]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: avoid overflows for disks over 1TB
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 };
409
410 /* definition of messages passed to imsm_process_update */
411 enum imsm_update_type {
412 update_activate_spare,
413 update_create_array,
414 update_kill_array,
415 update_rename_array,
416 update_add_remove_disk,
417 update_reshape_container_disks,
418 update_reshape_migration,
419 update_takeover,
420 update_general_migration_checkpoint,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 int dev_id;
433 char *dev_name;
434 long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_general_migration_checkpoint {
474 enum imsm_update_type type;
475 __u32 curr_migr_unit;
476 };
477
478 struct disk_info {
479 __u8 serial[MAX_RAID_SERIAL_LEN];
480 };
481
482 struct imsm_update_create_array {
483 enum imsm_update_type type;
484 int dev_idx;
485 struct imsm_dev dev;
486 };
487
488 struct imsm_update_kill_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 };
492
493 struct imsm_update_rename_array {
494 enum imsm_update_type type;
495 __u8 name[MAX_RAID_SERIAL_LEN];
496 int dev_idx;
497 };
498
499 struct imsm_update_add_remove_disk {
500 enum imsm_update_type type;
501 };
502
503
504 static const char *_sys_dev_type[] = {
505 [SYS_DEV_UNKNOWN] = "Unknown",
506 [SYS_DEV_SAS] = "SAS",
507 [SYS_DEV_SATA] = "SATA"
508 };
509
510 const char *get_sys_dev_type(enum sys_dev_type type)
511 {
512 if (type >= SYS_DEV_MAX)
513 type = SYS_DEV_UNKNOWN;
514
515 return _sys_dev_type[type];
516 }
517
518 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
519 {
520 struct intel_hba *result = malloc(sizeof(*result));
521 if (result) {
522 result->type = device->type;
523 result->path = strdup(device->path);
524 result->next = NULL;
525 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
526 result->pci_id++;
527 }
528 return result;
529 }
530
531 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
532 {
533 struct intel_hba *result=NULL;
534 for (result = hba; result; result = result->next) {
535 if (result->type == device->type && strcmp(result->path, device->path) == 0)
536 break;
537 }
538 return result;
539 }
540
541 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
542 {
543 struct intel_hba *hba;
544
545 /* check if disk attached to Intel HBA */
546 hba = find_intel_hba(super->hba, device);
547 if (hba != NULL)
548 return 1;
549 /* Check if HBA is already attached to super */
550 if (super->hba == NULL) {
551 super->hba = alloc_intel_hba(device);
552 return 1;
553 }
554
555 hba = super->hba;
556 /* Intel metadata allows for all disks attached to the same type HBA.
557 * Do not sypport odf HBA types mixing
558 */
559 if (device->type != hba->type)
560 return 2;
561
562 while (hba->next)
563 hba = hba->next;
564
565 hba->next = alloc_intel_hba(device);
566 return 1;
567 }
568
569 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
570 {
571 struct sys_dev *list, *elem, *prev;
572 char *disk_path;
573
574 if ((list = find_intel_devices()) == NULL)
575 return 0;
576
577 if (fd < 0)
578 disk_path = (char *) devname;
579 else
580 disk_path = diskfd_to_devpath(fd);
581
582 if (!disk_path) {
583 free_sys_dev(&list);
584 return 0;
585 }
586
587 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
588 if (path_attached_to_hba(disk_path, elem->path)) {
589 if (prev == NULL)
590 list = list->next;
591 else
592 prev->next = elem->next;
593 elem->next = NULL;
594 if (disk_path != devname)
595 free(disk_path);
596 free_sys_dev(&list);
597 return elem;
598 }
599 }
600 if (disk_path != devname)
601 free(disk_path);
602 free_sys_dev(&list);
603
604 return NULL;
605 }
606
607
608 static int find_intel_hba_capability(int fd, struct intel_super *super,
609 char *devname);
610
611 static struct supertype *match_metadata_desc_imsm(char *arg)
612 {
613 struct supertype *st;
614
615 if (strcmp(arg, "imsm") != 0 &&
616 strcmp(arg, "default") != 0
617 )
618 return NULL;
619
620 st = malloc(sizeof(*st));
621 if (!st)
622 return NULL;
623 memset(st, 0, sizeof(*st));
624 st->container_dev = NoMdDev;
625 st->ss = &super_imsm;
626 st->max_devs = IMSM_MAX_DEVICES;
627 st->minor_version = 0;
628 st->sb = NULL;
629 return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635 return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load time
641 */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644 if (index >= mpb->num_disks)
645 return NULL;
646 return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650 * in the sub-array
651 */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654 struct dl *d;
655
656 for (d = super->disks; d; d = d->next)
657 if (d->index == index)
658 return d;
659
660 return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665 struct dl *dl;
666
667 dl = get_imsm_dl_disk(super, index);
668 if (dl)
669 return &dl->disk;
670
671 return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675 * up-to-date, currently only at load or write_super after coalescing
676 */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679 __u32 end = mpb->mpb_size / sizeof(end);
680 __u32 *p = (__u32 *) mpb;
681 __u32 sum = 0;
682
683 while (end--) {
684 sum += __le32_to_cpu(*p);
685 p++;
686 }
687
688 return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698 /* A device can have 2 maps if it is in the middle of a migration.
699 * If second_map is:
700 * MAP_0 - we return the first map
701 * MAP_1 - we return the second map if it exists, else NULL
702 * MAP_X - we return the second map if it exists, else the first
703 */
704 struct imsm_map *map = &dev->vol.map[0];
705 struct imsm_map *map2 = NULL;
706
707 if (dev->vol.migr_state)
708 map2 = (void *)map + sizeof_imsm_map(map);
709
710 switch (second_map) {
711 case MAP_0:
712 break;
713 case MAP_1:
714 map = map2;
715 break;
716 case MAP_X:
717 if (map2)
718 map = map2;
719 break;
720 default:
721 map = NULL;
722 }
723 return map;
724
725 }
726
727 /* return the size of the device.
728 * migr_state increases the returned size if map[0] were to be duplicated
729 */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735 /* migrating means an additional map */
736 if (dev->vol.migr_state)
737 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738 else if (migr_state)
739 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741 return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748 void *u = update;
749 struct disk_info *inf;
750
751 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752 sizeof_imsm_dev(&update->dev, 0);
753
754 return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760 int offset;
761 int i;
762 void *_mpb = mpb;
763
764 if (index >= mpb->num_raid_devs)
765 return NULL;
766
767 /* devices start after all disks */
768 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770 for (i = 0; i <= index; i++)
771 if (i == index)
772 return _mpb + offset;
773 else
774 offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776 return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781 struct intel_dev *dv;
782
783 if (index >= super->anchor->num_raid_devs)
784 return NULL;
785 for (dv = super->devlist; dv; dv = dv->next)
786 if (dv->index == index)
787 return dv->dev;
788 return NULL;
789 }
790
791 /*
792 * for second_map:
793 * == MAP_0 get first map
794 * == MAP_1 get second map
795 * == MAP_X than get map according to the current migr_state
796 */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798 int slot,
799 int second_map)
800 {
801 struct imsm_map *map;
802
803 map = get_imsm_map(dev, second_map);
804
805 /* top byte identifies disk under rebuild */
806 return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814 return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824 int slot;
825 __u32 ord;
826
827 for (slot = 0; slot < map->num_members; slot++) {
828 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829 if (ord_to_idx(ord) == idx)
830 return slot;
831 }
832
833 return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838 if (map->raid_level == 1) {
839 if (map->num_members == 2)
840 return 1;
841 else
842 return 10;
843 }
844
845 return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850 const struct extent *a = av;
851 const struct extent *b = bv;
852 if (a->start < b->start)
853 return -1;
854 if (a->start > b->start)
855 return 1;
856 return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861 int memberships = 0;
862 int i;
863
864 for (i = 0; i < super->anchor->num_raid_devs; i++) {
865 struct imsm_dev *dev = get_imsm_dev(super, i);
866 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868 if (get_imsm_disk_slot(map, dl->index) >= 0)
869 memberships++;
870 }
871
872 return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879 if (lo == 0 || hi == 0)
880 return 1;
881 *lo = __le32_to_cpu((unsigned)n);
882 *hi = __le32_to_cpu((unsigned)(n >> 32));
883 return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888 return (unsigned long long)__le32_to_cpu(lo) |
889 (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894 if (disk == NULL)
895 return 0;
896 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901 if (map == NULL)
902 return 0;
903 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908 if (map == NULL)
909 return 0;
910 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 static unsigned long long num_data_stripes(struct imsm_map *map)
914 {
915 if (map == NULL)
916 return 0;
917 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
918 }
919
920 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
921 {
922 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
923 }
924
925 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
926 {
927 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
928 }
929
930 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
931 {
932 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
933 }
934
935 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
936 {
937 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
938 }
939
940 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
941 {
942 /* find a list of used extents on the given physical device */
943 struct extent *rv, *e;
944 int i;
945 int memberships = count_memberships(dl, super);
946 __u32 reservation;
947
948 /* trim the reserved area for spares, so they can join any array
949 * regardless of whether the OROM has assigned sectors from the
950 * IMSM_RESERVED_SECTORS region
951 */
952 if (dl->index == -1)
953 reservation = imsm_min_reserved_sectors(super);
954 else
955 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
956
957 rv = malloc(sizeof(struct extent) * (memberships + 1));
958 if (!rv)
959 return NULL;
960 e = rv;
961
962 for (i = 0; i < super->anchor->num_raid_devs; i++) {
963 struct imsm_dev *dev = get_imsm_dev(super, i);
964 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967 e->start = pba_of_lba0(map);
968 e->size = blocks_per_member(map);
969 e++;
970 }
971 }
972 qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974 /* determine the start of the metadata
975 * when no raid devices are defined use the default
976 * ...otherwise allow the metadata to truncate the value
977 * as is the case with older versions of imsm
978 */
979 if (memberships) {
980 struct extent *last = &rv[memberships - 1];
981 unsigned long long remainder;
982
983 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984 /* round down to 1k block to satisfy precision of the kernel
985 * 'size' interface
986 */
987 remainder &= ~1UL;
988 /* make sure remainder is still sane */
989 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990 remainder = ROUND_UP(super->len, 512) >> 9;
991 if (reservation > remainder)
992 reservation = remainder;
993 }
994 e->start = total_blocks(&dl->disk) - reservation;
995 e->size = 0;
996 return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000 * the last get_extents() entry, otherwise fallback to the
1001 * default
1002 */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005 struct extent *e;
1006 int i;
1007 __u32 rv;
1008
1009 /* for spares just return a minimal reservation which will grow
1010 * once the spare is picked up by an array
1011 */
1012 if (dl->index == -1)
1013 return MPB_SECTOR_CNT;
1014
1015 e = get_extents(super, dl);
1016 if (!e)
1017 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019 /* scroll to last entry */
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022
1023 rv = total_blocks(&dl->disk) - e[i].start;
1024
1025 free(e);
1026
1027 return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032 return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042 return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046 * the last get_extents() entry on the smallest active disk,
1047 * otherwise fallback to the default
1048 */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051 struct extent *e;
1052 int i;
1053 unsigned long long min_active;
1054 __u32 remainder;
1055 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056 struct dl *dl, *dl_min = NULL;
1057
1058 if (!super)
1059 return rv;
1060
1061 min_active = 0;
1062 for (dl = super->disks; dl; dl = dl->next) {
1063 if (dl->index < 0)
1064 continue;
1065 unsigned long long blocks = total_blocks(&dl->disk);
1066 if (blocks < min_active || min_active == 0) {
1067 dl_min = dl;
1068 min_active = blocks;
1069 }
1070 }
1071 if (!dl_min)
1072 return rv;
1073
1074 /* find last lba used by subarrays on the smallest active disk */
1075 e = get_extents(super, dl_min);
1076 if (!e)
1077 return rv;
1078 for (i = 0; e[i].size; i++)
1079 continue;
1080
1081 remainder = min_active - e[i].start;
1082 free(e);
1083
1084 /* to give priority to recovery we should not require full
1085 IMSM_RESERVED_SECTORS from the spare */
1086 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088 /* if real reservation is smaller use that value */
1089 return (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095 struct intel_super *super = st->sb;
1096 struct dl *dl;
1097 struct extent *e;
1098 int i;
1099 unsigned long long rv = 0;
1100
1101 if (!super)
1102 return rv;
1103 /* find first active disk in array */
1104 dl = super->disks;
1105 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106 dl = dl->next;
1107 if (!dl)
1108 return rv;
1109 /* find last lba used by subarrays */
1110 e = get_extents(super, dl);
1111 if (!e)
1112 return rv;
1113 for (i = 0; e[i].size; i++)
1114 continue;
1115 if (i > 0)
1116 rv = e[i-1].start + e[i-1].size;
1117 free(e);
1118
1119 /* add the amount of space needed for metadata */
1120 rv = rv + imsm_min_reserved_sectors(super);
1121
1122 return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #ifndef MDASSEMBLE
1128 static __u64 blocks_per_migr_unit(struct intel_super *super,
1129 struct imsm_dev *dev);
1130
1131 static void print_imsm_dev(struct intel_super *super,
1132 struct imsm_dev *dev,
1133 char *uuid,
1134 int disk_idx)
1135 {
1136 __u64 sz;
1137 int slot, i;
1138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1139 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1140 __u32 ord;
1141
1142 printf("\n");
1143 printf("[%.16s]:\n", dev->volume);
1144 printf(" UUID : %s\n", uuid);
1145 printf(" RAID Level : %d", get_imsm_raid_level(map));
1146 if (map2)
1147 printf(" <-- %d", get_imsm_raid_level(map2));
1148 printf("\n");
1149 printf(" Members : %d", map->num_members);
1150 if (map2)
1151 printf(" <-- %d", map2->num_members);
1152 printf("\n");
1153 printf(" Slots : [");
1154 for (i = 0; i < map->num_members; i++) {
1155 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1156 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1157 }
1158 printf("]");
1159 if (map2) {
1160 printf(" <-- [");
1161 for (i = 0; i < map2->num_members; i++) {
1162 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1163 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1164 }
1165 printf("]");
1166 }
1167 printf("\n");
1168 printf(" Failed disk : ");
1169 if (map->failed_disk_num == 0xff)
1170 printf("none");
1171 else
1172 printf("%i", map->failed_disk_num);
1173 printf("\n");
1174 slot = get_imsm_disk_slot(map, disk_idx);
1175 if (slot >= 0) {
1176 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1177 printf(" This Slot : %d%s\n", slot,
1178 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1179 } else
1180 printf(" This Slot : ?\n");
1181 sz = __le32_to_cpu(dev->size_high);
1182 sz <<= 32;
1183 sz += __le32_to_cpu(dev->size_low);
1184 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1185 human_size(sz * 512));
1186 sz = blocks_per_member(map);
1187 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1188 human_size(sz * 512));
1189 printf(" Sector Offset : %llu\n",
1190 pba_of_lba0(map));
1191 printf(" Num Stripes : %llu\n",
1192 num_data_stripes(map));
1193 printf(" Chunk Size : %u KiB",
1194 __le16_to_cpu(map->blocks_per_strip) / 2);
1195 if (map2)
1196 printf(" <-- %u KiB",
1197 __le16_to_cpu(map2->blocks_per_strip) / 2);
1198 printf("\n");
1199 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1200 printf(" Migrate State : ");
1201 if (dev->vol.migr_state) {
1202 if (migr_type(dev) == MIGR_INIT)
1203 printf("initialize\n");
1204 else if (migr_type(dev) == MIGR_REBUILD)
1205 printf("rebuild\n");
1206 else if (migr_type(dev) == MIGR_VERIFY)
1207 printf("check\n");
1208 else if (migr_type(dev) == MIGR_GEN_MIGR)
1209 printf("general migration\n");
1210 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1211 printf("state change\n");
1212 else if (migr_type(dev) == MIGR_REPAIR)
1213 printf("repair\n");
1214 else
1215 printf("<unknown:%d>\n", migr_type(dev));
1216 } else
1217 printf("idle\n");
1218 printf(" Map State : %s", map_state_str[map->map_state]);
1219 if (dev->vol.migr_state) {
1220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1221
1222 printf(" <-- %s", map_state_str[map->map_state]);
1223 printf("\n Checkpoint : %u ",
1224 __le32_to_cpu(dev->vol.curr_migr_unit));
1225 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1226 printf("(N/A)");
1227 else
1228 printf("(%llu)", (unsigned long long)
1229 blocks_per_migr_unit(super, dev));
1230 }
1231 printf("\n");
1232 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1233 }
1234
1235 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1236 {
1237 char str[MAX_RAID_SERIAL_LEN + 1];
1238 __u64 sz;
1239
1240 if (index < -1 || !disk)
1241 return;
1242
1243 printf("\n");
1244 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1245 if (index >= 0)
1246 printf(" Disk%02d Serial : %s\n", index, str);
1247 else
1248 printf(" Disk Serial : %s\n", str);
1249 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1250 is_configured(disk) ? " active" : "",
1251 is_failed(disk) ? " failed" : "");
1252 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1253 sz = total_blocks(disk) - reserved;
1254 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1255 human_size(sz * 512));
1256 }
1257
1258 void examine_migr_rec_imsm(struct intel_super *super)
1259 {
1260 struct migr_record *migr_rec = super->migr_rec;
1261 struct imsm_super *mpb = super->anchor;
1262 int i;
1263
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266 struct imsm_map *map;
1267 int slot = -1;
1268
1269 if (is_gen_migration(dev) == 0)
1270 continue;
1271
1272 printf("\nMigration Record Information:");
1273
1274 /* first map under migration */
1275 map = get_imsm_map(dev, MAP_0);
1276 if (map)
1277 slot = get_imsm_disk_slot(map, super->disks->index);
1278 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1279 printf(" Empty\n ");
1280 printf("Examine one of first two disks in array\n");
1281 break;
1282 }
1283 printf("\n Status : ");
1284 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1285 printf("Normal\n");
1286 else
1287 printf("Contains Data\n");
1288 printf(" Current Unit : %u\n",
1289 __le32_to_cpu(migr_rec->curr_migr_unit));
1290 printf(" Family : %u\n",
1291 __le32_to_cpu(migr_rec->family_num));
1292 printf(" Ascending : %u\n",
1293 __le32_to_cpu(migr_rec->ascending_migr));
1294 printf(" Blocks Per Unit : %u\n",
1295 __le32_to_cpu(migr_rec->blocks_per_unit));
1296 printf(" Dest. Depth Per Unit : %u\n",
1297 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1298 printf(" Checkpoint Area pba : %u\n",
1299 __le32_to_cpu(migr_rec->ckpt_area_pba));
1300 printf(" First member lba : %u\n",
1301 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1302 printf(" Total Number of Units : %u\n",
1303 __le32_to_cpu(migr_rec->num_migr_units));
1304 printf(" Size of volume : %u\n",
1305 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1306 printf(" Expansion space for LBA64 : %u\n",
1307 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1308 printf(" Record was read from : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1310
1311 break;
1312 }
1313 }
1314 #endif /* MDASSEMBLE */
1315 /*******************************************************************************
1316 * function: imsm_check_attributes
1317 * Description: Function checks if features represented by attributes flags
1318 * are supported by mdadm.
1319 * Parameters:
1320 * attributes - Attributes read from metadata
1321 * Returns:
1322 * 0 - passed attributes contains unsupported features flags
1323 * 1 - all features are supported
1324 ******************************************************************************/
1325 static int imsm_check_attributes(__u32 attributes)
1326 {
1327 int ret_val = 1;
1328 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1329
1330 not_supported &= ~MPB_ATTRIB_IGNORED;
1331
1332 not_supported &= attributes;
1333 if (not_supported) {
1334 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1335 (unsigned)__le32_to_cpu(not_supported));
1336 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1337 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1338 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1339 }
1340 if (not_supported & MPB_ATTRIB_2TB) {
1341 dprintf("\t\tMPB_ATTRIB_2TB\n");
1342 not_supported ^= MPB_ATTRIB_2TB;
1343 }
1344 if (not_supported & MPB_ATTRIB_RAID0) {
1345 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1346 not_supported ^= MPB_ATTRIB_RAID0;
1347 }
1348 if (not_supported & MPB_ATTRIB_RAID1) {
1349 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1350 not_supported ^= MPB_ATTRIB_RAID1;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID10) {
1353 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1354 not_supported ^= MPB_ATTRIB_RAID10;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1E) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1358 not_supported ^= MPB_ATTRIB_RAID1E;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID5) {
1361 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1362 not_supported ^= MPB_ATTRIB_RAID5;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1365 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1366 not_supported ^= MPB_ATTRIB_RAIDCNG;
1367 }
1368 if (not_supported & MPB_ATTRIB_BBM) {
1369 dprintf("\t\tMPB_ATTRIB_BBM\n");
1370 not_supported ^= MPB_ATTRIB_BBM;
1371 }
1372 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1373 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1374 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1375 }
1376 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1377 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1378 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1379 }
1380 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1381 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1382 not_supported ^= MPB_ATTRIB_2TB_DISK;
1383 }
1384 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1385 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1386 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1387 }
1388 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1389 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1390 not_supported ^= MPB_ATTRIB_NEVER_USE;
1391 }
1392
1393 if (not_supported)
1394 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1395
1396 ret_val = 0;
1397 }
1398
1399 return ret_val;
1400 }
1401
1402 #ifndef MDASSEMBLE
1403 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1404
1405 static void examine_super_imsm(struct supertype *st, char *homehost)
1406 {
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb = super->anchor;
1409 char str[MAX_SIGNATURE_LENGTH];
1410 int i;
1411 struct mdinfo info;
1412 char nbuf[64];
1413 __u32 sum;
1414 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1415 struct dl *dl;
1416
1417 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1418 printf(" Magic : %s\n", str);
1419 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1420 printf(" Version : %s\n", get_imsm_version(mpb));
1421 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1422 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1423 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1424 printf(" Attributes : ");
1425 if (imsm_check_attributes(mpb->attributes))
1426 printf("All supported\n");
1427 else
1428 printf("not supported\n");
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf(" UUID : %s\n", nbuf + 5);
1432 sum = __le32_to_cpu(mpb->check_sum);
1433 printf(" Checksum : %08x %s\n", sum,
1434 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1435 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1436 printf(" Disks : %d\n", mpb->num_disks);
1437 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1438 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1439 if (super->bbm_log) {
1440 struct bbm_log *log = super->bbm_log;
1441
1442 printf("\n");
1443 printf("Bad Block Management Log:\n");
1444 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1445 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1446 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1447 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1448 printf(" First Spare : %llx\n",
1449 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1450 }
1451 for (i = 0; i < mpb->num_raid_devs; i++) {
1452 struct mdinfo info;
1453 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1454
1455 super->current_vol = i;
1456 getinfo_super_imsm(st, &info, NULL);
1457 fname_from_uuid(st, &info, nbuf, ':');
1458 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1459 }
1460 for (i = 0; i < mpb->num_disks; i++) {
1461 if (i == super->disks->index)
1462 continue;
1463 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1464 }
1465
1466 for (dl = super->disks; dl; dl = dl->next)
1467 if (dl->index == -1)
1468 print_imsm_disk(&dl->disk, -1, reserved);
1469
1470 examine_migr_rec_imsm(super);
1471 }
1472
1473 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1474 {
1475 /* We just write a generic IMSM ARRAY entry */
1476 struct mdinfo info;
1477 char nbuf[64];
1478 struct intel_super *super = st->sb;
1479
1480 if (!super->anchor->num_raid_devs) {
1481 printf("ARRAY metadata=imsm\n");
1482 return;
1483 }
1484
1485 getinfo_super_imsm(st, &info, NULL);
1486 fname_from_uuid(st, &info, nbuf, ':');
1487 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1488 }
1489
1490 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1491 {
1492 /* We just write a generic IMSM ARRAY entry */
1493 struct mdinfo info;
1494 char nbuf[64];
1495 char nbuf1[64];
1496 struct intel_super *super = st->sb;
1497 int i;
1498
1499 if (!super->anchor->num_raid_devs)
1500 return;
1501
1502 getinfo_super_imsm(st, &info, NULL);
1503 fname_from_uuid(st, &info, nbuf, ':');
1504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1505 struct imsm_dev *dev = get_imsm_dev(super, i);
1506
1507 super->current_vol = i;
1508 getinfo_super_imsm(st, &info, NULL);
1509 fname_from_uuid(st, &info, nbuf1, ':');
1510 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1511 dev->volume, nbuf + 5, i, nbuf1 + 5);
1512 }
1513 }
1514
1515 static void export_examine_super_imsm(struct supertype *st)
1516 {
1517 struct intel_super *super = st->sb;
1518 struct imsm_super *mpb = super->anchor;
1519 struct mdinfo info;
1520 char nbuf[64];
1521
1522 getinfo_super_imsm(st, &info, NULL);
1523 fname_from_uuid(st, &info, nbuf, ':');
1524 printf("MD_METADATA=imsm\n");
1525 printf("MD_LEVEL=container\n");
1526 printf("MD_UUID=%s\n", nbuf+5);
1527 printf("MD_DEVICES=%u\n", mpb->num_disks);
1528 }
1529
1530 static void detail_super_imsm(struct supertype *st, char *homehost)
1531 {
1532 struct mdinfo info;
1533 char nbuf[64];
1534
1535 getinfo_super_imsm(st, &info, NULL);
1536 fname_from_uuid(st, &info, nbuf, ':');
1537 printf("\n UUID : %s\n", nbuf + 5);
1538 }
1539
1540 static void brief_detail_super_imsm(struct supertype *st)
1541 {
1542 struct mdinfo info;
1543 char nbuf[64];
1544 getinfo_super_imsm(st, &info, NULL);
1545 fname_from_uuid(st, &info, nbuf, ':');
1546 printf(" UUID=%s", nbuf + 5);
1547 }
1548
1549 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1550 static void fd2devname(int fd, char *name);
1551
1552 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1553 {
1554 /* dump an unsorted list of devices attached to AHCI Intel storage
1555 * controller, as well as non-connected ports
1556 */
1557 int hba_len = strlen(hba_path) + 1;
1558 struct dirent *ent;
1559 DIR *dir;
1560 char *path = NULL;
1561 int err = 0;
1562 unsigned long port_mask = (1 << port_count) - 1;
1563
1564 if (port_count > (int)sizeof(port_mask) * 8) {
1565 if (verbose)
1566 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1567 return 2;
1568 }
1569
1570 /* scroll through /sys/dev/block looking for devices attached to
1571 * this hba
1572 */
1573 dir = opendir("/sys/dev/block");
1574 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1575 int fd;
1576 char model[64];
1577 char vendor[64];
1578 char buf[1024];
1579 int major, minor;
1580 char *device;
1581 char *c;
1582 int port;
1583 int type;
1584
1585 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1586 continue;
1587 path = devt_to_devpath(makedev(major, minor));
1588 if (!path)
1589 continue;
1590 if (!path_attached_to_hba(path, hba_path)) {
1591 free(path);
1592 path = NULL;
1593 continue;
1594 }
1595
1596 /* retrieve the scsi device type */
1597 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1598 if (verbose)
1599 fprintf(stderr, Name ": failed to allocate 'device'\n");
1600 err = 2;
1601 break;
1602 }
1603 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1604 if (load_sys(device, buf) != 0) {
1605 if (verbose)
1606 fprintf(stderr, Name ": failed to read device type for %s\n",
1607 path);
1608 err = 2;
1609 free(device);
1610 break;
1611 }
1612 type = strtoul(buf, NULL, 10);
1613
1614 /* if it's not a disk print the vendor and model */
1615 if (!(type == 0 || type == 7 || type == 14)) {
1616 vendor[0] = '\0';
1617 model[0] = '\0';
1618 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1619 if (load_sys(device, buf) == 0) {
1620 strncpy(vendor, buf, sizeof(vendor));
1621 vendor[sizeof(vendor) - 1] = '\0';
1622 c = (char *) &vendor[sizeof(vendor) - 1];
1623 while (isspace(*c) || *c == '\0')
1624 *c-- = '\0';
1625
1626 }
1627 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1628 if (load_sys(device, buf) == 0) {
1629 strncpy(model, buf, sizeof(model));
1630 model[sizeof(model) - 1] = '\0';
1631 c = (char *) &model[sizeof(model) - 1];
1632 while (isspace(*c) || *c == '\0')
1633 *c-- = '\0';
1634 }
1635
1636 if (vendor[0] && model[0])
1637 sprintf(buf, "%.64s %.64s", vendor, model);
1638 else
1639 switch (type) { /* numbers from hald/linux/device.c */
1640 case 1: sprintf(buf, "tape"); break;
1641 case 2: sprintf(buf, "printer"); break;
1642 case 3: sprintf(buf, "processor"); break;
1643 case 4:
1644 case 5: sprintf(buf, "cdrom"); break;
1645 case 6: sprintf(buf, "scanner"); break;
1646 case 8: sprintf(buf, "media_changer"); break;
1647 case 9: sprintf(buf, "comm"); break;
1648 case 12: sprintf(buf, "raid"); break;
1649 default: sprintf(buf, "unknown");
1650 }
1651 } else
1652 buf[0] = '\0';
1653 free(device);
1654
1655 /* chop device path to 'host%d' and calculate the port number */
1656 c = strchr(&path[hba_len], '/');
1657 if (!c) {
1658 if (verbose)
1659 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1660 err = 2;
1661 break;
1662 }
1663 *c = '\0';
1664 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1665 port -= host_base;
1666 else {
1667 if (verbose) {
1668 *c = '/'; /* repair the full string */
1669 fprintf(stderr, Name ": failed to determine port number for %s\n",
1670 path);
1671 }
1672 err = 2;
1673 break;
1674 }
1675
1676 /* mark this port as used */
1677 port_mask &= ~(1 << port);
1678
1679 /* print out the device information */
1680 if (buf[0]) {
1681 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1682 continue;
1683 }
1684
1685 fd = dev_open(ent->d_name, O_RDONLY);
1686 if (fd < 0)
1687 printf(" Port%d : - disk info unavailable -\n", port);
1688 else {
1689 fd2devname(fd, buf);
1690 printf(" Port%d : %s", port, buf);
1691 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1692 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1693 else
1694 printf(" ()\n");
1695 close(fd);
1696 }
1697 free(path);
1698 path = NULL;
1699 }
1700 if (path)
1701 free(path);
1702 if (dir)
1703 closedir(dir);
1704 if (err == 0) {
1705 int i;
1706
1707 for (i = 0; i < port_count; i++)
1708 if (port_mask & (1 << i))
1709 printf(" Port%d : - no device attached -\n", i);
1710 }
1711
1712 return err;
1713 }
1714
1715 static void print_found_intel_controllers(struct sys_dev *elem)
1716 {
1717 for (; elem; elem = elem->next) {
1718 fprintf(stderr, Name ": found Intel(R) ");
1719 if (elem->type == SYS_DEV_SATA)
1720 fprintf(stderr, "SATA ");
1721 else if (elem->type == SYS_DEV_SAS)
1722 fprintf(stderr, "SAS ");
1723 fprintf(stderr, "RAID controller");
1724 if (elem->pci_id)
1725 fprintf(stderr, " at %s", elem->pci_id);
1726 fprintf(stderr, ".\n");
1727 }
1728 fflush(stderr);
1729 }
1730
1731 static int ahci_get_port_count(const char *hba_path, int *port_count)
1732 {
1733 struct dirent *ent;
1734 DIR *dir;
1735 int host_base = -1;
1736
1737 *port_count = 0;
1738 if ((dir = opendir(hba_path)) == NULL)
1739 return -1;
1740
1741 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1742 int host;
1743
1744 if (sscanf(ent->d_name, "host%d", &host) != 1)
1745 continue;
1746 if (*port_count == 0)
1747 host_base = host;
1748 else if (host < host_base)
1749 host_base = host;
1750
1751 if (host + 1 > *port_count + host_base)
1752 *port_count = host + 1 - host_base;
1753 }
1754 closedir(dir);
1755 return host_base;
1756 }
1757
1758 static void print_imsm_capability(const struct imsm_orom *orom)
1759 {
1760 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1761 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1762 orom->hotfix_ver, orom->build);
1763 printf(" RAID Levels :%s%s%s%s%s\n",
1764 imsm_orom_has_raid0(orom) ? " raid0" : "",
1765 imsm_orom_has_raid1(orom) ? " raid1" : "",
1766 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1767 imsm_orom_has_raid10(orom) ? " raid10" : "",
1768 imsm_orom_has_raid5(orom) ? " raid5" : "");
1769 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1770 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1771 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1772 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1773 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1774 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1775 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1776 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1777 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1778 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1779 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1780 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1781 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1782 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1783 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1784 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1785 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1786 printf(" Max Disks : %d\n", orom->tds);
1787 printf(" Max Volumes : %d\n", orom->vpa);
1788 return;
1789 }
1790
1791 static int detail_platform_imsm(int verbose, int enumerate_only)
1792 {
1793 /* There are two components to imsm platform support, the ahci SATA
1794 * controller and the option-rom. To find the SATA controller we
1795 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1796 * controller with the Intel vendor id is present. This approach
1797 * allows mdadm to leverage the kernel's ahci detection logic, with the
1798 * caveat that if ahci.ko is not loaded mdadm will not be able to
1799 * detect platform raid capabilities. The option-rom resides in a
1800 * platform "Adapter ROM". We scan for its signature to retrieve the
1801 * platform capabilities. If raid support is disabled in the BIOS the
1802 * option-rom capability structure will not be available.
1803 */
1804 const struct imsm_orom *orom;
1805 struct sys_dev *list, *hba;
1806 int host_base = 0;
1807 int port_count = 0;
1808 int result=0;
1809
1810 if (enumerate_only) {
1811 if (check_env("IMSM_NO_PLATFORM"))
1812 return 0;
1813 list = find_intel_devices();
1814 if (!list)
1815 return 2;
1816 for (hba = list; hba; hba = hba->next) {
1817 orom = find_imsm_capability(hba->type);
1818 if (!orom) {
1819 result = 2;
1820 break;
1821 }
1822 }
1823 free_sys_dev(&list);
1824 return result;
1825 }
1826
1827 list = find_intel_devices();
1828 if (!list) {
1829 if (verbose)
1830 fprintf(stderr, Name ": no active Intel(R) RAID "
1831 "controller found.\n");
1832 free_sys_dev(&list);
1833 return 2;
1834 } else if (verbose)
1835 print_found_intel_controllers(list);
1836
1837 for (hba = list; hba; hba = hba->next) {
1838 orom = find_imsm_capability(hba->type);
1839 if (!orom)
1840 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1841 hba->path, get_sys_dev_type(hba->type));
1842 else
1843 print_imsm_capability(orom);
1844 }
1845
1846 for (hba = list; hba; hba = hba->next) {
1847 printf(" I/O Controller : %s (%s)\n",
1848 hba->path, get_sys_dev_type(hba->type));
1849
1850 if (hba->type == SYS_DEV_SATA) {
1851 host_base = ahci_get_port_count(hba->path, &port_count);
1852 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1853 if (verbose)
1854 fprintf(stderr, Name ": failed to enumerate "
1855 "ports on SATA controller at %s.", hba->pci_id);
1856 result |= 2;
1857 }
1858 }
1859 }
1860
1861 free_sys_dev(&list);
1862 return result;
1863 }
1864 #endif
1865
1866 static int match_home_imsm(struct supertype *st, char *homehost)
1867 {
1868 /* the imsm metadata format does not specify any host
1869 * identification information. We return -1 since we can never
1870 * confirm nor deny whether a given array is "meant" for this
1871 * host. We rely on compare_super and the 'family_num' fields to
1872 * exclude member disks that do not belong, and we rely on
1873 * mdadm.conf to specify the arrays that should be assembled.
1874 * Auto-assembly may still pick up "foreign" arrays.
1875 */
1876
1877 return -1;
1878 }
1879
1880 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1881 {
1882 /* The uuid returned here is used for:
1883 * uuid to put into bitmap file (Create, Grow)
1884 * uuid for backup header when saving critical section (Grow)
1885 * comparing uuids when re-adding a device into an array
1886 * In these cases the uuid required is that of the data-array,
1887 * not the device-set.
