1718 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1719 {
1720 struct migr_record *migr_rec = super->migr_rec;
1721
1722 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1723 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1724 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1725 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1726 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1727 set_migr_chkp_area_pba(migr_rec,
1728 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1729 set_migr_dest_1st_member_lba(migr_rec,
1730 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
1731 }
1732
1733 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1734 {
1735 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1736 }
1737
1738 void convert_to_4k(struct intel_super *super)
1739 {
1740 struct imsm_super *mpb = super->anchor;
1741 struct imsm_disk *disk;
1742 int i;
1743 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1744
1745 for (i = 0; i < mpb->num_disks ; i++) {
1746 disk = __get_imsm_disk(mpb, i);
1747 /* disk */
1748 convert_to_4k_imsm_disk(disk);
1749 }
1750 for (i = 0; i < mpb->num_raid_devs; i++) {
1751 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1752 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1753 /* dev */
1754 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
1755 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1756
1757 /* map0 */
1758 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1759 map->blocks_per_strip /= IMSM_4K_DIV;
1760 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1761
1762 if (dev->vol.migr_state) {
1763 /* map1 */
1764 map = get_imsm_map(dev, MAP_1);
1765 set_blocks_per_member(map,
1766 blocks_per_member(map)/IMSM_4K_DIV);
1767 map->blocks_per_strip /= IMSM_4K_DIV;
1768 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1769 }
1770 }
1771 if (bbm_log_size) {
1772 struct bbm_log *log = (void *)mpb +
1773 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1774 __u32 i;
1775
1776 for (i = 0; i < log->entry_count; i++) {
1777 struct bbm_log_entry *entry =
1778 &log->marked_block_entries[i];
1779
1780 __u8 count = entry->marked_count + 1;
1781 unsigned long long sector =
1782 __le48_to_cpu(&entry->defective_block_start);
1783
1784 entry->defective_block_start =
1785 __cpu_to_le48(sector/IMSM_4K_DIV);
1786 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1787 }
1788 }
1789
1790 mpb->check_sum = __gen_imsm_checksum(mpb);
1791 }
1792
1793 void examine_migr_rec_imsm(struct intel_super *super)
1794 {
1795 struct migr_record *migr_rec = super->migr_rec;
1796 struct imsm_super *mpb = super->anchor;
1797 int i;
1798
1799 for (i = 0; i < mpb->num_raid_devs; i++) {
1800 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1801 struct imsm_map *map;
1802 int slot = -1;
1803
1804 if (is_gen_migration(dev) == 0)
1805 continue;
1806
1807 printf("\nMigration Record Information:");
1808
1809 /* first map under migration */
1810 map = get_imsm_map(dev, MAP_0);
1811 if (map)
1812 slot = get_imsm_disk_slot(map, super->disks->index);
1813 if (map == NULL || slot > 1 || slot < 0) {
1814 printf(" Empty\n ");
1815 printf("Examine one of first two disks in array\n");
1816 break;
1817 }
1818 printf("\n Status : ");
1819 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1820 printf("Normal\n");
1821 else
1822 printf("Contains Data\n");
1823 printf(" Current Unit : %llu\n",
1824 current_migr_unit(migr_rec));
1825 printf(" Family : %u\n",
1826 __le32_to_cpu(migr_rec->family_num));
1827 printf(" Ascending : %u\n",
1828 __le32_to_cpu(migr_rec->ascending_migr));
1829 printf(" Blocks Per Unit : %u\n",
1830 __le32_to_cpu(migr_rec->blocks_per_unit));
1831 printf(" Dest. Depth Per Unit : %u\n",
1832 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1833 printf(" Checkpoint Area pba : %llu\n",
1834 migr_chkp_area_pba(migr_rec));
1835 printf(" First member lba : %llu\n",
1836 migr_dest_1st_member_lba(migr_rec));
1837 printf(" Total Number of Units : %llu\n",
1838 get_num_migr_units(migr_rec));
1839 printf(" Size of volume : %llu\n",
1840 join_u32(migr_rec->post_migr_vol_cap,
1841 migr_rec->post_migr_vol_cap_hi));
1842 printf(" Record was read from : %u\n",
1843 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1844
1845 break;
1846 }
1847 }
1848
1849 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1850 {
1851 struct migr_record *migr_rec = super->migr_rec;
1852
1853 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1854 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1855 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1856 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1857 &migr_rec->post_migr_vol_cap,
1858 &migr_rec->post_migr_vol_cap_hi);
1859 set_migr_chkp_area_pba(migr_rec,
1860 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
1861 set_migr_dest_1st_member_lba(migr_rec,
1862 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
1863 }
1864
1865 void convert_from_4k(struct intel_super *super)
1866 {
1867 struct imsm_super *mpb = super->anchor;
1868 struct imsm_disk *disk;
1869 int i;
1870 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1871
1872 for (i = 0; i < mpb->num_disks ; i++) {
1873 disk = __get_imsm_disk(mpb, i);
1874 /* disk */
1875 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1876 }
1877
1878 for (i = 0; i < mpb->num_raid_devs; i++) {
1879 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1880 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1881 /* dev */
1882 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
1883 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1884
1885 /* map0 */
1886 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1887 map->blocks_per_strip *= IMSM_4K_DIV;
1888 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1889
1890 if (dev->vol.migr_state) {
1891 /* map1 */
1892 map = get_imsm_map(dev, MAP_1);
1893 set_blocks_per_member(map,
1894 blocks_per_member(map)*IMSM_4K_DIV);
1895 map->blocks_per_strip *= IMSM_4K_DIV;
1896 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1897 }
1898 }
1899 if (bbm_log_size) {
1900 struct bbm_log *log = (void *)mpb +
1901 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1902 __u32 i;
1903
1904 for (i = 0; i < log->entry_count; i++) {
1905 struct bbm_log_entry *entry =
1906 &log->marked_block_entries[i];
1907
1908 __u8 count = entry->marked_count + 1;
1909 unsigned long long sector =
1910 __le48_to_cpu(&entry->defective_block_start);
1911
1912 entry->defective_block_start =
1913 __cpu_to_le48(sector*IMSM_4K_DIV);
1914 entry->marked_count = count*IMSM_4K_DIV - 1;
1915 }
1916 }
1917
1918 mpb->check_sum = __gen_imsm_checksum(mpb);
1919 }
1920
1921 /*******************************************************************************
1922 * function: imsm_check_attributes
1923 * Description: Function checks if features represented by attributes flags
1924 * are supported by mdadm.
1925 * Parameters:
1926 * attributes - Attributes read from metadata
1927 * Returns:
1928 * 0 - passed attributes contains unsupported features flags
1929 * 1 - all features are supported
1930 ******************************************************************************/
1931 static int imsm_check_attributes(__u32 attributes)
1932 {
1933 int ret_val = 1;
1934 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1935
1936 not_supported &= ~MPB_ATTRIB_IGNORED;
1937
1938 not_supported &= attributes;
1939 if (not_supported) {
1940 pr_err("(IMSM): Unsupported attributes : %x\n",
1941 (unsigned)__le32_to_cpu(not_supported));
1942 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1943 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1944 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1945 }
1946 if (not_supported & MPB_ATTRIB_2TB) {
1947 dprintf("\t\tMPB_ATTRIB_2TB\n");
1948 not_supported ^= MPB_ATTRIB_2TB;
1949 }
1950 if (not_supported & MPB_ATTRIB_RAID0) {
1951 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1952 not_supported ^= MPB_ATTRIB_RAID0;
1953 }
1954 if (not_supported & MPB_ATTRIB_RAID1) {
1955 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1956 not_supported ^= MPB_ATTRIB_RAID1;
1957 }
1958 if (not_supported & MPB_ATTRIB_RAID10) {
1959 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1960 not_supported ^= MPB_ATTRIB_RAID10;
1961 }
1962 if (not_supported & MPB_ATTRIB_RAID1E) {
1963 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1964 not_supported ^= MPB_ATTRIB_RAID1E;
1965 }
1966 if (not_supported & MPB_ATTRIB_RAID5) {
1967 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1968 not_supported ^= MPB_ATTRIB_RAID5;
1969 }
1970 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1971 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1972 not_supported ^= MPB_ATTRIB_RAIDCNG;
1973 }
1974 if (not_supported & MPB_ATTRIB_BBM) {
1975 dprintf("\t\tMPB_ATTRIB_BBM\n");
1976 not_supported ^= MPB_ATTRIB_BBM;
1977 }
1978 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1979 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1980 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1981 }
1982 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1983 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1984 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1985 }
1986 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1987 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1988 not_supported ^= MPB_ATTRIB_2TB_DISK;
1989 }
1990 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1991 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1992 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1993 }
1994 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1995 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1996 not_supported ^= MPB_ATTRIB_NEVER_USE;
1997 }
1998
1999 if (not_supported)
2000 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
2001
2002 ret_val = 0;
2003 }
2004
2005 return ret_val;
2006 }
2007
2008 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
2009
2010 static void examine_super_imsm(struct supertype *st, char *homehost)
2011 {
2012 struct intel_super *super = st->sb;
2013 struct imsm_super *mpb = super->anchor;
2014 char str[MAX_SIGNATURE_LENGTH];
2015 int i;
2016 struct mdinfo info;
2017 char nbuf[64];
2018 __u32 sum;
2019 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2020 struct dl *dl;
2021 time_t creation_time;
2022
2023 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2024 str[MPB_SIG_LEN-1] = '\0';
2025 printf(" Magic : %s\n", str);
2026 printf(" Version : %s\n", get_imsm_version(mpb));
2027 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
2028 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2029 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
2030 creation_time = __le64_to_cpu(mpb->creation_time);
2031 printf(" Creation Time : %.24s\n",
2032 creation_time ? ctime(&creation_time) : "Unknown");
2033 printf(" Attributes : ");
2034 if (imsm_check_attributes(mpb->attributes))
2035 printf("All supported\n");
2036 else
2037 printf("not supported\n");
2038 getinfo_super_imsm(st, &info, NULL);
2039 fname_from_uuid(st, &info, nbuf, ':');
2040 printf(" UUID : %s\n", nbuf + 5);
2041 sum = __le32_to_cpu(mpb->check_sum);
2042 printf(" Checksum : %08x %s\n", sum,
2043 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
2044 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
2045 printf(" Disks : %d\n", mpb->num_disks);
2046 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
2047 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2048 super->disks->index, reserved, super->sector_size);
2049 if (get_imsm_bbm_log_size(super->bbm_log)) {
2050 struct bbm_log *log = super->bbm_log;
2051
2052 printf("\n");
2053 printf("Bad Block Management Log:\n");
2054 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2055 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2056 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
2057 }
2058 for (i = 0; i < mpb->num_raid_devs; i++) {
2059 struct mdinfo info;
2060 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2061
2062 super->current_vol = i;
2063 getinfo_super_imsm(st, &info, NULL);
2064 fname_from_uuid(st, &info, nbuf, ':');
2065 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
2066 }
2067 for (i = 0; i < mpb->num_disks; i++) {
2068 if (i == super->disks->index)
2069 continue;
2070 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2071 super->sector_size);
2072 }
2073
2074 for (dl = super->disks; dl; dl = dl->next)
2075 if (dl->index == -1)
2076 print_imsm_disk(&dl->disk, -1, reserved,
2077 super->sector_size);
2078
2079 examine_migr_rec_imsm(super);
2080 }
2081
2082 static void brief_examine_super_imsm(struct supertype *st, int verbose)
2083 {
2084 /* We just write a generic IMSM ARRAY entry */
2085 struct mdinfo info;
2086 char nbuf[64];
2087 struct intel_super *super = st->sb;
2088
2089 if (!super->anchor->num_raid_devs) {
2090 printf("ARRAY metadata=imsm\n");
2091 return;
2092 }
2093
2094 getinfo_super_imsm(st, &info, NULL);
2095 fname_from_uuid(st, &info, nbuf, ':');
2096 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2097 }
2098
2099 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2100 {
2101 /* We just write a generic IMSM ARRAY entry */
2102 struct mdinfo info;
2103 char nbuf[64];
2104 char nbuf1[64];
2105 struct intel_super *super = st->sb;
2106 int i;
2107
2108 if (!super->anchor->num_raid_devs)
2109 return;
2110
2111 getinfo_super_imsm(st, &info, NULL);
2112 fname_from_uuid(st, &info, nbuf, ':');
2113 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2114 struct imsm_dev *dev = get_imsm_dev(super, i);
2115
2116 super->current_vol = i;
2117 getinfo_super_imsm(st, &info, NULL);
2118 fname_from_uuid(st, &info, nbuf1, ':');
2119 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
2120 dev->volume, nbuf + 5, i, nbuf1 + 5);
2121 }
2122 }
2123
2124 static void export_examine_super_imsm(struct supertype *st)
2125 {
2126 struct intel_super *super = st->sb;
2127 struct imsm_super *mpb = super->anchor;
2128 struct mdinfo info;
2129 char nbuf[64];
2130
2131 getinfo_super_imsm(st, &info, NULL);
2132 fname_from_uuid(st, &info, nbuf, ':');
2133 printf("MD_METADATA=imsm\n");
2134 printf("MD_LEVEL=container\n");
2135 printf("MD_UUID=%s\n", nbuf+5);
2136 printf("MD_DEVICES=%u\n", mpb->num_disks);
2137 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
2138 }
2139
2140 static void detail_super_imsm(struct supertype *st, char *homehost,
2141 char *subarray)
2142 {
2143 struct mdinfo info;
2144 char nbuf[64];
2145 struct intel_super *super = st->sb;
2146 int temp_vol = super->current_vol;
2147
2148 if (subarray)
2149 super->current_vol = strtoul(subarray, NULL, 10);
2150
2151 getinfo_super_imsm(st, &info, NULL);
2152 fname_from_uuid(st, &info, nbuf, ':');
2153 printf("\n UUID : %s\n", nbuf + 5);
2154
2155 super->current_vol = temp_vol;
2156 }
2157
2158 static void brief_detail_super_imsm(struct supertype *st, char *subarray)
2159 {
2160 struct mdinfo info;
2161 char nbuf[64];
2162 struct intel_super *super = st->sb;
2163 int temp_vol = super->current_vol;
2164
2165 if (subarray)
2166 super->current_vol = strtoul(subarray, NULL, 10);
2167
2168 getinfo_super_imsm(st, &info, NULL);
2169 fname_from_uuid(st, &info, nbuf, ':');
2170 printf(" UUID=%s", nbuf + 5);
2171
2172 super->current_vol = temp_vol;
2173 }
2174
2175 static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2176 size_t serial_buf_len);
2177 static void fd2devname(int fd, char *name);
2178
2179 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2180 {
2181 /* dump an unsorted list of devices attached to AHCI Intel storage
2182 * controller, as well as non-connected ports
2183 */
2184 int hba_len = strlen(hba_path) + 1;
2185 struct dirent *ent;
2186 DIR *dir;
2187 char *path = NULL;
2188 int err = 0;
2189 unsigned long port_mask = (1 << port_count) - 1;
2190
2191 if (port_count > (int)sizeof(port_mask) * 8) {
2192 if (verbose > 0)
2193 pr_err("port_count %d out of range\n", port_count);
2194 return 2;
2195 }
2196
2197 /* scroll through /sys/dev/block looking for devices attached to
2198 * this hba
2199 */
2200 dir = opendir("/sys/dev/block");
2201 if (!dir)
2202 return 1;
2203
2204 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2205 int fd;
2206 char model[64];
2207 char vendor[64];
2208 char buf[1024];
2209 int major, minor;
2210 char *device;
2211 char *c;
2212 int port;
2213 int type;
2214
2215 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2216 continue;
2217 path = devt_to_devpath(makedev(major, minor));
2218 if (!path)
2219 continue;
2220 if (!path_attached_to_hba(path, hba_path)) {
2221 free(path);
2222 path = NULL;
2223 continue;
2224 }
2225
2226 /* retrieve the scsi device type */
2227 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
2228 if (verbose > 0)
2229 pr_err("failed to allocate 'device'\n");
2230 err = 2;
2231 break;
2232 }
2233 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
2234 if (load_sys(device, buf, sizeof(buf)) != 0) {
2235 if (verbose > 0)
2236 pr_err("failed to read device type for %s\n",
2237 path);
2238 err = 2;
2239 free(device);
2240 break;
2241 }
2242 type = strtoul(buf, NULL, 10);
2243
2244 /* if it's not a disk print the vendor and model */
2245 if (!(type == 0 || type == 7 || type == 14)) {
2246 vendor[0] = '\0';
2247 model[0] = '\0';
2248 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
2249 if (load_sys(device, buf, sizeof(buf)) == 0) {
2250 strncpy(vendor, buf, sizeof(vendor));
2251 vendor[sizeof(vendor) - 1] = '\0';
2252 c = (char *) &vendor[sizeof(vendor) - 1];
2253 while (isspace(*c) || *c == '\0')
2254 *c-- = '\0';
2255
2256 }
2257 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
2258 if (load_sys(device, buf, sizeof(buf)) == 0) {
2259 strncpy(model, buf, sizeof(model));
2260 model[sizeof(model) - 1] = '\0';
2261 c = (char *) &model[sizeof(model) - 1];
2262 while (isspace(*c) || *c == '\0')
2263 *c-- = '\0';
2264 }
2265
2266 if (vendor[0] && model[0])
2267 sprintf(buf, "%.64s %.64s", vendor, model);
2268 else
2269 switch (type) { /* numbers from hald/linux/device.c */
2270 case 1: sprintf(buf, "tape"); break;
2271 case 2: sprintf(buf, "printer"); break;
2272 case 3: sprintf(buf, "processor"); break;
2273 case 4:
2274 case 5: sprintf(buf, "cdrom"); break;
2275 case 6: sprintf(buf, "scanner"); break;
2276 case 8: sprintf(buf, "media_changer"); break;
2277 case 9: sprintf(buf, "comm"); break;
2278 case 12: sprintf(buf, "raid"); break;
2279 default: sprintf(buf, "unknown");
2280 }
2281 } else
2282 buf[0] = '\0';
2283 free(device);
2284
2285 /* chop device path to 'host%d' and calculate the port number */
2286 c = strchr(&path[hba_len], '/');
2287 if (!c) {
2288 if (verbose > 0)
2289 pr_err("%s - invalid path name\n", path + hba_len);
2290 err = 2;
2291 break;
2292 }
2293 *c = '\0';
2294 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2295 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2296 port -= host_base;
2297 else {
2298 if (verbose > 0) {
2299 *c = '/'; /* repair the full string */
2300 pr_err("failed to determine port number for %s\n",
2301 path);
2302 }
2303 err = 2;
2304 break;
2305 }
2306
2307 /* mark this port as used */
2308 port_mask &= ~(1 << port);
2309
2310 /* print out the device information */
2311 if (buf[0]) {
2312 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2313 continue;
2314 }
2315
2316 fd = dev_open(ent->d_name, O_RDONLY);
2317 if (fd < 0)
2318 printf(" Port%d : - disk info unavailable -\n", port);
2319 else {
2320 fd2devname(fd, buf);
2321 printf(" Port%d : %s", port, buf);
2322 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2323 sizeof(buf)) == 0)
2324 printf(" (%s)\n", buf);
2325 else
2326 printf(" ()\n");
2327 close(fd);
2328 }
2329 free(path);
2330 path = NULL;
2331 }
2332 if (path)
2333 free(path);
2334 if (dir)
2335 closedir(dir);
2336 if (err == 0) {
2337 int i;
2338
2339 for (i = 0; i < port_count; i++)
2340 if (port_mask & (1 << i))
2341 printf(" Port%d : - no device attached -\n", i);
2342 }
2343
2344 return err;
2345 }
2346
2347 static int print_nvme_info(struct sys_dev *hba)
2348 {
2349 char buf[1024];
2350 struct dirent *ent;
2351 DIR *dir;
2352 char *rp;
2353 int fd;
2354
2355 dir = opendir("/sys/block/");
2356 if (!dir)
2357 return 1;
2358
2359 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2360 if (strstr(ent->d_name, "nvme")) {
2361 sprintf(buf, "/sys/block/%s", ent->d_name);
2362 rp = realpath(buf, NULL);
2363 if (!rp)
2364 continue;
2365 if (path_attached_to_hba(rp, hba->path)) {
2366 fd = open_dev(ent->d_name);
2367 if (!imsm_is_nvme_supported(fd, 0)) {
2368 if (fd >= 0)
2369 close(fd);
2370 free(rp);
2371 continue;
2372 }
2373
2374 fd2devname(fd, buf);
2375 if (hba->type == SYS_DEV_VMD)
2376 printf(" NVMe under VMD : %s", buf);
2377 else if (hba->type == SYS_DEV_NVME)
2378 printf(" NVMe Device : %s", buf);
2379 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2380 sizeof(buf)))
2381 printf(" (%s)\n", buf);
2382 else
2383 printf("()\n");
2384 close(fd);
2385 }
2386 free(rp);
2387 }
2388 }
2389
2390 closedir(dir);
2391 return 0;
2392 }
2393
2394 static void print_found_intel_controllers(struct sys_dev *elem)
2395 {
2396 for (; elem; elem = elem->next) {
2397 pr_err("found Intel(R) ");
2398 if (elem->type == SYS_DEV_SATA)
2399 fprintf(stderr, "SATA ");
2400 else if (elem->type == SYS_DEV_SAS)
2401 fprintf(stderr, "SAS ");
2402 else if (elem->type == SYS_DEV_NVME)
2403 fprintf(stderr, "NVMe ");
2404
2405 if (elem->type == SYS_DEV_VMD)
2406 fprintf(stderr, "VMD domain");
2407 else
2408 fprintf(stderr, "RAID controller");
2409
2410 if (elem->pci_id)
2411 fprintf(stderr, " at %s", elem->pci_id);
2412 fprintf(stderr, ".\n");
2413 }
2414 fflush(stderr);
2415 }
2416
2417 static int ahci_get_port_count(const char *hba_path, int *port_count)
2418 {
2419 struct dirent *ent;
2420 DIR *dir;
2421 int host_base = -1;
2422
2423 *port_count = 0;
2424 if ((dir = opendir(hba_path)) == NULL)
2425 return -1;
2426
2427 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2428 int host;
2429
2430 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2431 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2432 continue;
2433 if (*port_count == 0)
2434 host_base = host;
2435 else if (host < host_base)
2436 host_base = host;
2437
2438 if (host + 1 > *port_count + host_base)
2439 *port_count = host + 1 - host_base;
2440 }
2441 closedir(dir);
2442 return host_base;
2443 }
2444
2445 static void print_imsm_capability(const struct imsm_orom *orom)
2446 {
2447 printf(" Platform : Intel(R) ");
2448 if (orom->capabilities == 0 && orom->driver_features == 0)
2449 printf("Matrix Storage Manager\n");
2450 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2451 printf("Virtual RAID on CPU\n");
2452 else
2453 printf("Rapid Storage Technology%s\n",
2454 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2455 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2456 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2457 orom->minor_ver, orom->hotfix_ver, orom->build);
2458 printf(" RAID Levels :%s%s%s%s%s\n",
2459 imsm_orom_has_raid0(orom) ? " raid0" : "",
2460 imsm_orom_has_raid1(orom) ? " raid1" : "",
2461 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2462 imsm_orom_has_raid10(orom) ? " raid10" : "",
2463 imsm_orom_has_raid5(orom) ? " raid5" : "");
2464 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2465 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2466 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2467 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2468 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2469 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2470 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2471 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2472 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2473 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2474 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2475 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2476 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2477 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2478 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2479 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2480 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2481 printf(" 2TB volumes :%s supported\n",
2482 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2483 printf(" 2TB disks :%s supported\n",
2484 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2485 printf(" Max Disks : %d\n", orom->tds);
2486 printf(" Max Volumes : %d per array, %d per %s\n",
2487 orom->vpa, orom->vphba,
2488 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2489 return;
2490 }
2491
2492 static void print_imsm_capability_export(const struct imsm_orom *orom)
2493 {
2494 printf("MD_FIRMWARE_TYPE=imsm\n");
2495 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2496 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2497 orom->hotfix_ver, orom->build);
2498 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2499 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2500 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2501 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2502 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2503 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2504 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2505 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2506 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2507 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2508 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2509 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2510 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2511 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2512 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2513 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2514 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2515 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2516 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2517 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2518 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2519 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2520 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2521 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2522 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2523 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2524 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2525 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2526 }
2527
2528 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2529 {
2530 /* There are two components to imsm platform support, the ahci SATA
2531 * controller and the option-rom. To find the SATA controller we
2532 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2533 * controller with the Intel vendor id is present. This approach
2534 * allows mdadm to leverage the kernel's ahci detection logic, with the
2535 * caveat that if ahci.ko is not loaded mdadm will not be able to
2536 * detect platform raid capabilities. The option-rom resides in a
2537 * platform "Adapter ROM". We scan for its signature to retrieve the
2538 * platform capabilities. If raid support is disabled in the BIOS the
2539 * option-rom capability structure will not be available.
2540 */
2541 struct sys_dev *list, *hba;
2542 int host_base = 0;
2543 int port_count = 0;
2544 int result=1;
2545
2546 if (enumerate_only) {
2547 if (check_env("IMSM_NO_PLATFORM"))
2548 return 0;
2549 list = find_intel_devices();
2550 if (!list)
2551 return 2;
2552 for (hba = list; hba; hba = hba->next) {
2553 if (find_imsm_capability(hba)) {
2554 result = 0;
2555 break;
2556 }
2557 else
2558 result = 2;
2559 }
2560 return result;
2561 }
2562
2563 list = find_intel_devices();
2564 if (!list) {
2565 if (verbose > 0)
2566 pr_err("no active Intel(R) RAID controller found.\n");
2567 return 2;
2568 } else if (verbose > 0)
2569 print_found_intel_controllers(list);
2570
2571 for (hba = list; hba; hba = hba->next) {
2572 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2573 continue;
2574 if (!find_imsm_capability(hba)) {
2575 char buf[PATH_MAX];
2576 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2577 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2578 get_sys_dev_type(hba->type));
2579 continue;
2580 }
2581 result = 0;
2582 }
2583
2584 if (controller_path && result == 1) {
2585 pr_err("no active Intel(R) RAID controller found under %s\n",
2586 controller_path);
2587 return result;
2588 }
2589
2590 const struct orom_entry *entry;
2591
2592 for (entry = orom_entries; entry; entry = entry->next) {
2593 if (entry->type == SYS_DEV_VMD) {
2594 print_imsm_capability(&entry->orom);
2595 printf(" 3rd party NVMe :%s supported\n",
2596 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2597 for (hba = list; hba; hba = hba->next) {
2598 if (hba->type == SYS_DEV_VMD) {
2599 char buf[PATH_MAX];
2600 printf(" I/O Controller : %s (%s)\n",
2601 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2602 if (print_nvme_info(hba)) {
2603 if (verbose > 0)
2604 pr_err("failed to get devices attached to VMD domain.\n");
2605 result |= 2;
2606 }
2607 }
2608 }
2609 printf("\n");
2610 continue;
2611 }
2612
2613 print_imsm_capability(&entry->orom);
2614 if (entry->type == SYS_DEV_NVME) {
2615 for (hba = list; hba; hba = hba->next) {
2616 if (hba->type == SYS_DEV_NVME)
2617 print_nvme_info(hba);
2618 }
2619 printf("\n");
2620 continue;
2621 }
2622
2623 struct devid_list *devid;
2624 for (devid = entry->devid_list; devid; devid = devid->next) {
2625 hba = device_by_id(devid->devid);
2626 if (!hba)
2627 continue;
2628
2629 printf(" I/O Controller : %s (%s)\n",
2630 hba->path, get_sys_dev_type(hba->type));
2631 if (hba->type == SYS_DEV_SATA) {
2632 host_base = ahci_get_port_count(hba->path, &port_count);
2633 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2634 if (verbose > 0)
2635 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2636 result |= 2;
2637 }
2638 }
2639 }
2640 printf("\n");
2641 }
2642
2643 return result;
2644 }
2645
2646 static int export_detail_platform_imsm(int verbose, char *controller_path)
2647 {
2648 struct sys_dev *list, *hba;
2649 int result=1;
2650
2651 list = find_intel_devices();
2652 if (!list) {
2653 if (verbose > 0)
2654 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2655 result = 2;
2656 return result;
2657 }
2658
2659 for (hba = list; hba; hba = hba->next) {
2660 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2661 continue;
2662 if (!find_imsm_capability(hba) && verbose > 0) {
2663 char buf[PATH_MAX];
2664 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2665 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2666 }
2667 else
2668 result = 0;
2669 }
2670
2671 const struct orom_entry *entry;
2672
2673 for (entry = orom_entries; entry; entry = entry->next) {
2674 if (entry->type == SYS_DEV_VMD) {
2675 for (hba = list; hba; hba = hba->next)
2676 print_imsm_capability_export(&entry->orom);
2677 continue;
2678 }
2679 print_imsm_capability_export(&entry->orom);
2680 }
2681
2682 return result;
2683 }
2684
2685 static int match_home_imsm(struct supertype *st, char *homehost)
2686 {
2687 /* the imsm metadata format does not specify any host
2688 * identification information. We return -1 since we can never
2689 * confirm nor deny whether a given array is "meant" for this
2690 * host. We rely on compare_super and the 'family_num' fields to
2691 * exclude member disks that do not belong, and we rely on
2692 * mdadm.conf to specify the arrays that should be assembled.
2693 * Auto-assembly may still pick up "foreign" arrays.
2694 */
2695
2696 return -1;
2697 }
2698
2699 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2700 {
2701 /* The uuid returned here is used for:
2702 * uuid to put into bitmap file (Create, Grow)
2703 * uuid for backup header when saving critical section (Grow)
2704 * comparing uuids when re-adding a device into an array
2705 * In these cases the uuid required is that of the data-array,
2706 * not the device-set.
2707 * uuid to recognise same set when adding a missing device back
2708 * to an array. This is a uuid for the device-set.
2709 *
2710 * For each of these we can make do with a truncated
2711 * or hashed uuid rather than the original, as long as
2712 * everyone agrees.
2713 * In each case the uuid required is that of the data-array,
2714 * not the device-set.
2715 */
2716 /* imsm does not track uuid's so we synthesis one using sha1 on
2717 * - The signature (Which is constant for all imsm array, but no matter)
2718 * - the orig_family_num of the container
2719 * - the index number of the volume
2720 * - the 'serial' number of the volume.
2721 * Hopefully these are all constant.
2722 */
2723 struct intel_super *super = st->sb;
2724
2725 char buf[20];
2726 struct sha1_ctx ctx;
2727 struct imsm_dev *dev = NULL;
2728 __u32 family_num;
2729
2730 /* some mdadm versions failed to set ->orig_family_num, in which
2731 * case fall back to ->family_num. orig_family_num will be
2732 * fixed up with the first metadata update.
2733 */
2734 family_num = super->anchor->orig_family_num;
2735 if (family_num == 0)
2736 family_num = super->anchor->family_num;
2737 sha1_init_ctx(&ctx);
2738 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2739 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2740 if (super->current_vol >= 0)
2741 dev = get_imsm_dev(super, super->current_vol);
2742 if (dev) {
2743 __u32 vol = super->current_vol;
2744 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2745 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2746 }
2747 sha1_finish_ctx(&ctx, buf);
2748 memcpy(uuid, buf, 4*4);
2749 }
2750
2751 #if 0
2752 static void
2753 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2754 {
2755 __u8 *v = get_imsm_version(mpb);
2756 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2757 char major[] = { 0, 0, 0 };
2758 char minor[] = { 0 ,0, 0 };
2759 char patch[] = { 0, 0, 0 };
2760 char *ver_parse[] = { major, minor, patch };
2761 int i, j;
2762
2763 i = j = 0;
2764 while (*v != '\0' && v < end) {
2765 if (*v != '.' && j < 2)
2766 ver_parse[i][j++] = *v;
2767 else {
2768 i++;
2769 j = 0;
2770 }
2771 v++;
2772 }
2773
2774 *m = strtol(minor, NULL, 0);
2775 *p = strtol(patch, NULL, 0);
2776 }
2777 #endif
2778
2779 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2780 {
2781 /* migr_strip_size when repairing or initializing parity */
2782 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2783 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2784
2785 switch (get_imsm_raid_level(map)) {
2786 case 5:
2787 case 10:
2788 return chunk;
2789 default:
2790 return 128*1024 >> 9;
2791 }
2792 }
2793
2794 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2795 {
2796 /* migr_strip_size when rebuilding a degraded disk, no idea why
2797 * this is different than migr_strip_size_resync(), but it's good
2798 * to be compatible
2799 */
2800 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2801 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2802
2803 switch (get_imsm_raid_level(map)) {
2804 case 1:
2805 case 10:
2806 if (map->num_members % map->num_domains == 0)
2807 return 128*1024 >> 9;
2808 else
2809 return chunk;
2810 case 5:
2811 return max((__u32) 64*1024 >> 9, chunk);
2812 default:
2813 return 128*1024 >> 9;
2814 }
2815 }
2816
2817 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2818 {
2819 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2820 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2821 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2822 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2823
2824 return max((__u32) 1, hi_chunk / lo_chunk);
2825 }
2826
2827 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2828 {
2829 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2830 int level = get_imsm_raid_level(lo);
2831
2832 if (level == 1 || level == 10) {
2833 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2834
2835 return hi->num_domains;
2836 } else
2837 return num_stripes_per_unit_resync(dev);
2838 }
2839
2840 static __u8 imsm_num_data_members(struct imsm_map *map)
2841 {
2842 /* named 'imsm_' because raid0, raid1 and raid10
2843 * counter-intuitively have the same number of data disks
2844 */
2845 switch (get_imsm_raid_level(map)) {
2846 case 0:
2847 return map->num_members;
2848 break;
2849 case 1:
2850 case 10:
2851 return map->num_members/2;
2852 case 5:
2853 return map->num_members - 1;
2854 default:
2855 dprintf("unsupported raid level\n");
2856 return 0;
2857 }
2858 }
2859
2860 static unsigned long long calc_component_size(struct imsm_map *map,
2861 struct imsm_dev *dev)
2862 {
2863 unsigned long long component_size;
2864 unsigned long long dev_size = imsm_dev_size(dev);
2865 long long calc_dev_size = 0;
2866 unsigned int member_disks = imsm_num_data_members(map);
2867
2868 if (member_disks == 0)
2869 return 0;
2870
2871 component_size = per_dev_array_size(map);
2872 calc_dev_size = component_size * member_disks;
2873
2874 /* Component size is rounded to 1MB so difference between size from
2875 * metadata and size calculated from num_data_stripes equals up to
2876 * 2048 blocks per each device. If the difference is higher it means
2877 * that array size was expanded and num_data_stripes was not updated.
2878 */
2879 if (llabs(calc_dev_size - (long long)dev_size) >
2880 (1 << SECT_PER_MB_SHIFT) * member_disks) {
2881 component_size = dev_size / member_disks;
2882 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
2883 component_size / map->blocks_per_strip,
2884 num_data_stripes(map));
2885 }
2886
2887 return component_size;
2888 }
2889
2890 static __u32 parity_segment_depth(struct imsm_dev *dev)
2891 {
2892 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2893 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2894
2895 switch(get_imsm_raid_level(map)) {
2896 case 1:
2897 case 10:
2898 return chunk * map->num_domains;
2899 case 5:
2900 return chunk * map->num_members;
2901 default:
2902 return chunk;
2903 }
2904 }
2905
2906 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2907 {
2908 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2909 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2910 __u32 strip = block / chunk;
2911
2912 switch (get_imsm_raid_level(map)) {
2913 case 1:
2914 case 10: {
2915 __u32 vol_strip = (strip * map->num_domains) + 1;
2916 __u32 vol_stripe = vol_strip / map->num_members;
2917
2918 return vol_stripe * chunk + block % chunk;
2919 } case 5: {
2920 __u32 stripe = strip / (map->num_members - 1);
2921
2922 return stripe * chunk + block % chunk;
2923 }
2924 default:
2925 return 0;
2926 }
2927 }
2928
2929 static __u64 blocks_per_migr_unit(struct intel_super *super,
2930 struct imsm_dev *dev)
2931 {
2932 /* calculate the conversion factor between per member 'blocks'
2933 * (md/{resync,rebuild}_start) and imsm migration units, return
2934 * 0 for the 'not migrating' and 'unsupported migration' cases
2935 */
2936 if (!dev->vol.migr_state)
2937 return 0;
2938
2939 switch (migr_type(dev)) {
2940 case MIGR_GEN_MIGR: {
2941 struct migr_record *migr_rec = super->migr_rec;
2942 return __le32_to_cpu(migr_rec->blocks_per_unit);
2943 }
2944 case MIGR_VERIFY:
2945 case MIGR_REPAIR:
2946 case MIGR_INIT: {
2947 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2948 __u32 stripes_per_unit;
2949 __u32 blocks_per_unit;
2950 __u32 parity_depth;
2951 __u32 migr_chunk;
2952 __u32 block_map;
2953 __u32 block_rel;
2954 __u32 segment;
2955 __u32 stripe;
2956 __u8 disks;
2957
2958 /* yes, this is really the translation of migr_units to
2959 * per-member blocks in the 'resync' case
2960 */
2961 stripes_per_unit = num_stripes_per_unit_resync(dev);
2962 migr_chunk = migr_strip_blocks_resync(dev);
2963 disks = imsm_num_data_members(map);
2964 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2965 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2966 segment = blocks_per_unit / stripe;
2967 block_rel = blocks_per_unit - segment * stripe;
2968 parity_depth = parity_segment_depth(dev);
2969 block_map = map_migr_block(dev, block_rel);
2970 return block_map + parity_depth * segment;
2971 }
2972 case MIGR_REBUILD: {
2973 __u32 stripes_per_unit;
2974 __u32 migr_chunk;
2975
2976 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2977 migr_chunk = migr_strip_blocks_rebuild(dev);
2978 return migr_chunk * stripes_per_unit;
2979 }
2980 case MIGR_STATE_CHANGE:
2981 default:
2982 return 0;
2983 }
2984 }
2985
2986 static int imsm_level_to_layout(int level)
2987 {
2988 switch (level) {
2989 case 0:
2990 case 1:
2991 return 0;
2992 case 5:
2993 case 6:
2994 return ALGORITHM_LEFT_ASYMMETRIC;
2995 case 10:
2996 return 0x102;
2997 }
2998 return UnSet;
2999 }
3000
3001 /*******************************************************************************
3002 * Function: read_imsm_migr_rec
3003 * Description: Function reads imsm migration record from last sector of disk
3004 * Parameters:
3005 * fd : disk descriptor
3006 * super : metadata info
3007 * Returns:
3008 * 0 : success,
3009 * -1 : fail
3010 ******************************************************************************/
3011 static int read_imsm_migr_rec(int fd, struct intel_super *super)
3012 {
3013 int ret_val = -1;
3014 unsigned int sector_size = super->sector_size;
3015 unsigned long long dsize;
3016
3017 get_dev_size(fd, NULL, &dsize);
3018 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3019 SEEK_SET) < 0) {
3020 pr_err("Cannot seek to anchor block: %s\n",
3021 strerror(errno));
3022 goto out;
3023 }
3024 if ((unsigned int)read(fd, super->migr_rec_buf,
3025 MIGR_REC_BUF_SECTORS*sector_size) !=
3026 MIGR_REC_BUF_SECTORS*sector_size) {
3027 pr_err("Cannot read migr record block: %s\n",
3028 strerror(errno));
3029 goto out;
3030 }
3031 ret_val = 0;
3032 if (sector_size == 4096)
3033 convert_from_4k_imsm_migr_rec(super);
3034
3035 out:
3036 return ret_val;
3037 }
3038
3039 static struct imsm_dev *imsm_get_device_during_migration(
3040 struct intel_super *super)
3041 {
3042
3043 struct intel_dev *dv;
3044
3045 for (dv = super->devlist; dv; dv = dv->next) {
3046 if (is_gen_migration(dv->dev))
3047 return dv->dev;
3048 }
3049 return NULL;
3050 }
3051
3052 /*******************************************************************************
3053 * Function: load_imsm_migr_rec
3054 * Description: Function reads imsm migration record (it is stored at the last
3055 * sector of disk)
3056 * Parameters:
3057 * super : imsm internal array info
3058 * Returns:
3059 * 0 : success
3060 * -1 : fail
3061 * -2 : no migration in progress
3062 ******************************************************************************/
3063 static int load_imsm_migr_rec(struct intel_super *super)
3064 {
3065 struct dl *dl;
3066 char nm[30];
3067 int retval = -1;
3068 int fd = -1;
3069 struct imsm_dev *dev;
3070 struct imsm_map *map;
3071 int slot = -1;
3072 int keep_fd = 1;
3073
3074 /* find map under migration */
3075 dev = imsm_get_device_during_migration(super);
3076 /* nothing to load,no migration in progress?