1888 * uuid to recognise same set when adding a missing device back
1889 * to an array. This is a uuid for the device-set.
1890 *
1891 * For each of these we can make do with a truncated
1892 * or hashed uuid rather than the original, as long as
1893 * everyone agrees.
1894 * In each case the uuid required is that of the data-array,
1895 * not the device-set.
1896 */
1897 /* imsm does not track uuid's so we synthesis one using sha1 on
1898 * - The signature (Which is constant for all imsm array, but no matter)
1899 * - the orig_family_num of the container
1900 * - the index number of the volume
1901 * - the 'serial' number of the volume.
1902 * Hopefully these are all constant.
1903 */
1904 struct intel_super *super = st->sb;
1905
1906 char buf[20];
1907 struct sha1_ctx ctx;
1908 struct imsm_dev *dev = NULL;
1909 __u32 family_num;
1910
1911 /* some mdadm versions failed to set ->orig_family_num, in which
1912 * case fall back to ->family_num. orig_family_num will be
1913 * fixed up with the first metadata update.
1914 */
1915 family_num = super->anchor->orig_family_num;
1916 if (family_num == 0)
1917 family_num = super->anchor->family_num;
1918 sha1_init_ctx(&ctx);
1919 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1920 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1921 if (super->current_vol >= 0)
1922 dev = get_imsm_dev(super, super->current_vol);
1923 if (dev) {
1924 __u32 vol = super->current_vol;
1925 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1926 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1927 }
1928 sha1_finish_ctx(&ctx, buf);
1929 memcpy(uuid, buf, 4*4);
1930 }
1931
1932 #if 0
1933 static void
1934 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1935 {
1936 __u8 *v = get_imsm_version(mpb);
1937 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1938 char major[] = { 0, 0, 0 };
1939 char minor[] = { 0 ,0, 0 };
1940 char patch[] = { 0, 0, 0 };
1941 char *ver_parse[] = { major, minor, patch };
1942 int i, j;
1943
1944 i = j = 0;
1945 while (*v != '\0' && v < end) {
1946 if (*v != '.' && j < 2)
1947 ver_parse[i][j++] = *v;
1948 else {
1949 i++;
1950 j = 0;
1951 }
1952 v++;
1953 }
1954
1955 *m = strtol(minor, NULL, 0);
1956 *p = strtol(patch, NULL, 0);
1957 }
1958 #endif
1959
1960 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1961 {
1962 /* migr_strip_size when repairing or initializing parity */
1963 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1964 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1965
1966 switch (get_imsm_raid_level(map)) {
1967 case 5:
1968 case 10:
1969 return chunk;
1970 default:
1971 return 128*1024 >> 9;
1972 }
1973 }
1974
1975 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1976 {
1977 /* migr_strip_size when rebuilding a degraded disk, no idea why
1978 * this is different than migr_strip_size_resync(), but it's good
1979 * to be compatible
1980 */
1981 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1982 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1983
1984 switch (get_imsm_raid_level(map)) {
1985 case 1:
1986 case 10:
1987 if (map->num_members % map->num_domains == 0)
1988 return 128*1024 >> 9;
1989 else
1990 return chunk;
1991 case 5:
1992 return max((__u32) 64*1024 >> 9, chunk);
1993 default:
1994 return 128*1024 >> 9;
1995 }
1996 }
1997
1998 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1999 {
2000 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2001 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2002 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2003 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2004
2005 return max((__u32) 1, hi_chunk / lo_chunk);
2006 }
2007
2008 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2009 {
2010 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2011 int level = get_imsm_raid_level(lo);
2012
2013 if (level == 1 || level == 10) {
2014 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2015
2016 return hi->num_domains;
2017 } else
2018 return num_stripes_per_unit_resync(dev);
2019 }
2020
2021 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2022 {
2023 /* named 'imsm_' because raid0, raid1 and raid10
2024 * counter-intuitively have the same number of data disks
2025 */
2026 struct imsm_map *map = get_imsm_map(dev, second_map);
2027
2028 switch (get_imsm_raid_level(map)) {
2029 case 0:
2030 case 1:
2031 case 10:
2032 return map->num_members;
2033 case 5:
2034 return map->num_members - 1;
2035 default:
2036 dprintf("%s: unsupported raid level\n", __func__);
2037 return 0;
2038 }
2039 }
2040
2041 static __u32 parity_segment_depth(struct imsm_dev *dev)
2042 {
2043 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2044 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2045
2046 switch(get_imsm_raid_level(map)) {
2047 case 1:
2048 case 10:
2049 return chunk * map->num_domains;
2050 case 5:
2051 return chunk * map->num_members;
2052 default:
2053 return chunk;
2054 }
2055 }
2056
2057 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2058 {
2059 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2060 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2061 __u32 strip = block / chunk;
2062
2063 switch (get_imsm_raid_level(map)) {
2064 case 1:
2065 case 10: {
2066 __u32 vol_strip = (strip * map->num_domains) + 1;
2067 __u32 vol_stripe = vol_strip / map->num_members;
2068
2069 return vol_stripe * chunk + block % chunk;
2070 } case 5: {
2071 __u32 stripe = strip / (map->num_members - 1);
2072
2073 return stripe * chunk + block % chunk;
2074 }
2075 default:
2076 return 0;
2077 }
2078 }
2079
2080 static __u64 blocks_per_migr_unit(struct intel_super *super,
2081 struct imsm_dev *dev)
2082 {
2083 /* calculate the conversion factor between per member 'blocks'
2084 * (md/{resync,rebuild}_start) and imsm migration units, return
2085 * 0 for the 'not migrating' and 'unsupported migration' cases
2086 */
2087 if (!dev->vol.migr_state)
2088 return 0;
2089
2090 switch (migr_type(dev)) {
2091 case MIGR_GEN_MIGR: {
2092 struct migr_record *migr_rec = super->migr_rec;
2093 return __le32_to_cpu(migr_rec->blocks_per_unit);
2094 }
2095 case MIGR_VERIFY:
2096 case MIGR_REPAIR:
2097 case MIGR_INIT: {
2098 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2099 __u32 stripes_per_unit;
2100 __u32 blocks_per_unit;
2101 __u32 parity_depth;
2102 __u32 migr_chunk;
2103 __u32 block_map;
2104 __u32 block_rel;
2105 __u32 segment;
2106 __u32 stripe;
2107 __u8 disks;
2108
2109 /* yes, this is really the translation of migr_units to
2110 * per-member blocks in the 'resync' case
2111 */
2112 stripes_per_unit = num_stripes_per_unit_resync(dev);
2113 migr_chunk = migr_strip_blocks_resync(dev);
2114 disks = imsm_num_data_members(dev, MAP_0);
2115 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2116 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2117 segment = blocks_per_unit / stripe;
2118 block_rel = blocks_per_unit - segment * stripe;
2119 parity_depth = parity_segment_depth(dev);
2120 block_map = map_migr_block(dev, block_rel);
2121 return block_map + parity_depth * segment;
2122 }
2123 case MIGR_REBUILD: {
2124 __u32 stripes_per_unit;
2125 __u32 migr_chunk;
2126
2127 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2128 migr_chunk = migr_strip_blocks_rebuild(dev);
2129 return migr_chunk * stripes_per_unit;
2130 }
2131 case MIGR_STATE_CHANGE:
2132 default:
2133 return 0;
2134 }
2135 }
2136
2137 static int imsm_level_to_layout(int level)
2138 {
2139 switch (level) {
2140 case 0:
2141 case 1:
2142 return 0;
2143 case 5:
2144 case 6:
2145 return ALGORITHM_LEFT_ASYMMETRIC;
2146 case 10:
2147 return 0x102;
2148 }
2149 return UnSet;
2150 }
2151
2152 /*******************************************************************************
2153 * Function: read_imsm_migr_rec
2154 * Description: Function reads imsm migration record from last sector of disk
2155 * Parameters:
2156 * fd : disk descriptor
2157 * super : metadata info
2158 * Returns:
2159 * 0 : success,
2160 * -1 : fail
2161 ******************************************************************************/
2162 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2163 {
2164 int ret_val = -1;
2165 unsigned long long dsize;
2166
2167 get_dev_size(fd, NULL, &dsize);
2168 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2169 fprintf(stderr,
2170 Name ": Cannot seek to anchor block: %s\n",
2171 strerror(errno));
2172 goto out;
2173 }
2174 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2175 MIGR_REC_BUF_SIZE) {
2176 fprintf(stderr,
2177 Name ": Cannot read migr record block: %s\n",
2178 strerror(errno));
2179 goto out;
2180 }
2181 ret_val = 0;
2182
2183 out:
2184 return ret_val;
2185 }
2186
2187 static struct imsm_dev *imsm_get_device_during_migration(
2188 struct intel_super *super)
2189 {
2190
2191 struct intel_dev *dv;
2192
2193 for (dv = super->devlist; dv; dv = dv->next) {
2194 if (is_gen_migration(dv->dev))
2195 return dv->dev;
2196 }
2197 return NULL;
2198 }
2199
2200 /*******************************************************************************
2201 * Function: load_imsm_migr_rec
2202 * Description: Function reads imsm migration record (it is stored at the last
2203 * sector of disk)
2204 * Parameters:
2205 * super : imsm internal array info
2206 * info : general array info
2207 * Returns:
2208 * 0 : success
2209 * -1 : fail
2210 * -2 : no migration in progress
2211 ******************************************************************************/
2212 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2213 {
2214 struct mdinfo *sd;
2215 struct dl *dl = NULL;
2216 char nm[30];
2217 int retval = -1;
2218 int fd = -1;
2219 struct imsm_dev *dev;
2220 struct imsm_map *map = NULL;
2221 int slot = -1;
2222
2223 /* find map under migration */
2224 dev = imsm_get_device_during_migration(super);
2225 /* nothing to load,no migration in progress?
2226 */
2227 if (dev == NULL)
2228 return -2;
2229 map = get_imsm_map(dev, MAP_0);
2230
2231 if (info) {
2232 for (sd = info->devs ; sd ; sd = sd->next) {
2233 /* skip spare and failed disks
2234 */
2235 if (sd->disk.raid_disk < 0)
2236 continue;
2237 /* read only from one of the first two slots */
2238 if (map)
2239 slot = get_imsm_disk_slot(map,
2240 sd->disk.raid_disk);
2241 if ((map == NULL) || (slot > 1) || (slot < 0))
2242 continue;
2243
2244 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2245 fd = dev_open(nm, O_RDONLY);
2246 if (fd >= 0)
2247 break;
2248 }
2249 }
2250 if (fd < 0) {
2251 for (dl = super->disks; dl; dl = dl->next) {
2252 /* skip spare and failed disks
2253 */
2254 if (dl->index < 0)
2255 continue;
2256 /* read only from one of the first two slots */
2257 if (map)
2258 slot = get_imsm_disk_slot(map, dl->index);
2259 if ((map == NULL) || (slot > 1) || (slot < 0))
2260 continue;
2261 sprintf(nm, "%d:%d", dl->major, dl->minor);
2262 fd = dev_open(nm, O_RDONLY);
2263 if (fd >= 0)
2264 break;
2265 }
2266 }
2267 if (fd < 0)
2268 goto out;
2269 retval = read_imsm_migr_rec(fd, super);
2270
2271 out:
2272 if (fd >= 0)
2273 close(fd);
2274 return retval;
2275 }
2276
2277 #ifndef MDASSEMBLE
2278 /*******************************************************************************
2279 * function: imsm_create_metadata_checkpoint_update
2280 * Description: It creates update for checkpoint change.
2281 * Parameters:
2282 * super : imsm internal array info
2283 * u : pointer to prepared update
2284 * Returns:
2285 * Uptate length.
2286 * If length is equal to 0, input pointer u contains no update
2287 ******************************************************************************/
2288 static int imsm_create_metadata_checkpoint_update(
2289 struct intel_super *super,
2290 struct imsm_update_general_migration_checkpoint **u)
2291 {
2292
2293 int update_memory_size = 0;
2294
2295 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2296
2297 if (u == NULL)
2298 return 0;
2299 *u = NULL;
2300
2301 /* size of all update data without anchor */
2302 update_memory_size =
2303 sizeof(struct imsm_update_general_migration_checkpoint);
2304
2305 *u = calloc(1, update_memory_size);
2306 if (*u == NULL) {
2307 dprintf("error: cannot get memory for "
2308 "imsm_create_metadata_checkpoint_update update\n");
2309 return 0;
2310 }
2311 (*u)->type = update_general_migration_checkpoint;
2312 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2313 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2314 (*u)->curr_migr_unit);
2315
2316 return update_memory_size;
2317 }
2318
2319
2320 static void imsm_update_metadata_locally(struct supertype *st,
2321 void *buf, int len);
2322
2323 /*******************************************************************************
2324 * Function: write_imsm_migr_rec
2325 * Description: Function writes imsm migration record
2326 * (at the last sector of disk)
2327 * Parameters:
2328 * super : imsm internal array info
2329 * Returns:
2330 * 0 : success
2331 * -1 : if fail
2332 ******************************************************************************/
2333 static int write_imsm_migr_rec(struct supertype *st)
2334 {
2335 struct intel_super *super = st->sb;
2336 unsigned long long dsize;
2337 char nm[30];
2338 int fd = -1;
2339 int retval = -1;
2340 struct dl *sd;
2341 int len;
2342 struct imsm_update_general_migration_checkpoint *u;
2343 struct imsm_dev *dev;
2344 struct imsm_map *map = NULL;
2345
2346 /* find map under migration */
2347 dev = imsm_get_device_during_migration(super);
2348 /* if no migration, write buffer anyway to clear migr_record
2349 * on disk based on first available device
2350 */
2351 if (dev == NULL)
2352 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2353 super->current_vol);
2354
2355 map = get_imsm_map(dev, MAP_0);
2356
2357 for (sd = super->disks ; sd ; sd = sd->next) {
2358 int slot = -1;
2359
2360 /* skip failed and spare devices */
2361 if (sd->index < 0)
2362 continue;
2363 /* write to 2 first slots only */
2364 if (map)
2365 slot = get_imsm_disk_slot(map, sd->index);
2366 if ((map == NULL) || (slot > 1) || (slot < 0))
2367 continue;
2368
2369 sprintf(nm, "%d:%d", sd->major, sd->minor);
2370 fd = dev_open(nm, O_RDWR);
2371 if (fd < 0)
2372 continue;
2373 get_dev_size(fd, NULL, &dsize);
2374 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2375 fprintf(stderr,
2376 Name ": Cannot seek to anchor block: %s\n",
2377 strerror(errno));
2378 goto out;
2379 }
2380 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2381 MIGR_REC_BUF_SIZE) {
2382 fprintf(stderr,
2383 Name ": Cannot write migr record block: %s\n",
2384 strerror(errno));
2385 goto out;
2386 }
2387 close(fd);
2388 fd = -1;
2389 }
2390 /* update checkpoint information in metadata */
2391 len = imsm_create_metadata_checkpoint_update(super, &u);
2392
2393 if (len <= 0) {
2394 dprintf("imsm: Cannot prepare update\n");
2395 goto out;
2396 }
2397 /* update metadata locally */
2398 imsm_update_metadata_locally(st, u, len);
2399 /* and possibly remotely */
2400 if (st->update_tail) {
2401 append_metadata_update(st, u, len);
2402 /* during reshape we do all work inside metadata handler
2403 * manage_reshape(), so metadata update has to be triggered
2404 * insida it
2405 */
2406 flush_metadata_updates(st);
2407 st->update_tail = &st->updates;
2408 } else
2409 free(u);
2410
2411 retval = 0;
2412 out:
2413 if (fd >= 0)
2414 close(fd);
2415 return retval;
2416 }
2417 #endif /* MDASSEMBLE */
2418
2419 /* spare/missing disks activations are not allowe when
2420 * array/container performs reshape operation, because
2421 * all arrays in container works on the same disks set
2422 */
2423 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2424 {
2425 int rv = 0;
2426 struct intel_dev *i_dev;
2427 struct imsm_dev *dev;
2428
2429 /* check whole container
2430 */
2431 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2432 dev = i_dev->dev;
2433 if (is_gen_migration(dev)) {
2434 /* No repair during any migration in container
2435 */
2436 rv = 1;
2437 break;
2438 }
2439 }
2440 return rv;
2441 }
2442
2443 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2444 {
2445 struct intel_super *super = st->sb;
2446 struct migr_record *migr_rec = super->migr_rec;
2447 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2448 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2449 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2450 struct imsm_map *map_to_analyse = map;
2451 struct dl *dl;
2452 char *devname;
2453 unsigned int component_size_alligment;
2454 int map_disks = info->array.raid_disks;
2455
2456 memset(info, 0, sizeof(*info));
2457 if (prev_map)
2458 map_to_analyse = prev_map;
2459
2460 dl = super->current_disk;
2461
2462 info->container_member = super->current_vol;
2463 info->array.raid_disks = map->num_members;
2464 info->array.level = get_imsm_raid_level(map_to_analyse);
2465 info->array.layout = imsm_level_to_layout(info->array.level);
2466 info->array.md_minor = -1;
2467 info->array.ctime = 0;
2468 info->array.utime = 0;
2469 info->array.chunk_size =
2470 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2471 info->array.state = !dev->vol.dirty;
2472 info->custom_array_size = __le32_to_cpu(dev->size_high);
2473 info->custom_array_size <<= 32;
2474 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2475 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2476
2477 if (is_gen_migration(dev)) {
2478 info->reshape_active = 1;
2479 info->new_level = get_imsm_raid_level(map);
2480 info->new_layout = imsm_level_to_layout(info->new_level);
2481 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2482 info->delta_disks = map->num_members - prev_map->num_members;
2483 if (info->delta_disks) {
2484 /* this needs to be applied to every array
2485 * in the container.
2486 */
2487 info->reshape_active = CONTAINER_RESHAPE;
2488 }
2489 /* We shape information that we give to md might have to be
2490 * modify to cope with md's requirement for reshaping arrays.
2491 * For example, when reshaping a RAID0, md requires it to be
2492 * presented as a degraded RAID4.
2493 * Also if a RAID0 is migrating to a RAID5 we need to specify
2494 * the array as already being RAID5, but the 'before' layout
2495 * is a RAID4-like layout.
2496 */
2497 switch (info->array.level) {
2498 case 0:
2499 switch(info->new_level) {
2500 case 0:
2501 /* conversion is happening as RAID4 */
2502 info->array.level = 4;
2503 info->array.raid_disks += 1;
2504 break;
2505 case 5:
2506 /* conversion is happening as RAID5 */
2507 info->array.level = 5;
2508 info->array.layout = ALGORITHM_PARITY_N;
2509 info->delta_disks -= 1;
2510 break;
2511 default:
2512 /* FIXME error message */
2513 info->array.level = UnSet;
2514 break;
2515 }
2516 break;
2517 }
2518 } else {
2519 info->new_level = UnSet;
2520 info->new_layout = UnSet;
2521 info->new_chunk = info->array.chunk_size;
2522 info->delta_disks = 0;
2523 }
2524
2525 if (dl) {
2526 info->disk.major = dl->major;
2527 info->disk.minor = dl->minor;
2528 info->disk.number = dl->index;
2529 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2530 dl->index);
2531 }
2532
2533 info->data_offset = pba_of_lba0(map_to_analyse);
2534 info->component_size = blocks_per_member(map_to_analyse);
2535
2536 /* check component size aligment
2537 */
2538 component_size_alligment =
2539 info->component_size % (info->array.chunk_size/512);
2540
2541 if (component_size_alligment &&
2542 (info->array.level != 1) && (info->array.level != UnSet)) {
2543 dprintf("imsm: reported component size alligned from %llu ",
2544 info->component_size);
2545 info->component_size -= component_size_alligment;
2546 dprintf("to %llu (%i).\n",
2547 info->component_size, component_size_alligment);
2548 }
2549
2550 memset(info->uuid, 0, sizeof(info->uuid));
2551 info->recovery_start = MaxSector;
2552
2553 info->reshape_progress = 0;
2554 info->resync_start = MaxSector;
2555 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2556 dev->vol.dirty) &&
2557 imsm_reshape_blocks_arrays_changes(super) == 0) {
2558 info->resync_start = 0;
2559 }
2560 if (dev->vol.migr_state) {
2561 switch (migr_type(dev)) {
2562 case MIGR_REPAIR:
2563 case MIGR_INIT: {
2564 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2565 dev);
2566 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2567
2568 info->resync_start = blocks_per_unit * units;
2569 break;
2570 }
2571 case MIGR_GEN_MIGR: {
2572 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2573 dev);
2574 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2575 unsigned long long array_blocks;
2576 int used_disks;
2577
2578 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2579 (units <
2580 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2581 (super->migr_rec->rec_status ==
2582 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2583 units++;
2584
2585 info->reshape_progress = blocks_per_unit * units;
2586
2587 dprintf("IMSM: General Migration checkpoint : %llu "
2588 "(%llu) -> read reshape progress : %llu\n",
2589 (unsigned long long)units,
2590 (unsigned long long)blocks_per_unit,
2591 info->reshape_progress);
2592
2593 used_disks = imsm_num_data_members(dev, MAP_1);
2594 if (used_disks > 0) {
2595 array_blocks = blocks_per_member(map) *
2596 used_disks;
2597 /* round array size down to closest MB
2598 */
2599 info->custom_array_size = (array_blocks
2600 >> SECT_PER_MB_SHIFT)
2601 << SECT_PER_MB_SHIFT;
2602 }
2603 }
2604 case MIGR_VERIFY:
2605 /* we could emulate the checkpointing of
2606 * 'sync_action=check' migrations, but for now
2607 * we just immediately complete them
2608 */
2609 case MIGR_REBUILD:
2610 /* this is handled by container_content_imsm() */
2611 case MIGR_STATE_CHANGE:
2612 /* FIXME handle other migrations */
2613 default:
2614 /* we are not dirty, so... */
2615 info->resync_start = MaxSector;
2616 }
2617 }
2618
2619 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2620 info->name[MAX_RAID_SERIAL_LEN] = 0;
2621
2622 info->array.major_version = -1;
2623 info->array.minor_version = -2;
2624 devname = devnum2devname(st->container_dev);
2625 *info->text_version = '\0';
2626 if (devname)
2627 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2628 free(devname);
2629 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2630 uuid_from_super_imsm(st, info->uuid);
2631
2632 if (dmap) {
2633 int i, j;
2634 for (i=0; i<map_disks; i++) {
2635 dmap[i] = 0;
2636 if (i < info->array.raid_disks) {
2637 struct imsm_disk *dsk;
2638 j = get_imsm_disk_idx(dev, i, MAP_X);
2639 dsk = get_imsm_disk(super, j);
2640 if (dsk && (dsk->status & CONFIGURED_DISK))
2641 dmap[i] = 1;
2642 }
2643 }
2644 }
2645 }
2646
2647 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2648 int failed, int look_in_map);
2649
2650 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2651 int look_in_map);
2652
2653
2654 #ifndef MDASSEMBLE
2655 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2656 {
2657 if (is_gen_migration(dev)) {
2658 int failed;
2659 __u8 map_state;
2660 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2661
2662 failed = imsm_count_failed(super, dev, MAP_1);
2663 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2664 if (map2->map_state != map_state) {
2665 map2->map_state = map_state;
2666 super->updates_pending++;
2667 }
2668 }
2669 }
2670 #endif
2671
2672 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2673 {
2674 struct dl *d;
2675
2676 for (d = super->missing; d; d = d->next)
2677 if (d->index == index)
2678 return &d->disk;
2679 return NULL;
2680 }
2681
2682 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2683 {
2684 struct intel_super *super = st->sb;
2685 struct imsm_disk *disk;
2686 int map_disks = info->array.raid_disks;
2687 int max_enough = -1;
2688 int i;
2689 struct imsm_super *mpb;
2690
2691 if (super->current_vol >= 0) {
2692 getinfo_super_imsm_volume(st, info, map);
2693 return;
2694 }
2695 memset(info, 0, sizeof(*info));
2696
2697 /* Set raid_disks to zero so that Assemble will always pull in valid
2698 * spares
2699 */
2700 info->array.raid_disks = 0;
2701 info->array.level = LEVEL_CONTAINER;
2702 info->array.layout = 0;
2703 info->array.md_minor = -1;
2704 info->array.ctime = 0; /* N/A for imsm */
2705 info->array.utime = 0;
2706 info->array.chunk_size = 0;
2707
2708 info->disk.major = 0;
2709 info->disk.minor = 0;
2710 info->disk.raid_disk = -1;
2711 info->reshape_active = 0;
2712 info->array.major_version = -1;
2713 info->array.minor_version = -2;
2714 strcpy(info->text_version, "imsm");
2715 info->safe_mode_delay = 0;
2716 info->disk.number = -1;
2717 info->disk.state = 0;
2718 info->name[0] = 0;
2719 info->recovery_start = MaxSector;
2720 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2721
2722 /* do we have the all the insync disks that we expect? */
2723 mpb = super->anchor;
2724
2725 for (i = 0; i < mpb->num_raid_devs; i++) {
2726 struct imsm_dev *dev = get_imsm_dev(super, i);
2727 int failed, enough, j, missing = 0;
2728 struct imsm_map *map;
2729 __u8 state;
2730
2731 failed = imsm_count_failed(super, dev, MAP_0);
2732 state = imsm_check_degraded(super, dev, failed, MAP_0);
2733 map = get_imsm_map(dev, MAP_0);
2734
2735 /* any newly missing disks?
2736 * (catches single-degraded vs double-degraded)
2737 */
2738 for (j = 0; j < map->num_members; j++) {
2739 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2740 __u32 idx = ord_to_idx(ord);
2741
2742 if (!(ord & IMSM_ORD_REBUILD) &&
2743 get_imsm_missing(super, idx)) {
2744 missing = 1;
2745 break;
2746 }
2747 }
2748
2749 if (state == IMSM_T_STATE_FAILED)
2750 enough = -1;
2751 else if (state == IMSM_T_STATE_DEGRADED &&
2752 (state != map->map_state || missing))
2753 enough = 0;
2754 else /* we're normal, or already degraded */
2755 enough = 1;
2756 if (is_gen_migration(dev) && missing) {
2757 /* during general migration we need all disks
2758 * that process is running on.
2759 * No new missing disk is allowed.
2760 */
2761 max_enough = -1;
2762 enough = -1;
2763 /* no more checks necessary
2764 */
2765 break;
2766 }
2767 /* in the missing/failed disk case check to see
2768 * if at least one array is runnable
2769 */
2770 max_enough = max(max_enough, enough);
2771 }
2772 dprintf("%s: enough: %d\n", __func__, max_enough);
2773 info->container_enough = max_enough;
2774
2775 if (super->disks) {
2776 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2777
2778 disk = &super->disks->disk;
2779 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2780 info->component_size = reserved;
2781 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2782 /* we don't change info->disk.raid_disk here because
2783 * this state will be finalized in mdmon after we have
2784 * found the 'most fresh' version of the metadata
2785 */
2786 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2787 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2788 }
2789
2790 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2791 * ->compare_super may have updated the 'num_raid_devs' field for spares
2792 */
2793 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2794 uuid_from_super_imsm(st, info->uuid);
2795 else
2796 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2797
2798 /* I don't know how to compute 'map' on imsm, so use safe default */
2799 if (map) {
2800 int i;
2801 for (i = 0; i < map_disks; i++)
2802 map[i] = 1;
2803 }
2804
2805 }
2806
2807 /* allocates memory and fills disk in mdinfo structure
2808 * for each disk in array */
2809 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2810 {
2811 struct mdinfo *mddev = NULL;
2812 struct intel_super *super = st->sb;
2813 struct imsm_disk *disk;
2814 int count = 0;
2815 struct dl *dl;
2816 if (!super || !super->disks)
2817 return NULL;
2818 dl = super->disks;
2819 mddev = malloc(sizeof(*mddev));
2820 if (!mddev) {
2821 fprintf(stderr, Name ": Failed to allocate memory.\n");
2822 return NULL;
2823 }
2824 memset(mddev, 0, sizeof(*mddev));
2825 while (dl) {
2826 struct mdinfo *tmp;
2827 disk = &dl->disk;
2828 tmp = malloc(sizeof(*tmp));
2829 if (!tmp) {
2830 fprintf(stderr, Name ": Failed to allocate memory.\n");
2831 if (mddev)
2832 sysfs_free(mddev);
2833 return NULL;
2834 }
2835 memset(tmp, 0, sizeof(*tmp));
2836 if (mddev->devs)
2837 tmp->next = mddev->devs;
2838 mddev->devs = tmp;
2839 tmp->disk.number = count++;
2840 tmp->disk.major = dl->major;
2841 tmp->disk.minor = dl->minor;
2842 tmp->disk.state = is_configured(disk) ?
2843 (1 << MD_DISK_ACTIVE) : 0;
2844 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2845 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2846 tmp->disk.raid_disk = -1;
2847 dl = dl->next;
2848 }
2849 return mddev;
2850 }
2851
2852 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2853 char *update, char *devname, int verbose,
2854 int uuid_set, char *homehost)
2855 {
2856 /* For 'assemble' and 'force' we need to return non-zero if any
2857 * change was made. For others, the return value is ignored.
2858 * Update options are:
2859 * force-one : This device looks a bit old but needs to be included,
2860 * update age info appropriately.
2861 * assemble: clear any 'faulty' flag to allow this device to
2862 * be assembled.
2863 * force-array: Array is degraded but being forced, mark it clean
2864 * if that will be needed to assemble it.
2865 *
2866 * newdev: not used ????
2867 * grow: Array has gained a new device - this is currently for
2868 * linear only
2869 * resync: mark as dirty so a resync will happen.
2870 * name: update the name - preserving the homehost
2871 * uuid: Change the uuid of the array to match watch is given
2872 *
2873 * Following are not relevant for this imsm:
2874 * sparc2.2 : update from old dodgey metadata
2875 * super-minor: change the preferred_minor number
2876 * summaries: update redundant counters.
2877 * homehost: update the recorded homehost
2878 * _reshape_progress: record new reshape_progress position.
2879 */
2880 int rv = 1;
2881 struct intel_super *super = st->sb;
2882 struct imsm_super *mpb;
2883
2884 /* we can only update container info */
2885 if (!super || super->current_vol >= 0 || !super->anchor)
2886 return 1;
2887
2888 mpb = super->anchor;
2889
2890 if (strcmp(update, "uuid") == 0) {
2891 /* We take this to mean that the family_num should be updated.
2892 * However that is much smaller than the uuid so we cannot really
2893 * allow an explicit uuid to be given. And it is hard to reliably
2894 * know if one was.
2895 * So if !uuid_set we know the current uuid is random and just used
2896 * the first 'int' and copy it to the other 3 positions.
2897 * Otherwise we require the 4 'int's to be the same as would be the
2898 * case if we are using a random uuid. So an explicit uuid will be
2899 * accepted as long as all for ints are the same... which shouldn't hurt
2900 */
2901 if (!uuid_set) {
2902 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2903 rv = 0;
2904 } else {
2905 if (info->uuid[0] != info->uuid[1] ||
2906 info->uuid[1] != info->uuid[2] ||
2907 info->uuid[2] != info->uuid[3])
2908 rv = -1;
2909 else
2910 rv = 0;
2911 }
2912 if (rv == 0)
2913 mpb->orig_family_num = info->uuid[0];
2914 } else if (strcmp(update, "assemble") == 0)
2915 rv = 0;
2916 else
2917 rv = -1;
2918
2919 /* successful update? recompute checksum */
2920 if (rv == 0)
2921 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2922
2923 return rv;
2924 }
2925
2926 static size_t disks_to_mpb_size(int disks)
2927 {
2928 size_t size;
2929
2930 size = sizeof(struct imsm_super);
2931 size += (disks - 1) * sizeof(struct imsm_disk);
2932 size += 2 * sizeof(struct imsm_dev);
2933 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2934 size += (4 - 2) * sizeof(struct imsm_map);
2935 /* 4 possible disk_ord_tbl's */
2936 size += 4 * (disks - 1) * sizeof(__u32);
2937
2938 return size;
2939 }
2940
2941 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2942 {
2943 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2944 return 0;
2945
2946 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2947 }
2948
2949 static void free_devlist(struct intel_super *super)
2950 {
2951 struct intel_dev *dv;
2952
2953 while (super->devlist) {
2954 dv = super->devlist->next;
2955 free(super->devlist->dev);
2956 free(super->devlist);
2957 super->devlist = dv;
2958 }
2959 }
2960
2961 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2962 {
2963 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2964 }
2965
2966 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2967 {
2968 /*
2969 * return:
2970 * 0 same, or first was empty, and second was copied
2971 * 1 second had wrong number
2972 * 2 wrong uuid
2973 * 3 wrong other info
2974 */
2975 struct intel_super *first = st->sb;
2976 struct intel_super *sec = tst->sb;
2977
2978 if (!first) {
2979 st->sb = tst->sb;
2980 tst->sb = NULL;
2981 return 0;
2982 }
2983 /* in platform dependent environment test if the disks
2984 * use the same Intel hba
2985 */
2986 if (!check_env("IMSM_NO_PLATFORM")) {
2987 if (!first->hba || !sec->hba ||
2988 (first->hba->type != sec->hba->type)) {
2989 fprintf(stderr,
2990 "HBAs of devices does not match %s != %s\n",
2991 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2992 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2993 return 3;
2994 }
2995 }
2996
2997 /* if an anchor does not have num_raid_devs set then it is a free
2998 * floating spare
2999 */
3000 if (first->anchor->num_raid_devs > 0 &&
3001 sec->anchor->num_raid_devs > 0) {
3002 /* Determine if these disks might ever have been
3003 * related. Further disambiguation can only take place
3004 * in load_super_imsm_all
3005 */
3006 __u32 first_family = first->anchor->orig_family_num;
3007 __u32 sec_family = sec->anchor->orig_family_num;
3008
3009 if (memcmp(first->anchor->sig, sec->anchor->sig,
3010 MAX_SIGNATURE_LENGTH) != 0)
3011 return 3;
3012
3013 if (first_family == 0)
3014 first_family = first->anchor->family_num;
3015 if (sec_family == 0)
3016 sec_family = sec->anchor->family_num;
3017
3018 if (first_family != sec_family)
3019 return 3;
3020
3021 }
3022
3023
3024 /* if 'first' is a spare promote it to a populated mpb with sec's
3025 * family number
3026 */
3027 if (first->anchor->num_raid_devs == 0 &&
3028 sec->anchor->num_raid_devs > 0) {
3029 int i;
3030 struct intel_dev *dv;
3031 struct imsm_dev *dev;
3032
3033 /* we need to copy raid device info from sec if an allocation
3034 * fails here we don't associate the spare
3035 */
3036 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3037 dv = malloc(sizeof(*dv));
3038 if (!dv)
3039 break;
3040 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3041 if (!dev) {
3042 free(dv);
3043 break;
3044 }
3045 dv->dev = dev;
3046 dv->index = i;
3047 dv->next = first->devlist;
3048 first->devlist = dv;
3049 }
3050 if (i < sec->anchor->num_raid_devs) {
3051 /* allocation failure */
3052 free_devlist(first);
3053 fprintf(stderr, "imsm: failed to associate spare\n");
3054 return 3;
3055 }
3056 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3057 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3058 first->anchor->family_num = sec->anchor->family_num;
3059 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3060 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3061 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3062 }
3063
3064 return 0;
3065 }
3066
3067 static void fd2devname(int fd, char *name)
3068 {
3069 struct stat st;
3070 char path[256];
3071 char dname[PATH_MAX];
3072 char *nm;
3073 int rv;
3074
3075 name[0] = '\0';
3076 if (fstat(fd, &st) != 0)
3077 return;
3078 sprintf(path, "/sys/dev/block/%d:%d",
3079 major(st.st_rdev), minor(st.st_rdev));
3080
3081 rv = readlink(path, dname, sizeof(dname)-1);
3082 if (rv <= 0)
3083 return;
3084
3085 dname[rv] = '\0';
3086 nm = strrchr(dname, '/');
3087 if (nm) {
3088 nm++;
3089 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3090 }
3091 }
3092
3093 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3094
3095 static int imsm_read_serial(int fd, char *devname,
3096 __u8 serial[MAX_RAID_SERIAL_LEN])
3097 {
3098 unsigned char scsi_serial[255];
3099 int rv;
3100 int rsp_len;
3101 int len;
3102 char *dest;
3103 char *src;
3104 char *rsp_buf;
3105 int i;
3106
3107 memset(scsi_serial, 0, sizeof(scsi_serial));
3108
3109 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3110
3111 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3112 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3113 fd2devname(fd, (char *) serial);
3114 return 0;
3115 }
3116
3117 if (rv != 0) {
3118 if (devname)
3119 fprintf(stderr,
3120 Name ": Failed to retrieve serial for %s\n",
3121 devname);
3122 return rv;
3123 }
3124
3125 rsp_len = scsi_serial[3];
3126 if (!rsp_len) {
3127 if (devname)
3128 fprintf(stderr,
3129 Name ": Failed to retrieve serial for %s\n",
3130 devname);
3131 return 2;
3132 }
3133 rsp_buf = (char *) &scsi_serial[4];
3134
3135 /* trim all whitespace and non-printable characters and convert
3136 * ':' to ';'
3137 */
3138 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3139 src = &rsp_buf[i];
3140 if (*src > 0x20) {
3141 /* ':' is reserved for use in placeholder serial
3142 * numbers for missing disks
3143 */
3144 if (*src == ':')
3145 *dest++ = ';';
3146 else
3147 *dest++ = *src;
3148 }
3149 }
3150 len = dest - rsp_buf;
3151 dest = rsp_buf;
3152
3153 /* truncate leading characters */
3154 if (len > MAX_RAID_SERIAL_LEN) {
3155 dest += len - MAX_RAID_SERIAL_LEN;
3156 len = MAX_RAID_SERIAL_LEN;
3157 }
3158
3159 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3160 memcpy(serial, dest, len);
3161
3162 return 0;
3163 }
3164
3165 static int serialcmp(__u8 *s1, __u8 *s2)
3166 {
3167 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3168 }
3169
3170 static void serialcpy(__u8 *dest, __u8 *src)
3171 {
3172 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3173 }
3174
3175 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3176 {
3177 struct dl *dl;
3178
3179 for (dl = super->disks; dl; dl = dl->next)
3180 if (serialcmp(dl->serial, serial) == 0)
3181 break;
3182
3183 return dl;
3184 }
3185
3186 static struct imsm_disk *
3187 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3188 {
3189 int i;
3190
3191 for (i = 0; i < mpb->num_disks; i++) {
3192 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3193
3194 if (serialcmp(disk->serial, serial) == 0) {
3195 if (idx)
3196 *idx = i;
3197 return disk;
3198 }
3199 }
3200
3201 return NULL;
3202 }
3203
3204 static int
3205 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3206 {
3207 struct imsm_disk *disk;
3208 struct dl *dl;
3209 struct stat stb;
3210 int rv;
3211 char name[40];
3212 __u8 serial[MAX_RAID_SERIAL_LEN];
3213
3214 rv = imsm_read_serial(fd, devname, serial);
3215
3216 if (rv != 0)
3217 return 2;
3218
3219 dl = calloc(1, sizeof(*dl));
3220 if (!dl) {
3221 if (devname)
3222 fprintf(stderr,
3223 Name ": failed to allocate disk buffer for %s\n",
3224 devname);
3225 return 2;
3226 }
3227
3228 fstat(fd, &stb);
3229 dl->major = major(stb.st_rdev);
3230 dl->minor = minor(stb.st_rdev);
3231 dl->next = super->disks;
3232 dl->fd = keep_fd ? fd : -1;
3233 assert(super->disks == NULL);
3234 super->disks = dl;
3235 serialcpy(dl->serial, serial);
3236 dl->index = -2;
3237 dl->e = NULL;
3238 fd2devname(fd, name);
3239 if (devname)
3240 dl->devname = strdup(devname);
3241 else
3242 dl->devname = strdup(name);
3243
3244 /* look up this disk's index in the current anchor */
3245 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3246 if (disk) {
3247 dl->disk = *disk;
3248 /* only set index on disks that are a member of a
3249 * populated contianer, i.e. one with raid_devs
3250 */
3251 if (is_failed(&dl->disk))
3252 dl->index = -2;
3253 else if (is_spare(&dl->disk))
3254 dl->index = -1;
3255 }
3256
3257 return 0;
3258 }
3259
3260 #ifndef MDASSEMBLE
3261 /* When migrating map0 contains the 'destination' state while map1
3262 * contains the current state. When not migrating map0 contains the
3263 * current state. This routine assumes that map[0].map_state is set to
3264 * the current array state before being called.