3077 */
3078 if (dev == NULL)
3079 return -2;
3080
3081 map = get_imsm_map(dev, MAP_0);
3082 if (!map)
3083 return -1;
3084
3085 for (dl = super->disks; dl; dl = dl->next) {
3086 /* skip spare and failed disks
3087 */
3088 if (dl->index < 0)
3089 continue;
3090 /* read only from one of the first two slots
3091 */
3092 slot = get_imsm_disk_slot(map, dl->index);
3093 if (slot > 1 || slot < 0)
3094 continue;
3095
3096 if (dl->fd < 0) {
3097 sprintf(nm, "%d:%d", dl->major, dl->minor);
3098 fd = dev_open(nm, O_RDONLY);
3099 if (fd >= 0) {
3100 keep_fd = 0;
3101 break;
3102 }
3103 } else {
3104 fd = dl->fd;
3105 break;
3106 }
3107 }
3108
3109 if (fd < 0)
3110 return retval;
3111 retval = read_imsm_migr_rec(fd, super);
3112 if (!keep_fd)
3113 close(fd);
3114
3115 return retval;
3116 }
3117
3118 /*******************************************************************************
3119 * function: imsm_create_metadata_checkpoint_update
3120 * Description: It creates update for checkpoint change.
3121 * Parameters:
3122 * super : imsm internal array info
3123 * u : pointer to prepared update
3124 * Returns:
3125 * Uptate length.
3126 * If length is equal to 0, input pointer u contains no update
3127 ******************************************************************************/
3128 static int imsm_create_metadata_checkpoint_update(
3129 struct intel_super *super,
3130 struct imsm_update_general_migration_checkpoint **u)
3131 {
3132
3133 int update_memory_size = 0;
3134
3135 dprintf("(enter)\n");
3136
3137 if (u == NULL)
3138 return 0;
3139 *u = NULL;
3140
3141 /* size of all update data without anchor */
3142 update_memory_size =
3143 sizeof(struct imsm_update_general_migration_checkpoint);
3144
3145 *u = xcalloc(1, update_memory_size);
3146 if (*u == NULL) {
3147 dprintf("error: cannot get memory\n");
3148 return 0;
3149 }
3150 (*u)->type = update_general_migration_checkpoint;
3151 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
3152 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
3153
3154 return update_memory_size;
3155 }
3156
3157 static void imsm_update_metadata_locally(struct supertype *st,
3158 void *buf, int len);
3159
3160 /*******************************************************************************
3161 * Function: write_imsm_migr_rec
3162 * Description: Function writes imsm migration record
3163 * (at the last sector of disk)
3164 * Parameters:
3165 * super : imsm internal array info
3166 * Returns:
3167 * 0 : success
3168 * -1 : if fail
3169 ******************************************************************************/
3170 static int write_imsm_migr_rec(struct supertype *st)
3171 {
3172 struct intel_super *super = st->sb;
3173 unsigned int sector_size = super->sector_size;
3174 unsigned long long dsize;
3175 int retval = -1;
3176 struct dl *sd;
3177 int len;
3178 struct imsm_update_general_migration_checkpoint *u;
3179 struct imsm_dev *dev;
3180 struct imsm_map *map;
3181
3182 /* find map under migration */
3183 dev = imsm_get_device_during_migration(super);
3184 /* if no migration, write buffer anyway to clear migr_record
3185 * on disk based on first available device
3186 */
3187 if (dev == NULL)
3188 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3189 super->current_vol);
3190
3191 map = get_imsm_map(dev, MAP_0);
3192
3193 if (sector_size == 4096)
3194 convert_to_4k_imsm_migr_rec(super);
3195 for (sd = super->disks ; sd ; sd = sd->next) {
3196 int slot = -1;
3197
3198 /* skip failed and spare devices */
3199 if (sd->index < 0)
3200 continue;
3201 /* write to 2 first slots only */
3202 if (map)
3203 slot = get_imsm_disk_slot(map, sd->index);
3204 if (map == NULL || slot > 1 || slot < 0)
3205 continue;
3206
3207 get_dev_size(sd->fd, NULL, &dsize);
3208 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3209 sector_size),
3210 SEEK_SET) < 0) {
3211 pr_err("Cannot seek to anchor block: %s\n",
3212 strerror(errno));
3213 goto out;
3214 }
3215 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
3216 MIGR_REC_BUF_SECTORS*sector_size) !=
3217 MIGR_REC_BUF_SECTORS*sector_size) {
3218 pr_err("Cannot write migr record block: %s\n",
3219 strerror(errno));
3220 goto out;
3221 }
3222 }
3223 if (sector_size == 4096)
3224 convert_from_4k_imsm_migr_rec(super);
3225 /* update checkpoint information in metadata */
3226 len = imsm_create_metadata_checkpoint_update(super, &u);
3227 if (len <= 0) {
3228 dprintf("imsm: Cannot prepare update\n");
3229 goto out;
3230 }
3231 /* update metadata locally */
3232 imsm_update_metadata_locally(st, u, len);
3233 /* and possibly remotely */
3234 if (st->update_tail) {
3235 append_metadata_update(st, u, len);
3236 /* during reshape we do all work inside metadata handler
3237 * manage_reshape(), so metadata update has to be triggered
3238 * insida it
3239 */
3240 flush_metadata_updates(st);
3241 st->update_tail = &st->updates;
3242 } else
3243 free(u);
3244
3245 retval = 0;
3246 out:
3247 return retval;
3248 }
3249
3250 /* spare/missing disks activations are not allowe when
3251 * array/container performs reshape operation, because
3252 * all arrays in container works on the same disks set
3253 */
3254 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3255 {
3256 int rv = 0;
3257 struct intel_dev *i_dev;
3258 struct imsm_dev *dev;
3259
3260 /* check whole container
3261 */
3262 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3263 dev = i_dev->dev;
3264 if (is_gen_migration(dev)) {
3265 /* No repair during any migration in container
3266 */
3267 rv = 1;
3268 break;
3269 }
3270 }
3271 return rv;
3272 }
3273 static unsigned long long imsm_component_size_alignment_check(int level,
3274 int chunk_size,
3275 unsigned int sector_size,
3276 unsigned long long component_size)
3277 {
3278 unsigned int component_size_alignment;
3279
3280 /* check component size alignment
3281 */
3282 component_size_alignment = component_size % (chunk_size/sector_size);
3283
3284 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
3285 level, chunk_size, component_size,
3286 component_size_alignment);
3287
3288 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3289 dprintf("imsm: reported component size aligned from %llu ",
3290 component_size);
3291 component_size -= component_size_alignment;
3292 dprintf_cont("to %llu (%i).\n",
3293 component_size, component_size_alignment);
3294 }
3295
3296 return component_size;
3297 }
3298
3299 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3300 {
3301 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3302 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3303
3304 return pba_of_lba0(map) +
3305 (num_data_stripes(map) * map->blocks_per_strip);
3306 }
3307
3308 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3309 {
3310 struct intel_super *super = st->sb;
3311 struct migr_record *migr_rec = super->migr_rec;
3312 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3313 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3314 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3315 struct imsm_map *map_to_analyse = map;
3316 struct dl *dl;
3317 int map_disks = info->array.raid_disks;
3318
3319 memset(info, 0, sizeof(*info));
3320 if (prev_map)
3321 map_to_analyse = prev_map;
3322
3323 dl = super->current_disk;
3324
3325 info->container_member = super->current_vol;
3326 info->array.raid_disks = map->num_members;
3327 info->array.level = get_imsm_raid_level(map_to_analyse);
3328 info->array.layout = imsm_level_to_layout(info->array.level);
3329 info->array.md_minor = -1;
3330 info->array.ctime = 0;
3331 info->array.utime = 0;
3332 info->array.chunk_size =
3333 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3334 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3335 info->custom_array_size = imsm_dev_size(dev);
3336 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3337
3338 if (is_gen_migration(dev)) {
3339 info->reshape_active = 1;
3340 info->new_level = get_imsm_raid_level(map);
3341 info->new_layout = imsm_level_to_layout(info->new_level);
3342 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3343 info->delta_disks = map->num_members - prev_map->num_members;
3344 if (info->delta_disks) {
3345 /* this needs to be applied to every array
3346 * in the container.
3347 */
3348 info->reshape_active = CONTAINER_RESHAPE;
3349 }
3350 /* We shape information that we give to md might have to be
3351 * modify to cope with md's requirement for reshaping arrays.
3352 * For example, when reshaping a RAID0, md requires it to be
3353 * presented as a degraded RAID4.
3354 * Also if a RAID0 is migrating to a RAID5 we need to specify
3355 * the array as already being RAID5, but the 'before' layout
3356 * is a RAID4-like layout.
3357 */
3358 switch (info->array.level) {
3359 case 0:
3360 switch(info->new_level) {
3361 case 0:
3362 /* conversion is happening as RAID4 */
3363 info->array.level = 4;
3364 info->array.raid_disks += 1;
3365 break;
3366 case 5:
3367 /* conversion is happening as RAID5 */
3368 info->array.level = 5;
3369 info->array.layout = ALGORITHM_PARITY_N;
3370 info->delta_disks -= 1;
3371 break;
3372 default:
3373 /* FIXME error message */
3374 info->array.level = UnSet;
3375 break;
3376 }
3377 break;
3378 }
3379 } else {
3380 info->new_level = UnSet;
3381 info->new_layout = UnSet;
3382 info->new_chunk = info->array.chunk_size;
3383 info->delta_disks = 0;
3384 }
3385
3386 if (dl) {
3387 info->disk.major = dl->major;
3388 info->disk.minor = dl->minor;
3389 info->disk.number = dl->index;
3390 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3391 dl->index);
3392 }
3393
3394 info->data_offset = pba_of_lba0(map_to_analyse);
3395 info->component_size = calc_component_size(map, dev);
3396 info->component_size = imsm_component_size_alignment_check(
3397 info->array.level,
3398 info->array.chunk_size,
3399 super->sector_size,
3400 info->component_size);
3401 info->bb.supported = 1;
3402
3403 memset(info->uuid, 0, sizeof(info->uuid));
3404 info->recovery_start = MaxSector;
3405
3406 if (info->array.level == 5 &&
3407 (dev->rwh_policy == RWH_DISTRIBUTED ||
3408 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
3409 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3410 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3411 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3412 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3413 else
3414 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3415 >> 9;
3416 } else if (info->array.level <= 0) {
3417 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3418 } else {
3419 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3420 }
3421
3422 info->reshape_progress = 0;
3423 info->resync_start = MaxSector;
3424 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3425 !(info->array.state & 1)) &&
3426 imsm_reshape_blocks_arrays_changes(super) == 0) {
3427 info->resync_start = 0;
3428 }
3429 if (dev->vol.migr_state) {
3430 switch (migr_type(dev)) {
3431 case MIGR_REPAIR:
3432 case MIGR_INIT: {
3433 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3434 dev);
3435 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3436
3437 info->resync_start = blocks_per_unit * units;
3438 break;
3439 }
3440 case MIGR_GEN_MIGR: {
3441 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3442 dev);
3443 __u64 units = current_migr_unit(migr_rec);
3444 int used_disks;
3445
3446 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3447 (units <
3448 (get_num_migr_units(migr_rec)-1)) &&
3449 (super->migr_rec->rec_status ==
3450 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3451 units++;
3452
3453 info->reshape_progress = blocks_per_unit * units;
3454
3455 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3456 (unsigned long long)units,
3457 (unsigned long long)blocks_per_unit,
3458 info->reshape_progress);
3459
3460 used_disks = imsm_num_data_members(prev_map);
3461 if (used_disks > 0) {
3462 info->custom_array_size = per_dev_array_size(map) *
3463 used_disks;
3464 }
3465 }
3466 case MIGR_VERIFY:
3467 /* we could emulate the checkpointing of
3468 * 'sync_action=check' migrations, but for now
3469 * we just immediately complete them
3470 */
3471 case MIGR_REBUILD:
3472 /* this is handled by container_content_imsm() */
3473 case MIGR_STATE_CHANGE:
3474 /* FIXME handle other migrations */
3475 default:
3476 /* we are not dirty, so... */
3477 info->resync_start = MaxSector;
3478 }
3479 }
3480
3481 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3482 info->name[MAX_RAID_SERIAL_LEN] = 0;
3483
3484 info->array.major_version = -1;
3485 info->array.minor_version = -2;
3486 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3487 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3488 uuid_from_super_imsm(st, info->uuid);
3489
3490 if (dmap) {
3491 int i, j;
3492 for (i=0; i<map_disks; i++) {
3493 dmap[i] = 0;
3494 if (i < info->array.raid_disks) {
3495 struct imsm_disk *dsk;
3496 j = get_imsm_disk_idx(dev, i, MAP_X);
3497 dsk = get_imsm_disk(super, j);
3498 if (dsk && (dsk->status & CONFIGURED_DISK))
3499 dmap[i] = 1;
3500 }
3501 }
3502 }
3503 }
3504
3505 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3506 int failed, int look_in_map);
3507
3508 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3509 int look_in_map);
3510
3511 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3512 {
3513 if (is_gen_migration(dev)) {
3514 int failed;
3515 __u8 map_state;
3516 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3517
3518 failed = imsm_count_failed(super, dev, MAP_1);
3519 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3520 if (map2->map_state != map_state) {
3521 map2->map_state = map_state;
3522 super->updates_pending++;
3523 }
3524 }
3525 }
3526
3527 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3528 {
3529 struct dl *d;
3530
3531 for (d = super->missing; d; d = d->next)
3532 if (d->index == index)
3533 return &d->disk;
3534 return NULL;
3535 }
3536
3537 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3538 {
3539 struct intel_super *super = st->sb;
3540 struct imsm_disk *disk;
3541 int map_disks = info->array.raid_disks;
3542 int max_enough = -1;
3543 int i;
3544 struct imsm_super *mpb;
3545
3546 if (super->current_vol >= 0) {
3547 getinfo_super_imsm_volume(st, info, map);
3548 return;
3549 }
3550 memset(info, 0, sizeof(*info));
3551
3552 /* Set raid_disks to zero so that Assemble will always pull in valid
3553 * spares
3554 */
3555 info->array.raid_disks = 0;
3556 info->array.level = LEVEL_CONTAINER;
3557 info->array.layout = 0;
3558 info->array.md_minor = -1;
3559 info->array.ctime = 0; /* N/A for imsm */
3560 info->array.utime = 0;
3561 info->array.chunk_size = 0;
3562
3563 info->disk.major = 0;
3564 info->disk.minor = 0;
3565 info->disk.raid_disk = -1;
3566 info->reshape_active = 0;
3567 info->array.major_version = -1;
3568 info->array.minor_version = -2;
3569 strcpy(info->text_version, "imsm");
3570 info->safe_mode_delay = 0;
3571 info->disk.number = -1;
3572 info->disk.state = 0;
3573 info->name[0] = 0;
3574 info->recovery_start = MaxSector;
3575 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3576 info->bb.supported = 1;
3577
3578 /* do we have the all the insync disks that we expect? */
3579 mpb = super->anchor;
3580 info->events = __le32_to_cpu(mpb->generation_num);
3581
3582 for (i = 0; i < mpb->num_raid_devs; i++) {
3583 struct imsm_dev *dev = get_imsm_dev(super, i);
3584 int failed, enough, j, missing = 0;
3585 struct imsm_map *map;
3586 __u8 state;
3587
3588 failed = imsm_count_failed(super, dev, MAP_0);
3589 state = imsm_check_degraded(super, dev, failed, MAP_0);
3590 map = get_imsm_map(dev, MAP_0);
3591
3592 /* any newly missing disks?
3593 * (catches single-degraded vs double-degraded)
3594 */
3595 for (j = 0; j < map->num_members; j++) {
3596 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3597 __u32 idx = ord_to_idx(ord);
3598
3599 if (super->disks && super->disks->index == (int)idx)
3600 info->disk.raid_disk = j;
3601
3602 if (!(ord & IMSM_ORD_REBUILD) &&
3603 get_imsm_missing(super, idx)) {
3604 missing = 1;
3605 break;
3606 }
3607 }
3608
3609 if (state == IMSM_T_STATE_FAILED)
3610 enough = -1;
3611 else if (state == IMSM_T_STATE_DEGRADED &&
3612 (state != map->map_state || missing))
3613 enough = 0;
3614 else /* we're normal, or already degraded */
3615 enough = 1;
3616 if (is_gen_migration(dev) && missing) {
3617 /* during general migration we need all disks
3618 * that process is running on.
3619 * No new missing disk is allowed.
3620 */
3621 max_enough = -1;
3622 enough = -1;
3623 /* no more checks necessary
3624 */
3625 break;
3626 }
3627 /* in the missing/failed disk case check to see
3628 * if at least one array is runnable
3629 */
3630 max_enough = max(max_enough, enough);
3631 }
3632 dprintf("enough: %d\n", max_enough);
3633 info->container_enough = max_enough;
3634
3635 if (super->disks) {
3636 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3637
3638 disk = &super->disks->disk;
3639 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3640 info->component_size = reserved;
3641 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3642 /* we don't change info->disk.raid_disk here because
3643 * this state will be finalized in mdmon after we have
3644 * found the 'most fresh' version of the metadata
3645 */
3646 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3647 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3648 0 : (1 << MD_DISK_SYNC);
3649 }
3650
3651 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3652 * ->compare_super may have updated the 'num_raid_devs' field for spares
3653 */
3654 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3655 uuid_from_super_imsm(st, info->uuid);
3656 else
3657 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3658
3659 /* I don't know how to compute 'map' on imsm, so use safe default */
3660 if (map) {
3661 int i;
3662 for (i = 0; i < map_disks; i++)
3663 map[i] = 1;
3664 }
3665
3666 }
3667
3668 /* allocates memory and fills disk in mdinfo structure
3669 * for each disk in array */
3670 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3671 {
3672 struct mdinfo *mddev;
3673 struct intel_super *super = st->sb;
3674 struct imsm_disk *disk;
3675 int count = 0;
3676 struct dl *dl;
3677 if (!super || !super->disks)
3678 return NULL;
3679 dl = super->disks;
3680 mddev = xcalloc(1, sizeof(*mddev));
3681 while (dl) {
3682 struct mdinfo *tmp;
3683 disk = &dl->disk;
3684 tmp = xcalloc(1, sizeof(*tmp));
3685 if (mddev->devs)
3686 tmp->next = mddev->devs;
3687 mddev->devs = tmp;
3688 tmp->disk.number = count++;
3689 tmp->disk.major = dl->major;
3690 tmp->disk.minor = dl->minor;
3691 tmp->disk.state = is_configured(disk) ?
3692 (1 << MD_DISK_ACTIVE) : 0;
3693 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3694 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3695 tmp->disk.raid_disk = -1;
3696 dl = dl->next;
3697 }
3698 return mddev;
3699 }
3700
3701 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3702 char *update, char *devname, int verbose,
3703 int uuid_set, char *homehost)
3704 {
3705 /* For 'assemble' and 'force' we need to return non-zero if any
3706 * change was made. For others, the return value is ignored.
3707 * Update options are:
3708 * force-one : This device looks a bit old but needs to be included,
3709 * update age info appropriately.
3710 * assemble: clear any 'faulty' flag to allow this device to
3711 * be assembled.
3712 * force-array: Array is degraded but being forced, mark it clean
3713 * if that will be needed to assemble it.
3714 *
3715 * newdev: not used ????
3716 * grow: Array has gained a new device - this is currently for
3717 * linear only
3718 * resync: mark as dirty so a resync will happen.
3719 * name: update the name - preserving the homehost
3720 * uuid: Change the uuid of the array to match watch is given
3721 *
3722 * Following are not relevant for this imsm:
3723 * sparc2.2 : update from old dodgey metadata
3724 * super-minor: change the preferred_minor number
3725 * summaries: update redundant counters.
3726 * homehost: update the recorded homehost
3727 * _reshape_progress: record new reshape_progress position.
3728 */
3729 int rv = 1;
3730 struct intel_super *super = st->sb;
3731 struct imsm_super *mpb;
3732
3733 /* we can only update container info */
3734 if (!super || super->current_vol >= 0 || !super->anchor)
3735 return 1;
3736
3737 mpb = super->anchor;
3738
3739 if (strcmp(update, "uuid") == 0) {
3740 /* We take this to mean that the family_num should be updated.
3741 * However that is much smaller than the uuid so we cannot really
3742 * allow an explicit uuid to be given. And it is hard to reliably
3743 * know if one was.
3744 * So if !uuid_set we know the current uuid is random and just used
3745 * the first 'int' and copy it to the other 3 positions.
3746 * Otherwise we require the 4 'int's to be the same as would be the
3747 * case if we are using a random uuid. So an explicit uuid will be
3748 * accepted as long as all for ints are the same... which shouldn't hurt
3749 */
3750 if (!uuid_set) {
3751 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3752 rv = 0;
3753 } else {
3754 if (info->uuid[0] != info->uuid[1] ||
3755 info->uuid[1] != info->uuid[2] ||
3756 info->uuid[2] != info->uuid[3])
3757 rv = -1;
3758 else
3759 rv = 0;
3760 }
3761 if (rv == 0)
3762 mpb->orig_family_num = info->uuid[0];
3763 } else if (strcmp(update, "assemble") == 0)
3764 rv = 0;
3765 else
3766 rv = -1;
3767
3768 /* successful update? recompute checksum */
3769 if (rv == 0)
3770 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3771
3772 return rv;
3773 }
3774
3775 static size_t disks_to_mpb_size(int disks)
3776 {
3777 size_t size;
3778
3779 size = sizeof(struct imsm_super);
3780 size += (disks - 1) * sizeof(struct imsm_disk);
3781 size += 2 * sizeof(struct imsm_dev);
3782 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3783 size += (4 - 2) * sizeof(struct imsm_map);
3784 /* 4 possible disk_ord_tbl's */
3785 size += 4 * (disks - 1) * sizeof(__u32);
3786 /* maximum bbm log */
3787 size += sizeof(struct bbm_log);
3788
3789 return size;
3790 }
3791
3792 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3793 unsigned long long data_offset)
3794 {
3795 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3796 return 0;
3797
3798 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3799 }
3800
3801 static void free_devlist(struct intel_super *super)
3802 {
3803 struct intel_dev *dv;
3804
3805 while (super->devlist) {
3806 dv = super->devlist->next;
3807 free(super->devlist->dev);
3808 free(super->devlist);
3809 super->devlist = dv;
3810 }
3811 }
3812
3813 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3814 {
3815 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3816 }
3817
3818 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3819 {
3820 /*
3821 * return:
3822 * 0 same, or first was empty, and second was copied
3823 * 1 second had wrong number
3824 * 2 wrong uuid
3825 * 3 wrong other info
3826 */
3827 struct intel_super *first = st->sb;
3828 struct intel_super *sec = tst->sb;
3829
3830 if (!first) {
3831 st->sb = tst->sb;
3832 tst->sb = NULL;
3833 return 0;
3834 }
3835 /* in platform dependent environment test if the disks
3836 * use the same Intel hba
3837 * If not on Intel hba at all, allow anything.
3838 */
3839 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3840 if (first->hba->type != sec->hba->type) {
3841 fprintf(stderr,
3842 "HBAs of devices do not match %s != %s\n",
3843 get_sys_dev_type(first->hba->type),
3844 get_sys_dev_type(sec->hba->type));
3845 return 3;
3846 }
3847 if (first->orom != sec->orom) {
3848 fprintf(stderr,
3849 "HBAs of devices do not match %s != %s\n",
3850 first->hba->pci_id, sec->hba->pci_id);
3851 return 3;
3852 }
3853 }
3854
3855 /* if an anchor does not have num_raid_devs set then it is a free
3856 * floating spare
3857 */
3858 if (first->anchor->num_raid_devs > 0 &&
3859 sec->anchor->num_raid_devs > 0) {
3860 /* Determine if these disks might ever have been
3861 * related. Further disambiguation can only take place
3862 * in load_super_imsm_all
3863 */
3864 __u32 first_family = first->anchor->orig_family_num;
3865 __u32 sec_family = sec->anchor->orig_family_num;
3866
3867 if (memcmp(first->anchor->sig, sec->anchor->sig,
3868 MAX_SIGNATURE_LENGTH) != 0)
3869 return 3;
3870
3871 if (first_family == 0)
3872 first_family = first->anchor->family_num;
3873 if (sec_family == 0)
3874 sec_family = sec->anchor->family_num;
3875
3876 if (first_family != sec_family)
3877 return 3;
3878
3879 }
3880
3881 /* if 'first' is a spare promote it to a populated mpb with sec's
3882 * family number
3883 */
3884 if (first->anchor->num_raid_devs == 0 &&
3885 sec->anchor->num_raid_devs > 0) {
3886 int i;
3887 struct intel_dev *dv;
3888 struct imsm_dev *dev;
3889
3890 /* we need to copy raid device info from sec if an allocation
3891 * fails here we don't associate the spare
3892 */
3893 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3894 dv = xmalloc(sizeof(*dv));
3895 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3896 dv->dev = dev;
3897 dv->index = i;
3898 dv->next = first->devlist;
3899 first->devlist = dv;
3900 }
3901 if (i < sec->anchor->num_raid_devs) {
3902 /* allocation failure */
3903 free_devlist(first);
3904 pr_err("imsm: failed to associate spare\n");
3905 return 3;
3906 }
3907 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3908 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3909 first->anchor->family_num = sec->anchor->family_num;
3910 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3911 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3912 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3913 }
3914
3915 return 0;
3916 }
3917
3918 static void fd2devname(int fd, char *name)
3919 {
3920 struct stat st;
3921 char path[256];
3922 char dname[PATH_MAX];
3923 char *nm;
3924 int rv;
3925
3926 name[0] = '\0';
3927 if (fstat(fd, &st) != 0)
3928 return;
3929 sprintf(path, "/sys/dev/block/%d:%d",
3930 major(st.st_rdev), minor(st.st_rdev));
3931
3932 rv = readlink(path, dname, sizeof(dname)-1);
3933 if (rv <= 0)
3934 return;
3935
3936 dname[rv] = '\0';
3937 nm = strrchr(dname, '/');
3938 if (nm) {
3939 nm++;
3940 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3941 }
3942 }
3943
3944 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3945 {
3946 char path[60];
3947 char *name = fd2kname(fd);
3948
3949 if (!name)
3950 return 1;
3951
3952 if (strncmp(name, "nvme", 4) != 0)
3953 return 1;
3954
3955 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3956
3957 return load_sys(path, buf, buf_len);
3958 }
3959
3960 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3961
3962 static int imsm_read_serial(int fd, char *devname,
3963 __u8 *serial, size_t serial_buf_len)
3964 {
3965 char buf[50];
3966 int rv;
3967 size_t len;
3968 char *dest;
3969 char *src;
3970 unsigned int i;
3971
3972 memset(buf, 0, sizeof(buf));
3973
3974 rv = nvme_get_serial(fd, buf, sizeof(buf));
3975
3976 if (rv)
3977 rv = scsi_get_serial(fd, buf, sizeof(buf));
3978
3979 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3980 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3981 fd2devname(fd, (char *) serial);
3982 return 0;
3983 }
3984
3985 if (rv != 0) {
3986 if (devname)
3987 pr_err("Failed to retrieve serial for %s\n",
3988 devname);
3989 return rv;
3990 }
3991
3992 /* trim all whitespace and non-printable characters and convert
3993 * ':' to ';'
3994 */
3995 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3996 src = &buf[i];
3997 if (*src > 0x20) {
3998 /* ':' is reserved for use in placeholder serial
3999 * numbers for missing disks
4000 */
4001 if (*src == ':')
4002 *dest++ = ';';
4003 else
4004 *dest++ = *src;
4005 }
4006 }
4007 len = dest - buf;
4008 dest = buf;
4009
4010 if (len > serial_buf_len) {
4011 /* truncate leading characters */
4012 dest += len - serial_buf_len;
4013 len = serial_buf_len;
4014 }
4015
4016 memset(serial, 0, serial_buf_len);
4017 memcpy(serial, dest, len);
4018
4019 return 0;
4020 }
4021
4022 static int serialcmp(__u8 *s1, __u8 *s2)
4023 {
4024 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4025 }
4026
4027 static void serialcpy(__u8 *dest, __u8 *src)
4028 {
4029 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4030 }
4031
4032 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4033 {
4034 struct dl *dl;
4035
4036 for (dl = super->disks; dl; dl = dl->next)
4037 if (serialcmp(dl->serial, serial) == 0)
4038 break;
4039
4040 return dl;
4041 }
4042
4043 static struct imsm_disk *
4044 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4045 {
4046 int i;
4047
4048 for (i = 0; i < mpb->num_disks; i++) {
4049 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4050
4051 if (serialcmp(disk->serial, serial) == 0) {
4052 if (idx)
4053 *idx = i;
4054 return disk;
4055 }
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static int
4062 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4063 {
4064 struct imsm_disk *disk;
4065 struct dl *dl;
4066 struct stat stb;
4067 int rv;
4068 char name[40];
4069 __u8 serial[MAX_RAID_SERIAL_LEN];
4070
4071 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
4072
4073 if (rv != 0)
4074 return 2;
4075
4076 dl = xcalloc(1, sizeof(*dl));
4077
4078 fstat(fd, &stb);
4079 dl->major = major(stb.st_rdev);
4080 dl->minor = minor(stb.st_rdev);
4081 dl->next = super->disks;
4082 dl->fd = keep_fd ? fd : -1;
4083 assert(super->disks == NULL);
4084 super->disks = dl;
4085 serialcpy(dl->serial, serial);
4086 dl->index = -2;
4087 dl->e = NULL;
4088 fd2devname(fd, name);
4089 if (devname)
4090 dl->devname = xstrdup(devname);
4091 else
4092 dl->devname = xstrdup(name);
4093
4094 /* look up this disk's index in the current anchor */
4095 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4096 if (disk) {
4097 dl->disk = *disk;
4098 /* only set index on disks that are a member of a
4099 * populated contianer, i.e. one with raid_devs
4100 */
4101 if (is_failed(&dl->disk))
4102 dl->index = -2;
4103 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
4104 dl->index = -1;
4105 }
4106
4107 return 0;
4108 }
4109
4110 /* When migrating map0 contains the 'destination' state while map1
4111 * contains the current state. When not migrating map0 contains the
4112 * current state. This routine assumes that map[0].map_state is set to
4113 * the current array state before being called.
4114 *
4115 * Migration is indicated by one of the following states
4116 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
4117 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
4118 * map1state=unitialized)
4119 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
4120 * map1state=normal)
4121 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
4122 * map1state=degraded)
4123 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4124 * map1state=normal)
4125 */
4126 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4127 __u8 to_state, int migr_type)
4128 {
4129 struct imsm_map *dest;
4130 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4131
4132 dev->vol.migr_state = 1;
4133 set_migr_type(dev, migr_type);
4134 dev->vol.curr_migr_unit = 0;
4135 dest = get_imsm_map(dev, MAP_1);
4136
4137 /* duplicate and then set the target end state in map[0] */
4138 memcpy(dest, src, sizeof_imsm_map(src));
4139 if (migr_type == MIGR_GEN_MIGR) {
4140 __u32 ord;
4141 int i;
4142
4143 for (i = 0; i < src->num_members; i++) {
4144 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4145 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4146 }
4147 }
4148
4149 if (migr_type == MIGR_GEN_MIGR)
4150 /* Clear migration record */
4151 memset(super->migr_rec, 0, sizeof(struct migr_record));
4152
4153 src->map_state = to_state;
4154 }
4155
4156 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4157 __u8 map_state)
4158 {
4159 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4160 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4161 MAP_0 : MAP_1);
4162 int i, j;
4163
4164 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4165 * completed in the last migration.
4166 *
4167 * FIXME add support for raid-level-migration
4168 */
4169 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4170 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4171 /* when final map state is other than expected
4172 * merge maps (not for migration)
4173 */
4174 int failed;
4175
4176 for (i = 0; i < prev->num_members; i++)
4177 for (j = 0; j < map->num_members; j++)
4178 /* during online capacity expansion
4179 * disks position can be changed
4180 * if takeover is used
4181 */
4182 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4183 ord_to_idx(prev->disk_ord_tbl[i])) {
4184 map->disk_ord_tbl[j] |=
4185 prev->disk_ord_tbl[i];
4186 break;
4187 }
4188 failed = imsm_count_failed(super, dev, MAP_0);
4189 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4190 }
4191
4192 dev->vol.migr_state = 0;
4193 set_migr_type(dev, 0);
4194 dev->vol.curr_migr_unit = 0;
4195 map->map_state = map_state;
4196 }
4197
4198 static int parse_raid_devices(struct intel_super *super)
4199 {
4200 int i;
4201 struct imsm_dev *dev_new;
4202 size_t len, len_migr;
4203 size_t max_len = 0;
4204 size_t space_needed = 0;
4205 struct imsm_super *mpb = super->anchor;
4206
4207 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4208 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4209 struct intel_dev *dv;
4210
4211 len = sizeof_imsm_dev(dev_iter, 0);
4212 len_migr = sizeof_imsm_dev(dev_iter, 1);
4213 if (len_migr > len)
4214 space_needed += len_migr - len;
4215
4216 dv = xmalloc(sizeof(*dv));
4217 if (max_len < len_migr)
4218 max_len = len_migr;
4219 if (max_len > len_migr)
4220 space_needed += max_len - len_migr;
4221 dev_new = xmalloc(max_len);
4222 imsm_copy_dev(dev_new, dev_iter);
4223 dv->dev = dev_new;
4224 dv->index = i;
4225 dv->next = super->devlist;
4226 super->devlist = dv;
4227 }
4228
4229 /* ensure that super->buf is large enough when all raid devices
4230 * are migrating
4231 */
4232 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4233 void *buf;
4234
4235 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4236 super->sector_size);
4237 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4238 return 1;
4239
4240 memcpy(buf, super->buf, super->len);
4241 memset(buf + super->len, 0, len - super->len);
4242 free(super->buf);
4243 super->buf = buf;
4244 super->len = len;
4245 }
4246
4247 super->extra_space += space_needed;
4248
4249 return 0;
4250 }
4251
4252 /*******************************************************************************
4253 * Function: check_mpb_migr_compatibility
4254 * Description: Function checks for unsupported migration features:
4255 * - migration optimization area (pba_of_lba0)
4256 * - descending reshape (ascending_migr)
4257 * Parameters:
4258 * super : imsm metadata information
4259 * Returns:
4260 * 0 : migration is compatible
4261 * -1 : migration is not compatible
4262 ******************************************************************************/
4263 int check_mpb_migr_compatibility(struct intel_super *super)
4264 {
4265 struct imsm_map *map0, *map1;
4266 struct migr_record *migr_rec = super->migr_rec;
4267 int i;
4268
4269 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4270 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4271
4272 if (dev_iter &&
4273 dev_iter->vol.migr_state == 1 &&
4274 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4275 /* This device is migrating */
4276 map0 = get_imsm_map(dev_iter, MAP_0);
4277 map1 = get_imsm_map(dev_iter, MAP_1);
4278 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4279 /* migration optimization area was used */
4280 return -1;
4281 if (migr_rec->ascending_migr == 0 &&
4282 migr_rec->dest_depth_per_unit > 0)
4283 /* descending reshape not supported yet */
4284 return -1;
4285 }
4286 }
4287 return 0;
4288 }
4289
4290 static void __free_imsm(struct intel_super *super, int free_disks);
4291
4292 /* load_imsm_mpb - read matrix metadata
4293 * allocates super->mpb to be freed by free_imsm
4294 */
4295 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4296 {
4297 unsigned long long dsize;
4298 unsigned long long sectors;
4299 unsigned int sector_size = super->sector_size;
4300 struct stat;
4301 struct imsm_super *anchor;
4302 __u32 check_sum;
4303
4304 get_dev_size(fd, NULL, &dsize);
4305 if (dsize < 2*sector_size) {
4306 if (devname)
4307 pr_err("%s: device to small for imsm\n",
4308 devname);
4309 return 1;
4310 }
4311
4312 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4313 if (devname)
4314 pr_err("Cannot seek to anchor block on %s: %s\n",
4315 devname, strerror(errno));
4316 return 1;
4317 }
4318
4319 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4320 if (devname)
4321 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4322 return 1;
4323 }
4324 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4325 if (devname)
4326 pr_err("Cannot read anchor block on %s: %s\n",
4327 devname, strerror(errno));
4328 free(anchor);
4329 return 1;
4330 }
4331
4332 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4333 if (devname)
4334 pr_err("no IMSM anchor on %s\n", devname);
4335 free(anchor);
4336 return 2;
4337 }
4338
4339 __free_imsm(super, 0);
4340 /* reload capability and hba */
4341
4342 /* capability and hba must be updated with new super allocation */
4343 find_intel_hba_capability(fd, super, devname);
4344 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4345 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4346 if (devname)
4347 pr_err("unable to allocate %zu byte mpb buffer\n",
4348 super->len);
4349 free(anchor);
4350 return 2;
4351 }
4352 memcpy(super->buf, anchor, sector_size);
4353
4354 sectors = mpb_sectors(anchor, sector_size) - 1;
4355 free(anchor);
4356
4357 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4358 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
4359 pr_err("could not allocate migr_rec buffer\n");
4360 free(super->buf);
4361 return 2;
4362 }
4363 super->clean_migration_record_by_mdmon = 0;
4364
4365 if (!sectors) {
4366 check_sum = __gen_imsm_checksum(super->anchor);
4367 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4368 if (devname)
4369 pr_err("IMSM checksum %x != %x on %s\n",
4370 check_sum,
4371 __le32_to_cpu(super->anchor->check_sum),
4372 devname);
4373 return 2;
4374 }
4375
4376 return 0;
4377 }
4378
4379 /* read the extended mpb */
4380 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4381 if (devname)
4382 pr_err("Cannot seek to extended mpb on %s: %s\n",
4383 devname, strerror(errno));
4384 return 1;
4385 }
4386
4387 if ((unsigned int)read(fd, super->buf + sector_size,
4388 super->len - sector_size) != super->len - sector_size) {
4389 if (devname)
4390 pr_err("Cannot read extended mpb on %s: %s\n",
4391 devname, strerror(errno));
4392 return 2;
4393 }
4394
4395 check_sum = __gen_imsm_checksum(super->anchor);
4396 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4397 if (devname)
4398 pr_err("IMSM checksum %x != %x on %s\n",
4399 check_sum, __le32_to_cpu(super->anchor->check_sum),
4400 devname);
4401 return 3;
4402 }
4403
4404 return 0;
4405 }
4406
4407 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4408
4409 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4410 static void clear_hi(struct intel_super *super)
4411 {
4412 struct imsm_super *mpb = super->anchor;
4413 int i, n;
4414 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4415 return;
4416 for (i = 0; i < mpb->num_disks; ++i) {
4417 struct imsm_disk *disk = &mpb->disk[i];
4418 disk->total_blocks_hi = 0;
4419 }
4420 for (i = 0; i < mpb->num_raid_devs; ++i) {
4421 struct imsm_dev *dev = get_imsm_dev(super, i);
4422 if (!dev)
4423 return;
4424 for (n = 0; n < 2; ++n) {
4425 struct imsm_map *map = get_imsm_map(dev, n);
4426 if (!map)
4427 continue;
4428 map->pba_of_lba0_hi = 0;
4429 map->blocks_per_member_hi = 0;
4430 map->num_data_stripes_hi = 0;
4431 }
4432 }
4433 }
4434
4435 static int
4436 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4437 {
4438 int err;
4439
4440 err = load_imsm_mpb(fd, super, devname);
4441 if (err)
4442 return err;
4443 if (super->sector_size == 4096)
4444 convert_from_4k(super);
4445 err = load_imsm_disk(fd, super, devname, keep_fd);
4446 if (err)
4447 return err;
4448 err = parse_raid_devices(super);
4449 if (err)
4450 return err;
4451 err = load_bbm_log(super);
4452 clear_hi(super);
4453 return err;
4454 }
4455
4456 static void __free_imsm_disk(struct dl *d)
4457 {
4458 if (d->fd >= 0)
4459 close(d->fd);
4460 if (d->devname)
4461 free(d->devname);
4462 if (d->e)
4463 free(d->e);
4464 free(d);
4465
4466 }
4467
4468 static void free_imsm_disks(struct intel_super *super)
4469 {
4470 struct dl *d;
4471
4472 while (super->disks) {
4473 d = super->disks;
4474 super->disks = d->next;
4475 __free_imsm_disk(d);
4476 }
4477 while (super->disk_mgmt_list) {
4478 d = super->disk_mgmt_list;
4479 super->disk_mgmt_list = d->next;
4480 __free_imsm_disk(d);
4481 }
4482 while (super->missing) {
4483 d = super->missing;
4484 super->missing = d->next;
4485 __free_imsm_disk(d);
4486 }
4487
4488 }
4489
4490 /* free all the pieces hanging off of a super pointer */
4491 static void __free_imsm(struct intel_super *super, int free_disks)
4492 {
4493 struct intel_hba *elem, *next;
4494
4495 if (super->buf) {
4496 free(super->buf);
4497 super->buf = NULL;
4498 }
4499 /* unlink capability description */
4500 super->orom = NULL;
4501 if (super->migr_rec_buf) {
4502 free(super->migr_rec_buf);
4503 super->migr_rec_buf = NULL;
4504 }
4505 if (free_disks)
4506 free_imsm_disks(super);
4507 free_devlist(super);
4508 elem = super->hba;
4509 while (elem) {
4510 if (elem->path)
4511 free((void *)elem->path);
4512 next = elem->next;
4513 free(elem);
4514 elem = next;
4515 }
4516 if (super->bbm_log)
4517 free(super->bbm_log);
4518 super->hba = NULL;
4519 }
4520
4521 static void free_imsm(struct intel_super *super)
4522 {
4523 __free_imsm(super, 1);
4524 free(super->bb.entries);
4525 free(super);
4526 }
4527
4528 static void free_super_imsm(struct supertype *st)
4529 {
4530 struct intel_super *super = st->sb;
4531
4532 if (!super)
4533 return;
4534
4535 free_imsm(super);
4536 st->sb = NULL;
4537 }
4538
4539 static struct intel_super *alloc_super(void)
4540 {
4541 struct intel_super *super = xcalloc(1, sizeof(*super));
4542
4543 super->current_vol = -1;
4544 super->create_offset = ~((unsigned long long) 0);
4545
4546 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4547 sizeof(struct md_bb_entry));
4548 if (!super->bb.entries) {
4549 free(super);
4550 return NULL;
4551 }
4552
4553 return super;
4554 }
4555
4556 /*
4557 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4558 */
4559 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4560 {
4561 struct sys_dev *hba_name;
4562 int rv = 0;
4563
4564 if (fd >= 0 && test_partition(fd)) {
4565 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4566 devname);
4567 return 1;
4568 }
4569 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4570 super->orom = NULL;
4571 super->hba = NULL;
4572 return 0;
4573 }
4574 hba_name = find_disk_attached_hba(fd, NULL);
4575 if (!hba_name) {
4576 if (devname)
4577 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4578 devname);
4579 return 1;
4580 }
4581 rv = attach_hba_to_super(super, hba_name);
4582 if (rv == 2) {
4583 if (devname) {
4584 struct intel_hba *hba = super->hba;
4585
4586 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4587 " but the container is assigned to Intel(R) %s %s (",
4588 devname,
4589 get_sys_dev_type(hba_name->type),
4590 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4591 hba_name->pci_id ? : "Err!",
4592 get_sys_dev_type(super->hba->type),
4593 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4594
4595 while (hba) {
4596 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4597 if (hba->next)
4598 fprintf(stderr, ", ");
4599 hba = hba->next;
4600 }
4601 fprintf(stderr, ").\n"
4602 " Mixing devices attached to different controllers is not allowed.\n");
4603 }
4604 return 2;
4605 }
4606 super->orom = find_imsm_capability(hba_name);
4607 if (!super->orom)
4608 return 3;
4609
4610 return 0;
4611 }
4612
4613 /* find_missing - helper routine for load_super_imsm_all that identifies
4614 * disks that have disappeared from the system. This routine relies on
4615 * the mpb being uptodate, which it is at load time.
4616 */
4617 static int find_missing(struct intel_super *super)
4618 {
4619 int i;
4620 struct imsm_super *mpb = super->anchor;
4621 struct dl *dl;
4622 struct imsm_disk *disk;
4623
4624 for (i = 0; i < mpb->num_disks; i++) {
4625 disk = __get_imsm_disk(mpb, i);
4626 dl = serial_to_dl(disk->serial, super);
4627 if (dl)
4628 continue;
4629
4630 dl = xmalloc(sizeof(*dl));
4631 dl->major = 0;
4632 dl->minor = 0;
4633 dl->fd = -1;
4634 dl->devname = xstrdup("missing");
4635 dl->index = i;
4636 serialcpy(dl->serial, disk->serial);
4637 dl->disk = *disk;
4638 dl->e = NULL;
4639 dl->next = super->missing;
4640 super->missing = dl;
4641 }
4642
4643 return 0;
4644 }
4645
4646 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4647 {
4648 struct intel_disk *idisk = disk_list;
4649
4650 while (idisk) {
4651 if (serialcmp(idisk->disk.serial, serial) == 0)
4652 break;
4653 idisk = idisk->next;
4654 }
4655
4656 return idisk;
4657 }
4658
4659 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4660 struct intel_super *super,
4661 struct intel_disk **disk_list)
4662 {
4663 struct imsm_disk *d = &super->disks->disk;
4664 struct imsm_super *mpb = super->anchor;
4665 int i, j;
4666
4667 for (i = 0; i < tbl_size; i++) {
4668 struct imsm_super *tbl_mpb = table[i]->anchor;
4669 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4670
4671 if (tbl_mpb->family_num == mpb->family_num) {
4672 if (tbl_mpb->check_sum == mpb->check_sum) {
4673 dprintf("mpb from %d:%d matches %d:%d\n",
4674 super->disks->major,
4675 super->disks->minor,
4676 table[i]->disks->major,
4677 table[i]->disks->minor);
4678 break;
4679 }
4680
4681 if (((is_configured(d) && !is_configured(tbl_d)) ||
4682 is_configured(d) == is_configured(tbl_d)) &&
4683 tbl_mpb->generation_num < mpb->generation_num) {
4684 /* current version of the mpb is a
4685 * better candidate than the one in
4686 * super_table, but copy over "cross
4687 * generational" status
4688 */
4689 struct intel_disk *idisk;
4690
4691 dprintf("mpb from %d:%d replaces %d:%d\n",
4692 super->disks->major,
4693 super->disks->minor,
4694 table[i]->disks->major,
4695 table[i]->disks->minor);
4696
4697 idisk = disk_list_get(tbl_d->serial, *disk_list);
4698 if (idisk && is_failed(&idisk->disk))
4699 tbl_d->status |= FAILED_DISK;
4700 break;
4701 } else {
4702 struct intel_disk *idisk;
4703 struct imsm_disk *disk;
4704
4705 /* tbl_mpb is more up to date, but copy
4706 * over cross generational status before
4707 * returning
4708 */
4709 disk = __serial_to_disk(d->serial, mpb, NULL);
4710 if (disk && is_failed(disk))
4711 d->status |= FAILED_DISK;
4712
4713 idisk = disk_list_get(d->serial, *disk_list);
4714 if (idisk) {
4715 idisk->owner = i;
4716 if (disk && is_configured(disk))
4717 idisk->disk.status |= CONFIGURED_DISK;
4718 }
4719
4720 dprintf("mpb from %d:%d prefer %d:%d\n",
4721 super->disks->major,
4722 super->disks->minor,
4723 table[i]->disks->major,
4724 table[i]->disks->minor);
4725
4726 return tbl_size;
4727 }
4728 }
4729 }
4730
4731 if (i >= tbl_size)
4732 table[tbl_size++] = super;
4733 else
4734 table[i] = super;
4735
4736 /* update/extend the merged list of imsm_disk records */
4737 for (j = 0; j < mpb->num_disks; j++) {
4738 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4739 struct intel_disk *idisk;
4740
4741 idisk = disk_list_get(disk->serial, *disk_list);
4742 if (idisk) {
4743 idisk->disk.status |= disk->status;
4744 if (is_configured(&idisk->disk) ||
4745 is_failed(&idisk->disk))
4746 idisk->disk.status &= ~(SPARE_DISK);
4747 } else {
4748 idisk = xcalloc(1, sizeof(*idisk));
4749 idisk->owner = IMSM_UNKNOWN_OWNER;
4750 idisk->disk = *disk;
4751 idisk->next = *disk_list;
4752 *disk_list = idisk;
4753 }
4754
4755 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4756 idisk->owner = i;
4757 }
4758
4759 return tbl_size;
4760 }
4761
4762 static struct intel_super *
4763 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4764 const int owner)
4765 {
4766 struct imsm_super *mpb = super->anchor;
4767 int ok_count = 0;
4768 int i;
4769
4770 for (i = 0; i < mpb->num_disks; i++) {
4771 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4772 struct intel_disk *idisk;
4773
4774 idisk = disk_list_get(disk->serial, disk_list);
4775 if (idisk) {
4776 if (idisk->owner == owner ||
4777 idisk->owner == IMSM_UNKNOWN_OWNER)
4778 ok_count++;
4779 else
4780 dprintf("'%.16s' owner %d != %d\n",
4781 disk->serial, idisk->owner,
4782 owner);
4783 } else {
4784 dprintf("unknown disk %x [%d]: %.16s\n",
4785 __le32_to_cpu(mpb->family_num), i,
4786 disk->serial);
4787 break;
4788 }
4789 }
4790
4791 if (ok_count == mpb->num_disks)
4792 return super;
4793 return NULL;
4794 }
4795
4796 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4797 {
4798 struct intel_super *s;
4799
4800 for (s = super_list; s; s = s->next) {
4801 if (family_num != s->anchor->family_num)
4802 continue;
4803 pr_err("Conflict, offlining family %#x on '%s'\n",
4804 __le32_to_cpu(family_num), s->disks->devname);
4805 }
4806 }
4807
4808 static struct intel_super *
4809 imsm_thunderdome(struct intel_super **super_list, int len)
4810 {
4811 struct intel_super *super_table[len];
4812 struct intel_disk *disk_list = NULL;
4813 struct intel_super *champion, *spare;
4814 struct intel_super *s, **del;
4815 int tbl_size = 0;
4816 int conflict;
4817 int i;
4818
4819 memset(super_table, 0, sizeof(super_table));
4820 for (s = *super_list; s; s = s->next)
4821 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4822
4823 for (i = 0; i < tbl_size; i++) {
4824 struct imsm_disk *d;
4825 struct intel_disk *idisk;
4826 struct imsm_super *mpb = super_table[i]->anchor;
4827
4828 s = super_table[i];
4829 d = &s->disks->disk;
4830
4831 /* 'd' must appear in merged disk list for its
4832 * configuration to be valid
4833 */
4834 idisk = disk_list_get(d->serial, disk_list);
4835 if (idisk && idisk->owner == i)
4836 s = validate_members(s, disk_list, i);
4837 else
4838 s = NULL;
4839
4840 if (!s)
4841 dprintf("marking family: %#x from %d:%d offline\n",
4842 mpb->family_num,
4843 super_table[i]->disks->major,
4844 super_table[i]->disks->minor);
4845 super_table[i] = s;
4846 }
4847
4848 /* This is where the mdadm implementation differs from the Windows
4849 * driver which has no strict concept of a container. We can only
4850 * assemble one family from a container, so when returning a prodigal
4851 * array member to this system the code will not be able to disambiguate
4852 * the container contents that should be assembled ("foreign" versus
4853 * "local"). It requires user intervention to set the orig_family_num
4854 * to a new value to establish a new container. The Windows driver in
4855 * this situation fixes up the volume name in place and manages the
4856 * foreign array as an independent entity.
4857 */
4858 s = NULL;
4859 spare = NULL;
4860 conflict = 0;
4861 for (i = 0; i < tbl_size; i++) {
4862 struct intel_super *tbl_ent = super_table[i];
4863 int is_spare = 0;
4864
4865 if (!tbl_ent)
4866 continue;
4867
4868 if (tbl_ent->anchor->num_raid_devs == 0) {
4869 spare = tbl_ent;
4870 is_spare = 1;
4871 }
4872
4873 if (s && !is_spare) {
4874 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4875 conflict++;
4876 } else if (!s && !is_spare)
4877 s = tbl_ent;
4878 }
4879
4880 if (!s)
4881 s = spare;
4882 if (!s) {
4883 champion = NULL;
4884 goto out;
4885 }
4886 champion = s;
4887
4888 if (conflict)
4889 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4890 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4891
4892 /* collect all dl's onto 'champion', and update them to
4893 * champion's version of the status
4894 */
4895 for (s = *super_list; s; s = s->next) {
4896 struct imsm_super *mpb = champion->anchor;
4897 struct dl *dl = s->disks;
4898
4899 if (s == champion)
4900 continue;
4901
4902 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4903
4904 for (i = 0; i < mpb->num_disks; i++) {
4905 struct imsm_disk *disk;
4906
4907 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4908 if (disk) {
4909 dl->disk = *disk;
4910 /* only set index on disks that are a member of
4911 * a populated contianer, i.e. one with
4912 * raid_devs
4913 */
4914 if (is_failed(&dl->disk))
4915 dl->index = -2;
4916 else if (is_spare(&dl->disk))
4917 dl->index = -1;
4918 break;
4919 }
4920 }
4921
4922 if (i >= mpb->num_disks) {
4923 struct intel_disk *idisk;
4924
4925 idisk = disk_list_get(dl->serial, disk_list);
4926 if (idisk && is_spare(&idisk->disk) &&
4927 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4928 dl->index = -1;
4929 else {
4930 dl->index = -2;
4931 continue;
4932 }
4933 }
4934
4935 dl->next = champion->disks;
4936 champion->disks = dl;
4937 s->disks = NULL;
4938 }
4939
4940 /* delete 'champion' from super_list */
4941 for (del = super_list; *del; ) {
4942 if (*del == champion) {
4943 *del = (*del)->next;
4944 break;
4945 } else
4946 del = &(*del)->next;
4947 }
4948 champion->next = NULL;
4949
4950 out:
4951 while (disk_list) {
4952 struct intel_disk *idisk = disk_list;
4953
4954 disk_list = disk_list->next;
4955 free(idisk);
4956 }
4957
4958 return champion;
4959 }
4960
4961 static int
4962 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4963 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4964 int major, int minor, int keep_fd);
4965 static int
4966 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4967 int *max, int keep_fd);
4968
4969 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4970 char *devname, struct md_list *devlist,
4971 int keep_fd)
4972 {
4973 struct intel_super *super_list = NULL;
4974 struct intel_super *super = NULL;
4975 int err = 0;
4976 int i = 0;
4977
4978 if (fd >= 0)
4979 /* 'fd' is an opened container */
4980 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4981 else
4982 /* get super block from devlist devices */
4983 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4984 if (err)
4985 goto error;
4986 /* all mpbs enter, maybe one leaves */
4987 super = imsm_thunderdome(&super_list, i);
4988 if (!super) {
4989 err = 1;
4990 goto error;
4991 }
4992
4993 if (find_missing(super) != 0) {
4994 free_imsm(super);
4995 err = 2;
4996 goto error;
4997 }
4998
4999 /* load migration record */
5000 err = load_imsm_migr_rec(super);
5001 if (err == -1) {
5002 /* migration is in progress,
5003 * but migr_rec cannot be loaded,
5004 */
5005 err = 4;
5006 goto error;
5007 }
5008
5009 /* Check migration compatibility */
5010 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
5011 pr_err("Unsupported migration detected");
5012 if (devname)
5013 fprintf(stderr, " on %s\n", devname);
5014 else
5015 fprintf(stderr, " (IMSM).\n");
5016
5017 err = 5;
5018 goto error;
5019 }
5020
5021 err = 0;
5022
5023 error:
5024 while (super_list) {
5025 struct intel_super *s = super_list;
5026
5027 super_list = super_list->next;
5028 free_imsm(s);
5029 }
5030
5031 if (err)
5032 return err;
5033
5034 *sbp = super;
5035 if (fd >= 0)
5036 strcpy(st->container_devnm, fd2devnm(fd));
5037 else
5038 st->container_devnm[0] = 0;
5039 if (err == 0 && st->ss == NULL) {
5040 st->ss = &super_imsm;
5041 st->minor_version = 0;
5042 st->max_devs = IMSM_MAX_DEVICES;
5043 }
5044 return 0;
5045 }
5046
5047 static int
5048 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5049 int *max, int keep_fd)
5050 {
5051 struct md_list *tmpdev;
5052 int err = 0;
5053 int i = 0;
5054
5055 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5056 if (tmpdev->used != 1)
5057 continue;
5058 if (tmpdev->container == 1) {
5059 int lmax = 0;
5060 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5061 if (fd < 0) {
5062 pr_err("cannot open device %s: %s\n",
5063 tmpdev->devname, strerror(errno));
5064 err = 8;
5065 goto error;
5066 }
5067 err = get_sra_super_block(fd, super_list,
5068 tmpdev->devname, &lmax,
5069 keep_fd);
5070 i += lmax;
5071 close(fd);
5072 if (err) {
5073 err = 7;
5074 goto error;
5075 }
5076 } else {
5077 int major = major(tmpdev->st_rdev);
5078 int minor = minor(tmpdev->st_rdev);
5079 err = get_super_block(super_list,
5080 NULL,
5081 tmpdev->devname,
5082 major, minor,
5083 keep_fd);
5084 i++;
5085 if (err) {
5086 err = 6;
5087 goto error;
5088 }
5089 }
5090 }
5091 error:
5092 *max = i;
5093 return err;
5094 }
5095
5096 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5097 int major, int minor, int keep_fd)
5098 {
5099 struct intel_super *s;
5100 char nm[32];
5101 int dfd = -1;
5102 int err = 0;
5103 int retry;
5104
5105 s = alloc_super();
5106 if (!s) {
5107 err = 1;
5108 goto error;
5109 }
5110
5111 sprintf(nm, "%d:%d", major, minor);
5112 dfd = dev_open(nm, O_RDWR);
5113 if (dfd < 0) {
5114 err = 2;
5115 goto error;
5116 }
5117
5118 get_dev_sector_size(dfd, NULL, &s->sector_size);
5119 find_intel_hba_capability(dfd, s, devname);
5120 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5121
5122 /* retry the load if we might have raced against mdmon */
5123 if (err == 3 && devnm && mdmon_running(devnm))
5124 for (retry = 0; retry < 3; retry++) {
5125 usleep(3000);
5126 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5127 if (err != 3)
5128 break;
5129 }
5130 error:
5131 if (!err) {
5132 s->next = *super_list;
5133 *super_list = s;
5134 } else {
5135 if (s)
5136 free_imsm(s);
5137 if (dfd >= 0)
5138 close(dfd);
5139 }
5140 if (dfd >= 0 && !keep_fd)
5141 close(dfd);
5142 return err;
5143
5144 }
5145
5146 static int
5147 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5148 {
5149 struct mdinfo *sra;
5150 char *devnm;
5151 struct mdinfo *sd;
5152 int err = 0;
5153 int i = 0;
5154 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5155 if (!sra)
5156 return 1;
5157
5158 if (sra->array.major_version != -1 ||
5159 sra->array.minor_version != -2 ||
5160 strcmp(sra->text_version, "imsm") != 0) {
5161 err = 1;
5162 goto error;
5163 }
5164 /* load all mpbs */
5165 devnm = fd2devnm(fd);
5166 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5167 if (get_super_block(super_list, devnm, devname,
5168 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5169 err = 7;
5170 goto error;
5171 }
5172 }
5173 error:
5174 sysfs_free(sra);
5175 *max = i;
5176 return err;
5177 }
5178
5179 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5180 {
5181 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5182 }
5183
5184 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5185 {
5186 struct intel_super *super;
5187 int rv;
5188 int retry;
5189
5190 if (test_partition(fd))
5191 /* IMSM not allowed on partitions */
5192 return 1;
5193
5194 free_super_imsm(st);
5195
5196 super = alloc_super();
5197 get_dev_sector_size(fd, NULL, &super->sector_size);
5198 if (!super)
5199 return 1;
5200 /* Load hba and capabilities if they exist.
5201 * But do not preclude loading metadata in case capabilities or hba are
5202 * non-compliant and ignore_hw_compat is set.
5203 */
5204 rv = find_intel_hba_capability(fd, super, devname);
5205 /* no orom/efi or non-intel hba of the disk */
5206 if (rv != 0 && st->ignore_hw_compat == 0) {
5207 if (devname)
5208 pr_err("No OROM/EFI properties for %s\n", devname);
5209 free_imsm(super);
5210 return 2;
5211 }
5212 rv = load_and_parse_mpb(fd, super, devname, 0);
5213
5214 /* retry the load if we might have raced against mdmon */
5215 if (rv == 3) {
5216 struct mdstat_ent *mdstat = NULL;
5217 char *name = fd2kname(fd);
5218
5219 if (name)
5220 mdstat = mdstat_by_component(name);
5221
5222 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5223 for (retry = 0; retry < 3; retry++) {
5224 usleep(3000);
5225 rv = load_and_parse_mpb(fd, super, devname, 0);
5226 if (rv != 3)
5227 break;
5228 }
5229 }
5230
5231 free_mdstat(mdstat);
5232 }
5233
5234 if (rv) {
5235 if (devname)
5236 pr_err("Failed to load all information sections on %s\n", devname);
5237 free_imsm(super);
5238 return rv;
5239 }
5240
5241 st->sb = super;
5242 if (st->ss == NULL) {
5243 st->ss = &super_imsm;
5244 st->minor_version = 0;
5245 st->max_devs = IMSM_MAX_DEVICES;
5246 }
5247
5248 /* load migration record */
5249 if (load_imsm_migr_rec(super) == 0) {
5250 /* Check for unsupported migration features */
5251 if (check_mpb_migr_compatibility(super) != 0) {
5252 pr_err("Unsupported migration detected");
5253 if (devname)
5254 fprintf(stderr, " on %s\n", devname);
5255 else
5256 fprintf(stderr, " (IMSM).\n");
5257 return 3;
5258 }
5259 }
5260
5261 return 0;
5262 }
5263
5264 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5265 {
5266 if (info->level == 1)
5267 return 128;
5268 return info->chunk_size >> 9;
5269 }
5270
5271 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5272 unsigned long long size)
5273 {
5274 if (info->level == 1)
5275 return size * 2;
5276 else
5277 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5278 }
5279
5280 static void imsm_update_version_info(struct intel_super *super)
5281 {
5282 /* update the version and attributes */
5283 struct imsm_super *mpb = super->anchor;
5284 char *version;
5285 struct imsm_dev *dev;
5286 struct imsm_map *map;
5287 int i;
5288
5289 for (i = 0; i < mpb->num_raid_devs; i++) {
5290 dev = get_imsm_dev(super, i);
5291 map = get_imsm_map(dev, MAP_0);
5292 if (__le32_to_cpu(dev->size_high) > 0)
5293 mpb->attributes |= MPB_ATTRIB_2TB;
5294
5295 /* FIXME detect when an array spans a port multiplier */
5296 #if 0
5297 mpb->attributes |= MPB_ATTRIB_PM;
5298 #endif
5299
5300 if (mpb->num_raid_devs > 1 ||
5301 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5302 version = MPB_VERSION_ATTRIBS;
5303 switch (get_imsm_raid_level(map)) {
5304 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5305 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5306 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5307 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5308 }
5309 } else {
5310 if (map->num_members >= 5)
5311 version = MPB_VERSION_5OR6_DISK_ARRAY;
5312 else if (dev->status == DEV_CLONE_N_GO)
5313 version = MPB_VERSION_CNG;
5314 else if (get_imsm_raid_level(map) == 5)
5315 version = MPB_VERSION_RAID5;
5316 else if (map->num_members >= 3)
5317 version = MPB_VERSION_3OR4_DISK_ARRAY;
5318 else if (get_imsm_raid_level(map) == 1)
5319 version = MPB_VERSION_RAID1;
5320 else
5321 version = MPB_VERSION_RAID0;
5322 }
5323 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5324 }
5325 }
5326
5327 static int check_name(struct intel_super *super, char *name, int quiet)
5328 {
5329 struct imsm_super *mpb = super->anchor;
5330 char *reason = NULL;
5331 char *start = name;
5332 size_t len = strlen(name);
5333 int i;
5334
5335 if (len > 0) {
5336 while (isspace(start[len - 1]))
5337 start[--len] = 0;
5338 while (*start && isspace(*start))
5339 ++start, --len;
5340 memmove(name, start, len + 1);
5341 }
5342
5343 if (len > MAX_RAID_SERIAL_LEN)
5344 reason = "must be 16 characters or less";
5345 else if (len == 0)
5346 reason = "must be a non-empty string";
5347
5348 for (i = 0; i < mpb->num_raid_devs; i++) {
5349 struct imsm_dev *dev = get_imsm_dev(super, i);
5350
5351 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5352 reason = "already exists";
5353 break;
5354 }
5355 }
5356
5357 if (reason && !quiet)
5358 pr_err("imsm volume name %s\n", reason);
5359
5360 return !reason;
5361 }
5362
5363 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5364 struct shape *s, char *name,
5365 char *homehost, int *uuid,
5366 long long data_offset)
5367 {
5368 /* We are creating a volume inside a pre-existing container.
5369 * so st->sb is already set.
5370 */
5371 struct intel_super *super = st->sb;
5372 unsigned int sector_size = super->sector_size;
5373 struct imsm_super *mpb = super->anchor;
5374 struct intel_dev *dv;
5375 struct imsm_dev *dev;
5376 struct imsm_vol *vol;
5377 struct imsm_map *map;
5378 int idx = mpb->num_raid_devs;
5379 int i;
5380 int namelen;
5381 unsigned long long array_blocks;
5382 size_t size_old, size_new;
5383 unsigned long long num_data_stripes;
5384 unsigned int data_disks;
5385 unsigned long long size_per_member;
5386
5387 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5388 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5389 return 0;
5390 }
5391
5392 /* ensure the mpb is large enough for the new data */
5393 size_old = __le32_to_cpu(mpb->mpb_size);
5394 size_new = disks_to_mpb_size(info->nr_disks);
5395 if (size_new > size_old) {
5396 void *mpb_new;
5397 size_t size_round = ROUND_UP(size_new, sector_size);
5398
5399 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5400 pr_err("could not allocate new mpb\n");
5401 return 0;
5402 }
5403 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5404 MIGR_REC_BUF_SECTORS*
5405 MAX_SECTOR_SIZE) != 0) {
5406 pr_err("could not allocate migr_rec buffer\n");
5407 free(super->buf);
5408 free(super);
5409 free(mpb_new);
5410 return 0;
5411 }
5412 memcpy(mpb_new, mpb, size_old);
5413 free(mpb);
5414 mpb = mpb_new;
5415 super->anchor = mpb_new;
5416 mpb->mpb_size = __cpu_to_le32(size_new);
5417 memset(mpb_new + size_old, 0, size_round - size_old);
5418 super->len = size_round;
5419 }
5420 super->current_vol = idx;
5421
5422 /* handle 'failed_disks' by either:
5423 * a) create dummy disk entries in the table if this the first
5424 * volume in the array. We add them here as this is the only
5425 * opportunity to add them. add_to_super_imsm_volume()
5426 * handles the non-failed disks and continues incrementing
5427 * mpb->num_disks.
5428 * b) validate that 'failed_disks' matches the current number
5429 * of missing disks if the container is populated
5430 */
5431 if (super->current_vol == 0) {
5432 mpb->num_disks = 0;
5433 for (i = 0; i < info->failed_disks; i++) {
5434 struct imsm_disk *disk;
5435
5436 mpb->num_disks++;
5437 disk = __get_imsm_disk(mpb, i);
5438 disk->status = CONFIGURED_DISK | FAILED_DISK;
5439 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5440 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5441 "missing:%d", (__u8)i);
5442 }
5443 find_missing(super);
5444 } else {
5445 int missing = 0;
5446 struct dl *d;
5447
5448 for (d = super->missing; d; d = d->next)
5449 missing++;
5450 if (info->failed_disks > missing) {
5451 pr_err("unable to add 'missing' disk to container\n");
5452 return 0;
5453 }
5454 }
5455
5456 if (!check_name(super, name, 0))
5457 return 0;
5458 dv = xmalloc(sizeof(*dv));
5459 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5460 /*
5461 * Explicitly allow truncating to not confuse gcc's
5462 * -Werror=stringop-truncation
5463 */
5464 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5465 memcpy(dev->volume, name, namelen);
5466 array_blocks = calc_array_size(info->level, info->raid_disks,
5467 info->layout, info->chunk_size,
5468 s->size * BLOCKS_PER_KB);
5469 data_disks = get_data_disks(info->level, info->layout,
5470 info->raid_disks);
5471 array_blocks = round_size_to_mb(array_blocks, data_disks);
5472 size_per_member = array_blocks / data_disks;
5473
5474 set_imsm_dev_size(dev, array_blocks);
5475 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5476 vol = &dev->vol;
5477 vol->migr_state = 0;
5478 set_migr_type(dev, MIGR_INIT);
5479 vol->dirty = !info->state;
5480 vol->curr_migr_unit = 0;
5481 map = get_imsm_map(dev, MAP_0);
5482 set_pba_of_lba0(map, super->create_offset);
5483 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5484 map->failed_disk_num = ~0;
5485 if (info->level > 0)
5486 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5487 : IMSM_T_STATE_UNINITIALIZED);
5488 else
5489 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5490 IMSM_T_STATE_NORMAL;
5491 map->ddf = 1;
5492
5493 if (info->level == 1 && info->raid_disks > 2) {
5494 free(dev);
5495 free(dv);
5496 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5497 return 0;
5498 }
5499
5500 map->raid_level = info->level;
5501 if (info->level == 10) {
5502 map->raid_level = 1;
5503 map->num_domains = info->raid_disks / 2;
5504 } else if (info->level == 1)
5505 map->num_domains = info->raid_disks;
5506 else
5507 map->num_domains = 1;
5508
5509 /* info->size is only int so use the 'size' parameter instead */
5510 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5511 num_data_stripes /= map->num_domains;
5512 set_num_data_stripes(map, num_data_stripes);
5513
5514 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5515 set_blocks_per_member(map, info_to_blocks_per_member(info,
5516 size_per_member /
5517 BLOCKS_PER_KB));
5518
5519 map->num_members = info->raid_disks;
5520 for (i = 0; i < map->num_members; i++) {
5521 /* initialized in add_to_super */
5522 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5523 }
5524 mpb->num_raid_devs++;
5525 mpb->num_raid_devs_created++;
5526 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5527
5528 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5529 dev->rwh_policy = RWH_MULTIPLE_OFF;
5530 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5531 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
5532 } else {
5533 free(dev);
5534 free(dv);
5535 pr_err("imsm does not support consistency policy %s\n",
5536 map_num(consistency_policies, s->consistency_policy));
5537 return 0;
5538 }
5539
5540 dv->dev = dev;
5541 dv->index = super->current_vol;
5542 dv->next = super->devlist;
5543 super->devlist = dv;
5544
5545 imsm_update_version_info(super);
5546
5547 return 1;
5548 }
5549
5550 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5551 struct shape *s, char *name,
5552 char *homehost, int *uuid,
5553 unsigned long long data_offset)
5554 {
5555 /* This is primarily called by Create when creating a new array.
5556 * We will then get add_to_super called for each component, and then
5557 * write_init_super called to write it out to each device.
5558 * For IMSM, Create can create on fresh devices or on a pre-existing
5559 * array.
5560 * To create on a pre-existing array a different method will be called.
5561 * This one is just for fresh drives.
5562 */
5563 struct intel_super *super;
5564 struct imsm_super *mpb;
5565 size_t mpb_size;
5566 char *version;
5567
5568 if (data_offset != INVALID_SECTORS) {
5569 pr_err("data-offset not supported by imsm\n");
5570 return 0;
5571 }
5572
5573 if (st->sb)
5574 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5575 data_offset);
5576
5577 if (info)
5578 mpb_size = disks_to_mpb_size(info->nr_disks);
5579 else
5580 mpb_size = MAX_SECTOR_SIZE;
5581
5582 super = alloc_super();
5583 if (super &&
5584 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5585 free_imsm(super);
5586 super = NULL;
5587 }
5588 if (!super) {
5589 pr_err("could not allocate superblock\n");
5590 return 0;
5591 }
5592 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5593 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5594 pr_err("could not allocate migr_rec buffer\n");
5595 free(super->buf);
5596 free_imsm(super);
5597 return 0;
5598 }
5599 memset(super->buf, 0, mpb_size);
5600 mpb = super->buf;
5601 mpb->mpb_size = __cpu_to_le32(mpb_size);
5602 st->sb = super;
5603
5604 if (info == NULL) {
5605 /* zeroing superblock */
5606 return 0;
5607 }
5608
5609 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5610
5611 version = (char *) mpb->sig;
5612 strcpy(version, MPB_SIGNATURE);
5613 version += strlen(MPB_SIGNATURE);
5614 strcpy(version, MPB_VERSION_RAID0);
5615
5616 return 1;
5617 }
5618
5619 static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5620 {
5621 unsigned int member_sector_size;
5622
5623 if (dl->fd < 0) {
5624 pr_err("Invalid file descriptor for %s\n", dl->devname);
5625 return 0;
5626 }
5627
5628 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5629 return 0;
5630 if (member_sector_size != super->sector_size)
5631 return 0;
5632 return 1;
5633 }
5634
5635 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5636 int fd, char *devname)
5637 {
5638 struct intel_super *super = st->sb;
5639 struct imsm_super *mpb = super->anchor;
5640 struct imsm_disk *_disk;
5641 struct imsm_dev *dev;
5642 struct imsm_map *map;
5643 struct dl *dl, *df;
5644 int slot;
5645
5646 dev = get_imsm_dev(super, super->current_vol);
5647 map = get_imsm_map(dev, MAP_0);
5648
5649 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5650 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5651 devname);
5652 return 1;
5653 }
5654
5655 if (fd == -1) {
5656 /* we're doing autolayout so grab the pre-marked (in
5657 * validate_geometry) raid_disk
5658 */
5659 for (dl = super->disks; dl; dl = dl->next)
5660 if (dl->raiddisk == dk->raid_disk)
5661 break;
5662 } else {
5663 for (dl = super->disks; dl ; dl = dl->next)
5664 if (dl->major == dk->major &&
5665 dl->minor == dk->minor)
5666 break;
5667 }
5668
5669 if (!dl) {
5670 pr_err("%s is not a member of the same container\n", devname);
5671 return 1;
5672 }
5673
5674 if (mpb->num_disks == 0)
5675 if (!get_dev_sector_size(dl->fd, dl->devname,
5676 &super->sector_size))
5677 return 1;
5678
5679 if (!drive_validate_sector_size(super, dl)) {
5680 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5681 return 1;
5682 }
5683
5684 /* add a pristine spare to the metadata */
5685 if (dl->index < 0) {
5686 dl->index = super->anchor->num_disks;
5687 super->anchor->num_disks++;
5688 }
5689 /* Check the device has not already been added */
5690 slot = get_imsm_disk_slot(map, dl->index);
5691 if (slot >= 0 &&
5692 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5693 pr_err("%s has been included in this array twice\n",
5694 devname);
5695 return 1;
5696 }
5697 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5698 dl->disk.status = CONFIGURED_DISK;
5699
5700 /* update size of 'missing' disks to be at least as large as the
5701 * largest acitve member (we only have dummy missing disks when
5702 * creating the first volume)
5703 */
5704 if (super->current_vol == 0) {
5705 for (df = super->missing; df; df = df->next) {
5706 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5707 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5708 _disk = __get_imsm_disk(mpb, df->index);
5709 *_disk = df->disk;
5710 }
5711 }
5712
5713 /* refresh unset/failed slots to point to valid 'missing' entries */
5714 for (df = super->missing; df; df = df->next)
5715 for (slot = 0; slot < mpb->num_disks; slot++) {
5716 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5717
5718 if ((ord & IMSM_ORD_REBUILD) == 0)
5719 continue;
5720 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5721 if (is_gen_migration(dev)) {
5722 struct imsm_map *map2 = get_imsm_map(dev,
5723 MAP_1);
5724 int slot2 = get_imsm_disk_slot(map2, df->index);
5725 if (slot2 < map2->num_members && slot2 >= 0) {
5726 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5727 slot2,
5728 MAP_1);
5729 if ((unsigned)df->index ==
5730 ord_to_idx(ord2))
5731 set_imsm_ord_tbl_ent(map2,
5732 slot2,
5733 df->index |
5734 IMSM_ORD_REBUILD);
5735 }
5736 }
5737 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5738 break;
5739 }
5740
5741 /* if we are creating the first raid device update the family number */
5742 if (super->current_vol == 0) {
5743 __u32 sum;
5744 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5745
5746 _disk = __get_imsm_disk(mpb, dl->index);
5747 if (!_dev || !_disk) {
5748 pr_err("BUG mpb setup error\n");
5749 return 1;
5750 }
5751 *_dev = *dev;
5752 *_disk = dl->disk;
5753 sum = random32();
5754 sum += __gen_imsm_checksum(mpb);
5755 mpb->family_num = __cpu_to_le32(sum);
5756 mpb->orig_family_num = mpb->family_num;
5757 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
5758 }
5759 super->current_disk = dl;
5760 return 0;
5761 }
5762
5763 /* mark_spare()
5764 * Function marks disk as spare and restores disk serial
5765 * in case it was previously marked as failed by takeover operation
5766 * reruns:
5767 * -1 : critical error
5768 * 0 : disk is marked as spare but serial is not set
5769 * 1 : success
5770 */
5771 int mark_spare(struct dl *disk)
5772 {
5773 __u8 serial[MAX_RAID_SERIAL_LEN];
5774 int ret_val = -1;
5775
5776 if (!disk)
5777 return ret_val;
5778
5779 ret_val = 0;
5780 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
5781 /* Restore disk serial number, because takeover marks disk
5782 * as failed and adds to serial ':0' before it becomes
5783 * a spare disk.