3265 *
3266 * Migration is indicated by one of the following states
3267 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3268 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3269 * map1state=unitialized)
3270 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3271 * map1state=normal)
3272 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3273 * map1state=degraded)
3274 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3275 * map1state=normal)
3276 */
3277 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3278 __u8 to_state, int migr_type)
3279 {
3280 struct imsm_map *dest;
3281 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3282
3283 dev->vol.migr_state = 1;
3284 set_migr_type(dev, migr_type);
3285 dev->vol.curr_migr_unit = 0;
3286 dest = get_imsm_map(dev, MAP_1);
3287
3288 /* duplicate and then set the target end state in map[0] */
3289 memcpy(dest, src, sizeof_imsm_map(src));
3290 if ((migr_type == MIGR_REBUILD) ||
3291 (migr_type == MIGR_GEN_MIGR)) {
3292 __u32 ord;
3293 int i;
3294
3295 for (i = 0; i < src->num_members; i++) {
3296 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3297 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3298 }
3299 }
3300
3301 if (migr_type == MIGR_GEN_MIGR)
3302 /* Clear migration record */
3303 memset(super->migr_rec, 0, sizeof(struct migr_record));
3304
3305 src->map_state = to_state;
3306 }
3307
3308 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3309 __u8 map_state)
3310 {
3311 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3312 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3313 MAP_0 : MAP_1);
3314 int i, j;
3315
3316 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3317 * completed in the last migration.
3318 *
3319 * FIXME add support for raid-level-migration
3320 */
3321 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3322 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3323 /* when final map state is other than expected
3324 * merge maps (not for migration)
3325 */
3326 int failed;
3327
3328 for (i = 0; i < prev->num_members; i++)
3329 for (j = 0; j < map->num_members; j++)
3330 /* during online capacity expansion
3331 * disks position can be changed
3332 * if takeover is used
3333 */
3334 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3335 ord_to_idx(prev->disk_ord_tbl[i])) {
3336 map->disk_ord_tbl[j] |=
3337 prev->disk_ord_tbl[i];
3338 break;
3339 }
3340 failed = imsm_count_failed(super, dev, MAP_0);
3341 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3342 }
3343
3344 dev->vol.migr_state = 0;
3345 set_migr_type(dev, 0);
3346 dev->vol.curr_migr_unit = 0;
3347 map->map_state = map_state;
3348 }
3349 #endif
3350
3351 static int parse_raid_devices(struct intel_super *super)
3352 {
3353 int i;
3354 struct imsm_dev *dev_new;
3355 size_t len, len_migr;
3356 size_t max_len = 0;
3357 size_t space_needed = 0;
3358 struct imsm_super *mpb = super->anchor;
3359
3360 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3361 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3362 struct intel_dev *dv;
3363
3364 len = sizeof_imsm_dev(dev_iter, 0);
3365 len_migr = sizeof_imsm_dev(dev_iter, 1);
3366 if (len_migr > len)
3367 space_needed += len_migr - len;
3368
3369 dv = malloc(sizeof(*dv));
3370 if (!dv)
3371 return 1;
3372 if (max_len < len_migr)
3373 max_len = len_migr;
3374 if (max_len > len_migr)
3375 space_needed += max_len - len_migr;
3376 dev_new = malloc(max_len);
3377 if (!dev_new) {
3378 free(dv);
3379 return 1;
3380 }
3381 imsm_copy_dev(dev_new, dev_iter);
3382 dv->dev = dev_new;
3383 dv->index = i;
3384 dv->next = super->devlist;
3385 super->devlist = dv;
3386 }
3387
3388 /* ensure that super->buf is large enough when all raid devices
3389 * are migrating
3390 */
3391 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3392 void *buf;
3393
3394 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3395 if (posix_memalign(&buf, 512, len) != 0)
3396 return 1;
3397
3398 memcpy(buf, super->buf, super->len);
3399 memset(buf + super->len, 0, len - super->len);
3400 free(super->buf);
3401 super->buf = buf;
3402 super->len = len;
3403 }
3404
3405 return 0;
3406 }
3407
3408 /* retrieve a pointer to the bbm log which starts after all raid devices */
3409 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3410 {
3411 void *ptr = NULL;
3412
3413 if (__le32_to_cpu(mpb->bbm_log_size)) {
3414 ptr = mpb;
3415 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3416 }
3417
3418 return ptr;
3419 }
3420
3421 /*******************************************************************************
3422 * Function: check_mpb_migr_compatibility
3423 * Description: Function checks for unsupported migration features:
3424 * - migration optimization area (pba_of_lba0)
3425 * - descending reshape (ascending_migr)
3426 * Parameters:
3427 * super : imsm metadata information
3428 * Returns:
3429 * 0 : migration is compatible
3430 * -1 : migration is not compatible
3431 ******************************************************************************/
3432 int check_mpb_migr_compatibility(struct intel_super *super)
3433 {
3434 struct imsm_map *map0, *map1;
3435 struct migr_record *migr_rec = super->migr_rec;
3436 int i;
3437
3438 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3439 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3440
3441 if (dev_iter &&
3442 dev_iter->vol.migr_state == 1 &&
3443 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3444 /* This device is migrating */
3445 map0 = get_imsm_map(dev_iter, MAP_0);
3446 map1 = get_imsm_map(dev_iter, MAP_1);
3447 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3448 /* migration optimization area was used */
3449 return -1;
3450 if (migr_rec->ascending_migr == 0
3451 && migr_rec->dest_depth_per_unit > 0)
3452 /* descending reshape not supported yet */
3453 return -1;
3454 }
3455 }
3456 return 0;
3457 }
3458
3459 static void __free_imsm(struct intel_super *super, int free_disks);
3460
3461 /* load_imsm_mpb - read matrix metadata
3462 * allocates super->mpb to be freed by free_imsm
3463 */
3464 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3465 {
3466 unsigned long long dsize;
3467 unsigned long long sectors;
3468 struct stat;
3469 struct imsm_super *anchor;
3470 __u32 check_sum;
3471
3472 get_dev_size(fd, NULL, &dsize);
3473 if (dsize < 1024) {
3474 if (devname)
3475 fprintf(stderr,
3476 Name ": %s: device to small for imsm\n",
3477 devname);
3478 return 1;
3479 }
3480
3481 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3482 if (devname)
3483 fprintf(stderr, Name
3484 ": Cannot seek to anchor block on %s: %s\n",
3485 devname, strerror(errno));
3486 return 1;
3487 }
3488
3489 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3490 if (devname)
3491 fprintf(stderr,
3492 Name ": Failed to allocate imsm anchor buffer"
3493 " on %s\n", devname);
3494 return 1;
3495 }
3496 if (read(fd, anchor, 512) != 512) {
3497 if (devname)
3498 fprintf(stderr,
3499 Name ": Cannot read anchor block on %s: %s\n",
3500 devname, strerror(errno));
3501 free(anchor);
3502 return 1;
3503 }
3504
3505 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3506 if (devname)
3507 fprintf(stderr,
3508 Name ": no IMSM anchor on %s\n", devname);
3509 free(anchor);
3510 return 2;
3511 }
3512
3513 __free_imsm(super, 0);
3514 /* reload capability and hba */
3515
3516 /* capability and hba must be updated with new super allocation */
3517 find_intel_hba_capability(fd, super, devname);
3518 super->len = ROUND_UP(anchor->mpb_size, 512);
3519 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3520 if (devname)
3521 fprintf(stderr,
3522 Name ": unable to allocate %zu byte mpb buffer\n",
3523 super->len);
3524 free(anchor);
3525 return 2;
3526 }
3527 memcpy(super->buf, anchor, 512);
3528
3529 sectors = mpb_sectors(anchor) - 1;
3530 free(anchor);
3531
3532 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3533 fprintf(stderr, Name
3534 ": %s could not allocate migr_rec buffer\n", __func__);
3535 free(super->buf);
3536 return 2;
3537 }
3538 super->clean_migration_record_by_mdmon = 0;
3539
3540 if (!sectors) {
3541 check_sum = __gen_imsm_checksum(super->anchor);
3542 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3543 if (devname)
3544 fprintf(stderr,
3545 Name ": IMSM checksum %x != %x on %s\n",
3546 check_sum,
3547 __le32_to_cpu(super->anchor->check_sum),
3548 devname);
3549 return 2;
3550 }
3551
3552 return 0;
3553 }
3554
3555 /* read the extended mpb */
3556 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3557 if (devname)
3558 fprintf(stderr,
3559 Name ": Cannot seek to extended mpb on %s: %s\n",
3560 devname, strerror(errno));
3561 return 1;
3562 }
3563
3564 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3565 if (devname)
3566 fprintf(stderr,
3567 Name ": Cannot read extended mpb on %s: %s\n",
3568 devname, strerror(errno));
3569 return 2;
3570 }
3571
3572 check_sum = __gen_imsm_checksum(super->anchor);
3573 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3574 if (devname)
3575 fprintf(stderr,
3576 Name ": IMSM checksum %x != %x on %s\n",
3577 check_sum, __le32_to_cpu(super->anchor->check_sum),
3578 devname);
3579 return 3;
3580 }
3581
3582 /* FIXME the BBM log is disk specific so we cannot use this global
3583 * buffer for all disks. Ok for now since we only look at the global
3584 * bbm_log_size parameter to gate assembly
3585 */
3586 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3587
3588 return 0;
3589 }
3590
3591 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3592
3593 static int
3594 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3595 {
3596 int err;
3597
3598 err = load_imsm_mpb(fd, super, devname);
3599 if (err)
3600 return err;
3601 err = load_imsm_disk(fd, super, devname, keep_fd);
3602 if (err)
3603 return err;
3604 err = parse_raid_devices(super);
3605
3606 return err;
3607 }
3608
3609 static void __free_imsm_disk(struct dl *d)
3610 {
3611 if (d->fd >= 0)
3612 close(d->fd);
3613 if (d->devname)
3614 free(d->devname);
3615 if (d->e)
3616 free(d->e);
3617 free(d);
3618
3619 }
3620
3621 static void free_imsm_disks(struct intel_super *super)
3622 {
3623 struct dl *d;
3624
3625 while (super->disks) {
3626 d = super->disks;
3627 super->disks = d->next;
3628 __free_imsm_disk(d);
3629 }
3630 while (super->disk_mgmt_list) {
3631 d = super->disk_mgmt_list;
3632 super->disk_mgmt_list = d->next;
3633 __free_imsm_disk(d);
3634 }
3635 while (super->missing) {
3636 d = super->missing;
3637 super->missing = d->next;
3638 __free_imsm_disk(d);
3639 }
3640
3641 }
3642
3643 /* free all the pieces hanging off of a super pointer */
3644 static void __free_imsm(struct intel_super *super, int free_disks)
3645 {
3646 struct intel_hba *elem, *next;
3647
3648 if (super->buf) {
3649 free(super->buf);
3650 super->buf = NULL;
3651 }
3652 /* unlink capability description */
3653 super->orom = NULL;
3654 if (super->migr_rec_buf) {
3655 free(super->migr_rec_buf);
3656 super->migr_rec_buf = NULL;
3657 }
3658 if (free_disks)
3659 free_imsm_disks(super);
3660 free_devlist(super);
3661 elem = super->hba;
3662 while (elem) {
3663 if (elem->path)
3664 free((void *)elem->path);
3665 next = elem->next;
3666 free(elem);
3667 elem = next;
3668 }
3669 super->hba = NULL;
3670 }
3671
3672 static void free_imsm(struct intel_super *super)
3673 {
3674 __free_imsm(super, 1);
3675 free(super);
3676 }
3677
3678 static void free_super_imsm(struct supertype *st)
3679 {
3680 struct intel_super *super = st->sb;
3681
3682 if (!super)
3683 return;
3684
3685 free_imsm(super);
3686 st->sb = NULL;
3687 }
3688
3689 static struct intel_super *alloc_super(void)
3690 {
3691 struct intel_super *super = malloc(sizeof(*super));
3692
3693 if (super) {
3694 memset(super, 0, sizeof(*super));
3695 super->current_vol = -1;
3696 super->create_offset = ~((unsigned long long) 0);
3697 }
3698 return super;
3699 }
3700
3701 /*
3702 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3703 */
3704 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3705 {
3706 struct sys_dev *hba_name;
3707 int rv = 0;
3708
3709 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3710 super->orom = NULL;
3711 super->hba = NULL;
3712 return 0;
3713 }
3714 hba_name = find_disk_attached_hba(fd, NULL);
3715 if (!hba_name) {
3716 if (devname)
3717 fprintf(stderr,
3718 Name ": %s is not attached to Intel(R) RAID controller.\n",
3719 devname);
3720 return 1;
3721 }
3722 rv = attach_hba_to_super(super, hba_name);
3723 if (rv == 2) {
3724 if (devname) {
3725 struct intel_hba *hba = super->hba;
3726
3727 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3728 "controller (%s),\n"
3729 " but the container is assigned to Intel(R) "
3730 "%s RAID controller (",
3731 devname,
3732 hba_name->path,
3733 hba_name->pci_id ? : "Err!",
3734 get_sys_dev_type(hba_name->type));
3735
3736 while (hba) {
3737 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3738 if (hba->next)
3739 fprintf(stderr, ", ");
3740 hba = hba->next;
3741 }
3742
3743 fprintf(stderr, ").\n"
3744 " Mixing devices attached to different controllers "
3745 "is not allowed.\n");
3746 }
3747 free_sys_dev(&hba_name);
3748 return 2;
3749 }
3750 super->orom = find_imsm_capability(hba_name->type);
3751 free_sys_dev(&hba_name);
3752 if (!super->orom)
3753 return 3;
3754 return 0;
3755 }
3756
3757 /* find_missing - helper routine for load_super_imsm_all that identifies
3758 * disks that have disappeared from the system. This routine relies on
3759 * the mpb being uptodate, which it is at load time.
3760 */
3761 static int find_missing(struct intel_super *super)
3762 {
3763 int i;
3764 struct imsm_super *mpb = super->anchor;
3765 struct dl *dl;
3766 struct imsm_disk *disk;
3767
3768 for (i = 0; i < mpb->num_disks; i++) {
3769 disk = __get_imsm_disk(mpb, i);
3770 dl = serial_to_dl(disk->serial, super);
3771 if (dl)
3772 continue;
3773
3774 dl = malloc(sizeof(*dl));
3775 if (!dl)
3776 return 1;
3777 dl->major = 0;
3778 dl->minor = 0;
3779 dl->fd = -1;
3780 dl->devname = strdup("missing");
3781 dl->index = i;
3782 serialcpy(dl->serial, disk->serial);
3783 dl->disk = *disk;
3784 dl->e = NULL;
3785 dl->next = super->missing;
3786 super->missing = dl;
3787 }
3788
3789 return 0;
3790 }
3791
3792 #ifndef MDASSEMBLE
3793 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3794 {
3795 struct intel_disk *idisk = disk_list;
3796
3797 while (idisk) {
3798 if (serialcmp(idisk->disk.serial, serial) == 0)
3799 break;
3800 idisk = idisk->next;
3801 }
3802
3803 return idisk;
3804 }
3805
3806 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3807 struct intel_super *super,
3808 struct intel_disk **disk_list)
3809 {
3810 struct imsm_disk *d = &super->disks->disk;
3811 struct imsm_super *mpb = super->anchor;
3812 int i, j;
3813
3814 for (i = 0; i < tbl_size; i++) {
3815 struct imsm_super *tbl_mpb = table[i]->anchor;
3816 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3817
3818 if (tbl_mpb->family_num == mpb->family_num) {
3819 if (tbl_mpb->check_sum == mpb->check_sum) {
3820 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3821 __func__, super->disks->major,
3822 super->disks->minor,
3823 table[i]->disks->major,
3824 table[i]->disks->minor);
3825 break;
3826 }
3827
3828 if (((is_configured(d) && !is_configured(tbl_d)) ||
3829 is_configured(d) == is_configured(tbl_d)) &&
3830 tbl_mpb->generation_num < mpb->generation_num) {
3831 /* current version of the mpb is a
3832 * better candidate than the one in
3833 * super_table, but copy over "cross
3834 * generational" status
3835 */
3836 struct intel_disk *idisk;
3837
3838 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3839 __func__, super->disks->major,
3840 super->disks->minor,
3841 table[i]->disks->major,
3842 table[i]->disks->minor);
3843
3844 idisk = disk_list_get(tbl_d->serial, *disk_list);
3845 if (idisk && is_failed(&idisk->disk))
3846 tbl_d->status |= FAILED_DISK;
3847 break;
3848 } else {
3849 struct intel_disk *idisk;
3850 struct imsm_disk *disk;
3851
3852 /* tbl_mpb is more up to date, but copy
3853 * over cross generational status before
3854 * returning
3855 */
3856 disk = __serial_to_disk(d->serial, mpb, NULL);
3857 if (disk && is_failed(disk))
3858 d->status |= FAILED_DISK;
3859
3860 idisk = disk_list_get(d->serial, *disk_list);
3861 if (idisk) {
3862 idisk->owner = i;
3863 if (disk && is_configured(disk))
3864 idisk->disk.status |= CONFIGURED_DISK;
3865 }
3866
3867 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3868 __func__, super->disks->major,
3869 super->disks->minor,
3870 table[i]->disks->major,
3871 table[i]->disks->minor);
3872
3873 return tbl_size;
3874 }
3875 }
3876 }
3877
3878 if (i >= tbl_size)
3879 table[tbl_size++] = super;
3880 else
3881 table[i] = super;
3882
3883 /* update/extend the merged list of imsm_disk records */
3884 for (j = 0; j < mpb->num_disks; j++) {
3885 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3886 struct intel_disk *idisk;
3887
3888 idisk = disk_list_get(disk->serial, *disk_list);
3889 if (idisk) {
3890 idisk->disk.status |= disk->status;
3891 if (is_configured(&idisk->disk) ||
3892 is_failed(&idisk->disk))
3893 idisk->disk.status &= ~(SPARE_DISK);
3894 } else {
3895 idisk = calloc(1, sizeof(*idisk));
3896 if (!idisk)
3897 return -1;
3898 idisk->owner = IMSM_UNKNOWN_OWNER;
3899 idisk->disk = *disk;
3900 idisk->next = *disk_list;
3901 *disk_list = idisk;
3902 }
3903
3904 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3905 idisk->owner = i;
3906 }
3907
3908 return tbl_size;
3909 }
3910
3911 static struct intel_super *
3912 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3913 const int owner)
3914 {
3915 struct imsm_super *mpb = super->anchor;
3916 int ok_count = 0;
3917 int i;
3918
3919 for (i = 0; i < mpb->num_disks; i++) {
3920 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3921 struct intel_disk *idisk;
3922
3923 idisk = disk_list_get(disk->serial, disk_list);
3924 if (idisk) {
3925 if (idisk->owner == owner ||
3926 idisk->owner == IMSM_UNKNOWN_OWNER)
3927 ok_count++;
3928 else
3929 dprintf("%s: '%.16s' owner %d != %d\n",
3930 __func__, disk->serial, idisk->owner,
3931 owner);
3932 } else {
3933 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3934 __func__, __le32_to_cpu(mpb->family_num), i,
3935 disk->serial);
3936 break;
3937 }
3938 }
3939
3940 if (ok_count == mpb->num_disks)
3941 return super;
3942 return NULL;
3943 }
3944
3945 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3946 {
3947 struct intel_super *s;
3948
3949 for (s = super_list; s; s = s->next) {
3950 if (family_num != s->anchor->family_num)
3951 continue;
3952 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3953 __le32_to_cpu(family_num), s->disks->devname);
3954 }
3955 }
3956
3957 static struct intel_super *
3958 imsm_thunderdome(struct intel_super **super_list, int len)
3959 {
3960 struct intel_super *super_table[len];
3961 struct intel_disk *disk_list = NULL;
3962 struct intel_super *champion, *spare;
3963 struct intel_super *s, **del;
3964 int tbl_size = 0;
3965 int conflict;
3966 int i;
3967
3968 memset(super_table, 0, sizeof(super_table));
3969 for (s = *super_list; s; s = s->next)
3970 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3971
3972 for (i = 0; i < tbl_size; i++) {
3973 struct imsm_disk *d;
3974 struct intel_disk *idisk;
3975 struct imsm_super *mpb = super_table[i]->anchor;
3976
3977 s = super_table[i];
3978 d = &s->disks->disk;
3979
3980 /* 'd' must appear in merged disk list for its
3981 * configuration to be valid
3982 */
3983 idisk = disk_list_get(d->serial, disk_list);
3984 if (idisk && idisk->owner == i)
3985 s = validate_members(s, disk_list, i);
3986 else
3987 s = NULL;
3988
3989 if (!s)
3990 dprintf("%s: marking family: %#x from %d:%d offline\n",
3991 __func__, mpb->family_num,
3992 super_table[i]->disks->major,
3993 super_table[i]->disks->minor);
3994 super_table[i] = s;
3995 }
3996
3997 /* This is where the mdadm implementation differs from the Windows
3998 * driver which has no strict concept of a container. We can only
3999 * assemble one family from a container, so when returning a prodigal
4000 * array member to this system the code will not be able to disambiguate
4001 * the container contents that should be assembled ("foreign" versus
4002 * "local"). It requires user intervention to set the orig_family_num
4003 * to a new value to establish a new container. The Windows driver in
4004 * this situation fixes up the volume name in place and manages the
4005 * foreign array as an independent entity.
4006 */
4007 s = NULL;
4008 spare = NULL;
4009 conflict = 0;
4010 for (i = 0; i < tbl_size; i++) {
4011 struct intel_super *tbl_ent = super_table[i];
4012 int is_spare = 0;
4013
4014 if (!tbl_ent)
4015 continue;
4016
4017 if (tbl_ent->anchor->num_raid_devs == 0) {
4018 spare = tbl_ent;
4019 is_spare = 1;
4020 }
4021
4022 if (s && !is_spare) {
4023 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4024 conflict++;
4025 } else if (!s && !is_spare)
4026 s = tbl_ent;
4027 }
4028
4029 if (!s)
4030 s = spare;
4031 if (!s) {
4032 champion = NULL;
4033 goto out;
4034 }
4035 champion = s;
4036
4037 if (conflict)
4038 fprintf(stderr, "Chose family %#x on '%s', "
4039 "assemble conflicts to new container with '--update=uuid'\n",
4040 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4041
4042 /* collect all dl's onto 'champion', and update them to
4043 * champion's version of the status
4044 */
4045 for (s = *super_list; s; s = s->next) {
4046 struct imsm_super *mpb = champion->anchor;
4047 struct dl *dl = s->disks;
4048
4049 if (s == champion)
4050 continue;
4051
4052 for (i = 0; i < mpb->num_disks; i++) {
4053 struct imsm_disk *disk;
4054
4055 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4056 if (disk) {
4057 dl->disk = *disk;
4058 /* only set index on disks that are a member of
4059 * a populated contianer, i.e. one with
4060 * raid_devs
4061 */
4062 if (is_failed(&dl->disk))
4063 dl->index = -2;
4064 else if (is_spare(&dl->disk))
4065 dl->index = -1;
4066 break;
4067 }
4068 }
4069
4070 if (i >= mpb->num_disks) {
4071 struct intel_disk *idisk;
4072
4073 idisk = disk_list_get(dl->serial, disk_list);
4074 if (idisk && is_spare(&idisk->disk) &&
4075 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4076 dl->index = -1;
4077 else {
4078 dl->index = -2;
4079 continue;
4080 }
4081 }
4082
4083 dl->next = champion->disks;
4084 champion->disks = dl;
4085 s->disks = NULL;
4086 }
4087
4088 /* delete 'champion' from super_list */
4089 for (del = super_list; *del; ) {
4090 if (*del == champion) {
4091 *del = (*del)->next;
4092 break;
4093 } else
4094 del = &(*del)->next;
4095 }
4096 champion->next = NULL;
4097
4098 out:
4099 while (disk_list) {
4100 struct intel_disk *idisk = disk_list;
4101
4102 disk_list = disk_list->next;
4103 free(idisk);
4104 }
4105
4106 return champion;
4107 }
4108
4109
4110 static int
4111 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4112 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4113 int major, int minor, int keep_fd);
4114 static int
4115 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4116 int *max, int keep_fd);
4117
4118
4119 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4120 char *devname, struct md_list *devlist,
4121 int keep_fd)
4122 {
4123 struct intel_super *super_list = NULL;
4124 struct intel_super *super = NULL;
4125 int err = 0;
4126 int i = 0;
4127
4128 if (fd >= 0)
4129 /* 'fd' is an opened container */
4130 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4131 else
4132 /* get super block from devlist devices */
4133 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4134 if (err)
4135 goto error;
4136 /* all mpbs enter, maybe one leaves */
4137 super = imsm_thunderdome(&super_list, i);
4138 if (!super) {
4139 err = 1;
4140 goto error;
4141 }
4142
4143 if (find_missing(super) != 0) {
4144 free_imsm(super);
4145 err = 2;
4146 goto error;
4147 }
4148
4149 /* load migration record */
4150 err = load_imsm_migr_rec(super, NULL);
4151 if (err == -1) {
4152 /* migration is in progress,
4153 * but migr_rec cannot be loaded,
4154 */
4155 err = 4;
4156 goto error;
4157 }
4158
4159 /* Check migration compatibility */
4160 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4161 fprintf(stderr, Name ": Unsupported migration detected");
4162 if (devname)
4163 fprintf(stderr, " on %s\n", devname);
4164 else
4165 fprintf(stderr, " (IMSM).\n");
4166
4167 err = 5;
4168 goto error;
4169 }
4170
4171 err = 0;
4172
4173 error:
4174 while (super_list) {
4175 struct intel_super *s = super_list;
4176
4177 super_list = super_list->next;
4178 free_imsm(s);
4179 }
4180
4181
4182 if (err)
4183 return err;
4184
4185 *sbp = super;
4186 if (fd >= 0)
4187 st->container_dev = fd2devnum(fd);
4188 else
4189 st->container_dev = NoMdDev;
4190 if (err == 0 && st->ss == NULL) {
4191 st->ss = &super_imsm;
4192 st->minor_version = 0;
4193 st->max_devs = IMSM_MAX_DEVICES;
4194 }
4195 return 0;
4196 }
4197
4198
4199 static int
4200 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4201 int *max, int keep_fd)
4202 {
4203 struct md_list *tmpdev;
4204 int err = 0;
4205 int i = 0;
4206
4207 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4208 if (tmpdev->used != 1)
4209 continue;
4210 if (tmpdev->container == 1) {
4211 int lmax = 0;
4212 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4213 if (fd < 0) {
4214 fprintf(stderr, Name ": cannot open device %s: %s\n",
4215 tmpdev->devname, strerror(errno));
4216 err = 8;
4217 goto error;
4218 }
4219 err = get_sra_super_block(fd, super_list,
4220 tmpdev->devname, &lmax,
4221 keep_fd);
4222 i += lmax;
4223 close(fd);
4224 if (err) {
4225 err = 7;
4226 goto error;
4227 }
4228 } else {
4229 int major = major(tmpdev->st_rdev);
4230 int minor = minor(tmpdev->st_rdev);
4231 err = get_super_block(super_list,
4232 -1,
4233 tmpdev->devname,
4234 major, minor,
4235 keep_fd);
4236 i++;
4237 if (err) {
4238 err = 6;
4239 goto error;
4240 }
4241 }
4242 }
4243 error:
4244 *max = i;
4245 return err;
4246 }
4247
4248 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4249 int major, int minor, int keep_fd)
4250 {
4251 struct intel_super*s = NULL;
4252 char nm[32];
4253 int dfd = -1;
4254 int rv;
4255 int err = 0;
4256 int retry;
4257
4258 s = alloc_super();
4259 if (!s) {
4260 err = 1;
4261 goto error;
4262 }
4263
4264 sprintf(nm, "%d:%d", major, minor);
4265 dfd = dev_open(nm, O_RDWR);
4266 if (dfd < 0) {
4267 err = 2;
4268 goto error;
4269 }
4270
4271 rv = find_intel_hba_capability(dfd, s, devname);
4272 /* no orom/efi or non-intel hba of the disk */
4273 if (rv != 0) {
4274 err = 4;
4275 goto error;
4276 }
4277
4278 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4279
4280 /* retry the load if we might have raced against mdmon */
4281 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4282 for (retry = 0; retry < 3; retry++) {
4283 usleep(3000);
4284 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4285 if (err != 3)
4286 break;
4287 }
4288 error:
4289 if (!err) {
4290 s->next = *super_list;
4291 *super_list = s;
4292 } else {
4293 if (s)
4294 free(s);
4295 if (dfd)
4296 close(dfd);
4297 }
4298 if ((dfd >= 0) && (!keep_fd))
4299 close(dfd);
4300 return err;
4301
4302 }
4303
4304 static int
4305 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4306 {
4307 struct mdinfo *sra;
4308 int devnum;
4309 struct mdinfo *sd;
4310 int err = 0;
4311 int i = 0;
4312 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4313 if (!sra)
4314 return 1;
4315
4316 if (sra->array.major_version != -1 ||
4317 sra->array.minor_version != -2 ||
4318 strcmp(sra->text_version, "imsm") != 0) {
4319 err = 1;
4320 goto error;
4321 }
4322 /* load all mpbs */
4323 devnum = fd2devnum(fd);
4324 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4325 if (get_super_block(super_list, devnum, devname,
4326 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4327 err = 7;
4328 goto error;
4329 }
4330 }
4331 error:
4332 sysfs_free(sra);
4333 *max = i;
4334 return err;
4335 }
4336
4337 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4338 {
4339 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4340 }
4341 #endif
4342
4343 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4344 {
4345 struct intel_super *super;
4346 int rv;
4347
4348 if (test_partition(fd))
4349 /* IMSM not allowed on partitions */
4350 return 1;
4351
4352 free_super_imsm(st);
4353
4354 super = alloc_super();
4355 if (!super) {
4356 fprintf(stderr,
4357 Name ": malloc of %zu failed.\n",
4358 sizeof(*super));
4359 return 1;
4360 }
4361 /* Load hba and capabilities if they exist.
4362 * But do not preclude loading metadata in case capabilities or hba are
4363 * non-compliant and ignore_hw_compat is set.