5784 */
5785 serialcpy(disk->serial, serial);
5786 serialcpy(disk->disk.serial, serial);
5787 ret_val = 1;
5788 }
5789 disk->disk.status = SPARE_DISK;
5790 disk->index = -1;
5791
5792 return ret_val;
5793 }
5794
5795
5796 static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5797
5798 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5799 int fd, char *devname,
5800 unsigned long long data_offset)
5801 {
5802 struct intel_super *super = st->sb;
5803 struct dl *dd;
5804 unsigned long long size;
5805 unsigned int member_sector_size;
5806 __u32 id;
5807 int rv;
5808 struct stat stb;
5809
5810 /* If we are on an RAID enabled platform check that the disk is
5811 * attached to the raid controller.
5812 * We do not need to test disks attachment for container based additions,
5813 * they shall be already tested when container was created/assembled.
5814 */
5815 rv = find_intel_hba_capability(fd, super, devname);
5816 /* no orom/efi or non-intel hba of the disk */
5817 if (rv != 0) {
5818 dprintf("capability: %p fd: %d ret: %d\n",
5819 super->orom, fd, rv);
5820 return 1;
5821 }
5822
5823 if (super->current_vol >= 0)
5824 return add_to_super_imsm_volume(st, dk, fd, devname);
5825
5826 fstat(fd, &stb);
5827 dd = xcalloc(sizeof(*dd), 1);
5828 dd->major = major(stb.st_rdev);
5829 dd->minor = minor(stb.st_rdev);
5830 dd->devname = devname ? xstrdup(devname) : NULL;
5831 dd->fd = fd;
5832 dd->e = NULL;
5833 dd->action = DISK_ADD;
5834 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
5835 if (rv) {
5836 pr_err("failed to retrieve scsi serial, aborting\n");
5837 if (dd->devname)
5838 free(dd->devname);
5839 free(dd);
5840 abort();
5841 }
5842 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5843 (super->hba->type == SYS_DEV_VMD))) {
5844 int i;
5845 char *devpath = diskfd_to_devpath(fd);
5846 char controller_path[PATH_MAX];
5847
5848 if (!devpath) {
5849 pr_err("failed to get devpath, aborting\n");
5850 if (dd->devname)
5851 free(dd->devname);
5852 free(dd);
5853 return 1;
5854 }
5855
5856 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5857 free(devpath);
5858
5859 if (!imsm_is_nvme_supported(dd->fd, 1)) {
5860 if (dd->devname)
5861 free(dd->devname);
5862 free(dd);
5863 return 1;
5864 }
5865
5866 if (devpath_to_vendor(controller_path) == 0x8086) {
5867 /*
5868 * If Intel's NVMe drive has serial ended with
5869 * "-A","-B","-1" or "-2" it means that this is "x8"
5870 * device (double drive on single PCIe card).
5871 * User should be warned about potential data loss.
5872 */
5873 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5874 /* Skip empty character at the end */
5875 if (dd->serial[i] == 0)
5876 continue;
5877
5878 if (((dd->serial[i] == 'A') ||
5879 (dd->serial[i] == 'B') ||
5880 (dd->serial[i] == '1') ||
5881 (dd->serial[i] == '2')) &&
5882 (dd->serial[i-1] == '-'))
5883 pr_err("\tThe action you are about to take may put your data at risk.\n"
5884 "\tPlease note that x8 devices may consist of two separate x4 devices "
5885 "located on a single PCIe port.\n"
5886 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5887 break;
5888 }
5889 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5890 !imsm_orom_has_tpv_support(super->orom)) {
5891 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5892 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
5893 free(dd->devname);
5894 free(dd);
5895 return 1;
5896 }
5897 }
5898
5899 get_dev_size(fd, NULL, &size);
5900 get_dev_sector_size(fd, NULL, &member_sector_size);
5901
5902 if (super->sector_size == 0) {
5903 /* this a first device, so sector_size is not set yet */
5904 super->sector_size = member_sector_size;
5905 }
5906
5907 /* clear migr_rec when adding disk to container */
5908 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
5909 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
5910 SEEK_SET) >= 0) {
5911 if ((unsigned int)write(fd, super->migr_rec_buf,
5912 MIGR_REC_BUF_SECTORS*member_sector_size) !=
5913 MIGR_REC_BUF_SECTORS*member_sector_size)
5914 perror("Write migr_rec failed");
5915 }
5916
5917 size /= 512;
5918 serialcpy(dd->disk.serial, dd->serial);
5919 set_total_blocks(&dd->disk, size);
5920 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5921 struct imsm_super *mpb = super->anchor;
5922 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5923 }
5924 mark_spare(dd);
5925 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5926 dd->disk.scsi_id = __cpu_to_le32(id);
5927 else
5928 dd->disk.scsi_id = __cpu_to_le32(0);
5929
5930 if (st->update_tail) {
5931 dd->next = super->disk_mgmt_list;
5932 super->disk_mgmt_list = dd;
5933 } else {
5934 /* this is called outside of mdmon
5935 * write initial spare metadata
5936 * mdmon will overwrite it.
5937 */
5938 dd->next = super->disks;
5939 super->disks = dd;
5940 write_super_imsm_spare(super, dd);
5941 }
5942
5943 return 0;
5944 }
5945
5946 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5947 {
5948 struct intel_super *super = st->sb;
5949 struct dl *dd;
5950
5951 /* remove from super works only in mdmon - for communication
5952 * manager - monitor. Check if communication memory buffer
5953 * is prepared.
5954 */
5955 if (!st->update_tail) {
5956 pr_err("shall be used in mdmon context only\n");
5957 return 1;
5958 }
5959 dd = xcalloc(1, sizeof(*dd));
5960 dd->major = dk->major;
5961 dd->minor = dk->minor;
5962 dd->fd = -1;
5963 mark_spare(dd);
5964 dd->action = DISK_REMOVE;
5965
5966 dd->next = super->disk_mgmt_list;
5967 super->disk_mgmt_list = dd;
5968
5969 return 0;
5970 }
5971
5972 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5973
5974 static union {
5975 char buf[MAX_SECTOR_SIZE];
5976 struct imsm_super anchor;
5977 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5978
5979
5980 static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
5981 {
5982 struct imsm_super *mpb = super->anchor;
5983 struct imsm_super *spare = &spare_record.anchor;
5984 __u32 sum;
5985
5986 if (d->index != -1)
5987 return 1;
5988
5989 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5990 spare->generation_num = __cpu_to_le32(1UL);
5991 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5992 spare->num_disks = 1;
5993 spare->num_raid_devs = 0;
5994 spare->cache_size = mpb->cache_size;
5995 spare->pwr_cycle_count = __cpu_to_le32(1);
5996
5997 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5998 MPB_SIGNATURE MPB_VERSION_RAID0);
5999
6000 spare->disk[0] = d->disk;
6001 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6002 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6003
6004 if (super->sector_size == 4096)
6005 convert_to_4k_imsm_disk(&spare->disk[0]);
6006
6007 sum = __gen_imsm_checksum(spare);
6008 spare->family_num = __cpu_to_le32(sum);
6009 spare->orig_family_num = 0;
6010 sum = __gen_imsm_checksum(spare);
6011 spare->check_sum = __cpu_to_le32(sum);
6012
6013 if (store_imsm_mpb(d->fd, spare)) {
6014 pr_err("failed for device %d:%d %s\n",
6015 d->major, d->minor, strerror(errno));
6016 return 1;
6017 }
6018
6019 return 0;
6020 }
6021 /* spare records have their own family number and do not have any defined raid
6022 * devices
6023 */
6024 static int write_super_imsm_spares(struct intel_super *super, int doclose)
6025 {
6026 struct dl *d;
6027
6028 for (d = super->disks; d; d = d->next) {
6029 if (d->index != -1)
6030 continue;
6031
6032 if (write_super_imsm_spare(super, d))
6033 return 1;
6034
6035 if (doclose) {
6036 close(d->fd);
6037 d->fd = -1;
6038 }
6039 }
6040
6041 return 0;
6042 }
6043
6044 static int write_super_imsm(struct supertype *st, int doclose)
6045 {
6046 struct intel_super *super = st->sb;
6047 unsigned int sector_size = super->sector_size;
6048 struct imsm_super *mpb = super->anchor;
6049 struct dl *d;
6050 __u32 generation;
6051 __u32 sum;
6052 int spares = 0;
6053 int i;
6054 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
6055 int num_disks = 0;
6056 int clear_migration_record = 1;
6057 __u32 bbm_log_size;
6058
6059 /* 'generation' is incremented everytime the metadata is written */
6060 generation = __le32_to_cpu(mpb->generation_num);
6061 generation++;
6062 mpb->generation_num = __cpu_to_le32(generation);
6063
6064 /* fix up cases where previous mdadm releases failed to set
6065 * orig_family_num
6066 */
6067 if (mpb->orig_family_num == 0)
6068 mpb->orig_family_num = mpb->family_num;
6069
6070 for (d = super->disks; d; d = d->next) {
6071 if (d->index == -1)
6072 spares++;
6073 else {
6074 mpb->disk[d->index] = d->disk;
6075 num_disks++;
6076 }
6077 }
6078 for (d = super->missing; d; d = d->next) {
6079 mpb->disk[d->index] = d->disk;
6080 num_disks++;
6081 }
6082 mpb->num_disks = num_disks;
6083 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
6084
6085 for (i = 0; i < mpb->num_raid_devs; i++) {
6086 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
6087 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6088 if (dev && dev2) {
6089 imsm_copy_dev(dev, dev2);
6090 mpb_size += sizeof_imsm_dev(dev, 0);
6091 }
6092 if (is_gen_migration(dev2))
6093 clear_migration_record = 0;
6094 }
6095
6096 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6097
6098 if (bbm_log_size) {
6099 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6100 mpb->attributes |= MPB_ATTRIB_BBM;
6101 } else
6102 mpb->attributes &= ~MPB_ATTRIB_BBM;
6103
6104 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6105 mpb_size += bbm_log_size;
6106 mpb->mpb_size = __cpu_to_le32(mpb_size);
6107
6108 #ifdef DEBUG
6109 assert(super->len == 0 || mpb_size <= super->len);
6110 #endif
6111
6112 /* recalculate checksum */
6113 sum = __gen_imsm_checksum(mpb);
6114 mpb->check_sum = __cpu_to_le32(sum);
6115
6116 if (super->clean_migration_record_by_mdmon) {
6117 clear_migration_record = 1;
6118 super->clean_migration_record_by_mdmon = 0;
6119 }
6120 if (clear_migration_record)
6121 memset(super->migr_rec_buf, 0,
6122 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6123
6124 if (sector_size == 4096)
6125 convert_to_4k(super);
6126
6127 /* write the mpb for disks that compose raid devices */
6128 for (d = super->disks; d ; d = d->next) {
6129 if (d->index < 0 || is_failed(&d->disk))
6130 continue;
6131
6132 if (clear_migration_record) {
6133 unsigned long long dsize;
6134
6135 get_dev_size(d->fd, NULL, &dsize);
6136 if (lseek64(d->fd, dsize - sector_size,
6137 SEEK_SET) >= 0) {
6138 if ((unsigned int)write(d->fd,
6139 super->migr_rec_buf,
6140 MIGR_REC_BUF_SECTORS*sector_size) !=
6141 MIGR_REC_BUF_SECTORS*sector_size)
6142 perror("Write migr_rec failed");
6143 }
6144 }
6145
6146 if (store_imsm_mpb(d->fd, mpb))
6147 fprintf(stderr,
6148 "failed for device %d:%d (fd: %d)%s\n",
6149 d->major, d->minor,
6150 d->fd, strerror(errno));
6151
6152 if (doclose) {
6153 close(d->fd);
6154 d->fd = -1;
6155 }
6156 }
6157
6158 if (spares)
6159 return write_super_imsm_spares(super, doclose);
6160
6161 return 0;
6162 }
6163
6164 static int create_array(struct supertype *st, int dev_idx)
6165 {
6166 size_t len;
6167 struct imsm_update_create_array *u;
6168 struct intel_super *super = st->sb;
6169 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
6170 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6171 struct disk_info *inf;
6172 struct imsm_disk *disk;
6173 int i;
6174
6175 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6176 sizeof(*inf) * map->num_members;
6177 u = xmalloc(len);
6178 u->type = update_create_array;
6179 u->dev_idx = dev_idx;
6180 imsm_copy_dev(&u->dev, dev);
6181 inf = get_disk_info(u);
6182 for (i = 0; i < map->num_members; i++) {
6183 int idx = get_imsm_disk_idx(dev, i, MAP_X);
6184
6185 disk = get_imsm_disk(super, idx);
6186 if (!disk)
6187 disk = get_imsm_missing(super, idx);
6188 serialcpy(inf[i].serial, disk->serial);
6189 }
6190 append_metadata_update(st, u, len);
6191
6192 return 0;
6193 }
6194
6195 static int mgmt_disk(struct supertype *st)
6196 {
6197 struct intel_super *super = st->sb;
6198 size_t len;
6199 struct imsm_update_add_remove_disk *u;
6200
6201 if (!super->disk_mgmt_list)
6202 return 0;
6203
6204 len = sizeof(*u);
6205 u = xmalloc(len);
6206 u->type = update_add_remove_disk;
6207 append_metadata_update(st, u, len);
6208
6209 return 0;
6210 }
6211
6212 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6213
6214 static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6215 {
6216 struct ppl_header *ppl_hdr = buf;
6217 int ret;
6218
6219 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6220
6221 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6222 ret = -errno;
6223 perror("Failed to seek to PPL header location");
6224 return ret;
6225 }
6226
6227 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6228 ret = -errno;
6229 perror("Write PPL header failed");
6230 return ret;
6231 }
6232
6233 fsync(fd);
6234
6235 return 0;
6236 }
6237
6238 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6239 {
6240 struct intel_super *super = st->sb;
6241 void *buf;
6242 struct ppl_header *ppl_hdr;
6243 int ret;
6244
6245 /* first clear entire ppl space */
6246 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6247 if (ret)
6248 return ret;
6249
6250 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
6251 if (ret) {
6252 pr_err("Failed to allocate PPL header buffer\n");
6253 return -ret;
6254 }
6255
6256 memset(buf, 0, PPL_HEADER_SIZE);
6257 ppl_hdr = buf;
6258 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6259 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6260
6261 if (info->mismatch_cnt) {
6262 /*
6263 * We are overwriting an invalid ppl. Make one entry with wrong
6264 * checksum to prevent the kernel from skipping resync.
6265 */
6266 ppl_hdr->entries_count = __cpu_to_le32(1);
6267 ppl_hdr->entries[0].checksum = ~0;
6268 }
6269
6270 ret = write_ppl_header(info->ppl_sector, fd, buf);
6271
6272 free(buf);
6273 return ret;
6274 }
6275
6276 static int is_rebuilding(struct imsm_dev *dev);
6277
6278 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6279 struct mdinfo *disk)
6280 {
6281 struct intel_super *super = st->sb;
6282 struct dl *d;
6283 void *buf_orig, *buf, *buf_prev = NULL;
6284 int ret = 0;
6285 struct ppl_header *ppl_hdr = NULL;
6286 __u32 crc;
6287 struct imsm_dev *dev;
6288 __u32 idx;
6289 unsigned int i;
6290 unsigned long long ppl_offset = 0;
6291 unsigned long long prev_gen_num = 0;
6292
6293 if (disk->disk.raid_disk < 0)
6294 return 0;
6295
6296 dev = get_imsm_dev(super, info->container_member);
6297 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
6298 d = get_imsm_dl_disk(super, idx);
6299
6300 if (!d || d->index < 0 || is_failed(&d->disk))
6301 return 0;
6302
6303 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6304 pr_err("Failed to allocate PPL header buffer\n");
6305 return -1;
6306 }
6307 buf = buf_orig;
6308
6309 ret = 1;
6310 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6311 void *tmp;
6312
6313 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
6314
6315 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6316 SEEK_SET) < 0) {
6317 perror("Failed to seek to PPL header location");
6318 ret = -1;
6319 break;
6320 }
6321
6322 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6323 perror("Read PPL header failed");
6324 ret = -1;
6325 break;
6326 }
6327
6328 ppl_hdr = buf;
6329
6330 crc = __le32_to_cpu(ppl_hdr->checksum);
6331 ppl_hdr->checksum = 0;
6332
6333 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6334 dprintf("Wrong PPL header checksum on %s\n",
6335 d->devname);
6336 break;
6337 }
6338
6339 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6340 /* previous was newest, it was already checked */
6341 break;
6342 }
6343
6344 if ((__le32_to_cpu(ppl_hdr->signature) !=
6345 super->anchor->orig_family_num)) {
6346 dprintf("Wrong PPL header signature on %s\n",
6347 d->devname);
6348 ret = 1;
6349 break;
6350 }
6351
6352 ret = 0;
6353 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
6354
6355 ppl_offset += PPL_HEADER_SIZE;
6356 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6357 ppl_offset +=
6358 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
6359
6360 if (!buf_prev)
6361 buf_prev = buf + PPL_HEADER_SIZE;
6362 tmp = buf_prev;
6363 buf_prev = buf;
6364 buf = tmp;
6365 }
6366
6367 if (buf_prev) {
6368 buf = buf_prev;
6369 ppl_hdr = buf_prev;
6370 }
6371
6372 /*
6373 * Update metadata to use mutliple PPLs area (1MB).
6374 * This is done once for all RAID members
6375 */
6376 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6377 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6378 char subarray[20];
6379 struct mdinfo *member_dev;
6380
6381 sprintf(subarray, "%d", info->container_member);
6382
6383 if (mdmon_running(st->container_devnm))
6384 st->update_tail = &st->updates;
6385
6386 if (st->ss->update_subarray(st, subarray, "ppl", NULL)) {
6387 pr_err("Failed to update subarray %s\n",
6388 subarray);
6389 } else {
6390 if (st->update_tail)
6391 flush_metadata_updates(st);
6392 else
6393 st->ss->sync_metadata(st);
6394 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6395 for (member_dev = info->devs; member_dev;
6396 member_dev = member_dev->next)
6397 member_dev->ppl_size =
6398 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6399 }
6400 }
6401
6402 if (ret == 1) {
6403 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6404
6405 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6406 (map->map_state == IMSM_T_STATE_NORMAL &&
6407 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
6408 (is_rebuilding(dev) &&
6409 dev->vol.curr_migr_unit == 0 &&
6410 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
6411 ret = st->ss->write_init_ppl(st, info, d->fd);
6412 else
6413 info->mismatch_cnt++;
6414 } else if (ret == 0 &&
6415 ppl_hdr->entries_count == 0 &&
6416 is_rebuilding(dev) &&
6417 info->resync_start == 0) {
6418 /*
6419 * The header has no entries - add a single empty entry and
6420 * rewrite the header to prevent the kernel from going into
6421 * resync after an interrupted rebuild.
6422 */
6423 ppl_hdr->entries_count = __cpu_to_le32(1);
6424 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
6425 }
6426
6427 free(buf_orig);
6428
6429 return ret;
6430 }
6431
6432 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6433 {
6434 struct intel_super *super = st->sb;
6435 struct dl *d;
6436 int ret = 0;
6437
6438 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6439 info->array.level != 5)
6440 return 0;
6441
6442 for (d = super->disks; d ; d = d->next) {
6443 if (d->index < 0 || is_failed(&d->disk))
6444 continue;
6445
6446 ret = st->ss->write_init_ppl(st, info, d->fd);
6447 if (ret)
6448 break;
6449 }
6450
6451 return ret;
6452 }
6453
6454 static int write_init_super_imsm(struct supertype *st)
6455 {
6456 struct intel_super *super = st->sb;
6457 int current_vol = super->current_vol;
6458 int rv = 0;
6459 struct mdinfo info;
6460
6461 getinfo_super_imsm(st, &info, NULL);
6462
6463 /* we are done with current_vol reset it to point st at the container */
6464 super->current_vol = -1;
6465
6466 if (st->update_tail) {
6467 /* queue the recently created array / added disk
6468 * as a metadata update */
6469
6470 /* determine if we are creating a volume or adding a disk */
6471 if (current_vol < 0) {
6472 /* in the mgmt (add/remove) disk case we are running
6473 * in mdmon context, so don't close fd's
6474 */
6475 rv = mgmt_disk(st);
6476 } else {
6477 rv = write_init_ppl_imsm_all(st, &info);
6478 if (!rv)
6479 rv = create_array(st, current_vol);
6480 }
6481 } else {
6482 struct dl *d;
6483 for (d = super->disks; d; d = d->next)
6484 Kill(d->devname, NULL, 0, -1, 1);
6485 if (current_vol >= 0)
6486 rv = write_init_ppl_imsm_all(st, &info);
6487 if (!rv)
6488 rv = write_super_imsm(st, 1);
6489 }
6490
6491 return rv;
6492 }
6493
6494 static int store_super_imsm(struct supertype *st, int fd)
6495 {
6496 struct intel_super *super = st->sb;
6497 struct imsm_super *mpb = super ? super->anchor : NULL;
6498
6499 if (!mpb)
6500 return 1;
6501
6502 if (super->sector_size == 4096)
6503 convert_to_4k(super);
6504 return store_imsm_mpb(fd, mpb);
6505 }
6506
6507 static int validate_geometry_imsm_container(struct supertype *st, int level,
6508 int layout, int raiddisks, int chunk,
6509 unsigned long long size,
6510 unsigned long long data_offset,
6511 char *dev,
6512 unsigned long long *freesize,
6513 int verbose)
6514 {
6515 int fd;
6516 unsigned long long ldsize;
6517 struct intel_super *super;
6518 int rv = 0;
6519
6520 if (level != LEVEL_CONTAINER)
6521 return 0;
6522 if (!dev)
6523 return 1;
6524
6525 fd = open(dev, O_RDONLY|O_EXCL, 0);
6526 if (fd < 0) {
6527 if (verbose > 0)
6528 pr_err("imsm: Cannot open %s: %s\n",
6529 dev, strerror(errno));
6530 return 0;
6531 }
6532 if (!get_dev_size(fd, dev, &ldsize)) {
6533 close(fd);
6534 return 0;
6535 }
6536
6537 /* capabilities retrieve could be possible
6538 * note that there is no fd for the disks in array.
6539 */
6540 super = alloc_super();
6541 if (!super) {
6542 close(fd);
6543 return 0;
6544 }
6545 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6546 close(fd);
6547 free_imsm(super);
6548 return 0;
6549 }
6550
6551 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6552 if (rv != 0) {
6553 #if DEBUG
6554 char str[256];
6555 fd2devname(fd, str);
6556 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6557 fd, str, super->orom, rv, raiddisks);
6558 #endif
6559 /* no orom/efi or non-intel hba of the disk */
6560 close(fd);
6561 free_imsm(super);
6562 return 0;
6563 }
6564 close(fd);
6565 if (super->orom) {
6566 if (raiddisks > super->orom->tds) {
6567 if (verbose)
6568 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6569 raiddisks, super->orom->tds);
6570 free_imsm(super);
6571 return 0;
6572 }
6573 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6574 (ldsize >> 9) >> 32 > 0) {
6575 if (verbose)
6576 pr_err("%s exceeds maximum platform supported size\n", dev);
6577 free_imsm(super);
6578 return 0;
6579 }
6580 }
6581
6582 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6583 free_imsm(super);
6584
6585 return 1;
6586 }
6587
6588 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6589 {
6590 const unsigned long long base_start = e[*idx].start;
6591 unsigned long long end = base_start + e[*idx].size;
6592 int i;
6593
6594 if (base_start == end)
6595 return 0;
6596
6597 *idx = *idx + 1;
6598 for (i = *idx; i < num_extents; i++) {
6599 /* extend overlapping extents */
6600 if (e[i].start >= base_start &&
6601 e[i].start <= end) {
6602 if (e[i].size == 0)
6603 return 0;
6604 if (e[i].start + e[i].size > end)
6605 end = e[i].start + e[i].size;
6606 } else if (e[i].start > end) {
6607 *idx = i;
6608 break;
6609 }
6610 }
6611
6612 return end - base_start;
6613 }
6614
6615 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6616 {
6617 /* build a composite disk with all known extents and generate a new
6618 * 'maxsize' given the "all disks in an array must share a common start
6619 * offset" constraint
6620 */
6621 struct extent *e = xcalloc(sum_extents, sizeof(*e));
6622 struct dl *dl;
6623 int i, j;
6624 int start_extent;
6625 unsigned long long pos;
6626 unsigned long long start = 0;
6627 unsigned long long maxsize;
6628 unsigned long reserve;
6629
6630 /* coalesce and sort all extents. also, check to see if we need to
6631 * reserve space between member arrays
6632 */
6633 j = 0;
6634 for (dl = super->disks; dl; dl = dl->next) {
6635 if (!dl->e)
6636 continue;
6637 for (i = 0; i < dl->extent_cnt; i++)
6638 e[j++] = dl->e[i];
6639 }
6640 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6641
6642 /* merge extents */
6643 i = 0;
6644 j = 0;
6645 while (i < sum_extents) {
6646 e[j].start = e[i].start;
6647 e[j].size = find_size(e, &i, sum_extents);
6648 j++;
6649 if (e[j-1].size == 0)
6650 break;
6651 }
6652
6653 pos = 0;
6654 maxsize = 0;
6655 start_extent = 0;
6656 i = 0;
6657 do {
6658 unsigned long long esize;
6659
6660 esize = e[i].start - pos;
6661 if (esize >= maxsize) {
6662 maxsize = esize;
6663 start = pos;
6664 start_extent = i;
6665 }
6666 pos = e[i].start + e[i].size;
6667 i++;
6668 } while (e[i-1].size);
6669 free(e);
6670
6671 if (maxsize == 0)
6672 return 0;
6673
6674 /* FIXME assumes volume at offset 0 is the first volume in a
6675 * container
6676 */
6677 if (start_extent > 0)
6678 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6679 else
6680 reserve = 0;
6681
6682 if (maxsize < reserve)
6683 return 0;
6684
6685 super->create_offset = ~((unsigned long long) 0);
6686 if (start + reserve > super->create_offset)
6687 return 0; /* start overflows create_offset */
6688 super->create_offset = start + reserve;
6689
6690 return maxsize - reserve;
6691 }
6692
6693 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6694 {
6695 if (level < 0 || level == 6 || level == 4)
6696 return 0;
6697
6698 /* if we have an orom prevent invalid raid levels */
6699 if (orom)
6700 switch (level) {
6701 case 0: return imsm_orom_has_raid0(orom);
6702 case 1:
6703 if (raiddisks > 2)
6704 return imsm_orom_has_raid1e(orom);
6705 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6706 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6707 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6708 }
6709 else
6710 return 1; /* not on an Intel RAID platform so anything goes */
6711
6712 return 0;
6713 }
6714
6715 static int
6716 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6717 int dpa, int verbose)
6718 {
6719 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6720 struct mdstat_ent *memb;
6721 int count = 0;
6722 int num = 0;
6723 struct md_list *dv;
6724 int found;
6725
6726 for (memb = mdstat ; memb ; memb = memb->next) {
6727 if (memb->metadata_version &&
6728 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6729 (strcmp(&memb->metadata_version[9], name) == 0) &&
6730 !is_subarray(memb->metadata_version+9) &&
6731 memb->members) {
6732 struct dev_member *dev = memb->members;
6733 int fd = -1;
6734 while(dev && (fd < 0)) {
6735 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6736 num = sprintf(path, "%s%s", "/dev/", dev->name);
6737 if (num > 0)
6738 fd = open(path, O_RDONLY, 0);
6739 if (num <= 0 || fd < 0) {
6740 pr_vrb("Cannot open %s: %s\n",
6741 dev->name, strerror(errno));
6742 }
6743 free(path);
6744 dev = dev->next;
6745 }
6746 found = 0;
6747 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
6748 struct mdstat_ent *vol;
6749 for (vol = mdstat ; vol ; vol = vol->next) {
6750 if (vol->active > 0 &&
6751 vol->metadata_version &&
6752 is_container_member(vol, memb->devnm)) {
6753 found++;
6754 count++;
6755 }
6756 }
6757 if (*devlist && (found < dpa)) {
6758 dv = xcalloc(1, sizeof(*dv));
6759 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6760 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
6761 dv->found = found;
6762 dv->used = 0;
6763 dv->next = *devlist;
6764 *devlist = dv;
6765 }
6766 }
6767 if (fd >= 0)
6768 close(fd);
6769 }
6770 }
6771 free_mdstat(mdstat);
6772 return count;
6773 }
6774
6775 #ifdef DEBUG_LOOP
6776 static struct md_list*
6777 get_loop_devices(void)
6778 {
6779 int i;
6780 struct md_list *devlist = NULL;
6781 struct md_list *dv;
6782
6783 for(i = 0; i < 12; i++) {
6784 dv = xcalloc(1, sizeof(*dv));
6785 dv->devname = xmalloc(40);
6786 sprintf(dv->devname, "/dev/loop%d", i);
6787 dv->next = devlist;
6788 devlist = dv;
6789 }
6790 return devlist;
6791 }
6792 #endif
6793
6794 static struct md_list*
6795 get_devices(const char *hba_path)
6796 {
6797 struct md_list *devlist = NULL;
6798 struct md_list *dv;
6799 struct dirent *ent;
6800 DIR *dir;
6801 int err = 0;
6802
6803 #if DEBUG_LOOP
6804 devlist = get_loop_devices();
6805 return devlist;
6806 #endif
6807 /* scroll through /sys/dev/block looking for devices attached to
6808 * this hba
6809 */
6810 dir = opendir("/sys/dev/block");
6811 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6812 int fd;
6813 char buf[1024];
6814 int major, minor;
6815 char *path = NULL;
6816 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6817 continue;
6818 path = devt_to_devpath(makedev(major, minor));
6819 if (!path)
6820 continue;
6821 if (!path_attached_to_hba(path, hba_path)) {
6822 free(path);
6823 path = NULL;
6824 continue;
6825 }
6826 free(path);
6827 path = NULL;
6828 fd = dev_open(ent->d_name, O_RDONLY);
6829 if (fd >= 0) {
6830 fd2devname(fd, buf);
6831 close(fd);
6832 } else {
6833 pr_err("cannot open device: %s\n",
6834 ent->d_name);
6835 continue;
6836 }
6837
6838 dv = xcalloc(1, sizeof(*dv));
6839 dv->devname = xstrdup(buf);
6840 dv->next = devlist;
6841 devlist = dv;
6842 }
6843 if (err) {
6844 while(devlist) {
6845 dv = devlist;
6846 devlist = devlist->next;
6847 free(dv->devname);
6848 free(dv);
6849 }
6850 }
6851 closedir(dir);
6852 return devlist;
6853 }
6854
6855 static int
6856 count_volumes_list(struct md_list *devlist, char *homehost,
6857 int verbose, int *found)
6858 {
6859 struct md_list *tmpdev;
6860 int count = 0;
6861 struct supertype *st;
6862
6863 /* first walk the list of devices to find a consistent set
6864 * that match the criterea, if that is possible.
6865 * We flag the ones we like with 'used'.
6866 */
6867 *found = 0;
6868 st = match_metadata_desc_imsm("imsm");
6869 if (st == NULL) {
6870 pr_vrb("cannot allocate memory for imsm supertype\n");
6871 return 0;
6872 }
6873
6874 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6875 char *devname = tmpdev->devname;
6876 dev_t rdev;
6877 struct supertype *tst;
6878 int dfd;
6879 if (tmpdev->used > 1)
6880 continue;
6881 tst = dup_super(st);
6882 if (tst == NULL) {
6883 pr_vrb("cannot allocate memory for imsm supertype\n");
6884 goto err_1;
6885 }
6886 tmpdev->container = 0;
6887 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6888 if (dfd < 0) {
6889 dprintf("cannot open device %s: %s\n",
6890 devname, strerror(errno));
6891 tmpdev->used = 2;
6892 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
6893 tmpdev->used = 2;
6894 } else if (must_be_container(dfd)) {
6895 struct supertype *cst;
6896 cst = super_by_fd(dfd, NULL);
6897 if (cst == NULL) {
6898 dprintf("cannot recognize container type %s\n",
6899 devname);
6900 tmpdev->used = 2;
6901 } else if (tst->ss != st->ss) {
6902 dprintf("non-imsm container - ignore it: %s\n",
6903 devname);
6904 tmpdev->used = 2;
6905 } else if (!tst->ss->load_container ||
6906 tst->ss->load_container(tst, dfd, NULL))
6907 tmpdev->used = 2;
6908 else {
6909 tmpdev->container = 1;
6910 }
6911 if (cst)
6912 cst->ss->free_super(cst);
6913 } else {
6914 tmpdev->st_rdev = rdev;
6915 if (tst->ss->load_super(tst,dfd, NULL)) {
6916 dprintf("no RAID superblock on %s\n",
6917 devname);
6918 tmpdev->used = 2;
6919 } else if (tst->ss->compare_super == NULL) {
6920 dprintf("Cannot assemble %s metadata on %s\n",
6921 tst->ss->name, devname);
6922 tmpdev->used = 2;
6923 }
6924 }
6925 if (dfd >= 0)
6926 close(dfd);
6927 if (tmpdev->used == 2 || tmpdev->used == 4) {
6928 /* Ignore unrecognised devices during auto-assembly */
6929 goto loop;
6930 }
6931 else {
6932 struct mdinfo info;
6933 tst->ss->getinfo_super(tst, &info, NULL);
6934
6935 if (st->minor_version == -1)
6936 st->minor_version = tst->minor_version;
6937
6938 if (memcmp(info.uuid, uuid_zero,
6939 sizeof(int[4])) == 0) {
6940 /* this is a floating spare. It cannot define
6941 * an array unless there are no more arrays of
6942 * this type to be found. It can be included
6943 * in an array of this type though.
6944 */
6945 tmpdev->used = 3;
6946 goto loop;
6947 }
6948
6949 if (st->ss != tst->ss ||
6950 st->minor_version != tst->minor_version ||
6951 st->ss->compare_super(st, tst) != 0) {
6952 /* Some mismatch. If exactly one array matches this host,
6953 * we can resolve on that one.
6954 * Or, if we are auto assembling, we just ignore the second
6955 * for now.
6956 */
6957 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6958 devname);
6959 goto loop;
6960 }
6961 tmpdev->used = 1;
6962 *found = 1;
6963 dprintf("found: devname: %s\n", devname);
6964 }
6965 loop:
6966 if (tst)
6967 tst->ss->free_super(tst);
6968 }
6969 if (*found != 0) {
6970 int err;
6971 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6972 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6973 for (iter = head; iter; iter = iter->next) {
6974 dprintf("content->text_version: %s vol\n",
6975 iter->text_version);
6976 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6977 /* do not assemble arrays with unsupported
6978 configurations */
6979 dprintf("Cannot activate member %s.\n",
6980 iter->text_version);
6981 } else
6982 count++;
6983 }
6984 sysfs_free(head);
6985
6986 } else {
6987 dprintf("No valid super block on device list: err: %d %p\n",
6988 err, st->sb);
6989 }
6990 } else {
6991 dprintf("no more devices to examine\n");
6992 }
6993
6994 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6995 if (tmpdev->used == 1 && tmpdev->found) {
6996 if (count) {
6997 if (count < tmpdev->found)
6998 count = 0;
6999 else
7000 count -= tmpdev->found;
7001 }
7002 }
7003 if (tmpdev->used == 1)
7004 tmpdev->used = 4;
7005 }
7006 err_1:
7007 if (st)
7008 st->ss->free_super(st);
7009 return count;
7010 }
7011
7012 static int __count_volumes(char *hba_path, int dpa, int verbose,
7013 int cmp_hba_path)
7014 {
7015 struct sys_dev *idev, *intel_devices = find_intel_devices();
7016 int count = 0;
7017 const struct orom_entry *entry;
7018 struct devid_list *dv, *devid_list;
7019
7020 if (!hba_path)
7021 return 0;
7022
7023 for (idev = intel_devices; idev; idev = idev->next) {
7024 if (strstr(idev->path, hba_path))
7025 break;
7026 }
7027
7028 if (!idev || !idev->dev_id)
7029 return 0;
7030
7031 entry = get_orom_entry_by_device_id(idev->dev_id);
7032
7033 if (!entry || !entry->devid_list)
7034 return 0;
7035
7036 devid_list = entry->devid_list;
7037 for (dv = devid_list; dv; dv = dv->next) {
7038 struct md_list *devlist;
7039 struct sys_dev *device = NULL;
7040 char *hpath;
7041 int found = 0;
7042
7043 if (cmp_hba_path)
7044 device = device_by_id_and_path(dv->devid, hba_path);
7045 else
7046 device = device_by_id(dv->devid);
7047
7048 if (device)
7049 hpath = device->path;
7050 else
7051 return 0;
7052
7053 devlist = get_devices(hpath);
7054 /* if no intel devices return zero volumes */
7055 if (devlist == NULL)
7056 return 0;
7057
7058 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7059 verbose);
7060 dprintf("path: %s active arrays: %d\n", hpath, count);
7061 if (devlist == NULL)
7062 return 0;
7063 do {
7064 found = 0;
7065 count += count_volumes_list(devlist,
7066 NULL,
7067 verbose,
7068 &found);
7069 dprintf("found %d count: %d\n", found, count);
7070 } while (found);
7071
7072 dprintf("path: %s total number of volumes: %d\n", hpath, count);
7073
7074 while (devlist) {
7075 struct md_list *dv = devlist;
7076 devlist = devlist->next;
7077 free(dv->devname);
7078 free(dv);
7079 }
7080 }
7081 return count;
7082 }
7083
7084 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7085 {
7086 if (!hba)
7087 return 0;
7088 if (hba->type == SYS_DEV_VMD) {
7089 struct sys_dev *dev;
7090 int count = 0;
7091
7092 for (dev = find_intel_devices(); dev; dev = dev->next) {
7093 if (dev->type == SYS_DEV_VMD)
7094 count += __count_volumes(dev->path, dpa,
7095 verbose, 1);
7096 }
7097 return count;
7098 }
7099 return __count_volumes(hba->path, dpa, verbose, 0);
7100 }
7101
7102 static int imsm_default_chunk(const struct imsm_orom *orom)
7103 {
7104 /* up to 512 if the plaform supports it, otherwise the platform max.