4364 */
4365 rv = find_intel_hba_capability(fd, super, devname);
4366 /* no orom/efi or non-intel hba of the disk */
4367 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4368 if (devname)
4369 fprintf(stderr,
4370 Name ": No OROM/EFI properties for %s\n", devname);
4371 free_imsm(super);
4372 return 2;
4373 }
4374 rv = load_and_parse_mpb(fd, super, devname, 0);
4375
4376 if (rv) {
4377 if (devname)
4378 fprintf(stderr,
4379 Name ": Failed to load all information "
4380 "sections on %s\n", devname);
4381 free_imsm(super);
4382 return rv;
4383 }
4384
4385 st->sb = super;
4386 if (st->ss == NULL) {
4387 st->ss = &super_imsm;
4388 st->minor_version = 0;
4389 st->max_devs = IMSM_MAX_DEVICES;
4390 }
4391
4392 /* load migration record */
4393 if (load_imsm_migr_rec(super, NULL) == 0) {
4394 /* Check for unsupported migration features */
4395 if (check_mpb_migr_compatibility(super) != 0) {
4396 fprintf(stderr,
4397 Name ": Unsupported migration detected");
4398 if (devname)
4399 fprintf(stderr, " on %s\n", devname);
4400 else
4401 fprintf(stderr, " (IMSM).\n");
4402 return 3;
4403 }
4404 }
4405
4406 return 0;
4407 }
4408
4409 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4410 {
4411 if (info->level == 1)
4412 return 128;
4413 return info->chunk_size >> 9;
4414 }
4415
4416 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4417 unsigned long long size)
4418 {
4419 if (info->level == 1)
4420 return size * 2;
4421 else
4422 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4423 }
4424
4425 static void imsm_update_version_info(struct intel_super *super)
4426 {
4427 /* update the version and attributes */
4428 struct imsm_super *mpb = super->anchor;
4429 char *version;
4430 struct imsm_dev *dev;
4431 struct imsm_map *map;
4432 int i;
4433
4434 for (i = 0; i < mpb->num_raid_devs; i++) {
4435 dev = get_imsm_dev(super, i);
4436 map = get_imsm_map(dev, MAP_0);
4437 if (__le32_to_cpu(dev->size_high) > 0)
4438 mpb->attributes |= MPB_ATTRIB_2TB;
4439
4440 /* FIXME detect when an array spans a port multiplier */
4441 #if 0
4442 mpb->attributes |= MPB_ATTRIB_PM;
4443 #endif
4444
4445 if (mpb->num_raid_devs > 1 ||
4446 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4447 version = MPB_VERSION_ATTRIBS;
4448 switch (get_imsm_raid_level(map)) {
4449 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4450 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4451 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4452 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4453 }
4454 } else {
4455 if (map->num_members >= 5)
4456 version = MPB_VERSION_5OR6_DISK_ARRAY;
4457 else if (dev->status == DEV_CLONE_N_GO)
4458 version = MPB_VERSION_CNG;
4459 else if (get_imsm_raid_level(map) == 5)
4460 version = MPB_VERSION_RAID5;
4461 else if (map->num_members >= 3)
4462 version = MPB_VERSION_3OR4_DISK_ARRAY;
4463 else if (get_imsm_raid_level(map) == 1)
4464 version = MPB_VERSION_RAID1;
4465 else
4466 version = MPB_VERSION_RAID0;
4467 }
4468 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4469 }
4470 }
4471
4472 static int check_name(struct intel_super *super, char *name, int quiet)
4473 {
4474 struct imsm_super *mpb = super->anchor;
4475 char *reason = NULL;
4476 int i;
4477
4478 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4479 reason = "must be 16 characters or less";
4480
4481 for (i = 0; i < mpb->num_raid_devs; i++) {
4482 struct imsm_dev *dev = get_imsm_dev(super, i);
4483
4484 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4485 reason = "already exists";
4486 break;
4487 }
4488 }
4489
4490 if (reason && !quiet)
4491 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4492
4493 return !reason;
4494 }
4495
4496 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4497 unsigned long long size, char *name,
4498 char *homehost, int *uuid)
4499 {
4500 /* We are creating a volume inside a pre-existing container.
4501 * so st->sb is already set.
4502 */
4503 struct intel_super *super = st->sb;
4504 struct imsm_super *mpb = super->anchor;
4505 struct intel_dev *dv;
4506 struct imsm_dev *dev;
4507 struct imsm_vol *vol;
4508 struct imsm_map *map;
4509 int idx = mpb->num_raid_devs;
4510 int i;
4511 unsigned long long array_blocks;
4512 size_t size_old, size_new;
4513 unsigned long long num_data_stripes;
4514
4515 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4516 fprintf(stderr, Name": This imsm-container already has the "
4517 "maximum of %d volumes\n", super->orom->vpa);
4518 return 0;
4519 }
4520
4521 /* ensure the mpb is large enough for the new data */
4522 size_old = __le32_to_cpu(mpb->mpb_size);
4523 size_new = disks_to_mpb_size(info->nr_disks);
4524 if (size_new > size_old) {
4525 void *mpb_new;
4526 size_t size_round = ROUND_UP(size_new, 512);
4527
4528 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4529 fprintf(stderr, Name": could not allocate new mpb\n");
4530 return 0;
4531 }
4532 if (posix_memalign(&super->migr_rec_buf, 512,
4533 MIGR_REC_BUF_SIZE) != 0) {
4534 fprintf(stderr, Name
4535 ": %s could not allocate migr_rec buffer\n",
4536 __func__);
4537 free(super->buf);
4538 free(super);
4539 free(mpb_new);
4540 return 0;
4541 }
4542 memcpy(mpb_new, mpb, size_old);
4543 free(mpb);
4544 mpb = mpb_new;
4545 super->anchor = mpb_new;
4546 mpb->mpb_size = __cpu_to_le32(size_new);
4547 memset(mpb_new + size_old, 0, size_round - size_old);
4548 }
4549 super->current_vol = idx;
4550
4551 /* handle 'failed_disks' by either:
4552 * a) create dummy disk entries in the table if this the first
4553 * volume in the array. We add them here as this is the only
4554 * opportunity to add them. add_to_super_imsm_volume()
4555 * handles the non-failed disks and continues incrementing
4556 * mpb->num_disks.
4557 * b) validate that 'failed_disks' matches the current number
4558 * of missing disks if the container is populated
4559 */
4560 if (super->current_vol == 0) {
4561 mpb->num_disks = 0;
4562 for (i = 0; i < info->failed_disks; i++) {
4563 struct imsm_disk *disk;
4564
4565 mpb->num_disks++;
4566 disk = __get_imsm_disk(mpb, i);
4567 disk->status = CONFIGURED_DISK | FAILED_DISK;
4568 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4569 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4570 "missing:%d", i);
4571 }
4572 find_missing(super);
4573 } else {
4574 int missing = 0;
4575 struct dl *d;
4576
4577 for (d = super->missing; d; d = d->next)
4578 missing++;
4579 if (info->failed_disks > missing) {
4580 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4581 return 0;
4582 }
4583 }
4584
4585 if (!check_name(super, name, 0))
4586 return 0;
4587 dv = malloc(sizeof(*dv));
4588 if (!dv) {
4589 fprintf(stderr, Name ": failed to allocate device list entry\n");
4590 return 0;
4591 }
4592 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4593 if (!dev) {
4594 free(dv);
4595 fprintf(stderr, Name": could not allocate raid device\n");
4596 return 0;
4597 }
4598
4599 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4600 if (info->level == 1)
4601 array_blocks = info_to_blocks_per_member(info, size);
4602 else
4603 array_blocks = calc_array_size(info->level, info->raid_disks,
4604 info->layout, info->chunk_size,
4605 size * 2);
4606 /* round array size down to closest MB */
4607 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4608
4609 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4610 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4611 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4612 vol = &dev->vol;
4613 vol->migr_state = 0;
4614 set_migr_type(dev, MIGR_INIT);
4615 vol->dirty = !info->state;
4616 vol->curr_migr_unit = 0;
4617 map = get_imsm_map(dev, MAP_0);
4618 set_pba_of_lba0(map, super->create_offset);
4619 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4620 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4621 map->failed_disk_num = ~0;
4622 if (info->level > 0)
4623 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4624 else
4625 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4626 IMSM_T_STATE_NORMAL;
4627 map->ddf = 1;
4628
4629 if (info->level == 1 && info->raid_disks > 2) {
4630 free(dev);
4631 free(dv);
4632 fprintf(stderr, Name": imsm does not support more than 2 disks"
4633 "in a raid1 volume\n");
4634 return 0;
4635 }
4636
4637 map->raid_level = info->level;
4638 if (info->level == 10) {
4639 map->raid_level = 1;
4640 map->num_domains = info->raid_disks / 2;
4641 } else if (info->level == 1)
4642 map->num_domains = info->raid_disks;
4643 else
4644 map->num_domains = 1;
4645
4646 /* info->size is only int so use the 'size' parameter instead */
4647 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4648 num_data_stripes /= map->num_domains;
4649 set_num_data_stripes(map, num_data_stripes);
4650
4651 map->num_members = info->raid_disks;
4652 for (i = 0; i < map->num_members; i++) {
4653 /* initialized in add_to_super */
4654 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4655 }
4656 mpb->num_raid_devs++;
4657
4658 dv->dev = dev;
4659 dv->index = super->current_vol;
4660 dv->next = super->devlist;
4661 super->devlist = dv;
4662
4663 imsm_update_version_info(super);
4664
4665 return 1;
4666 }
4667
4668 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4669 unsigned long long size, char *name,
4670 char *homehost, int *uuid)
4671 {
4672 /* This is primarily called by Create when creating a new array.
4673 * We will then get add_to_super called for each component, and then
4674 * write_init_super called to write it out to each device.
4675 * For IMSM, Create can create on fresh devices or on a pre-existing
4676 * array.
4677 * To create on a pre-existing array a different method will be called.
4678 * This one is just for fresh drives.
4679 */
4680 struct intel_super *super;
4681 struct imsm_super *mpb;
4682 size_t mpb_size;
4683 char *version;
4684
4685 if (st->sb)
4686 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4687
4688 if (info)
4689 mpb_size = disks_to_mpb_size(info->nr_disks);
4690 else
4691 mpb_size = 512;
4692
4693 super = alloc_super();
4694 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4695 free(super);
4696 super = NULL;
4697 }
4698 if (!super) {
4699 fprintf(stderr, Name
4700 ": %s could not allocate superblock\n", __func__);
4701 return 0;
4702 }
4703 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4704 fprintf(stderr, Name
4705 ": %s could not allocate migr_rec buffer\n", __func__);
4706 free(super->buf);
4707 free(super);
4708 return 0;
4709 }
4710 memset(super->buf, 0, mpb_size);
4711 mpb = super->buf;
4712 mpb->mpb_size = __cpu_to_le32(mpb_size);
4713 st->sb = super;
4714
4715 if (info == NULL) {
4716 /* zeroing superblock */
4717 return 0;
4718 }
4719
4720 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4721
4722 version = (char *) mpb->sig;
4723 strcpy(version, MPB_SIGNATURE);
4724 version += strlen(MPB_SIGNATURE);
4725 strcpy(version, MPB_VERSION_RAID0);
4726
4727 return 1;
4728 }
4729
4730 #ifndef MDASSEMBLE
4731 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4732 int fd, char *devname)
4733 {
4734 struct intel_super *super = st->sb;
4735 struct imsm_super *mpb = super->anchor;
4736 struct imsm_disk *_disk;
4737 struct imsm_dev *dev;
4738 struct imsm_map *map;
4739 struct dl *dl, *df;
4740 int slot;
4741
4742 dev = get_imsm_dev(super, super->current_vol);
4743 map = get_imsm_map(dev, MAP_0);
4744
4745 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4746 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4747 devname);
4748 return 1;
4749 }
4750
4751 if (fd == -1) {
4752 /* we're doing autolayout so grab the pre-marked (in
4753 * validate_geometry) raid_disk
4754 */
4755 for (dl = super->disks; dl; dl = dl->next)
4756 if (dl->raiddisk == dk->raid_disk)
4757 break;
4758 } else {
4759 for (dl = super->disks; dl ; dl = dl->next)
4760 if (dl->major == dk->major &&
4761 dl->minor == dk->minor)
4762 break;
4763 }
4764
4765 if (!dl) {
4766 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4767 return 1;
4768 }
4769
4770 /* add a pristine spare to the metadata */
4771 if (dl->index < 0) {
4772 dl->index = super->anchor->num_disks;
4773 super->anchor->num_disks++;
4774 }
4775 /* Check the device has not already been added */
4776 slot = get_imsm_disk_slot(map, dl->index);
4777 if (slot >= 0 &&
4778 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4779 fprintf(stderr, Name ": %s has been included in this array twice\n",
4780 devname);
4781 return 1;
4782 }
4783 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4784 dl->disk.status = CONFIGURED_DISK;
4785
4786 /* update size of 'missing' disks to be at least as large as the
4787 * largest acitve member (we only have dummy missing disks when
4788 * creating the first volume)
4789 */
4790 if (super->current_vol == 0) {
4791 for (df = super->missing; df; df = df->next) {
4792 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4793 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4794 _disk = __get_imsm_disk(mpb, df->index);
4795 *_disk = df->disk;
4796 }
4797 }
4798
4799 /* refresh unset/failed slots to point to valid 'missing' entries */
4800 for (df = super->missing; df; df = df->next)
4801 for (slot = 0; slot < mpb->num_disks; slot++) {
4802 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4803
4804 if ((ord & IMSM_ORD_REBUILD) == 0)
4805 continue;
4806 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4807 if (is_gen_migration(dev)) {
4808 struct imsm_map *map2 = get_imsm_map(dev,
4809 MAP_1);
4810 int slot2 = get_imsm_disk_slot(map2, df->index);
4811 if ((slot2 < map2->num_members) &&
4812 (slot2 >= 0)) {
4813 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4814 slot2,
4815 MAP_1);
4816 if ((unsigned)df->index ==
4817 ord_to_idx(ord2))
4818 set_imsm_ord_tbl_ent(map2,
4819 slot2,
4820 df->index |
4821 IMSM_ORD_REBUILD);
4822 }
4823 }
4824 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4825 break;
4826 }
4827
4828 /* if we are creating the first raid device update the family number */
4829 if (super->current_vol == 0) {
4830 __u32 sum;
4831 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4832
4833 _disk = __get_imsm_disk(mpb, dl->index);
4834 if (!_dev || !_disk) {
4835 fprintf(stderr, Name ": BUG mpb setup error\n");
4836 return 1;
4837 }
4838 *_dev = *dev;
4839 *_disk = dl->disk;
4840 sum = random32();
4841 sum += __gen_imsm_checksum(mpb);
4842 mpb->family_num = __cpu_to_le32(sum);
4843 mpb->orig_family_num = mpb->family_num;
4844 }
4845 super->current_disk = dl;
4846 return 0;
4847 }
4848
4849 /* mark_spare()
4850 * Function marks disk as spare and restores disk serial
4851 * in case it was previously marked as failed by takeover operation
4852 * reruns:
4853 * -1 : critical error
4854 * 0 : disk is marked as spare but serial is not set
4855 * 1 : success
4856 */
4857 int mark_spare(struct dl *disk)
4858 {
4859 __u8 serial[MAX_RAID_SERIAL_LEN];
4860 int ret_val = -1;
4861
4862 if (!disk)
4863 return ret_val;
4864
4865 ret_val = 0;
4866 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4867 /* Restore disk serial number, because takeover marks disk
4868 * as failed and adds to serial ':0' before it becomes
4869 * a spare disk.
4870 */
4871 serialcpy(disk->serial, serial);
4872 serialcpy(disk->disk.serial, serial);
4873 ret_val = 1;
4874 }
4875 disk->disk.status = SPARE_DISK;
4876 disk->index = -1;
4877
4878 return ret_val;
4879 }
4880
4881 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4882 int fd, char *devname)
4883 {
4884 struct intel_super *super = st->sb;
4885 struct dl *dd;
4886 unsigned long long size;
4887 __u32 id;
4888 int rv;
4889 struct stat stb;
4890
4891 /* If we are on an RAID enabled platform check that the disk is
4892 * attached to the raid controller.
4893 * We do not need to test disks attachment for container based additions,
4894 * they shall be already tested when container was created/assembled.
4895 */
4896 rv = find_intel_hba_capability(fd, super, devname);
4897 /* no orom/efi or non-intel hba of the disk */
4898 if (rv != 0) {
4899 dprintf("capability: %p fd: %d ret: %d\n",
4900 super->orom, fd, rv);
4901 return 1;
4902 }
4903
4904 if (super->current_vol >= 0)
4905 return add_to_super_imsm_volume(st, dk, fd, devname);
4906
4907 fstat(fd, &stb);
4908 dd = malloc(sizeof(*dd));
4909 if (!dd) {
4910 fprintf(stderr,
4911 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4912 return 1;
4913 }
4914 memset(dd, 0, sizeof(*dd));
4915 dd->major = major(stb.st_rdev);
4916 dd->minor = minor(stb.st_rdev);
4917 dd->devname = devname ? strdup(devname) : NULL;
4918 dd->fd = fd;
4919 dd->e = NULL;
4920 dd->action = DISK_ADD;
4921 rv = imsm_read_serial(fd, devname, dd->serial);
4922 if (rv) {
4923 fprintf(stderr,
4924 Name ": failed to retrieve scsi serial, aborting\n");
4925 free(dd);
4926 abort();
4927 }
4928
4929 get_dev_size(fd, NULL, &size);
4930 size /= 512;
4931 serialcpy(dd->disk.serial, dd->serial);
4932 set_total_blocks(&dd->disk, size);
4933 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4934 struct imsm_super *mpb = super->anchor;
4935 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4936 }
4937 mark_spare(dd);
4938 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4939 dd->disk.scsi_id = __cpu_to_le32(id);
4940 else
4941 dd->disk.scsi_id = __cpu_to_le32(0);
4942
4943 if (st->update_tail) {
4944 dd->next = super->disk_mgmt_list;
4945 super->disk_mgmt_list = dd;
4946 } else {
4947 dd->next = super->disks;
4948 super->disks = dd;
4949 super->updates_pending++;
4950 }
4951
4952 return 0;
4953 }
4954
4955
4956 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4957 {
4958 struct intel_super *super = st->sb;
4959 struct dl *dd;
4960
4961 /* remove from super works only in mdmon - for communication
4962 * manager - monitor. Check if communication memory buffer
4963 * is prepared.
4964 */
4965 if (!st->update_tail) {
4966 fprintf(stderr,
4967 Name ": %s shall be used in mdmon context only"
4968 "(line %d).\n", __func__, __LINE__);
4969 return 1;
4970 }
4971 dd = malloc(sizeof(*dd));
4972 if (!dd) {
4973 fprintf(stderr,
4974 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4975 return 1;
4976 }
4977 memset(dd, 0, sizeof(*dd));
4978 dd->major = dk->major;
4979 dd->minor = dk->minor;
4980 dd->fd = -1;
4981 mark_spare(dd);
4982 dd->action = DISK_REMOVE;
4983
4984 dd->next = super->disk_mgmt_list;
4985 super->disk_mgmt_list = dd;
4986
4987
4988 return 0;
4989 }
4990
4991 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4992
4993 static union {
4994 char buf[512];
4995 struct imsm_super anchor;
4996 } spare_record __attribute__ ((aligned(512)));
4997
4998 /* spare records have their own family number and do not have any defined raid
4999 * devices
5000 */
5001 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5002 {
5003 struct imsm_super *mpb = super->anchor;
5004 struct imsm_super *spare = &spare_record.anchor;
5005 __u32 sum;
5006 struct dl *d;
5007
5008 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5009 spare->generation_num = __cpu_to_le32(1UL),
5010 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5011 spare->num_disks = 1,
5012 spare->num_raid_devs = 0,
5013 spare->cache_size = mpb->cache_size,
5014 spare->pwr_cycle_count = __cpu_to_le32(1),
5015
5016 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5017 MPB_SIGNATURE MPB_VERSION_RAID0);
5018
5019 for (d = super->disks; d; d = d->next) {
5020 if (d->index != -1)
5021 continue;
5022
5023 spare->disk[0] = d->disk;
5024 sum = __gen_imsm_checksum(spare);
5025 spare->family_num = __cpu_to_le32(sum);
5026 spare->orig_family_num = 0;
5027 sum = __gen_imsm_checksum(spare);
5028 spare->check_sum = __cpu_to_le32(sum);
5029
5030 if (store_imsm_mpb(d->fd, spare)) {
5031 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5032 __func__, d->major, d->minor, strerror(errno));
5033 return 1;
5034 }
5035 if (doclose) {
5036 close(d->fd);
5037 d->fd = -1;
5038 }
5039 }
5040
5041 return 0;
5042 }
5043
5044 static int write_super_imsm(struct supertype *st, int doclose)
5045 {
5046 struct intel_super *super = st->sb;
5047 struct imsm_super *mpb = super->anchor;
5048 struct dl *d;
5049 __u32 generation;
5050 __u32 sum;
5051 int spares = 0;
5052 int i;
5053 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5054 int num_disks = 0;
5055 int clear_migration_record = 1;
5056
5057 /* 'generation' is incremented everytime the metadata is written */
5058 generation = __le32_to_cpu(mpb->generation_num);
5059 generation++;
5060 mpb->generation_num = __cpu_to_le32(generation);
5061
5062 /* fix up cases where previous mdadm releases failed to set
5063 * orig_family_num
5064 */
5065 if (mpb->orig_family_num == 0)
5066 mpb->orig_family_num = mpb->family_num;
5067
5068 for (d = super->disks; d; d = d->next) {
5069 if (d->index == -1)
5070 spares++;
5071 else {
5072 mpb->disk[d->index] = d->disk;
5073 num_disks++;
5074 }
5075 }
5076 for (d = super->missing; d; d = d->next) {
5077 mpb->disk[d->index] = d->disk;
5078 num_disks++;
5079 }
5080 mpb->num_disks = num_disks;
5081 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5082
5083 for (i = 0; i < mpb->num_raid_devs; i++) {
5084 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5085 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5086 if (dev && dev2) {
5087 imsm_copy_dev(dev, dev2);
5088 mpb_size += sizeof_imsm_dev(dev, 0);
5089 }
5090 if (is_gen_migration(dev2))
5091 clear_migration_record = 0;
5092 }
5093 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5094 mpb->mpb_size = __cpu_to_le32(mpb_size);
5095
5096 /* recalculate checksum */
5097 sum = __gen_imsm_checksum(mpb);
5098 mpb->check_sum = __cpu_to_le32(sum);
5099
5100 if (super->clean_migration_record_by_mdmon) {
5101 clear_migration_record = 1;
5102 super->clean_migration_record_by_mdmon = 0;
5103 }
5104 if (clear_migration_record)
5105 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5106
5107 /* write the mpb for disks that compose raid devices */
5108 for (d = super->disks; d ; d = d->next) {
5109 if (d->index < 0 || is_failed(&d->disk))
5110 continue;
5111
5112 if (clear_migration_record) {
5113 unsigned long long dsize;
5114
5115 get_dev_size(d->fd, NULL, &dsize);
5116 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5117 if (write(d->fd, super->migr_rec_buf,
5118 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5119 perror("Write migr_rec failed");
5120 }
5121 }
5122
5123 if (store_imsm_mpb(d->fd, mpb))
5124 fprintf(stderr,
5125 "%s: failed for device %d:%d (fd: %d)%s\n",
5126 __func__, d->major, d->minor,
5127 d->fd, strerror(errno));
5128
5129 if (doclose) {
5130 close(d->fd);
5131 d->fd = -1;
5132 }
5133 }
5134
5135 if (spares)
5136 return write_super_imsm_spares(super, doclose);
5137
5138 return 0;
5139 }
5140
5141
5142 static int create_array(struct supertype *st, int dev_idx)
5143 {
5144 size_t len;
5145 struct imsm_update_create_array *u;
5146 struct intel_super *super = st->sb;
5147 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5148 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5149 struct disk_info *inf;
5150 struct imsm_disk *disk;
5151 int i;
5152
5153 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5154 sizeof(*inf) * map->num_members;
5155 u = malloc(len);
5156 if (!u) {
5157 fprintf(stderr, "%s: failed to allocate update buffer\n",
5158 __func__);
5159 return 1;
5160 }
5161
5162 u->type = update_create_array;
5163 u->dev_idx = dev_idx;
5164 imsm_copy_dev(&u->dev, dev);
5165 inf = get_disk_info(u);
5166 for (i = 0; i < map->num_members; i++) {
5167 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5168
5169 disk = get_imsm_disk(super, idx);
5170 serialcpy(inf[i].serial, disk->serial);
5171 }
5172 append_metadata_update(st, u, len);
5173
5174 return 0;
5175 }
5176
5177 static int mgmt_disk(struct supertype *st)
5178 {
5179 struct intel_super *super = st->sb;
5180 size_t len;
5181 struct imsm_update_add_remove_disk *u;
5182
5183 if (!super->disk_mgmt_list)
5184 return 0;
5185
5186 len = sizeof(*u);
5187 u = malloc(len);
5188 if (!u) {
5189 fprintf(stderr, "%s: failed to allocate update buffer\n",
5190 __func__);
5191 return 1;
5192 }
5193
5194 u->type = update_add_remove_disk;
5195 append_metadata_update(st, u, len);
5196
5197 return 0;
5198 }
5199
5200 static int write_init_super_imsm(struct supertype *st)
5201 {
5202 struct intel_super *super = st->sb;
5203 int current_vol = super->current_vol;
5204
5205 /* we are done with current_vol reset it to point st at the container */
5206 super->current_vol = -1;
5207
5208 if (st->update_tail) {
5209 /* queue the recently created array / added disk
5210 * as a metadata update */
5211 int rv;
5212
5213 /* determine if we are creating a volume or adding a disk */
5214 if (current_vol < 0) {
5215 /* in the mgmt (add/remove) disk case we are running
5216 * in mdmon context, so don't close fd's
5217 */
5218 return mgmt_disk(st);
5219 } else
5220 rv = create_array(st, current_vol);
5221
5222 return rv;
5223 } else {
5224 struct dl *d;
5225 for (d = super->disks; d; d = d->next)
5226 Kill(d->devname, NULL, 0, 1, 1);
5227 return write_super_imsm(st, 1);
5228 }
5229 }
5230 #endif
5231
5232 static int store_super_imsm(struct supertype *st, int fd)
5233 {
5234 struct intel_super *super = st->sb;
5235 struct imsm_super *mpb = super ? super->anchor : NULL;
5236
5237 if (!mpb)
5238 return 1;
5239
5240 #ifndef MDASSEMBLE
5241 return store_imsm_mpb(fd, mpb);
5242 #else
5243 return 1;
5244 #endif
5245 }
5246
5247 static int imsm_bbm_log_size(struct imsm_super *mpb)
5248 {
5249 return __le32_to_cpu(mpb->bbm_log_size);
5250 }
5251
5252 #ifndef MDASSEMBLE
5253 static int validate_geometry_imsm_container(struct supertype *st, int level,
5254 int layout, int raiddisks, int chunk,
5255 unsigned long long size, char *dev,
5256 unsigned long long *freesize,
5257 int verbose)
5258 {
5259 int fd;
5260 unsigned long long ldsize;
5261 struct intel_super *super=NULL;
5262 int rv = 0;
5263
5264 if (level != LEVEL_CONTAINER)
5265 return 0;
5266 if (!dev)
5267 return 1;
5268
5269 fd = open(dev, O_RDONLY|O_EXCL, 0);
5270 if (fd < 0) {
5271 if (verbose)
5272 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5273 dev, strerror(errno));
5274 return 0;
5275 }
5276 if (!get_dev_size(fd, dev, &ldsize)) {
5277 close(fd);
5278 return 0;
5279 }
5280
5281 /* capabilities retrieve could be possible
5282 * note that there is no fd for the disks in array.
5283 */
5284 super = alloc_super();
5285 if (!super) {
5286 fprintf(stderr,
5287 Name ": malloc of %zu failed.\n",
5288 sizeof(*super));
5289 close(fd);
5290 return 0;
5291 }
5292
5293 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5294 if (rv != 0) {
5295 #if DEBUG
5296 char str[256];
5297 fd2devname(fd, str);
5298 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5299 fd, str, super->orom, rv, raiddisks);
5300 #endif
5301 /* no orom/efi or non-intel hba of the disk */
5302 close(fd);
5303 free_imsm(super);
5304 return 0;
5305 }
5306 close(fd);
5307 if (super->orom && raiddisks > super->orom->tds) {
5308 if (verbose)
5309 fprintf(stderr, Name ": %d exceeds maximum number of"
5310 " platform supported disks: %d\n",
5311 raiddisks, super->orom->tds);
5312
5313 free_imsm(super);
5314 return 0;
5315 }
5316
5317 *freesize = avail_size_imsm(st, ldsize >> 9);
5318 free_imsm(super);
5319
5320 return 1;
5321 }
5322
5323 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5324 {
5325 const unsigned long long base_start = e[*idx].start;
5326 unsigned long long end = base_start + e[*idx].size;
5327 int i;
5328
5329 if (base_start == end)
5330 return 0;
5331
5332 *idx = *idx + 1;
5333 for (i = *idx; i < num_extents; i++) {
5334 /* extend overlapping extents */
5335 if (e[i].start >= base_start &&
5336 e[i].start <= end) {
5337 if (e[i].size == 0)
5338 return 0;
5339 if (e[i].start + e[i].size > end)
5340 end = e[i].start + e[i].size;
5341 } else if (e[i].start > end) {
5342 *idx = i;
5343 break;
5344 }
5345 }
5346
5347 return end - base_start;
5348 }
5349
5350 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5351 {
5352 /* build a composite disk with all known extents and generate a new
5353 * 'maxsize' given the "all disks in an array must share a common start
5354 * offset" constraint
5355 */
5356 struct extent *e = calloc(sum_extents, sizeof(*e));
5357 struct dl *dl;
5358 int i, j;
5359 int start_extent;
5360 unsigned long long pos;
5361 unsigned long long start = 0;
5362 unsigned long long maxsize;
5363 unsigned long reserve;
5364
5365 if (!e)
5366 return 0;
5367
5368 /* coalesce and sort all extents. also, check to see if we need to
5369 * reserve space between member arrays
5370 */
5371 j = 0;
5372 for (dl = super->disks; dl; dl = dl->next) {
5373 if (!dl->e)
5374 continue;
5375 for (i = 0; i < dl->extent_cnt; i++)
5376 e[j++] = dl->e[i];
5377 }
5378 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5379
5380 /* merge extents */
5381 i = 0;
5382 j = 0;
5383 while (i < sum_extents) {
5384 e[j].start = e[i].start;
5385 e[j].size = find_size(e, &i, sum_extents);
5386 j++;
5387 if (e[j-1].size == 0)
5388 break;
5389 }
5390
5391 pos = 0;
5392 maxsize = 0;
5393 start_extent = 0;
5394 i = 0;
5395 do {
5396 unsigned long long esize;
5397
5398 esize = e[i].start - pos;
5399 if (esize >= maxsize) {
5400 maxsize = esize;
5401 start = pos;
5402 start_extent = i;
5403 }
5404 pos = e[i].start + e[i].size;
5405 i++;
5406 } while (e[i-1].size);
5407 free(e);
5408
5409 if (maxsize == 0)
5410 return 0;
5411
5412 /* FIXME assumes volume at offset 0 is the first volume in a
5413 * container
5414 */
5415 if (start_extent > 0)
5416 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5417 else
5418 reserve = 0;
5419
5420 if (maxsize < reserve)
5421 return 0;
5422
5423 super->create_offset = ~((unsigned long long) 0);
5424 if (start + reserve > super->create_offset)
5425 return 0; /* start overflows create_offset */
5426 super->create_offset = start + reserve;
5427
5428 return maxsize - reserve;
5429 }
5430
5431 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5432 {
5433 if (level < 0 || level == 6 || level == 4)
5434 return 0;
5435
5436 /* if we have an orom prevent invalid raid levels */
5437 if (orom)
5438 switch (level) {
5439 case 0: return imsm_orom_has_raid0(orom);
5440 case 1:
5441 if (raiddisks > 2)
5442 return imsm_orom_has_raid1e(orom);
5443 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5444 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5445 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5446 }
5447 else
5448 return 1; /* not on an Intel RAID platform so anything goes */
5449
5450 return 0;
5451 }
5452
5453
5454 static int
5455 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5456 int dpa, int verbose)
5457 {
5458 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5459 struct mdstat_ent *memb = NULL;
5460 int count = 0;
5461 int num = 0;
5462 struct md_list *dv = NULL;
5463 int found;
5464
5465 for (memb = mdstat ; memb ; memb = memb->next) {
5466 if (memb->metadata_version &&
5467 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5468 (strcmp(&memb->metadata_version[9], name) == 0) &&
5469 !is_subarray(memb->metadata_version+9) &&
5470 memb->members) {
5471 struct dev_member *dev = memb->members;
5472 int fd = -1;
5473 while(dev && (fd < 0)) {
5474 char *path = malloc(strlen(dev->name) + strlen("/dev/") + 1);
5475 if (path) {
5476 num = sprintf(path, "%s%s", "/dev/", dev->name);
5477 if (num > 0)
5478 fd = open(path, O_RDONLY, 0);
5479 if ((num <= 0) || (fd < 0)) {
5480 pr_vrb(": Cannot open %s: %s\n",
5481 dev->name, strerror(errno));
5482 }
5483 free(path);
5484 }
5485 dev = dev->next;
5486 }
5487 found = 0;
5488 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5489 struct mdstat_ent *vol;
5490 for (vol = mdstat ; vol ; vol = vol->next) {
5491 if ((vol->active > 0) &&
5492 vol->metadata_version &&
5493 is_container_member(vol, memb->dev)) {
5494 found++;
5495 count++;
5496 }
5497 }
5498 if (*devlist && (found < dpa)) {
5499 dv = calloc(1, sizeof(*dv));
5500 if (dv == NULL)
5501 fprintf(stderr, Name ": calloc failed\n");
5502 else {
5503 dv->devname = malloc(strlen(memb->dev) + strlen("/dev/") + 1);
5504 if (dv->devname != NULL) {
5505 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5506 dv->found = found;
5507 dv->used = 0;
5508 dv->next = *devlist;
5509 *devlist = dv;
5510 } else
5511 free(dv);
5512 }
5513 }
5514 }
5515 if (fd >= 0)
5516 close(fd);
5517 }
5518 }
5519 free_mdstat(mdstat);
5520 return count;
5521 }
5522
5523 #ifdef DEBUG_LOOP
5524 static struct md_list*
5525 get_loop_devices(void)
5526 {
5527 int i;
5528 struct md_list *devlist = NULL;
5529 struct md_list *dv = NULL;
5530
5531 for(i = 0; i < 12; i++) {
5532 dv = calloc(1, sizeof(*dv));
5533 if (dv == NULL) {
5534 fprintf(stderr, Name ": calloc failed\n");
5535 break;
5536 }
5537 dv->devname = malloc(40);
5538 if (dv->devname == NULL) {
5539 fprintf(stderr, Name ": malloc failed\n");
5540 free(dv);
5541 break;
5542 }
5543 sprintf(dv->devname, "/dev/loop%d", i);
5544 dv->next = devlist;
5545 devlist = dv;
5546 }
5547 return devlist;
5548 }
5549 #endif
5550
5551 static struct md_list*
5552 get_devices(const char *hba_path)
5553 {
5554 struct md_list *devlist = NULL;
5555 struct md_list *dv = NULL;
5556 struct dirent *ent;
5557 DIR *dir;
5558 int err = 0;
5559
5560 #if DEBUG_LOOP
5561 devlist = get_loop_devices();
5562 return devlist;
5563 #endif
5564 /* scroll through /sys/dev/block looking for devices attached to
5565 * this hba
5566 */
5567 dir = opendir("/sys/dev/block");
5568 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5569 int fd;
5570 char buf[1024];
5571 int major, minor;
5572 char *path = NULL;
5573 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5574 continue;
5575 path = devt_to_devpath(makedev(major, minor));
5576 if (!path)
5577 continue;
5578 if (!path_attached_to_hba(path, hba_path)) {
5579 free(path);
5580 path = NULL;
5581 continue;
5582 }
5583 free(path);
5584 path = NULL;
5585 fd = dev_open(ent->d_name, O_RDONLY);
5586 if (fd >= 0) {
5587 fd2devname(fd, buf);
5588 close(fd);
5589 } else {
5590 fprintf(stderr, Name ": cannot open device: %s\n",
5591 ent->d_name);
5592 continue;
5593 }
5594
5595
5596 dv = calloc(1, sizeof(*dv));
5597 if (dv == NULL) {
5598 fprintf(stderr, Name ": malloc failed\n");
5599 err = 1;
5600 break;
5601 }
5602 dv->devname = strdup(buf);
5603 if (dv->devname == NULL) {
5604 fprintf(stderr, Name ": malloc failed\n");
5605 err = 1;
5606 free(dv);
5607 break;
5608 }
5609 dv->next = devlist;
5610 devlist = dv;
5611 }
5612 if (err) {
5613 while(devlist) {
5614 dv = devlist;
5615 devlist = devlist->next;
5616 free(dv->devname);
5617 free(dv);
5618 }
5619 }
5620 return devlist;
5621 }
5622
5623 static int
5624 count_volumes_list(struct md_list *devlist, char *homehost,
5625 int verbose, int *found)
5626 {
5627 struct md_list *tmpdev;
5628 int count = 0;
5629 struct supertype *st = NULL;
5630
5631 /* first walk the list of devices to find a consistent set
5632 * that match the criterea, if that is possible.
5633 * We flag the ones we like with 'used'.
5634 */
5635 *found = 0;
5636 st = match_metadata_desc_imsm("imsm");
5637 if (st == NULL) {
5638 pr_vrb(": cannot allocate memory for imsm supertype\n");
5639 return 0;
5640 }
5641
5642 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5643 char *devname = tmpdev->devname;
5644 struct stat stb;
5645 struct supertype *tst;
5646 int dfd;
5647 if (tmpdev->used > 1)
5648 continue;
5649 tst = dup_super(st);
5650 if (tst == NULL) {
5651 pr_vrb(": cannot allocate memory for imsm supertype\n");
5652 goto err_1;
5653 }
5654 tmpdev->container = 0;
5655 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5656 if (dfd < 0) {
5657 dprintf(": cannot open device %s: %s\n",
5658 devname, strerror(errno));
5659 tmpdev->used = 2;
5660 } else if (fstat(dfd, &stb)< 0) {
5661 /* Impossible! */
5662 dprintf(": fstat failed for %s: %s\n",
5663 devname, strerror(errno));
5664 tmpdev->used = 2;
5665 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5666 dprintf(": %s is not a block device.\n",
5667 devname);
5668 tmpdev->used = 2;
5669 } else if (must_be_container(dfd)) {
5670 struct supertype *cst;
5671 cst = super_by_fd(dfd, NULL);
5672 if (cst == NULL) {
5673 dprintf(": cannot recognize container type %s\n",
5674 devname);
5675 tmpdev->used = 2;
5676 } else if (tst->ss != st->ss) {
5677 dprintf(": non-imsm container - ignore it: %s\n",
5678 devname);
5679 tmpdev->used = 2;
5680 } else if (!tst->ss->load_container ||
5681 tst->ss->load_container(tst, dfd, NULL))
5682 tmpdev->used = 2;
5683 else {
5684 tmpdev->container = 1;
5685 }
5686 if (cst)
5687 cst->ss->free_super(cst);
5688 } else {
5689 tmpdev->st_rdev = stb.st_rdev;
5690 if (tst->ss->load_super(tst,dfd, NULL)) {
5691 dprintf(": no RAID superblock on %s\n",
5692 devname);
5693 tmpdev->used = 2;
5694 } else if (tst->ss->compare_super == NULL) {
5695 dprintf(": Cannot assemble %s metadata on %s\n",
5696 tst->ss->name, devname);
5697 tmpdev->used = 2;
5698 }
5699 }
5700 if (dfd >= 0)
5701 close(dfd);
5702 if (tmpdev->used == 2 || tmpdev->used == 4) {
5703 /* Ignore unrecognised devices during auto-assembly */
5704 goto loop;
5705 }
5706 else {
5707 struct mdinfo info;
5708 tst->ss->getinfo_super(tst, &info, NULL);
5709
5710 if (st->minor_version == -1)
5711 st->minor_version = tst->minor_version;
5712
5713 if (memcmp(info.uuid, uuid_zero,
5714 sizeof(int[4])) == 0) {
5715 /* this is a floating spare. It cannot define
5716 * an array unless there are no more arrays of
5717 * this type to be found. It can be included
5718 * in an array of this type though.
5719 */
5720 tmpdev->used = 3;
5721 goto loop;
5722 }
5723
5724 if (st->ss != tst->ss ||
5725 st->minor_version != tst->minor_version ||
5726 st->ss->compare_super(st, tst) != 0) {
5727 /* Some mismatch. If exactly one array matches this host,
5728 * we can resolve on that one.
5729 * Or, if we are auto assembling, we just ignore the second
5730 * for now.
5731 */
5732 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5733 devname);
5734 goto loop;
5735 }
5736 tmpdev->used = 1;
5737 *found = 1;
5738 dprintf("found: devname: %s\n", devname);
5739 }
5740 loop:
5741 if (tst)
5742 tst->ss->free_super(tst);
5743 }
5744 if (*found != 0) {
5745 int err;
5746 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5747 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5748 for (iter = head; iter; iter = iter->next) {
5749 dprintf("content->text_version: %s vol\n",
5750 iter->text_version);
5751 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5752 /* do not assemble arrays with unsupported
5753 configurations */
5754 dprintf(": Cannot activate member %s.\n",
5755 iter->text_version);
5756 } else
5757 count++;
5758 }
5759 sysfs_free(head);
5760
5761 } else {
5762 dprintf(" no valid super block on device list: err: %d %p\n",
5763 err, st->sb);
5764 }
5765 } else {
5766 dprintf(" no more devices to examin\n");
5767 }
5768
5769 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5770 if ((tmpdev->used == 1) && (tmpdev->found)) {
5771 if (count) {
5772 if (count < tmpdev->found)
5773 count = 0;
5774 else
5775 count -= tmpdev->found;
5776 }
5777 }
5778 if (tmpdev->used == 1)
5779 tmpdev->used = 4;
5780 }
5781 err_1:
5782 if (st)
5783 st->ss->free_super(st);
5784 return count;
5785 }
5786
5787
5788 static int
5789 count_volumes(char *hba, int dpa, int verbose)
5790 {
5791 struct md_list *devlist = NULL;
5792 int count = 0;
5793 int found = 0;;
5794
5795 devlist = get_devices(hba);
5796 /* if no intel devices return zero volumes */
5797 if (devlist == NULL)
5798 return 0;
5799
5800 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5801 dprintf(" path: %s active arrays: %d\n", hba, count);
5802 if (devlist == NULL)
5803 return 0;
5804 do {
5805 found = 0;
5806 count += count_volumes_list(devlist,
5807 NULL,
5808 verbose,
5809 &found);
5810 dprintf("found %d count: %d\n", found, count);
5811 } while (found);
5812
5813 dprintf("path: %s total number of volumes: %d\n", hba, count);
5814
5815 while(devlist) {
5816 struct md_list *dv = devlist;
5817 devlist = devlist->next;
5818 free(dv->devname);
5819 free(dv);
5820 }
5821 return count;
5822 }
5823
5824 static int imsm_default_chunk(const struct imsm_orom *orom)
5825 {
5826 /* up to 512 if the plaform supports it, otherwise the platform max.
5827 * 128 if no platform detected
5828 */
5829 int fs = max(7, orom ? fls(orom->sss) : 0);
5830
5831 return min(512, (1 << fs));
5832 }
5833
5834 static int
5835 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5836 int raiddisks, int *chunk, int verbose)
5837 {
5838 /* check/set platform and metadata limits/defaults */
5839 if (super->orom && raiddisks > super->orom->dpa) {
5840 pr_vrb(": platform supports a maximum of %d disks per array\n",
5841 super->orom->dpa);
5842 return 0;
5843 }
5844
5845 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5846 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5847 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5848 level, raiddisks, raiddisks > 1 ? "s" : "");
5849 return 0;
5850 }
5851
5852 if (chunk && (*chunk == 0 || *chunk == UnSet))
5853 *chunk = imsm_default_chunk(super->orom);
5854
5855 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5856 pr_vrb(": platform does not support a chunk size of: "
5857 "%d\n", *chunk);
5858 return 0;
5859 }
5860
5861 if (layout != imsm_level_to_layout(level)) {
5862 if (level == 5)
5863 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5864 else if (level == 10)
5865 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5866 else
5867 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5868 layout, level);
5869 return 0;
5870 }
5871 return 1;
5872 }
5873
5874 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5875 * FIX ME add ahci details
5876 */
5877 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5878 int layout, int raiddisks, int *chunk,
5879 unsigned long long size, char *dev,
5880 unsigned long long *freesize,
5881 int verbose)
5882 {
5883 struct stat stb;
5884 struct intel_super *super = st->sb;
5885 struct imsm_super *mpb;
5886 struct dl *dl;
5887 unsigned long long pos = 0;
5888 unsigned long long maxsize;
5889 struct extent *e;
5890 int i;
5891
5892 /* We must have the container info already read in. */
5893 if (!super)
5894 return 0;
5895
5896 mpb = super->anchor;
5897
5898 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5899 fprintf(stderr, Name ": RAID gemetry validation failed. "
5900 "Cannot proceed with the action(s).\n");
5901 return 0;
5902 }
5903 if (!dev) {
5904 /* General test: make sure there is space for
5905 * 'raiddisks' device extents of size 'size' at a given
5906 * offset
5907 */
5908 unsigned long long minsize = size;
5909 unsigned long long start_offset = MaxSector;
5910 int dcnt = 0;
5911 if (minsize == 0)
5912 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5913 for (dl = super->disks; dl ; dl = dl->next) {
5914 int found = 0;
5915
5916 pos = 0;
5917 i = 0;
5918 e = get_extents(super, dl);
5919 if (!e) continue;
5920 do {
5921 unsigned long long esize;
5922 esize = e[i].start - pos;
5923 if (esize >= minsize)
5924 found = 1;
5925 if (found && start_offset == MaxSector) {
5926 start_offset = pos;
5927 break;
5928 } else if (found && pos != start_offset) {
5929 found = 0;
5930 break;
5931 }
5932 pos = e[i].start + e[i].size;
5933 i++;
5934 } while (e[i-1].size);
5935 if (found)
5936 dcnt++;
5937 free(e);
5938 }
5939 if (dcnt < raiddisks) {
5940 if (verbose)
5941 fprintf(stderr, Name ": imsm: Not enough "
5942 "devices with space for this array "
5943 "(%d < %d)\n",
5944 dcnt, raiddisks);
5945 return 0;
5946 }
5947 return 1;
5948 }
5949
5950 /* This device must be a member of the set */
5951 if (stat(dev, &stb) < 0)
5952 return 0;
5953 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5954 return 0;
5955 for (dl = super->disks ; dl ; dl = dl->next) {
5956 if (dl->major == (int)major(stb.st_rdev) &&
5957 dl->minor == (int)minor(stb.st_rdev))
5958 break;
5959 }
5960 if (!dl) {
5961 if (verbose)
5962 fprintf(stderr, Name ": %s is not in the "
5963 "same imsm set\n", dev);
5964 return 0;
5965 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5966 /* If a volume is present then the current creation attempt
5967 * cannot incorporate new spares because the orom may not
5968 * understand this configuration (all member disks must be
5969 * members of each array in the container).
5970 */
5971 fprintf(stderr, Name ": %s is a spare and a volume"
5972 " is already defined for this container\n", dev);
5973 fprintf(stderr, Name ": The option-rom requires all member"
5974 " disks to be a member of all volumes\n");
5975 return 0;
5976 } else if (super->orom && mpb->num_raid_devs > 0 &&
5977 mpb->num_disks != raiddisks) {
5978 fprintf(stderr, Name ": The option-rom requires all member"
5979 " disks to be a member of all volumes\n");
5980 return 0;
5981 }
5982
5983 /* retrieve the largest free space block */
5984 e = get_extents(super, dl);
5985 maxsize = 0;
5986 i = 0;
5987 if (e) {
5988 do {
5989 unsigned long long esize;
5990
5991 esize = e[i].start - pos;
5992 if (esize >= maxsize)
5993 maxsize = esize;
5994 pos = e[i].start + e[i].size;
5995 i++;
5996 } while (e[i-1].size);
5997 dl->e = e;
5998 dl->extent_cnt = i;
5999 } else {
6000 if (verbose)
6001 fprintf(stderr, Name ": unable to determine free space for: %s\n",
6002 dev);
6003 return 0;
6004 }
6005 if (maxsize < size) {
6006 if (verbose)
6007 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
6008 dev, maxsize, size);
6009 return 0;
6010 }
6011
6012 /* count total number of extents for merge */
6013 i = 0;
6014 for (dl = super->disks; dl; dl = dl->next)
6015 if (dl->e)
6016 i += dl->extent_cnt;
6017
6018 maxsize = merge_extents(super, i);
6019
6020 if (!check_env("IMSM_NO_PLATFORM") &&
6021 mpb->num_raid_devs > 0 && size && size != maxsize) {
6022 fprintf(stderr, Name ": attempting to create a second "
6023 "volume with size less then remaining space. "
6024 "Aborting...\n");
6025 return 0;
6026 }
6027
6028 if (maxsize < size || maxsize == 0) {
6029 if (verbose) {
6030 if (maxsize == 0)
6031 fprintf(stderr, Name ": no free space"
6032 " left on device. Aborting...\n");
6033 else
6034 fprintf(stderr, Name ": not enough space"
6035 " to create volume of given size"
6036 " (%llu < %llu). Aborting...\n",
6037 maxsize, size);
6038 }
6039 return 0;
6040 }
6041
6042 *freesize = maxsize;
6043
6044 if (super->orom) {
6045 int count = count_volumes(super->hba->path,
6046 super->orom->dpa, verbose);
6047 if (super->orom->vphba <= count) {
6048 pr_vrb(": platform does not support more then %d raid volumes.\n",
6049 super->orom->vphba);
6050 return 0;
6051 }
6052 }
6053 return 1;
6054 }
6055
6056 static int reserve_space(struct supertype *st, int raiddisks,
6057 unsigned long long size, int chunk,
6058 unsigned long long *freesize)
6059 {
6060 struct intel_super *super = st->sb;
6061 struct imsm_super *mpb = super->anchor;
6062 struct dl *dl;
6063 int i;
6064 int extent_cnt;
6065 struct extent *e;
6066 unsigned long long maxsize;
6067 unsigned long long minsize;
6068 int cnt;
6069 int used;
6070
6071 /* find the largest common start free region of the possible disks */
6072 used = 0;
6073 extent_cnt = 0;
6074 cnt = 0;
6075 for (dl = super->disks; dl; dl = dl->next) {
6076 dl->raiddisk = -1;
6077
6078 if (dl->index >= 0)
6079 used++;
6080
6081 /* don't activate new spares if we are orom constrained
6082 * and there is already a volume active in the container
6083 */
6084 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6085 continue;
6086
6087 e = get_extents(super, dl);
6088 if (!e)
6089 continue;
6090 for (i = 1; e[i-1].size; i++)
6091 ;
6092 dl->e = e;
6093 dl->extent_cnt = i;
6094 extent_cnt += i;
6095 cnt++;
6096 }
6097
6098 maxsize = merge_extents(super, extent_cnt);
6099 minsize = size;
6100 if (size == 0)
6101 /* chunk is in K */
6102 minsize = chunk * 2;
6103
6104 if (cnt < raiddisks ||
6105 (super->orom && used && used != raiddisks) ||
6106 maxsize < minsize ||
6107 maxsize == 0) {
6108 fprintf(stderr, Name ": not enough devices with space to create array.\n");
6109 return 0; /* No enough free spaces large enough */
6110 }
6111
6112 if (size == 0) {
6113 size = maxsize;
6114 if (chunk) {
6115 size /= 2 * chunk;
6116 size *= 2 * chunk;
6117 }
6118 maxsize = size;
6119 }
6120 if (!check_env("IMSM_NO_PLATFORM") &&
6121 mpb->num_raid_devs > 0 && size && size != maxsize) {
6122 fprintf(stderr, Name ": attempting to create a second "
6123 "volume with size less then remaining space. "
6124 "Aborting...\n");
6125 return 0;
6126 }
6127 cnt = 0;
6128 for (dl = super->disks; dl; dl = dl->next)
6129 if (dl->e)
6130 dl->raiddisk = cnt++;
6131
6132 *freesize = size;
6133
6134 return 1;
6135 }
6136
6137 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6138 int raiddisks, int *chunk, unsigned long long size,
6139 char *dev, unsigned long long *freesize,
6140 int verbose)
6141 {
6142 int fd, cfd;
6143 struct mdinfo *sra;
6144 int is_member = 0;
6145
6146 /* load capability
6147 * if given unused devices create a container
6148 * if given given devices in a container create a member volume
6149 */
6150 if (level == LEVEL_CONTAINER) {
6151 /* Must be a fresh device to add to a container */
6152 return validate_geometry_imsm_container(st, level, layout,
6153 raiddisks,
6154 chunk?*chunk:0, size,
6155 dev, freesize,
6156 verbose);
6157 }
6158
6159 if (!dev) {
6160 if (st->sb) {
6161 struct intel_super *super = st->sb;
6162 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6163 raiddisks, chunk,
6164 verbose))
6165 return 0;
6166 /* we are being asked to automatically layout a
6167 * new volume based on the current contents of
6168 * the container. If the the parameters can be
6169 * satisfied reserve_space will record the disks,
6170 * start offset, and size of the volume to be
6171 * created. add_to_super and getinfo_super
6172 * detect when autolayout is in progress.
6173 */
6174 /* assuming that freesize is always given when array is
6175 created */
6176 if (super->orom && freesize) {
6177 int count;
6178 count = count_volumes(super->hba->path,
6179 super->orom->dpa, verbose);
6180 if (super->orom->vphba <= count) {
6181 pr_vrb(": platform does not support more"
6182 "then %d raid volumes.\n",
6183 super->orom->vphba);
6184 return 0;
6185 }
6186 }
6187 if (freesize)
6188 return reserve_space(st, raiddisks, size,
6189 chunk?*chunk:0, freesize);
6190 }
6191 return 1;
6192 }
6193 if (st->sb) {
6194 /* creating in a given container */
6195 return validate_geometry_imsm_volume(st, level, layout,
6196 raiddisks, chunk, size,
6197 dev, freesize, verbose);
6198 }
6199
6200 /* This device needs to be a device in an 'imsm' container */
6201 fd = open(dev, O_RDONLY|O_EXCL, 0);
6202 if (fd >= 0) {
6203 if (verbose)
6204 fprintf(stderr,
6205 Name ": Cannot create this array on device %s\n",
6206 dev);
6207 close(fd);
6208 return 0;
6209 }
6210 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6211 if (verbose)
6212 fprintf(stderr, Name ": Cannot open %s: %s\n",
6213 dev, strerror(errno));
6214 return 0;
6215 }
6216 /* Well, it is in use by someone, maybe an 'imsm' container. */
6217 cfd = open_container(fd);
6218 close(fd);
6219 if (cfd < 0) {
6220 if (verbose)
6221 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
6222 dev);
6223 return 0;
6224 }
6225 sra = sysfs_read(cfd, 0, GET_VERSION);
6226 if (sra && sra->array.major_version == -1 &&
6227 strcmp(sra->text_version, "imsm") == 0)
6228 is_member = 1;
6229 sysfs_free(sra);
6230 if (is_member) {
6231 /* This is a member of a imsm container. Load the container
6232 * and try to create a volume
6233 */
6234 struct intel_super *super;
6235
6236 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6237 st->sb = super;
6238 st->container_dev = fd2devnum(cfd);
6239 close(cfd);
6240 return validate_geometry_imsm_volume(st, level, layout,
6241 raiddisks, chunk,
6242 size, dev,
6243 freesize, 1)
6244 ? 1 : -1;
6245 }
6246 }
6247
6248 if (verbose)
6249 fprintf(stderr, Name ": failed container membership check\n");
6250
6251 close(cfd);
6252 return 0;
6253 }
6254
6255 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6256 {
6257 struct intel_super *super = st->sb;
6258
6259 if (level && *level == UnSet)
6260 *level = LEVEL_CONTAINER;
6261
6262 if (level && layout && *layout == UnSet)
6263 *layout = imsm_level_to_layout(*level);
6264
6265 if (chunk && (*chunk == UnSet || *chunk == 0))
6266 *chunk = imsm_default_chunk(super->orom);
6267 }
6268
6269 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6270
6271 static int kill_subarray_imsm(struct supertype *st)
6272 {
6273 /* remove the subarray currently referenced by ->current_vol */
6274 __u8 i;
6275 struct intel_dev **dp;
6276 struct intel_super *super = st->sb;
6277 __u8 current_vol = super->current_vol;
6278 struct imsm_super *mpb = super->anchor;
6279
6280 if (super->current_vol < 0)
6281 return 2;
6282 super->current_vol = -1; /* invalidate subarray cursor */
6283
6284 /* block deletions that would change the uuid of active subarrays
6285 *
6286 * FIXME when immutable ids are available, but note that we'll
6287 * also need to fixup the invalidated/active subarray indexes in
6288 * mdstat
6289 */
6290 for (i = 0; i < mpb->num_raid_devs; i++) {
6291 char subarray[4];
6292
6293 if (i < current_vol)
6294 continue;
6295 sprintf(subarray, "%u", i);
6296 if (is_subarray_active(subarray, st->devname)) {
6297 fprintf(stderr,
6298 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6299 current_vol, i);
6300
6301 return 2;
6302 }
6303 }
6304
6305 if (st->update_tail) {
6306 struct imsm_update_kill_array *u = malloc(sizeof(*u));
6307
6308 if (!u)
6309 return 2;
6310 u->type = update_kill_array;
6311 u->dev_idx = current_vol;
6312 append_metadata_update(st, u, sizeof(*u));
6313
6314 return 0;
6315 }
6316
6317 for (dp = &super->devlist; *dp;)
6318 if ((*dp)->index == current_vol) {
6319 *dp = (*dp)->next;
6320 } else {
6321 handle_missing(super, (*dp)->dev);
6322 if ((*dp)->index > current_vol)
6323 (*dp)->index--;
6324 dp = &(*dp)->next;
6325 }
6326
6327 /* no more raid devices, all active components are now spares,
6328 * but of course failed are still failed
6329 */
6330 if (--mpb->num_raid_devs == 0) {
6331 struct dl *d;
6332
6333 for (d = super->disks; d; d = d->next)
6334 if (d->index > -2)
6335 mark_spare(d);
6336 }
6337
6338 super->updates_pending++;
6339
6340 return 0;
6341 }
6342
6343 static int update_subarray_imsm(struct supertype *st, char *subarray,
6344 char *update, struct mddev_ident *ident)
6345 {
6346 /* update the subarray currently referenced by ->current_vol */
6347 struct intel_super *super = st->sb;
6348 struct imsm_super *mpb = super->anchor;
6349
6350 if (strcmp(update, "name") == 0) {
6351 char *name = ident->name;
6352 char *ep;
6353 int vol;
6354
6355 if (is_subarray_active(subarray, st->devname)) {
6356 fprintf(stderr,
6357 Name ": Unable to update name of active subarray\n");
6358 return 2;
6359 }
6360
6361 if (!check_name(super, name, 0))
6362 return 2;
6363
6364 vol = strtoul(subarray, &ep, 10);
6365 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6366 return 2;
6367
6368 if (st->update_tail) {
6369 struct imsm_update_rename_array *u = malloc(sizeof(*u));
6370
6371 if (!u)
6372 return 2;
6373 u->type = update_rename_array;
6374 u->dev_idx = vol;
6375 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6376 append_metadata_update(st, u, sizeof(*u));
6377 } else {
6378 struct imsm_dev *dev;
6379 int i;
6380
6381 dev = get_imsm_dev(super, vol);
6382 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6383 for (i = 0; i < mpb->num_raid_devs; i++) {
6384 dev = get_imsm_dev(super, i);
6385 handle_missing(super, dev);
6386 }
6387 super->updates_pending++;
6388 }
6389 } else
6390 return 2;
6391
6392 return 0;
6393 }
6394 #endif /* MDASSEMBLE */
6395
6396 static int is_gen_migration(struct imsm_dev *dev)
6397 {
6398 if (dev == NULL)
6399 return 0;
6400
6401 if (!dev->vol.migr_state)
6402 return 0;
6403
6404 if (migr_type(dev) == MIGR_GEN_MIGR)
6405 return 1;
6406
6407 return 0;
6408 }
6409
6410 static int is_rebuilding(struct imsm_dev *dev)
6411 {
6412 struct imsm_map *migr_map;
6413
6414 if (!dev->vol.migr_state)
6415 return 0;
6416
6417 if (migr_type(dev) != MIGR_REBUILD)
6418 return 0;
6419
6420 migr_map = get_imsm_map(dev, MAP_1);
6421
6422 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6423 return 1;
6424 else
6425 return 0;
6426 }
6427
6428 #ifndef MDASSEMBLE
6429 static int is_initializing(struct imsm_dev *dev)
6430 {
6431 struct imsm_map *migr_map;
6432
6433 if (!dev->vol.migr_state)
6434 return 0;
6435
6436 if (migr_type(dev) != MIGR_INIT)
6437 return 0;
6438
6439 migr_map = get_imsm_map(dev, MAP_1);
6440
6441 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6442 return 1;
6443
6444 return 0;
6445 }
6446 #endif
6447
6448 static void update_recovery_start(struct intel_super *super,
6449 struct imsm_dev *dev,
6450 struct mdinfo *array)
6451 {
6452 struct mdinfo *rebuild = NULL;
6453 struct mdinfo *d;
6454 __u32 units;
6455
6456 if (!is_rebuilding(dev))
6457 return;
6458
6459 /* Find the rebuild target, but punt on the dual rebuild case */
6460 for (d = array->devs; d; d = d->next)
6461 if (d->recovery_start == 0) {
6462 if (rebuild)
6463 return;
6464 rebuild = d;
6465 }
6466
6467 if (!rebuild) {
6468 /* (?) none of the disks are marked with
6469 * IMSM_ORD_REBUILD, so assume they are missing and the
6470 * disk_ord_tbl was not correctly updated
6471 */
6472 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6473 return;
6474 }
6475
6476 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6477 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6478 }
6479
6480 #ifndef MDASSEMBLE
6481 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6482 #endif
6483
6484 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6485 {
6486 /* Given a container loaded by load_super_imsm_all,
6487 * extract information about all the arrays into
6488 * an mdinfo tree.
6489 * If 'subarray' is given, just extract info about that array.
6490 *
6491 * For each imsm_dev create an mdinfo, fill it in,
6492 * then look for matching devices in super->disks
6493 * and create appropriate device mdinfo.
6494 */
6495 struct intel_super *super = st->sb;
6496 struct imsm_super *mpb = super->anchor;
6497 struct mdinfo *rest = NULL;
6498 unsigned int i;
6499 int sb_errors = 0;
6500 struct dl *d;
6501 int spare_disks = 0;
6502
6503 /* do not assemble arrays when not all attributes are supported */
6504 if (imsm_check_attributes(mpb->attributes) == 0) {
6505 sb_errors = 1;
6506 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
6507 "Arrays activation is blocked.\n");
6508 }
6509
6510 /* check for bad blocks */
6511 if (imsm_bbm_log_size(super->anchor)) {
6512 fprintf(stderr, Name ": BBM log found in IMSM metadata."
6513 "Arrays activation is blocked.\n");
6514 sb_errors = 1;
6515 }
6516
6517
6518 /* count spare devices, not used in maps
6519 */
6520 for (d = super->disks; d; d = d->next)
6521 if (d->index == -1)
6522 spare_disks++;
6523
6524 for (i = 0; i < mpb->num_raid_devs; i++) {
6525 struct imsm_dev *dev;
6526 struct imsm_map *map;
6527 struct imsm_map *map2;
6528 struct mdinfo *this;
6529 int slot;
6530 #ifndef MDASSEMBLE
6531 int chunk;
6532 #endif
6533 char *ep;
6534
6535 if (subarray &&
6536 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6537 continue;
6538
6539 dev = get_imsm_dev(super, i);
6540 map = get_imsm_map(dev, MAP_0);
6541 map2 = get_imsm_map(dev, MAP_1);
6542
6543 /* do not publish arrays that are in the middle of an
6544 * unsupported migration
6545 */
6546 if (dev->vol.migr_state &&
6547 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6548 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
6549 " unsupported migration in progress\n",
6550 dev->volume);
6551 continue;
6552 }
6553 /* do not publish arrays that are not support by controller's
6554 * OROM/EFI
6555 */
6556
6557 this = malloc(sizeof(*this));
6558 if (!this) {
6559 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
6560 sizeof(*this));
6561 break;
6562 }
6563
6564 super->current_vol = i;
6565 getinfo_super_imsm_volume(st, this, NULL);
6566 this->next = rest;
6567 #ifndef MDASSEMBLE
6568 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6569 /* mdadm does not support all metadata features- set the bit in all arrays state */
6570 if (!validate_geometry_imsm_orom(super,
6571 get_imsm_raid_level(map), /* RAID level */
6572 imsm_level_to_layout(get_imsm_raid_level(map)),
6573 map->num_members, /* raid disks */
6574 &chunk,
6575 1 /* verbose */)) {
6576 fprintf(stderr, Name ": IMSM RAID geometry validation"
6577 " failed. Array %s activation is blocked.\n",
6578 dev->volume);
6579 this->array.state |=
6580 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6581 (1<<MD_SB_BLOCK_VOLUME);
6582 }
6583 #endif
6584
6585 /* if array has bad blocks, set suitable bit in all arrays state */
6586 if (sb_errors)
6587 this->array.state |=
6588 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6589 (1<<MD_SB_BLOCK_VOLUME);
6590
6591 for (slot = 0 ; slot < map->num_members; slot++) {
6592 unsigned long long recovery_start;
6593 struct mdinfo *info_d;
6594 struct dl *d;
6595 int idx;
6596 int skip;
6597 __u32 ord;
6598
6599 skip = 0;
6600 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6601 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6602 for (d = super->disks; d ; d = d->next)
6603 if (d->index == idx)
6604 break;
6605
6606 recovery_start = MaxSector;
6607 if (d == NULL)
6608 skip = 1;
6609 if (d && is_failed(&d->disk))
6610 skip = 1;
6611 if (ord & IMSM_ORD_REBUILD)
6612 recovery_start = 0;
6613
6614 /*
6615 * if we skip some disks the array will be assmebled degraded;
6616 * reset resync start to avoid a dirty-degraded
6617 * situation when performing the intial sync
6618 *
6619 * FIXME handle dirty degraded
6620 */
6621 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6622 this->resync_start = MaxSector;
6623 if (skip)
6624 continue;
6625
6626 info_d = calloc(1, sizeof(*info_d));
6627 if (!info_d) {
6628 fprintf(stderr, Name ": failed to allocate disk"
6629 " for volume %.16s\n", dev->volume);
6630 info_d = this->devs;
6631 while (info_d) {
6632 struct mdinfo *d = info_d->next;
6633
6634 free(info_d);
6635 info_d = d;
6636 }
6637 free(this);
6638 this = rest;
6639 break;
6640 }
6641 info_d->next = this->devs;
6642 this->devs = info_d;
6643
6644 info_d->disk.number = d->index;
6645 info_d->disk.major = d->major;
6646 info_d->disk.minor = d->minor;
6647 info_d->disk.raid_disk = slot;
6648 info_d->recovery_start = recovery_start;
6649 if (map2) {
6650 if (slot < map2->num_members)
6651 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6652 else
6653 this->array.spare_disks++;
6654 } else {
6655 if (slot < map->num_members)
6656 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6657 else
6658 this->array.spare_disks++;
6659 }
6660 if (info_d->recovery_start == MaxSector)
6661 this->array.working_disks++;
6662
6663 info_d->events = __le32_to_cpu(mpb->generation_num);
6664 info_d->data_offset = pba_of_lba0(map);
6665 info_d->component_size = blocks_per_member(map);
6666 }
6667 /* now that the disk list is up-to-date fixup recovery_start */
6668 update_recovery_start(super, dev, this);
6669 this->array.spare_disks += spare_disks;
6670
6671 #ifndef MDASSEMBLE
6672 /* check for reshape */
6673 if (this->reshape_active == 1)
6674 recover_backup_imsm(st, this);
6675 #endif
6676 rest = this;
6677 }
6678
6679 return rest;
6680 }
6681
6682
6683 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6684 int failed, int look_in_map)
6685 {
6686 struct imsm_map *map;
6687
6688 map = get_imsm_map(dev, look_in_map);
6689
6690 if (!failed)
6691 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6692 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6693
6694 switch (get_imsm_raid_level(map)) {
6695 case 0:
6696 return IMSM_T_STATE_FAILED;
6697 break;
6698 case 1:
6699 if (failed < map->num_members)
6700 return IMSM_T_STATE_DEGRADED;
6701 else
6702 return IMSM_T_STATE_FAILED;
6703 break;
6704 case 10:
6705 {
6706 /**
6707 * check to see if any mirrors have failed, otherwise we
6708 * are degraded. Even numbered slots are mirrored on
6709 * slot+1
6710 */
6711 int i;
6712 /* gcc -Os complains that this is unused */
6713 int insync = insync;
6714
6715 for (i = 0; i < map->num_members; i++) {
6716 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6717 int idx = ord_to_idx(ord);
6718 struct imsm_disk *disk;
6719
6720 /* reset the potential in-sync count on even-numbered
6721 * slots. num_copies is always 2 for imsm raid10
6722 */
6723 if ((i & 1) == 0)
6724 insync = 2;
6725
6726 disk = get_imsm_disk(super, idx);
6727 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6728 insync--;
6729
6730 /* no in-sync disks left in this mirror the
6731 * array has failed
6732 */
6733 if (insync == 0)
6734 return IMSM_T_STATE_FAILED;
6735 }
6736
6737 return IMSM_T_STATE_DEGRADED;
6738 }
6739 case 5:
6740 if (failed < 2)
6741 return IMSM_T_STATE_DEGRADED;
6742 else
6743 return IMSM_T_STATE_FAILED;
6744 break;
6745 default:
6746 break;
6747 }
6748
6749 return map->map_state;
6750 }
6751
6752 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6753 int look_in_map)
6754 {
6755 int i;
6756 int failed = 0;
6757 struct imsm_disk *disk;
6758 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6759 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6760 struct imsm_map *map_for_loop;
6761 __u32 ord;
6762 int idx;
6763 int idx_1;
6764
6765 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6766 * disks that are being rebuilt. New failures are recorded to
6767 * map[0]. So we look through all the disks we started with and
6768 * see if any failures are still present, or if any new ones
6769 * have arrived
6770 */
6771 map_for_loop = map;
6772 if (prev && (map->num_members < prev->num_members))
6773 map_for_loop = prev;
6774
6775 for (i = 0; i < map_for_loop->num_members; i++) {
6776 idx_1 = -255;
6777 /* when MAP_X is passed both maps failures are counted
6778 */
6779 if (prev &&
6780 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6781 (i < prev->num_members)) {
6782 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6783 idx_1 = ord_to_idx(ord);
6784
6785 disk = get_imsm_disk(super, idx_1);
6786 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6787 failed++;
6788 }
6789 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6790 (i < map->num_members)) {
6791 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6792 idx = ord_to_idx(ord);
6793
6794 if (idx != idx_1) {
6795 disk = get_imsm_disk(super, idx);
6796 if (!disk || is_failed(disk) ||
6797 ord & IMSM_ORD_REBUILD)
6798 failed++;
6799 }
6800 }
6801 }
6802
6803 return failed;
6804 }
6805
6806 #ifndef MDASSEMBLE
6807 static int imsm_open_new(struct supertype *c, struct active_array *a,
6808 char *inst)
6809 {
6810 struct intel_super *super = c->sb;
6811 struct imsm_super *mpb = super->anchor;
6812
6813 if (atoi(inst) >= mpb->num_raid_devs) {
6814 fprintf(stderr, "%s: subarry index %d, out of range\n",
6815 __func__, atoi(inst));
6816 return -ENODEV;
6817 }
6818
6819 dprintf("imsm: open_new %s\n", inst);
6820 a->info.container_member = atoi(inst);
6821 return 0;
6822 }
6823
6824 static int is_resyncing(struct imsm_dev *dev)
6825 {
6826 struct imsm_map *migr_map;
6827
6828 if (!dev->vol.migr_state)
6829 return 0;
6830
6831 if (migr_type(dev) == MIGR_INIT ||
6832 migr_type(dev) == MIGR_REPAIR)
6833 return 1;
6834
6835 if (migr_type(dev) == MIGR_GEN_MIGR)
6836 return 0;
6837
6838 migr_map = get_imsm_map(dev, MAP_1);
6839
6840 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6841 (dev->vol.migr_type != MIGR_GEN_MIGR))
6842 return 1;
6843 else
6844 return 0;
6845 }
6846
6847 /* return true if we recorded new information */
6848 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6849 {
6850 __u32 ord;
6851 int slot;
6852 struct imsm_map *map;
6853 char buf[MAX_RAID_SERIAL_LEN+3];
6854 unsigned int len, shift = 0;
6855
6856 /* new failures are always set in map[0] */
6857 map = get_imsm_map(dev, MAP_0);
6858
6859 slot = get_imsm_disk_slot(map, idx);
6860 if (slot < 0)
6861 return 0;
6862
6863 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6864 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6865 return 0;
6866
6867 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6868 buf[MAX_RAID_SERIAL_LEN] = '\000';
6869 strcat(buf, ":0");
6870 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6871 shift = len - MAX_RAID_SERIAL_LEN + 1;
6872 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6873
6874 disk->status |= FAILED_DISK;
6875 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6876 /* mark failures in second map if second map exists and this disk
6877 * in this slot.