7105 * 128 if no platform detected
7106 */
7107 int fs = max(7, orom ? fls(orom->sss) : 0);
7108
7109 return min(512, (1 << fs));
7110 }
7111
7112 static int
7113 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
7114 int raiddisks, int *chunk, unsigned long long size, int verbose)
7115 {
7116 /* check/set platform and metadata limits/defaults */
7117 if (super->orom && raiddisks > super->orom->dpa) {
7118 pr_vrb("platform supports a maximum of %d disks per array\n",
7119 super->orom->dpa);
7120 return 0;
7121 }
7122
7123 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
7124 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
7125 pr_vrb("platform does not support raid%d with %d disk%s\n",
7126 level, raiddisks, raiddisks > 1 ? "s" : "");
7127 return 0;
7128 }
7129
7130 if (*chunk == 0 || *chunk == UnSet)
7131 *chunk = imsm_default_chunk(super->orom);
7132
7133 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7134 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
7135 return 0;
7136 }
7137
7138 if (layout != imsm_level_to_layout(level)) {
7139 if (level == 5)
7140 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
7141 else if (level == 10)
7142 pr_vrb("imsm raid 10 only supports the n2 layout\n");
7143 else
7144 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
7145 layout, level);
7146 return 0;
7147 }
7148
7149 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
7150 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
7151 pr_vrb("platform does not support a volume size over 2TB\n");
7152 return 0;
7153 }
7154
7155 return 1;
7156 }
7157
7158 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
7159 * FIX ME add ahci details
7160 */
7161 static int validate_geometry_imsm_volume(struct supertype *st, int level,
7162 int layout, int raiddisks, int *chunk,
7163 unsigned long long size,
7164 unsigned long long data_offset,
7165 char *dev,
7166 unsigned long long *freesize,
7167 int verbose)
7168 {
7169 dev_t rdev;
7170 struct intel_super *super = st->sb;
7171 struct imsm_super *mpb;
7172 struct dl *dl;
7173 unsigned long long pos = 0;
7174 unsigned long long maxsize;
7175 struct extent *e;
7176 int i;
7177
7178 /* We must have the container info already read in. */
7179 if (!super)
7180 return 0;
7181
7182 mpb = super->anchor;
7183
7184 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7185 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
7186 return 0;
7187 }
7188 if (!dev) {
7189 /* General test: make sure there is space for
7190 * 'raiddisks' device extents of size 'size' at a given
7191 * offset
7192 */
7193 unsigned long long minsize = size;
7194 unsigned long long start_offset = MaxSector;
7195 int dcnt = 0;
7196 if (minsize == 0)
7197 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7198 for (dl = super->disks; dl ; dl = dl->next) {
7199 int found = 0;
7200
7201 pos = 0;
7202 i = 0;
7203 e = get_extents(super, dl, 0);
7204 if (!e) continue;
7205 do {
7206 unsigned long long esize;
7207 esize = e[i].start - pos;
7208 if (esize >= minsize)
7209 found = 1;
7210 if (found && start_offset == MaxSector) {
7211 start_offset = pos;
7212 break;
7213 } else if (found && pos != start_offset) {
7214 found = 0;
7215 break;
7216 }
7217 pos = e[i].start + e[i].size;
7218 i++;
7219 } while (e[i-1].size);
7220 if (found)
7221 dcnt++;
7222 free(e);
7223 }
7224 if (dcnt < raiddisks) {
7225 if (verbose)
7226 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
7227 dcnt, raiddisks);
7228 return 0;
7229 }
7230 return 1;
7231 }
7232
7233 /* This device must be a member of the set */
7234 if (!stat_is_blkdev(dev, &rdev))
7235 return 0;
7236 for (dl = super->disks ; dl ; dl = dl->next) {
7237 if (dl->major == (int)major(rdev) &&
7238 dl->minor == (int)minor(rdev))
7239 break;
7240 }
7241 if (!dl) {
7242 if (verbose)
7243 pr_err("%s is not in the same imsm set\n", dev);
7244 return 0;
7245 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7246 /* If a volume is present then the current creation attempt
7247 * cannot incorporate new spares because the orom may not
7248 * understand this configuration (all member disks must be
7249 * members of each array in the container).
7250 */
7251 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7252 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7253 return 0;
7254 } else if (super->orom && mpb->num_raid_devs > 0 &&
7255 mpb->num_disks != raiddisks) {
7256 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7257 return 0;
7258 }
7259
7260 /* retrieve the largest free space block */
7261 e = get_extents(super, dl, 0);
7262 maxsize = 0;
7263 i = 0;
7264 if (e) {
7265 do {
7266 unsigned long long esize;
7267
7268 esize = e[i].start - pos;
7269 if (esize >= maxsize)
7270 maxsize = esize;
7271 pos = e[i].start + e[i].size;
7272 i++;
7273 } while (e[i-1].size);
7274 dl->e = e;
7275 dl->extent_cnt = i;
7276 } else {
7277 if (verbose)
7278 pr_err("unable to determine free space for: %s\n",
7279 dev);
7280 return 0;
7281 }
7282 if (maxsize < size) {
7283 if (verbose)
7284 pr_err("%s not enough space (%llu < %llu)\n",
7285 dev, maxsize, size);
7286 return 0;
7287 }
7288
7289 /* count total number of extents for merge */
7290 i = 0;
7291 for (dl = super->disks; dl; dl = dl->next)
7292 if (dl->e)
7293 i += dl->extent_cnt;
7294
7295 maxsize = merge_extents(super, i);
7296
7297 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7298 pr_err("attempting to create a second volume with size less then remaining space.\n");
7299
7300 if (maxsize < size || maxsize == 0) {
7301 if (verbose) {
7302 if (maxsize == 0)
7303 pr_err("no free space left on device. Aborting...\n");
7304 else
7305 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7306 maxsize, size);
7307 }
7308 return 0;
7309 }
7310
7311 *freesize = maxsize;
7312
7313 if (super->orom) {
7314 int count = count_volumes(super->hba,
7315 super->orom->dpa, verbose);
7316 if (super->orom->vphba <= count) {
7317 pr_vrb("platform does not support more than %d raid volumes.\n",
7318 super->orom->vphba);
7319 return 0;
7320 }
7321 }
7322 return 1;
7323 }
7324
7325 static int imsm_get_free_size(struct supertype *st, int raiddisks,
7326 unsigned long long size, int chunk,
7327 unsigned long long *freesize)
7328 {
7329 struct intel_super *super = st->sb;
7330 struct imsm_super *mpb = super->anchor;
7331 struct dl *dl;
7332 int i;
7333 int extent_cnt;
7334 struct extent *e;
7335 unsigned long long maxsize;
7336 unsigned long long minsize;
7337 int cnt;
7338 int used;
7339
7340 /* find the largest common start free region of the possible disks */
7341 used = 0;
7342 extent_cnt = 0;
7343 cnt = 0;
7344 for (dl = super->disks; dl; dl = dl->next) {
7345 dl->raiddisk = -1;
7346
7347 if (dl->index >= 0)
7348 used++;
7349
7350 /* don't activate new spares if we are orom constrained
7351 * and there is already a volume active in the container
7352 */
7353 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7354 continue;
7355
7356 e = get_extents(super, dl, 0);
7357 if (!e)
7358 continue;
7359 for (i = 1; e[i-1].size; i++)
7360 ;
7361 dl->e = e;
7362 dl->extent_cnt = i;
7363 extent_cnt += i;
7364 cnt++;
7365 }
7366
7367 maxsize = merge_extents(super, extent_cnt);
7368 minsize = size;
7369 if (size == 0)
7370 /* chunk is in K */
7371 minsize = chunk * 2;
7372
7373 if (cnt < raiddisks ||
7374 (super->orom && used && used != raiddisks) ||
7375 maxsize < minsize ||
7376 maxsize == 0) {
7377 pr_err("not enough devices with space to create array.\n");
7378 return 0; /* No enough free spaces large enough */
7379 }
7380
7381 if (size == 0) {
7382 size = maxsize;
7383 if (chunk) {
7384 size /= 2 * chunk;
7385 size *= 2 * chunk;
7386 }
7387 maxsize = size;
7388 }
7389 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7390 pr_err("attempting to create a second volume with size less then remaining space.\n");
7391 cnt = 0;
7392 for (dl = super->disks; dl; dl = dl->next)
7393 if (dl->e)
7394 dl->raiddisk = cnt++;
7395
7396 *freesize = size;
7397
7398 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7399
7400 return 1;
7401 }
7402
7403 static int reserve_space(struct supertype *st, int raiddisks,
7404 unsigned long long size, int chunk,
7405 unsigned long long *freesize)
7406 {
7407 struct intel_super *super = st->sb;
7408 struct dl *dl;
7409 int cnt;
7410 int rv = 0;
7411
7412 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7413 if (rv) {
7414 cnt = 0;
7415 for (dl = super->disks; dl; dl = dl->next)
7416 if (dl->e)
7417 dl->raiddisk = cnt++;
7418 rv = 1;
7419 }
7420
7421 return rv;
7422 }
7423
7424 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7425 int raiddisks, int *chunk, unsigned long long size,
7426 unsigned long long data_offset,
7427 char *dev, unsigned long long *freesize,
7428 int consistency_policy, int verbose)
7429 {
7430 int fd, cfd;
7431 struct mdinfo *sra;
7432 int is_member = 0;
7433
7434 /* load capability
7435 * if given unused devices create a container
7436 * if given given devices in a container create a member volume
7437 */
7438 if (level == LEVEL_CONTAINER) {
7439 /* Must be a fresh device to add to a container */
7440 return validate_geometry_imsm_container(st, level, layout,
7441 raiddisks,
7442 *chunk,
7443 size, data_offset,
7444 dev, freesize,
7445 verbose);
7446 }
7447
7448 /*
7449 * Size is given in sectors.
7450 */
7451 if (size && (size < 2048)) {
7452 pr_err("Given size must be greater than 1M.\n");
7453 /* Depends on algorithm in Create.c :
7454 * if container was given (dev == NULL) return -1,
7455 * if block device was given ( dev != NULL) return 0.
7456 */
7457 return dev ? -1 : 0;
7458 }
7459
7460 if (!dev) {
7461 if (st->sb) {
7462 struct intel_super *super = st->sb;
7463 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7464 raiddisks, chunk, size,
7465 verbose))
7466 return 0;
7467 /* we are being asked to automatically layout a
7468 * new volume based on the current contents of
7469 * the container. If the the parameters can be
7470 * satisfied reserve_space will record the disks,
7471 * start offset, and size of the volume to be
7472 * created. add_to_super and getinfo_super
7473 * detect when autolayout is in progress.
7474 */
7475 /* assuming that freesize is always given when array is
7476 created */
7477 if (super->orom && freesize) {
7478 int count;
7479 count = count_volumes(super->hba,
7480 super->orom->dpa, verbose);
7481 if (super->orom->vphba <= count) {
7482 pr_vrb("platform does not support more than %d raid volumes.\n",
7483 super->orom->vphba);
7484 return 0;
7485 }
7486 }
7487 if (freesize)
7488 return reserve_space(st, raiddisks, size,
7489 *chunk, freesize);
7490 }
7491 return 1;
7492 }
7493 if (st->sb) {
7494 /* creating in a given container */
7495 return validate_geometry_imsm_volume(st, level, layout,
7496 raiddisks, chunk, size,
7497 data_offset,
7498 dev, freesize, verbose);
7499 }
7500
7501 /* This device needs to be a device in an 'imsm' container */
7502 fd = open(dev, O_RDONLY|O_EXCL, 0);
7503 if (fd >= 0) {
7504 if (verbose)
7505 pr_err("Cannot create this array on device %s\n",
7506 dev);
7507 close(fd);
7508 return 0;
7509 }
7510 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7511 if (verbose)
7512 pr_err("Cannot open %s: %s\n",
7513 dev, strerror(errno));
7514 return 0;
7515 }
7516 /* Well, it is in use by someone, maybe an 'imsm' container. */
7517 cfd = open_container(fd);
7518 close(fd);
7519 if (cfd < 0) {
7520 if (verbose)
7521 pr_err("Cannot use %s: It is busy\n",
7522 dev);
7523 return 0;
7524 }
7525 sra = sysfs_read(cfd, NULL, GET_VERSION);
7526 if (sra && sra->array.major_version == -1 &&
7527 strcmp(sra->text_version, "imsm") == 0)
7528 is_member = 1;
7529 sysfs_free(sra);
7530 if (is_member) {
7531 /* This is a member of a imsm container. Load the container
7532 * and try to create a volume
7533 */
7534 struct intel_super *super;
7535
7536 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7537 st->sb = super;
7538 strcpy(st->container_devnm, fd2devnm(cfd));
7539 close(cfd);
7540 return validate_geometry_imsm_volume(st, level, layout,
7541 raiddisks, chunk,
7542 size, data_offset, dev,
7543 freesize, 1)
7544 ? 1 : -1;
7545 }
7546 }
7547
7548 if (verbose)
7549 pr_err("failed container membership check\n");
7550
7551 close(cfd);
7552 return 0;
7553 }
7554
7555 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7556 {
7557 struct intel_super *super = st->sb;
7558
7559 if (level && *level == UnSet)
7560 *level = LEVEL_CONTAINER;
7561
7562 if (level && layout && *layout == UnSet)
7563 *layout = imsm_level_to_layout(*level);
7564
7565 if (chunk && (*chunk == UnSet || *chunk == 0))
7566 *chunk = imsm_default_chunk(super->orom);
7567 }
7568
7569 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7570
7571 static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
7572 {
7573 /* remove the subarray currently referenced by subarray_id */
7574 __u8 i;
7575 struct intel_dev **dp;
7576 struct intel_super *super = st->sb;
7577 __u8 current_vol = strtoul(subarray_id, NULL, 10);
7578 struct imsm_super *mpb = super->anchor;
7579
7580 if (mpb->num_raid_devs == 0)
7581 return 2;
7582
7583 /* block deletions that would change the uuid of active subarrays
7584 *
7585 * FIXME when immutable ids are available, but note that we'll
7586 * also need to fixup the invalidated/active subarray indexes in
7587 * mdstat
7588 */
7589 for (i = 0; i < mpb->num_raid_devs; i++) {
7590 char subarray[4];
7591
7592 if (i < current_vol)
7593 continue;
7594 sprintf(subarray, "%u", i);
7595 if (is_subarray_active(subarray, st->devnm)) {
7596 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7597 current_vol, i);
7598
7599 return 2;
7600 }
7601 }
7602
7603 if (st->update_tail) {
7604 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7605
7606 u->type = update_kill_array;
7607 u->dev_idx = current_vol;
7608 append_metadata_update(st, u, sizeof(*u));
7609
7610 return 0;
7611 }
7612
7613 for (dp = &super->devlist; *dp;)
7614 if ((*dp)->index == current_vol) {
7615 *dp = (*dp)->next;
7616 } else {
7617 handle_missing(super, (*dp)->dev);
7618 if ((*dp)->index > current_vol)
7619 (*dp)->index--;
7620 dp = &(*dp)->next;
7621 }
7622
7623 /* no more raid devices, all active components are now spares,
7624 * but of course failed are still failed
7625 */
7626 if (--mpb->num_raid_devs == 0) {
7627 struct dl *d;
7628
7629 for (d = super->disks; d; d = d->next)
7630 if (d->index > -2)
7631 mark_spare(d);
7632 }
7633
7634 super->updates_pending++;
7635
7636 return 0;
7637 }
7638
7639 static int update_subarray_imsm(struct supertype *st, char *subarray,
7640 char *update, struct mddev_ident *ident)
7641 {
7642 /* update the subarray currently referenced by ->current_vol */
7643 struct intel_super *super = st->sb;
7644 struct imsm_super *mpb = super->anchor;
7645
7646 if (strcmp(update, "name") == 0) {
7647 char *name = ident->name;
7648 char *ep;
7649 int vol;
7650
7651 if (is_subarray_active(subarray, st->devnm)) {
7652 pr_err("Unable to update name of active subarray\n");
7653 return 2;
7654 }
7655
7656 if (!check_name(super, name, 0))
7657 return 2;
7658
7659 vol = strtoul(subarray, &ep, 10);
7660 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7661 return 2;
7662
7663 if (st->update_tail) {
7664 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7665
7666 u->type = update_rename_array;
7667 u->dev_idx = vol;
7668 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7669 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7670 append_metadata_update(st, u, sizeof(*u));
7671 } else {
7672 struct imsm_dev *dev;
7673 int i, namelen;
7674
7675 dev = get_imsm_dev(super, vol);
7676 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7677 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7678 memcpy(dev->volume, name, namelen);
7679 for (i = 0; i < mpb->num_raid_devs; i++) {
7680 dev = get_imsm_dev(super, i);
7681 handle_missing(super, dev);
7682 }
7683 super->updates_pending++;
7684 }
7685 } else if (strcmp(update, "ppl") == 0 ||
7686 strcmp(update, "no-ppl") == 0) {
7687 int new_policy;
7688 char *ep;
7689 int vol = strtoul(subarray, &ep, 10);
7690
7691 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7692 return 2;
7693
7694 if (strcmp(update, "ppl") == 0)
7695 new_policy = RWH_MULTIPLE_DISTRIBUTED;
7696 else
7697 new_policy = RWH_MULTIPLE_OFF;
7698
7699 if (st->update_tail) {
7700 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7701
7702 u->type = update_rwh_policy;
7703 u->dev_idx = vol;
7704 u->new_policy = new_policy;
7705 append_metadata_update(st, u, sizeof(*u));
7706 } else {
7707 struct imsm_dev *dev;
7708
7709 dev = get_imsm_dev(super, vol);
7710 dev->rwh_policy = new_policy;
7711 super->updates_pending++;
7712 }
7713 } else
7714 return 2;
7715
7716 return 0;
7717 }
7718
7719 static int is_gen_migration(struct imsm_dev *dev)
7720 {
7721 if (dev == NULL)
7722 return 0;
7723
7724 if (!dev->vol.migr_state)
7725 return 0;
7726
7727 if (migr_type(dev) == MIGR_GEN_MIGR)
7728 return 1;
7729
7730 return 0;
7731 }
7732
7733 static int is_rebuilding(struct imsm_dev *dev)
7734 {
7735 struct imsm_map *migr_map;
7736
7737 if (!dev->vol.migr_state)
7738 return 0;
7739
7740 if (migr_type(dev) != MIGR_REBUILD)
7741 return 0;
7742
7743 migr_map = get_imsm_map(dev, MAP_1);
7744
7745 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7746 return 1;
7747 else
7748 return 0;
7749 }
7750
7751 static int is_initializing(struct imsm_dev *dev)
7752 {
7753 struct imsm_map *migr_map;
7754
7755 if (!dev->vol.migr_state)
7756 return 0;
7757
7758 if (migr_type(dev) != MIGR_INIT)
7759 return 0;
7760
7761 migr_map = get_imsm_map(dev, MAP_1);
7762
7763 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7764 return 1;
7765
7766 return 0;
7767 }
7768
7769 static void update_recovery_start(struct intel_super *super,
7770 struct imsm_dev *dev,
7771 struct mdinfo *array)
7772 {
7773 struct mdinfo *rebuild = NULL;
7774 struct mdinfo *d;
7775 __u32 units;
7776
7777 if (!is_rebuilding(dev))
7778 return;
7779
7780 /* Find the rebuild target, but punt on the dual rebuild case */
7781 for (d = array->devs; d; d = d->next)
7782 if (d->recovery_start == 0) {
7783 if (rebuild)
7784 return;
7785 rebuild = d;
7786 }
7787
7788 if (!rebuild) {
7789 /* (?) none of the disks are marked with
7790 * IMSM_ORD_REBUILD, so assume they are missing and the
7791 * disk_ord_tbl was not correctly updated
7792 */
7793 dprintf("failed to locate out-of-sync disk\n");
7794 return;
7795 }
7796
7797 units = __le32_to_cpu(dev->vol.curr_migr_unit);
7798 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
7799 }
7800
7801 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
7802
7803 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
7804 {
7805 /* Given a container loaded by load_super_imsm_all,
7806 * extract information about all the arrays into
7807 * an mdinfo tree.
7808 * If 'subarray' is given, just extract info about that array.
7809 *
7810 * For each imsm_dev create an mdinfo, fill it in,
7811 * then look for matching devices in super->disks
7812 * and create appropriate device mdinfo.
7813 */
7814 struct intel_super *super = st->sb;
7815 struct imsm_super *mpb = super->anchor;
7816 struct mdinfo *rest = NULL;
7817 unsigned int i;
7818 int sb_errors = 0;
7819 struct dl *d;
7820 int spare_disks = 0;
7821 int current_vol = super->current_vol;
7822
7823 /* do not assemble arrays when not all attributes are supported */
7824 if (imsm_check_attributes(mpb->attributes) == 0) {
7825 sb_errors = 1;
7826 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
7827 }
7828
7829 /* count spare devices, not used in maps
7830 */
7831 for (d = super->disks; d; d = d->next)
7832 if (d->index == -1)
7833 spare_disks++;
7834
7835 for (i = 0; i < mpb->num_raid_devs; i++) {
7836 struct imsm_dev *dev;
7837 struct imsm_map *map;
7838 struct imsm_map *map2;
7839 struct mdinfo *this;
7840 int slot;
7841 int chunk;
7842 char *ep;
7843 int level;
7844
7845 if (subarray &&
7846 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7847 continue;
7848
7849 dev = get_imsm_dev(super, i);
7850 map = get_imsm_map(dev, MAP_0);
7851 map2 = get_imsm_map(dev, MAP_1);
7852 level = get_imsm_raid_level(map);
7853
7854 /* do not publish arrays that are in the middle of an
7855 * unsupported migration
7856 */
7857 if (dev->vol.migr_state &&
7858 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7859 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
7860 dev->volume);
7861 continue;
7862 }
7863 /* do not publish arrays that are not support by controller's
7864 * OROM/EFI
7865 */
7866
7867 this = xmalloc(sizeof(*this));
7868
7869 super->current_vol = i;
7870 getinfo_super_imsm_volume(st, this, NULL);
7871 this->next = rest;
7872 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7873 /* mdadm does not support all metadata features- set the bit in all arrays state */
7874 if (!validate_geometry_imsm_orom(super,
7875 level, /* RAID level */
7876 imsm_level_to_layout(level),
7877 map->num_members, /* raid disks */
7878 &chunk, imsm_dev_size(dev),
7879 1 /* verbose */)) {
7880 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
7881 dev->volume);
7882 this->array.state |=
7883 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7884 (1<<MD_SB_BLOCK_VOLUME);
7885 }
7886
7887 /* if array has bad blocks, set suitable bit in all arrays state */
7888 if (sb_errors)
7889 this->array.state |=
7890 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7891 (1<<MD_SB_BLOCK_VOLUME);
7892
7893 for (slot = 0 ; slot < map->num_members; slot++) {
7894 unsigned long long recovery_start;
7895 struct mdinfo *info_d;
7896 struct dl *d;
7897 int idx;
7898 int skip;
7899 __u32 ord;
7900 int missing = 0;
7901
7902 skip = 0;
7903 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7904 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
7905 for (d = super->disks; d ; d = d->next)
7906 if (d->index == idx)
7907 break;
7908
7909 recovery_start = MaxSector;
7910 if (d == NULL)
7911 skip = 1;
7912 if (d && is_failed(&d->disk))
7913 skip = 1;
7914 if (!skip && (ord & IMSM_ORD_REBUILD))
7915 recovery_start = 0;
7916 if (!(ord & IMSM_ORD_REBUILD))
7917 this->array.working_disks++;
7918 /*
7919 * if we skip some disks the array will be assmebled degraded;
7920 * reset resync start to avoid a dirty-degraded
7921 * situation when performing the intial sync
7922 */
7923 if (skip)
7924 missing++;
7925
7926 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
7927 if ((!able_to_resync(level, missing) ||
7928 recovery_start == 0))
7929 this->resync_start = MaxSector;
7930 } else {
7931 /*
7932 * FIXME handle dirty degraded
7933 */
7934 }
7935
7936 if (skip)
7937 continue;
7938
7939 info_d = xcalloc(1, sizeof(*info_d));
7940 info_d->next = this->devs;
7941 this->devs = info_d;
7942
7943 info_d->disk.number = d->index;
7944 info_d->disk.major = d->major;
7945 info_d->disk.minor = d->minor;
7946 info_d->disk.raid_disk = slot;
7947 info_d->recovery_start = recovery_start;
7948 if (map2) {
7949 if (slot < map2->num_members)
7950 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7951 else
7952 this->array.spare_disks++;
7953 } else {
7954 if (slot < map->num_members)
7955 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7956 else
7957 this->array.spare_disks++;
7958 }
7959
7960 info_d->events = __le32_to_cpu(mpb->generation_num);
7961 info_d->data_offset = pba_of_lba0(map);
7962 info_d->component_size = calc_component_size(map, dev);
7963
7964 if (map->raid_level == 5) {
7965 info_d->ppl_sector = this->ppl_sector;
7966 info_d->ppl_size = this->ppl_size;
7967 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
7968 recovery_start == 0)
7969 this->resync_start = 0;
7970 }
7971
7972 info_d->bb.supported = 1;
7973 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7974 info_d->data_offset,
7975 info_d->component_size,
7976 &info_d->bb);
7977 }
7978 /* now that the disk list is up-to-date fixup recovery_start */
7979 update_recovery_start(super, dev, this);
7980 this->array.spare_disks += spare_disks;
7981
7982 /* check for reshape */
7983 if (this->reshape_active == 1)
7984 recover_backup_imsm(st, this);
7985 rest = this;
7986 }
7987
7988 super->current_vol = current_vol;
7989 return rest;
7990 }
7991
7992 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7993 int failed, int look_in_map)
7994 {
7995 struct imsm_map *map;
7996
7997 map = get_imsm_map(dev, look_in_map);
7998
7999 if (!failed)
8000 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
8001 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
8002
8003 switch (get_imsm_raid_level(map)) {
8004 case 0:
8005 return IMSM_T_STATE_FAILED;
8006 break;
8007 case 1:
8008 if (failed < map->num_members)
8009 return IMSM_T_STATE_DEGRADED;
8010 else
8011 return IMSM_T_STATE_FAILED;
8012 break;
8013 case 10:
8014 {
8015 /**
8016 * check to see if any mirrors have failed, otherwise we
8017 * are degraded. Even numbered slots are mirrored on
8018 * slot+1
8019 */
8020 int i;
8021 /* gcc -Os complains that this is unused */
8022 int insync = insync;
8023
8024 for (i = 0; i < map->num_members; i++) {
8025 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
8026 int idx = ord_to_idx(ord);
8027 struct imsm_disk *disk;
8028
8029 /* reset the potential in-sync count on even-numbered
8030 * slots. num_copies is always 2 for imsm raid10
8031 */
8032 if ((i & 1) == 0)
8033 insync = 2;
8034
8035 disk = get_imsm_disk(super, idx);
8036 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8037 insync--;
8038
8039 /* no in-sync disks left in this mirror the
8040 * array has failed
8041 */
8042 if (insync == 0)
8043 return IMSM_T_STATE_FAILED;
8044 }
8045
8046 return IMSM_T_STATE_DEGRADED;
8047 }
8048 case 5:
8049 if (failed < 2)
8050 return IMSM_T_STATE_DEGRADED;
8051 else
8052 return IMSM_T_STATE_FAILED;
8053 break;
8054 default:
8055 break;
8056 }
8057
8058 return map->map_state;
8059 }
8060
8061 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8062 int look_in_map)
8063 {
8064 int i;
8065 int failed = 0;
8066 struct imsm_disk *disk;
8067 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8068 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
8069 struct imsm_map *map_for_loop;
8070 __u32 ord;
8071 int idx;
8072 int idx_1;
8073
8074 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8075 * disks that are being rebuilt. New failures are recorded to
8076 * map[0]. So we look through all the disks we started with and
8077 * see if any failures are still present, or if any new ones
8078 * have arrived
8079 */
8080 map_for_loop = map;
8081 if (prev && (map->num_members < prev->num_members))
8082 map_for_loop = prev;
8083
8084 for (i = 0; i < map_for_loop->num_members; i++) {
8085 idx_1 = -255;
8086 /* when MAP_X is passed both maps failures are counted
8087 */
8088 if (prev &&
8089 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8090 i < prev->num_members) {
8091 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8092 idx_1 = ord_to_idx(ord);
8093
8094 disk = get_imsm_disk(super, idx_1);
8095 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8096 failed++;
8097 }
8098 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8099 i < map->num_members) {
8100 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8101 idx = ord_to_idx(ord);
8102
8103 if (idx != idx_1) {
8104 disk = get_imsm_disk(super, idx);
8105 if (!disk || is_failed(disk) ||
8106 ord & IMSM_ORD_REBUILD)
8107 failed++;
8108 }
8109 }
8110 }
8111
8112 return failed;
8113 }
8114
8115 static int imsm_open_new(struct supertype *c, struct active_array *a,
8116 char *inst)
8117 {
8118 struct intel_super *super = c->sb;
8119 struct imsm_super *mpb = super->anchor;
8120 struct imsm_update_prealloc_bb_mem u;
8121
8122 if (atoi(inst) >= mpb->num_raid_devs) {
8123 pr_err("subarry index %d, out of range\n", atoi(inst));
8124 return -ENODEV;
8125 }
8126
8127 dprintf("imsm: open_new %s\n", inst);
8128 a->info.container_member = atoi(inst);
8129
8130 u.type = update_prealloc_badblocks_mem;
8131 imsm_update_metadata_locally(c, &u, sizeof(u));
8132
8133 return 0;
8134 }
8135
8136 static int is_resyncing(struct imsm_dev *dev)
8137 {
8138 struct imsm_map *migr_map;
8139
8140 if (!dev->vol.migr_state)
8141 return 0;
8142
8143 if (migr_type(dev) == MIGR_INIT ||
8144 migr_type(dev) == MIGR_REPAIR)
8145 return 1;
8146
8147 if (migr_type(dev) == MIGR_GEN_MIGR)
8148 return 0;
8149
8150 migr_map = get_imsm_map(dev, MAP_1);
8151
8152 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8153 dev->vol.migr_type != MIGR_GEN_MIGR)
8154 return 1;
8155 else
8156 return 0;
8157 }
8158
8159 /* return true if we recorded new information */
8160 static int mark_failure(struct intel_super *super,
8161 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8162 {
8163 __u32 ord;
8164 int slot;
8165 struct imsm_map *map;
8166 char buf[MAX_RAID_SERIAL_LEN+3];
8167 unsigned int len, shift = 0;
8168
8169 /* new failures are always set in map[0] */
8170 map = get_imsm_map(dev, MAP_0);
8171
8172 slot = get_imsm_disk_slot(map, idx);
8173 if (slot < 0)
8174 return 0;
8175
8176 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
8177 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
8178 return 0;
8179
8180 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8181 buf[MAX_RAID_SERIAL_LEN] = '\000';
8182 strcat(buf, ":0");
8183 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8184 shift = len - MAX_RAID_SERIAL_LEN + 1;
8185 memcpy(disk->serial, &buf[shift], len + 1 - shift);
8186
8187 disk->status |= FAILED_DISK;
8188 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
8189 /* mark failures in second map if second map exists and this disk
8190 * in this slot.
8191 * This is valid for migration, initialization and rebuild
8192 */
8193 if (dev->vol.migr_state) {
8194 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
8195 int slot2 = get_imsm_disk_slot(map2, idx);
8196
8197 if (slot2 < map2->num_members && slot2 >= 0)
8198 set_imsm_ord_tbl_ent(map2, slot2,
8199 idx | IMSM_ORD_REBUILD);
8200 }
8201 if (map->failed_disk_num == 0xff ||
8202 (!is_rebuilding(dev) && map->failed_disk_num > slot))
8203 map->failed_disk_num = slot;
8204
8205 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8206
8207 return 1;
8208 }
8209
8210 static void mark_missing(struct intel_super *super,
8211 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8212 {
8213 mark_failure(super, dev, disk, idx);
8214
8215 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8216 return;
8217
8218 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8219 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8220 }
8221
8222 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8223 {
8224 struct dl *dl;
8225
8226 if (!super->missing)
8227 return;
8228
8229 /* When orom adds replacement for missing disk it does
8230 * not remove entry of missing disk, but just updates map with
8231 * new added disk. So it is not enough just to test if there is
8232 * any missing disk, we have to look if there are any failed disks
8233 * in map to stop migration */
8234
8235 dprintf("imsm: mark missing\n");
8236 /* end process for initialization and rebuild only
8237 */
8238 if (is_gen_migration(dev) == 0) {
8239 int failed = imsm_count_failed(super, dev, MAP_0);
8240
8241 if (failed) {
8242 __u8 map_state;
8243 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8244 struct imsm_map *map1;
8245 int i, ord, ord_map1;
8246 int rebuilt = 1;
8247
8248 for (i = 0; i < map->num_members; i++) {
8249 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8250 if (!(ord & IMSM_ORD_REBUILD))
8251 continue;
8252
8253 map1 = get_imsm_map(dev, MAP_1);
8254 if (!map1)
8255 continue;
8256
8257 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8258 if (ord_map1 & IMSM_ORD_REBUILD)
8259 rebuilt = 0;
8260 }
8261
8262 if (rebuilt) {
8263 map_state = imsm_check_degraded(super, dev,
8264 failed, MAP_0);
8265 end_migration(dev, super, map_state);
8266 }
8267 }
8268 }
8269 for (dl = super->missing; dl; dl = dl->next)
8270 mark_missing(super, dev, &dl->disk, dl->index);
8271 super->updates_pending++;
8272 }
8273
8274 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8275 long long new_size)
8276 {
8277 unsigned long long array_blocks;
8278 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8279 int used_disks = imsm_num_data_members(map);
8280
8281 if (used_disks == 0) {
8282 /* when problems occures
8283 * return current array_blocks value
8284 */
8285 array_blocks = imsm_dev_size(dev);
8286
8287 return array_blocks;
8288 }
8289
8290 /* set array size in metadata
8291 */
8292 if (new_size <= 0)
8293 /* OLCE size change is caused by added disks
8294 */
8295 array_blocks = per_dev_array_size(map) * used_disks;
8296 else
8297 /* Online Volume Size Change
8298 * Using available free space
8299 */
8300 array_blocks = new_size;
8301
8302 array_blocks = round_size_to_mb(array_blocks, used_disks);
8303 set_imsm_dev_size(dev, array_blocks);
8304
8305 return array_blocks;
8306 }
8307
8308 static void imsm_set_disk(struct active_array *a, int n, int state);
8309
8310 static void imsm_progress_container_reshape(struct intel_super *super)
8311 {
8312 /* if no device has a migr_state, but some device has a
8313 * different number of members than the previous device, start
8314 * changing the number of devices in this device to match
8315 * previous.
8316 */
8317 struct imsm_super *mpb = super->anchor;
8318 int prev_disks = -1;
8319 int i;
8320 int copy_map_size;
8321
8322 for (i = 0; i < mpb->num_raid_devs; i++) {
8323 struct imsm_dev *dev = get_imsm_dev(super, i);
8324 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8325 struct imsm_map *map2;
8326 int prev_num_members;
8327
8328 if (dev->vol.migr_state)
8329 return;
8330
8331 if (prev_disks == -1)
8332 prev_disks = map->num_members;
8333 if (prev_disks == map->num_members)
8334 continue;
8335
8336 /* OK, this array needs to enter reshape mode.
8337 * i.e it needs a migr_state
8338 */
8339
8340 copy_map_size = sizeof_imsm_map(map);
8341 prev_num_members = map->num_members;
8342 map->num_members = prev_disks;
8343 dev->vol.migr_state = 1;
8344 dev->vol.curr_migr_unit = 0;
8345 set_migr_type(dev, MIGR_GEN_MIGR);
8346 for (i = prev_num_members;
8347 i < map->num_members; i++)
8348 set_imsm_ord_tbl_ent(map, i, i);
8349 map2 = get_imsm_map(dev, MAP_1);
8350 /* Copy the current map */
8351 memcpy(map2, map, copy_map_size);
8352 map2->num_members = prev_num_members;
8353
8354 imsm_set_array_size(dev, -1);
8355 super->clean_migration_record_by_mdmon = 1;
8356 super->updates_pending++;
8357 }
8358 }
8359
8360 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8361 * states are handled in imsm_set_disk() with one exception, when a
8362 * resync is stopped due to a new failure this routine will set the
8363 * 'degraded' state for the array.
8364 */
8365 static int imsm_set_array_state(struct active_array *a, int consistent)
8366 {
8367 int inst = a->info.container_member;
8368 struct intel_super *super = a->container->sb;
8369 struct imsm_dev *dev = get_imsm_dev(super, inst);
8370 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8371 int failed = imsm_count_failed(super, dev, MAP_0);
8372 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8373 __u32 blocks_per_unit;
8374
8375 if (dev->vol.migr_state &&
8376 dev->vol.migr_type == MIGR_GEN_MIGR) {
8377 /* array state change is blocked due to reshape action
8378 * We might need to
8379 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8380 * - finish the reshape (if last_checkpoint is big and action != reshape)
8381 * - update curr_migr_unit
8382 */
8383 if (a->curr_action == reshape) {
8384 /* still reshaping, maybe update curr_migr_unit */
8385 goto mark_checkpoint;
8386 } else {
8387 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8388 /* for some reason we aborted the reshape.
8389 *
8390 * disable automatic metadata rollback
8391 * user action is required to recover process
8392 */
8393 if (0) {
8394 struct imsm_map *map2 =
8395 get_imsm_map(dev, MAP_1);
8396 dev->vol.migr_state = 0;
8397 set_migr_type(dev, 0);
8398 dev->vol.curr_migr_unit = 0;
8399 memcpy(map, map2,
8400 sizeof_imsm_map(map2));
8401 super->updates_pending++;
8402 }
8403 }
8404 if (a->last_checkpoint >= a->info.component_size) {
8405 unsigned long long array_blocks;
8406 int used_disks;
8407 struct mdinfo *mdi;
8408
8409 used_disks = imsm_num_data_members(map);
8410 if (used_disks > 0) {
8411 array_blocks =
8412 per_dev_array_size(map) *
8413 used_disks;
8414 array_blocks =
8415 round_size_to_mb(array_blocks,
8416 used_disks);
8417 a->info.custom_array_size = array_blocks;
8418 /* encourage manager to update array
8419 * size
8420 */
8421
8422 a->check_reshape = 1;
8423 }
8424 /* finalize online capacity expansion/reshape */
8425 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8426 imsm_set_disk(a,
8427 mdi->disk.raid_disk,
8428 mdi->curr_state);
8429
8430 imsm_progress_container_reshape(super);
8431 }
8432 }
8433 }
8434
8435 /* before we activate this array handle any missing disks */
8436 if (consistent == 2)
8437 handle_missing(super, dev);
8438
8439 if (consistent == 2 &&
8440 (!is_resync_complete(&a->info) ||
8441 map_state != IMSM_T_STATE_NORMAL ||
8442 dev->vol.migr_state))
8443 consistent = 0;
8444
8445 if (is_resync_complete(&a->info)) {
8446 /* complete intialization / resync,
8447 * recovery and interrupted recovery is completed in
8448 * ->set_disk
8449 */
8450 if (is_resyncing(dev)) {
8451 dprintf("imsm: mark resync done\n");
8452 end_migration(dev, super, map_state);
8453 super->updates_pending++;
8454 a->last_checkpoint = 0;
8455 }
8456 } else if ((!is_resyncing(dev) && !failed) &&
8457 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8458 /* mark the start of the init process if nothing is failed */
8459 dprintf("imsm: mark resync start\n");
8460 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8461 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8462 else
8463 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8464 super->updates_pending++;
8465 }
8466
8467 mark_checkpoint:
8468 /* skip checkpointing for general migration,
8469 * it is controlled in mdadm
8470 */
8471 if (is_gen_migration(dev))
8472 goto skip_mark_checkpoint;
8473
8474 /* check if we can update curr_migr_unit from resync_start, recovery_start */
8475 blocks_per_unit = blocks_per_migr_unit(super, dev);
8476 if (blocks_per_unit) {
8477 __u32 units32;
8478 __u64 units;
8479
8480 units = a->last_checkpoint / blocks_per_unit;
8481 units32 = units;
8482
8483 /* check that we did not overflow 32-bits, and that
8484 * curr_migr_unit needs updating
8485 */
8486 if (units32 == units &&
8487 units32 != 0 &&
8488 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8489 dprintf("imsm: mark checkpoint (%u)\n", units32);
8490 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8491 super->updates_pending++;
8492 }
8493 }
8494
8495 skip_mark_checkpoint:
8496 /* mark dirty / clean */
8497 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8498 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8499 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8500 if (consistent) {
8501 dev->vol.dirty = RAIDVOL_CLEAN;
8502 } else {
8503 dev->vol.dirty = RAIDVOL_DIRTY;
8504 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8505 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
8506 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8507 }
8508 super->updates_pending++;
8509 }
8510
8511 return consistent;
8512 }
8513
8514 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8515 {
8516 int inst = a->info.container_member;
8517 struct intel_super *super = a->container->sb;
8518 struct imsm_dev *dev = get_imsm_dev(super, inst);
8519 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8520
8521 if (slot > map->num_members) {
8522 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8523 slot, map->num_members - 1);
8524 return -1;
8525 }
8526
8527 if (slot < 0)
8528 return -1;
8529
8530 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8531 }
8532
8533 static void imsm_set_disk(struct active_array *a, int n, int state)
8534 {
8535 int inst = a->info.container_member;
8536 struct intel_super *super = a->container->sb;
8537 struct imsm_dev *dev = get_imsm_dev(super, inst);
8538 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8539 struct imsm_disk *disk;
8540 struct mdinfo *mdi;
8541 int recovery_not_finished = 0;
8542 int failed;
8543 int ord;
8544 __u8 map_state;
8545 int rebuild_done = 0;
8546 int i;
8547
8548 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
8549 if (ord < 0)
8550 return;
8551
8552 dprintf("imsm: set_disk %d:%x\n", n, state);
8553 disk = get_imsm_disk(super, ord_to_idx(ord));
8554
8555 /* check for new failures */
8556 if (disk && (state & DS_FAULTY)) {
8557 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8558 super->updates_pending++;
8559 }
8560
8561 /* check if in_sync */
8562 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8563 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8564
8565 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8566 rebuild_done = 1;
8567 super->updates_pending++;
8568 }
8569
8570 failed = imsm_count_failed(super, dev, MAP_0);
8571 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8572
8573 /* check if recovery complete, newly degraded, or failed */
8574 dprintf("imsm: Detected transition to state ");
8575 switch (map_state) {
8576 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8577 dprintf("normal: ");
8578 if (is_rebuilding(dev)) {
8579 dprintf_cont("while rebuilding");
8580 /* check if recovery is really finished */
8581 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8582 if (mdi->recovery_start != MaxSector) {
8583 recovery_not_finished = 1;
8584 break;
8585 }
8586 if (recovery_not_finished) {
8587 dprintf_cont("\n");
8588 dprintf("Rebuild has not finished yet, state not changed");
8589 if (a->last_checkpoint < mdi->recovery_start) {
8590 a->last_checkpoint = mdi->recovery_start;
8591 super->updates_pending++;
8592 }
8593 break;
8594 }
8595 end_migration(dev, super, map_state);
8596 map->failed_disk_num = ~0;
8597 super->updates_pending++;
8598 a->last_checkpoint = 0;
8599 break;
8600 }
8601 if (is_gen_migration(dev)) {
8602 dprintf_cont("while general migration");
8603 if (a->last_checkpoint >= a->info.component_size)
8604 end_migration(dev, super, map_state);
8605 else
8606 map->map_state = map_state;
8607 map->failed_disk_num = ~0;
8608 super->updates_pending++;
8609 break;
8610 }
8611 break;
8612 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8613 dprintf_cont("degraded: ");
8614 if (map->map_state != map_state && !dev->vol.migr_state) {
8615 dprintf_cont("mark degraded");
8616 map->map_state = map_state;
8617 super->updates_pending++;
8618 a->last_checkpoint = 0;
8619 break;
8620 }
8621 if (is_rebuilding(dev)) {
8622 dprintf_cont("while rebuilding ");
8623 if (state & DS_FAULTY) {
8624 dprintf_cont("removing failed drive ");
8625 if (n == map->failed_disk_num) {
8626 dprintf_cont("end migration");
8627 end_migration(dev, super, map_state);
8628 a->last_checkpoint = 0;
8629 } else {
8630 dprintf_cont("fail detected during rebuild, changing map state");
8631 map->map_state = map_state;
8632 }
8633 super->updates_pending++;
8634 }
8635
8636 if (!rebuild_done)
8637 break;
8638
8639 /* check if recovery is really finished */
8640 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8641 if (mdi->recovery_start != MaxSector) {
8642 recovery_not_finished = 1;
8643 break;
8644 }
8645 if (recovery_not_finished) {
8646 dprintf_cont("\n");
8647 dprintf_cont("Rebuild has not finished yet");
8648 if (a->last_checkpoint < mdi->recovery_start) {
8649 a->last_checkpoint =
8650 mdi->recovery_start;
8651 super->updates_pending++;
8652 }
8653 break;
8654 }
8655
8656 dprintf_cont(" Rebuild done, still degraded");
8657 end_migration(dev, super, map_state);
8658 a->last_checkpoint = 0;
8659 super->updates_pending++;
8660
8661 for (i = 0; i < map->num_members; i++) {
8662 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8663
8664 if (idx & IMSM_ORD_REBUILD)
8665 map->failed_disk_num = i;
8666 }
8667 super->updates_pending++;
8668 break;
8669 }
8670 if (is_gen_migration(dev)) {
8671 dprintf_cont("while general migration");
8672 if (a->last_checkpoint >= a->info.component_size)
8673 end_migration(dev, super, map_state);
8674 else {
8675 map->map_state = map_state;
8676 manage_second_map(super, dev);
8677 }
8678 super->updates_pending++;
8679 break;
8680 }
8681 if (is_initializing(dev)) {
8682 dprintf_cont("while initialization.");
8683 map->map_state = map_state;
8684 super->updates_pending++;
8685 break;
8686 }
8687 break;
8688 case IMSM_T_STATE_FAILED: /* transition to failed state */
8689 dprintf_cont("failed: ");
8690 if (is_gen_migration(dev)) {
8691 dprintf_cont("while general migration");
8692 map->map_state = map_state;
8693 super->updates_pending++;
8694 break;
8695 }
8696 if (map->map_state != map_state) {
8697 dprintf_cont("mark failed");
8698 end_migration(dev, super, map_state);
8699 super->updates_pending++;
8700 a->last_checkpoint = 0;
8701 break;
8702 }
8703 break;
8704 default:
8705 dprintf_cont("state %i\n", map_state);
8706 }
8707 dprintf_cont("\n");
8708 }
8709
8710 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8711 {
8712 void *buf = mpb;
8713 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8714 unsigned long long dsize;
8715 unsigned long long sectors;
8716 unsigned int sector_size;
8717
8718 get_dev_sector_size(fd, NULL, &sector_size);
8719 get_dev_size(fd, NULL, &dsize);
8720
8721 if (mpb_size > sector_size) {
8722 /* -1 to account for anchor */
8723 sectors = mpb_sectors(mpb, sector_size) - 1;
8724
8725 /* write the extended mpb to the sectors preceeding the anchor */
8726 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8727 SEEK_SET) < 0)
8728 return 1;
8729
8730 if ((unsigned long long)write(fd, buf + sector_size,
8731 sector_size * sectors) != sector_size * sectors)
8732 return 1;
8733 }
8734
8735 /* first block is stored on second to last sector of the disk */
8736 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8737 return 1;
8738
8739 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
8740 return 1;
8741
8742 return 0;
8743 }
8744
8745 static void imsm_sync_metadata(struct supertype *container)
8746 {
8747 struct intel_super *super = container->sb;
8748
8749 dprintf("sync metadata: %d\n", super->updates_pending);
8750 if (!super->updates_pending)
8751 return;
8752
8753 write_super_imsm(container, 0);
8754
8755 super->updates_pending = 0;
8756 }
8757
8758 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8759 {
8760 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8761 int i = get_imsm_disk_idx(dev, idx, MAP_X);
8762 struct dl *dl;
8763
8764 for (dl = super->disks; dl; dl = dl->next)
8765 if (dl->index == i)
8766 break;
8767
8768 if (dl && is_failed(&dl->disk))
8769 dl = NULL;
8770
8771 if (dl)
8772 dprintf("found %x:%x\n", dl->major, dl->minor);
8773
8774 return dl;
8775 }
8776
8777 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8778 struct active_array *a, int activate_new,
8779 struct mdinfo *additional_test_list)
8780 {
8781 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8782 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
8783 struct imsm_super *mpb = super->anchor;
8784 struct imsm_map *map;
8785 unsigned long long pos;
8786 struct mdinfo *d;
8787 struct extent *ex;
8788 int i, j;
8789 int found;
8790 __u32 array_start = 0;
8791 __u32 array_end = 0;
8792 struct dl *dl;
8793 struct mdinfo *test_list;
8794
8795 for (dl = super->disks; dl; dl = dl->next) {
8796 /* If in this array, skip */
8797 for (d = a->info.devs ; d ; d = d->next)
8798 if (d->state_fd >= 0 &&
8799 d->disk.major == dl->major &&
8800 d->disk.minor == dl->minor) {
8801 dprintf("%x:%x already in array\n",
8802 dl->major, dl->minor);
8803 break;
8804 }
8805 if (d)
8806 continue;
8807 test_list = additional_test_list;
8808 while (test_list) {
8809 if (test_list->disk.major == dl->major &&
8810 test_list->disk.minor == dl->minor) {
8811 dprintf("%x:%x already in additional test list\n",
8812 dl->major, dl->minor);
8813 break;
8814 }
8815 test_list = test_list->next;
8816 }
8817 if (test_list)
8818 continue;
8819
8820 /* skip in use or failed drives */
8821 if (is_failed(&dl->disk) || idx == dl->index ||
8822 dl->index == -2) {
8823 dprintf("%x:%x status (failed: %d index: %d)\n",
8824 dl->major, dl->minor, is_failed(&dl->disk), idx);
8825 continue;
8826 }
8827
8828 /* skip pure spares when we are looking for partially
8829 * assimilated drives
8830 */
8831 if (dl->index == -1 && !activate_new)
8832 continue;
8833
8834 if (!drive_validate_sector_size(super, dl))
8835 continue;
8836
8837 /* Does this unused device have the requisite free space?
8838 * It needs to be able to cover all member volumes
8839 */
8840 ex = get_extents(super, dl, 1);
8841 if (!ex) {
8842 dprintf("cannot get extents\n");
8843 continue;
8844 }
8845 for (i = 0; i < mpb->num_raid_devs; i++) {
8846 dev = get_imsm_dev(super, i);
8847 map = get_imsm_map(dev, MAP_0);
8848
8849 /* check if this disk is already a member of
8850 * this array
8851 */
8852 if (get_imsm_disk_slot(map, dl->index) >= 0)
8853 continue;
8854
8855 found = 0;
8856 j = 0;
8857 pos = 0;
8858 array_start = pba_of_lba0(map);
8859 array_end = array_start +
8860 per_dev_array_size(map) - 1;
8861
8862 do {
8863 /* check that we can start at pba_of_lba0 with
8864 * num_data_stripes*blocks_per_stripe of space
8865 */
8866 if (array_start >= pos && array_end < ex[j].start) {
8867 found = 1;
8868 break;
8869 }
8870 pos = ex[j].start + ex[j].size;
8871 j++;
8872 } while (ex[j-1].size);
8873
8874 if (!found)
8875 break;
8876 }
8877
8878 free(ex);
8879 if (i < mpb->num_raid_devs) {
8880 dprintf("%x:%x does not have %u to %u available\n",
8881 dl->major, dl->minor, array_start, array_end);
8882 /* No room */
8883 continue;
8884 }
8885 return dl;
8886 }
8887
8888 return dl;
8889 }
8890
8891 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8892 {
8893 struct imsm_dev *dev2;
8894 struct imsm_map *map;
8895 struct dl *idisk;
8896 int slot;
8897 int idx;
8898 __u8 state;
8899
8900 dev2 = get_imsm_dev(cont->sb, dev_idx);
8901 if (dev2) {
8902 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
8903 if (state == IMSM_T_STATE_FAILED) {
8904 map = get_imsm_map(dev2, MAP_0);
8905 if (!map)
8906 return 1;
8907 for (slot = 0; slot < map->num_members; slot++) {
8908 /*
8909 * Check if failed disks are deleted from intel
8910 * disk list or are marked to be deleted
8911 */
8912 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
8913 idisk = get_imsm_dl_disk(cont->sb, idx);
8914 /*
8915 * Do not rebuild the array if failed disks
8916 * from failed sub-array are not removed from
8917 * container.
8918 */
8919 if (idisk &&
8920 is_failed(&idisk->disk) &&
8921 (idisk->action != DISK_REMOVE))
8922 return 0;
8923 }
8924 }
8925 }
8926 return 1;
8927 }
8928
8929 static struct mdinfo *imsm_activate_spare(struct active_array *a,
8930 struct metadata_update **updates)
8931 {
8932 /**
8933 * Find a device with unused free space and use it to replace a
8934 * failed/vacant region in an array. We replace failed regions one a
8935 * array at a time. The result is that a new spare disk will be added
8936 * to the first failed array and after the monitor has finished
8937 * propagating failures the remainder will be consumed.
8938 *
8939 * FIXME add a capability for mdmon to request spares from another
8940 * container.
8941 */
8942
8943 struct intel_super *super = a->container->sb;
8944 int inst = a->info.container_member;
8945 struct imsm_dev *dev = get_imsm_dev(super, inst);
8946 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8947 int failed = a->info.array.raid_disks;
8948 struct mdinfo *rv = NULL;
8949 struct mdinfo *d;
8950 struct mdinfo *di;
8951 struct metadata_update *mu;
8952 struct dl *dl;
8953 struct imsm_update_activate_spare *u;
8954 int num_spares = 0;
8955 int i;
8956 int allowed;
8957
8958 for (d = a->info.devs ; d ; d = d->next) {
8959 if ((d->curr_state & DS_FAULTY) &&
8960 d->state_fd >= 0)
8961 /* wait for Removal to happen */
8962 return NULL;
8963 if (d->state_fd >= 0)
8964 failed--;
8965 }
8966
8967 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8968 inst, failed, a->info.array.raid_disks, a->info.array.level);
8969
8970 if (imsm_reshape_blocks_arrays_changes(super))
8971 return NULL;
8972
8973 /* Cannot activate another spare if rebuild is in progress already
8974 */
8975 if (is_rebuilding(dev)) {
8976 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
8977 return NULL;
8978 }
8979
8980 if (a->info.array.level == 4)
8981 /* No repair for takeovered array
8982 * imsm doesn't support raid4
8983 */
8984 return NULL;
8985
8986 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8987 IMSM_T_STATE_DEGRADED)
8988 return NULL;
8989
8990 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8991 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8992 return NULL;
8993 }
8994
8995 /*
8996 * If there are any failed disks check state of the other volume.
8997 * Block rebuild if the another one is failed until failed disks
8998 * are removed from container.
8999 */
9000 if (failed) {
9001 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
9002 MAX_RAID_SERIAL_LEN, dev->volume);
9003 /* check if states of the other volumes allow for rebuild */
9004 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9005 if (i != inst) {
9006 allowed = imsm_rebuild_allowed(a->container,
9007 i, failed);
9008 if (!allowed)
9009 return NULL;
9010 }
9011 }
9012 }
9013
9014 /* For each slot, if it is not working, find a spare */
9015 for (i = 0; i < a->info.array.raid_disks; i++) {
9016 for (d = a->info.devs ; d ; d = d->next)
9017 if (d->disk.raid_disk == i)
9018 break;
9019 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9020 if (d && (d->state_fd >= 0))
9021 continue;
9022
9023 /*
9024 * OK, this device needs recovery. Try to re-add the
9025 * previous occupant of this slot, if this fails see if
9026 * we can continue the assimilation of a spare that was
9027 * partially assimilated, finally try to activate a new
9028 * spare.
9029 */
9030 dl = imsm_readd(super, i, a);
9031 if (!dl)
9032 dl = imsm_add_spare(super, i, a, 0, rv);
9033 if (!dl)
9034 dl = imsm_add_spare(super, i, a, 1, rv);
9035 if (!dl)
9036 continue;
9037
9038 /* found a usable disk with enough space */
9039 di = xcalloc(1, sizeof(*di));
9040
9041 /* dl->index will be -1 in the case we are activating a
9042 * pristine spare. imsm_process_update() will create a
9043 * new index in this case. Once a disk is found to be
9044 * failed in all member arrays it is kicked from the
9045 * metadata
9046 */
9047 di->disk.number = dl->index;
9048
9049 /* (ab)use di->devs to store a pointer to the device
9050 * we chose
9051 */
9052 di->devs = (struct mdinfo *) dl;
9053
9054 di->disk.raid_disk = i;
9055 di->disk.major = dl->major;
9056 di->disk.minor = dl->minor;
9057 di->disk.state = 0;
9058 di->recovery_start = 0;
9059 di->data_offset = pba_of_lba0(map);
9060 di->component_size = a->info.component_size;
9061 di->container_member = inst;
9062 di->bb.supported = 1;
9063 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
9064 di->ppl_sector = get_ppl_sector(super, inst);
9065 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
9066 }
9067 super->random = random32();
9068 di->next = rv;
9069 rv = di;
9070 num_spares++;
9071 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9072 i, di->data_offset);
9073 }
9074
9075 if (!rv)
9076 /* No spares found */
9077 return rv;
9078 /* Now 'rv' has a list of devices to return.
9079 * Create a metadata_update record to update the
9080 * disk_ord_tbl for the array
9081 */
9082 mu = xmalloc(sizeof(*mu));
9083 mu->buf = xcalloc(num_spares,
9084 sizeof(struct imsm_update_activate_spare));
9085 mu->space = NULL;
9086 mu->space_list = NULL;
9087 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9088 mu->next = *updates;
9089 u = (struct imsm_update_activate_spare *) mu->buf;
9090
9091 for (di = rv ; di ; di = di->next) {
9092 u->type = update_activate_spare;
9093 u->dl = (struct dl *) di->devs;
9094 di->devs = NULL;
9095 u->slot = di->disk.raid_disk;
9096 u->array = inst;
9097 u->next = u + 1;
9098 u++;
9099 }
9100 (u-1)->next = NULL;
9101 *updates = mu;
9102
9103 return rv;
9104 }
9105
9106 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
9107 {
9108 struct imsm_dev *dev = get_imsm_dev(super, idx);
9109 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9110 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
9111 struct disk_info *inf = get_disk_info(u);
9112 struct imsm_disk *disk;
9113 int i;
9114 int j;
9115
9116 for (i = 0; i < map->num_members; i++) {
9117 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
9118 for (j = 0; j < new_map->num_members; j++)
9119 if (serialcmp(disk->serial, inf[j].serial) == 0)
9120 return 1;
9121 }
9122
9123 return 0;
9124 }
9125
9126 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9127 {
9128 struct dl *dl;
9129
9130 for (dl = super->disks; dl; dl = dl->next)
9131 if (dl->major == major && dl->minor == minor)
9132 return dl;
9133 return NULL;
9134 }
9135
9136 static int remove_disk_super(struct intel_super *super, int major, int minor)
9137 {
9138 struct dl *prev;
9139 struct dl *dl;
9140
9141 prev = NULL;
9142 for (dl = super->disks; dl; dl = dl->next) {
9143 if (dl->major == major && dl->minor == minor) {
9144 /* remove */
9145 if (prev)
9146 prev->next = dl->next;
9147 else
9148 super->disks = dl->next;
9149 dl->next = NULL;
9150 __free_imsm_disk(dl);
9151 dprintf("removed %x:%x\n", major, minor);
9152 break;
9153 }
9154 prev = dl;
9155 }
9156 return 0;
9157 }
9158
9159 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
9160
9161 static int add_remove_disk_update(struct intel_super *super)
9162 {
9163 int check_degraded = 0;
9164 struct dl *disk;
9165
9166 /* add/remove some spares to/from the metadata/contrainer */
9167 while (super->disk_mgmt_list) {
9168 struct dl *disk_cfg;
9169
9170 disk_cfg = super->disk_mgmt_list;
9171 super->disk_mgmt_list = disk_cfg->next;
9172 disk_cfg->next = NULL;
9173
9174 if (disk_cfg->action == DISK_ADD) {
9175 disk_cfg->next = super->disks;
9176 super->disks = disk_cfg;
9177 check_degraded = 1;
9178 dprintf("added %x:%x\n",
9179 disk_cfg->major, disk_cfg->minor);
9180 } else if (disk_cfg->action == DISK_REMOVE) {
9181 dprintf("Disk remove action processed: %x.%x\n",
9182 disk_cfg->major, disk_cfg->minor);
9183 disk = get_disk_super(super,
9184 disk_cfg->major,
9185 disk_cfg->minor);
9186 if (disk) {
9187 /* store action status */
9188 disk->action = DISK_REMOVE;
9189 /* remove spare disks only */
9190 if (disk->index == -1) {
9191 remove_disk_super(super,
9192 disk_cfg->major,
9193 disk_cfg->minor);
9194 } else {
9195 disk_cfg->fd = disk->fd;
9196 disk->fd = -1;
9197 }
9198 }
9199 /* release allocate disk structure */
9200 __free_imsm_disk(disk_cfg);
9201 }
9202 }
9203 return check_degraded;
9204 }
9205
9206 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9207 struct intel_super *super,
9208 void ***space_list)
9209 {
9210 struct intel_dev *id;
9211 void **tofree = NULL;
9212 int ret_val = 0;
9213
9214 dprintf("(enter)\n");
9215 if (u->subdev < 0 || u->subdev > 1) {
9216 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9217 return ret_val;
9218 }
9219 if (space_list == NULL || *space_list == NULL) {
9220 dprintf("imsm: Error: Memory is not allocated\n");
9221 return ret_val;
9222 }
9223
9224 for (id = super->devlist ; id; id = id->next) {
9225 if (id->index == (unsigned)u->subdev) {
9226 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9227 struct imsm_map *map;
9228 struct imsm_dev *new_dev =
9229 (struct imsm_dev *)*space_list;
9230 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
9231 int to_state;
9232 struct dl *new_disk;
9233
9234 if (new_dev == NULL)
9235 return ret_val;
9236 *space_list = **space_list;
9237 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
9238 map = get_imsm_map(new_dev, MAP_0);
9239 if (migr_map) {
9240 dprintf("imsm: Error: migration in progress");
9241 return ret_val;
9242 }
9243
9244 to_state = map->map_state;
9245 if ((u->new_level == 5) && (map->raid_level == 0)) {
9246 map->num_members++;
9247 /* this should not happen */
9248 if (u->new_disks[0] < 0) {
9249 map->failed_disk_num =
9250 map->num_members - 1;
9251 to_state = IMSM_T_STATE_DEGRADED;
9252 } else
9253 to_state = IMSM_T_STATE_NORMAL;
9254 }
9255 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
9256 if (u->new_level > -1)
9257 map->raid_level = u->new_level;
9258 migr_map = get_imsm_map(new_dev, MAP_1);
9259 if ((u->new_level == 5) &&
9260 (migr_map->raid_level == 0)) {
9261 int ord = map->num_members - 1;
9262 migr_map->num_members--;
9263 if (u->new_disks[0] < 0)
9264 ord |= IMSM_ORD_REBUILD;
9265 set_imsm_ord_tbl_ent(map,
9266 map->num_members - 1,
9267 ord);
9268 }
9269 id->dev = new_dev;
9270 tofree = (void **)dev;
9271
9272 /* update chunk size
9273 */
9274 if (u->new_chunksize > 0) {
9275 unsigned long long num_data_stripes;
9276 struct imsm_map *dest_map =
9277 get_imsm_map(dev, MAP_0);
9278 int used_disks =
9279 imsm_num_data_members(dest_map);
9280
9281 if (used_disks == 0)
9282 return ret_val;
9283
9284 map->blocks_per_strip =
9285 __cpu_to_le16(u->new_chunksize * 2);
9286 num_data_stripes =
9287 imsm_dev_size(dev) / used_disks;
9288 num_data_stripes /= map->blocks_per_strip;
9289 num_data_stripes /= map->num_domains;
9290 set_num_data_stripes(map, num_data_stripes);
9291 }
9292
9293 /* ensure blocks_per_member has valid value
9294 */
9295 set_blocks_per_member(map,
9296 per_dev_array_size(map) +
9297 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9298
9299 /* add disk
9300 */
9301 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9302 migr_map->raid_level == map->raid_level)
9303 goto skip_disk_add;
9304
9305 if (u->new_disks[0] >= 0) {
9306 /* use passes spare
9307 */
9308 new_disk = get_disk_super(super,
9309 major(u->new_disks[0]),
9310 minor(u->new_disks[0]));
9311 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9312 major(u->new_disks[0]),
9313 minor(u->new_disks[0]),
9314 new_disk, new_disk->index);
9315 if (new_disk == NULL)
9316 goto error_disk_add;
9317
9318 new_disk->index = map->num_members - 1;
9319 /* slot to fill in autolayout
9320 */
9321 new_disk->raiddisk = new_disk->index;
9322 new_disk->disk.status |= CONFIGURED_DISK;
9323 new_disk->disk.status &= ~SPARE_DISK;
9324 } else
9325 goto error_disk_add;
9326
9327 skip_disk_add:
9328 *tofree = *space_list;
9329 /* calculate new size
9330 */
9331 imsm_set_array_size(new_dev, -1);
9332
9333 ret_val = 1;
9334 }
9335 }
9336
9337 if (tofree)
9338 *space_list = tofree;
9339 return ret_val;
9340
9341 error_disk_add:
9342 dprintf("Error: imsm: Cannot find disk.\n");
9343 return ret_val;
9344 }
9345
9346 static int apply_size_change_update(struct imsm_update_size_change *u,
9347 struct intel_super *super)
9348 {
9349 struct intel_dev *id;
9350 int ret_val = 0;
9351
9352 dprintf("(enter)\n");
9353 if (u->subdev < 0 || u->subdev > 1) {
9354 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9355 return ret_val;
9356 }
9357
9358 for (id = super->devlist ; id; id = id->next) {
9359 if (id->index == (unsigned)u->subdev) {
9360 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9361 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9362 int used_disks = imsm_num_data_members(map);
9363 unsigned long long blocks_per_member;
9364 unsigned long long num_data_stripes;
9365 unsigned long long new_size_per_disk;
9366
9367 if (used_disks == 0)
9368 return 0;
9369
9370 /* calculate new size
9371 */
9372 new_size_per_disk = u->new_size / used_disks;
9373 blocks_per_member = new_size_per_disk +
9374 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9375 num_data_stripes = new_size_per_disk /
9376 map->blocks_per_strip;
9377 num_data_stripes /= map->num_domains;
9378 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
9379 u->new_size, new_size_per_disk,
9380 num_data_stripes);
9381 set_blocks_per_member(map, blocks_per_member);
9382 set_num_data_stripes(map, num_data_stripes);
9383 imsm_set_array_size(dev, u->new_size);
9384
9385 ret_val = 1;
9386 break;
9387 }
9388 }
9389
9390 return ret_val;
9391 }
9392
9393 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
9394 struct intel_super *super,
9395 struct active_array *active_array)
9396 {
9397 struct imsm_super *mpb = super->anchor;
9398 struct imsm_dev *dev = get_imsm_dev(super, u->array);
9399 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9400 struct imsm_map *migr_map;
9401 struct active_array *a;
9402 struct imsm_disk *disk;
9403 __u8 to_state;
9404 struct dl *dl;
9405 unsigned int found;
9406 int failed;
9407 int victim;
9408 int i;
9409 int second_map_created = 0;
9410
9411 for (; u; u = u->next) {
9412 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9413
9414 if (victim < 0)
9415 return 0;
9416
9417 for (dl = super->disks; dl; dl = dl->next)
9418 if (dl == u->dl)
9419 break;
9420
9421 if (!dl) {
9422 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9423 u->dl->index);
9424 return 0;
9425 }
9426
9427 /* count failures (excluding rebuilds and the victim)
9428 * to determine map[0] state
9429 */
9430 failed = 0;
9431 for (i = 0; i < map->num_members; i++) {
9432 if (i == u->slot)
9433 continue;
9434 disk = get_imsm_disk(super,
9435 get_imsm_disk_idx(dev, i, MAP_X));
9436 if (!disk || is_failed(disk))
9437 failed++;
9438 }
9439
9440 /* adding a pristine spare, assign a new index */
9441 if (dl->index < 0) {
9442 dl->index = super->anchor->num_disks;
9443 super->anchor->num_disks++;
9444 }
9445 disk = &dl->disk;
9446 disk->status |= CONFIGURED_DISK;
9447 disk->status &= ~SPARE_DISK;
9448
9449 /* mark rebuild */
9450 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9451 if (!second_map_created) {
9452 second_map_created = 1;
9453 map->map_state = IMSM_T_STATE_DEGRADED;
9454 migrate(dev, super, to_state, MIGR_REBUILD);
9455 } else
9456 map->map_state = to_state;
9457 migr_map = get_imsm_map(dev, MAP_1);
9458 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9459 set_imsm_ord_tbl_ent(migr_map, u->slot,
9460 dl->index | IMSM_ORD_REBUILD);
9461
9462 /* update the family_num to mark a new container
9463 * generation, being careful to record the existing
9464 * family_num in orig_family_num to clean up after
9465 * earlier mdadm versions that neglected to set it.
9466 */
9467 if (mpb->orig_family_num == 0)
9468 mpb->orig_family_num = mpb->family_num;
9469 mpb->family_num += super->random;
9470
9471 /* count arrays using the victim in the metadata */
9472 found = 0;
9473 for (a = active_array; a ; a = a->next) {
9474 dev = get_imsm_dev(super, a->info.container_member);
9475 map = get_imsm_map(dev, MAP_0);
9476
9477 if (get_imsm_disk_slot(map, victim) >= 0)
9478 found++;
9479 }
9480
9481 /* delete the victim if it is no longer being
9482 * utilized anywhere
9483 */
9484 if (!found) {
9485 struct dl **dlp;
9486
9487 /* We know that 'manager' isn't touching anything,
9488 * so it is safe to delete
9489 */
9490 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9491 if ((*dlp)->index == victim)
9492 break;
9493
9494 /* victim may be on the missing list */
9495 if (!*dlp)
9496 for (dlp = &super->missing; *dlp;
9497 dlp = &(*dlp)->next)
9498 if ((*dlp)->index == victim)
9499 break;
9500 imsm_delete(super, dlp, victim);
9501 }
9502 }
9503
9504 return 1;
9505 }
9506
9507 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9508 struct intel_super *super,
9509 void ***space_list)
9510 {
9511 struct dl *new_disk;
9512 struct intel_dev *id;
9513 int i;
9514 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9515 int disk_count = u->old_raid_disks;
9516 void **tofree = NULL;
9517 int devices_to_reshape = 1;
9518 struct imsm_super *mpb = super->anchor;
9519 int ret_val = 0;
9520 unsigned int dev_id;
9521
9522 dprintf("(enter)\n");
9523
9524 /* enable spares to use in array */
9525 for (i = 0; i < delta_disks; i++) {
9526 new_disk = get_disk_super(super,
9527 major(u->new_disks[i]),
9528 minor(u->new_disks[i]));
9529 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9530 major(u->new_disks[i]), minor(u->new_disks[i]),
9531 new_disk, new_disk->index);
9532 if (new_disk == NULL ||
9533 (new_disk->index >= 0 &&
9534 new_disk->index < u->old_raid_disks))
9535 goto update_reshape_exit;
9536 new_disk->index = disk_count++;
9537 /* slot to fill in autolayout
9538 */
9539 new_disk->raiddisk = new_disk->index;
9540 new_disk->disk.status |=
9541 CONFIGURED_DISK;
9542 new_disk->disk.status &= ~SPARE_DISK;
9543 }
9544
9545 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9546 mpb->num_raid_devs);
9547 /* manage changes in volume
9548 */
9549 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9550 void **sp = *space_list;
9551 struct imsm_dev *newdev;
9552 struct imsm_map *newmap, *oldmap;
9553
9554 for (id = super->devlist ; id; id = id->next) {
9555 if (id->index == dev_id)
9556 break;
9557 }
9558 if (id == NULL)
9559 break;
9560 if (!sp)
9561 continue;
9562 *space_list = *sp;
9563 newdev = (void*)sp;
9564 /* Copy the dev, but not (all of) the map */
9565 memcpy(newdev, id->dev, sizeof(*newdev));
9566 oldmap = get_imsm_map(id->dev, MAP_0);
9567 newmap = get_imsm_map(newdev, MAP_0);
9568 /* Copy the current map */
9569 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9570 /* update one device only
9571 */
9572 if (devices_to_reshape) {
9573 dprintf("imsm: modifying subdev: %i\n",
9574 id->index);
9575 devices_to_reshape--;
9576 newdev->vol.migr_state = 1;
9577 newdev->vol.curr_migr_unit = 0;
9578 set_migr_type(newdev, MIGR_GEN_MIGR);
9579 newmap->num_members = u->new_raid_disks;
9580 for (i = 0; i < delta_disks; i++) {
9581 set_imsm_ord_tbl_ent(newmap,
9582 u->old_raid_disks + i,
9583 u->old_raid_disks + i);
9584 }
9585 /* New map is correct, now need to save old map
9586 */
9587 newmap = get_imsm_map(newdev, MAP_1);
9588 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9589
9590 imsm_set_array_size(newdev, -1);
9591 }
9592
9593 sp = (void **)id->dev;
9594 id->dev = newdev;
9595 *sp = tofree;
9596 tofree = sp;
9597
9598 /* Clear migration record */
9599 memset(super->migr_rec, 0, sizeof(struct migr_record));
9600 }
9601 if (tofree)
9602 *space_list = tofree;
9603 ret_val = 1;
9604
9605 update_reshape_exit:
9606
9607 return ret_val;
9608 }
9609
9610 static int apply_takeover_update(struct imsm_update_takeover *u,
9611 struct intel_super *super,
9612 void ***space_list)
9613 {
9614 struct imsm_dev *dev = NULL;
9615 struct intel_dev *dv;
9616 struct imsm_dev *dev_new;
9617 struct imsm_map *map;
9618 struct dl *dm, *du;
9619 int i;
9620
9621 for (dv = super->devlist; dv; dv = dv->next)
9622 if (dv->index == (unsigned int)u->subarray) {
9623 dev = dv->dev;
9624 break;
9625 }
9626
9627 if (dev == NULL)
9628 return 0;
9629
9630 map = get_imsm_map(dev, MAP_0);
9631
9632 if (u->direction == R10_TO_R0) {
9633 unsigned long long num_data_stripes;
9634
9635 /* Number of failed disks must be half of initial disk number */
9636 if (imsm_count_failed(super, dev, MAP_0) !=
9637 (map->num_members / 2))
9638 return 0;
9639
9640 /* iterate through devices to mark removed disks as spare */
9641 for (dm = super->disks; dm; dm = dm->next) {
9642 if (dm->disk.status & FAILED_DISK) {
9643 int idx = dm->index;
9644 /* update indexes on the disk list */
9645 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9646 the index values will end up being correct.... NB */
9647 for (du = super->disks; du; du = du->next)
9648 if (du->index > idx)
9649 du->index--;
9650 /* mark as spare disk */
9651 mark_spare(dm);
9652 }
9653 }
9654 /* update map */
9655 map->num_members = map->num_members / 2;
9656 map->map_state = IMSM_T_STATE_NORMAL;
9657 map->num_domains = 1;
9658 map->raid_level = 0;
9659 map->failed_disk_num = -1;
9660 num_data_stripes = imsm_dev_size(dev) / 2;
9661 num_data_stripes /= map->blocks_per_strip;
9662 set_num_data_stripes(map, num_data_stripes);
9663 }
9664
9665 if (u->direction == R0_TO_R10) {
9666 void **space;
9667 unsigned long long num_data_stripes;
9668
9669 /* update slots in current disk list */
9670 for (dm = super->disks; dm; dm = dm->next) {
9671 if (dm->index >= 0)
9672 dm->index *= 2;
9673 }
9674 /* create new *missing* disks */
9675 for (i = 0; i < map->num_members; i++) {
9676 space = *space_list;
9677 if (!space)
9678 continue;
9679 *space_list = *space;
9680 du = (void *)space;
9681 memcpy(du, super->disks, sizeof(*du));
9682 du->fd = -1;
9683 du->minor = 0;
9684 du->major = 0;
9685 du->index = (i * 2) + 1;
9686 sprintf((char *)du->disk.serial,
9687 " MISSING_%d", du->index);
9688 sprintf((char *)du->serial,
9689 "MISSING_%d", du->index);
9690 du->next = super->missing;
9691 super->missing = du;
9692 }
9693 /* create new dev and map */
9694 space = *space_list;
9695 if (!space)
9696 return 0;
9697 *space_list = *space;
9698 dev_new = (void *)space;
9699 memcpy(dev_new, dev, sizeof(*dev));
9700 /* update new map */
9701 map = get_imsm_map(dev_new, MAP_0);
9702 map->num_members = map->num_members * 2;
9703 map->map_state = IMSM_T_STATE_DEGRADED;
9704 map->num_domains = 2;
9705 map->raid_level = 1;
9706 num_data_stripes = imsm_dev_size(dev) / 2;
9707 num_data_stripes /= map->blocks_per_strip;
9708 num_data_stripes /= map->num_domains;
9709 set_num_data_stripes(map, num_data_stripes);
9710
9711 /* replace dev<->dev_new */
9712 dv->dev = dev_new;
9713 }
9714 /* update disk order table */
9715 for (du = super->disks; du; du = du->next)
9716 if (du->index >= 0)
9717 set_imsm_ord_tbl_ent(map, du->index, du->index);
9718 for (du = super->missing; du; du = du->next)
9719 if (du->index >= 0) {
9720 set_imsm_ord_tbl_ent(map, du->index, du->index);
9721 mark_missing(super, dv->dev, &du->disk, du->index);
9722 }
9723
9724 return 1;
9725 }
9726
9727 static void imsm_process_update(struct supertype *st,
9728 struct metadata_update *update)
9729 {
9730 /**
9731 * crack open the metadata_update envelope to find the update record
9732 * update can be one of:
9733 * update_reshape_container_disks - all the arrays in the container
9734 * are being reshaped to have more devices. We need to mark
9735 * the arrays for general migration and convert selected spares
9736 * into active devices.