6878 * This is valid for migration, initialization and rebuild
6879 */
6880 if (dev->vol.migr_state) {
6881 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6882 int slot2 = get_imsm_disk_slot(map2, idx);
6883
6884 if ((slot2 < map2->num_members) &&
6885 (slot2 >= 0))
6886 set_imsm_ord_tbl_ent(map2, slot2,
6887 idx | IMSM_ORD_REBUILD);
6888 }
6889 if (map->failed_disk_num == 0xff)
6890 map->failed_disk_num = slot;
6891 return 1;
6892 }
6893
6894 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6895 {
6896 mark_failure(dev, disk, idx);
6897
6898 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6899 return;
6900
6901 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6902 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6903 }
6904
6905 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6906 {
6907 struct dl *dl;
6908
6909 if (!super->missing)
6910 return;
6911
6912 dprintf("imsm: mark missing\n");
6913 /* end process for initialization and rebuild only
6914 */
6915 if (is_gen_migration(dev) == 0) {
6916 __u8 map_state;
6917 int failed;
6918
6919 failed = imsm_count_failed(super, dev, MAP_0);
6920 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6921
6922 end_migration(dev, super, map_state);
6923 }
6924 for (dl = super->missing; dl; dl = dl->next)
6925 mark_missing(dev, &dl->disk, dl->index);
6926 super->updates_pending++;
6927 }
6928
6929 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6930 {
6931 int used_disks = imsm_num_data_members(dev, MAP_0);
6932 unsigned long long array_blocks;
6933 struct imsm_map *map;
6934
6935 if (used_disks == 0) {
6936 /* when problems occures
6937 * return current array_blocks value
6938 */
6939 array_blocks = __le32_to_cpu(dev->size_high);
6940 array_blocks = array_blocks << 32;
6941 array_blocks += __le32_to_cpu(dev->size_low);
6942
6943 return array_blocks;
6944 }
6945
6946 /* set array size in metadata
6947 */
6948 map = get_imsm_map(dev, MAP_0);
6949 array_blocks = blocks_per_member(map) * used_disks;
6950
6951 /* round array size down to closest MB
6952 */
6953 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6954 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6955 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6956
6957 return array_blocks;
6958 }
6959
6960 static void imsm_set_disk(struct active_array *a, int n, int state);
6961
6962 static void imsm_progress_container_reshape(struct intel_super *super)
6963 {
6964 /* if no device has a migr_state, but some device has a
6965 * different number of members than the previous device, start
6966 * changing the number of devices in this device to match
6967 * previous.
6968 */
6969 struct imsm_super *mpb = super->anchor;
6970 int prev_disks = -1;
6971 int i;
6972 int copy_map_size;
6973
6974 for (i = 0; i < mpb->num_raid_devs; i++) {
6975 struct imsm_dev *dev = get_imsm_dev(super, i);
6976 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6977 struct imsm_map *map2;
6978 int prev_num_members;
6979
6980 if (dev->vol.migr_state)
6981 return;
6982
6983 if (prev_disks == -1)
6984 prev_disks = map->num_members;
6985 if (prev_disks == map->num_members)
6986 continue;
6987
6988 /* OK, this array needs to enter reshape mode.
6989 * i.e it needs a migr_state
6990 */
6991
6992 copy_map_size = sizeof_imsm_map(map);
6993 prev_num_members = map->num_members;
6994 map->num_members = prev_disks;
6995 dev->vol.migr_state = 1;
6996 dev->vol.curr_migr_unit = 0;
6997 set_migr_type(dev, MIGR_GEN_MIGR);
6998 for (i = prev_num_members;
6999 i < map->num_members; i++)
7000 set_imsm_ord_tbl_ent(map, i, i);
7001 map2 = get_imsm_map(dev, MAP_1);
7002 /* Copy the current map */
7003 memcpy(map2, map, copy_map_size);
7004 map2->num_members = prev_num_members;
7005
7006 imsm_set_array_size(dev);
7007 super->clean_migration_record_by_mdmon = 1;
7008 super->updates_pending++;
7009 }
7010 }
7011
7012 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7013 * states are handled in imsm_set_disk() with one exception, when a
7014 * resync is stopped due to a new failure this routine will set the
7015 * 'degraded' state for the array.
7016 */
7017 static int imsm_set_array_state(struct active_array *a, int consistent)
7018 {
7019 int inst = a->info.container_member;
7020 struct intel_super *super = a->container->sb;
7021 struct imsm_dev *dev = get_imsm_dev(super, inst);
7022 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7023 int failed = imsm_count_failed(super, dev, MAP_0);
7024 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7025 __u32 blocks_per_unit;
7026
7027 if (dev->vol.migr_state &&
7028 dev->vol.migr_type == MIGR_GEN_MIGR) {
7029 /* array state change is blocked due to reshape action
7030 * We might need to
7031 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7032 * - finish the reshape (if last_checkpoint is big and action != reshape)
7033 * - update curr_migr_unit
7034 */
7035 if (a->curr_action == reshape) {
7036 /* still reshaping, maybe update curr_migr_unit */
7037 goto mark_checkpoint;
7038 } else {
7039 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7040 /* for some reason we aborted the reshape.
7041 *
7042 * disable automatic metadata rollback
7043 * user action is required to recover process
7044 */
7045 if (0) {
7046 struct imsm_map *map2 =
7047 get_imsm_map(dev, MAP_1);
7048 dev->vol.migr_state = 0;
7049 set_migr_type(dev, 0);
7050 dev->vol.curr_migr_unit = 0;
7051 memcpy(map, map2,
7052 sizeof_imsm_map(map2));
7053 super->updates_pending++;
7054 }
7055 }
7056 if (a->last_checkpoint >= a->info.component_size) {
7057 unsigned long long array_blocks;
7058 int used_disks;
7059 struct mdinfo *mdi;
7060
7061 used_disks = imsm_num_data_members(dev, MAP_0);
7062 if (used_disks > 0) {
7063 array_blocks =
7064 blocks_per_member(map) *
7065 used_disks;
7066 /* round array size down to closest MB
7067 */
7068 array_blocks = (array_blocks
7069 >> SECT_PER_MB_SHIFT)
7070 << SECT_PER_MB_SHIFT;
7071 a->info.custom_array_size = array_blocks;
7072 /* encourage manager to update array
7073 * size
7074 */
7075
7076 a->check_reshape = 1;
7077 }
7078 /* finalize online capacity expansion/reshape */
7079 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7080 imsm_set_disk(a,
7081 mdi->disk.raid_disk,
7082 mdi->curr_state);
7083
7084 imsm_progress_container_reshape(super);
7085 }
7086 }
7087 }
7088
7089 /* before we activate this array handle any missing disks */
7090 if (consistent == 2)
7091 handle_missing(super, dev);
7092
7093 if (consistent == 2 &&
7094 (!is_resync_complete(&a->info) ||
7095 map_state != IMSM_T_STATE_NORMAL ||
7096 dev->vol.migr_state))
7097 consistent = 0;
7098
7099 if (is_resync_complete(&a->info)) {
7100 /* complete intialization / resync,
7101 * recovery and interrupted recovery is completed in
7102 * ->set_disk
7103 */
7104 if (is_resyncing(dev)) {
7105 dprintf("imsm: mark resync done\n");
7106 end_migration(dev, super, map_state);
7107 super->updates_pending++;
7108 a->last_checkpoint = 0;
7109 }
7110 } else if ((!is_resyncing(dev) && !failed) &&
7111 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7112 /* mark the start of the init process if nothing is failed */
7113 dprintf("imsm: mark resync start\n");
7114 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7115 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7116 else
7117 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7118 super->updates_pending++;
7119 }
7120
7121 mark_checkpoint:
7122 /* skip checkpointing for general migration,
7123 * it is controlled in mdadm
7124 */
7125 if (is_gen_migration(dev))
7126 goto skip_mark_checkpoint;
7127
7128 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7129 blocks_per_unit = blocks_per_migr_unit(super, dev);
7130 if (blocks_per_unit) {
7131 __u32 units32;
7132 __u64 units;
7133
7134 units = a->last_checkpoint / blocks_per_unit;
7135 units32 = units;
7136
7137 /* check that we did not overflow 32-bits, and that
7138 * curr_migr_unit needs updating
7139 */
7140 if (units32 == units &&
7141 units32 != 0 &&
7142 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7143 dprintf("imsm: mark checkpoint (%u)\n", units32);
7144 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7145 super->updates_pending++;
7146 }
7147 }
7148
7149 skip_mark_checkpoint:
7150 /* mark dirty / clean */
7151 if (dev->vol.dirty != !consistent) {
7152 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7153 if (consistent)
7154 dev->vol.dirty = 0;
7155 else
7156 dev->vol.dirty = 1;
7157 super->updates_pending++;
7158 }
7159
7160 return consistent;
7161 }
7162
7163 static void imsm_set_disk(struct active_array *a, int n, int state)
7164 {
7165 int inst = a->info.container_member;
7166 struct intel_super *super = a->container->sb;
7167 struct imsm_dev *dev = get_imsm_dev(super, inst);
7168 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7169 struct imsm_disk *disk;
7170 int failed;
7171 __u32 ord;
7172 __u8 map_state;
7173
7174 if (n > map->num_members)
7175 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7176 n, map->num_members - 1);
7177
7178 if (n < 0)
7179 return;
7180
7181 dprintf("imsm: set_disk %d:%x\n", n, state);
7182
7183 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7184 disk = get_imsm_disk(super, ord_to_idx(ord));
7185
7186 /* check for new failures */
7187 if (state & DS_FAULTY) {
7188 if (mark_failure(dev, disk, ord_to_idx(ord)))
7189 super->updates_pending++;
7190 }
7191
7192 /* check if in_sync */
7193 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7194 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7195
7196 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7197 super->updates_pending++;
7198 }
7199
7200 failed = imsm_count_failed(super, dev, MAP_0);
7201 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7202
7203 /* check if recovery complete, newly degraded, or failed */
7204 dprintf("imsm: Detected transition to state ");
7205 switch (map_state) {
7206 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7207 dprintf("normal: ");
7208 if (is_rebuilding(dev)) {
7209 dprintf("while rebuilding");
7210 end_migration(dev, super, map_state);
7211 map = get_imsm_map(dev, MAP_0);
7212 map->failed_disk_num = ~0;
7213 super->updates_pending++;
7214 a->last_checkpoint = 0;
7215 break;
7216 }
7217 if (is_gen_migration(dev)) {
7218 dprintf("while general migration");
7219 if (a->last_checkpoint >= a->info.component_size)
7220 end_migration(dev, super, map_state);
7221 else
7222 map->map_state = map_state;
7223 map = get_imsm_map(dev, MAP_0);
7224 map->failed_disk_num = ~0;
7225 super->updates_pending++;
7226 break;
7227 }
7228 break;
7229 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7230 dprintf("degraded: ");
7231 if ((map->map_state != map_state) &&
7232 !dev->vol.migr_state) {
7233 dprintf("mark degraded");
7234 map->map_state = map_state;
7235 super->updates_pending++;
7236 a->last_checkpoint = 0;
7237 break;
7238 }
7239 if (is_rebuilding(dev)) {
7240 dprintf("while rebuilding.");
7241 if (map->map_state != map_state) {
7242 dprintf(" Map state change");
7243 end_migration(dev, super, map_state);
7244 super->updates_pending++;
7245 }
7246 break;
7247 }
7248 if (is_gen_migration(dev)) {
7249 dprintf("while general migration");
7250 if (a->last_checkpoint >= a->info.component_size)
7251 end_migration(dev, super, map_state);
7252 else {
7253 map->map_state = map_state;
7254 manage_second_map(super, dev);
7255 }
7256 super->updates_pending++;
7257 break;
7258 }
7259 if (is_initializing(dev)) {
7260 dprintf("while initialization.");
7261 map->map_state = map_state;
7262 super->updates_pending++;
7263 break;
7264 }
7265 break;
7266 case IMSM_T_STATE_FAILED: /* transition to failed state */
7267 dprintf("failed: ");
7268 if (is_gen_migration(dev)) {
7269 dprintf("while general migration");
7270 map->map_state = map_state;
7271 super->updates_pending++;
7272 break;
7273 }
7274 if (map->map_state != map_state) {
7275 dprintf("mark failed");
7276 end_migration(dev, super, map_state);
7277 super->updates_pending++;
7278 a->last_checkpoint = 0;
7279 break;
7280 }
7281 break;
7282 default:
7283 dprintf("state %i\n", map_state);
7284 }
7285 dprintf("\n");
7286
7287 }
7288
7289 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7290 {
7291 void *buf = mpb;
7292 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7293 unsigned long long dsize;
7294 unsigned long long sectors;
7295
7296 get_dev_size(fd, NULL, &dsize);
7297
7298 if (mpb_size > 512) {
7299 /* -1 to account for anchor */
7300 sectors = mpb_sectors(mpb) - 1;
7301
7302 /* write the extended mpb to the sectors preceeding the anchor */
7303 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7304 return 1;
7305
7306 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7307 != 512 * sectors)
7308 return 1;
7309 }
7310
7311 /* first block is stored on second to last sector of the disk */
7312 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7313 return 1;
7314
7315 if (write(fd, buf, 512) != 512)
7316 return 1;
7317
7318 return 0;
7319 }
7320
7321 static void imsm_sync_metadata(struct supertype *container)
7322 {
7323 struct intel_super *super = container->sb;
7324
7325 dprintf("sync metadata: %d\n", super->updates_pending);
7326 if (!super->updates_pending)
7327 return;
7328
7329 write_super_imsm(container, 0);
7330
7331 super->updates_pending = 0;
7332 }
7333
7334 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7335 {
7336 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7337 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7338 struct dl *dl;
7339
7340 for (dl = super->disks; dl; dl = dl->next)
7341 if (dl->index == i)
7342 break;
7343
7344 if (dl && is_failed(&dl->disk))
7345 dl = NULL;
7346
7347 if (dl)
7348 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7349
7350 return dl;
7351 }
7352
7353 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7354 struct active_array *a, int activate_new,
7355 struct mdinfo *additional_test_list)
7356 {
7357 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7358 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7359 struct imsm_super *mpb = super->anchor;
7360 struct imsm_map *map;
7361 unsigned long long pos;
7362 struct mdinfo *d;
7363 struct extent *ex;
7364 int i, j;
7365 int found;
7366 __u32 array_start = 0;
7367 __u32 array_end = 0;
7368 struct dl *dl;
7369 struct mdinfo *test_list;
7370
7371 for (dl = super->disks; dl; dl = dl->next) {
7372 /* If in this array, skip */
7373 for (d = a->info.devs ; d ; d = d->next)
7374 if (d->state_fd >= 0 &&
7375 d->disk.major == dl->major &&
7376 d->disk.minor == dl->minor) {
7377 dprintf("%x:%x already in array\n",
7378 dl->major, dl->minor);
7379 break;
7380 }
7381 if (d)
7382 continue;
7383 test_list = additional_test_list;
7384 while (test_list) {
7385 if (test_list->disk.major == dl->major &&
7386 test_list->disk.minor == dl->minor) {
7387 dprintf("%x:%x already in additional test list\n",
7388 dl->major, dl->minor);
7389 break;
7390 }
7391 test_list = test_list->next;
7392 }
7393 if (test_list)
7394 continue;
7395
7396 /* skip in use or failed drives */
7397 if (is_failed(&dl->disk) || idx == dl->index ||
7398 dl->index == -2) {
7399 dprintf("%x:%x status (failed: %d index: %d)\n",
7400 dl->major, dl->minor, is_failed(&dl->disk), idx);
7401 continue;
7402 }
7403
7404 /* skip pure spares when we are looking for partially
7405 * assimilated drives
7406 */
7407 if (dl->index == -1 && !activate_new)
7408 continue;
7409
7410 /* Does this unused device have the requisite free space?
7411 * It needs to be able to cover all member volumes
7412 */
7413 ex = get_extents(super, dl);
7414 if (!ex) {
7415 dprintf("cannot get extents\n");
7416 continue;
7417 }
7418 for (i = 0; i < mpb->num_raid_devs; i++) {
7419 dev = get_imsm_dev(super, i);
7420 map = get_imsm_map(dev, MAP_0);
7421
7422 /* check if this disk is already a member of
7423 * this array
7424 */
7425 if (get_imsm_disk_slot(map, dl->index) >= 0)
7426 continue;
7427
7428 found = 0;
7429 j = 0;
7430 pos = 0;
7431 array_start = pba_of_lba0(map);
7432 array_end = array_start +
7433 blocks_per_member(map) - 1;
7434
7435 do {
7436 /* check that we can start at pba_of_lba0 with
7437 * blocks_per_member of space
7438 */
7439 if (array_start >= pos && array_end < ex[j].start) {
7440 found = 1;
7441 break;
7442 }
7443 pos = ex[j].start + ex[j].size;
7444 j++;
7445 } while (ex[j-1].size);
7446
7447 if (!found)
7448 break;
7449 }
7450
7451 free(ex);
7452 if (i < mpb->num_raid_devs) {
7453 dprintf("%x:%x does not have %u to %u available\n",
7454 dl->major, dl->minor, array_start, array_end);
7455 /* No room */
7456 continue;
7457 }
7458 return dl;
7459 }
7460
7461 return dl;
7462 }
7463
7464
7465 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7466 {
7467 struct imsm_dev *dev2;
7468 struct imsm_map *map;
7469 struct dl *idisk;
7470 int slot;
7471 int idx;
7472 __u8 state;
7473
7474 dev2 = get_imsm_dev(cont->sb, dev_idx);
7475 if (dev2) {
7476 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7477 if (state == IMSM_T_STATE_FAILED) {
7478 map = get_imsm_map(dev2, MAP_0);
7479 if (!map)
7480 return 1;
7481 for (slot = 0; slot < map->num_members; slot++) {
7482 /*
7483 * Check if failed disks are deleted from intel
7484 * disk list or are marked to be deleted
7485 */
7486 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7487 idisk = get_imsm_dl_disk(cont->sb, idx);
7488 /*
7489 * Do not rebuild the array if failed disks
7490 * from failed sub-array are not removed from
7491 * container.
7492 */
7493 if (idisk &&
7494 is_failed(&idisk->disk) &&
7495 (idisk->action != DISK_REMOVE))
7496 return 0;
7497 }
7498 }
7499 }
7500 return 1;
7501 }
7502
7503 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7504 struct metadata_update **updates)
7505 {
7506 /**
7507 * Find a device with unused free space and use it to replace a
7508 * failed/vacant region in an array. We replace failed regions one a
7509 * array at a time. The result is that a new spare disk will be added
7510 * to the first failed array and after the monitor has finished
7511 * propagating failures the remainder will be consumed.
7512 *
7513 * FIXME add a capability for mdmon to request spares from another
7514 * container.
7515 */
7516
7517 struct intel_super *super = a->container->sb;
7518 int inst = a->info.container_member;
7519 struct imsm_dev *dev = get_imsm_dev(super, inst);
7520 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7521 int failed = a->info.array.raid_disks;
7522 struct mdinfo *rv = NULL;
7523 struct mdinfo *d;
7524 struct mdinfo *di;
7525 struct metadata_update *mu;
7526 struct dl *dl;
7527 struct imsm_update_activate_spare *u;
7528 int num_spares = 0;
7529 int i;
7530 int allowed;
7531
7532 for (d = a->info.devs ; d ; d = d->next) {
7533 if ((d->curr_state & DS_FAULTY) &&
7534 d->state_fd >= 0)
7535 /* wait for Removal to happen */
7536 return NULL;
7537 if (d->state_fd >= 0)
7538 failed--;
7539 }
7540
7541 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7542 inst, failed, a->info.array.raid_disks, a->info.array.level);
7543
7544 if (imsm_reshape_blocks_arrays_changes(super))
7545 return NULL;
7546
7547 /* Cannot activate another spare if rebuild is in progress already
7548 */
7549 if (is_rebuilding(dev)) {
7550 dprintf("imsm: No spare activation allowed. "
7551 "Rebuild in progress already.\n");
7552 return NULL;
7553 }
7554
7555 if (a->info.array.level == 4)
7556 /* No repair for takeovered array
7557 * imsm doesn't support raid4
7558 */
7559 return NULL;
7560
7561 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7562 IMSM_T_STATE_DEGRADED)
7563 return NULL;
7564
7565 /*
7566 * If there are any failed disks check state of the other volume.
7567 * Block rebuild if the another one is failed until failed disks
7568 * are removed from container.
7569 */
7570 if (failed) {
7571 dprintf("found failed disks in %.*s, check if there another"
7572 "failed sub-array.\n",
7573 MAX_RAID_SERIAL_LEN, dev->volume);
7574 /* check if states of the other volumes allow for rebuild */
7575 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7576 if (i != inst) {
7577 allowed = imsm_rebuild_allowed(a->container,
7578 i, failed);
7579 if (!allowed)
7580 return NULL;
7581 }
7582 }
7583 }
7584
7585 /* For each slot, if it is not working, find a spare */
7586 for (i = 0; i < a->info.array.raid_disks; i++) {
7587 for (d = a->info.devs ; d ; d = d->next)
7588 if (d->disk.raid_disk == i)
7589 break;
7590 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7591 if (d && (d->state_fd >= 0))
7592 continue;
7593
7594 /*
7595 * OK, this device needs recovery. Try to re-add the
7596 * previous occupant of this slot, if this fails see if
7597 * we can continue the assimilation of a spare that was
7598 * partially assimilated, finally try to activate a new
7599 * spare.
7600 */
7601 dl = imsm_readd(super, i, a);
7602 if (!dl)
7603 dl = imsm_add_spare(super, i, a, 0, rv);
7604 if (!dl)
7605 dl = imsm_add_spare(super, i, a, 1, rv);
7606 if (!dl)
7607 continue;
7608
7609 /* found a usable disk with enough space */
7610 di = malloc(sizeof(*di));
7611 if (!di)
7612 continue;
7613 memset(di, 0, sizeof(*di));
7614
7615 /* dl->index will be -1 in the case we are activating a
7616 * pristine spare. imsm_process_update() will create a
7617 * new index in this case. Once a disk is found to be
7618 * failed in all member arrays it is kicked from the
7619 * metadata
7620 */
7621 di->disk.number = dl->index;
7622
7623 /* (ab)use di->devs to store a pointer to the device
7624 * we chose
7625 */
7626 di->devs = (struct mdinfo *) dl;
7627
7628 di->disk.raid_disk = i;
7629 di->disk.major = dl->major;
7630 di->disk.minor = dl->minor;
7631 di->disk.state = 0;
7632 di->recovery_start = 0;
7633 di->data_offset = pba_of_lba0(map);
7634 di->component_size = a->info.component_size;
7635 di->container_member = inst;
7636 super->random = random32();
7637 di->next = rv;
7638 rv = di;
7639 num_spares++;
7640 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7641 i, di->data_offset);
7642 }
7643
7644 if (!rv)
7645 /* No spares found */
7646 return rv;
7647 /* Now 'rv' has a list of devices to return.
7648 * Create a metadata_update record to update the
7649 * disk_ord_tbl for the array
7650 */
7651 mu = malloc(sizeof(*mu));
7652 if (mu) {
7653 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7654 if (mu->buf == NULL) {
7655 free(mu);
7656 mu = NULL;
7657 }
7658 }
7659 if (!mu) {
7660 while (rv) {
7661 struct mdinfo *n = rv->next;
7662
7663 free(rv);
7664 rv = n;
7665 }
7666 return NULL;
7667 }
7668
7669 mu->space = NULL;
7670 mu->space_list = NULL;
7671 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7672 mu->next = *updates;
7673 u = (struct imsm_update_activate_spare *) mu->buf;
7674
7675 for (di = rv ; di ; di = di->next) {
7676 u->type = update_activate_spare;
7677 u->dl = (struct dl *) di->devs;
7678 di->devs = NULL;
7679 u->slot = di->disk.raid_disk;
7680 u->array = inst;
7681 u->next = u + 1;
7682 u++;
7683 }
7684 (u-1)->next = NULL;
7685 *updates = mu;
7686
7687 return rv;
7688 }
7689
7690 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7691 {
7692 struct imsm_dev *dev = get_imsm_dev(super, idx);
7693 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7694 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7695 struct disk_info *inf = get_disk_info(u);
7696 struct imsm_disk *disk;
7697 int i;
7698 int j;
7699
7700 for (i = 0; i < map->num_members; i++) {
7701 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7702 for (j = 0; j < new_map->num_members; j++)
7703 if (serialcmp(disk->serial, inf[j].serial) == 0)
7704 return 1;
7705 }
7706
7707 return 0;
7708 }
7709
7710
7711 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7712 {
7713 struct dl *dl = NULL;
7714 for (dl = super->disks; dl; dl = dl->next)
7715 if ((dl->major == major) && (dl->minor == minor))
7716 return dl;
7717 return NULL;
7718 }
7719
7720 static int remove_disk_super(struct intel_super *super, int major, int minor)
7721 {
7722 struct dl *prev = NULL;
7723 struct dl *dl;
7724
7725 prev = NULL;
7726 for (dl = super->disks; dl; dl = dl->next) {
7727 if ((dl->major == major) && (dl->minor == minor)) {
7728 /* remove */
7729 if (prev)
7730 prev->next = dl->next;
7731 else
7732 super->disks = dl->next;
7733 dl->next = NULL;
7734 __free_imsm_disk(dl);
7735 dprintf("%s: removed %x:%x\n",
7736 __func__, major, minor);
7737 break;
7738 }
7739 prev = dl;
7740 }
7741 return 0;
7742 }
7743
7744 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7745
7746 static int add_remove_disk_update(struct intel_super *super)
7747 {
7748 int check_degraded = 0;
7749 struct dl *disk = NULL;
7750 /* add/remove some spares to/from the metadata/contrainer */
7751 while (super->disk_mgmt_list) {
7752 struct dl *disk_cfg;
7753
7754 disk_cfg = super->disk_mgmt_list;
7755 super->disk_mgmt_list = disk_cfg->next;
7756 disk_cfg->next = NULL;
7757
7758 if (disk_cfg->action == DISK_ADD) {
7759 disk_cfg->next = super->disks;
7760 super->disks = disk_cfg;
7761 check_degraded = 1;
7762 dprintf("%s: added %x:%x\n",
7763 __func__, disk_cfg->major,
7764 disk_cfg->minor);
7765 } else if (disk_cfg->action == DISK_REMOVE) {
7766 dprintf("Disk remove action processed: %x.%x\n",
7767 disk_cfg->major, disk_cfg->minor);
7768 disk = get_disk_super(super,
7769 disk_cfg->major,
7770 disk_cfg->minor);
7771 if (disk) {
7772 /* store action status */
7773 disk->action = DISK_REMOVE;
7774 /* remove spare disks only */
7775 if (disk->index == -1) {
7776 remove_disk_super(super,
7777 disk_cfg->major,
7778 disk_cfg->minor);
7779 }
7780 }
7781 /* release allocate disk structure */
7782 __free_imsm_disk(disk_cfg);
7783 }
7784 }
7785 return check_degraded;
7786 }
7787
7788
7789 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7790 struct intel_super *super,
7791 void ***space_list)
7792 {
7793 struct intel_dev *id;
7794 void **tofree = NULL;
7795 int ret_val = 0;
7796
7797 dprintf("apply_reshape_migration_update()\n");
7798 if ((u->subdev < 0) ||
7799 (u->subdev > 1)) {
7800 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7801 return ret_val;
7802 }
7803 if ((space_list == NULL) || (*space_list == NULL)) {
7804 dprintf("imsm: Error: Memory is not allocated\n");
7805 return ret_val;
7806 }
7807
7808 for (id = super->devlist ; id; id = id->next) {
7809 if (id->index == (unsigned)u->subdev) {
7810 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7811 struct imsm_map *map;
7812 struct imsm_dev *new_dev =
7813 (struct imsm_dev *)*space_list;
7814 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7815 int to_state;
7816 struct dl *new_disk;
7817
7818 if (new_dev == NULL)
7819 return ret_val;
7820 *space_list = **space_list;
7821 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7822 map = get_imsm_map(new_dev, MAP_0);
7823 if (migr_map) {
7824 dprintf("imsm: Error: migration in progress");
7825 return ret_val;
7826 }
7827
7828 to_state = map->map_state;
7829 if ((u->new_level == 5) && (map->raid_level == 0)) {
7830 map->num_members++;
7831 /* this should not happen */
7832 if (u->new_disks[0] < 0) {
7833 map->failed_disk_num =
7834 map->num_members - 1;
7835 to_state = IMSM_T_STATE_DEGRADED;
7836 } else
7837 to_state = IMSM_T_STATE_NORMAL;
7838 }
7839 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7840 if (u->new_level > -1)
7841 map->raid_level = u->new_level;
7842 migr_map = get_imsm_map(new_dev, MAP_1);
7843 if ((u->new_level == 5) &&
7844 (migr_map->raid_level == 0)) {
7845 int ord = map->num_members - 1;
7846 migr_map->num_members--;
7847 if (u->new_disks[0] < 0)
7848 ord |= IMSM_ORD_REBUILD;
7849 set_imsm_ord_tbl_ent(map,
7850 map->num_members - 1,
7851 ord);
7852 }
7853 id->dev = new_dev;
7854 tofree = (void **)dev;
7855
7856 /* update chunk size
7857 */
7858 if (u->new_chunksize > 0)
7859 map->blocks_per_strip =
7860 __cpu_to_le16(u->new_chunksize * 2);
7861
7862 /* add disk
7863 */
7864 if ((u->new_level != 5) ||
7865 (migr_map->raid_level != 0) ||
7866 (migr_map->raid_level == map->raid_level))
7867 goto skip_disk_add;
7868
7869 if (u->new_disks[0] >= 0) {
7870 /* use passes spare
7871 */
7872 new_disk = get_disk_super(super,
7873 major(u->new_disks[0]),
7874 minor(u->new_disks[0]));
7875 dprintf("imsm: new disk for reshape is: %i:%i "
7876 "(%p, index = %i)\n",
7877 major(u->new_disks[0]),
7878 minor(u->new_disks[0]),
7879 new_disk, new_disk->index);
7880 if (new_disk == NULL)
7881 goto error_disk_add;
7882
7883 new_disk->index = map->num_members - 1;
7884 /* slot to fill in autolayout
7885 */
7886 new_disk->raiddisk = new_disk->index;
7887 new_disk->disk.status |= CONFIGURED_DISK;
7888 new_disk->disk.status &= ~SPARE_DISK;
7889 } else
7890 goto error_disk_add;
7891
7892 skip_disk_add:
7893 *tofree = *space_list;
7894 /* calculate new size
7895 */
7896 imsm_set_array_size(new_dev);
7897
7898 ret_val = 1;
7899 }
7900 }
7901
7902 if (tofree)
7903 *space_list = tofree;
7904 return ret_val;
7905
7906 error_disk_add:
7907 dprintf("Error: imsm: Cannot find disk.\n");
7908 return ret_val;
7909 }
7910
7911 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7912 struct intel_super *super,
7913 struct active_array *active_array)
7914 {
7915 struct imsm_super *mpb = super->anchor;
7916 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7917 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7918 struct imsm_map *migr_map;
7919 struct active_array *a;
7920 struct imsm_disk *disk;
7921 __u8 to_state;
7922 struct dl *dl;
7923 unsigned int found;
7924 int failed;
7925 int victim;
7926 int i;
7927 int second_map_created = 0;
7928
7929 for (; u; u = u->next) {
7930 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7931
7932 if (victim < 0)
7933 return 0;
7934
7935 for (dl = super->disks; dl; dl = dl->next)
7936 if (dl == u->dl)
7937 break;
7938
7939 if (!dl) {
7940 fprintf(stderr, "error: imsm_activate_spare passed "
7941 "an unknown disk (index: %d)\n",
7942 u->dl->index);
7943 return 0;
7944 }
7945
7946 /* count failures (excluding rebuilds and the victim)
7947 * to determine map[0] state
7948 */
7949 failed = 0;
7950 for (i = 0; i < map->num_members; i++) {
7951 if (i == u->slot)
7952 continue;
7953 disk = get_imsm_disk(super,
7954 get_imsm_disk_idx(dev, i, MAP_X));
7955 if (!disk || is_failed(disk))
7956 failed++;
7957 }
7958
7959 /* adding a pristine spare, assign a new index */
7960 if (dl->index < 0) {
7961 dl->index = super->anchor->num_disks;
7962 super->anchor->num_disks++;
7963 }
7964 disk = &dl->disk;
7965 disk->status |= CONFIGURED_DISK;
7966 disk->status &= ~SPARE_DISK;
7967
7968 /* mark rebuild */
7969 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7970 if (!second_map_created) {
7971 second_map_created = 1;
7972 map->map_state = IMSM_T_STATE_DEGRADED;
7973 migrate(dev, super, to_state, MIGR_REBUILD);
7974 } else
7975 map->map_state = to_state;
7976 migr_map = get_imsm_map(dev, MAP_1);
7977 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7978 set_imsm_ord_tbl_ent(migr_map, u->slot,
7979 dl->index | IMSM_ORD_REBUILD);
7980
7981 /* update the family_num to mark a new container
7982 * generation, being careful to record the existing
7983 * family_num in orig_family_num to clean up after
7984 * earlier mdadm versions that neglected to set it.