9737 * update_activate_spare - a spare device has replaced a failed
9738 * device in an array, update the disk_ord_tbl. If this disk is
9739 * present in all member arrays then also clear the SPARE_DISK
9740 * flag
9741 * update_create_array
9742 * update_kill_array
9743 * update_rename_array
9744 * update_add_remove_disk
9745 */
9746 struct intel_super *super = st->sb;
9747 struct imsm_super *mpb;
9748 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9749
9750 /* update requires a larger buf but the allocation failed */
9751 if (super->next_len && !super->next_buf) {
9752 super->next_len = 0;
9753 return;
9754 }
9755
9756 if (super->next_buf) {
9757 memcpy(super->next_buf, super->buf, super->len);
9758 free(super->buf);
9759 super->len = super->next_len;
9760 super->buf = super->next_buf;
9761
9762 super->next_len = 0;
9763 super->next_buf = NULL;
9764 }
9765
9766 mpb = super->anchor;
9767
9768 switch (type) {
9769 case update_general_migration_checkpoint: {
9770 struct intel_dev *id;
9771 struct imsm_update_general_migration_checkpoint *u =
9772 (void *)update->buf;
9773
9774 dprintf("called for update_general_migration_checkpoint\n");
9775
9776 /* find device under general migration */
9777 for (id = super->devlist ; id; id = id->next) {
9778 if (is_gen_migration(id->dev)) {
9779 id->dev->vol.curr_migr_unit =
9780 __cpu_to_le32(u->curr_migr_unit);
9781 super->updates_pending++;
9782 }
9783 }
9784 break;
9785 }
9786 case update_takeover: {
9787 struct imsm_update_takeover *u = (void *)update->buf;
9788 if (apply_takeover_update(u, super, &update->space_list)) {
9789 imsm_update_version_info(super);
9790 super->updates_pending++;
9791 }
9792 break;
9793 }
9794
9795 case update_reshape_container_disks: {
9796 struct imsm_update_reshape *u = (void *)update->buf;
9797 if (apply_reshape_container_disks_update(
9798 u, super, &update->space_list))
9799 super->updates_pending++;
9800 break;
9801 }
9802 case update_reshape_migration: {
9803 struct imsm_update_reshape_migration *u = (void *)update->buf;
9804 if (apply_reshape_migration_update(
9805 u, super, &update->space_list))
9806 super->updates_pending++;
9807 break;
9808 }
9809 case update_size_change: {
9810 struct imsm_update_size_change *u = (void *)update->buf;
9811 if (apply_size_change_update(u, super))
9812 super->updates_pending++;
9813 break;
9814 }
9815 case update_activate_spare: {
9816 struct imsm_update_activate_spare *u = (void *) update->buf;
9817 if (apply_update_activate_spare(u, super, st->arrays))
9818 super->updates_pending++;
9819 break;
9820 }
9821 case update_create_array: {
9822 /* someone wants to create a new array, we need to be aware of
9823 * a few races/collisions:
9824 * 1/ 'Create' called by two separate instances of mdadm
9825 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9826 * devices that have since been assimilated via
9827 * activate_spare.
9828 * In the event this update can not be carried out mdadm will
9829 * (FIX ME) notice that its update did not take hold.
9830 */
9831 struct imsm_update_create_array *u = (void *) update->buf;
9832 struct intel_dev *dv;
9833 struct imsm_dev *dev;
9834 struct imsm_map *map, *new_map;
9835 unsigned long long start, end;
9836 unsigned long long new_start, new_end;
9837 int i;
9838 struct disk_info *inf;
9839 struct dl *dl;
9840
9841 /* handle racing creates: first come first serve */
9842 if (u->dev_idx < mpb->num_raid_devs) {
9843 dprintf("subarray %d already defined\n", u->dev_idx);
9844 goto create_error;
9845 }
9846
9847 /* check update is next in sequence */
9848 if (u->dev_idx != mpb->num_raid_devs) {
9849 dprintf("can not create array %d expected index %d\n",
9850 u->dev_idx, mpb->num_raid_devs);
9851 goto create_error;
9852 }
9853
9854 new_map = get_imsm_map(&u->dev, MAP_0);
9855 new_start = pba_of_lba0(new_map);
9856 new_end = new_start + per_dev_array_size(new_map);
9857 inf = get_disk_info(u);
9858
9859 /* handle activate_spare versus create race:
9860 * check to make sure that overlapping arrays do not include
9861 * overalpping disks
9862 */
9863 for (i = 0; i < mpb->num_raid_devs; i++) {
9864 dev = get_imsm_dev(super, i);
9865 map = get_imsm_map(dev, MAP_0);
9866 start = pba_of_lba0(map);
9867 end = start + per_dev_array_size(map);
9868 if ((new_start >= start && new_start <= end) ||
9869 (start >= new_start && start <= new_end))
9870 /* overlap */;
9871 else
9872 continue;
9873
9874 if (disks_overlap(super, i, u)) {
9875 dprintf("arrays overlap\n");
9876 goto create_error;
9877 }
9878 }
9879
9880 /* check that prepare update was successful */
9881 if (!update->space) {
9882 dprintf("prepare update failed\n");
9883 goto create_error;
9884 }
9885
9886 /* check that all disks are still active before committing
9887 * changes. FIXME: could we instead handle this by creating a
9888 * degraded array? That's probably not what the user expects,
9889 * so better to drop this update on the floor.
9890 */
9891 for (i = 0; i < new_map->num_members; i++) {
9892 dl = serial_to_dl(inf[i].serial, super);
9893 if (!dl) {
9894 dprintf("disk disappeared\n");
9895 goto create_error;
9896 }
9897 }
9898
9899 super->updates_pending++;
9900
9901 /* convert spares to members and fixup ord_tbl */
9902 for (i = 0; i < new_map->num_members; i++) {
9903 dl = serial_to_dl(inf[i].serial, super);
9904 if (dl->index == -1) {
9905 dl->index = mpb->num_disks;
9906 mpb->num_disks++;
9907 dl->disk.status |= CONFIGURED_DISK;
9908 dl->disk.status &= ~SPARE_DISK;
9909 }
9910 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9911 }
9912
9913 dv = update->space;
9914 dev = dv->dev;
9915 update->space = NULL;
9916 imsm_copy_dev(dev, &u->dev);
9917 dv->index = u->dev_idx;
9918 dv->next = super->devlist;
9919 super->devlist = dv;
9920 mpb->num_raid_devs++;
9921
9922 imsm_update_version_info(super);
9923 break;
9924 create_error:
9925 /* mdmon knows how to release update->space, but not
9926 * ((struct intel_dev *) update->space)->dev
9927 */
9928 if (update->space) {
9929 dv = update->space;
9930 free(dv->dev);
9931 }
9932 break;
9933 }
9934 case update_kill_array: {
9935 struct imsm_update_kill_array *u = (void *) update->buf;
9936 int victim = u->dev_idx;
9937 struct active_array *a;
9938 struct intel_dev **dp;
9939 struct imsm_dev *dev;
9940
9941 /* sanity check that we are not affecting the uuid of
9942 * active arrays, or deleting an active array
9943 *
9944 * FIXME when immutable ids are available, but note that
9945 * we'll also need to fixup the invalidated/active
9946 * subarray indexes in mdstat
9947 */
9948 for (a = st->arrays; a; a = a->next)
9949 if (a->info.container_member >= victim)
9950 break;
9951 /* by definition if mdmon is running at least one array
9952 * is active in the container, so checking
9953 * mpb->num_raid_devs is just extra paranoia
9954 */
9955 dev = get_imsm_dev(super, victim);
9956 if (a || !dev || mpb->num_raid_devs == 1) {
9957 dprintf("failed to delete subarray-%d\n", victim);
9958 break;
9959 }
9960
9961 for (dp = &super->devlist; *dp;)
9962 if ((*dp)->index == (unsigned)super->current_vol) {
9963 *dp = (*dp)->next;
9964 } else {
9965 if ((*dp)->index > (unsigned)victim)
9966 (*dp)->index--;
9967 dp = &(*dp)->next;
9968 }
9969 mpb->num_raid_devs--;
9970 super->updates_pending++;
9971 break;
9972 }
9973 case update_rename_array: {
9974 struct imsm_update_rename_array *u = (void *) update->buf;
9975 char name[MAX_RAID_SERIAL_LEN+1];
9976 int target = u->dev_idx;
9977 struct active_array *a;
9978 struct imsm_dev *dev;
9979
9980 /* sanity check that we are not affecting the uuid of
9981 * an active array
9982 */
9983 memset(name, 0, sizeof(name));
9984 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9985 name[MAX_RAID_SERIAL_LEN] = '\0';
9986 for (a = st->arrays; a; a = a->next)
9987 if (a->info.container_member == target)
9988 break;
9989 dev = get_imsm_dev(super, u->dev_idx);
9990 if (a || !dev || !check_name(super, name, 1)) {
9991 dprintf("failed to rename subarray-%d\n", target);
9992 break;
9993 }
9994
9995 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
9996 super->updates_pending++;
9997 break;
9998 }
9999 case update_add_remove_disk: {
10000 /* we may be able to repair some arrays if disks are
10001 * being added, check the status of add_remove_disk
10002 * if discs has been added.
10003 */
10004 if (add_remove_disk_update(super)) {
10005 struct active_array *a;
10006
10007 super->updates_pending++;
10008 for (a = st->arrays; a; a = a->next)
10009 a->check_degraded = 1;
10010 }
10011 break;
10012 }
10013 case update_prealloc_badblocks_mem:
10014 break;
10015 case update_rwh_policy: {
10016 struct imsm_update_rwh_policy *u = (void *)update->buf;
10017 int target = u->dev_idx;
10018 struct imsm_dev *dev = get_imsm_dev(super, target);
10019 if (!dev) {
10020 dprintf("could not find subarray-%d\n", target);
10021 break;
10022 }
10023
10024 if (dev->rwh_policy != u->new_policy) {
10025 dev->rwh_policy = u->new_policy;
10026 super->updates_pending++;
10027 }
10028 break;
10029 }
10030 default:
10031 pr_err("error: unsupported process update type:(type: %d)\n", type);
10032 }
10033 }
10034
10035 static struct mdinfo *get_spares_for_grow(struct supertype *st);
10036
10037 static int imsm_prepare_update(struct supertype *st,
10038 struct metadata_update *update)
10039 {
10040 /**
10041 * Allocate space to hold new disk entries, raid-device entries or a new
10042 * mpb if necessary. The manager synchronously waits for updates to
10043 * complete in the monitor, so new mpb buffers allocated here can be
10044 * integrated by the monitor thread without worrying about live pointers
10045 * in the manager thread.
10046 */
10047 enum imsm_update_type type;
10048 struct intel_super *super = st->sb;
10049 unsigned int sector_size = super->sector_size;
10050 struct imsm_super *mpb = super->anchor;
10051 size_t buf_len;
10052 size_t len = 0;
10053
10054 if (update->len < (int)sizeof(type))
10055 return 0;
10056
10057 type = *(enum imsm_update_type *) update->buf;
10058
10059 switch (type) {
10060 case update_general_migration_checkpoint:
10061 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10062 return 0;
10063 dprintf("called for update_general_migration_checkpoint\n");
10064 break;
10065 case update_takeover: {
10066 struct imsm_update_takeover *u = (void *)update->buf;
10067 if (update->len < (int)sizeof(*u))
10068 return 0;
10069 if (u->direction == R0_TO_R10) {
10070 void **tail = (void **)&update->space_list;
10071 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
10072 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10073 int num_members = map->num_members;
10074 void *space;
10075 int size, i;
10076 /* allocate memory for added disks */
10077 for (i = 0; i < num_members; i++) {
10078 size = sizeof(struct dl);
10079 space = xmalloc(size);
10080 *tail = space;
10081 tail = space;
10082 *tail = NULL;
10083 }
10084 /* allocate memory for new device */
10085 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10086 (num_members * sizeof(__u32));
10087 space = xmalloc(size);
10088 *tail = space;
10089 tail = space;
10090 *tail = NULL;
10091 len = disks_to_mpb_size(num_members * 2);
10092 }
10093
10094 break;
10095 }
10096 case update_reshape_container_disks: {
10097 /* Every raid device in the container is about to
10098 * gain some more devices, and we will enter a
10099 * reconfiguration.
10100 * So each 'imsm_map' will be bigger, and the imsm_vol
10101 * will now hold 2 of them.
10102 * Thus we need new 'struct imsm_dev' allocations sized
10103 * as sizeof_imsm_dev but with more devices in both maps.
10104 */
10105 struct imsm_update_reshape *u = (void *)update->buf;
10106 struct intel_dev *dl;
10107 void **space_tail = (void**)&update->space_list;
10108
10109 if (update->len < (int)sizeof(*u))
10110 return 0;
10111
10112 dprintf("for update_reshape\n");
10113
10114 for (dl = super->devlist; dl; dl = dl->next) {
10115 int size = sizeof_imsm_dev(dl->dev, 1);
10116 void *s;
10117 if (u->new_raid_disks > u->old_raid_disks)
10118 size += sizeof(__u32)*2*
10119 (u->new_raid_disks - u->old_raid_disks);
10120 s = xmalloc(size);
10121 *space_tail = s;
10122 space_tail = s;
10123 *space_tail = NULL;
10124 }
10125
10126 len = disks_to_mpb_size(u->new_raid_disks);
10127 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10128 break;
10129 }
10130 case update_reshape_migration: {
10131 /* for migration level 0->5 we need to add disks
10132 * so the same as for container operation we will copy
10133 * device to the bigger location.
10134 * in memory prepared device and new disk area are prepared
10135 * for usage in process update
10136 */
10137 struct imsm_update_reshape_migration *u = (void *)update->buf;
10138 struct intel_dev *id;
10139 void **space_tail = (void **)&update->space_list;
10140 int size;
10141 void *s;
10142 int current_level = -1;
10143
10144 if (update->len < (int)sizeof(*u))
10145 return 0;
10146
10147 dprintf("for update_reshape\n");
10148
10149 /* add space for bigger array in update
10150 */
10151 for (id = super->devlist; id; id = id->next) {
10152 if (id->index == (unsigned)u->subdev) {
10153 size = sizeof_imsm_dev(id->dev, 1);
10154 if (u->new_raid_disks > u->old_raid_disks)
10155 size += sizeof(__u32)*2*
10156 (u->new_raid_disks - u->old_raid_disks);
10157 s = xmalloc(size);
10158 *space_tail = s;
10159 space_tail = s;
10160 *space_tail = NULL;
10161 break;
10162 }
10163 }
10164 if (update->space_list == NULL)
10165 break;
10166
10167 /* add space for disk in update
10168 */
10169 size = sizeof(struct dl);
10170 s = xmalloc(size);
10171 *space_tail = s;
10172 space_tail = s;
10173 *space_tail = NULL;
10174
10175 /* add spare device to update
10176 */
10177 for (id = super->devlist ; id; id = id->next)
10178 if (id->index == (unsigned)u->subdev) {
10179 struct imsm_dev *dev;
10180 struct imsm_map *map;
10181
10182 dev = get_imsm_dev(super, u->subdev);
10183 map = get_imsm_map(dev, MAP_0);
10184 current_level = map->raid_level;
10185 break;
10186 }
10187 if (u->new_level == 5 && u->new_level != current_level) {
10188 struct mdinfo *spares;
10189
10190 spares = get_spares_for_grow(st);
10191 if (spares) {
10192 struct dl *dl;
10193 struct mdinfo *dev;
10194
10195 dev = spares->devs;
10196 if (dev) {
10197 u->new_disks[0] =
10198 makedev(dev->disk.major,
10199 dev->disk.minor);
10200 dl = get_disk_super(super,
10201 dev->disk.major,
10202 dev->disk.minor);
10203 dl->index = u->old_raid_disks;
10204 dev = dev->next;
10205 }
10206 sysfs_free(spares);
10207 }
10208 }
10209 len = disks_to_mpb_size(u->new_raid_disks);
10210 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10211 break;
10212 }
10213 case update_size_change: {
10214 if (update->len < (int)sizeof(struct imsm_update_size_change))
10215 return 0;
10216 break;
10217 }
10218 case update_activate_spare: {
10219 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10220 return 0;
10221 break;
10222 }
10223 case update_create_array: {
10224 struct imsm_update_create_array *u = (void *) update->buf;
10225 struct intel_dev *dv;
10226 struct imsm_dev *dev = &u->dev;
10227 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10228 struct dl *dl;
10229 struct disk_info *inf;
10230 int i;
10231 int activate = 0;
10232
10233 if (update->len < (int)sizeof(*u))
10234 return 0;
10235
10236 inf = get_disk_info(u);
10237 len = sizeof_imsm_dev(dev, 1);
10238 /* allocate a new super->devlist entry */
10239 dv = xmalloc(sizeof(*dv));
10240 dv->dev = xmalloc(len);
10241 update->space = dv;
10242
10243 /* count how many spares will be converted to members */
10244 for (i = 0; i < map->num_members; i++) {
10245 dl = serial_to_dl(inf[i].serial, super);
10246 if (!dl) {
10247 /* hmm maybe it failed?, nothing we can do about
10248 * it here
10249 */
10250 continue;
10251 }
10252 if (count_memberships(dl, super) == 0)
10253 activate++;
10254 }
10255 len += activate * sizeof(struct imsm_disk);
10256 break;
10257 }
10258 case update_kill_array: {
10259 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10260 return 0;
10261 break;
10262 }
10263 case update_rename_array: {
10264 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10265 return 0;
10266 break;
10267 }
10268 case update_add_remove_disk:
10269 /* no update->len needed */
10270 break;
10271 case update_prealloc_badblocks_mem:
10272 super->extra_space += sizeof(struct bbm_log) -
10273 get_imsm_bbm_log_size(super->bbm_log);
10274 break;
10275 case update_rwh_policy: {
10276 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10277 return 0;
10278 break;
10279 }
10280 default:
10281 return 0;
10282 }
10283
10284 /* check if we need a larger metadata buffer */
10285 if (super->next_buf)
10286 buf_len = super->next_len;
10287 else
10288 buf_len = super->len;
10289
10290 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
10291 /* ok we need a larger buf than what is currently allocated
10292 * if this allocation fails process_update will notice that
10293 * ->next_len is set and ->next_buf is NULL
10294 */
10295 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10296 super->extra_space + len, sector_size);
10297 if (super->next_buf)
10298 free(super->next_buf);
10299
10300 super->next_len = buf_len;
10301 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
10302 memset(super->next_buf, 0, buf_len);
10303 else
10304 super->next_buf = NULL;
10305 }
10306 return 1;
10307 }
10308
10309 /* must be called while manager is quiesced */
10310 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
10311 {
10312 struct imsm_super *mpb = super->anchor;
10313 struct dl *iter;
10314 struct imsm_dev *dev;
10315 struct imsm_map *map;
10316 unsigned int i, j, num_members;
10317 __u32 ord, ord_map0;
10318 struct bbm_log *log = super->bbm_log;
10319
10320 dprintf("deleting device[%d] from imsm_super\n", index);
10321
10322 /* shift all indexes down one */
10323 for (iter = super->disks; iter; iter = iter->next)
10324 if (iter->index > (int)index)
10325 iter->index--;
10326 for (iter = super->missing; iter; iter = iter->next)
10327 if (iter->index > (int)index)
10328 iter->index--;
10329
10330 for (i = 0; i < mpb->num_raid_devs; i++) {
10331 dev = get_imsm_dev(super, i);
10332 map = get_imsm_map(dev, MAP_0);
10333 num_members = map->num_members;
10334 for (j = 0; j < num_members; j++) {
10335 /* update ord entries being careful not to propagate
10336 * ord-flags to the first map
10337 */
10338 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
10339 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
10340
10341 if (ord_to_idx(ord) <= index)
10342 continue;
10343
10344 map = get_imsm_map(dev, MAP_0);
10345 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
10346 map = get_imsm_map(dev, MAP_1);
10347 if (map)
10348 set_imsm_ord_tbl_ent(map, j, ord - 1);
10349 }
10350 }
10351
10352 for (i = 0; i < log->entry_count; i++) {
10353 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10354
10355 if (entry->disk_ordinal <= index)
10356 continue;
10357 entry->disk_ordinal--;
10358 }
10359
10360 mpb->num_disks--;
10361 super->updates_pending++;
10362 if (*dlp) {
10363 struct dl *dl = *dlp;
10364
10365 *dlp = (*dlp)->next;
10366 __free_imsm_disk(dl);
10367 }
10368 }
10369
10370 static int imsm_get_allowed_degradation(int level, int raid_disks,
10371 struct intel_super *super,
10372 struct imsm_dev *dev)
10373 {
10374 switch (level) {
10375 case 1:
10376 case 10:{
10377 int ret_val = 0;
10378 struct imsm_map *map;
10379 int i;
10380
10381 ret_val = raid_disks/2;
10382 /* check map if all disks pairs not failed
10383 * in both maps
10384 */
10385 map = get_imsm_map(dev, MAP_0);
10386 for (i = 0; i < ret_val; i++) {
10387 int degradation = 0;
10388 if (get_imsm_disk(super, i) == NULL)
10389 degradation++;
10390 if (get_imsm_disk(super, i + 1) == NULL)
10391 degradation++;
10392 if (degradation == 2)
10393 return 0;
10394 }
10395 map = get_imsm_map(dev, MAP_1);
10396 /* if there is no second map
10397 * result can be returned
10398 */
10399 if (map == NULL)
10400 return ret_val;
10401 /* check degradation in second map
10402 */
10403 for (i = 0; i < ret_val; i++) {
10404 int degradation = 0;
10405 if (get_imsm_disk(super, i) == NULL)
10406 degradation++;
10407 if (get_imsm_disk(super, i + 1) == NULL)
10408 degradation++;
10409 if (degradation == 2)
10410 return 0;
10411 }
10412 return ret_val;
10413 }
10414 case 5:
10415 return 1;
10416 case 6:
10417 return 2;
10418 default:
10419 return 0;
10420 }
10421 }
10422
10423 /*******************************************************************************
10424 * Function: validate_container_imsm
10425 * Description: This routine validates container after assemble,
10426 * eg. if devices in container are under the same controller.
10427 *
10428 * Parameters:
10429 * info : linked list with info about devices used in array
10430 * Returns:
10431 * 1 : HBA mismatch
10432 * 0 : Success
10433 ******************************************************************************/
10434 int validate_container_imsm(struct mdinfo *info)
10435 {
10436 if (check_env("IMSM_NO_PLATFORM"))
10437 return 0;
10438
10439 struct sys_dev *idev;
10440 struct sys_dev *hba = NULL;
10441 struct sys_dev *intel_devices = find_intel_devices();
10442 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10443 info->disk.minor));
10444
10445 for (idev = intel_devices; idev; idev = idev->next) {
10446 if (dev_path && strstr(dev_path, idev->path)) {
10447 hba = idev;
10448 break;
10449 }
10450 }
10451 if (dev_path)
10452 free(dev_path);
10453
10454 if (!hba) {
10455 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10456 devid2kname(makedev(info->disk.major, info->disk.minor)));
10457 return 1;
10458 }
10459
10460 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10461 struct mdinfo *dev;
10462
10463 for (dev = info->next; dev; dev = dev->next) {
10464 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10465
10466 struct sys_dev *hba2 = NULL;
10467 for (idev = intel_devices; idev; idev = idev->next) {
10468 if (dev_path && strstr(dev_path, idev->path)) {
10469 hba2 = idev;
10470 break;
10471 }
10472 }
10473 if (dev_path)
10474 free(dev_path);
10475
10476 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10477 get_orom_by_device_id(hba2->dev_id);
10478
10479 if (hba2 && hba->type != hba2->type) {
10480 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10481 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10482 return 1;
10483 }
10484
10485 if (orom != orom2) {
10486 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10487 " This operation is not supported and can lead to data loss.\n");
10488 return 1;
10489 }
10490
10491 if (!orom) {
10492 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10493 " This operation is not supported and can lead to data loss.\n");
10494 return 1;
10495 }
10496 }
10497
10498 return 0;
10499 }
10500
10501 /*******************************************************************************
10502 * Function: imsm_record_badblock
10503 * Description: This routine stores new bad block record in BBM log
10504 *
10505 * Parameters:
10506 * a : array containing a bad block
10507 * slot : disk number containing a bad block
10508 * sector : bad block sector
10509 * length : bad block sectors range
10510 * Returns:
10511 * 1 : Success
10512 * 0 : Error
10513 ******************************************************************************/
10514 static int imsm_record_badblock(struct active_array *a, int slot,
10515 unsigned long long sector, int length)
10516 {
10517 struct intel_super *super = a->container->sb;
10518 int ord;
10519 int ret;
10520
10521 ord = imsm_disk_slot_to_ord(a, slot);
10522 if (ord < 0)
10523 return 0;
10524
10525 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10526 length);
10527 if (ret)
10528 super->updates_pending++;
10529
10530 return ret;
10531 }
10532 /*******************************************************************************
10533 * Function: imsm_clear_badblock
10534 * Description: This routine clears bad block record from BBM log
10535 *
10536 * Parameters:
10537 * a : array containing a bad block
10538 * slot : disk number containing a bad block
10539 * sector : bad block sector
10540 * length : bad block sectors range
10541 * Returns:
10542 * 1 : Success
10543 * 0 : Error
10544 ******************************************************************************/
10545 static int imsm_clear_badblock(struct active_array *a, int slot,
10546 unsigned long long sector, int length)
10547 {
10548 struct intel_super *super = a->container->sb;
10549 int ord;
10550 int ret;
10551
10552 ord = imsm_disk_slot_to_ord(a, slot);
10553 if (ord < 0)
10554 return 0;
10555
10556 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10557 if (ret)
10558 super->updates_pending++;
10559
10560 return ret;
10561 }
10562 /*******************************************************************************
10563 * Function: imsm_get_badblocks
10564 * Description: This routine get list of bad blocks for an array
10565 *
10566 * Parameters:
10567 * a : array
10568 * slot : disk number
10569 * Returns:
10570 * bb : structure containing bad blocks
10571 * NULL : error
10572 ******************************************************************************/
10573 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10574 {
10575 int inst = a->info.container_member;
10576 struct intel_super *super = a->container->sb;
10577 struct imsm_dev *dev = get_imsm_dev(super, inst);
10578 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10579 int ord;
10580
10581 ord = imsm_disk_slot_to_ord(a, slot);
10582 if (ord < 0)
10583 return NULL;
10584
10585 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10586 per_dev_array_size(map), &super->bb);
10587
10588 return &super->bb;
10589 }
10590 /*******************************************************************************
10591 * Function: examine_badblocks_imsm
10592 * Description: Prints list of bad blocks on a disk to the standard output
10593 *
10594 * Parameters:
10595 * st : metadata handler
10596 * fd : open file descriptor for device
10597 * devname : device name
10598 * Returns:
10599 * 0 : Success
10600 * 1 : Error
10601 ******************************************************************************/
10602 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10603 {
10604 struct intel_super *super = st->sb;
10605 struct bbm_log *log = super->bbm_log;
10606 struct dl *d = NULL;
10607 int any = 0;
10608
10609 for (d = super->disks; d ; d = d->next) {
10610 if (strcmp(d->devname, devname) == 0)
10611 break;
10612 }
10613
10614 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10615 pr_err("%s doesn't appear to be part of a raid array\n",
10616 devname);
10617 return 1;
10618 }
10619
10620 if (log != NULL) {
10621 unsigned int i;
10622 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10623
10624 for (i = 0; i < log->entry_count; i++) {
10625 if (entry[i].disk_ordinal == d->index) {
10626 unsigned long long sector = __le48_to_cpu(
10627 &entry[i].defective_block_start);
10628 int cnt = entry[i].marked_count + 1;
10629
10630 if (!any) {
10631 printf("Bad-blocks on %s:\n", devname);
10632 any = 1;
10633 }
10634
10635 printf("%20llu for %d sectors\n", sector, cnt);
10636 }
10637 }
10638 }
10639
10640 if (!any)
10641 printf("No bad-blocks list configured on %s\n", devname);
10642
10643 return 0;
10644 }
10645 /*******************************************************************************
10646 * Function: init_migr_record_imsm
10647 * Description: Function inits imsm migration record
10648 * Parameters:
10649 * super : imsm internal array info
10650 * dev : device under migration
10651 * info : general array info to find the smallest device
10652 * Returns:
10653 * none
10654 ******************************************************************************/
10655 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10656 struct mdinfo *info)
10657 {
10658 struct intel_super *super = st->sb;
10659 struct migr_record *migr_rec = super->migr_rec;
10660 int new_data_disks;
10661 unsigned long long dsize, dev_sectors;
10662 long long unsigned min_dev_sectors = -1LLU;
10663 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10664 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10665 unsigned long long num_migr_units;
10666 unsigned long long array_blocks;
10667 struct dl *dl_disk = NULL;
10668
10669 memset(migr_rec, 0, sizeof(struct migr_record));
10670 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10671
10672 /* only ascending reshape supported now */
10673 migr_rec->ascending_migr = __cpu_to_le32(1);
10674
10675 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10676 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10677 migr_rec->dest_depth_per_unit *=
10678 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10679 new_data_disks = imsm_num_data_members(map_dest);
10680 migr_rec->blocks_per_unit =
10681 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10682 migr_rec->dest_depth_per_unit =
10683 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10684 array_blocks = info->component_size * new_data_disks;
10685 num_migr_units =
10686 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10687
10688 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10689 num_migr_units++;
10690 set_num_migr_units(migr_rec, num_migr_units);
10691
10692 migr_rec->post_migr_vol_cap = dev->size_low;
10693 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10694
10695 /* Find the smallest dev */
10696 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10697 /* ignore spares in container */
10698 if (dl_disk->index < 0)
10699 continue;
10700 get_dev_size(dl_disk->fd, NULL, &dsize);
10701 dev_sectors = dsize / 512;
10702 if (dev_sectors < min_dev_sectors)
10703 min_dev_sectors = dev_sectors;
10704 }
10705 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
10706 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10707
10708 write_imsm_migr_rec(st);
10709
10710 return;
10711 }
10712
10713 /*******************************************************************************
10714 * Function: save_backup_imsm
10715 * Description: Function saves critical data stripes to Migration Copy Area
10716 * and updates the current migration unit status.
10717 * Use restore_stripes() to form a destination stripe,
10718 * and to write it to the Copy Area.
10719 * Parameters:
10720 * st : supertype information
10721 * dev : imsm device that backup is saved for
10722 * info : general array info
10723 * buf : input buffer
10724 * length : length of data to backup (blocks_per_unit)
10725 * Returns:
10726 * 0 : success
10727 *, -1 : fail
10728 ******************************************************************************/
10729 int save_backup_imsm(struct supertype *st,
10730 struct imsm_dev *dev,
10731 struct mdinfo *info,
10732 void *buf,
10733 int length)
10734 {
10735 int rv = -1;
10736 struct intel_super *super = st->sb;
10737 unsigned long long *target_offsets;
10738 int *targets;
10739 int i;
10740 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10741 int new_disks = map_dest->num_members;
10742 int dest_layout = 0;
10743 int dest_chunk;
10744 unsigned long long start;
10745 int data_disks = imsm_num_data_members(map_dest);
10746
10747 targets = xmalloc(new_disks * sizeof(int));
10748
10749 for (i = 0; i < new_disks; i++) {
10750 struct dl *dl_disk = get_imsm_dl_disk(super, i);
10751
10752 targets[i] = dl_disk->fd;
10753 }
10754
10755 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
10756
10757 start = info->reshape_progress * 512;
10758 for (i = 0; i < new_disks; i++) {
10759 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
10760 /* move back copy area adderss, it will be moved forward
10761 * in restore_stripes() using start input variable
10762 */
10763 target_offsets[i] -= start/data_disks;
10764 }
10765
10766 dest_layout = imsm_level_to_layout(map_dest->raid_level);
10767 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10768
10769 if (restore_stripes(targets, /* list of dest devices */
10770 target_offsets, /* migration record offsets */
10771 new_disks,
10772 dest_chunk,
10773 map_dest->raid_level,
10774 dest_layout,
10775 -1, /* source backup file descriptor */
10776 0, /* input buf offset
10777 * always 0 buf is already offseted */
10778 start,
10779 length,
10780 buf) != 0) {
10781 pr_err("Error restoring stripes\n");
10782 goto abort;
10783 }
10784
10785 rv = 0;
10786
10787 abort:
10788 if (targets) {
10789 free(targets);
10790 }
10791 free(target_offsets);
10792
10793 return rv;
10794 }
10795
10796 /*******************************************************************************
10797 * Function: save_checkpoint_imsm
10798 * Description: Function called for current unit status update
10799 * in the migration record. It writes it to disk.
10800 * Parameters:
10801 * super : imsm internal array info
10802 * info : general array info
10803 * Returns:
10804 * 0: success
10805 * 1: failure
10806 * 2: failure, means no valid migration record
10807 * / no general migration in progress /
10808 ******************************************************************************/
10809 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10810 {
10811 struct intel_super *super = st->sb;
10812 unsigned long long blocks_per_unit;
10813 unsigned long long curr_migr_unit;
10814
10815 if (load_imsm_migr_rec(super) != 0) {
10816 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
10817 return 1;
10818 }
10819
10820 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10821 if (blocks_per_unit == 0) {
10822 dprintf("imsm: no migration in progress.\n");
10823 return 2;
10824 }
10825 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10826 /* check if array is alligned to copy area
10827 * if it is not alligned, add one to current migration unit value
10828 * this can happend on array reshape finish only
10829 */
10830 if (info->reshape_progress % blocks_per_unit)
10831 curr_migr_unit++;
10832
10833 set_current_migr_unit(super->migr_rec, curr_migr_unit);
10834 super->migr_rec->rec_status = __cpu_to_le32(state);
10835 set_migr_dest_1st_member_lba(super->migr_rec,
10836 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
10837
10838 if (write_imsm_migr_rec(st) < 0) {
10839 dprintf("imsm: Cannot write migration record outside backup area\n");
10840 return 1;
10841 }
10842
10843 return 0;
10844 }
10845
10846 /*******************************************************************************
10847 * Function: recover_backup_imsm
10848 * Description: Function recovers critical data from the Migration Copy Area
10849 * while assembling an array.
10850 * Parameters:
10851 * super : imsm internal array info
10852 * info : general array info
10853 * Returns:
10854 * 0 : success (or there is no data to recover)
10855 * 1 : fail
10856 ******************************************************************************/
10857 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10858 {
10859 struct intel_super *super = st->sb;
10860 struct migr_record *migr_rec = super->migr_rec;
10861 struct imsm_map *map_dest;
10862 struct intel_dev *id = NULL;
10863 unsigned long long read_offset;
10864 unsigned long long write_offset;
10865 unsigned unit_len;
10866 int new_disks, err;
10867 char *buf = NULL;
10868 int retval = 1;
10869 unsigned int sector_size = super->sector_size;
10870 unsigned long curr_migr_unit = current_migr_unit(migr_rec);
10871 unsigned long num_migr_units = get_num_migr_units(migr_rec);
10872 char buffer[20];
10873 int skipped_disks = 0;
10874 struct dl *dl_disk;
10875
10876 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10877 if (err < 1)
10878 return 1;
10879
10880 /* recover data only during assemblation */
10881 if (strncmp(buffer, "inactive", 8) != 0)
10882 return 0;
10883 /* no data to recover */
10884 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10885 return 0;
10886 if (curr_migr_unit >= num_migr_units)
10887 return 1;
10888
10889 /* find device during reshape */
10890 for (id = super->devlist; id; id = id->next)
10891 if (is_gen_migration(id->dev))
10892 break;
10893 if (id == NULL)
10894 return 1;
10895
10896 map_dest = get_imsm_map(id->dev, MAP_0);
10897 new_disks = map_dest->num_members;
10898
10899 read_offset = migr_chkp_area_pba(migr_rec) * 512;
10900
10901 write_offset = (migr_dest_1st_member_lba(migr_rec) +
10902 pba_of_lba0(map_dest)) * 512;
10903
10904 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10905 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
10906 goto abort;
10907
10908 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
10909 if (dl_disk->index < 0)
10910 continue;
10911
10912 if (dl_disk->fd < 0) {
10913 skipped_disks++;
10914 continue;
10915 }
10916 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
10917 pr_err("Cannot seek to block: %s\n",
10918 strerror(errno));
10919 skipped_disks++;
10920 continue;
10921 }
10922 if (read(dl_disk->fd, buf, unit_len) != unit_len) {
10923 pr_err("Cannot read copy area block: %s\n",
10924 strerror(errno));
10925 skipped_disks++;
10926 continue;
10927 }
10928 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
10929 pr_err("Cannot seek to block: %s\n",
10930 strerror(errno));
10931 skipped_disks++;
10932 continue;
10933 }
10934 if (write(dl_disk->fd, buf, unit_len) != unit_len) {
10935 pr_err("Cannot restore block: %s\n",
10936 strerror(errno));
10937 skipped_disks++;
10938 continue;
10939 }
10940 }
10941
10942 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10943 new_disks,
10944 super,
10945 id->dev)) {
10946 pr_err("Cannot restore data from backup. Too many failed disks\n");
10947 goto abort;
10948 }
10949
10950 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10951 /* ignore error == 2, this can mean end of reshape here
10952 */
10953 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
10954 } else
10955 retval = 0;
10956
10957 abort:
10958 free(buf);
10959 return retval;
10960 }
10961
10962 static char disk_by_path[] = "/dev/disk/by-path/";
10963
10964 static const char *imsm_get_disk_controller_domain(const char *path)
10965 {
10966 char disk_path[PATH_MAX];
10967 char *drv=NULL;
10968 struct stat st;
10969
10970 strcpy(disk_path, disk_by_path);
10971 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10972 if (stat(disk_path, &st) == 0) {
10973 struct sys_dev* hba;
10974 char *path;
10975
10976 path = devt_to_devpath(st.st_rdev);
10977 if (path == NULL)
10978 return "unknown";
10979 hba = find_disk_attached_hba(-1, path);
10980 if (hba && hba->type == SYS_DEV_SAS)
10981 drv = "isci";
10982 else if (hba && hba->type == SYS_DEV_SATA)
10983 drv = "ahci";
10984 else if (hba && hba->type == SYS_DEV_VMD)
10985 drv = "vmd";
10986 else if (hba && hba->type == SYS_DEV_NVME)
10987 drv = "nvme";
10988 else
10989 drv = "unknown";
10990 dprintf("path: %s hba: %s attached: %s\n",
10991 path, (hba) ? hba->path : "NULL", drv);
10992 free(path);
10993 }
10994 return drv;
10995 }
10996
10997 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
10998 {
10999 static char devnm[32];
11000 char subdev_name[20];
11001 struct mdstat_ent *mdstat;
11002
11003 sprintf(subdev_name, "%d", subdev);
11004 mdstat = mdstat_by_subdev(subdev_name, container);
11005 if (!mdstat)
11006 return NULL;
11007
11008 strcpy(devnm, mdstat->devnm);
11009 free_mdstat(mdstat);
11010 return devnm;
11011 }
11012
11013 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11014 struct geo_params *geo,
11015 int *old_raid_disks,
11016 int direction)
11017 {
11018 /* currently we only support increasing the number of devices
11019 * for a container. This increases the number of device for each
11020 * member array. They must all be RAID0 or RAID5.