7985 */
7986 if (mpb->orig_family_num == 0)
7987 mpb->orig_family_num = mpb->family_num;
7988 mpb->family_num += super->random;
7989
7990 /* count arrays using the victim in the metadata */
7991 found = 0;
7992 for (a = active_array; a ; a = a->next) {
7993 dev = get_imsm_dev(super, a->info.container_member);
7994 map = get_imsm_map(dev, MAP_0);
7995
7996 if (get_imsm_disk_slot(map, victim) >= 0)
7997 found++;
7998 }
7999
8000 /* delete the victim if it is no longer being
8001 * utilized anywhere
8002 */
8003 if (!found) {
8004 struct dl **dlp;
8005
8006 /* We know that 'manager' isn't touching anything,
8007 * so it is safe to delete
8008 */
8009 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8010 if ((*dlp)->index == victim)
8011 break;
8012
8013 /* victim may be on the missing list */
8014 if (!*dlp)
8015 for (dlp = &super->missing; *dlp;
8016 dlp = &(*dlp)->next)
8017 if ((*dlp)->index == victim)
8018 break;
8019 imsm_delete(super, dlp, victim);
8020 }
8021 }
8022
8023 return 1;
8024 }
8025
8026 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8027 struct intel_super *super,
8028 void ***space_list)
8029 {
8030 struct dl *new_disk;
8031 struct intel_dev *id;
8032 int i;
8033 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8034 int disk_count = u->old_raid_disks;
8035 void **tofree = NULL;
8036 int devices_to_reshape = 1;
8037 struct imsm_super *mpb = super->anchor;
8038 int ret_val = 0;
8039 unsigned int dev_id;
8040
8041 dprintf("imsm: apply_reshape_container_disks_update()\n");
8042
8043 /* enable spares to use in array */
8044 for (i = 0; i < delta_disks; i++) {
8045 new_disk = get_disk_super(super,
8046 major(u->new_disks[i]),
8047 minor(u->new_disks[i]));
8048 dprintf("imsm: new disk for reshape is: %i:%i "
8049 "(%p, index = %i)\n",
8050 major(u->new_disks[i]), minor(u->new_disks[i]),
8051 new_disk, new_disk->index);
8052 if ((new_disk == NULL) ||
8053 ((new_disk->index >= 0) &&
8054 (new_disk->index < u->old_raid_disks)))
8055 goto update_reshape_exit;
8056 new_disk->index = disk_count++;
8057 /* slot to fill in autolayout
8058 */
8059 new_disk->raiddisk = new_disk->index;
8060 new_disk->disk.status |=
8061 CONFIGURED_DISK;
8062 new_disk->disk.status &= ~SPARE_DISK;
8063 }
8064
8065 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8066 mpb->num_raid_devs);
8067 /* manage changes in volume
8068 */
8069 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8070 void **sp = *space_list;
8071 struct imsm_dev *newdev;
8072 struct imsm_map *newmap, *oldmap;
8073
8074 for (id = super->devlist ; id; id = id->next) {
8075 if (id->index == dev_id)
8076 break;
8077 }
8078 if (id == NULL)
8079 break;
8080 if (!sp)
8081 continue;
8082 *space_list = *sp;
8083 newdev = (void*)sp;
8084 /* Copy the dev, but not (all of) the map */
8085 memcpy(newdev, id->dev, sizeof(*newdev));
8086 oldmap = get_imsm_map(id->dev, MAP_0);
8087 newmap = get_imsm_map(newdev, MAP_0);
8088 /* Copy the current map */
8089 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8090 /* update one device only
8091 */
8092 if (devices_to_reshape) {
8093 dprintf("imsm: modifying subdev: %i\n",
8094 id->index);
8095 devices_to_reshape--;
8096 newdev->vol.migr_state = 1;
8097 newdev->vol.curr_migr_unit = 0;
8098 set_migr_type(newdev, MIGR_GEN_MIGR);
8099 newmap->num_members = u->new_raid_disks;
8100 for (i = 0; i < delta_disks; i++) {
8101 set_imsm_ord_tbl_ent(newmap,
8102 u->old_raid_disks + i,
8103 u->old_raid_disks + i);
8104 }
8105 /* New map is correct, now need to save old map
8106 */
8107 newmap = get_imsm_map(newdev, MAP_1);
8108 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8109
8110 imsm_set_array_size(newdev);
8111 }
8112
8113 sp = (void **)id->dev;
8114 id->dev = newdev;
8115 *sp = tofree;
8116 tofree = sp;
8117
8118 /* Clear migration record */
8119 memset(super->migr_rec, 0, sizeof(struct migr_record));
8120 }
8121 if (tofree)
8122 *space_list = tofree;
8123 ret_val = 1;
8124
8125 update_reshape_exit:
8126
8127 return ret_val;
8128 }
8129
8130 static int apply_takeover_update(struct imsm_update_takeover *u,
8131 struct intel_super *super,
8132 void ***space_list)
8133 {
8134 struct imsm_dev *dev = NULL;
8135 struct intel_dev *dv;
8136 struct imsm_dev *dev_new;
8137 struct imsm_map *map;
8138 struct dl *dm, *du;
8139 int i;
8140
8141 for (dv = super->devlist; dv; dv = dv->next)
8142 if (dv->index == (unsigned int)u->subarray) {
8143 dev = dv->dev;
8144 break;
8145 }
8146
8147 if (dev == NULL)
8148 return 0;
8149
8150 map = get_imsm_map(dev, MAP_0);
8151
8152 if (u->direction == R10_TO_R0) {
8153 /* Number of failed disks must be half of initial disk number */
8154 if (imsm_count_failed(super, dev, MAP_0) !=
8155 (map->num_members / 2))
8156 return 0;
8157
8158 /* iterate through devices to mark removed disks as spare */
8159 for (dm = super->disks; dm; dm = dm->next) {
8160 if (dm->disk.status & FAILED_DISK) {
8161 int idx = dm->index;
8162 /* update indexes on the disk list */
8163 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8164 the index values will end up being correct.... NB */
8165 for (du = super->disks; du; du = du->next)
8166 if (du->index > idx)
8167 du->index--;
8168 /* mark as spare disk */
8169 mark_spare(dm);
8170 }
8171 }
8172 /* update map */
8173 map->num_members = map->num_members / 2;
8174 map->map_state = IMSM_T_STATE_NORMAL;
8175 map->num_domains = 1;
8176 map->raid_level = 0;
8177 map->failed_disk_num = -1;
8178 }
8179
8180 if (u->direction == R0_TO_R10) {
8181 void **space;
8182 /* update slots in current disk list */
8183 for (dm = super->disks; dm; dm = dm->next) {
8184 if (dm->index >= 0)
8185 dm->index *= 2;
8186 }
8187 /* create new *missing* disks */
8188 for (i = 0; i < map->num_members; i++) {
8189 space = *space_list;
8190 if (!space)
8191 continue;
8192 *space_list = *space;
8193 du = (void *)space;
8194 memcpy(du, super->disks, sizeof(*du));
8195 du->fd = -1;
8196 du->minor = 0;
8197 du->major = 0;
8198 du->index = (i * 2) + 1;
8199 sprintf((char *)du->disk.serial,
8200 " MISSING_%d", du->index);
8201 sprintf((char *)du->serial,
8202 "MISSING_%d", du->index);
8203 du->next = super->missing;
8204 super->missing = du;
8205 }
8206 /* create new dev and map */
8207 space = *space_list;
8208 if (!space)
8209 return 0;
8210 *space_list = *space;
8211 dev_new = (void *)space;
8212 memcpy(dev_new, dev, sizeof(*dev));
8213 /* update new map */
8214 map = get_imsm_map(dev_new, MAP_0);
8215 map->num_members = map->num_members * 2;
8216 map->map_state = IMSM_T_STATE_DEGRADED;
8217 map->num_domains = 2;
8218 map->raid_level = 1;
8219 /* replace dev<->dev_new */
8220 dv->dev = dev_new;
8221 }
8222 /* update disk order table */
8223 for (du = super->disks; du; du = du->next)
8224 if (du->index >= 0)
8225 set_imsm_ord_tbl_ent(map, du->index, du->index);
8226 for (du = super->missing; du; du = du->next)
8227 if (du->index >= 0) {
8228 set_imsm_ord_tbl_ent(map, du->index, du->index);
8229 mark_missing(dv->dev, &du->disk, du->index);
8230 }
8231
8232 return 1;
8233 }
8234
8235 static void imsm_process_update(struct supertype *st,
8236 struct metadata_update *update)
8237 {
8238 /**
8239 * crack open the metadata_update envelope to find the update record
8240 * update can be one of:
8241 * update_reshape_container_disks - all the arrays in the container
8242 * are being reshaped to have more devices. We need to mark
8243 * the arrays for general migration and convert selected spares
8244 * into active devices.
8245 * update_activate_spare - a spare device has replaced a failed
8246 * device in an array, update the disk_ord_tbl. If this disk is
8247 * present in all member arrays then also clear the SPARE_DISK
8248 * flag
8249 * update_create_array
8250 * update_kill_array
8251 * update_rename_array
8252 * update_add_remove_disk
8253 */
8254 struct intel_super *super = st->sb;
8255 struct imsm_super *mpb;
8256 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8257
8258 /* update requires a larger buf but the allocation failed */
8259 if (super->next_len && !super->next_buf) {
8260 super->next_len = 0;
8261 return;
8262 }
8263
8264 if (super->next_buf) {
8265 memcpy(super->next_buf, super->buf, super->len);
8266 free(super->buf);
8267 super->len = super->next_len;
8268 super->buf = super->next_buf;
8269
8270 super->next_len = 0;
8271 super->next_buf = NULL;
8272 }
8273
8274 mpb = super->anchor;
8275
8276 switch (type) {
8277 case update_general_migration_checkpoint: {
8278 struct intel_dev *id;
8279 struct imsm_update_general_migration_checkpoint *u =
8280 (void *)update->buf;
8281
8282 dprintf("imsm: process_update() "
8283 "for update_general_migration_checkpoint called\n");
8284
8285 /* find device under general migration */
8286 for (id = super->devlist ; id; id = id->next) {
8287 if (is_gen_migration(id->dev)) {
8288 id->dev->vol.curr_migr_unit =
8289 __cpu_to_le32(u->curr_migr_unit);
8290 super->updates_pending++;
8291 }
8292 }
8293 break;
8294 }
8295 case update_takeover: {
8296 struct imsm_update_takeover *u = (void *)update->buf;
8297 if (apply_takeover_update(u, super, &update->space_list)) {
8298 imsm_update_version_info(super);
8299 super->updates_pending++;
8300 }
8301 break;
8302 }
8303
8304 case update_reshape_container_disks: {
8305 struct imsm_update_reshape *u = (void *)update->buf;
8306 if (apply_reshape_container_disks_update(
8307 u, super, &update->space_list))
8308 super->updates_pending++;
8309 break;
8310 }
8311 case update_reshape_migration: {
8312 struct imsm_update_reshape_migration *u = (void *)update->buf;
8313 if (apply_reshape_migration_update(
8314 u, super, &update->space_list))
8315 super->updates_pending++;
8316 break;
8317 }
8318 case update_activate_spare: {
8319 struct imsm_update_activate_spare *u = (void *) update->buf;
8320 if (apply_update_activate_spare(u, super, st->arrays))
8321 super->updates_pending++;
8322 break;
8323 }
8324 case update_create_array: {
8325 /* someone wants to create a new array, we need to be aware of
8326 * a few races/collisions:
8327 * 1/ 'Create' called by two separate instances of mdadm
8328 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8329 * devices that have since been assimilated via
8330 * activate_spare.
8331 * In the event this update can not be carried out mdadm will
8332 * (FIX ME) notice that its update did not take hold.
8333 */
8334 struct imsm_update_create_array *u = (void *) update->buf;
8335 struct intel_dev *dv;
8336 struct imsm_dev *dev;
8337 struct imsm_map *map, *new_map;
8338 unsigned long long start, end;
8339 unsigned long long new_start, new_end;
8340 int i;
8341 struct disk_info *inf;
8342 struct dl *dl;
8343
8344 /* handle racing creates: first come first serve */
8345 if (u->dev_idx < mpb->num_raid_devs) {
8346 dprintf("%s: subarray %d already defined\n",
8347 __func__, u->dev_idx);
8348 goto create_error;
8349 }
8350
8351 /* check update is next in sequence */
8352 if (u->dev_idx != mpb->num_raid_devs) {
8353 dprintf("%s: can not create array %d expected index %d\n",
8354 __func__, u->dev_idx, mpb->num_raid_devs);
8355 goto create_error;
8356 }
8357
8358 new_map = get_imsm_map(&u->dev, MAP_0);
8359 new_start = pba_of_lba0(new_map);
8360 new_end = new_start + blocks_per_member(new_map);
8361 inf = get_disk_info(u);
8362
8363 /* handle activate_spare versus create race:
8364 * check to make sure that overlapping arrays do not include
8365 * overalpping disks
8366 */
8367 for (i = 0; i < mpb->num_raid_devs; i++) {
8368 dev = get_imsm_dev(super, i);
8369 map = get_imsm_map(dev, MAP_0);
8370 start = pba_of_lba0(map);
8371 end = start + blocks_per_member(map);
8372 if ((new_start >= start && new_start <= end) ||
8373 (start >= new_start && start <= new_end))
8374 /* overlap */;
8375 else
8376 continue;
8377
8378 if (disks_overlap(super, i, u)) {
8379 dprintf("%s: arrays overlap\n", __func__);
8380 goto create_error;
8381 }
8382 }
8383
8384 /* check that prepare update was successful */
8385 if (!update->space) {
8386 dprintf("%s: prepare update failed\n", __func__);
8387 goto create_error;
8388 }
8389
8390 /* check that all disks are still active before committing
8391 * changes. FIXME: could we instead handle this by creating a
8392 * degraded array? That's probably not what the user expects,
8393 * so better to drop this update on the floor.
8394 */
8395 for (i = 0; i < new_map->num_members; i++) {
8396 dl = serial_to_dl(inf[i].serial, super);
8397 if (!dl) {
8398 dprintf("%s: disk disappeared\n", __func__);
8399 goto create_error;
8400 }
8401 }
8402
8403 super->updates_pending++;
8404
8405 /* convert spares to members and fixup ord_tbl */
8406 for (i = 0; i < new_map->num_members; i++) {
8407 dl = serial_to_dl(inf[i].serial, super);
8408 if (dl->index == -1) {
8409 dl->index = mpb->num_disks;
8410 mpb->num_disks++;
8411 dl->disk.status |= CONFIGURED_DISK;
8412 dl->disk.status &= ~SPARE_DISK;
8413 }
8414 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8415 }
8416
8417 dv = update->space;
8418 dev = dv->dev;
8419 update->space = NULL;
8420 imsm_copy_dev(dev, &u->dev);
8421 dv->index = u->dev_idx;
8422 dv->next = super->devlist;
8423 super->devlist = dv;
8424 mpb->num_raid_devs++;
8425
8426 imsm_update_version_info(super);
8427 break;
8428 create_error:
8429 /* mdmon knows how to release update->space, but not
8430 * ((struct intel_dev *) update->space)->dev
8431 */
8432 if (update->space) {
8433 dv = update->space;
8434 free(dv->dev);
8435 }
8436 break;
8437 }
8438 case update_kill_array: {
8439 struct imsm_update_kill_array *u = (void *) update->buf;
8440 int victim = u->dev_idx;
8441 struct active_array *a;
8442 struct intel_dev **dp;
8443 struct imsm_dev *dev;
8444
8445 /* sanity check that we are not affecting the uuid of
8446 * active arrays, or deleting an active array
8447 *
8448 * FIXME when immutable ids are available, but note that
8449 * we'll also need to fixup the invalidated/active
8450 * subarray indexes in mdstat
8451 */
8452 for (a = st->arrays; a; a = a->next)
8453 if (a->info.container_member >= victim)
8454 break;
8455 /* by definition if mdmon is running at least one array
8456 * is active in the container, so checking
8457 * mpb->num_raid_devs is just extra paranoia
8458 */
8459 dev = get_imsm_dev(super, victim);
8460 if (a || !dev || mpb->num_raid_devs == 1) {
8461 dprintf("failed to delete subarray-%d\n", victim);
8462 break;
8463 }
8464
8465 for (dp = &super->devlist; *dp;)
8466 if ((*dp)->index == (unsigned)super->current_vol) {
8467 *dp = (*dp)->next;
8468 } else {
8469 if ((*dp)->index > (unsigned)victim)
8470 (*dp)->index--;
8471 dp = &(*dp)->next;
8472 }
8473 mpb->num_raid_devs--;
8474 super->updates_pending++;
8475 break;
8476 }
8477 case update_rename_array: {
8478 struct imsm_update_rename_array *u = (void *) update->buf;
8479 char name[MAX_RAID_SERIAL_LEN+1];
8480 int target = u->dev_idx;
8481 struct active_array *a;
8482 struct imsm_dev *dev;
8483
8484 /* sanity check that we are not affecting the uuid of
8485 * an active array
8486 */
8487 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8488 name[MAX_RAID_SERIAL_LEN] = '\0';
8489 for (a = st->arrays; a; a = a->next)
8490 if (a->info.container_member == target)
8491 break;
8492 dev = get_imsm_dev(super, u->dev_idx);
8493 if (a || !dev || !check_name(super, name, 1)) {
8494 dprintf("failed to rename subarray-%d\n", target);
8495 break;
8496 }
8497
8498 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8499 super->updates_pending++;
8500 break;
8501 }
8502 case update_add_remove_disk: {
8503 /* we may be able to repair some arrays if disks are
8504 * being added, check teh status of add_remove_disk
8505 * if discs has been added.
8506 */
8507 if (add_remove_disk_update(super)) {
8508 struct active_array *a;
8509
8510 super->updates_pending++;
8511 for (a = st->arrays; a; a = a->next)
8512 a->check_degraded = 1;
8513 }
8514 break;
8515 }
8516 default:
8517 fprintf(stderr, "error: unsuported process update type:"
8518 "(type: %d)\n", type);
8519 }
8520 }
8521
8522 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8523
8524 static void imsm_prepare_update(struct supertype *st,
8525 struct metadata_update *update)
8526 {
8527 /**
8528 * Allocate space to hold new disk entries, raid-device entries or a new
8529 * mpb if necessary. The manager synchronously waits for updates to
8530 * complete in the monitor, so new mpb buffers allocated here can be
8531 * integrated by the monitor thread without worrying about live pointers
8532 * in the manager thread.
8533 */
8534 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8535 struct intel_super *super = st->sb;
8536 struct imsm_super *mpb = super->anchor;
8537 size_t buf_len;
8538 size_t len = 0;
8539
8540 switch (type) {
8541 case update_general_migration_checkpoint:
8542 dprintf("imsm: prepare_update() "
8543 "for update_general_migration_checkpoint called\n");
8544 break;
8545 case update_takeover: {
8546 struct imsm_update_takeover *u = (void *)update->buf;
8547 if (u->direction == R0_TO_R10) {
8548 void **tail = (void **)&update->space_list;
8549 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8550 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8551 int num_members = map->num_members;
8552 void *space;
8553 int size, i;
8554 int err = 0;
8555 /* allocate memory for added disks */
8556 for (i = 0; i < num_members; i++) {
8557 size = sizeof(struct dl);
8558 space = malloc(size);
8559 if (!space) {
8560 err++;
8561 break;
8562 }
8563 *tail = space;
8564 tail = space;
8565 *tail = NULL;
8566 }
8567 /* allocate memory for new device */
8568 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8569 (num_members * sizeof(__u32));
8570 space = malloc(size);
8571 if (!space)
8572 err++;
8573 else {
8574 *tail = space;
8575 tail = space;
8576 *tail = NULL;
8577 }
8578 if (!err) {
8579 len = disks_to_mpb_size(num_members * 2);
8580 } else {
8581 /* if allocation didn't success, free buffer */
8582 while (update->space_list) {
8583 void **sp = update->space_list;
8584 update->space_list = *sp;
8585 free(sp);
8586 }
8587 }
8588 }
8589
8590 break;
8591 }
8592 case update_reshape_container_disks: {
8593 /* Every raid device in the container is about to
8594 * gain some more devices, and we will enter a
8595 * reconfiguration.
8596 * So each 'imsm_map' will be bigger, and the imsm_vol
8597 * will now hold 2 of them.
8598 * Thus we need new 'struct imsm_dev' allocations sized
8599 * as sizeof_imsm_dev but with more devices in both maps.
8600 */
8601 struct imsm_update_reshape *u = (void *)update->buf;
8602 struct intel_dev *dl;
8603 void **space_tail = (void**)&update->space_list;
8604
8605 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8606
8607 for (dl = super->devlist; dl; dl = dl->next) {
8608 int size = sizeof_imsm_dev(dl->dev, 1);
8609 void *s;
8610 if (u->new_raid_disks > u->old_raid_disks)
8611 size += sizeof(__u32)*2*
8612 (u->new_raid_disks - u->old_raid_disks);
8613 s = malloc(size);
8614 if (!s)
8615 break;
8616 *space_tail = s;
8617 space_tail = s;
8618 *space_tail = NULL;
8619 }
8620
8621 len = disks_to_mpb_size(u->new_raid_disks);
8622 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8623 break;
8624 }
8625 case update_reshape_migration: {
8626 /* for migration level 0->5 we need to add disks
8627 * so the same as for container operation we will copy
8628 * device to the bigger location.
8629 * in memory prepared device and new disk area are prepared
8630 * for usage in process update
8631 */
8632 struct imsm_update_reshape_migration *u = (void *)update->buf;
8633 struct intel_dev *id;
8634 void **space_tail = (void **)&update->space_list;
8635 int size;
8636 void *s;
8637 int current_level = -1;
8638
8639 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8640
8641 /* add space for bigger array in update
8642 */
8643 for (id = super->devlist; id; id = id->next) {
8644 if (id->index == (unsigned)u->subdev) {
8645 size = sizeof_imsm_dev(id->dev, 1);
8646 if (u->new_raid_disks > u->old_raid_disks)
8647 size += sizeof(__u32)*2*
8648 (u->new_raid_disks - u->old_raid_disks);
8649 s = malloc(size);
8650 if (!s)
8651 break;
8652 *space_tail = s;
8653 space_tail = s;
8654 *space_tail = NULL;
8655 break;
8656 }
8657 }
8658 if (update->space_list == NULL)
8659 break;
8660
8661 /* add space for disk in update
8662 */
8663 size = sizeof(struct dl);
8664 s = malloc(size);
8665 if (!s) {
8666 free(update->space_list);
8667 update->space_list = NULL;
8668 break;
8669 }
8670 *space_tail = s;
8671 space_tail = s;
8672 *space_tail = NULL;
8673
8674 /* add spare device to update
8675 */
8676 for (id = super->devlist ; id; id = id->next)
8677 if (id->index == (unsigned)u->subdev) {
8678 struct imsm_dev *dev;
8679 struct imsm_map *map;
8680
8681 dev = get_imsm_dev(super, u->subdev);
8682 map = get_imsm_map(dev, MAP_0);
8683 current_level = map->raid_level;
8684 break;
8685 }
8686 if ((u->new_level == 5) && (u->new_level != current_level)) {
8687 struct mdinfo *spares;
8688
8689 spares = get_spares_for_grow(st);
8690 if (spares) {
8691 struct dl *dl;
8692 struct mdinfo *dev;
8693
8694 dev = spares->devs;
8695 if (dev) {
8696 u->new_disks[0] =
8697 makedev(dev->disk.major,
8698 dev->disk.minor);
8699 dl = get_disk_super(super,
8700 dev->disk.major,
8701 dev->disk.minor);
8702 dl->index = u->old_raid_disks;
8703 dev = dev->next;
8704 }
8705 sysfs_free(spares);
8706 }
8707 }
8708 len = disks_to_mpb_size(u->new_raid_disks);
8709 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8710 break;
8711 }
8712 case update_create_array: {
8713 struct imsm_update_create_array *u = (void *) update->buf;
8714 struct intel_dev *dv;
8715 struct imsm_dev *dev = &u->dev;
8716 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8717 struct dl *dl;
8718 struct disk_info *inf;
8719 int i;
8720 int activate = 0;
8721
8722 inf = get_disk_info(u);
8723 len = sizeof_imsm_dev(dev, 1);
8724 /* allocate a new super->devlist entry */
8725 dv = malloc(sizeof(*dv));
8726 if (dv) {
8727 dv->dev = malloc(len);
8728 if (dv->dev)
8729 update->space = dv;
8730 else {
8731 free(dv);
8732 update->space = NULL;
8733 }
8734 }
8735
8736 /* count how many spares will be converted to members */
8737 for (i = 0; i < map->num_members; i++) {
8738 dl = serial_to_dl(inf[i].serial, super);
8739 if (!dl) {
8740 /* hmm maybe it failed?, nothing we can do about
8741 * it here
8742 */
8743 continue;
8744 }
8745 if (count_memberships(dl, super) == 0)
8746 activate++;
8747 }
8748 len += activate * sizeof(struct imsm_disk);
8749 break;
8750 default:
8751 break;
8752 }
8753 }
8754
8755 /* check if we need a larger metadata buffer */
8756 if (super->next_buf)
8757 buf_len = super->next_len;
8758 else
8759 buf_len = super->len;
8760
8761 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8762 /* ok we need a larger buf than what is currently allocated
8763 * if this allocation fails process_update will notice that
8764 * ->next_len is set and ->next_buf is NULL
8765 */
8766 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8767 if (super->next_buf)
8768 free(super->next_buf);
8769
8770 super->next_len = buf_len;
8771 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8772 memset(super->next_buf, 0, buf_len);
8773 else
8774 super->next_buf = NULL;
8775 }
8776 }
8777
8778 /* must be called while manager is quiesced */
8779 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8780 {
8781 struct imsm_super *mpb = super->anchor;
8782 struct dl *iter;
8783 struct imsm_dev *dev;
8784 struct imsm_map *map;
8785 int i, j, num_members;
8786 __u32 ord;
8787
8788 dprintf("%s: deleting device[%d] from imsm_super\n",
8789 __func__, index);
8790
8791 /* shift all indexes down one */
8792 for (iter = super->disks; iter; iter = iter->next)
8793 if (iter->index > (int)index)
8794 iter->index--;
8795 for (iter = super->missing; iter; iter = iter->next)
8796 if (iter->index > (int)index)
8797 iter->index--;
8798
8799 for (i = 0; i < mpb->num_raid_devs; i++) {
8800 dev = get_imsm_dev(super, i);
8801 map = get_imsm_map(dev, MAP_0);
8802 num_members = map->num_members;
8803 for (j = 0; j < num_members; j++) {
8804 /* update ord entries being careful not to propagate
8805 * ord-flags to the first map
8806 */
8807 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8808
8809 if (ord_to_idx(ord) <= index)
8810 continue;
8811
8812 map = get_imsm_map(dev, MAP_0);
8813 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8814 map = get_imsm_map(dev, MAP_1);
8815 if (map)
8816 set_imsm_ord_tbl_ent(map, j, ord - 1);
8817 }
8818 }
8819
8820 mpb->num_disks--;
8821 super->updates_pending++;
8822 if (*dlp) {
8823 struct dl *dl = *dlp;
8824
8825 *dlp = (*dlp)->next;
8826 __free_imsm_disk(dl);
8827 }
8828 }
8829 #endif /* MDASSEMBLE */
8830
8831 static void close_targets(int *targets, int new_disks)
8832 {
8833 int i;
8834
8835 if (!targets)
8836 return;
8837
8838 for (i = 0; i < new_disks; i++) {
8839 if (targets[i] >= 0) {
8840 close(targets[i]);
8841 targets[i] = -1;
8842 }
8843 }
8844 }
8845
8846 static int imsm_get_allowed_degradation(int level, int raid_disks,
8847 struct intel_super *super,
8848 struct imsm_dev *dev)
8849 {
8850 switch (level) {
8851 case 1:
8852 case 10:{
8853 int ret_val = 0;
8854 struct imsm_map *map;
8855 int i;
8856
8857 ret_val = raid_disks/2;
8858 /* check map if all disks pairs not failed
8859 * in both maps
8860 */
8861 map = get_imsm_map(dev, MAP_0);
8862 for (i = 0; i < ret_val; i++) {
8863 int degradation = 0;
8864 if (get_imsm_disk(super, i) == NULL)
8865 degradation++;
8866 if (get_imsm_disk(super, i + 1) == NULL)
8867 degradation++;
8868 if (degradation == 2)
8869 return 0;
8870 }
8871 map = get_imsm_map(dev, MAP_1);
8872 /* if there is no second map
8873 * result can be returned
8874 */
8875 if (map == NULL)
8876 return ret_val;
8877 /* check degradation in second map
8878 */
8879 for (i = 0; i < ret_val; i++) {
8880 int degradation = 0;
8881 if (get_imsm_disk(super, i) == NULL)
8882 degradation++;
8883 if (get_imsm_disk(super, i + 1) == NULL)
8884 degradation++;
8885 if (degradation == 2)
8886 return 0;
8887 }
8888 return ret_val;
8889 }
8890 case 5:
8891 return 1;
8892 case 6:
8893 return 2;
8894 default:
8895 return 0;
8896 }
8897 }
8898
8899
8900 /*******************************************************************************
8901 * Function: open_backup_targets
8902 * Description: Function opens file descriptors for all devices given in
8903 * info->devs
8904 * Parameters:
8905 * info : general array info
8906 * raid_disks : number of disks
8907 * raid_fds : table of device's file descriptors
8908 * super : intel super for raid10 degradation check
8909 * dev : intel device for raid10 degradation check
8910 * Returns:
8911 * 0 : success
8912 * -1 : fail
8913 ******************************************************************************/
8914 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8915 struct intel_super *super, struct imsm_dev *dev)
8916 {
8917 struct mdinfo *sd;
8918 int i;
8919 int opened = 0;
8920
8921 for (i = 0; i < raid_disks; i++)
8922 raid_fds[i] = -1;
8923
8924 for (sd = info->devs ; sd ; sd = sd->next) {
8925 char *dn;
8926
8927 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8928 dprintf("disk is faulty!!\n");
8929 continue;
8930 }
8931
8932 if ((sd->disk.raid_disk >= raid_disks) ||
8933 (sd->disk.raid_disk < 0))
8934 continue;
8935
8936 dn = map_dev(sd->disk.major,
8937 sd->disk.minor, 1);
8938 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8939 if (raid_fds[sd->disk.raid_disk] < 0) {
8940 fprintf(stderr, "cannot open component\n");
8941 continue;
8942 }
8943 opened++;
8944 }
8945 /* check if maximum array degradation level is not exceeded
8946 */
8947 if ((raid_disks - opened) >
8948 imsm_get_allowed_degradation(info->new_level,
8949 raid_disks,
8950 super, dev)) {
8951 fprintf(stderr, "Not enough disks can be opened.\n");
8952 close_targets(raid_fds, raid_disks);
8953 return -2;
8954 }
8955 return 0;
8956 }
8957
8958 #ifndef MDASSEMBLE
8959 /*******************************************************************************
8960 * Function: init_migr_record_imsm
8961 * Description: Function inits imsm migration record
8962 * Parameters:
8963 * super : imsm internal array info
8964 * dev : device under migration
8965 * info : general array info to find the smallest device
8966 * Returns:
8967 * none
8968 ******************************************************************************/
8969 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8970 struct mdinfo *info)
8971 {
8972 struct intel_super *super = st->sb;
8973 struct migr_record *migr_rec = super->migr_rec;
8974 int new_data_disks;
8975 unsigned long long dsize, dev_sectors;
8976 long long unsigned min_dev_sectors = -1LLU;
8977 struct mdinfo *sd;
8978 char nm[30];
8979 int fd;
8980 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8981 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
8982 unsigned long long num_migr_units;
8983 unsigned long long array_blocks;
8984
8985 memset(migr_rec, 0, sizeof(struct migr_record));
8986 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8987
8988 /* only ascending reshape supported now */
8989 migr_rec->ascending_migr = __cpu_to_le32(1);
8990
8991 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8992 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8993 migr_rec->dest_depth_per_unit *=
8994 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8995 new_data_disks = imsm_num_data_members(dev, MAP_0);
8996 migr_rec->blocks_per_unit =
8997 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8998 migr_rec->dest_depth_per_unit =
8999 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9000 array_blocks = info->component_size * new_data_disks;
9001 num_migr_units =
9002 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9003
9004 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9005 num_migr_units++;
9006 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9007
9008 migr_rec->post_migr_vol_cap = dev->size_low;
9009 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9010
9011
9012 /* Find the smallest dev */
9013 for (sd = info->devs ; sd ; sd = sd->next) {
9014 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9015 fd = dev_open(nm, O_RDONLY);
9016 if (fd < 0)
9017 continue;
9018 get_dev_size(fd, NULL, &dsize);
9019 dev_sectors = dsize / 512;
9020 if (dev_sectors < min_dev_sectors)
9021 min_dev_sectors = dev_sectors;
9022 close(fd);
9023 }
9024 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9025 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9026
9027 write_imsm_migr_rec(st);
9028
9029 return;
9030 }
9031
9032 /*******************************************************************************
9033 * Function: save_backup_imsm
9034 * Description: Function saves critical data stripes to Migration Copy Area
9035 * and updates the current migration unit status.
9036 * Use restore_stripes() to form a destination stripe,
9037 * and to write it to the Copy Area.
9038 * Parameters:
9039 * st : supertype information
9040 * dev : imsm device that backup is saved for
9041 * info : general array info
9042 * buf : input buffer
9043 * length : length of data to backup (blocks_per_unit)
9044 * Returns:
9045 * 0 : success
9046 *, -1 : fail
9047 ******************************************************************************/
9048 int save_backup_imsm(struct supertype *st,
9049 struct imsm_dev *dev,
9050 struct mdinfo *info,
9051 void *buf,
9052 int length)
9053 {
9054 int rv = -1;
9055 struct intel_super *super = st->sb;
9056 unsigned long long *target_offsets = NULL;
9057 int *targets = NULL;
9058 int i;
9059 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9060 int new_disks = map_dest->num_members;
9061 int dest_layout = 0;
9062 int dest_chunk;
9063 unsigned long long start;
9064 int data_disks = imsm_num_data_members(dev, MAP_0);
9065
9066 targets = malloc(new_disks * sizeof(int));
9067 if (!targets)
9068 goto abort;
9069
9070 for (i = 0; i < new_disks; i++)
9071 targets[i] = -1;
9072
9073 target_offsets = malloc(new_disks * sizeof(unsigned long long));
9074 if (!target_offsets)
9075 goto abort;
9076
9077 start = info->reshape_progress * 512;
9078 for (i = 0; i < new_disks; i++) {
9079 target_offsets[i] = (unsigned long long)
9080 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9081 /* move back copy area adderss, it will be moved forward
9082 * in restore_stripes() using start input variable
9083 */
9084 target_offsets[i] -= start/data_disks;
9085 }
9086
9087 if (open_backup_targets(info, new_disks, targets,
9088 super, dev))
9089 goto abort;
9090
9091 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9092 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9093
9094 if (restore_stripes(targets, /* list of dest devices */
9095 target_offsets, /* migration record offsets */
9096 new_disks,
9097 dest_chunk,
9098 map_dest->raid_level,
9099 dest_layout,
9100 -1, /* source backup file descriptor */
9101 0, /* input buf offset
9102 * always 0 buf is already offseted */
9103 start,
9104 length,
9105 buf) != 0) {
9106 fprintf(stderr, Name ": Error restoring stripes\n");
9107 goto abort;
9108 }
9109
9110 rv = 0;
9111
9112 abort:
9113 if (targets) {
9114 close_targets(targets, new_disks);
9115 free(targets);
9116 }
9117 free(target_offsets);
9118
9119 return rv;
9120 }
9121
9122 /*******************************************************************************
9123 * Function: save_checkpoint_imsm
9124 * Description: Function called for current unit status update
9125 * in the migration record. It writes it to disk.
9126 * Parameters:
9127 * super : imsm internal array info
9128 * info : general array info
9129 * Returns:
9130 * 0: success
9131 * 1: failure
9132 * 2: failure, means no valid migration record
9133 * / no general migration in progress /
9134 ******************************************************************************/
9135 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9136 {
9137 struct intel_super *super = st->sb;
9138 unsigned long long blocks_per_unit;
9139 unsigned long long curr_migr_unit;
9140
9141 if (load_imsm_migr_rec(super, info) != 0) {
9142 dprintf("imsm: ERROR: Cannot read migration record "
9143 "for checkpoint save.\n");
9144 return 1;
9145 }
9146
9147 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9148 if (blocks_per_unit == 0) {
9149 dprintf("imsm: no migration in progress.\n");
9150 return 2;
9151 }
9152 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9153 /* check if array is alligned to copy area
9154 * if it is not alligned, add one to current migration unit value
9155 * this can happend on array reshape finish only
9156 */
9157 if (info->reshape_progress % blocks_per_unit)
9158 curr_migr_unit++;
9159
9160 super->migr_rec->curr_migr_unit =
9161 __cpu_to_le32(curr_migr_unit);
9162 super->migr_rec->rec_status = __cpu_to_le32(state);
9163 super->migr_rec->dest_1st_member_lba =
9164 __cpu_to_le32(curr_migr_unit *
9165 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9166 if (write_imsm_migr_rec(st) < 0) {
9167 dprintf("imsm: Cannot write migration record "
9168 "outside backup area\n");
9169 return 1;
9170 }
9171
9172 return 0;
9173 }
9174
9175 /*******************************************************************************
9176 * Function: recover_backup_imsm
9177 * Description: Function recovers critical data from the Migration Copy Area
9178 * while assembling an array.