11021 */
11022 int ret_val = 0;
11023 struct mdinfo *info, *member;
11024 int devices_that_can_grow = 0;
11025
11026 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
11027
11028 if (geo->size > 0 ||
11029 geo->level != UnSet ||
11030 geo->layout != UnSet ||
11031 geo->chunksize != 0 ||
11032 geo->raid_disks == UnSet) {
11033 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
11034 return ret_val;
11035 }
11036
11037 if (direction == ROLLBACK_METADATA_CHANGES) {
11038 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
11039 return ret_val;
11040 }
11041
11042 info = container_content_imsm(st, NULL);
11043 for (member = info; member; member = member->next) {
11044 char *result;
11045
11046 dprintf("imsm: checking device_num: %i\n",
11047 member->container_member);
11048
11049 if (geo->raid_disks <= member->array.raid_disks) {
11050 /* we work on container for Online Capacity Expansion
11051 * only so raid_disks has to grow
11052 */
11053 dprintf("imsm: for container operation raid disks increase is required\n");
11054 break;
11055 }
11056
11057 if (info->array.level != 0 && info->array.level != 5) {
11058 /* we cannot use this container with other raid level
11059 */
11060 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
11061 info->array.level);
11062 break;
11063 } else {
11064 /* check for platform support
11065 * for this raid level configuration
11066 */
11067 struct intel_super *super = st->sb;
11068 if (!is_raid_level_supported(super->orom,
11069 member->array.level,
11070 geo->raid_disks)) {
11071 dprintf("platform does not support raid%d with %d disk%s\n",
11072 info->array.level,
11073 geo->raid_disks,
11074 geo->raid_disks > 1 ? "s" : "");
11075 break;
11076 }
11077 /* check if component size is aligned to chunk size
11078 */
11079 if (info->component_size %
11080 (info->array.chunk_size/512)) {
11081 dprintf("Component size is not aligned to chunk size\n");
11082 break;
11083 }
11084 }
11085
11086 if (*old_raid_disks &&
11087 info->array.raid_disks != *old_raid_disks)
11088 break;
11089 *old_raid_disks = info->array.raid_disks;
11090
11091 /* All raid5 and raid0 volumes in container
11092 * have to be ready for Online Capacity Expansion
11093 * so they need to be assembled. We have already
11094 * checked that no recovery etc is happening.
11095 */
11096 result = imsm_find_array_devnm_by_subdev(member->container_member,
11097 st->container_devnm);
11098 if (result == NULL) {
11099 dprintf("imsm: cannot find array\n");
11100 break;
11101 }
11102 devices_that_can_grow++;
11103 }
11104 sysfs_free(info);
11105 if (!member && devices_that_can_grow)
11106 ret_val = 1;
11107
11108 if (ret_val)
11109 dprintf("Container operation allowed\n");
11110 else
11111 dprintf("Error: %i\n", ret_val);
11112
11113 return ret_val;
11114 }
11115
11116 /* Function: get_spares_for_grow
11117 * Description: Allocates memory and creates list of spare devices
11118 * avaliable in container. Checks if spare drive size is acceptable.
11119 * Parameters: Pointer to the supertype structure
11120 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
11121 * NULL if fail
11122 */
11123 static struct mdinfo *get_spares_for_grow(struct supertype *st)
11124 {
11125 struct spare_criteria sc;
11126
11127 get_spare_criteria_imsm(st, &sc);
11128 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11129 }
11130
11131 /******************************************************************************
11132 * function: imsm_create_metadata_update_for_reshape
11133 * Function creates update for whole IMSM container.
11134 *
11135 ******************************************************************************/
11136 static int imsm_create_metadata_update_for_reshape(
11137 struct supertype *st,
11138 struct geo_params *geo,
11139 int old_raid_disks,
11140 struct imsm_update_reshape **updatep)
11141 {
11142 struct intel_super *super = st->sb;
11143 struct imsm_super *mpb = super->anchor;
11144 int update_memory_size;
11145 struct imsm_update_reshape *u;
11146 struct mdinfo *spares;
11147 int i;
11148 int delta_disks;
11149 struct mdinfo *dev;
11150
11151 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
11152
11153 delta_disks = geo->raid_disks - old_raid_disks;
11154
11155 /* size of all update data without anchor */
11156 update_memory_size = sizeof(struct imsm_update_reshape);
11157
11158 /* now add space for spare disks that we need to add. */
11159 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11160
11161 u = xcalloc(1, update_memory_size);
11162 u->type = update_reshape_container_disks;
11163 u->old_raid_disks = old_raid_disks;
11164 u->new_raid_disks = geo->raid_disks;
11165
11166 /* now get spare disks list
11167 */
11168 spares = get_spares_for_grow(st);
11169
11170 if (spares == NULL || delta_disks > spares->array.spare_disks) {
11171 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
11172 i = -1;
11173 goto abort;
11174 }
11175
11176 /* we have got spares
11177 * update disk list in imsm_disk list table in anchor
11178 */
11179 dprintf("imsm: %i spares are available.\n\n",
11180 spares->array.spare_disks);
11181
11182 dev = spares->devs;
11183 for (i = 0; i < delta_disks; i++) {
11184 struct dl *dl;
11185
11186 if (dev == NULL)
11187 break;
11188 u->new_disks[i] = makedev(dev->disk.major,
11189 dev->disk.minor);
11190 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
11191 dl->index = mpb->num_disks;
11192 mpb->num_disks++;
11193 dev = dev->next;
11194 }
11195
11196 abort:
11197 /* free spares
11198 */
11199 sysfs_free(spares);
11200
11201 dprintf("imsm: reshape update preparation :");
11202 if (i == delta_disks) {
11203 dprintf_cont(" OK\n");
11204 *updatep = u;
11205 return update_memory_size;
11206 }
11207 free(u);
11208 dprintf_cont(" Error\n");
11209
11210 return 0;
11211 }
11212
11213 /******************************************************************************
11214 * function: imsm_create_metadata_update_for_size_change()
11215 * Creates update for IMSM array for array size change.
11216 *
11217 ******************************************************************************/
11218 static int imsm_create_metadata_update_for_size_change(
11219 struct supertype *st,
11220 struct geo_params *geo,
11221 struct imsm_update_size_change **updatep)
11222 {
11223 struct intel_super *super = st->sb;
11224 int update_memory_size;
11225 struct imsm_update_size_change *u;
11226
11227 dprintf("(enter) New size = %llu\n", geo->size);
11228
11229 /* size of all update data without anchor */
11230 update_memory_size = sizeof(struct imsm_update_size_change);
11231
11232 u = xcalloc(1, update_memory_size);
11233 u->type = update_size_change;
11234 u->subdev = super->current_vol;
11235 u->new_size = geo->size;
11236
11237 dprintf("imsm: reshape update preparation : OK\n");
11238 *updatep = u;
11239
11240 return update_memory_size;
11241 }
11242
11243 /******************************************************************************
11244 * function: imsm_create_metadata_update_for_migration()
11245 * Creates update for IMSM array.
11246 *
11247 ******************************************************************************/
11248 static int imsm_create_metadata_update_for_migration(
11249 struct supertype *st,
11250 struct geo_params *geo,
11251 struct imsm_update_reshape_migration **updatep)
11252 {
11253 struct intel_super *super = st->sb;
11254 int update_memory_size;
11255 struct imsm_update_reshape_migration *u;
11256 struct imsm_dev *dev;
11257 int previous_level = -1;
11258
11259 dprintf("(enter) New Level = %i\n", geo->level);
11260
11261 /* size of all update data without anchor */
11262 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11263
11264 u = xcalloc(1, update_memory_size);
11265 u->type = update_reshape_migration;
11266 u->subdev = super->current_vol;
11267 u->new_level = geo->level;
11268 u->new_layout = geo->layout;
11269 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11270 u->new_disks[0] = -1;
11271 u->new_chunksize = -1;
11272
11273 dev = get_imsm_dev(super, u->subdev);
11274 if (dev) {
11275 struct imsm_map *map;
11276
11277 map = get_imsm_map(dev, MAP_0);
11278 if (map) {
11279 int current_chunk_size =
11280 __le16_to_cpu(map->blocks_per_strip) / 2;
11281
11282 if (geo->chunksize != current_chunk_size) {
11283 u->new_chunksize = geo->chunksize / 1024;
11284 dprintf("imsm: chunk size change from %i to %i\n",
11285 current_chunk_size, u->new_chunksize);
11286 }
11287 previous_level = map->raid_level;
11288 }
11289 }
11290 if (geo->level == 5 && previous_level == 0) {
11291 struct mdinfo *spares = NULL;
11292
11293 u->new_raid_disks++;
11294 spares = get_spares_for_grow(st);
11295 if (spares == NULL || spares->array.spare_disks < 1) {
11296 free(u);
11297 sysfs_free(spares);
11298 update_memory_size = 0;
11299 pr_err("cannot get spare device for requested migration\n");
11300 return 0;
11301 }
11302 sysfs_free(spares);
11303 }
11304 dprintf("imsm: reshape update preparation : OK\n");
11305 *updatep = u;
11306
11307 return update_memory_size;
11308 }
11309
11310 static void imsm_update_metadata_locally(struct supertype *st,
11311 void *buf, int len)
11312 {
11313 struct metadata_update mu;
11314
11315 mu.buf = buf;
11316 mu.len = len;
11317 mu.space = NULL;
11318 mu.space_list = NULL;
11319 mu.next = NULL;
11320 if (imsm_prepare_update(st, &mu))
11321 imsm_process_update(st, &mu);
11322
11323 while (mu.space_list) {
11324 void **space = mu.space_list;
11325 mu.space_list = *space;
11326 free(space);
11327 }
11328 }
11329
11330 /***************************************************************************
11331 * Function: imsm_analyze_change
11332 * Description: Function analyze change for single volume
11333 * and validate if transition is supported
11334 * Parameters: Geometry parameters, supertype structure,
11335 * metadata change direction (apply/rollback)
11336 * Returns: Operation type code on success, -1 if fail
11337 ****************************************************************************/
11338 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11339 struct geo_params *geo,
11340 int direction)
11341 {
11342 struct mdinfo info;
11343 int change = -1;
11344 int check_devs = 0;
11345 int chunk;
11346 /* number of added/removed disks in operation result */
11347 int devNumChange = 0;
11348 /* imsm compatible layout value for array geometry verification */
11349 int imsm_layout = -1;
11350 int data_disks;
11351 struct imsm_dev *dev;
11352 struct imsm_map *map;
11353 struct intel_super *super;
11354 unsigned long long current_size;
11355 unsigned long long free_size;
11356 unsigned long long max_size;
11357 int rv;
11358
11359 getinfo_super_imsm_volume(st, &info, NULL);
11360 if (geo->level != info.array.level && geo->level >= 0 &&
11361 geo->level != UnSet) {
11362 switch (info.array.level) {
11363 case 0:
11364 if (geo->level == 5) {
11365 change = CH_MIGRATION;
11366 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11367 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11368 change = -1;
11369 goto analyse_change_exit;
11370 }
11371 imsm_layout = geo->layout;
11372 check_devs = 1;
11373 devNumChange = 1; /* parity disk added */
11374 } else if (geo->level == 10) {
11375 change = CH_TAKEOVER;
11376 check_devs = 1;
11377 devNumChange = 2; /* two mirrors added */
11378 imsm_layout = 0x102; /* imsm supported layout */
11379 }
11380 break;
11381 case 1:
11382 case 10:
11383 if (geo->level == 0) {
11384 change = CH_TAKEOVER;
11385 check_devs = 1;
11386 devNumChange = -(geo->raid_disks/2);
11387 imsm_layout = 0; /* imsm raid0 layout */
11388 }
11389 break;
11390 }
11391 if (change == -1) {
11392 pr_err("Error. Level Migration from %d to %d not supported!\n",
11393 info.array.level, geo->level);
11394 goto analyse_change_exit;
11395 }
11396 } else
11397 geo->level = info.array.level;
11398
11399 if (geo->layout != info.array.layout &&
11400 (geo->layout != UnSet && geo->layout != -1)) {
11401 change = CH_MIGRATION;
11402 if (info.array.layout == 0 && info.array.level == 5 &&
11403 geo->layout == 5) {
11404 /* reshape 5 -> 4 */
11405 } else if (info.array.layout == 5 && info.array.level == 5 &&
11406 geo->layout == 0) {
11407 /* reshape 4 -> 5 */
11408 geo->layout = 0;
11409 geo->level = 5;
11410 } else {
11411 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11412 info.array.layout, geo->layout);
11413 change = -1;
11414 goto analyse_change_exit;
11415 }
11416 } else {
11417 geo->layout = info.array.layout;
11418 if (imsm_layout == -1)
11419 imsm_layout = info.array.layout;
11420 }
11421
11422 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11423 geo->chunksize != info.array.chunk_size) {
11424 if (info.array.level == 10) {
11425 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11426 change = -1;
11427 goto analyse_change_exit;
11428 } else if (info.component_size % (geo->chunksize/512)) {
11429 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11430 geo->chunksize/1024, info.component_size/2);
11431 change = -1;
11432 goto analyse_change_exit;
11433 }
11434 change = CH_MIGRATION;
11435 } else {
11436 geo->chunksize = info.array.chunk_size;
11437 }
11438
11439 chunk = geo->chunksize / 1024;
11440
11441 super = st->sb;
11442 dev = get_imsm_dev(super, super->current_vol);
11443 map = get_imsm_map(dev, MAP_0);
11444 data_disks = imsm_num_data_members(map);
11445 /* compute current size per disk member
11446 */
11447 current_size = info.custom_array_size / data_disks;
11448
11449 if (geo->size > 0 && geo->size != MAX_SIZE) {
11450 /* align component size
11451 */
11452 geo->size = imsm_component_size_alignment_check(
11453 get_imsm_raid_level(dev->vol.map),
11454 chunk * 1024, super->sector_size,
11455 geo->size * 2);
11456 if (geo->size == 0) {
11457 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
11458 current_size);
11459 goto analyse_change_exit;
11460 }
11461 }
11462
11463 if (current_size != geo->size && geo->size > 0) {
11464 if (change != -1) {
11465 pr_err("Error. Size change should be the only one at a time.\n");
11466 change = -1;
11467 goto analyse_change_exit;
11468 }
11469 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
11470 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
11471 super->current_vol, st->devnm);
11472 goto analyse_change_exit;
11473 }
11474 /* check the maximum available size
11475 */
11476 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11477 0, chunk, &free_size);
11478 if (rv == 0)
11479 /* Cannot find maximum available space
11480 */
11481 max_size = 0;
11482 else {
11483 max_size = free_size + current_size;
11484 /* align component size
11485 */
11486 max_size = imsm_component_size_alignment_check(
11487 get_imsm_raid_level(dev->vol.map),
11488 chunk * 1024, super->sector_size,
11489 max_size);
11490 }
11491 if (geo->size == MAX_SIZE) {
11492 /* requested size change to the maximum available size
11493 */
11494 if (max_size == 0) {
11495 pr_err("Error. Cannot find maximum available space.\n");
11496 change = -1;
11497 goto analyse_change_exit;
11498 } else
11499 geo->size = max_size;
11500 }
11501
11502 if (direction == ROLLBACK_METADATA_CHANGES) {
11503 /* accept size for rollback only
11504 */
11505 } else {
11506 /* round size due to metadata compatibility
11507 */
11508 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11509 << SECT_PER_MB_SHIFT;
11510 dprintf("Prepare update for size change to %llu\n",
11511 geo->size );
11512 if (current_size >= geo->size) {
11513 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
11514 current_size, geo->size);
11515 goto analyse_change_exit;
11516 }
11517 if (max_size && geo->size > max_size) {
11518 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
11519 max_size, geo->size);
11520 goto analyse_change_exit;
11521 }
11522 }
11523 geo->size *= data_disks;
11524 geo->raid_disks = dev->vol.map->num_members;
11525 change = CH_ARRAY_SIZE;
11526 }
11527 if (!validate_geometry_imsm(st,
11528 geo->level,
11529 imsm_layout,
11530 geo->raid_disks + devNumChange,
11531 &chunk,
11532 geo->size, INVALID_SECTORS,
11533 0, 0, info.consistency_policy, 1))
11534 change = -1;
11535
11536 if (check_devs) {
11537 struct intel_super *super = st->sb;
11538 struct imsm_super *mpb = super->anchor;
11539
11540 if (mpb->num_raid_devs > 1) {
11541 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
11542 geo->dev_name);
11543 change = -1;
11544 }
11545 }
11546
11547 analyse_change_exit:
11548 if (direction == ROLLBACK_METADATA_CHANGES &&
11549 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11550 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11551 change = -1;
11552 }
11553 return change;
11554 }
11555
11556 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11557 {
11558 struct intel_super *super = st->sb;
11559 struct imsm_update_takeover *u;
11560
11561 u = xmalloc(sizeof(struct imsm_update_takeover));
11562
11563 u->type = update_takeover;
11564 u->subarray = super->current_vol;
11565
11566 /* 10->0 transition */
11567 if (geo->level == 0)
11568 u->direction = R10_TO_R0;
11569
11570 /* 0->10 transition */
11571 if (geo->level == 10)
11572 u->direction = R0_TO_R10;
11573
11574 /* update metadata locally */
11575 imsm_update_metadata_locally(st, u,
11576 sizeof(struct imsm_update_takeover));
11577 /* and possibly remotely */
11578 if (st->update_tail)
11579 append_metadata_update(st, u,
11580 sizeof(struct imsm_update_takeover));
11581 else
11582 free(u);
11583
11584 return 0;
11585 }
11586
11587 /* Flush size update if size calculated by num_data_stripes is higher than
11588 * imsm_dev_size to eliminate differences during reshape.
11589 * Mdmon will recalculate them correctly.
11590 * If subarray index is not set then check whole container.
11591 * Returns:
11592 * 0 - no error occurred
11593 * 1 - error detected
11594 */
11595 static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11596 {
11597 struct intel_super *super = st->sb;
11598 int tmp = super->current_vol;
11599 int ret_val = 1;
11600 int i;
11601
11602 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11603 if (subarray_index >= 0 && i != subarray_index)
11604 continue;
11605 super->current_vol = i;
11606 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11607 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11608 unsigned int disc_count = imsm_num_data_members(map);
11609 struct geo_params geo;
11610 struct imsm_update_size_change *update;
11611 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11612 unsigned long long d_size = imsm_dev_size(dev);
11613 int u_size;
11614
11615 if (calc_size == d_size || dev->vol.migr_type == MIGR_GEN_MIGR)
11616 continue;
11617
11618 /* There is a difference, verify that imsm_dev_size is
11619 * rounded correctly and push update.
11620 */
11621 if (d_size != round_size_to_mb(d_size, disc_count)) {
11622 dprintf("imsm: Size of volume %d is not rounded correctly\n",
11623 i);
11624 goto exit;
11625 }
11626 memset(&geo, 0, sizeof(struct geo_params));
11627 geo.size = d_size;
11628 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11629 &update);
11630 if (u_size < 1) {
11631 dprintf("imsm: Cannot prepare size change update\n");
11632 goto exit;
11633 }
11634 imsm_update_metadata_locally(st, update, u_size);
11635 if (st->update_tail) {
11636 append_metadata_update(st, update, u_size);
11637 flush_metadata_updates(st);
11638 st->update_tail = &st->updates;
11639 } else {
11640 imsm_sync_metadata(st);
11641 }
11642 }
11643 ret_val = 0;
11644 exit:
11645 super->current_vol = tmp;
11646 return ret_val;
11647 }
11648
11649 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11650 int level,
11651 int layout, int chunksize, int raid_disks,
11652 int delta_disks, char *backup, char *dev,
11653 int direction, int verbose)
11654 {
11655 int ret_val = 1;
11656 struct geo_params geo;
11657
11658 dprintf("(enter)\n");
11659
11660 memset(&geo, 0, sizeof(struct geo_params));
11661
11662 geo.dev_name = dev;
11663 strcpy(geo.devnm, st->devnm);
11664 geo.size = size;
11665 geo.level = level;
11666 geo.layout = layout;
11667 geo.chunksize = chunksize;
11668 geo.raid_disks = raid_disks;
11669 if (delta_disks != UnSet)
11670 geo.raid_disks += delta_disks;
11671
11672 dprintf("for level : %i\n", geo.level);
11673 dprintf("for raid_disks : %i\n", geo.raid_disks);
11674
11675 if (strcmp(st->container_devnm, st->devnm) == 0) {
11676 /* On container level we can only increase number of devices. */
11677 dprintf("imsm: info: Container operation\n");
11678 int old_raid_disks = 0;
11679
11680 if (imsm_reshape_is_allowed_on_container(
11681 st, &geo, &old_raid_disks, direction)) {
11682 struct imsm_update_reshape *u = NULL;
11683 int len;
11684
11685 if (imsm_fix_size_mismatch(st, -1)) {
11686 dprintf("imsm: Cannot fix size mismatch\n");
11687 goto exit_imsm_reshape_super;
11688 }
11689
11690 len = imsm_create_metadata_update_for_reshape(
11691 st, &geo, old_raid_disks, &u);
11692
11693 if (len <= 0) {
11694 dprintf("imsm: Cannot prepare update\n");
11695 goto exit_imsm_reshape_super;
11696 }
11697
11698 ret_val = 0;
11699 /* update metadata locally */
11700 imsm_update_metadata_locally(st, u, len);
11701 /* and possibly remotely */
11702 if (st->update_tail)
11703 append_metadata_update(st, u, len);
11704 else
11705 free(u);
11706
11707 } else {
11708 pr_err("(imsm) Operation is not allowed on this container\n");
11709 }
11710 } else {
11711 /* On volume level we support following operations
11712 * - takeover: raid10 -> raid0; raid0 -> raid10
11713 * - chunk size migration
11714 * - migration: raid5 -> raid0; raid0 -> raid5
11715 */
11716 struct intel_super *super = st->sb;
11717 struct intel_dev *dev = super->devlist;
11718 int change;
11719 dprintf("imsm: info: Volume operation\n");
11720 /* find requested device */
11721 while (dev) {
11722 char *devnm =
11723 imsm_find_array_devnm_by_subdev(
11724 dev->index, st->container_devnm);
11725 if (devnm && strcmp(devnm, geo.devnm) == 0)
11726 break;
11727 dev = dev->next;
11728 }
11729 if (dev == NULL) {
11730 pr_err("Cannot find %s (%s) subarray\n",
11731 geo.dev_name, geo.devnm);
11732 goto exit_imsm_reshape_super;
11733 }
11734 super->current_vol = dev->index;
11735 change = imsm_analyze_change(st, &geo, direction);
11736 switch (change) {
11737 case CH_TAKEOVER:
11738 ret_val = imsm_takeover(st, &geo);
11739 break;
11740 case CH_MIGRATION: {
11741 struct imsm_update_reshape_migration *u = NULL;
11742 int len =
11743 imsm_create_metadata_update_for_migration(
11744 st, &geo, &u);
11745 if (len < 1) {
11746 dprintf("imsm: Cannot prepare update\n");
11747 break;
11748 }
11749 ret_val = 0;
11750 /* update metadata locally */
11751 imsm_update_metadata_locally(st, u, len);
11752 /* and possibly remotely */
11753 if (st->update_tail)
11754 append_metadata_update(st, u, len);
11755 else
11756 free(u);
11757 }
11758 break;
11759 case CH_ARRAY_SIZE: {
11760 struct imsm_update_size_change *u = NULL;
11761 int len =
11762 imsm_create_metadata_update_for_size_change(
11763 st, &geo, &u);
11764 if (len < 1) {
11765 dprintf("imsm: Cannot prepare update\n");
11766 break;
11767 }
11768 ret_val = 0;
11769 /* update metadata locally */
11770 imsm_update_metadata_locally(st, u, len);
11771 /* and possibly remotely */
11772 if (st->update_tail)
11773 append_metadata_update(st, u, len);
11774 else
11775 free(u);
11776 }
11777 break;
11778 default:
11779 ret_val = 1;
11780 }
11781 }
11782
11783 exit_imsm_reshape_super:
11784 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11785 return ret_val;
11786 }
11787
11788 #define COMPLETED_OK 0
11789 #define COMPLETED_NONE 1
11790 #define COMPLETED_DELAYED 2
11791
11792 static int read_completed(int fd, unsigned long long *val)
11793 {
11794 int ret;
11795 char buf[50];
11796
11797 ret = sysfs_fd_get_str(fd, buf, 50);
11798 if (ret < 0)
11799 return ret;
11800
11801 ret = COMPLETED_OK;
11802 if (strncmp(buf, "none", 4) == 0) {
11803 ret = COMPLETED_NONE;
11804 } else if (strncmp(buf, "delayed", 7) == 0) {
11805 ret = COMPLETED_DELAYED;
11806 } else {
11807 char *ep;
11808 *val = strtoull(buf, &ep, 0);
11809 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11810 ret = -1;
11811 }
11812 return ret;
11813 }
11814
11815 /*******************************************************************************
11816 * Function: wait_for_reshape_imsm
11817 * Description: Function writes new sync_max value and waits until
11818 * reshape process reach new position
11819 * Parameters:
11820 * sra : general array info
11821 * ndata : number of disks in new array's layout
11822 * Returns:
11823 * 0 : success,
11824 * 1 : there is no reshape in progress,
11825 * -1 : fail
11826 ******************************************************************************/
11827 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
11828 {
11829 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
11830 int retry = 3;
11831 unsigned long long completed;
11832 /* to_complete : new sync_max position */
11833 unsigned long long to_complete = sra->reshape_progress;
11834 unsigned long long position_to_set = to_complete / ndata;
11835
11836 if (fd < 0) {
11837 dprintf("cannot open reshape_position\n");
11838 return 1;
11839 }
11840
11841 do {
11842 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11843 if (!retry) {
11844 dprintf("cannot read reshape_position (no reshape in progres)\n");
11845 close(fd);
11846 return 1;
11847 }
11848 usleep(30000);
11849 } else
11850 break;
11851 } while (retry--);
11852
11853 if (completed > position_to_set) {
11854 dprintf("wrong next position to set %llu (%llu)\n",
11855 to_complete, position_to_set);
11856 close(fd);
11857 return -1;
11858 }
11859 dprintf("Position set: %llu\n", position_to_set);
11860 if (sysfs_set_num(sra, NULL, "sync_max",
11861 position_to_set) != 0) {
11862 dprintf("cannot set reshape position to %llu\n",
11863 position_to_set);
11864 close(fd);
11865 return -1;
11866 }
11867
11868 do {
11869 int rc;
11870 char action[20];
11871 int timeout = 3000;
11872
11873 sysfs_wait(fd, &timeout);
11874 if (sysfs_get_str(sra, NULL, "sync_action",
11875 action, 20) > 0 &&
11876 strncmp(action, "reshape", 7) != 0) {
11877 if (strncmp(action, "idle", 4) == 0)
11878 break;
11879 close(fd);
11880 return -1;
11881 }
11882
11883 rc = read_completed(fd, &completed);
11884 if (rc < 0) {
11885 dprintf("cannot read reshape_position (in loop)\n");
11886 close(fd);
11887 return 1;
11888 } else if (rc == COMPLETED_NONE)
11889 break;
11890 } while (completed < position_to_set);
11891
11892 close(fd);
11893 return 0;
11894 }
11895
11896 /*******************************************************************************
11897 * Function: check_degradation_change
11898 * Description: Check that array hasn't become failed.
11899 * Parameters:
11900 * info : for sysfs access
11901 * sources : source disks descriptors
11902 * degraded: previous degradation level
11903 * Returns:
11904 * degradation level
11905 ******************************************************************************/
11906 int check_degradation_change(struct mdinfo *info,
11907 int *sources,
11908 int degraded)
11909 {
11910 unsigned long long new_degraded;
11911 int rv;
11912
11913 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
11914 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
11915 /* check each device to ensure it is still working */
11916 struct mdinfo *sd;
11917 new_degraded = 0;
11918 for (sd = info->devs ; sd ; sd = sd->next) {
11919 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11920 continue;
11921 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
11922 char sbuf[100];
11923
11924 if (sysfs_get_str(info,
11925 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
11926 strstr(sbuf, "faulty") ||
11927 strstr(sbuf, "in_sync") == NULL) {
11928 /* this device is dead */
11929 sd->disk.state = (1<<MD_DISK_FAULTY);
11930 if (sd->disk.raid_disk >= 0 &&
11931 sources[sd->disk.raid_disk] >= 0) {
11932 close(sources[
11933 sd->disk.raid_disk]);
11934 sources[sd->disk.raid_disk] =
11935 -1;
11936 }
11937 new_degraded++;
11938 }
11939 }
11940 }
11941 }
11942
11943 return new_degraded;
11944 }
11945
11946 /*******************************************************************************
11947 * Function: imsm_manage_reshape
11948 * Description: Function finds array under reshape and it manages reshape
11949 * process. It creates stripes backups (if required) and sets
11950 * checkpoints.
11951 * Parameters:
11952 * afd : Backup handle (nattive) - not used
11953 * sra : general array info
11954 * reshape : reshape parameters - not used
11955 * st : supertype structure
11956 * blocks : size of critical section [blocks]
11957 * fds : table of source device descriptor
11958 * offsets : start of array (offest per devices)
11959 * dests : not used
11960 * destfd : table of destination device descriptor
11961 * destoffsets : table of destination offsets (per device)
11962 * Returns:
11963 * 1 : success, reshape is done
11964 * 0 : fail
11965 ******************************************************************************/
11966 static int imsm_manage_reshape(
11967 int afd, struct mdinfo *sra, struct reshape *reshape,
11968 struct supertype *st, unsigned long backup_blocks,
11969 int *fds, unsigned long long *offsets,
11970 int dests, int *destfd, unsigned long long *destoffsets)
11971 {
11972 int ret_val = 0;
11973 struct intel_super *super = st->sb;
11974 struct intel_dev *dv;
11975 unsigned int sector_size = super->sector_size;
11976 struct imsm_dev *dev = NULL;
11977 struct imsm_map *map_src, *map_dest;
11978 int migr_vol_qan = 0;
11979 int ndata, odata; /* [bytes] */
11980 int chunk; /* [bytes] */
11981 struct migr_record *migr_rec;
11982 char *buf = NULL;
11983 unsigned int buf_size; /* [bytes] */
11984 unsigned long long max_position; /* array size [bytes] */
11985 unsigned long long next_step; /* [blocks]/[bytes] */
11986 unsigned long long old_data_stripe_length;
11987 unsigned long long start_src; /* [bytes] */
11988 unsigned long long start; /* [bytes] */
11989 unsigned long long start_buf_shift; /* [bytes] */
11990 int degraded = 0;
11991 int source_layout = 0;
11992 int subarray_index = -1;
11993
11994 if (!sra)
11995 return ret_val;
11996
11997 if (!fds || !offsets)
11998 goto abort;
11999
12000 /* Find volume during the reshape */
12001 for (dv = super->devlist; dv; dv = dv->next) {
12002 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12003 dv->dev->vol.migr_state == 1) {
12004 dev = dv->dev;
12005 migr_vol_qan++;
12006 subarray_index = dv->index;
12007 }
12008 }
12009 /* Only one volume can migrate at the same time */
12010 if (migr_vol_qan != 1) {
12011 pr_err("%s", migr_vol_qan ?
12012 "Number of migrating volumes greater than 1\n" :
12013 "There is no volume during migrationg\n");
12014 goto abort;
12015 }
12016
12017 map_dest = get_imsm_map(dev, MAP_0);
12018 map_src = get_imsm_map(dev, MAP_1);
12019 if (map_src == NULL)
12020 goto abort;
12021
12022 ndata = imsm_num_data_members(map_dest);
12023 odata = imsm_num_data_members(map_src);
12024
12025 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
12026 old_data_stripe_length = odata * chunk;
12027
12028 migr_rec = super->migr_rec;
12029
12030 /* initialize migration record for start condition */
12031 if (sra->reshape_progress == 0)
12032 init_migr_record_imsm(st, dev, sra);
12033 else {
12034 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
12035 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
12036 goto abort;
12037 }
12038 /* Save checkpoint to update migration record for current
12039 * reshape position (in md). It can be farther than current
12040 * reshape position in metadata.
12041 */
12042 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12043 /* ignore error == 2, this can mean end of reshape here
12044 */
12045 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
12046 goto abort;
12047 }
12048 }
12049
12050 /* size for data */
12051 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12052 /* extend buffer size for parity disk */
12053 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
12054 /* add space for stripe alignment */
12055 buf_size += old_data_stripe_length;
12056 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12057 dprintf("imsm: Cannot allocate checkpoint buffer\n");
12058 goto abort;
12059 }
12060
12061 max_position = sra->component_size * ndata;
12062 source_layout = imsm_level_to_layout(map_src->raid_level);
12063
12064 while (current_migr_unit(migr_rec) <
12065 get_num_migr_units(migr_rec)) {
12066 /* current reshape position [blocks] */
12067 unsigned long long current_position =
12068 __le32_to_cpu(migr_rec->blocks_per_unit)
12069 * current_migr_unit(migr_rec);
12070 unsigned long long border;
12071
12072 /* Check that array hasn't become failed.
12073 */
12074 degraded = check_degradation_change(sra, fds, degraded);
12075 if (degraded > 1) {
12076 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
12077 goto abort;
12078 }
12079
12080 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12081
12082 if ((current_position + next_step) > max_position)
12083 next_step = max_position - current_position;
12084
12085 start = current_position * 512;
12086
12087 /* align reading start to old geometry */
12088 start_buf_shift = start % old_data_stripe_length;
12089 start_src = start - start_buf_shift;
12090
12091 border = (start_src / odata) - (start / ndata);
12092 border /= 512;
12093 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12094 /* save critical stripes to buf
12095 * start - start address of current unit
12096 * to backup [bytes]
12097 * start_src - start address of current unit
12098 * to backup alligned to source array
12099 * [bytes]
12100 */
12101 unsigned long long next_step_filler;
12102 unsigned long long copy_length = next_step * 512;
12103
12104 /* allign copy area length to stripe in old geometry */
12105 next_step_filler = ((copy_length + start_buf_shift)
12106 % old_data_stripe_length);
12107 if (next_step_filler)
12108 next_step_filler = (old_data_stripe_length
12109 - next_step_filler);
12110 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
12111 start, start_src, copy_length,
12112 start_buf_shift, next_step_filler);
12113
12114 if (save_stripes(fds, offsets, map_src->num_members,
12115 chunk, map_src->raid_level,
12116 source_layout, 0, NULL, start_src,
12117 copy_length +
12118 next_step_filler + start_buf_shift,
12119 buf)) {
12120 dprintf("imsm: Cannot save stripes to buffer\n");
12121 goto abort;
12122 }
12123 /* Convert data to destination format and store it
12124 * in backup general migration area
12125 */
12126 if (save_backup_imsm(st, dev, sra,
12127 buf + start_buf_shift, copy_length)) {
12128 dprintf("imsm: Cannot save stripes to target devices\n");
12129 goto abort;
12130 }
12131 if (save_checkpoint_imsm(st, sra,
12132 UNIT_SRC_IN_CP_AREA)) {
12133 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
12134 goto abort;
12135 }
12136 } else {
12137 /* set next step to use whole border area */
12138 border /= next_step;
12139 if (border > 1)
12140 next_step *= border;
12141 }
12142 /* When data backed up, checkpoint stored,
12143 * kick the kernel to reshape unit of data
12144 */
12145 next_step = next_step + sra->reshape_progress;
12146 /* limit next step to array max position */
12147 if (next_step > max_position)
12148 next_step = max_position;
12149 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12150 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
12151 sra->reshape_progress = next_step;
12152
12153 /* wait until reshape finish */
12154 if (wait_for_reshape_imsm(sra, ndata)) {
12155 dprintf("wait_for_reshape_imsm returned error!\n");
12156 goto abort;
12157 }
12158 if (sigterm)
12159 goto abort;
12160
12161 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12162 /* ignore error == 2, this can mean end of reshape here
12163 */
12164 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
12165 goto abort;
12166 }
12167
12168 }
12169
12170 /* clear migr_rec on disks after successful migration */
12171 struct dl *d;
12172
12173 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
12174 for (d = super->disks; d; d = d->next) {
12175 if (d->index < 0 || is_failed(&d->disk))
12176 continue;
12177 unsigned long long dsize;
12178
12179 get_dev_size(d->fd, NULL, &dsize);
12180 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
12181 SEEK_SET) >= 0) {
12182 if ((unsigned int)write(d->fd, super->migr_rec_buf,
12183 MIGR_REC_BUF_SECTORS*sector_size) !=
12184 MIGR_REC_BUF_SECTORS*sector_size)
12185 perror("Write migr_rec failed");
12186 }
12187 }
12188
12189 /* return '1' if done */
12190 ret_val = 1;
12191
12192 /* After the reshape eliminate size mismatch in metadata.
12193 * Don't update md/component_size here, volume hasn't
12194 * to take whole space. It is allowed by kernel.
12195 * md/component_size will be set propoperly after next assembly.
12196 */
12197 imsm_fix_size_mismatch(st, subarray_index);
12198
12199 abort:
12200 free(buf);
12201 /* See Grow.c: abort_reshape() for further explanation */
12202 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12203 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12204 sysfs_set_num(sra, NULL, "suspend_lo", 0);
12205
12206 return ret_val;
12207 }
12208
12209 struct superswitch super_imsm = {
12210 .examine_super = examine_super_imsm,
12211 .brief_examine_super = brief_examine_super_imsm,
12212 .brief_examine_subarrays = brief_examine_subarrays_imsm,
12213 .export_examine_super = export_examine_super_imsm,
12214 .detail_super = detail_super_imsm,
12215 .brief_detail_super = brief_detail_super_imsm,
12216 .write_init_super = write_init_super_imsm,
12217 .validate_geometry = validate_geometry_imsm,
12218 .add_to_super = add_to_super_imsm,
12219 .remove_from_super = remove_from_super_imsm,
12220 .detail_platform = detail_platform_imsm,
12221 .export_detail_platform = export_detail_platform_imsm,
12222 .kill_subarray = kill_subarray_imsm,
12223 .update_subarray = update_subarray_imsm,
12224 .load_container = load_container_imsm,
12225 .default_geometry = default_geometry_imsm,
12226 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12227 .reshape_super = imsm_reshape_super,
12228 .manage_reshape = imsm_manage_reshape,
12229 .recover_backup = recover_backup_imsm,
12230 .examine_badblocks = examine_badblocks_imsm,
12231 .match_home = match_home_imsm,
12232 .uuid_from_super= uuid_from_super_imsm,
12233 .getinfo_super = getinfo_super_imsm,
12234 .getinfo_super_disks = getinfo_super_disks_imsm,
12235 .update_super = update_super_imsm,
12236
12237 .avail_size = avail_size_imsm,
12238 .get_spare_criteria = get_spare_criteria_imsm,
12239
12240 .compare_super = compare_super_imsm,
12241
12242 .load_super = load_super_imsm,
12243 .init_super = init_super_imsm,
12244 .store_super = store_super_imsm,
12245 .free_super = free_super_imsm,
12246 .match_metadata_desc = match_metadata_desc_imsm,
12247 .container_content = container_content_imsm,
12248 .validate_container = validate_container_imsm,
12249
12250 .write_init_ppl = write_init_ppl_imsm,
12251 .validate_ppl = validate_ppl_imsm,
12252
12253 .external = 1,
12254 .name = "imsm",
12255
12256 /* for mdmon */
12257 .open_new = imsm_open_new,
12258 .set_array_state= imsm_set_array_state,
12259 .set_disk = imsm_set_disk,
12260 .sync_metadata = imsm_sync_metadata,
12261 .activate_spare = imsm_activate_spare,
12262 .process_update = imsm_process_update,
12263 .prepare_update = imsm_prepare_update,
12264 .record_bad_block = imsm_record_badblock,
12265 .clear_bad_block = imsm_clear_badblock,
12266 .get_bad_blocks = imsm_get_badblocks,
12267 };