9179 * Parameters:
9180 * super : imsm internal array info
9181 * info : general array info
9182 * Returns:
9183 * 0 : success (or there is no data to recover)
9184 * 1 : fail
9185 ******************************************************************************/
9186 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9187 {
9188 struct intel_super *super = st->sb;
9189 struct migr_record *migr_rec = super->migr_rec;
9190 struct imsm_map *map_dest = NULL;
9191 struct intel_dev *id = NULL;
9192 unsigned long long read_offset;
9193 unsigned long long write_offset;
9194 unsigned unit_len;
9195 int *targets = NULL;
9196 int new_disks, i, err;
9197 char *buf = NULL;
9198 int retval = 1;
9199 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9200 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9201 char buffer[20];
9202 int skipped_disks = 0;
9203
9204 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9205 if (err < 1)
9206 return 1;
9207
9208 /* recover data only during assemblation */
9209 if (strncmp(buffer, "inactive", 8) != 0)
9210 return 0;
9211 /* no data to recover */
9212 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9213 return 0;
9214 if (curr_migr_unit >= num_migr_units)
9215 return 1;
9216
9217 /* find device during reshape */
9218 for (id = super->devlist; id; id = id->next)
9219 if (is_gen_migration(id->dev))
9220 break;
9221 if (id == NULL)
9222 return 1;
9223
9224 map_dest = get_imsm_map(id->dev, MAP_0);
9225 new_disks = map_dest->num_members;
9226
9227 read_offset = (unsigned long long)
9228 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9229
9230 write_offset = ((unsigned long long)
9231 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9232 pba_of_lba0(map_dest)) * 512;
9233
9234 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9235 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9236 goto abort;
9237 targets = malloc(new_disks * sizeof(int));
9238 if (!targets)
9239 goto abort;
9240
9241 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9242 fprintf(stderr,
9243 Name ": Cannot open some devices belonging to array.\n");
9244 goto abort;
9245 }
9246
9247 for (i = 0; i < new_disks; i++) {
9248 if (targets[i] < 0) {
9249 skipped_disks++;
9250 continue;
9251 }
9252 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9253 fprintf(stderr,
9254 Name ": Cannot seek to block: %s\n",
9255 strerror(errno));
9256 skipped_disks++;
9257 continue;
9258 }
9259 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9260 fprintf(stderr,
9261 Name ": Cannot read copy area block: %s\n",
9262 strerror(errno));
9263 skipped_disks++;
9264 continue;
9265 }
9266 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9267 fprintf(stderr,
9268 Name ": Cannot seek to block: %s\n",
9269 strerror(errno));
9270 skipped_disks++;
9271 continue;
9272 }
9273 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9274 fprintf(stderr,
9275 Name ": Cannot restore block: %s\n",
9276 strerror(errno));
9277 skipped_disks++;
9278 continue;
9279 }
9280 }
9281
9282 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9283 new_disks,
9284 super,
9285 id->dev)) {
9286 fprintf(stderr,
9287 Name ": Cannot restore data from backup."
9288 " Too many failed disks\n");
9289 goto abort;
9290 }
9291
9292 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9293 /* ignore error == 2, this can mean end of reshape here
9294 */
9295 dprintf("imsm: Cannot write checkpoint to "
9296 "migration record (UNIT_SRC_NORMAL) during restart\n");
9297 } else
9298 retval = 0;
9299
9300 abort:
9301 if (targets) {
9302 for (i = 0; i < new_disks; i++)
9303 if (targets[i])
9304 close(targets[i]);
9305 free(targets);
9306 }
9307 free(buf);
9308 return retval;
9309 }
9310
9311 static char disk_by_path[] = "/dev/disk/by-path/";
9312
9313 static const char *imsm_get_disk_controller_domain(const char *path)
9314 {
9315 char disk_path[PATH_MAX];
9316 char *drv=NULL;
9317 struct stat st;
9318
9319 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9320 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9321 if (stat(disk_path, &st) == 0) {
9322 struct sys_dev* hba;
9323 char *path=NULL;
9324
9325 path = devt_to_devpath(st.st_rdev);
9326 if (path == NULL)
9327 return "unknown";
9328 hba = find_disk_attached_hba(-1, path);
9329 if (hba && hba->type == SYS_DEV_SAS)
9330 drv = "isci";
9331 else if (hba && hba->type == SYS_DEV_SATA)
9332 drv = "ahci";
9333 else
9334 drv = "unknown";
9335 dprintf("path: %s hba: %s attached: %s\n",
9336 path, (hba) ? hba->path : "NULL", drv);
9337 free(path);
9338 if (hba)
9339 free_sys_dev(&hba);
9340 }
9341 return drv;
9342 }
9343
9344 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9345 {
9346 char subdev_name[20];
9347 struct mdstat_ent *mdstat;
9348
9349 sprintf(subdev_name, "%d", subdev);
9350 mdstat = mdstat_by_subdev(subdev_name, container);
9351 if (!mdstat)
9352 return -1;
9353
9354 *minor = mdstat->devnum;
9355 free_mdstat(mdstat);
9356 return 0;
9357 }
9358
9359 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9360 struct geo_params *geo,
9361 int *old_raid_disks)
9362 {
9363 /* currently we only support increasing the number of devices
9364 * for a container. This increases the number of device for each
9365 * member array. They must all be RAID0 or RAID5.
9366 */
9367 int ret_val = 0;
9368 struct mdinfo *info, *member;
9369 int devices_that_can_grow = 0;
9370
9371 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9372 "st->devnum = (%i)\n",
9373 st->devnum);
9374
9375 if (geo->size != -1 ||
9376 geo->level != UnSet ||
9377 geo->layout != UnSet ||
9378 geo->chunksize != 0 ||
9379 geo->raid_disks == UnSet) {
9380 dprintf("imsm: Container operation is allowed for "
9381 "raid disks number change only.\n");
9382 return ret_val;
9383 }
9384
9385 info = container_content_imsm(st, NULL);
9386 for (member = info; member; member = member->next) {
9387 int result;
9388 int minor;
9389
9390 dprintf("imsm: checking device_num: %i\n",
9391 member->container_member);
9392
9393 if (geo->raid_disks <= member->array.raid_disks) {
9394 /* we work on container for Online Capacity Expansion
9395 * only so raid_disks has to grow
9396 */
9397 dprintf("imsm: for container operation raid disks "
9398 "increase is required\n");
9399 break;
9400 }
9401
9402 if ((info->array.level != 0) &&
9403 (info->array.level != 5)) {
9404 /* we cannot use this container with other raid level
9405 */
9406 dprintf("imsm: for container operation wrong"
9407 " raid level (%i) detected\n",
9408 info->array.level);
9409 break;
9410 } else {
9411 /* check for platform support
9412 * for this raid level configuration
9413 */
9414 struct intel_super *super = st->sb;
9415 if (!is_raid_level_supported(super->orom,
9416 member->array.level,
9417 geo->raid_disks)) {
9418 dprintf("platform does not support raid%d with"
9419 " %d disk%s\n",
9420 info->array.level,
9421 geo->raid_disks,
9422 geo->raid_disks > 1 ? "s" : "");
9423 break;
9424 }
9425 /* check if component size is aligned to chunk size
9426 */
9427 if (info->component_size %
9428 (info->array.chunk_size/512)) {
9429 dprintf("Component size is not aligned to "
9430 "chunk size\n");
9431 break;
9432 }
9433 }
9434
9435 if (*old_raid_disks &&
9436 info->array.raid_disks != *old_raid_disks)
9437 break;
9438 *old_raid_disks = info->array.raid_disks;
9439
9440 /* All raid5 and raid0 volumes in container
9441 * have to be ready for Online Capacity Expansion
9442 * so they need to be assembled. We have already
9443 * checked that no recovery etc is happening.
9444 */
9445 result = imsm_find_array_minor_by_subdev(member->container_member,
9446 st->container_dev,
9447 &minor);
9448 if (result < 0) {
9449 dprintf("imsm: cannot find array\n");
9450 break;
9451 }
9452 devices_that_can_grow++;
9453 }
9454 sysfs_free(info);
9455 if (!member && devices_that_can_grow)
9456 ret_val = 1;
9457
9458 if (ret_val)
9459 dprintf("\tContainer operation allowed\n");
9460 else
9461 dprintf("\tError: %i\n", ret_val);
9462
9463 return ret_val;
9464 }
9465
9466 /* Function: get_spares_for_grow
9467 * Description: Allocates memory and creates list of spare devices
9468 * avaliable in container. Checks if spare drive size is acceptable.
9469 * Parameters: Pointer to the supertype structure
9470 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9471 * NULL if fail
9472 */
9473 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9474 {
9475 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9476 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9477 }
9478
9479 /******************************************************************************
9480 * function: imsm_create_metadata_update_for_reshape
9481 * Function creates update for whole IMSM container.
9482 *
9483 ******************************************************************************/
9484 static int imsm_create_metadata_update_for_reshape(
9485 struct supertype *st,
9486 struct geo_params *geo,
9487 int old_raid_disks,
9488 struct imsm_update_reshape **updatep)
9489 {
9490 struct intel_super *super = st->sb;
9491 struct imsm_super *mpb = super->anchor;
9492 int update_memory_size = 0;
9493 struct imsm_update_reshape *u = NULL;
9494 struct mdinfo *spares = NULL;
9495 int i;
9496 int delta_disks = 0;
9497 struct mdinfo *dev;
9498
9499 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9500 geo->raid_disks);
9501
9502 delta_disks = geo->raid_disks - old_raid_disks;
9503
9504 /* size of all update data without anchor */
9505 update_memory_size = sizeof(struct imsm_update_reshape);
9506
9507 /* now add space for spare disks that we need to add. */
9508 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9509
9510 u = calloc(1, update_memory_size);
9511 if (u == NULL) {
9512 dprintf("error: "
9513 "cannot get memory for imsm_update_reshape update\n");
9514 return 0;
9515 }
9516 u->type = update_reshape_container_disks;
9517 u->old_raid_disks = old_raid_disks;
9518 u->new_raid_disks = geo->raid_disks;
9519
9520 /* now get spare disks list
9521 */
9522 spares = get_spares_for_grow(st);
9523
9524 if (spares == NULL
9525 || delta_disks > spares->array.spare_disks) {
9526 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
9527 "for %s.\n", geo->dev_name);
9528 i = -1;
9529 goto abort;
9530 }
9531
9532 /* we have got spares
9533 * update disk list in imsm_disk list table in anchor
9534 */
9535 dprintf("imsm: %i spares are available.\n\n",
9536 spares->array.spare_disks);
9537
9538 dev = spares->devs;
9539 for (i = 0; i < delta_disks; i++) {
9540 struct dl *dl;
9541
9542 if (dev == NULL)
9543 break;
9544 u->new_disks[i] = makedev(dev->disk.major,
9545 dev->disk.minor);
9546 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9547 dl->index = mpb->num_disks;
9548 mpb->num_disks++;
9549 dev = dev->next;
9550 }
9551
9552 abort:
9553 /* free spares
9554 */
9555 sysfs_free(spares);
9556
9557 dprintf("imsm: reshape update preparation :");
9558 if (i == delta_disks) {
9559 dprintf(" OK\n");
9560 *updatep = u;
9561 return update_memory_size;
9562 }
9563 free(u);
9564 dprintf(" Error\n");
9565
9566 return 0;
9567 }
9568
9569 /******************************************************************************
9570 * function: imsm_create_metadata_update_for_migration()
9571 * Creates update for IMSM array.
9572 *
9573 ******************************************************************************/
9574 static int imsm_create_metadata_update_for_migration(
9575 struct supertype *st,
9576 struct geo_params *geo,
9577 struct imsm_update_reshape_migration **updatep)
9578 {
9579 struct intel_super *super = st->sb;
9580 int update_memory_size = 0;
9581 struct imsm_update_reshape_migration *u = NULL;
9582 struct imsm_dev *dev;
9583 int previous_level = -1;
9584
9585 dprintf("imsm_create_metadata_update_for_migration(enter)"
9586 " New Level = %i\n", geo->level);
9587
9588 /* size of all update data without anchor */
9589 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9590
9591 u = calloc(1, update_memory_size);
9592 if (u == NULL) {
9593 dprintf("error: cannot get memory for "
9594 "imsm_create_metadata_update_for_migration\n");
9595 return 0;
9596 }
9597 u->type = update_reshape_migration;
9598 u->subdev = super->current_vol;
9599 u->new_level = geo->level;
9600 u->new_layout = geo->layout;
9601 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9602 u->new_disks[0] = -1;
9603 u->new_chunksize = -1;
9604
9605 dev = get_imsm_dev(super, u->subdev);
9606 if (dev) {
9607 struct imsm_map *map;
9608
9609 map = get_imsm_map(dev, MAP_0);
9610 if (map) {
9611 int current_chunk_size =
9612 __le16_to_cpu(map->blocks_per_strip) / 2;
9613
9614 if (geo->chunksize != current_chunk_size) {
9615 u->new_chunksize = geo->chunksize / 1024;
9616 dprintf("imsm: "
9617 "chunk size change from %i to %i\n",
9618 current_chunk_size, u->new_chunksize);
9619 }
9620 previous_level = map->raid_level;
9621 }
9622 }
9623 if ((geo->level == 5) && (previous_level == 0)) {
9624 struct mdinfo *spares = NULL;
9625
9626 u->new_raid_disks++;
9627 spares = get_spares_for_grow(st);
9628 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9629 free(u);
9630 sysfs_free(spares);
9631 update_memory_size = 0;
9632 dprintf("error: cannot get spare device "
9633 "for requested migration");
9634 return 0;
9635 }
9636 sysfs_free(spares);
9637 }
9638 dprintf("imsm: reshape update preparation : OK\n");
9639 *updatep = u;
9640
9641 return update_memory_size;
9642 }
9643
9644 static void imsm_update_metadata_locally(struct supertype *st,
9645 void *buf, int len)
9646 {
9647 struct metadata_update mu;
9648
9649 mu.buf = buf;
9650 mu.len = len;
9651 mu.space = NULL;
9652 mu.space_list = NULL;
9653 mu.next = NULL;
9654 imsm_prepare_update(st, &mu);
9655 imsm_process_update(st, &mu);
9656
9657 while (mu.space_list) {
9658 void **space = mu.space_list;
9659 mu.space_list = *space;
9660 free(space);
9661 }
9662 }
9663
9664 /***************************************************************************
9665 * Function: imsm_analyze_change
9666 * Description: Function analyze change for single volume
9667 * and validate if transition is supported
9668 * Parameters: Geometry parameters, supertype structure
9669 * Returns: Operation type code on success, -1 if fail
9670 ****************************************************************************/
9671 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9672 struct geo_params *geo)
9673 {
9674 struct mdinfo info;
9675 int change = -1;
9676 int check_devs = 0;
9677 int chunk;
9678 /* number of added/removed disks in operation result */
9679 int devNumChange = 0;
9680 /* imsm compatible layout value for array geometry verification */
9681 int imsm_layout = -1;
9682
9683 getinfo_super_imsm_volume(st, &info, NULL);
9684 if ((geo->level != info.array.level) &&
9685 (geo->level >= 0) &&
9686 (geo->level != UnSet)) {
9687 switch (info.array.level) {
9688 case 0:
9689 if (geo->level == 5) {
9690 change = CH_MIGRATION;
9691 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9692 fprintf(stderr,
9693 Name " Error. Requested Layout "
9694 "not supported (left-asymmetric layout "
9695 "is supported only)!\n");
9696 change = -1;
9697 goto analyse_change_exit;
9698 }
9699 imsm_layout = geo->layout;
9700 check_devs = 1;
9701 devNumChange = 1; /* parity disk added */
9702 } else if (geo->level == 10) {
9703 change = CH_TAKEOVER;
9704 check_devs = 1;
9705 devNumChange = 2; /* two mirrors added */
9706 imsm_layout = 0x102; /* imsm supported layout */
9707 }
9708 break;
9709 case 1:
9710 case 10:
9711 if (geo->level == 0) {
9712 change = CH_TAKEOVER;
9713 check_devs = 1;
9714 devNumChange = -(geo->raid_disks/2);
9715 imsm_layout = 0; /* imsm raid0 layout */
9716 }
9717 break;
9718 }
9719 if (change == -1) {
9720 fprintf(stderr,
9721 Name " Error. Level Migration from %d to %d "
9722 "not supported!\n",
9723 info.array.level, geo->level);
9724 goto analyse_change_exit;
9725 }
9726 } else
9727 geo->level = info.array.level;
9728
9729 if ((geo->layout != info.array.layout)
9730 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9731 change = CH_MIGRATION;
9732 if ((info.array.layout == 0)
9733 && (info.array.level == 5)
9734 && (geo->layout == 5)) {
9735 /* reshape 5 -> 4 */
9736 } else if ((info.array.layout == 5)
9737 && (info.array.level == 5)
9738 && (geo->layout == 0)) {
9739 /* reshape 4 -> 5 */
9740 geo->layout = 0;
9741 geo->level = 5;
9742 } else {
9743 fprintf(stderr,
9744 Name " Error. Layout Migration from %d to %d "
9745 "not supported!\n",
9746 info.array.layout, geo->layout);
9747 change = -1;
9748 goto analyse_change_exit;
9749 }
9750 } else {
9751 geo->layout = info.array.layout;
9752 if (imsm_layout == -1)
9753 imsm_layout = info.array.layout;
9754 }
9755
9756 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9757 && (geo->chunksize != info.array.chunk_size))
9758 change = CH_MIGRATION;
9759 else
9760 geo->chunksize = info.array.chunk_size;
9761
9762 chunk = geo->chunksize / 1024;
9763 if (!validate_geometry_imsm(st,
9764 geo->level,
9765 imsm_layout,
9766 geo->raid_disks + devNumChange,
9767 &chunk,
9768 geo->size,
9769 0, 0, 1))
9770 change = -1;
9771
9772 if (check_devs) {
9773 struct intel_super *super = st->sb;
9774 struct imsm_super *mpb = super->anchor;
9775
9776 if (mpb->num_raid_devs > 1) {
9777 fprintf(stderr,
9778 Name " Error. Cannot perform operation on %s"
9779 "- for this operation it MUST be single "
9780 "array in container\n",
9781 geo->dev_name);
9782 change = -1;
9783 }
9784 }
9785
9786 analyse_change_exit:
9787
9788 return change;
9789 }
9790
9791 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9792 {
9793 struct intel_super *super = st->sb;
9794 struct imsm_update_takeover *u;
9795
9796 u = malloc(sizeof(struct imsm_update_takeover));
9797 if (u == NULL)
9798 return 1;
9799
9800 u->type = update_takeover;
9801 u->subarray = super->current_vol;
9802
9803 /* 10->0 transition */
9804 if (geo->level == 0)
9805 u->direction = R10_TO_R0;
9806
9807 /* 0->10 transition */
9808 if (geo->level == 10)
9809 u->direction = R0_TO_R10;
9810
9811 /* update metadata locally */
9812 imsm_update_metadata_locally(st, u,
9813 sizeof(struct imsm_update_takeover));
9814 /* and possibly remotely */
9815 if (st->update_tail)
9816 append_metadata_update(st, u,
9817 sizeof(struct imsm_update_takeover));
9818 else
9819 free(u);
9820
9821 return 0;
9822 }
9823
9824 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9825 int layout, int chunksize, int raid_disks,
9826 int delta_disks, char *backup, char *dev,
9827 int verbose)
9828 {
9829 int ret_val = 1;
9830 struct geo_params geo;
9831
9832 dprintf("imsm: reshape_super called.\n");
9833
9834 memset(&geo, 0, sizeof(struct geo_params));
9835
9836 geo.dev_name = dev;
9837 geo.dev_id = st->devnum;
9838 geo.size = size;
9839 geo.level = level;
9840 geo.layout = layout;
9841 geo.chunksize = chunksize;
9842 geo.raid_disks = raid_disks;
9843 if (delta_disks != UnSet)
9844 geo.raid_disks += delta_disks;
9845
9846 dprintf("\tfor level : %i\n", geo.level);
9847 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9848
9849 if (experimental() == 0)
9850 return ret_val;
9851
9852 if (st->container_dev == st->devnum) {
9853 /* On container level we can only increase number of devices. */
9854 dprintf("imsm: info: Container operation\n");
9855 int old_raid_disks = 0;
9856
9857 if (imsm_reshape_is_allowed_on_container(
9858 st, &geo, &old_raid_disks)) {
9859 struct imsm_update_reshape *u = NULL;
9860 int len;
9861
9862 len = imsm_create_metadata_update_for_reshape(
9863 st, &geo, old_raid_disks, &u);
9864
9865 if (len <= 0) {
9866 dprintf("imsm: Cannot prepare update\n");
9867 goto exit_imsm_reshape_super;
9868 }
9869
9870 ret_val = 0;
9871 /* update metadata locally */
9872 imsm_update_metadata_locally(st, u, len);
9873 /* and possibly remotely */
9874 if (st->update_tail)
9875 append_metadata_update(st, u, len);
9876 else
9877 free(u);
9878
9879 } else {
9880 fprintf(stderr, Name ": (imsm) Operation "
9881 "is not allowed on this container\n");
9882 }
9883 } else {
9884 /* On volume level we support following operations
9885 * - takeover: raid10 -> raid0; raid0 -> raid10
9886 * - chunk size migration
9887 * - migration: raid5 -> raid0; raid0 -> raid5
9888 */
9889 struct intel_super *super = st->sb;
9890 struct intel_dev *dev = super->devlist;
9891 int change, devnum;
9892 dprintf("imsm: info: Volume operation\n");
9893 /* find requested device */
9894 while (dev) {
9895 if (imsm_find_array_minor_by_subdev(
9896 dev->index, st->container_dev, &devnum) == 0
9897 && devnum == geo.dev_id)
9898 break;
9899 dev = dev->next;
9900 }
9901 if (dev == NULL) {
9902 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9903 geo.dev_name, geo.dev_id);
9904 goto exit_imsm_reshape_super;
9905 }
9906 super->current_vol = dev->index;
9907 change = imsm_analyze_change(st, &geo);
9908 switch (change) {
9909 case CH_TAKEOVER:
9910 ret_val = imsm_takeover(st, &geo);
9911 break;
9912 case CH_MIGRATION: {
9913 struct imsm_update_reshape_migration *u = NULL;
9914 int len =
9915 imsm_create_metadata_update_for_migration(
9916 st, &geo, &u);
9917 if (len < 1) {
9918 dprintf("imsm: "
9919 "Cannot prepare update\n");
9920 break;
9921 }
9922 ret_val = 0;
9923 /* update metadata locally */
9924 imsm_update_metadata_locally(st, u, len);
9925 /* and possibly remotely */
9926 if (st->update_tail)
9927 append_metadata_update(st, u, len);
9928 else
9929 free(u);
9930 }
9931 break;
9932 default:
9933 ret_val = 1;
9934 }
9935 }
9936
9937 exit_imsm_reshape_super:
9938 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9939 return ret_val;
9940 }
9941
9942 /*******************************************************************************
9943 * Function: wait_for_reshape_imsm
9944 * Description: Function writes new sync_max value and waits until
9945 * reshape process reach new position
9946 * Parameters:
9947 * sra : general array info
9948 * ndata : number of disks in new array's layout
9949 * Returns:
9950 * 0 : success,
9951 * 1 : there is no reshape in progress,
9952 * -1 : fail
9953 ******************************************************************************/
9954 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9955 {
9956 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9957 unsigned long long completed;
9958 /* to_complete : new sync_max position */
9959 unsigned long long to_complete = sra->reshape_progress;
9960 unsigned long long position_to_set = to_complete / ndata;
9961
9962 if (fd < 0) {
9963 dprintf("imsm: wait_for_reshape_imsm() "
9964 "cannot open reshape_position\n");
9965 return 1;
9966 }
9967
9968 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9969 dprintf("imsm: wait_for_reshape_imsm() "
9970 "cannot read reshape_position (no reshape in progres)\n");
9971 close(fd);
9972 return 0;
9973 }
9974
9975 if (completed > to_complete) {
9976 dprintf("imsm: wait_for_reshape_imsm() "
9977 "wrong next position to set %llu (%llu)\n",
9978 to_complete, completed);
9979 close(fd);
9980 return -1;
9981 }
9982 dprintf("Position set: %llu\n", position_to_set);
9983 if (sysfs_set_num(sra, NULL, "sync_max",
9984 position_to_set) != 0) {
9985 dprintf("imsm: wait_for_reshape_imsm() "
9986 "cannot set reshape position to %llu\n",
9987 position_to_set);
9988 close(fd);
9989 return -1;
9990 }
9991
9992 do {
9993 char action[20];
9994 fd_set rfds;
9995 FD_ZERO(&rfds);
9996 FD_SET(fd, &rfds);
9997 select(fd+1, &rfds, NULL, NULL, NULL);
9998 if (sysfs_get_str(sra, NULL, "sync_action",
9999 action, 20) > 0 &&
10000 strncmp(action, "reshape", 7) != 0)
10001 break;
10002 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10003 dprintf("imsm: wait_for_reshape_imsm() "
10004 "cannot read reshape_position (in loop)\n");
10005 close(fd);
10006 return 1;
10007 }
10008 } while (completed < to_complete);
10009 close(fd);
10010 return 0;
10011
10012 }
10013
10014 /*******************************************************************************
10015 * Function: check_degradation_change
10016 * Description: Check that array hasn't become failed.
10017 * Parameters:
10018 * info : for sysfs access
10019 * sources : source disks descriptors
10020 * degraded: previous degradation level
10021 * Returns:
10022 * degradation level
10023 ******************************************************************************/
10024 int check_degradation_change(struct mdinfo *info,
10025 int *sources,
10026 int degraded)
10027 {
10028 unsigned long long new_degraded;
10029 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10030 if (new_degraded != (unsigned long long)degraded) {
10031 /* check each device to ensure it is still working */
10032 struct mdinfo *sd;
10033 new_degraded = 0;
10034 for (sd = info->devs ; sd ; sd = sd->next) {
10035 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10036 continue;
10037 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10038 char sbuf[20];
10039 if (sysfs_get_str(info,
10040 sd, "state", sbuf, 20) < 0 ||
10041 strstr(sbuf, "faulty") ||
10042 strstr(sbuf, "in_sync") == NULL) {
10043 /* this device is dead */
10044 sd->disk.state = (1<<MD_DISK_FAULTY);
10045 if (sd->disk.raid_disk >= 0 &&
10046 sources[sd->disk.raid_disk] >= 0) {
10047 close(sources[
10048 sd->disk.raid_disk]);
10049 sources[sd->disk.raid_disk] =
10050 -1;
10051 }
10052 new_degraded++;
10053 }
10054 }
10055 }
10056 }
10057
10058 return new_degraded;
10059 }
10060
10061 /*******************************************************************************
10062 * Function: imsm_manage_reshape
10063 * Description: Function finds array under reshape and it manages reshape
10064 * process. It creates stripes backups (if required) and sets
10065 * checheckpoits.
10066 * Parameters:
10067 * afd : Backup handle (nattive) - not used
10068 * sra : general array info
10069 * reshape : reshape parameters - not used
10070 * st : supertype structure
10071 * blocks : size of critical section [blocks]
10072 * fds : table of source device descriptor
10073 * offsets : start of array (offest per devices)
10074 * dests : not used
10075 * destfd : table of destination device descriptor
10076 * destoffsets : table of destination offsets (per device)
10077 * Returns:
10078 * 1 : success, reshape is done
10079 * 0 : fail
10080 ******************************************************************************/
10081 static int imsm_manage_reshape(
10082 int afd, struct mdinfo *sra, struct reshape *reshape,
10083 struct supertype *st, unsigned long backup_blocks,
10084 int *fds, unsigned long long *offsets,
10085 int dests, int *destfd, unsigned long long *destoffsets)
10086 {
10087 int ret_val = 0;
10088 struct intel_super *super = st->sb;
10089 struct intel_dev *dv = NULL;
10090 struct imsm_dev *dev = NULL;
10091 struct imsm_map *map_src;
10092 int migr_vol_qan = 0;
10093 int ndata, odata; /* [bytes] */
10094 int chunk; /* [bytes] */
10095 struct migr_record *migr_rec;
10096 char *buf = NULL;
10097 unsigned int buf_size; /* [bytes] */
10098 unsigned long long max_position; /* array size [bytes] */
10099 unsigned long long next_step; /* [blocks]/[bytes] */
10100 unsigned long long old_data_stripe_length;
10101 unsigned long long start_src; /* [bytes] */
10102 unsigned long long start; /* [bytes] */
10103 unsigned long long start_buf_shift; /* [bytes] */
10104 int degraded = 0;
10105 int source_layout = 0;
10106
10107 if (!fds || !offsets || !sra)
10108 goto abort;
10109
10110 /* Find volume during the reshape */
10111 for (dv = super->devlist; dv; dv = dv->next) {
10112 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10113 && dv->dev->vol.migr_state == 1) {
10114 dev = dv->dev;
10115 migr_vol_qan++;
10116 }
10117 }
10118 /* Only one volume can migrate at the same time */
10119 if (migr_vol_qan != 1) {
10120 fprintf(stderr, Name " : %s", migr_vol_qan ?
10121 "Number of migrating volumes greater than 1\n" :
10122 "There is no volume during migrationg\n");
10123 goto abort;
10124 }
10125
10126 map_src = get_imsm_map(dev, MAP_1);
10127 if (map_src == NULL)
10128 goto abort;
10129
10130 ndata = imsm_num_data_members(dev, MAP_0);
10131 odata = imsm_num_data_members(dev, MAP_1);
10132
10133 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10134 old_data_stripe_length = odata * chunk;
10135
10136 migr_rec = super->migr_rec;
10137
10138 /* initialize migration record for start condition */
10139 if (sra->reshape_progress == 0)
10140 init_migr_record_imsm(st, dev, sra);
10141 else {
10142 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10143 dprintf("imsm: cannot restart migration when data "
10144 "are present in copy area.\n");
10145 goto abort;
10146 }
10147 /* Save checkpoint to update migration record for current
10148 * reshape position (in md). It can be farther than current
10149 * reshape position in metadata.
10150 */
10151 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10152 /* ignore error == 2, this can mean end of reshape here
10153 */
10154 dprintf("imsm: Cannot write checkpoint to "
10155 "migration record (UNIT_SRC_NORMAL, "
10156 "initial save)\n");
10157 goto abort;
10158 }
10159 }
10160
10161 /* size for data */
10162 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10163 /* extend buffer size for parity disk */
10164 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10165 /* add space for stripe aligment */
10166 buf_size += old_data_stripe_length;
10167 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10168 dprintf("imsm: Cannot allocate checpoint buffer\n");
10169 goto abort;
10170 }
10171
10172 max_position = sra->component_size * ndata;
10173 source_layout = imsm_level_to_layout(map_src->raid_level);
10174
10175 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10176 __le32_to_cpu(migr_rec->num_migr_units)) {
10177 /* current reshape position [blocks] */
10178 unsigned long long current_position =
10179 __le32_to_cpu(migr_rec->blocks_per_unit)
10180 * __le32_to_cpu(migr_rec->curr_migr_unit);
10181 unsigned long long border;
10182
10183 /* Check that array hasn't become failed.
10184 */
10185 degraded = check_degradation_change(sra, fds, degraded);
10186 if (degraded > 1) {
10187 dprintf("imsm: Abort reshape due to degradation"
10188 " level (%i)\n", degraded);
10189 goto abort;
10190 }
10191
10192 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10193
10194 if ((current_position + next_step) > max_position)
10195 next_step = max_position - current_position;
10196
10197 start = current_position * 512;
10198
10199 /* allign reading start to old geometry */
10200 start_buf_shift = start % old_data_stripe_length;
10201 start_src = start - start_buf_shift;
10202
10203 border = (start_src / odata) - (start / ndata);
10204 border /= 512;
10205 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10206 /* save critical stripes to buf
10207 * start - start address of current unit
10208 * to backup [bytes]
10209 * start_src - start address of current unit
10210 * to backup alligned to source array
10211 * [bytes]
10212 */
10213 unsigned long long next_step_filler = 0;
10214 unsigned long long copy_length = next_step * 512;
10215
10216 /* allign copy area length to stripe in old geometry */
10217 next_step_filler = ((copy_length + start_buf_shift)
10218 % old_data_stripe_length);
10219 if (next_step_filler)
10220 next_step_filler = (old_data_stripe_length
10221 - next_step_filler);
10222 dprintf("save_stripes() parameters: start = %llu,"
10223 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10224 "\tstart_in_buf_shift = %llu,"
10225 "\tnext_step_filler = %llu\n",
10226 start, start_src, copy_length,
10227 start_buf_shift, next_step_filler);
10228
10229 if (save_stripes(fds, offsets, map_src->num_members,
10230 chunk, map_src->raid_level,
10231 source_layout, 0, NULL, start_src,
10232 copy_length +
10233 next_step_filler + start_buf_shift,
10234 buf)) {
10235 dprintf("imsm: Cannot save stripes"
10236 " to buffer\n");
10237 goto abort;
10238 }
10239 /* Convert data to destination format and store it
10240 * in backup general migration area
10241 */
10242 if (save_backup_imsm(st, dev, sra,
10243 buf + start_buf_shift, copy_length)) {
10244 dprintf("imsm: Cannot save stripes to "
10245 "target devices\n");
10246 goto abort;
10247 }
10248 if (save_checkpoint_imsm(st, sra,
10249 UNIT_SRC_IN_CP_AREA)) {
10250 dprintf("imsm: Cannot write checkpoint to "
10251 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10252 goto abort;
10253 }
10254 } else {
10255 /* set next step to use whole border area */
10256 border /= next_step;
10257 if (border > 1)
10258 next_step *= border;
10259 }
10260 /* When data backed up, checkpoint stored,
10261 * kick the kernel to reshape unit of data
10262 */
10263 next_step = next_step + sra->reshape_progress;
10264 /* limit next step to array max position */
10265 if (next_step > max_position)
10266 next_step = max_position;
10267 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10268 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10269 sra->reshape_progress = next_step;
10270
10271 /* wait until reshape finish */
10272 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10273 dprintf("wait_for_reshape_imsm returned error!\n");
10274 goto abort;
10275 }
10276
10277 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10278 /* ignore error == 2, this can mean end of reshape here
10279 */
10280 dprintf("imsm: Cannot write checkpoint to "
10281 "migration record (UNIT_SRC_NORMAL)\n");
10282 goto abort;
10283 }
10284
10285 }
10286
10287 /* return '1' if done */
10288 ret_val = 1;
10289 abort:
10290 free(buf);
10291 abort_reshape(sra);
10292
10293 return ret_val;
10294 }
10295 #endif /* MDASSEMBLE */
10296
10297 struct superswitch super_imsm = {
10298 #ifndef MDASSEMBLE
10299 .examine_super = examine_super_imsm,
10300 .brief_examine_super = brief_examine_super_imsm,
10301 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10302 .export_examine_super = export_examine_super_imsm,
10303 .detail_super = detail_super_imsm,
10304 .brief_detail_super = brief_detail_super_imsm,
10305 .write_init_super = write_init_super_imsm,
10306 .validate_geometry = validate_geometry_imsm,
10307 .add_to_super = add_to_super_imsm,
10308 .remove_from_super = remove_from_super_imsm,
10309 .detail_platform = detail_platform_imsm,
10310 .kill_subarray = kill_subarray_imsm,
10311 .update_subarray = update_subarray_imsm,
10312 .load_container = load_container_imsm,
10313 .default_geometry = default_geometry_imsm,
10314 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10315 .reshape_super = imsm_reshape_super,
10316 .manage_reshape = imsm_manage_reshape,
10317 .recover_backup = recover_backup_imsm,
10318 #endif
10319 .match_home = match_home_imsm,
10320 .uuid_from_super= uuid_from_super_imsm,
10321 .getinfo_super = getinfo_super_imsm,
10322 .getinfo_super_disks = getinfo_super_disks_imsm,
10323 .update_super = update_super_imsm,
10324
10325 .avail_size = avail_size_imsm,
10326 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10327
10328 .compare_super = compare_super_imsm,
10329
10330 .load_super = load_super_imsm,
10331 .init_super = init_super_imsm,
10332 .store_super = store_super_imsm,
10333 .free_super = free_super_imsm,
10334 .match_metadata_desc = match_metadata_desc_imsm,
10335 .container_content = container_content_imsm,
10336
10337
10338 .external = 1,
10339 .name = "imsm",
10340
10341 #ifndef MDASSEMBLE
10342 /* for mdmon */
10343 .open_new = imsm_open_new,
10344 .set_array_state= imsm_set_array_state,
10345 .set_disk = imsm_set_disk,
10346 .sync_metadata = imsm_sync_metadata,
10347 .activate_spare = imsm_activate_spare,
10348 .process_update = imsm_process_update,
10349 .prepare_update = imsm_prepare_update,
10350 #endif /* MDASSEMBLE */
10351 };